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Abstract

Wireless networks can suffer from high packet loss
rates. This paper shows that the loss rate can be signif-
icantly reduced by exposing information readily avail-
able at the physical layer. We make the physical layer
convey an estimate of its confidence that a particular
bit is “0” or “1” to the higher layers. When used with
cooperative design, this information dramatically im-
proves the throughput of the wireless network. Access
points that hear the same transmission combine their
information to correct bits in a packet with minimal
overhead. Similarly, a receiver may combine multiple
erroneous transmissions to recover a correct packet.
We analytically prove that our approach minimizes
the errors in packet recovery. We also experimentally
demonstrate its benefits using a testbed of GNU soft-
ware radios. The results show that our approach can
reduce loss rate by up to 10x in comparison with the
current approach, and significantly outperforms prior
cooperation proposals.

1 Introduction

Wireless networks can suffer from high packet loss.
In some deployments the mean loss rate is as high as
20-40% [4, 21], and even when average packet loss is
low, some users suffer from poor connectivity. Current
wireless networks attempt to recover from losses us-
ing retransmissions. However, in lossy environments,
retransmissions often have errors and effectively waste
the bandwidth of the medium, cause increased colli-
sions, and fail to mask losses from higher layer pro-
tocols. As a result, today a lossy network is barely
useable.

Wireless networks, however, inherently exhibit spa-
tial diversity, which can be exploited to recover from
errors. A sender in a WLAN is likely to have multiple
access points (APs) in range [3, 5]. It is unlikely that
all these APs see errors in the same parts of a trans-
mitted signal [20]. Consider an extreme scenario where
the bit error rate is about 10−3 and the packet size
is 1500B (i.e., 12000 bits). In this case, the probabil-
ity that an AP correctly receives a transmitted packet

is 0.99912000 ≈ 10−5. Say there are two APs within
the sender’s range, and the bit errors at the two APs
are independent [20]. If one can combine the correct
bits across APs to produce a clean packet, the deliv-
ery probability becomes 0.99.1 The problem, however,
is that when multiple APs differ on the value of a bit, it
is unclear which one is right. A prior cooperation pro-
posal attempts to resolve conflicts between APs by try-
ing all possible combinations and accepting the com-
bination that satisfies the packet checksum [19]. Such
an approach, however, has an exponential cost, limit-
ing its applicability to packets with only a handful of
corrupted bits.

This paper introduces SOFT, a cross-layer cooper-
ation scheme for recovering faulty packets in WLAN.
Current physical layers compute a confidence measure
on their 0–1 decision for each bit. But due to the lim-
itation of the interface between the physical and data
link layer, this confidence information is thrown away.
We show that a simple modification of the interface
to export this confidence measure from the physical
to the data link layer can dramatically increase the
packet delivery rate. The data link layer can then use
the confidence value to resolve conflicts across cooper-
ating APs.

An important challenge in designing SOFT is to find
the strategy that maximizes the likelihood of correctly
reconstructing a packet from multiple faulty recep-
tions. Say that we have multiple receptions of the same
packet annotated with physical-layer confidence val-
ues, but they do not agree on the value of the i th bit in
the packet. How should one resolve the conflict? One
could take a majority vote. Alternatively, one could
assign to the bit the value associated with the high-
est confidence. Both of these strategies are subopti-
mal, and may be even destructive. For example, some
of the cooperating APs may be affected by a collision
or a microwave signal, and thus end up polluting the
information rather than enhancing it. By estimating
the noise variance at each receiver and taking it into

1The probability of having a corrupted bit at both APs is 10−6.
So, the probability that by combining the bits across APs one
gets a fully correct packet is (1− 10−6)12000 = 0.99.
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account, we do better than the above strategies. We
analytically prove that our approach is optimal, and
experimentally demonstrate its superiority.

The previous discussion focused on APs. However,
SOFT boosts the reliability of both the uplink and
downlink.

• On the uplink, SOFT leverages the abundance of
wired bandwidth in comparison to wireless band-
width. Access points that hear a particular trans-
mission communicate over the local Ethernet and
combine their confidence estimates to maximize the
likelihood of correctly decoding a corrupted packet.

• Similarly, on the downlink, a node that receives a
faulty packet combines the received packet with a
later potentially faulty retransmission to obtain a
correct packet. This strategy eliminates the need
for any one retransmission to be completely correct,
thus drastically reducing the number of retransmis-
sions.

We have built SOFT in GNU software radios [7] and
deployed it in a 13-node testbed. Software radios im-
plement the whole communication system in software,
making them an ideal environment for developing and
testing cross-layer protocols. Our experimental results
reveal the following findings.

• SOFT provides large boosts to wireless reliability.
In environments with moderate to good delivery
rate, SOFT almost eliminates any packet loss over
the wireless channel. In environments with high loss
rates, SOFT increases the delivery rate by an order
of magnitude.

• SOFT shows significantly higher delivery rates than
prior cooperation proposals that do not use physical
layer information. It can provide up to 9-fold reduc-
tion in loss rate, as compared to MRD [19].

• SOFT also reduces the number of retransmissions.
In our testbed, with just one retransmission, SOFT
achieves 94% reliability, while it takes the current
approach 18 retransmissions to obtain similar per-
formance.

2 SOFT’s System Architecture

SOFT’s design targets wireless LAN deployments in
a university or corporate campus. In a large campus,
on the one hand, some areas suffer from poor con-
nectivity, on the other hand, a wireless user is likely
to hear multiple access points operating on the same
802.11 channel [3]. SOFT allows these APs to coop-
erate to recover corrupted packets, exploiting space
diversity. SOFT also exploits time diversity by com-
bining bits in a faulty packet with bits in later poten-
tially faulty retransmissions. Combining packets with
their retransmissions occurs on both the uplink and
downlink.

AP1 AP2 APn

SOFT Uplink Combiner

WLAN
client

Wired Ethernet

Internet

...

Figure 1: SOFT’s System Architecture. On the up-
link, multiple APs may hear the transmission of the wire-
less client. They communicate their confidence in the re-
ceived bits to the SOFT Combiner. SOFT combines their
information to reconstruct a clean packet from multiple
faulty receptions.

For simplicity, we describe our ideas within the con-
text of binary modulation, where a symbol refers to
one bit. Our algorithm and lemmas can be easily ex-
tended to other modulation schemes, as discussed in
the appendix.

2.1 An Interface that Returns Soft Values

SOFT sits below the MAC, between the physical
layer and the data link layer. It modifies the inter-
face between the two layers. Instead of returning 0’s
and 1’s, the physical layer returns for each bit a real
number, which we call a soft value (SV). The SV gives
us an estimate of how confident the physical layer is
about the decoded bit. The decoded bit is zero when
the corresponding SV is negative, and is one otherwise.
The smaller the absolute value of the soft value, the
less confident the physical layer is in whether the sent
bit is 0 or 1. Note that regardless of the modulation
scheme, the physical layer always first computes a soft-
value, which it then decodes to “1” or “0” depending
on the sign of the soft value. Traditionally, the SV has
been hidden from the higher layers. However, in SOFT,
the physical layer exposes a normalized version of this
soft value to the data link layer.

SOFT associates soft values with each bit, we refer to
this replacement of bits with their corresponding soft
values as a soft packet or s-packet. The data link layer
in SOFT decodes such s-packets to obtain the trans-
mitted packets. Except for some details, the decoding
algorithm is similar for the uplink and the downlink
scenarios.

While the current design of SOFT targets WLANs,
including 802.11a/b/g, we believe that our ideas ap-
ply to Ultra Wide Band (UWB) and WiMax LANs.
Although the details of the physical layer differ across
technologies and within the same technology, all phys-
ical layer design can easily expose an SV for each de-
coded bit/symbol. Generally speaking, the function of
a wireless receiver is to map a received signal to the
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symbol that was transmitted. To do so, the receiver
computes a soft value from the received signal for each
symbol, which is a real number that gives an estimate
of the transmitted symbol. The receiver then maps the
soft value to the symbol which is closest to it. For ex-
ample when the symbols correspond to “0” or “1” bit,
the soft value is decoded to a “1” bit if it is positive
and “0” otherwise. The soft value can be easily gen-
eralized to systems where each symbol represent more
than one bit.

2.2 Uplink

Figure 1 shows the SOFT architecture on the uplink.
It is designed to exploit spatial diversity through the
cooperation of several access points. Each AP in the
WLAN infrastructure offers a different communication
channel to the client. We leverage the comparatively
high bandwidth of the wired Ethernet connecting the
access points. Each AP forwards all s-packets including
those that are corrupted to the combining agent. The
combining agent is a logical module, that may reside
on one of the access points or on a different machine
on the local Ethernet, and can be thought of as an
uber-access point.

The combining agent does not run the decoding for
packets that are already correctly received, as deter-
mined by the checksum. It invokes the packet combin-
ing procedure only for corrupted packets. The agent
first needs to identify the set of s-packets (received at
different APs) that correspond to the same transmis-
sion. To do this, it decodes the header of each s-packet
to determine the packet-id of the transmitted packet.
Packet-id is a pseudo random sequence assigned by
the transmitter to each packet and maintained across
retransmissions. S-packets having the same packet-id
correspond to receptions of the same packet or its re-
transmission at different APs. The combining agent
keeps this set of packets corresponding to the same
transmission in a hash table that is keyed by the
packet-id. Headers, which include the packet-id, are en-
coded with a lot of redundancy, hence they are highly
likely to be received with no errors. Packet-ids are
therefore assumed to be received with little error.

The next step for the combining agent is decoding.
When an s-packet arrives at the agent, we face one of
two situations: 1) The arriving packet is uncorrupted,
i.e., it passes the checksum. In this case, the packet is
forwarded toward its IP destination and other packets
with the same packet-id are dropped. 2) The packet
is corrupted, in which case all the packets with the
same packet-id are passed to the combining algorithm
(described in §3, to attempt to correct the faulty bits.
If the combining algorithm succeeds, the correct packet
is forwarded and the packets are deleted from the hash
table. If the combining algorithm fails, the agent waits
for new soft-packets with the same packet-id.

We note that the combining agent keeps a hash ta-
ble of packet-ids for recently forwarded packets. When
a new packet arrives, the agent checks the table to
see whether a packet with a similar id has been cor-
rectly forwarded, in which case the new packet is ig-
nored. This eliminates redundant forwarding. Finally,
old soft-packets that were never recovered are dropped
after a timeout.

2.3 DownLink

SOFT’s design for the downlink exploits time diver-
sity. Faulty s-packets are stored and combined with
later retransmissions to increase the overall potential
of recovery. The process of combining multiple faulty
transmissions to correct bit errors is similar to that of
combining s-packets across APs, except that the com-
bining agent in the case of the downlink runs on the
client node itself.

2.4 ACKs & Retransmissions in SOFT

SOFT modifies the transmitter and receiver mod-
ules. If a SOFT receiver has the intended next-hop
MAC address, it immediately acks correctly received
packets using 802.11 synchronous acks. For each 802.11
ack-ed packet, the receiver communicates the correct
reception to the combining agent to allow it to discard
the s-packets corresponding to the ack-ed packet. On
the other hand, if the packet is faulty or if the receiver
is not the intended next-hop, it communicates the s-
packet to the combining agent. The agent stores faulty
receptions and uses them to reconstruct a clean version
of the packet as described above. If the reconstruction
succeeds, the agent sends an asynchronous ack to the
sender with the packet-id. The lack of an ack causes
the sender to timeout and retransmit the packet.

After transmitting a packet, the SOFT sender waits
for an ack. If it receives a synchronous 802.11 ack, it
moves on to the next packet waiting transmission. Oth-
erwise, the packet may need to be retransmitted which
happens when the combining agent at the receiver fails
to recover a clean copy. The retransmission strategy
varies between the uplink and downlink.

In the case of the uplink, SOFT disables link-layer
retransmissions to allow the combining agent enough
time to recover packets that the APs receive in error.
Specifically, since cooperation requires the APs to com-
municate over the wired LAN, it is not possible to re-
cover a corrupted packet within the time limit for send-
ing a synchronous 802.11 ack. Thus, SOFT WLANs
operate in 802.11’s unicast mode but with no retrials.
The SOFT sender stores unack-ed packets in a hash
table keyed on the packet-id. Whenever it receives an
asynchronous ack, it looks up the ack-ed packet-id in
its table, removes the corresponding packet, and reset
any scheduled retransmissions for that packet. Unack-
ed packets are pending for retransmission, unless they
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are ack-ed within a retransmit interval. The value
of the retransmit interval depends on the wireless
technology and the bit rate. It should take into ac-
count the communication time between the APs and
the combining agent over the wired LAN, the time to
retransmit an asynchronous ack over the WLAN, and
any potential congestion. We estimate this time using
an exponentially moving average in a manner similar
to the TCP RTT estimate. The retransmit interval

is set to the average estimate plus one standard devi-
ation.

On the downlink, the retransmission strategy can be
simplified since packet recovery does not involve any
communication between nodes. In particular, we envi-
sion that SOFT will be implemented in hardware on
the wireless card itself. In this case, we believe SOFT
can check whether a packet is recoverable via combin-
ing with prior receptions very quickly.2 The combining
algorithm can be executed within a SIFS (i.e., 28 mi-
croseconds), and the receiver can immediately send an
802.11 ack if it is able to reconstruct the packet. Thus,
the transmitter on an AP can use the current strategy
for retransmission and expects acks to be in-order.

3 Combining Algorithm

How should one combine the information from mul-
tiple corrupted receptions in order to maximize the
chances of recovering a clean packet? For both uplink
and downlink, the combining algorithm is presented
with multiple s-packets that correspond to the same
original transmission. None of these s-packets is suffi-
cient on its own to recover the original transmission.
Yet, because these are s-packets, they carry SVs for
each bit, which give the combining algorithm a hint
about the noise level in that bit.

Say that the combiner is presented with 3 s-packets.
Recall that a positive SV means “1”, a negative SV
means “0”, and that the magnitude of the SV refers to
the PHY’s confidence in the decision. Let the SV cor-
responding to bit i in these s-packets take the values:
0.3, −0.1 and −0.2. How does the combining algorithm
decide whether bit i is “0” or ”1”?

The most straightforward approach would take the
maximum corresponding SV since it is the reception
with most confidence. Thus, in the above example, one
would say that bit i is a “1” because the reception with
the highest confidence (i.e., 0.3) has mapped it to “1”.
But is this the optimal answer? Clearly there are other
approaches that look equally correct. For example, one

2Our combining algorithm in §3 uses a weighted sum of the s-
packets. Thus, there is no need to keep all s-packets. The sum can
be constructed incrementally as more receptions arrive. Combin-
ing requires only combining the most recently received s-packet
with the weighted sum of prior s-packets, which can be quite
fast. Thus, the card needs not maintain more than an s-packet
worth of memory.

may resort to a majority vote. In this case, two recep-
tions map this packet to “0” (−0.15 and −0.2) whereas
one reception maps it to “1” (one positive value of
0.3). Thus, a majority voting approach would decide
that the bit should be “0”, which is the opposite of the
previous approach.

There are other approaches too, such as comparing
the sum of the positive values to the sum of the nega-
tive values, or comparing the sum of the squares of the
positive values to the sum of the squares of the nega-
tive values, etc. We would like to pick the combining
strategy that maximizes the recovery probability.

In SOFT, we analyze the packet recovery probabil-
ity and adopt a combining strategy that is provably
optimal. Our strategy uses the sum of SVs weighted
by the noise variance at their corresponding AP. It is
based on the following lemma, which gives the optimal
decision for an additive Gaussian white noise channel
(AGWN), a typical model for indoor wireless chan-
nels [23].

Lemma 3.1. Let y1, . . . , yk be SVs that correspond

to multiple receptions of the same bit over different

AWGN channels. To maximize the recovery probabil-

ity, one should map the bit to “0” or “1” according to

the following rule:

if
∑

i

yi

σ2

i

≥ 0 then the bit is “1”, otherwise it is a “0”,

where σ2

i is the noise variance in the i th AWGN chan-

nel.

The proof of the lemma is in the appendix. We also
note that though the above lemma focuses on modu-
lation systems where a symbol is a single bit, the ap-
pendix shows a generalized form that applies to larger
symbol size.

We note a few interesting points.

• Straightforward approaches for combining multiple
receptions including taking the SV with the highest
confidence or doing a majority vote are suboptimal.

• One should not treat all receptions equally. This is
particularly important for the uplink where different
receptions traverse a significantly different wireless
channel. For example, the wireless transmitter might
have a line of sight to one of the access points, re-
sulting in lower noise variability in this channel, and
thus one should trust this channel more. One should
not think that the more receptions she/he has the
lower the error will be. Including physical informa-
tion from APs with highly variable channels (i.e.,
large σ2) without accounting for that variability de-
creases the overall performance.

• The decision rule above requires the noise variance,
σ2

i , on each channel. We compute this value by look-
ing at the variance in the received signal, as ex-
plained in §5.
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• Since the result in Lemma 3.1 assumes AWGN chan-
nels, it is natural to wonder how closely real indoor
wireless signals match the result in lemma 3.1. Ex-
perimental results in §8 show that the decision strat-
egy advocated by Lemma 3.1 is superior to other
strategies in practice.

4 Direct Sequence Spread Spectrum

802.11b networks use Direct Sequence Spread Spec-
trum (DSSS). DSSS trades off high bit rate for im-
proved error resilience. Specifically, each bit is mapped
to a multi-bit codeword before transmission. A simpli-

fied DSSS example may map a “1” bit to the codeword
11111111 and “0” to 00000000. This reduces efficiency
as the sender has to transmit many more bits for each
logical bit, but it significantly improves resilience be-
cause an error has to change at least 4 bits in a code-
words before it causes an error in mapping a received
codeword to the correct logical bit. The length and val-
ues of the codewords used in 802.11b vary depending
on the bit rate.

The combining algorithm described in §3 can be ap-
plied to 802.11a/b/g [14]. In this case, the combining
algorithm is used to decode individual bits. DSSS de-
coding is applied on sequences of these decoded bits to
decode codewords and map them back to logical bits.
Specifically, the receiver computes the Hamming dis-
tance between a received codeword and possible code-
words, and maps the received codeword to the logical
bit that minimizes the Hamming distance [11].

We can however do better. We can exploit the fact
that only a few codewords are allowed in 802.11b
to further improve the performance. Thus, instead of
mapping each bit in isolation as we did in lemma 3.1,
we map each sequence of SVs to either a zero-codeword
or a one-codeword. Say that we have k s-packets cor-
responding to the same data packet. Let us focus on
the i th codeword in these s-packets. Let each code-
word contain m bits. In this context, a soft code-
word (s-codeword) is a sequence of m SVs, i.e., ~yi =
(y1, y2, . . . , ym). The following lemma gives the opti-
mal combining strategy for the case of AWGN chan-
nels, typically used in analyzing indoor wireless.

Lemma 4.1. Let ~y1, . . . , ~yk be multiple s-codewords

that correspond to the same codeword transmitted over

different AWGN channels. Let ~x 1 = (x 1

1
, . . . , x 1

m) be

the codeword corresponding to logical “1” and ~x 0 =
(x 0

1
, . . . , x 0

m) the codeword corresponding to a logical

“0”. The following strategy maximizes the recovery

probability:

if

k∑

i

m∑

j

yij (x
1

j − x 0

j )

σ2

i

≥ 0, then “1”, otherwise “0”,

where σ2

i is the variance in the i th AWGN channel.
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Figure 2: Soft Value Distribution: A typical distribu-
tion of the soft values seen in our testbed. The two modes
correspond to “0” and “1” bits.

The proof of the above lemma is in the appendix.

5 Estimating the Noise Variance

In order to compare the soft values observed at dif-
ferent receivers, we require the corresponding σ2

i of the
channels. SOFT estimates a channel’s variance exper-
imentally using the empirical distribution of the SVs.
For the i th AWGN channel, the SV value of a bit can
be expressed as

yi = x + ni ,

where ni is a white Gaussian noise and x is the trans-
mitted bit value ( x = −1 for a “0” bit and x = +1
for a“1” bit). Thus, conditioned on the bit value, yi is
also a Gaussian variable with the same variance as ni .
Thus, we estimate the variance in ni using the variance
in the yi ’s. Figure 2 shows the soft values distribution
(i.e., the yi ’s) at a particular AP in our testbed.

Note that the soft values have the same distribution
as the ni ’s only when we fix the value of the transmit-
ted bit (i.e., a fixed x in the equation above). In general
we cannot tell for sure at an AP which received SV cor-
responds to a “0” and which corresponds to a “1”. But
because the vast majority of soft values already corre-
spond to correctly decodable bits, the statistical vari-
ance of the absolute value of the soft values is a good
estimate for σ2

i . We compute this for every packet by
using all the soft values from it.

The above assumes that the channel noise variance
stays the same. One however can enhance the estimate
by using an exponential decaying average over a few
packets recently received from the same sender.

6 Reducing Overhead

In the uplink case, SOFT transfers the s-packets
from the APs to the combining agent over the wired
Ethernet. We leverage the much higher wired Ether-
net bandwidth to improve the scarce wireless through-
put. The increase in the consumed Ethernet band-
width however is an overhead of the system. We note
that in a typical operation environment (e.g., univer-
sity campus), Ethernet throughput is an order of mag-
nitude larger than WLAN throughput. Furthermore,
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though wireless throughput is increasing at a steady
speed, it is likely that the difference between Ethernet
and WLAN throughput will continue to hold; 10 Gb/s
Ethernet (10GbE) is already on the market and 100
Gb/s Ethernet (100GbE) is presently under develop-
ment by the IEEE [1].

Despite the big difference between Ethernet’s and
WLAN’s throughput, it is important to keep SOFT’s
overhead bounded. The wired bandwidth consumed by
transferring s-packets depends on how we express an
SV. If an SV is expressed as an 16-bit number, then
each packet will be amplified 16 times. To reduce the
overhead, we need to quantize the SVs. Optimal quan-
tization depends on the σ2 of the channel. That is, for
a particular distribution of SVs, one needs to integrate
the total area and divide into 2k bins where k is the
number of bits used to express each SV. In practice,
however, we found that a uniform quantization works
equally well.

Thus, our quantization algorithm works as follows.
It picks a constant cutoff for all SVs across all exper-
iments. The cutoff value depends on the modulation
scheme and thus should be calibrated for each 802.11
bit rate. Values above the cutoff are reduced to the cut-
off value. Every SV is expressed using 3 bits, one for
the sign and 2 bits for the magnitude. Though this still
consumes Ethernet bandwidth, it keeps the overhead
within practical limits.

7 Implementation

7.1 Hardware and Software Environment

We have implemented a prototype of SOFT using
Software Defined Radios (SDR). SDRs implement all
the signal processing components (source coding, mod-
ulation, clock recovery, etc.) of a wireless communi-
cation system entirely in software. The hardware is a
simple radio frequency (RF) frontend, which acts as an
interface to the wireless channel. The RF frontend con-
verts the signal generated by the SDR from digital to
analog and transmits it on the wireless channel. At the
receiver, the base-band signal is converted from ana-
log to digital and passed to the SDR software. Thus,
SDRs expose the raw signal to software manipulation
and thus present an opportunity to exploit information
traditionally available only at the physical layer.

We use the Universal Software Radio Peripheral
(USRP) [15] as our RF frontend. USRP is a generic
RF frontend developed specifically for the GNU Radio
SDR. The software for the signal processing blocks is
from the open source GNURadio project [7].

7.2 Implementation Details

We export a network interface to the user, which can
be treated like any other network device (e.g., eth0).
On the sending side, the network interface pushes the

Mueller & Muller
Timing Recovery

Match Filter
h[n]

Slicer
(Decision Device)

>
< 0

... decoded
bits

match
values

Figure 3: The block diagram of the different components
in the receiver module. The match values output by the
match filter in the figure correspond to the soft values used
in our algorithms.

packets to the GNU software blocks with no modifica-
tions. On the receiving side, the packet is detected and
demodulated. We use the output of the match filter as
our SVs as described in §2.1. This value is a 32-bit
float, which we quantize according to the algorithm
in §6, and pass to SOFT. Our SOFT implementation
matches the description in §2.

The modulation scheme we use in our implementa-
tion is Gaussian Minimum Shift Keying (GMSK ). But
the ideas we develop in this paper are applicable to any
modulation scheme. The main reason for using GMSK
here is that the GNU radio project has a mature
GMSK implementation. Currently, GNU implementa-
tions of other modulation techniques are either non-
existent of buggy. GMSK is a form of Phase-Shift Key-
ing (PSK) which is widely used in modern communi-
cation systems. For example, GSM, a widely used cell-
phone standard, uses GMSK, and 802.11 uses Binary
and Quadrature Phase Shift Keying (BPSK/QPSK).
GMSK has very good bit-error properties, has a sim-
ple demodulation algorithm and excellent spectral ef-
ficiency.

Fig. 3 shows the block diagram of the components
in our receiver. The signal is first passed through a
clock recovery module, which ensures that the opti-
mum sampling time is found. The output of the clock
recovery is passed through a matched filter which out-
puts the soft value we use in our algorithms. Soft value
computation depends on the modulation scheme used.
But the basic intuition behind all matched filters is
the same. They integrate the received signal energy so
that the zero-mean gaussian noise is cancelled out and
output a single float value which is the soft value. This
soft value is now passed to a decision device that esti-
mates what bit was transmitted depending on the sign
of the soft value.

The soft value gives us a way to compute the confi-
dence in the bit estimated by the decision device. We
combine the soft value along with the corresponded es-
timated bits to form a soft-packet. The soft-packet is
now passed to the combining agent through the wired
ethernet.

8 Experimental Results

We evaluate SOFT in a 13-node software radio
testbed. The topology is shown in Figure 4. Each node
is a commodity PC connected to a USRP GNU ra-
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Figure 4: Testbed Topology. The figure shows the test-
ing environment. The dots mark the locations of the GNU-
Radio nodes.

dio [15]. The USRP connects to the PC via USB 2.0.
Thus, its throughput is limited to 32MB/s. This also
limits the bandwidth of the signal to at most 4MHz,
which is enough for performing representative narrow-
band experiments.

SOFT’s combining algorithm works the same
whether the s-packets are the result of overhearing at
multiple APs or retransmissions at a single wireless
receiver. Thus, we use the uplink experiments to ex-
plore the various aspects of SOFT and its combining
strategy and revert to the downlink experiments to in-
vestigate retransmissions under SOFT. In general, the
uplink also combines faulty s-packets with their poten-
tially faulty retransmissions to recover a clean packet.
Our experiments however deactivate combining with
retransmissions for the uplink to disentangle the gains
due to space diversity from those due to time diversity.

8.1 Setup

In each experiment, we pick three nodes as our access
points (APs), and randomly vary the sender among
the nodes in the testbed. Each randomly chosen sender
transmits 500 packets, where packet size is 1500B. One
of the three APs in each experiment is designated as
the master AP and runs the combining agent. The
other APs send their s-packets to the master AP over
the wired Ethernet, which combines information across
s-packets to reconstruct a clean packet. In uplink ex-
periments, retransmissions are turned off to separate
gains due to space diversity from those caused by time
diversity.

For the downlink experiments, we randomly pick a
sender-receiver pair and transfer 500 packets between
them. Here, we focus on the gains due to time diversity,
i.e., reductions in loss rate due to SOFT’s ability to re-
cover clean packets by combining faulty transmissions
with faulty retransmissions of the same packet.

It should be noted that because GNU Radios per-
form all processing in software, many of the timing
details of 802.11 cannot be implemented. This has two
implications for our setup. In particular, unless one
changes the FPGA code, one cannot consistently send
synchronous 802.11 acks on time. We emulate 802.11
acks by sending the ack packet immediately after the

data packet, as fast as the SDR system permits. Sec-
ond, with no proper timing control, one cannot imple-
ment 802.11’s backoff algorithm. Thus, we do not have
a mechanism to avoid collisions. Since we run only one
sender at any time, our senders do not collide with
each other. They may however be affected by interfer-
ing signals in the same band. We try to run our exper-
iments at night when wireless activities in our lab are
limited. Note that although the errors resulting from
interfering signals reduce the delivery rates, they do
not bias the results towards any particular protocol,
among those compared. The compared protocols pro-
cess the same reception data, each with its approach
for recovering correct packets.

8.2 Compared Approaches

We compare the following approaches

• SOFT: This approach adopts the architecture in §2
and uses the combining strategies of Lemmas 3.1
and 4.1.

• MAX Confidence: This is similar to SOFT but
with a max-confidence combine strategy. Specifi-
cally, when combining multiple SVs that correspond
to the same bit, the bit is mapped to “0” or “1” ac-
cording to the SV with the maximum absolute value.

• Majority Vote: This is also similar to SOFT but it
uses a majority vote to combine multiple receptions.
Specifically, each bit is assigned the value agreed on
by the majority of the receptions (i.e., the majority
of the APs).

• Current Approach: This approach is similar to
the current WLAN scenario which does not allow
the APs to cooperate, and does not combine bits
across different receptions.

• MRD: This is a prior cooperative scheme for packet
recovery [19]. MRD does not use physical layer in-
formation. It works as follows. It divides each packet
into blocks. For each block, it assumes that at least
one of the APs has correctly received the bit values
for that block. It attempts to recover a faulty packet
by trying every version received for each block, and
checking whether such combined packet passes the
checksum. MRD computational cost is exponential
in the number of blocks. Thus, in order to be compu-
tationally feasible, MRD recommends using 6 blocks
per packet [19], which is what we use in our experi-
ments.

8.3 Metrics

We use the following metrics:

• Packet Delivery Rate: This is the fraction of trans-
mitted packets that the WLAN correctly delivers to
the destination. For the current approach, the deliv-
ery rate is computed as the fraction of uncorrupted
packets received at the best AP, i.e., the one with the
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Figure 5: CDF of Packet Delivery Rates. SOFT sig-
nificantly improves the packet delivery rate. While the
mean delivery rate in the current approach and MRD is
less than 7%, the mean SOFT delivery rate is as high as
62%. Retransmissions are turned off in these experiments,
thus the improvement in delivery rate is mainly due to the
use of soft values and the effect of spatial diversity.

lowest loss rate for the particular sender. For coop-
erative approaches, the delivery rate is the fraction
of packets that were successful recovered either im-
mediately at the radio receiver, or after running the
combining algorithm. The delivery rate is compute
for all approaches without retransmissions.

• Number of Retransmissions: This is the number of
times the sender had to retransmit the same packet
to ensure errorless delivery to higher layer. Retrans-
missions are activated only during downlink experi-
ments. As such, the uplink experiments serve to eval-
uate the gains due to spatial diversity gains. The
downlink experiments, where no spatial diversity ex-
ists, are used to evaluate the time diversity gains.

8.4 Importance of Cooperation & Soft Values

We are interested in quantifying the impact of co-
operation on the reliability of WLANs. In particular,
how much improvement in loss rate should one expect
from combining packets across APs? Further, is there a
significant benefit for obtaining physical layer informa-
tion or a higher-layer technique like MRD is sufficient?

To answer these questions we perform 100 runs of the
experiment described in §8.1. Specifically, each time
we pick three APs from the nodes in the testbed and a
random sender, which transmits 500 packets. We com-
pute the packet delivery rate for SOFT, the current
approach, and MRD (with 6 blocks per packet). Fig-
ure 5 compares the CDFs of the deliver rates for the
three schemes.

The figure shows the importance of using soft values
in cooperative recovery. The mean delivery rate in the
current approach is less than 7%. MRD does not help
much when delivery rates are considerably low. Such
environments are highly lossy, while MRD can recover
only from a handful of bit errors. In contrast, SOFT’s
mean delivery rate is 62%, which is about an order of
magnitude better than both the current approach and
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Figure 6: Comparing Delivery Rates for Increased

MRD Blocks. Figure plots the delivery rate of one sender
as a function of increased MRD blocks. SOFT’s delivery
rate for this sender is about 78%. MRD cannot match
SOFT’s performance even with hundreds of blocks. In prac-
tice, it is infeasible to have such many blocks both because
of computational overhead and the checksum losing its er-
ror detection capability.

MRD.
We also check whether having a larger number of

blocks improves MRD’s performance. Thus, in Fig-
ure 6, we focus on a specific sender and a specific AP
set. We vary the number of blocks used by MRD. Note
that MRD’s computational complexity increases expo-
nentially with the number of blocks. Computing the
CRC for a large number of blocks is infeasible in prac-
tice. But since we know the transmitted packet con-
tent, we can check whether MRD recovers a correct
packet without incurring the exponential cost. To do
so, we compare the received blocks directly against the
transmitted ones. Such a check is however infeasible in
practical situations since the APs do not know a priori
the sent data. Figure 6 shows that even if it would be
practical to increase the number of MRD blocks to 200,
SOFT still does better. This result further emphasizes
the importance of exposing the information available
to the physical layer to higher layers.

8.5 The Role of the Combining Rule

We also want to investigate how the delivery rate
changes with the strategy used to recover packets from
multiple soft copies. In particular, Lemma 3.1 advo-
cates using a weighted sum of the SVs. But the lemma
makes this assertion based on a AWGN model of the
channel. Would the result of this lemma hold in prac-
tice?

Figure 7 compares the CDFs of packet delivery rates
for various combining rules. The experiments are run
using the setup described in §8.1 and the CDFs are
computed over all such runs. The figure shows that
SOFT’s weighted-sum strategy performs better than
taking a majority vote or using the bit value with the
maximum confidence. Thus, the experimental results
support the analysis in §3.

It is also interesting to note that a majority vote
works better than trusting the largest SV. This is par-
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Figure 7: CDFs of Delivery Rates for Different

Combining Strategies. The figure compares the deliv-
ery rate under three combining strategies: SOFT, Max-
Confidence, and Majority-Vote. It shows that SOFT’s
weighted-sum strategy performs significantly better than
the others, which supports our analytical results.

ticularly true at low delivery rates. In this case, all
APs are receiving very poor signals. The differences in
their SVs are close to the noise level. Taking the max
SV allows a biased SV to deviate the results, whereas
taking a majority vote increases resilience.

8.6 Impact of Noise Variance

Our analysis highlights the importance of account-
ing for the noise variance when combining SVs received
from different APs. Here, we experimentally check how
normalizing by the noise variance affects delivery rates.
The noise variance is computed at each AP experimen-
tally using its received data, as described in §5.

Figure 8 shows that accounting for the noise vari-
ance can improve the delivery rate by about 14%. It is
interesting to note that the noise variance is particu-
larly important when the delivery rates are neither too
low nor too high. This is because at very low delivery
rates, all APs have highly noisy channels such that the
difference in their noise level does not matter. At very
high delivery rates at least one and sometimes two APs
have very good channels and can still recover the sig-
nal despite the bias introduced by the more challenged
AP. It is at moderate delivery rates when a biased AP
produces destructive effect, polluting the SVs of the
two not very confident APs.

8.7 Direct Sequence Spread Spectrum

This section shows that SOFT’s benefits extend
to scenarios with direct sequence spread spectrum
(DSSS). We repeat the experiments described in §8.1
with DSSS. We compare SOFT’s delivery rates with
the delivery rates of the current approach. As ex-
plained earlier DSSS improves packet delivery at the
cost of using lower bit rate for the same bandwidth.

In comparison with Figure 5, Figure 9 shows a sig-
nificant improvement in the overall loss rate for both
SOFT and the current approach. SOFT, however, still
significantly outperforms the current approach. With
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Figure 8: CDF of Delivery Rates with and with-

out Normalization by the Noise Variance. The fig-
ure shows that normalizing the SVs by the noise variance
improves the delivery rates, and that the normalization
is particularly important for moderate to moderately-high
delivery rates.
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Figure 9: CDFs of Delivery Rates under DSSS. The
figure shows that DSSS improves the delivery rates for both
SOFT and the current approach. For these environments,
SOFT eliminates all losses for the vast majority of the runs.

SOFT, 97% of all runs experience perfect delivery
rates, as opposed to only 72% with the current ap-
proach. Thus, for environments with moderate to high
delivery rates, SOFT eliminates most of the residual
losses.

8.8 Retransmissions on the Downlink

We also evaluate SOFT’s performance on the down-
link. In this case, SOFT reconstructs a faulty packet
by combining multiple receptions at the same receiver.
We want to compute the number of retransmissions
required to recover a correct packet, with and with-
out SOFT. We perform the following experiment. We
pick a random sender-receiver pair from the nodes in
testbed. The sender transmits 500 different packets. In
contrast, to prior experiments, the sender retransmits
every packet until the receiver recovers a correct copy
of the packet. We repeat the same experiment for 30
sender receiver pairs.

Figure 10 shows a CDF of the number of retransmis-
sions per packet, taken over all packets and all sender-
receiver pairs. The figure shows that in our testbed,
only 33% of the packets on the downlink are received
with no need for retransmission (the value for #Re-
transmissions = 0). SOFT cannot improve this number
on the downlink because there is no cooperation. But
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Figure 10: CDFs of the Number of Retransmissions

on the Downlink. SOFT correctly recovers 94% of the
packets with less than one retransmission. The current ap-
proach needs up to 18 retransmissions to achieve the same
delivery rate.
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Figure 11: Impact of Quantization on the Delivery

Rates. The figure shows two results: 1) It is sufficient to
use 3 bits to express the value of the SVs. 2) the quantiza-
tion is fairly resilient to the choice of cutoff value.

SOFT significantly improves the overall performance
of the downlink. In particular, 94% of the packets are
correctly received after one retransmission. In contrast,
the current approach needs up to 18 retransmissions to
achieve the same reliability.

8.9 Impact of Quantization

To reduce the overhead over the wired Ethernet, we
quantize the SV values and express then using only 3
bits. We want to ensure that by doing so we are not
loosing too much in term of delivery rates. Thus, we
plot the average delivery rate of 30 random runs for
various quantization parameters.

Figure 11 shows two important results. First, our
approach is fairly resilient to the choice of the cutoff
for values in the rage [0.4, 0.8]. Thus, despite that the
SVs collected at different APs have different variance
(i.e., spread), we can still use the same cutoff value
across all APs. Second, it is sufficient to express the
SVs using 3 bits, one for the sign and two bits for the
magnitude. This reduces the size of an s-packet and
significantly reduces the wired overhead.

9 Related Work

Related work falls in two areas.

(a) Cooperative Design Spatial cooperation, i.e.,
combining information from multiple nodes to boost
throughput, has been discussed within recent work [9,
17, 22]. Most of the work in this area is theoretical
with no system implementation or experimental re-
sults. The main difficulty in implementing the theo-
retical proposals is their reliance on tight synchroniza-
tion across nodes. Some prior work [18, 24] advocates
combining frames received from adjacent access points
to improve uplink WLAN performance, but they are
both based on simulation and ignore protocol level is-
sues such as ARQ. Experimental work on spatial coop-
eration either assumes multiple antennas on the same
node (i.e., MIMO systems) [23] or does not use physi-
cal layer information [19, 6]. In comparison, this paper
presents a practical protocol that integrates spatial co-
operation with physical-layer information and does not
assume MIMO nodes.

The closest work to ours is by Miu et al. [19], who
propose combining receptions from multiple access
points to recover faulty packets. Their work does not
use physical layer information. It divides the packet
into multiple blocks. When the access points receive
conflicting blocks, this proposal attempts to resolve the
conflict by trying all block combinations and checking
whether any of the resulting combinations produces a
packet that passes the checksum. The overhead of their
approach is exponential in the number of erroneous
blocks and thus too costly when there is significant
loss. Our experimental results in §8.4 compare against
their approach and demonstrate the importance of us-
ing physical layer information.

(b) Soft Decoding The use of physical layer informa-
tion in decoding is usually referred to as soft decoding.
Prior theoretical work has discussed soft decoding and
applied it to various codes including Reed Solomon
and LDPC [12, 10, 25]. The Viterbi decoding algo-
rithm has a soft extension (SOVA) that includes phys-
ical information as a priori probabilities of the input
symbols [13]. Also, some prior work has suggested that
a receiver should save a corrupted packet and combine
it with a later retransmission [8, 2]. Our work builds
on this foundation but differs in two main ways. First,
prior work studied a single wireless channel, whereas
we present a network architecture that combines soft
information from multiple APs in a cooperative de-
sign. Second, we focus on practical networking issues
and present a working implementation of our design.

Concurrently to our work, a second research group
was looking at passing physical layer hints to higher
layers [16]. The two projects were developed indepen-
dently and each group learned about the other’s re-
search only after most of the ideas were developed. In
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particular, our ideas as well as our initial results have
been documented in a class report that was submitted
as early as November 2006. The two projects use soft
information but the ideas differ considerably. The work
in [16] uses a threshold over soft information. When the
soft information associated with a received codeword is
above the threshold, the codeword is considered to be
good and when it is below the threshold the codeword
is bad. The threshold is updated dynamically based on
prior observations. The work in [16] propose to use this
threshold with a postamble to discover which chunks in
a packet are received incorrectly, and retransmit them.
In contrast to the above, our project does not use a
threshold. It recovers erroneous packets by combining
soft information across multiple erroneous receptions.
Also, in contrast to [16], our work combines soft infor-
mation from receptions at different receivers, in which
case it also adjusts for channel variance. Finally, our
work leverages the high Ethernet bandwidth between
access points in WLAN to perform soft information
combing.

10 Conclusion

Today’s wireless networks have largely adopted the
abstractions of wired networks, despite the fact that
they come with unique challenges. Lossy links and
poor connectivity are two main problems in wireless
networks that have direct impact on application per-
formance and user satisfaction. Current approaches to
address these problems have mostly been inadequate.
However, wireless media provide intrinsic resilience
due to their spatial and temporal diversity, and this
presents opportunities to address their challenges with
novel solutions.

Computer networks have traditionally been designed
with narrow interfaces between layers in the stack. In
this paper, we have presented SOFT, a scheme that
increases the reliability of wireless networks by adopt-
ing a more informative interface between the physical
and higher layers, and using confidence values from the
physical layer to cooperatively reconstruct packets at
the data layer. Our experimental results demonstrate
that SOFT improves the mean packet delivery rate and
reduces the required number of retransmissions by an
order of magnitude.

References

[1] 100 Gigabit Ethernet Transmission Sets New Record,
2006.
http://arstechnica.com/news.ars/post/20061115-
8231.html.

[2] T. W. A. Avudainayagam, J.M. Shea and L. Xin.
Reliability Exchange Schemes for Iterative Packet
Combining in Distributed Arrays. In Proc. of the
IEEE WCNC, volume 2, pages 832 – 837, 2003.

[3] A. J. Nicholson and Y. Chawathe and M. Y. Chen

and B. D. Noble and D. Wetherall. Improved Access
Point Selection. In MobiSys, 2006.

[4] D. Aguayo, J. Bicket, S. Biswas, G. Judd, and
R. Morris. Link-level Measurements from an 802.11b
Mesh Network. In SIGCOMM, 2004.

[5] P. Bahl, J. Padhye, L. Ravindranath, M. Singh,
A. Wolman, and B. Zill. DAIR: A Framework for
Managing Enterprise Wireless Networks Using
Desktop Infrastructure. In Hotnets, 2005.

[6] S. Biswas and R. Morris. Opportunistic Routing in
Multi-Hop Wireless Networks. In SIGCOMM, 2005.

[7] E. Blossom. GNU Software Defined Radio.
http://www.gnu.org/software/gnuradio, 2006.

[8] S. S. Chakraborty, E. Yli-Juuti, and M. Liinaharja.
An ARQ Scheme with Packet Combining. IEEE
Communication Letters, 1998.

[9] S. Diggavi, N. Al-Dhahir, A. Stamoulis, and
A. Calederbank. Great Expectations: The Value of
Spatial Diversity in Wireless Networks. Proceedings
of the IEEE, 92(2):219 – 270, Feb. 2004.

[10] R. Gallagher. Low-Density Parity-Check Codes. MIT
Press, Cambridge, MA, 1963.

[11] A. Goldsmith. Wireless Communications. Cambridge
University Press, 2005.

[12] V. Guruswami and M. Sudan. Reflections on
Improved Decoding of Reed-Solomon and
Algebraic-Geometric Codes. IEEE Information
Theory Society Newsletter, 52(1):6–12, 2002.

[13] J. Hagenauer and P. Hoecher. A Viterbi Algorithm
with Soft-Decision Outputs and its Applications. In
IEEE GLOBECOM, 1989.

[14] p. a. IEEE 802.11 WG. Wireless lan medium access
control (mac) and physical layer (phy) specifications,
1999.
http://standards.ieee.org/getieee802/802.11.html.

[15] E. Inc. Universal software radio peripheral.
http://ettus.com.

[16] K. Jamieson and H. Balakrishnan. PPR: Partial
Packet Recovery for Wireless Networks. Technical
report, MIT, 2007.

[17] J. Laneman, D. Tse, and G. Wornell. Cooperative
diversity in wireless networks: Efficient protocols and
outage behavior. IEEE Transactions on Information
Theory, 50(12), 2004.

[18] V. Leung and A. Au. A wireless local area network
employing distributed radio bridges. Wireless
Networks 2, pages 97–107, 1996.

[19] A. K. Miu, H. Balakrishnan, and C. E. Koksal.
Improving Loss Resilience with Multi-Radio Diversity
in Wireless Networks. In 11th ACM MOBICOM
Conference, Cologne, Germany, Sept. 2005.

[20] C. Reis, R. Mahajan, M. Rodrig, D. Wetherall, and
J. Zahorjan. Measurement-Based Models of Delivery
and Interference. In SIGCOMM, 2006.

[21] M. Rodrig, C. Reis, R. Mahajan, D. Wetherall, and
J. Zahorjan. Measurement-based characterization of
802.11 in a hotspot setting. In ACM SIGCOMM
Workshop on Experimental Approaches to Wireless
Network Design and Analysis (E-WIND), 2005.

11



[22] A. Scaglione, D. Goeckel, and J. Laneman.
Cooperative communications in mobile ad hoc
networks. IEEE Signal Processing Magazine,
23(5):18 – 29, 2006.

[23] D. Tse and P. Vishwanath. Fundamentals of Wireless
Communications. Cambridge University Press, 2005.

[24] M. C. Valenti. Improving uplink performance by
macrodiversity combining packets from adjacent
access points. IEEE WCNC, pages 636– 641, 2003.

[25] M. Wang, X. Weimin, and T. Brown. Soft Decision
Metric Generation for QAM with Channel
Estimation Error. IEEE Transactions on
Communications, 50(7):1058 – 1061, 2002.

Proof of Lemma 3.1

Let ~y = (y1, y2, ...yk ) be soft values associated with a par-
ticular bit. Given a transmitted bit value x , the y ’s are
conditionally independent, and correspond to multiple re-
ceptions of the same bit over different independent AWGN
channels ni with µ = 0 and σ2

i . I.e. yi = x + ni where
x = −1 for a “0” bit or x = 1 for a “1”.

Let H0 be the hypothesis that x = −1 and let H1 be the
hypothesis that all of x = 1. Note that the two hypothe-
ses are equally likely a priori, i.e., before a reception the
likelihood of a “0” is the same as the likelihood of a “1”.

Here, we consider the likelihood functions:

H0 : P~y|H (~y |H0) =
Y
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By subtraction, the above result is equivalent to:

if
X

i

yi

σ2

i

≥ 0 then it is “1” otherwise “0”.,

where σ2

i is the variance in the i th AWGN channel.

Proof of Lemma 4.1

The proof of Lemma 4.1 is again fairly similar to that
of Lemma 3.1. But here, instead of bits we replace them
with the codeword which represents the bits “1” or “0”
respectively. Thus,
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By subtraction, the above result is equivalent to:

if
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≥ 0, the logical bit is “1”, otherwise “0”,

where σ2

i is the variance in the i th AWGN channel.

Generalizing Lemma 3.1 to Larger Symbols

Lemma 10.1. Let y1, . . . , yk be the output of the match
filter that correspond to multiple receptions of the same
symbol over different AWGN channels. Let x1, . . . , xm be
the possible value for the transmitted symbol. To maximize
the symbol recovery probability, one should map the received
symbol to a possible value xj according to the following rule:

arg min
xj

X

j

||yi − xj ||
2

σ2

i

where ||.|| is the Euclidian norm and σ2

i is the variance in
the i th AWGN channel.

The proof is similar to that of Lemma 3.1. The only dif-
ference is that we replace bits with the symbols in our
constellation.
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