217 research outputs found

    Complexity of some polyhedral enumeration problems

    Get PDF
    In this thesis we consider the problem of converting the halfspace representation of a polytope to its vertex representation - the Vertex Enumeration problem - and various other basic and closely related computational problems about polytopes. The problem of converting the vertex representation to halfspace representation - the Convex Hull problem - is equivalent to vertex enumeration. In chapter 3 we prove that enumerating the vertices of an unbounded H-polyhedron P is NP-hard even if P has only 0=1 vertices. This strengthens a previous result of Khachiyan et. al. [KBB+06]. In chapters 4 to 6 we prove that many other operations on polytopes like computing the Minkowski sum, intersection, projection, etc. are NP-hard for many representations and equivalent to vertex enumeration in many others. In chapter 7 we prove various hardness results about a cone covering problem where one wants to check whether a given set of polyhedral cones cover another given set. We prove that in general this is an NP-complete problem and includes important problems like vertex enumeration and hypergraph transversal as special cases. Finally, in chapter 8 we relate the complexity of vertex enumeration to graph isomorphism by proving that a certain graph isomorphism hard problem is graph isomorphism easy if and only if vertex enumeration is graph isomorphism easy. We also answer a question of Kaibel and Schwartz about the complexity of checking self-duality of a polytope.In dieser Arbeit betrachten wir das Problem, die Halbraumdarstellung eines Polytops in seine Eckendarstellung umzuwandeln, - das sogenannte Problem der Eckenaufzählung - sowie viele andere grundlegende und eng verwandte Berechnungsprobleme für Polytope. Das Problem, die Eckendarstellung in die Halbraumdarstellung umzuwandeln - das sogenannte Konvexe-Hüllen Problem - ist äquivalent zum Problem der Eckenaufzählung. In Kapitel 3 zeigen wir, dass Eckenaufzählung für ein unbeschränktes H-Polyeder P selbst dann NP-schwer ist, wenn P nur 0=1-Ecken hat. Das verbessert ein Ergebnis von Khachiyan et. al. [KBB+06]. In den Kapiteln 4 bis 6 zeigen wir, dass viele andere Operationen auf Polytopen, wie Berechnung von Minkowski-Summe, Durchschnitt, Projektion usw., für viele Darstellungen NP-schwer sind und für viele weitere äquivalent zu Eckenaufzählung sind. In Kapitel 7 beweisen wir Härteresultate über ein Kegelüberdeckungsproblem, das danach fragt, ob eine gegebene Menge polyedrischer Kegel eine andere gegebene Menge überdeckt. Wir zeigen, dass dies im Allgemeinen ein NP-vollständiges Problem ist und wichtige Probleme wie Eckenaufzählung und Hypergraphentraversierung als Spezialfälle umfasst. Schließlich stellen wir in Kapitel 8 einen Zusammenhang zwischen Eckenaufzählung und Graphisomorphie her, indem wir beweisen, dass ein bestimmtes Graphisomorphie-schweres Problem genau dann Graphisomorphie-leicht ist, wenn Eckenaufzählung Graphisomorphie-leicht ist. Außerdem beantworten wir eine Frage von Kaibel und Schwartz über das Testen der Selbst-Dualität von Polytopen

    Generating vertices of polyhedra and related problems of monotone generation

    Full text link

    On the Complexity of Core, Kernel, and Bargaining Set

    Get PDF
    Coalitional games are mathematical models suited to analyze scenarios where players can collaborate by forming coalitions in order to obtain higher worths than by acting in isolation. A fundamental problem for coalitional games is to single out the most desirable outcomes in terms of appropriate notions of worth distributions, which are usually called solution concepts. Motivated by the fact that decisions taken by realistic players cannot involve unbounded resources, recent computer science literature reconsidered the definition of such concepts by advocating the relevance of assessing the amount of resources needed for their computation in terms of their computational complexity. By following this avenue of research, the paper provides a complete picture of the complexity issues arising with three prominent solution concepts for coalitional games with transferable utility, namely, the core, the kernel, and the bargaining set, whenever the game worth-function is represented in some reasonable compact form (otherwise, if the worths of all coalitions are explicitly listed, the input sizes are so large that complexity problems are---artificially---trivial). The starting investigation point is the setting of graph games, about which various open questions were stated in the literature. The paper gives an answer to these questions, and in addition provides new insights on the setting, by characterizing the computational complexity of the three concepts in some relevant generalizations and specializations.Comment: 30 pages, 6 figure

    Steinitz Theorems for Orthogonal Polyhedra

    Full text link
    We define a simple orthogonal polyhedron to be a three-dimensional polyhedron with the topology of a sphere in which three mutually-perpendicular edges meet at each vertex. By analogy to Steinitz's theorem characterizing the graphs of convex polyhedra, we find graph-theoretic characterizations of three classes of simple orthogonal polyhedra: corner polyhedra, which can be drawn by isometric projection in the plane with only one hidden vertex, xyz polyhedra, in which each axis-parallel line through a vertex contains exactly one other vertex, and arbitrary simple orthogonal polyhedra. In particular, the graphs of xyz polyhedra are exactly the bipartite cubic polyhedral graphs, and every bipartite cubic polyhedral graph with a 4-connected dual graph is the graph of a corner polyhedron. Based on our characterizations we find efficient algorithms for constructing orthogonal polyhedra from their graphs.Comment: 48 pages, 31 figure

    Computing the bounded subcomplex of an unbounded polyhedron

    Full text link
    We study efficient combinatorial algorithms to produce the Hasse diagram of the poset of bounded faces of an unbounded polyhedron, given vertex-facet incidences. We also discuss the special case of simple polyhedra and present computational results.Comment: 16 page

    Enumerating Vertices of 0/1-Polyhedra associated with 0/1-Totally Unimodular Matrices

    Get PDF
    We give an incremental polynomial time algorithm for enumerating the vertices of any polyhedron P=P(A,1_)={x in R^n | Ax >= 1_, x >= 0_}, when A is a totally unimodular matrix. Our algorithm is based on decomposing the hypergraph transversal problem for unimodular hypergraphs using Seymour\u27s decomposition of totally unimodular matrices, and may be of independent interest

    Solving a "Hard" Problem to Approximate an "Easy" One: Heuristics for Maximum Matchings and Maximum Traveling Salesman Problems

    Get PDF
    We consider geometric instances of the Maximum Weighted Matching Problem (MWMP) and the Maximum Traveling Salesman Problem (MTSP) with up to 3,000,000 vertices. Making use of a geometric duality relationship between MWMP, MTSP, and the Fermat-Weber-Problem (FWP), we develop a heuristic approach that yields in near-linear time solutions as well as upper bounds. Using various computational tools, we get solutions within considerably less than 1% of the optimum. An interesting feature of our approach is that, even though an FWP is hard to compute in theory and Edmonds' algorithm for maximum weighted matching yields a polynomial solution for the MWMP, the practical behavior is just the opposite, and we can solve the FWP with high accuracy in order to find a good heuristic solution for the MWMP.Comment: 20 pages, 14 figures, Latex, to appear in Journal of Experimental Algorithms, 200

    Integrality, complexity and colourings in polyhedral combinatorics

    Get PDF
    • …
    corecore