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a b s t r a c t

Pulsed eddy current (PEC) is a new emerging nondestructive testing (NDT) technique using a broadband

pulse excitation with rich frequency information and has wide application potentials. This technique

mainly uses feature points and response signal shapes for defect detection and characterization,

including peak point, frequency analysis, and statistical methods such as principal component analysis

(PCA). This paper introduces the application of Hilbert transform to extract a new descending feature

point and use the point as a cutoff point of sampling data for detection and feature estimation. The

response signal is then divided by the conventional rising, peak, and the new descending points. Some

shape features of the rising part and descending part are extracted. The characters of shape features are

also discussed and compared. Various feature selection and integrations are proposed for defect

classification. Experimental studies, including blind tests, show the validation of the new features and

combination of selected features in defect classification. The robustness of the features and further work

are also discussed.

& 2008 Published by Elsevier Ltd.
1. Introduction

Pulsed eddy current (PEC) sensing is a new and emerging
technique [1,2] that has been particularly developed and devised
for sub-surface crack measurements, crack reconstruction, and
depth estimation [3]. In contrast to conventional, multi-frequency
or broadband eddy current techniques, where a single, multiple,
or a broadband frequency sinusoidal field excitation is used, PEC
techniques use pulsed excitation that is characterized by the
richness of frequency contents. This is thought to be potential in
bringing up information about the testing condition [4–6].
Generally, the peak time and peak value are the main features
used (the peak point P in Fig. 1). The former is related to the depth
of the defect, whereas the latter corresponds to the size of the
defect [7–9]. Tian and Sophian [4] have proposed and analyzed a
new feature, termed as the rising point related to the propagation
time of electromagnetic waves in metallic targets for defect
classification. They also proposed a two-step framework for defect
classification and quantification by using adopted features from
principal component analysis (PCA) and wavelet analysis. How-
ever, a training data set for eigensignals or PCA basis is required,
which is generated before the actual inspection is carried out [10].
Nowadays, it has gained more and more attention in research and
Elsevier Ltd.

.ac.uk (G.Y. Tian).
development of eddy current in nondestructive testing (NDT)
from multilayer structures to on-line monitoring [2,3]. These
features are far from enough for fast and accurate defect
classification and quantification in real time [11].

This paper applies the Hilbert transform to build up an analytic
representation from a PEC differential response and then extracts
a descending point feature. Based on the response segmentation
by the rising, peak, and descending points, slope, derivative, and
curvature of the rising part and the descending part are calculated
and some shape features are extracted and selected for robust and
fast identification of different defects.

The rest of the paper is organized as follows. Section 2
discusses the extraction of the descending point feature and the
segmentation of the response. Some shape features of the rising
and descending parts are proposed and explained. Section 3
introduces the experimental setup and discusses experimental
results about response segmentation and feature extraction,
performance comparison, selection, and integration for defect
classification and finally Section 4 is on conclusions.

2. New fast feature extraction

PEC data analysis is mainly carried out in the time domain. The
response signal with the system probe located on defect-free area
is taken as a reference response. A differential response is
obtained by subtracting the reference response from the testing
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Fig. 1. Typical PEC reference signal, response signal, differential response, the

rising and descending parts, and three feature points.

Fig. 2. Framework for a robust defect classification.

Fig. 3. PEC differential response, its Hilbert transform and analytic signal.
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sample response, and this differential response is usually used
for feature extraction as well as for defect classification and
quantification. Features commonly used are the peak value and
the arrival time of the positive peak of differential response
(PV and PT), and the arrival time of the rising point (TR) [4]
(Fig. 1).

In this paper, another time domain feature: arrival time of the
descending point (TD) is extracted by Hilbert transform and
analytic representation. By using the three time domain points:
rising point (R), peak point (P), and descending point (D), a PEC
differential response can be divided into four parts. Some shape
features focusing on the rising part and the descending part, are
extracted. Fig. 1 shows a typical PEC reference signal, response
signal, and their differential response, the three feature points (R,
P, and D), and the rising and descending parts for shape features
extraction. The signal pre-processing, feature extraction, and
integration for defect characterization process can be summarized
as in Fig. 2.

2.1. Descending feature point extraction and response segmentation

In signal processing, an analytic signal, or analytic representa-
tion Sa(t), of a real-valued PEC differential response S(t) is defined
by [12]

SaðtÞ ¼ SðtÞ þ jHfSðtÞg (1)

HfSðtÞg ¼
1

p

Z 1
�1

SðtÞ
t � t

dt (2)

H{S(t)} is the Hilbert transform of S(t) and j is the imaginary unit.
The analytic representation of a differential response facilitates
mathematical manipulations and as discussed below, it makes
certain attributes of S(t) more accessible. Fig. 3 shows a
differential response (the real part of an analytic signal), its
Hilbert transform (the imaginary part of an analytic signal), and

the modulus (
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H2
fSðtÞg þ S2

ðtÞ
q

) of the analytic signal. There is a

trough point in the modulus of the analytic signal which is taken
as the descending point of the corresponding differential
response. The arrival time of this point is taken as the new
descending point feature (TD).

In mathematics, the Hilbert transform of signal S(t) is obtained
by convolving signal S(t) with 1/pt, whose frequency response is
�j sgn(o), where sgn(o) is the signum function and o is the
angular frequency [12]. The basic idea of the analytic representa-
tion is that negative frequency components of the Fourier
transform of a real-valued function are superfluous, due to
spectral symmetry [13]. This can be expressed in terms of the
Fourier transforms of S(t) and Sa(t), respectively, denoted by S(o)
and Sa(o):

SaðoÞ ¼ FfSðtÞ þ jHfSðtÞgg

¼ SðoÞ þ j½�j sgnðoÞSðoÞ�

¼

2SðoÞ; o40

Sð0Þ; o ¼ 0

0; oo0

8>><
>>:

(3)

Therefore, the analytic signal Sa(t)comprises only the nonnegative
frequency components of S(t) with physical significance and some
hidden attributes are easily to access.

Actually, the descending point feature TD denotes the time

when
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H2
fSðtÞg þ S2

ðtÞ
q

is the smallest and the response changes

slightly after this point, with little useful information.
Similarly, the response is almost constant before the rising
point proposed by Tian and Sophian [4]. Since the differential
response indicates the difference between the response and the
reference signal, the rising and descending points are the starting
and ending points of the difference. Therefore, the signal
segments between these two points contain most information
for defect evaluation. The descending points can be used for a
criterion of decision on sampling numbers for real-time digital
signal analysis and defect characterization. In other words, the
descending point can be used as the cutoff point in real-time
detection.
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Table 1
Shape features and their explanation

Feature

name

Description Explanation

RS Slope of the line between the

starting and peak points of the

rising part

Linear changing speed of the

rising part

DS Slope of the line between the

peak and ending points of the

descending part

Linear changing speed of the

descending part

TPDER Peak time of the rising part

first derivatives

Time when the maximum

change occurs of the rising part

TTDER Trough time of the descending

part first derivatives

Time when the maximum

change occurs of the

descending part

RCUR Mean of the rising part

curvatures

Averaging curvature of the

rising part

DCUR Mean of the descending part

curvatures

Averaging curvature of the

descending part
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2.2. Shape feature extraction

As discussed above, the response segments between the rising
and descending points can be named as two parts by the peak
point: the rising part between R point and P point and the
descending part between P point and D point. These two parts are
investigated in detail and three shape features are extracted
respectively (listed in Table 1) after noise removing e.g. Gaussian
(low-pass) filtering.

The slope of a part, which is the ratio of the change of amplitude
to the change of time between the starting and ending points of the
part, indicates its changing rate. RS (RS ¼ (Vp�VR)/(Tp�TR) and DS
(DS ¼ (VD�VP)/(TD�TP), representing the slope of the rising and
descending part, respectively, are taken as shape features.

The first derivatives D(n) of the de-noised differential response
Y(n) are calculated according to Eq. (4), which indicates how
quickly the magnitude changes during the time interval of every
two sample points. The maximum point of the rising part and the
minimum point of the descending part indicate the time of largest
change. Therefore, the arrival times of peak point (TPDER) and
trough point (TTDER) are also taken as shape features.

DðnÞ ¼
dY

dt
¼

YðnÞ � Yðn� 1Þ

Dt
. (4)

In addition, average curvatureK ¼ Dj=DS, a mathematical
parameter indicating the curving extent of a curve is the ratio of
the change of the tangent angle Dj to the change of arc length DS

between the starting and ending point of a curve. It is useful in
expressing the shape trend of a curve.

On the basis of first and second derivatives, the curvatures of
each sample point k(n) can be calculated using Eq. (5), where Y0 and
Y00 are the first and second derivatives of Y(n), respectively [14].
These curvatures indicate how close to circular every part of the
curve actually is. Considering the different sample points of each
part for different responses, the means of curvatures (RCUR and
DCUR for the rising and descending part, respectively) are taken as
shape features indicating the curving extent of the region.

kðnÞ ¼
dj
dS
¼

Y 00ðnÞ
�� ��

ð1þ Y 0ðnÞ2Þ3=2
. (5)

3. Experimental setup and test results

In NDT, it is desired to detect, classify, and quantify defects that
may occur in metal structures. In such structures, defects mainly
occur as surface cracks, sub-surface cracks, and hidden corrosion.
For this requirement, we have developed a PEC system based on
Hall-effect device. The excitation coil has 40 turns with inner and
outer diameters of 17 and 26 mm, respectively.

We have also applied two aluminum samples for evaluation. In
NDT, the typical crack width is smaller than 0.2 mm, which is
difficult to calibrate at the scale. To evaluate the proposed method,
13 defects with distinguished features were produced for the
study. One is to test thickness variation (thickness ranges from 1
to 10 mm, with 1 mm step), which can be used for metal loss
simulation, and the other for surface and sub-surface defect
detection and quantification (four surface and four sub-surface
slots with different depths). The samples can be seen in Fig. 4a.
For sub-surface crack simulation, we place the probe next to the
surface of the sample shown in Fig. 4b, and for surface crack, we
place it next to the other side. All the responses are sampled and
recorded by a 12-bit analog to digital converter (ADC) card, while
the sampling rate is 1 MHz.

Thirteen defects of specimen 1 and 2 are detected using our
PEC system (Fig. 4c). Thirteen responses are collected where
responses 1–5 are metal loss from 1 to 5 mm, responses 6–9 are
surface defects, and responses 10–13 are sub-surface ones. The
response detected at 10 mm thickness is taken as the reference
signal with the assumption that the normal, defect-free Al slab
has a depth of 10 mm. Thirteen differential responses can be
obtained by subtracting the reference signal from other base
signals.

3.1. Rising and descending point feature extraction

Hilbert transform is applied on the above 13 differential
responses and corresponding analytic signals are built up. Fig. 5
shows the typical analytic signal modulus of metal loss, surface,
and sub-surface defects. The trough point is the descending point
and the arrival time of this point is the new feature TD.

The rising point features (TR) of each response are also
extracted according to [4]. Fig. 6 shows the feature TR and TD of
PEC differential responses obtained from the 13 defects. X-axis
here is the defect number (1–5 are metal loss, 6–9 are surface
defects, and 10–13 are sub-surface defects). In agreement with [4],
the feature TRs of metal loss defects (Fig. 6a) vary with thickness.
The larger the thickness is, the larger TR is. The TRs of sub-surface
defects vary slightly with defect depths. All TRs of surface defects
are the same and are smaller than that of the other two types. This
feature is probably the best one to separate the metal loss defects
from the other types. On the other hand, the feature TDs (Fig. 6b)
of all the three types of defects vary with defect depths and the
TDs of surface defects are also smaller than that of the other two
types. This feature can separate the surface defects from the other
two types easily. However, the two features cannot identify metal
loss and sub-surface defects.

3.2. Shape feature extraction

Differential response is divided into four parts using point R
and D as well as the peak point P. The corresponding shape
features for the rising and descending parts are extracted and
investigated, as illustrated in the upper two sub-figures of Fig. 7.

Fig. 8 shows the slope features (RS and DS) of different defects
of the 13 PEC differential responses. The performances of these
two features are similar (approximately symmetrical about
X-axis) and their correlation coefficient is �0.94. It can be seen
from the figures that the surface defects (d6–d9) always vary
contrarily to the other two types and their feature values are all
larger or smaller than that of the other two types. Therefore,
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Fig. 4. (a) Specimen 1: metal loss detection (thickness variation from 1 to 10 mm). (b) Specimen 2: crack detection. (c) Picture of the detection system and the defects.
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surface defects can be identified easily from the other two types
by these two features, while feature RS is more effective in
classification since surface defect response rises very quickly.
However, again, metal loss and sub-surface defects are difficult to
be classified.

Gaussian filter or the empirical mode decomposition (EMD)
method is used to remove noise and first derivatives are
calculated out [15]. Fig. 7 shows the de-noised rising and
descending parts of a 1 mm metal loss defect and its first
derivatives. The arrival time of the peak point and trough point
of the first derivatives is the feature TPDER and TTDER,
respectively.

Fig. 9 shows the TPDERs (for the rising part) and TTDERs
(for the descending part) of the 13 PEC differential responses.
Noticeably, the performances of these two features are also
similar and their correlation coefficient is 0.9816. For metal loss
defects (d1–d5), they increase with the defect number, while for
surface (d6–d9) and sub-surface defects (d10–d13), they both vary
slightly. In addition, the features of surface defects are all smaller
than that of the features from the other two types of defects.
Therefore, these two features can separate metal loss from the rest
of defects, which are complementary to previous features.
However, the sensitivities for different surface and sub-surface
defects are low.

Fig. 10 shows the feature RCUR and DCUR of differential
responses obtained from the 13 defects. As expected, the
performances of these two features are also similar, with a
correlation coefficient of 0.9295. For surface defects, RCURs are all
larger than 0.01, while DCURs are all larger than 1.7E�03.
Therefore, surface defects can be separated easily from the other
two types of defects by the features. Furthermore, the RCUR and
DCUR features have good sensitivities for same types of defects.
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Six shape features (three for the rising part: RS, TPDER, and
RCUR; three for the descending part: DS, TTDER, and DCUR) of
pulse eddy current differential responses are extracted. All these
features can separate surface defect from the other two types in
different variations and some of them can separate metal loss
from the rest of defect types. The behavior of features at
descending parts is similar to that at rising parts in terms of
feature behaviors for defect classification and characterization.
Considering the redundancy of information, it can be concluded
that rising parts alone may be enough for defect classification and
characterization, which is important for dynamic, real-time
monitoring without capturing response data at descending parts.

3.3. Defect classification by feature selection

As reported in [10], the defect points in conventional peak time
(PT)–peak value (PV) coordinate are dispersive. Most sub-surface
and metal loss defects have close values and so are difficult to
Fig. 6. Feature TR and TD

Fig. 5. Analytic signal modulus of different types of defects (2 mm metal loss,

8 mm surface, and 2 mm sub-surface).
classify. However, by feature integration, classification results will
be improved.

As discussed in Sections 3.1 and 3.2, TR, TPDER, TTDER, PT, and
PV can separate metal loss from the other two types to different
extents, while TD, PT, PV, and shape features can separate surface
defects from the rest. Therefore, improved classification results
can be obtained when combining more features, especially those
with different characters or from different signal parts together
properly. A good combination should satisfy two basic criteria: (1)
defects of same class should go together and (2) the distance
between each class is large enough. We tried all the possible
combinations and found out some good ones. One is PV–TR–RCUR
(Fig. 11a), integrating the information of the peak value, the rising
time, and a shape feature of the rising part. The distance between
classes is large enough and the layout of the elements from same
class is well regulated according to the depth or thickness of the
specimen. Another good combination is PV–TR–RS (Fig. 11b),
integrating the information of shape and point features of the
rising part. This combination has not only improved classification
performance but it also has higher speed than other feature
combinations. All the three features can be obtained at the
moment peak point appears and no transforms or derivatives are
needed (light computation burden).

The differential responses in PV–TR–DS coordinate are shown
in Fig. 11c, which is similar to Fig. 11b. This will also help us to
conclude that the characters of features from descending parts are
similar to features from rising parts.
3.4. Blind test

In order to evaluate the identification robustness and accuracy
of the proposed method and features (Fig. 12), additional three
specimens with through-wall holes, vertical slots with different
depths, and angle slots are added. PEC differential responses are
obtained by an excitation coil and a giant magnetoresistance
(GMR) sensor, another kind of widely used magnetic sensor
(bigger and more sensitive). In addition to the traditional 2–5 mm
diameters of the applied inductive sensors used in NDT nowadays,
we also test sensor array probe with a big excitation coil [3]. The
coil has 14 mm inner diameter, 16 mm outer diameter, and 1 mm
height. The sampling frequency is also 1 MHz. Responses of the
of different defects.
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Fig. 8. Feature RS and DS of different defects.

Fig. 7. Typical de-noised response parts and their first derivatives.
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above 13 defects and new added ones are analyzed under the
assumption that all the defect types are unknown. The fast 3D
combination mentioned above is used to identify which type each
defect belongs to.

Figs. 13 and 14 show the blind test results by the new sensor.
The responses connected by solid lines are detected from 1–4 mm
metal loss, 2, 4, 6, and 8 mm surface, and 1, 2, 3, and 4 mm sub-
surface defects. Fig. 13 illustrates the robustness of the descending
points. Fig. 14 shows the classification result by using the
PV–TR–RS feature combination. The result is similar to, but better
than, Fig. 11a since the feature TR of sub-surface responses
detected by the new sensor is more sensitive to defect depth. The
other five response points are newly added defects, including a
vertical slot with 20 mm depth and 2 mm width, a through-wall
hole with 3 mm diameters and 2.5 mm depth, an angle slot (451), a
5 mm sub-surface defect, and a 2.5 mm metal loss (the blank
space of specimen 4). They can all be classified into correct types
easily.
3.5. Liftoff and feature robustness

An important factor limiting the PEC differential responses
interpretation is the liftoff (the probe-to-specimen distance)
influence [16]. When there is liftoff, the magnitude of the
response increases and the rising point of the response appears
earlier since the liftoff influence has the same effect as surface
defects [4]. Sometimes, especially for metal loss and sub-surface
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Fig. 10. Feature RCUR and DCUR of different defects.

Fig. 9. Feature TPDER and TTDER of different defects.
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defects, two peaks appear, where the earlier portion corresponds
to liftoff and the posterior portion indicates thickness or depth of
defects [17]. Fig. 15 shows the 3 mm metal loss differential
response with 0, 0.1, and 0.2 mm liftoff values. Obviously, the
combination of liftoff and metal loss causes two peaks in the
differential response.

Fig. 16 shows the performance of feature TD under different
liftoff values (defects 1–4 are metal loss, 5–8 are surface, and 9–12
are sub-surface defects). For metal loss and sub-surface defects,
the larger the liftoff is, the smaller the TD is. For surface defects,
the larger the liftoff is, the slower TD increases with the depth of
the defect. Although this feature varies with liftoff, it is easy to
separate surface defects from the rest. More influences of liftoff
will not be discussed in this paper. However, for quantitative NDE,
normalization pre-process or invariant features are also required
to remove the affects of liftoff [8,10,16].
4. Conclusions

A new time domain feature, termed as arrival time of
descending point (TD) of PEC differential response, is extracted
by Hilbert transform and analytic representation. The unique
descending point can be used for determination of sample data
numbers (cutoff point) for defect characterization. A response can
be divided into four parts by the rising, descending, and peak
points, while the rising and descending parts contain most useful
information.

Six shape features (three for the rising part: RS, TPDER,
and RCUR; three for the descending part: DS, TTDER, and
DCUR) are extracted and explained. The performances of
these features are compared and illustrated. Shape features
from the descending part have similar behaviors as that of
the rising part. For fast detection and classification, data after
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Fig. 11. Defects in different feature combination coordinates. (a) PV–TR–RCUR coordinate. (b) PV–TR–RS coordinate. (c) PV–TR–DS coordinate.

Fig. 12. Newly added specimens for blind test. (a) Specimen 3: crack detection. (b)

Specimen 4: Through-wall hole and metal loss detection. (c) Specimen 5: crack

detection. Fig. 13. Blind test of feature TD.

T. Chen et al. / NDT&E International 41 (2008) 467–476474
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Fig. 14. Blind test result of defect classification.

Fig. 15. Metal loss (3 mm) differential responses with different liftoff values.

Fig. 16. Feature TD under different liftoff values (legend: red lines: metal, surface,

and sub-surface defects without liftoff; black lines: metal, surface, and sub-surface

defects with 0.1 mm liftoff; blue lines: metal, surface, and sub-surface defects with

0.2 mm liftoff; circle: 1–4 mm metal loss with different liftoffs; triangle: 2, 4, 6,

8 mm surface defects with different liftoffs; square: 1–4 mm sub-surface defects

with different liftoffs).
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the peak point may not require data analysis and defect
classification.

Different features reflect different aspects of information about
the testing condition. The performance of 3D defect classification
by combining different kinds of features, particularly response
shape feature and point features, has proven to be much better
than the conventional method using only peak features. The ‘good’
and ‘fast’ combinations are recommended and the performance
similarity of rising and descending part features is validated.
The effectiveness and robustness of features for defect classifica-
tion, natural defects in particular, are validated further by
experimental tests.

After response segmentation, different parts can be analyzed
separately using different approaches or techniques. In the future,
the method will be testified by real applications and the work will
be extended to interpretation and quantitative analysis of
different defect e.g. lift-off plus sub-surface defect, metal loss
plus sub-surface defects [17,18] and multiple layers with air gap
problem, where hidden corrosion is presented [19]. Two local
peak points may be occurred in PEC signals, which we have
observed in our robust experimental study in the Section 3.5 and
other report [20]. Integration of time and spectrum features for
the multiple peaks will be integrated to challenges these
problems of ‘real’ specimen.
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