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Abstract

Bit errors occur over wireless channels when the signal isn’t strong enough to
overcome the effects of interference and noise. Current wireless protocols may use
forward error correction (FEC) to correct for some (small) number of bit errors,
but generally retransmit the whole packet if the FEC is insufficient. We observe
that current wireless mesh network protocols retransmit a number of packets and
that most of these retransmissions end up sending bits that have already been re-
ceived multiple times, wasting network capacity. To overcome this inefficiency, we
develop, implement, and evaluate a partial packet recovery (PPR) system.

PPR incorporates three new ideas: (1) SoftPHY, an expanded physical layer
(PHY) interface to provide hints to the higher layers about how “close” the actual
received symbol was to the one decoded, (2) a postamble scheme to recover data
even when a packet’s preamble is corrupted and not decodable at the receiver,
and (3) PP-ARQ, an asynchronous link-layer retransmission protocol that allows a
receiver to compactly encode and request for retransmission only those portions of
a packet that are likely in error.

Our experimental results from a 27-node 802.15.4 testbed that includes Te-
los motes with 2.4 GHz Chipcon radios and GNU Radio nodes implementing the
Zigbee standard (802.15.4) show that PPR increases the frame delivery rate by a
factor of 2× under moderate load, and 7× under heavy load when many links have
marginal quality.

1 Introduction
Bit errors over wireless channels occur when the signal to interference and noise ratio
(SINR) is not high enough to decode information correctly. Poor SINR is usually the re-
sult of noise caused by sources external to the network, and interference caused by one
or more other concurrent transmissions in the network, and varies in time even within
a single packet transmission. Even with a variety of physical layer (PHY) techniques
such as soft-decision decoding [10], spread spectrum modulation, channel coding, and
the like, current systems rely heavily on link-layer retransmissions to recover from bit
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errors and achieve high throughput. Because wireless channels are hard to model and
predict, designing an error-free communication link generally entails sacrificing signif-
icant capacity; instead, a design that occasionally causes errors to occur fares better in
this regard. Link-layer retransmissions allow a receiver to recover from lost packets.

Retransmitting entire packets works well over wired networks where bit-level cor-
ruption is rare and a packet loss implies that all the bits of the packet were lost (e.g.,
due to a queue overflow). Over radio, however, all the bits in a packet don’t share the
same fate: wery often, only a small number of bits in a packet are in error and others
are correct. Thus, it is wasteful to re-send the entire packet when only a small part of
it is lost. Our goal is to eliminate this waste, ideally by never re-sending those portions
of the packet that have already been received correctly.

There are several challenges in realizing this goal. First, how can a receiver tell
which bits are correct and which are not? Second, since most PHY schemes require
the receiver to synchronize with the sender on a preamble before decoding a packet’s
contents, wouldn’t any corruption to the preamble (caused, for instance, by a packet
collision from another transmission) greatly diminish the potential benefits of the pro-
posed scheme? Third, how can higher layer protocols use partial packets to improve
end-to-end performance?

This paper presents the design, implementation, and evaluation of PPR, a Partial
Packet Recovery system that improves aggregate network capacity by greatly reducing
the number of redundant bit transmissions. It incorporates three new techniques to meet
the challenges mentioned above:

1. SoftPHY allows a receiver to determine, with no additional feedback or informa-
tion from the sender, which groups of bits (symbols) are likely to be correct in
any given packet reception using hints from the PHY. The key insight in Soft-
PHY is that the PHY maintains information about how close the received symbol
was to what it decoded and reported to the higher layer. The higher layer can use
this information, propagated from the PHY, as a hint. Section 3 develops this
idea further.

2. Postamble decoding allows a receiver to receive and decode bits correctly even
from packets whose preambles are corrupted. The main idea here is to replicate
the preamble and packet headers in a postamble and a packet trailer, allowing a
receiver to lock on the postamble and then “roll back” in time to recover data
that was previously impossible to obtain. Section 4 describes the details of this
scheme.

3. PP-ARQ, a link-layer retransmission protocol in which the receiver compactly
requests and encodes the retransmission of only select portions of a packet. This
compact encoding is done using a dynamic programming algorithm that mini-
mizes the expected bit overhead of communicating this feedback, balancing that
against the cost of the sender retransmitting bits already received correctly. Sec-
tion 5 describes PP-ARQ.

We have implemented all three components on the GNU Radio platform for
802.15.4, the Zigbee standard. Our implementation is compatible with that specifica-
tion (see Section 6). The SoftPHY and postamble decoding steps running at the receiver
can recover partial packets from unmodified Zigbee senders, while PP-ARQ requires
modifications to the sender as well.
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Figure 1: Block diagram of the PPR system; dark blocks and the SoftPHY interface are
the contributions of this paper. PPR sits above one of many different types of receiver
structure, as discussed in Section 3. The SoftPHY interface passes up hints from the
receiver to PP-ARQ, the partial packet retransmission layer, described in Section 5.
Postamble decoding, described in Section 4, increases the number of opportunities for
recovering partial packets from the receiver.

We have conducted several experiments over a 25-node indoor testbed consisting
of Telos motes with 2.4 GHz Zigbee radios from Chipcon and four GNU Radio nodes.
These results, described in Section 7, show factor-of-two gains in the packet delivery
rate and per-link throughput with PPR over the status quo under moderate load. We
also compare PPR to other ways of determining which bits in a packet are likely to be
correct, such as fragmented CRCs on packets. There we find that on the links with the
lowest loss rates (which would be the ones selected by routing protocols), the raw suc-
cess rate improves by 1.6×. These gains are even higher (7× better per-link throughput)
under heavy load, which causes a number of links to have marginal quality.

2 Design Overview
The PPR system allows the link/MAC layer to estimate which bits of any given re-
ception are likely to be correct and use that information to improve packet delivery
rates and throughput. To understand how its three components (SoftPHY, postamble
decoding, and PP-ARQ) work and interface with each other, a conceptual model of the
wireless communication system will be helpful. This model is intentionally simple and
doesn’t capture the breadth of designs where PPR can be useful, but describes a typi-
cal instance of a direct-sequence spread spectrum (DSSS) radio. This model applies to
both 802.15.4 (Zigbee) and 802.11b/g (WiFi), two common standards.

At the sender, the network layer passes packets to the link/MAC layer, which places
a header that includes the link-layer source address, link-layer destination address, and
a CRC covering the entire link-layer packet’s contents at the end of the packet.1 The
link layer then passes a stream of bits to the PHY.

There are many ways to implement a DSSS sender. In one approach, the PHY maps
groups of b bits to a B-bit codeword. In Zigbee, for instance, b = 4 and B = 32. Since
there are only 2b b-bit strings, the space of valid codewords is extremely sparse. Each
codeword (actually, the sequence of codewords) is broken up into groups of k ≥ 1, each

1Later, we will investigate the performance of fragment-CRC schemes that place multiple CRCs in the
packet.
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group mapping to a channel symbol or chip, and sent over the air modulated over some
waveform (in Zigbee, k = 1). Thus, each bit in the original packet gets spread over
many chips.

At the receiver, in current systems, the PHY produces a sequence of bits after de-
modulating incoming waveforms and decoding symbols. This interface is rather limit-
ing in that the link/MAC layer has no easy way of telling which bits are almost certainly
correct, and which bits are more questionable. The PHY, however, has this information;
for example, when decoding received waveform samples to a codeword, it knows how
close the actual reception was to the closest valid codeword, and can propagate that
information up as a confidence. If it uses a maximum-likelihood estimator in demod-
ulation, then it can propagate the likelihood as a confidence too. We use this insight
in developing PPR’s SoftPHY interface, shown in Figure 1 and described in detail in
Section 3.

In the status quo, no processing of a packet payload can occur without the success-
ful receipt of a preamble. Unfortunately, when collisions occur, the preamble is often
destroyed. Our postamble decoding scheme, shown in Figure 1 and described in Sec-
tion 4, overcomes this problem by allowing a receiver to recover data even when the
preamble is lost. We also replicate the information in the header in a trailer at the end
of the packet. Figure 2 shows the layout of the information in a typical PPR packet.

Finally, once SoftPHY propagates confidence information together with each group
of bits to the link/MAC layer, there are several ways to use it. We develop PP-ARQ,
a retransmission protocol where the receiver sends a request to the sender to re-send
only those bit ranges where there are several bits likely wrong. In response, the sender
retransmits the bits from those ranges and sends CRC values for the other ranges, so
that the receiver can be certain that the bits in the non-retransmitted portions are cor-
rect. Other ways to use SoftPHY information include integrating it with forwarding
protocols or opportunistic routing protocols, forwarding only the bits likely to be cor-
rect. We do not investigate that possibility in this paper, focusing instead on improving
ARQ (see Section 5).

The underlying premise in PPR is that significant performance gains can be ob-
tained by being a little more flexible about the granularity of error recovery in wireless
networks. A finer granularity than packets can help improve performance in both access
point-based networks and wireless mesh networks. Section 7 shows several experimen-
tal results that confirm this premise.

3 SoftPHY
In the abstract, the SoftPHY interface is simple: annotate each group of bits propagated
to the higher layer with a confidence metric. The details of how the confidence metric
is calculated and what it actually means, however, depend on how the PHY works. We
believe, however, that most demodulation and decoding methods maintain this infor-
mation. For three common designs, we outline what this information would be, then
discuss the method we implemented, and finally discuss how higher layers should be
designed to interpret these hints, given that what the information means depends on
what the PHY does.
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Figure 2: A packet is composed of symbols, which may be organized into codewords of
B symbols each by channel coding or direct-sequence spread spectrum. Each codeword
encodes b data bits.

3.1 Options for PHY Hints
At a high level, the PHY generally includes a demodulator and a channel decoder. We
propose three ways of obtaining PHY hints that apply to three popular designs.

Hamming distance in hard-decision decoding. In one common PHY design, the
demodulator makes a hard decision [10, Chp. 8] of what symbol any given sample
waveform corresponds to (and therefore what group of k ≥ 1 bits they correspond to),
independent of other receptions. It then sends that information to the channel decoder,
which maps the received word to the closest (most likely) codeword. The closeness
of this mapping, measured as the Hamming distance between the received work and
the codeword (the number of distinct elements between the two words), can serve as a
useful confidence hint: a low distance inspires confidence in the correctness of the bits,
while a large one does not.

Correlation metric in soft-decision decoding. To cope better with Gaussian noise,
a more efficient option than hard decoding is to use soft-decision decoding (SDD) [10,
Chp. 8].2 Here, the demodulator passes samples of received symbols. The decoder then
makes codeword decisions on groups of received symbols using a correlation metric
that takes into account these samples. However, SDD will still produce incorrect code-
words if the SINR is low, and does not recover correct bits in the presence of packet
collisions particularly well.

With SDD, the receiver calculates a correlation metric C between the received sam-
ples R and each codeword Ci (whose jth bit is ci j) defined as [10, Ch. 8]:

C (R,Ci) =
n∑

j=1

(
2ci j − 1

)
ri j (1)

This metric can serve as a useful hint from the PHY to higher layers: a larger metric
inspires confidence that the bits are correct.

We also note that a particularly interesting instance of a confidence metric when
convolutional decoding is used with soft-decision decoding is to use the output of the
Viterbi decoder [11]. This output is the likelihood of is a measure of how well the

2SDD improves BER by 2 to 3 dB over HDD in the presence of noise.
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received sequence of codewords matched with the path through the coding trellis asso-
ciated with the decided-upon codeword.

Matched filter demodulator output. PHY hints can also be obtained from the
demodulator itself in the absence of any channel coding. The receiver structure for
optimal detection of signals over an additive white Gaussian noise (AWGN) channel
is a filter matched to the shape of the incoming signal [10, Ch. 5]. The output of this
matched filter is the correlation function between the received signal and the decided-
upon codeword. The SoftPHY hint is then simply the output of the matched filter; a
larger value signifies higher confidence.

3.2 Hamming Distance as a Hint
We conducted preliminary experiments with the HDD and SDD schemes described
above. We found that our bit errors were mostly due to collisions, and in this case, the
difference between HDD and SDD was not significant. Because the HDD implemen-
tation was conceptually simpler, we developed a complete implementation of that idea
and conducted several experiments with it (described in detail in Section 7). Here, we
give a brief summary of one experimental result that shows that the Hamming distance
is a good SoftPHY hint.

This experiment was done over a 27-node testbed of 802.15.4 Chipcon and GNU
Radios described in Section 7. 23 of the nodes send packets whose payload is a known
test pattern at a constant rate. There are four receivers (each receiver is able to hear and
decode some subset of the 23 senders). Figure 3 shows the distribution of Hamming
distance across each received codeword, demarcated by whether the codeword was
correctly or incorrectly received (we know this from the test pattern). Conditioned on a
correct decoding, 96% of codewords have a Hamming distance of 1 or less. In contrast,
barely 10% of the incorrect codewords have a distance of 6 or less.

This result shows that the higher layer must actually interpret this SoftPHY hint
with a threshold rule. We denote the threshold by η, so that the higher layer labels
groups of bits with d ≤ η “good” and groups of bits with d > η “bad”. This graph,
and later results in Section 7.4, show that a large Hamming distance is an excellent
indication of symbol incorrectness, while a small Hamming distance is a good predictor
of codeword correctness.

3.3 Architectural Implications of SoftPHY Hints
Although the SoftPHY interface can be provided for a variety of PHY implementa-
tions, the semantics of the delivered information is intimately tied to the details of the
PHY. One of the benefits of protocol layering is that higher layers are shielded from
the details of the lower ones, and SoftPHY has the potential danger of violating this
abstraction barrier in the interest of performance. Here, we argue that it is possible to
implement higher layers without violating the abstraction boundary.

To do that, the higher layers must not be aware of exactly how the information is
calculated. Instead, they should adapt their threshold or other decisions to label groups
of bits as “good” or “bad” to actual observation. For example, the link/MAC layer could
observe the correlation between a particular threshold and the correctness of the hint,
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Figure 3: The distribution of hamming distances for every codeword in every received
packet, separated by whether the received codeword was correctly or incorrectly de-
coded. For correctly-decoded codewords, hamming distance is low; for incorrectly-
decoded codewords, hamming distance is high.

and adapt the threshold dynamically. This approach can be used as long as the PHY
simply provides a “monotonicity” contract; i.e., given any two hint values, h1 and h2,
h1 < h2 always implies that the PHY has a higher confidence in the bits associated with
h1 than with h2 (or vice versa). Implementing such a contract is straightforward for the
PHY, at least for the three options we laid out above.

In some ways, SoftPHY might seem analogous to soft-decision decoding, but there
is a crucial architectural difference. With soft-decision decoding, the demodulator’s
interface to the decoder is quite different from hard decoding. In the former, the de-
modulator doesn’t even attempt to make a decoding decision, instead propagating all
received signal samples up to the decoder. In contrast, with our SoftPHY design, the
PHY doesn’t simply pass up all its raw information to the higher layer, so layering
boundaries are preserved and the PHY still makes “hard” decisions. However, the PHY
does pass hints upwards about its confidence in each decision it makes. This architec-
ture preserves a clean decomposition between PHY and higher layers, while enabling
performance gains.

3.4 An Alternative to SoftPHY: Per-Fragment CRC
We will show later that SoftPHY improves performance significantly, but one might
ask whether it is necessary to achieve similar gains. One cannot ignore the benefits of
the boundaries between the PHY and higher layers in the status quo, so it is important
that we investigate how necessary SoftPHY hints are, in addition to how much they
improve performance. One way to approximate SoftPHY is to send multiple CRCs
per packet, one per fragment of the packet, as shown in Figure 4. This scheme allows
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Figure 4: Multiple CRC checksums sent per packet, with each CRC taken over a dif-
ferent fragment of the packet.
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Figure 5: A collision between many packets. We use the postamble to partially decode
packets P3 and P4, and the techniques described in Sections 3 and 5 to detect the
incorrect parts of each packet and request retransmission of just those parts.

the receiver to identify entire fragments that are correct. If bit errors are concentrated
in only a few bursts, then entire fragments will check out correctly, and the receiver
would then only have to recover the erroneous fragments from the sender.

How big must a fragment, c, be? In an implementation, one might place a CRC
every c bits, where c varies in time. If the current value leads to a large number of
contiguous error-free fragments, then c should be increased; otherwise, it should be
reduced (or remain the same). Alternatively, one might observe the symbol error rate
(or bit error rate), assume some model for how these errors occur, and derive an analyt-
ically optimal fragment size (which will change with time as the error rate changes).

In Section 7, we investigate the “best case” for CRC fragments, finding post facto
from traces of errored and error-free symbols what the optimal fragment size is and
using that value.

4 Decoding Packets Without a Preamble
When errors occur in the preamble due to collisions or noise, the receiver will not be
able to synchronize to the incoming transmission and decode any bits. In that case, the
benefits of SoftPHY will go unrealized. We need a way to cope with preamble loss, for
example, in the multi-packet collision in Figure 5. In this example, packet P4 would
not be received at all, because its preamble would not have been decoded correctly,
while packet P3 would be received only partially.
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Our approach to synchronizing on packets without an intelligible preamble is sim-
ple: add a postamble to the end of each packet on which a receiver can also synchro-
nize. Like the preamble, the postamble has a well-known sequence attached to it that
uniquely identifies it as the postamble, and differentiates it from a preamble. In addi-
tion, we add a trailer near the postamble at the end of the packet, as shown in Figure 2.
The trailer contains the packet length, source, and destination addresses. Just as with
the header data, the receiver uses a CRC fragment or PHY-layer confidences to check
the correctness of the trailer so that it can request a partial retransmission from the
sender, as described in Section 5.

To recover payload symbols (and bits) after hearing just a postamble, the receiver
maintains a circular buffer of samples of previously-received symbols even when it
has not heard a preamble. In our implementation of postamble decoding in MSK, we
keep as many samples of previously-received symbols as there are symbols in one
maximally-sized packet in the system. When the receiver detects a preamble, the be-
havior is the same is in the status quo. When the receiver detects a postamble, it takes
the following steps:

1. “Roll back” as many symbols as are in the packet trailer.
2. Decode and parse the trailer to find the start of the entire packet, source, and

destination addresses.
3. Verify the trailer’s checksum.
4. “Roll back” in time as many symbols as are in the entire packet, to decode as

much of the packet as possible.
The main challenge of postamble decoding is addressing how a receiver can keep a

modest number of samples of the incoming packet in a circular buffer while still allow-
ing the various receiver subsystems to perform their intended functions. These func-
tions include carrier recovery, adaptive equalization, automatic gain control (AGC),
and symbol timing recovery. We meet each of these challenges in our implementation,
as briefly outlined below.

To receive a packet correctly, the demodulator may3 need to perform carrier recov-
ery [15, Chp.14] to estimate the incoming carrier’s frequency and phase. In our MSK
implementation, there is no need to perform carrier recovery. For other modulations,
preamble-less non-decision-aided techniques for carrier recovery in 16-QAM have also
been proposed [8].

A number of techniques for countering inter-symbol interference rely on estimat-
ing the channel impulse response, a process called adaptive equalization [15, Chp.
9]. Typically the preamble includes a known training sequence to enable the adaptive
equalizer to acquire the signal. We therefore include the same training sequence in the
postamble and post-process the samples of the signal in the body of the packet after-
wards. Modulations needing automatic gain control such as MQAM [10, Chp. 6] can
utilize similar methods.

Finally, most, but not all demodulators need to perform symbol timing recovery [15,
Chp. 15] to determine when to sample the incoming signal such that each symbol
is correctly decoded. In our system, we use a non data-aided symbol timing recov-

3Some modulation techniques permit the use of non-coherent detection where carrier recovery is not
necessary.
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ery [21] which permits synchronization at any time during a transmission, allowing us
to symbol-synchronize the stored samples without having already heard the postamble.

5 PP-ARQ: Retransmissions Using Partial Packet Re-
covery

SoftPHY and the postamble scheme together allow higher layers to discover which
received codewords are likely to be correct and which are not. We now examine the
problem of how the receiver should most efficiently communicate this information back
to the sender, to form the full partial packet recovery protocol.

The naive way to provide feedback is for each receiver to send back the bit ranges
of each chunk believed to be wrong. Unfortunately, doing that takes up a large number
of bits, since encoding the start of a range and its length can take up between log S
and 2 log S bits for a packet of size S (depending on the details of the encoding; com-
pression might improve this number, but it is still potentially large). Hence, we need to
develop an bit-efficient feedback scheme.

After the receiver has decoded a packet, it has a list of received symbols S i, 1 ≤
i ≤ N, and a list of associated PHY layer hints φi where φi is the confidence the PHY
has in symbol S i. Then it computes alternating run lengths λg

j , λ
b
j , 1 ≤ j ≤ L of good

and bad symbols, respectively, to form the run-length representation of the packet as
shown in Figure 6. This representation has the form:

λb
1λ

g
1λ

b
2λ

g
2 · · · λ

b
Lλ

g
L (2)

Here, λg
j is the count of symbols in the jth run of symbols all rated “good” by

SoftPHY, shown with light shading in the figure. Similarly, λb
k is the size of the kth run

of symbols rated “bad” by SoftPHY, shown with dark shading in the figure.
The receiver’s job is to decide which runs to ask the transmitter to re-send. Once

the receiver has made that choice, it sends a feedback packet to the transmitter commu-
nicating this information. If there are many short runs of incorrect bits, encoding their
positions will be expensive, and the receiver should ask for one large run containing all
the incorrect bits. If, on the other hand, there are relatively-few long runs of incorrect
bit, the receiver should ask for each and every long run individually.

This problem can be solved using dynamic programming. We show that any set of
bad runs the receiver asks for can be assigned a cost function, and that the problem
itself exhibits the “optimal substructure” property in that the cost for the entire packet
is easily derived from the cost of two suitably divided portions. The result is a series
of segments that the receiver requests the sender to retransmit. Each of those segments
will of course have “bad” codewords in them, but may also have some “good” code-
words (for otherwise there might have been too many segments to ask for). On the
other hand, no segment that is not asked for will have any “bad” codewords. When the
sender responds to this carefully constructed requests for segment retransmissions, it
also sends the CRCs of the segments not asked for, so that the receiver can verify that
all those codewords have been correctly recovered.
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Figure 6: After computation of run-length representation of a received packet, the first
step in PP-ARQ at the receiver. Run lengths λb,g

i are as defined in expression 2. c1,2
refers to the chunk as defined in expression 3.

5.1 Dynamic programming to find the best retransmission strategy
The receiver forms a list of “chunks” ci, j: groups of runs that it will eventually ask
the sender to retransmit. Chunk ci, j contains all the bad and good runs in between and
including bad run i and bad run j, so each chunk starts and ends with bad runs. For
example, chunk c1,2 appears in Figure 6. Note that chunk ci, j does not include λg

j , the
last run of good symbols in the chunk.

ci, j = λ
b
i λ

g
i λ

b
i+1λ

g
i+1 · · · λ

b
j (3)

If λg
k , i ≤ k ≤ j are all small and j − i is large, we would favor requesting that

chunk ci, j be retransmitted over chunks ck,k for each and every i ≤ k ≤ j , because
the additional bits it would take for the receiver to describe each of the j − i individual
chunks would exceed that needed to retransmit the good symbols associated with those
chunks. If, on the other hand, some of the λg

k , i ≤ k ≤ j are large, and/or j − i is small,
we would favor asking for the individual chunks ck,k for the same reasons.

We assume that the receiver must send a checksum of every good run to the sender,
to verify that the bits are correct. We also assume that the receiver will ask the sender
to re-transmit at least the bad runs in the packet.

We define the cost of a chunk as follows:

C
(
ci,i
)
= log S + log λb

i +min
(
λ

g
i , λC

)
(4)

C
(
ci, j

)
= min

2 log S +
j−1∑
l=i

λ
g
l ,

min
i≤k≤ j−1

{
C
(
ci,k
)
+ C
(
ck+1, j

)}}
(5)

For the receiver to describe the length and offset of the ith bad run to the sender,
it takes approximately log S + log λb

i bits, where S is the packet length. The receiver
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also sends the ith good run or a checksum of it to the sender, so that the sender can
verify that it received the good run correctly. This takes min

(
λ

g
i , λC

)
bits, where λC is

the length of the checksum. These two terms form the base case cost of a chunk in
Equation 4.

The receiver then runs the recursive steps of the DP algorithm on the run-length
representation of the packet. Equation 5 describes this computation. The outermost
min chooses between leaving chunk ci, j intact (thus resending all good runs within the
chunk), or splitting the chunk into two smaller chunks and thus diving deeper into the
recursive computation. The innermost min operator chooses how to make the split, if
one is needed.

We can compute the optimal chunking bottom-up using a table to memoize the
costs of each possible chunking. Note that because the chunking algorithm operates on
chunks, the table has as many entries as there are chunks in the packet, L. To analyze
the computational complexity of this algorithm, we note that it can be implemented in
a bottom-up fashion using a table to memoize the costs of each possible chunking. The
results in an O(L3) implementation.

5.2 The streaming ACK PP-ARQ protocol
The receiver-side dynamic programming algorithm described above chooses chunks
such that each chunk “covers” all the bad runs in the packet, and may cover some
good runs, if they are short enough. We now describe the complete PP-ARQ protocol
between sender and receiver.

1. The sender transmits the full packet, with a checksum appended.
2. The receiver decodes the packet (possibly partially), and computes the best feed-

back set of chunks as described in Section 5.1.
3. The receiver encodes the feedback set in its reverse-link acknowledgement

packet (which may be empty, if the receiver can verify the forward link packet’s
checksum).

4. The sender retransmits only those runs (and their associated CRCs and byte off-
sets) that the receiver has requested.

This process continues, with multiple forward-link data packets and reverse-link
feedback packets being concatenated together in each transmission, to save per-packet
overhead.

6 Implementation
Each of the receivers in the following experiments is a computer connected to a GNU
Radio [9] software-defined radio. We deployed four receivers among the senders, as
shown in Figure 7. The hardware portion of the receiver is a GNU Radio Univer-
sal Software Radio Peripheral (USRP) with a 2.4 GHz RFX2400 daughterboard; the
remainder of the receiver’s functionality is implemented in software. The DSSS de-
spreading functionality was written in C++ by us, with parts derived from code written
by Schmid [25]. The preamble and postamble frame synchronization was also imple-
mented in C++.
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The sender node Chipcon CC2420 radio [28] is a 2.4 GHz RF transceiver that
uses O-QPSK modulation with half sine pulse shaping, also known as min-shift keying
(MSK) [22]. The CC2420 uses direct-sequence spread spectrum (DSSS) at a rate of
2 Msymbols/s with B = 32 symbol codewords.4 Each of the 16 codewords encodes
b = 4 bits, implying a peak link data rate of 250 Kbits/s when there are no other
transmissions in progress.

6.1 PP-ARQ
We implemented PP-ARQ in Python, above the SoftPHY interface. At the receiver, our
implementation parses the received SoftPHY hints, computes the run-length represen-
tation of the packet as defined in Equation 2, runs the dynamic programming algorithm
described in Section 5.1 on the run-length representation of the packet, and sends a
feedback packet to the sender summarizing which runs need retransmitting.

At the sender, our implementation parses the recevier’s feedback packet, computes
checksums of each run needing retransmission, packs the runs into a fragmented CRC
packet (with variable sized fragments), and transmits the fragmented CRC packet to
the receiver.

7 Evaluation
We now describe our experimental evaluation of the PPR system. We begin with an
evaluation of the predictive power of SoftPHY’s PHY-level hints proposed in Sec-
tion 3. Next we present channel capacity results evaluating the SoftPHY interface and a
postamble-enabled physical layer (Section 4). We conclude our evaluation with results
combining the above two techniques with PP-ARQ, the partial packet recovery ARQ
method described in Section 5. We summarize our experiments and findings in Table 1.

7.1 Experimental method
Each of the senders in the following experiments is a moteiv tmote sky wireless sensor
node, equipped with a TI/Chipcon CC2420 radio. We deployed 23 sender nodes over
nine rooms in an indoor office environment, as shown in Figure 7. All sender nodes are
connected to tmote connect gateways, which interface the senders to a central control
computer.

7.2 Partial packet recovery in a busy network
We now present channel capacity results evaluating how well the combination of Soft-
PHY (with the Hamming distance hint described in Section 3) and postamble decoding
performs against the fragmented CRC scheme described in Section 3.4. In this experi-
ment each node sends a stream of bits, which are formed into traces and post-processed
to emulate a packet size of 1500 bytes. Summarizing each scheme:

4We use the notation defined above in Section 2.
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Experiment Section Conclusion
PPR capacity 7.2 PPR and fragmented CRC both im-

prove per-link throughput over the
status quo by more than 7× under
high load, and 2× under moderate
load; PPR improves capacity even
more than fragmented CRC, by a
factor of 2× under high load and
1.6× under moderate load.

Anatomy of a collision 7.3 PPR can recover partial packets
even in the presence of uncertainty
in PHY symbol-timing recovery.

SoftPHY hints in a busy network 7.4 The pattern of “misses” and “false
alarms” under the SoftPHY hints we
propose enable partial packet recov-
ery in a busy network.

PP-ARQ 7.5 PP-ARQ acheives significant end-
to-end savings in retransmission
cost, a median factor of 50% reduc-
tion.

Table 1: A summary of the major experimental contributions of this paper.

0

0 50 100 feet

Figure 7: Experimental testbed layout: there are 27 nodes in total, spread over nine
rooms in an indoor office environment. Each dot indicates an 802.15.4 node. GNURa-
dio nodes are labeled R1 through R4.
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Number of chunks Aggregate throughput (Kbits/s)
1 26
10 85
30 96
100 80
300 15

Table 2: Fragmented CRC end-to-end aggregate throughput in our network as a func-
tion of chunk size.

1. Packet CRC computes a 32-bit CRC check over the received packet payload and
discards the packet if it does not pass.

2. Fragmented CRC, described above in Section 3.4, breaks the packet into chunks,
each followed by an associated 32-bit CRC over the preceeding chunk. Frag-
mented CRC delivers each chunk whose checksum verifies correctly, and dis-
cards the remainder.

3. PPR delivers exactly those bits in the packet whose codewords had a Hamming
distance less than η. Here we choose η = 6.

7.2.1 Choosing fragmented CRC chunk size

To find the optimal chunk size for the fragmented CRC scheme, we ran experiments
comparing aggregate throughput as chunk size varied. The results are shown in Table 2.
We see that when chunk size is small, checksum overhead dominates; while large chunk
sizes lose throughput because collisions and interference wipe out entire chunks. Based
on these results, we picked a chunk size of 50 bytes (corresponding to 30 chunks per
packet) for the following experiments.

7.2.2 Equivalent frame delivery rate

We first examine the rate at which each scheme described above delivers bits to higher-
layers, once it has succesfully acquired a packet. We term this rate the equivalent frame
delivery rate, because it measures how efficient each scheme is at delivering packets to
higher layers once the PHY layer synchronizes on a packet, either by the presence of a
preamble, or by the presence of a postamble.

In the following experiments we measure the amount of traffic each of the
23 CC2420 senders shown in Figure 7 can deliver to the four GNU Radio receivers.
In the absence of any other traffic, each sink had between 4 and 8 sender nodes that
it could hear, with the best links having near perfect delivery rates. When multiple
nodes transmit at the same time, SINR reduces and link quality falls, as shown in the
delivery-rate graphs below.

Figure 8 shows the per-link distribution of equivalent frame delivery rate in our
network when there is a moderate offered load (3.5 Kbits/s/node). In this experiment,
the CC2420 senders perform a carrier sense before transmitting each packet. We see
that under all partial packet recovery schemes, postamble decoding increases median
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Figure 8: Per-link equivalent frame delivery rate with carrier sense enabled, at moderate
offered load (3.5 Kbits/s/node).

frame delivery rate by a factor of two, probably because it decreases the probability of
missing an opportunity to synchronize on an incoming transmission. Even when carrier
sense and postamble decoding are enabled, we see relatively poor links in the network.

Comparing packet-level CRC with fragmented CRC, we see a large gain in frame
delivery rates, because fragmented CRC does not throw away the entire packet when
it detects an error. PPR improves on frame delivery rates even more by identifying
exactly which portions of the frame are correct and passing exactly those bits up.

We now repeat the experiment with carrier sense disabled; Figure 9 shows the re-
sults. When carrier sense is disabled, at least a small part of the packet is likely to be
decoded incorrectly, resulting in a dropped packet in the packet-level CRC scheme.
This is reflected in the very poor frame delivery rates of packet-level CRC. However,
at moderate offered loads, we see that it is not likely that very much of the packet is
involved in a collision, because the frame delivery rates for PPR and fragmented CRC
remain roughly unchanged between Figures 8 and 9.

Figure 10 shows how frame delivery rate changes when we increase the offered
load to 13.8 Kbits/s/node in the network. At higher offered loads we see packet-level
CRC performance degrading substantially. There have been several recent studies that
attempt to elucidate the causes of this loss [1,26,27]. PPR’s frame delivery rate remains
high despite the high offered load, suggesting that only relatively-small parts of frames
are actually being corrupted. This means that PPR has a large potential to improve
end-to-end throughput of the system, and that higher layers, such as PP-ARQ and the
routing layer, have a large potential for performance gains resulting from using PPR at
the link layer.
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Figure 9: Equivalent frame delivery rate with carrier sense disabled, at an offered load
of 3.5 Kbits/s/node.
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Figure 10: Equivalent frame delivery rate at an offered load of 13.8 Kbits/s/node. Car-
rier sense is disabled in this experiment.
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Figure 11: End-to-end per-link throughput at an offered load of 6.9 Kbits/s/node, close
to channel saturation. Carrier sense is disabled in this experiment.

7.2.3 End-to-end throughput

We now examine end-to-end throughput from all of the senders to each of the four
receivers in our network. These results take into account the performance of all the
communication subsystems described above such as modulation, coding, use of spread-
spectrum, and synchronization.

Figure 11 compares the per-link distribution of throughputs at medium offered load
for each of the three schemes. We see that

The scatter plot in Figure 12 compares end-to-end throughput for fragmented CRC
on the x-axis with either PPR (triangle points) or packet-level CRC (circles); we show
results for all three offered loads. The first comparison we can draw from this graph is
the per-link throughput of PPR compared with fragmented CRC (the triangle points in
the graph). From these points we see that PPR improves performance over fragmented
CRC by a roughly constant factor. This factor is related to the fragment size, and may
be attributable to the fact that fragmented CRC needs to discard the entire fragment
when a part of it is corrupted by another transmission.

The circle points in Figure 12 compare fragmented CRC with packet-level CRC.
We see that fragmented CRC far out-performs packet-level CRC, because it only has to
discard a small fragment instead of the entire packet when that fragment is corrupted.
The fact that the circle points are dispersed on the y-axis and not on the x-axis means
that the spread in the link quality distribution decreases when moving to smaller frag-
ment sizes or PPR. This is probably again because collisions do not occur over the
entire packet, but rather often over a small piece of it.
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Figure 12: Comparison of end-to-end per-link throughput at various offered loads, with
fragmented CRC as the baseline, on the x-axis. Carrier sense is disabled in this experi-
ment.

7.3 SoftPHY hints during a partial packet reception
We now take a detailed look at a partial packet reception, showing the receiver’s view of
each codeword. Figure 13 shows a receiver’s view of two packets sent from each of two
senders. Each packet contains a known bit pattern, against which we test each received
codeword for correctness. The result of each test is indicated by the presence or absence
of a triangle in the figure.5 The upper plot in Figure 13 shows the first packet arriving
at the receiver at time6 0, and the second packet packet arriving at time 10 (lower plot).
When the second packet arrives, symbol timing recovery succeeds and the receiver
decodes approximately 40 codewords correctly (including the preamble) before either
losing symbol timing synchronization or a too-low SINR results in codeword errors.
We see that Hamming distance remains at 0 for the duration of the correct codeword
decisions, and rises at time 47 when a burst of codeword errors occurs. The PHY passes
these Hamming distance hints up to the ARQ layer along with all the codewords in the
packet.

Later, at time 90 (upper plot), the receiver successfully decodes a run of codewords
extending to the end of the first packet. Having missed the first packet’s preamble, it
relies on its postamble in order to frame-synchronize and pass up the partial packet
reception and associated SoftPHY hints.

5For clarity, we show the result of every fourth codeword-correctness test.
6Measured in units of codeword-time, 16 µs in our radios.
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Figure 13: Partial packet reception during two concurrent transmissions: codeword
correctness (triangle indicators) and each codeword’s associated Hamming distance
(curves). Despite uncertainty in PHY codeword timing recovery or SINR, Hamming
distance indicates the correct parts of these packets to higher layers.

7.4 SoftPHY hints in a busy network
In Section 3 we introduced the SoftPHY hints that we use in our experimental eval-
uation; in Section 7.3 we saw that SoftPHY hints were a good predictor of correct
decoding during an example packet reception. We now examine the statistics of the
Hamming distance hint in more detail.

7.4.1 Miss rate

Recall from Section 3 that we label a codeword “correct” when its Hamming distance
is less than or equal to η. Therefore the CDF curves of incorrect codewords in Figure 3
are also the fraction of incorrect codewords that we falsely label correct, and for which
the CRC check on the resulting packet or run fails. We call this fraction the miss rate
at threshold η, the rate at which we “miss” labeling a codeword incorrect at Hamming
distance thresold η. We see from the figure that the miss rate is one in ten codewords
at η = 6, a cause for concern. The saving grace is that when misses occur, it is highly
likely that there are correctly-labeled incorrect codewords around the miss, and so PP-
ARQ will choose to retransmit the missed codewords. Figure 14 verifies this intuition,
showing the complementary CDF of contiguous miss lengths at various thresholds η.
We see that the majority of misses (30%) are of length 1, and that the distribution
of miss length decreases faster than an exponential distribution, since the miss-length
curve lies below a line on a log-log scale.

7.4.2 False alarm rate

We now examine the distribution of correct codeword Hamming distances more
closely. In Figure 15, we plot the complementary cumulative distribution of correct
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ery correct codeword in every received packet; also the “false alarm” rate for labeling
correct codewords incorrect, causing them to be retransmitted.

codewords’ Hamming distances: the fraction of correct codewords with Hamming dis-
tance greater than the ordinate of the graph. Since we label a codeword “incorrect”
when its distance exceeds η, this complementary CDF is also the false alarm rate at
threshold η: the fraction of correct codewords that we falsely label incorrect (and which
PP-ARQ retransmits) at threshold η. Noting that the overhead of a false alarm is low
— just one unnecessarily transmitted codeword, we see that the false alarm rate is very
low; varying slightly with offered load, on the order of 5 in 1000 codewords at η = 6.
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Figure 16: Packet sizes of partial retransmissions between a pair of nodes transferring
data with PP-ARQ. Here each packet size is 250 bytes.

7.5 PP-ARQ
We now present some preliminary results from our implementation of PP-ARQ. In this
single-link experiment, one GNU Radio transmitter sent 250 byte data packets back-
to-back to another GNU Radio receiver using the same DSSS/MSK modulation as in
the previous results.

Figure 16 shows the sizes of each retransmission packet that the PP-ARQ sender
sent to the PP-ARQ receiver. We see that even in this implementation, which has yet
to be performance-tuned, the median retransmission size is approximately half the full
packet size. This implies that in a busy network, PP-ARQ may need to retransmit at
most half the data, on half the total retransmissions.

8 Related Work
While each of the three ideas in PPR—SoftPHY, postamble decoding, and PP-ARQ—
is novel, as is their synthesis into a single system, these individual ideas are related to
and inspired by much previous work. We survey closely related work in this section.

8.1 Work Related to SoftPHY
The Viterbi algorithm for convolutional decoding has been extended with a “soft” out-
put that indicates the reliability of the output decision: the result is the soft-output
Viterbi algorithm (SOVA) [11], a component of the Turbo decoder [4]. The former
work proposes the use of SOVA in the decoding of outer codes and is contained within
the physical layer, whereas our focus is on constructing and propagating hints to higher
layers. The two techniques are complementary, because layered coding could be used
in conjunction with SoftPHY as long as the outer-layer code outputs a confidence met-
ric.
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8.2 Work Related to Postamble Decoding
Since the body of a DSSS-modulated packet is composed of a known spreading se-
quence, Jeong and Lehnart propose using all of the packet for acquisition [13]. Our
work builds on this idea by using similar postamble-based techniques to not only im-
prove the probability of acquisition, but also recover from partial collisions more effi-
ciently.

Whitehouse et al. [29] and Priyantha [23] propose avoiding “undesirable capture”
in packet-based wireless networks in time. Undesirable capture occurs when the weaker
of two packets arrives first at a receiving node, so that the stronger, later packet corrupts
the weaker, earlier packet, resulting in neither being decoded correctly. This can be
viewed as a special case of postamble decoding, which we fully explore in the present
work.

8.3 Wireless Error Control
Ahn et al. [2] propose an adaptive FEC algorithm which dynamically adjusts the
amount of FEC coding per packet based on the presence or absence of receiver ac-
knowledgements.

Hybrid ARQ is the combining of the two basic schemes of forward error control
(FEC) and automatic repeat request (ARQ). Type I hybrid ARQ schemes [16] retrans-
mit the same coded data in response to receiver NACKs. Chase combining [7] improves
on this strategy by storing corrupted packets and feeding them all to the decoder. Type
II hybrid ARQ schemes [16] forego aggressive FEC while the channel is quiet, and
send parity bits on retransmissions, a technique called incremental redundancy [18].
Metzner [19] and later Lin and Yu [17] have developed type II hybrid ARQ schemes
based on incremental redundancy.

PP-ARQ takes a different approach from the above work: instead of using stronger
codes for the entire packet on retransmit, it uses hints from the physical layer about
which codewords are more likely to be in error, and retransmits just those codewords.

Techniques such as coding with interleaving [10, Chp. 8] spread the bursts of errors
associated with collisions and deep fades across many codewords so that they can be
corrected. This technique is complementary to partial packet recovery, but not easy to
implement, because it is necessary to know the channel conditions rate a priori in order
to provision the amount of coding required to acheieve high throughput.

8.4 High-Throughput Wireless Protocols
Rate selection algorithms have been extensively studied in 802.11 wireless net-
works [5, 12, 14, 24]. As with adjusting the amount of coding on a wireless link, it
is hard to predict how much redundancy a link will need in highly-variable conditions.
PPR mitigates the need for choosing the correct rate by allowing receivers to recover
partially-received frames and efficiently retransmit only the parts missing. Moreover,
SoftPHY hints can potentially be used to perform rate adaptation at finer time-scales
than before, because it is now possible for the MAC layer to estimate the symbol error
rate for different rates and modulations more directly than before.
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SoftPHY and postamble decoding together also has the potential to improve the
performance of mesh network protocols such as opportunistic routing [6] and network
coding. In both cases, nodes need only forward or combine (using XOR, say) symbols
(groups of bits) that are likely to be correct, and avoid wasting network capacity on in-
correct data. Rather than use PP-ARQ, the integrated MAC/link layer that implements
ExOR or network coding would directly work with SoftPHY’s output. Alternatively,
PP-ARQ could operate in the “background” recovering erroneous data, while the rout-
ing protocol sends the correct bits forward.

Similarly, PPR has the potential to improve the performance of multi-radio diversity
(MRD) schemes [20] in which multiple access points listen to a transmission and com-
bine the data to recover errors before forwarding the result, saving on retransmissions.
Avudainayagan [3, 30] et al.develop a scheme in which multiple nodes (e.g., access
points) exchange soft decision estimates of each data symbol and collaboratively use
that information to improve decoding performance. For this application, PPR’s Soft-
PHY hints would provide a way to design a protocol that does not rely on the specifics
of the PHY, unlike this previous work. Thus, with PPR, we may be able to obtain the
simpler design and PHY-independence of the block-based combining of [20], while
also achieving the performance gains of using PHY information.

9 Conclusion
This paper described the design, implementation, and experimental evaluation of PPR,
a system for partial packet recovery. The motivation for PPR is the observation that
wireless bit errors usually don’t corrupt all the bits in a packet. PPR incorporates three
novel techniques that work in concert: first, SoftPHY, which enhances the physical
layer to compute and pass confidence information about each group of demodulated
bits, and second, the postamble decoding scheme to recover bits even when a packet’s
preamble has been corrupted (postamble decoding). The confidence information can
help higher layers perform better, as shown in our third technique, PP-ARQ, which
shows how a receiver can use this information together with a dynamic programming
algorithm to request the sender to re-send ranges of bits, rather than an entire packet.

We have implemented all three components on the GNU Radio platform for
802.15.4, the Zigbee standard, and evaluated the components and system in a 25-node
indoor testbed. Our results show a 2× improvement in throughput over the status quo
under moderate load, and 7× improvement at high load when many links have marginal
quality. Furthermore, our proposed SoftPHY hint, Hamming distance, is a useful mea-
sure of bit correctness to PP-ARQ. Finally, PP-ARQ offers considerable savings in
retransmission packet size.

We believe that PPR has the potential to change the way PHY, link, and MAC
protocol designers think about protocols. Today’s wireless PHY implementations use
significant redundancy to tolerate worst-case channel conditions. If noise or interfer-
ence during the reception of some codewords is higher than expected, existing PHY
implementations will generate incorrect bits, which causing packet-level CRCs to fail.
When that happens, entire packets have to be retransmitted. Since SINR depends on
other concurrent transmissions and external sources, fluctuations in SINR are often
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large. The penalty for incorrect decoding is also large. For these two reasons, PHY
layers tend to be conservative with coding and modulation and MAC layers tend to be
conservative with rate adaptation. The prevailing mind-set is that the consequences of
bit errors are dire, and must be reduced (though eliminating them is impossible). As a
result, current systems operate at comparatively low payload bit-rates.

PPR reduces the penalty of incorrect decoding, and thus for a given environment
allows the amount of redundancy to be decreased, or equivalently the payload bit-rate
to be increased. Put another way, with SoftPHY and PPR, it would be better for a PHY
to use parameters that lead to a BER that is one or even two orders-of-magnitude higher
than done currently, because higher layers need no longer have to cope with high packet
error rates—they can decode and recover partial packets correctly.

In addition to investigating the above idea, our plans for future work include imple-
menting other ways of obtaining confidence information (as outlined in Section 3, de-
veloping a PHY-independent SoftPHY interface and showing how a PP-ARQ link layer
can use different SoftPHY implementations without change, performing a broader set
of experiments in more settings, and using SoftPHY information to improve the per-
formance of routing protocols such as opportunistic routing [6].
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