2,982 research outputs found

    Numerical modeling of pulsed eddy current techniques for detection of corrosion and cracks

    Get PDF
    In this thesis we study pulsed eddy current based techniques for characterizing both corrosion and cracks in layered metallic structures. Our primary goal is to understand and model the characteristic features of time-domain current-voltage response functions for characterizing corrosion and cracks. Pulsed eddy current based approach is simpler and faster than frequency domain approaches, and the pulsed eddy current equipment developed for defect detection is less expensive than alternative approaches and easily portable. We take the layer approximation theory for corrosion and the boundary integral method for cracks as the basis for computing the change in impedance of the coil and then compute the transient voltage-current response for step-function excitation of the coil. Considerable effort has been made to reduce the computational complexity of calculations of the change in impedance of the coil by using spline based interpolation

    An equivalent-effect phenomenon in eddy current non-destructive testing of thin structures

    Full text link
    The inductance/impedance due to thin metallic structures in non-destructive testing (NDT) is difficult to evaluate. In particular, in Finite Element Method (FEM) eddy current simulation, an extremely fine mesh is required to accurately simulate skin effects especially at high frequencies, and this could cause an extremely large total mesh for the whole problem, i.e. including, for example, other surrounding structures and excitation sources like coils. Consequently, intensive computation requirements are needed. In this paper, an equivalent-effect phenomenon is found, which has revealed that alternative structures can produce the same effect on the sensor response, i.e. mutual impedance/inductance of coupled coils if a relationship (reciprocal relationship) between the electrical conductivity and the thickness of the structure is observed. By using this relationship, the mutual inductance/impedance can be calculated from the equivalent structures with much fewer mesh elements, which can significantly save the computation time. In eddy current NDT, coils inductance/impedance is normally used as a critical parameter for various industrial applications, such as flaw detection, coating and microstructure sensing. Theoretical derivation, measurements and simulations have been presented to verify the feasibility of the proposed phenomenon

    Feature extraction and selection for defect classification of pulsed eddy current NDT

    Get PDF
    Pulsed eddy current (PEC) is a new emerging nondestructive testing (NDT) technique using a broadband pulse excitation with rich frequency information and has wide application potentials. This technique mainly uses feature points and response signal shapes for defect detection and characterization, including peak point, frequency analysis, and statistical methods such as principal component analysis (PCA). This paper introduces the application of Hilbert transform to extract a new descending feature point and use the point as a cutoff point of sampling data for detection and feature estimation. The response signal is then divided by the conventional rising, peak, and the new descending points. Some shape features of the rising part and descending part are extracted. The characters of shape features are also discussed and compared. Various feature selection and integrations are proposed for defect classification. Experimental studies, including blind tests, show the validation of the new features and combination of selected features in defect classification. The robustness of the features and further work are also discussed

    Non-Destructive Techniques Based on Eddy Current Testing

    Get PDF
    Non-destructive techniques are used widely in the metal industry in order to control the quality of materials. Eddy current testing is one of the most extensively used non-destructive techniques for inspecting electrically conductive materials at very high speeds that does not require any contact between the test piece and the sensor. This paper includes an overview of the fundamentals and main variables of eddy current testing. It also describes the state-of-the-art sensors and modern techniques such as multi-frequency and pulsed systems. Recent advances in complex models towards solving crack-sensor interaction, developments in instrumentation due to advances in electronic devices, and the evolution of data processing suggest that eddy current testing systems will be increasingly used in the future
    corecore