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ABSTRACT

Eddy current testing, as one of the promising techniques in non-destructive testing, is
widely applied in various industrial applications achieving high accuracy and
contactless to the target. In the testing process, electromagnetic calculations are crucial
to evaluate the performance of sensor probes and inversion algorithms. Electromagnetic
calculation can be summarised mainly into two categories: analytical methods and

numerical methods.

For the analytical methods, Dodd and Deeds analytical solutions have served to
calculate the eddy current problems for several decades, but it can only be applied to
infinite plates. In this research, based on the finding that the sample radius is related to
the integration range, the modified analytical method is proposed which is capable of
calculating the problems for the case where the radius of the sample plate does not

satisfy the assumption of infinity.

Further, for the measurement of ferrous plate magnetic permeability, it suffers from the
lift-off effect. With increased lift-off, the phase of the measured impedance for steel
plates reduces. Meanwhile, the magnitude of the impedance signal decreases. Based on
these facts, a novel algorithm is developed to reduce the error of impedance phase for
ferrous steels due to sensor lift-offs. By utilising the compensated phase, the prediction

for the permeability can be more precise.

The finite element method, as a numerical method, is a versatile tool for eddy currents
simulations. However, the computation speed of eddy current three-dimensional
modelling is rather slow. Therefore, two methods to accelerate the customised solver
for crack detection are proposed. Numerical tests and experiments have been carried
out to verify the proposed methods. From the flow patterns of eddy currents and the

calculated inductance change, the effectiveness and robustness of the accelerated solver

15



are proved. Numerical tests show that the computation time can be reduced significantly

by utilising the accelerated approaches.
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Chapter 1 Introduction

In this chapter, the motivation of the research is presented, followed by the aim and
objectives. Contributions throughout the research and the organization of the thesis are

also summarised in the following sections.

1.1 Motivation

Non-destructive testing techniques have been applied in the fields of aerospace [1-3],
rail transport [4-5], and pipeline testing [6-7]. Due to its advantage of high sensitivity
and strong adaptability to the specimen, eddy current testing is widely used in thickness
measurement, liquid level measurement, and defect detection, etc [8-12]. Generally, as
a key indicator, the change of the coil impedance of sensor probe is observed in the
measurements which results from the interaction between the primary magnetic field

and the secondary magnetic field due to the eddy currents in the conductive samples.

Eddy current computation plays an essential role in the development of eddy current
techniques, which can provide theoretical support of investigating eddy current
phenomena and comparison with measurements. Many works use analytical methods
to analyse the performance of the electromagnetic (EM) sensor probe and measure the
material properties, i.e., electrical conductivity and magnetic permeability. Dodd and
Deeds analytical solution [13] has been widely applied in the calculation of the eddy
current problems, which offers formulations of some special models, i.e., plate model
and cylindrical model. However, there are some difficulties to adopt the analytical
method into practical testing, including crack detection with various EM sensor setups
and arbitrary geometries of test objects, still remaining for further investigation and

exploration.

The advent of the high-speed and high-capacity electronic computers offers another

22



possibility to address the eddy current problem. As one of the powerful numerical tools,
finite element method (FEM) has been well developed for steady-state, time-varying
field problems and nonlinear problems from two-dimensional calculation to three-
dimensional calculation [14-15]. The accuracy of FEM is highly related to the
discretisation of the whole mesh model. In order to achieve high quality solutions, the
dense model is commonly chosen which results in a high cost of computation. Besides,
accelerating the computation speed of eddy current three-dimensional finite element
modelling is also crucial in producing large amount of data for feeding into deep
learning algorithms. Therefore, the acceleration for the finite element analysis is worth
exploring in solving the eddy current problems, especially for inspecting conductive

structure with the surface crack.

1.2 Aim and Objectives

The aim of the research focuses on EM calculations for eddy current problems by
developing new analytical method for the case where samples have finite dimensions,

exploring the compensation algorithm for the permeability inversion and studying
FEM-based modelling solver for simulation of eddy current sensor inspecting surface

crack. The objectives are listed as follows:

1. To develop a novel theoretical approach adopted for samples with finite
dimensions. Currently, the plate model proposed by Dodd and Deeds can be
adopted for the infinite cases (the radius of the testing sample is normally 3-5
times larger compared with the radius of the sensor coil). In this thesis, based
on this model, the measured samples that do not meet this condition is
investigated by finding the relationship between the integration point in the
analytical model and the radius of the sample plate from both experiments and

simulations.

2. To carry out different types of measurements by utilising the proposed
23



theoretical method, for example, thickness measurement using the peak

frequency feature.

3. To develop a compensation approach for measurements of magnetic
permeability for ferrous plates. Both the magnitude and the phase of the
impedance signal reduces due to the increase of the lift-off. It will result in the
error in permeability prediction. Therefore, an algorithm to reduce the lift-off

effect is explored.

4. To implement first/high order FEM eddy current solver for calculating eddy
current problems. In the solver, it requires constructing the nodal and edge shape
functions for each tetrahedral element by using local coordinate method for
evaluating the element matrix and solving the whole system to obtain the

simulated fields.

5. To accelerate the FEM based solver for the eddy current problems in order to
reduce the computation cost for the crack detection. Due to the existence of the
small crack, the entire system is slightly perturbed by the small perturbance. In
this thesis, strategies of hastening the computation of inspecting surface crack

due to the small perturbance are explored.

1.3 Contributions

In this thesis, the contributions in the field of eddy current testing are summarised in

the following aspects:

1. Proposed a modified analytical solution for the metallic sample with a finite
dimension. The novelty of this method is introducing an integral point which is
found related to the radius of the sample plate so that the inductance change due
to the finite sample plate can be calculated. With this method, it is capable of

conducting thickness measurement for the circular samples and the thickness
24



can be accurately reconstructed with a small error within 2%.

2. Proposed a phase compensation algorithm for ferrous metallic plates. It corrects
the phase change due to lift-off from the magnitude of the impedance signal. By
utilising the measured magnitude and zero-crossing frequency, the phase with
zero lift-off can be deduced. From the measurements, it shows that the error of

the permeability estimation from the phase compensation is reduced.

3. Presented a novel method for accelerating eddy current calculation for crack
detection using FEM and perturbed matrix inversion (PMI) method. This
method based on PMI formulation only requires the inversion of a much smaller
matrix and therefore improves the speed of the computation process. From the
numerical tests, the computation time of the proposed method was shortened

about 3 times compared with the original method.

4. Proposed a novel crack calculation acceleration method for solving the system
with the perturbance due to the small crack. This method is based on the fact
that the crack only causes a small perturbance in fields in the surrounding region.
In the calculation, by utilising the unperturbed field, the subdomain affected by
the small crack is chosen and calculated. It proved effective in greatly
shortening the computation time. For larger mesh element number, with the
proposed method, due to the separation of the small crack perturbation field
from the unperturbed field, the computation burden is released so that the
accelerated rate is more significant (i.e., 3 times for 10k elements and 34 times

for 139k elements).

1.4 Organization of thesis

This section introduces the organization of this thesis. It contains 9 chapters.

Chapter 1 presents a basic introduction of the entire research, including the motivation,
25



aim and objectives, contributions and the outline of the thesis.

Chapter 2 demonstrates the background of this thesis by reviewing the achievement
made by other researchers in the field of eddy current testing, including eddy current

computation and measurements using eddy current techniques.

Chapter 3 presents the support theory of the thesis in eddy current testing, including
Dodd and Deeds analytical method and the finite element method, introducing the
computation of the inductance change due to the sample plate from both methods. In
addition, the peak frequency feature of the inductance change is also introduced in this

chapter.

Chapter 4 presents an overview of the achievements made in this thesis. It can be
concluded in three folds, the development of the analytical solution for samples with
finite dimension, the permeability measurement for ferrous plate using the phase
signature and the acceleration of FEM based solver due to the presence of the small

crack.

Chapters 5-8 present the related published works which are summarised in chapter 4.

Chapter 9 presents the conclusions of the thesis and future works are also considered in

this chapter.

Overall, analytical methods and numerical methods are two kinds of basic techniques
for solving the eddy currents problems. Due to the limitation of the Dodd and Deeds
models that it requires the sample to be large enough to reach its assumption — infinity,
it is found that the radius of the sample plate is related to the integration domain, the
new analytical methods by introducing an initial integral point can be used to calculate
the inductance change for finite dimension plate. Besides, during the measurement, the
signal affects by the lift-off of the sensor probe. By utilising the measured data, a phase
correction method to reduce the error introduced by the lift-off is proposed and the
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permeability of the sample can be deduced. In addition, compared with the analytical
methods, finite element method can be applied to object with any geometry, however,
the disadvantage of finite element method is that it takes long time to obtain the
simulated results. Therefore, two accelerated approaches are proposed for the

acceleration of the FEM based solver.
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Chapter 2 Background

In this chapter, eddy current testing and its applications in industry are introduced.
Firstly, the working principle of eddy current testing is stated, followed by the
introduction of the electromagnetic calculation for eddy current problems. The

applications using eddy current testing are also demonstrated.

2.1 Eddy current testing

With the non-contact capability and high sensitivity to the surface crack, eddy current
testing has a promising prospect to interrogate the sample, which has been successfully
applied in a variety of industrial applications. As shown in Figure 2.1, the working
principle of the eddy current testing is that firstly an alternating current is injected into
the excitation coil to generate an alternating magnetic field, then the eddy current is
induced in the conductive samples. Thus, the receiving coil receives the signal
contributed by both the primary magnetic field from the transmitter and that reflected
from the sample. The variation of the received signal is examined and analysed to
determine the underlying problems of the test sample with high detection accuracy [1-

3]. By using this method, it also has the potential of process monitoring [4-6].

Y Colil’s

Coil / magnetic field

Eddy current’s
magnetic field

Eddy N A NS

currents

Conductive
material

Figure 2.1 The working principle of the eddy current testing [7]

29



There are two mainstreams of eddy current testing techniques which are commonly
used, namely pulsed eddy current testing and single/multi-frequency eddy current

testing technique.

2.1.1 Pulsed eddy current testing

Pulsed eddy current testing, as a time domain method, injects a rectangular stimulus
signal into the excitation coil during testing. Since the square excitation signal contains
wide band of frequency data, the evaluation can be completed from frequency aspects
by the decomposition process from the detected signal [8, 9]. For the excitation coil of
the pulsed eddy current sensor probe, the coil size is selected to be large due to the
dominated component from low frequency spectra. While from the receiving side,
previously, the sensing coil are commonly implemented to detect the changing field
[10-13]. Later on, it is found that it is more sensitive to detect the magnetic field by
using the IC chip assembled with Hall sensor or Giant Magnetoresistive (GMR) sensor
[14-17]. From the received signals, there are three important information can be
extracted, which are the time to the peak value, the peak value and the lift-off point of
the intersection respectively. Using these three significant features of the pulsed eddy
current signal, the characteristic information of samples can be derived [18-21]. The
signal from a differential-pulsed eddy current probe was used to evaluate the thickness
of the metal plate in [22]. However, there was a trade-off between the peak value feature
and the other two features. Until now, more features (zero crossing time, rising point,
etc.) are investigated by researchers to further address the problems using pulsed eddy

current testing [23, 24].

2.1.2 Single/multi-frequency eddy current testing

Compared with the pulsed eddy current testing, the single/multi-frequency eddy current

testing only use one or a range of frequencies to conduct the measurements through the
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consideration of the EM properties of the samples [25, 26]. For the single frequency
eddy current testing methods, it is essential to choose a proper excitation frequency to
optimise the performance of the sensor probe [27, 28]. Due to the skin depth effect
which is related to the material properties (electrical conductivity and magnetic
permeability) and the excitation frequency, the distribution of the eddy current differs
from different excitation frequencies. In the aspect of the crack detection, for the
inspection of the surface crack, a higher frequency is normally chosen while for the
subsurface crack, a relative low frequency is used to detect deep area. However, the use
of single frequency eddy current testing methods is limited so that multi-frequency eddy
current testing methods emerge to overcome the constraints and provide more details
from the response of the test sample [29, 30]. Therefore, the inversion of the profile of
the test sample can be achieved accurately, i.e., surface inspection, EM property

measurement [2-3, 31].

2.1.3 Lift-off Effect

The lift-off of the sensor probe is the distance between the sensor probe and the test
sample. In the eddy current testing, the measured signal is sensitive to the lift-off of the
sensor probe, resulting in unsuspected error in the inversion of material properties. In
order to reduce the effect of the lift-off from testing, the approaches by using the eddy
current techniques have been developed [32, 33]. Giguere, et al. proposed the lift-off
intersection (LOI) point [10]. Many researchers were inspired by this study result [33-
35] and it was also implemented in the ferromagnetic samples [32]. Yu, et al. found
that the rising time due to different lift-offs can be reduced by subtracting the signal
received by zero lift-off and crack free sample [14]. Despite the approach using the
changing magnetic flux [36] is sensitive to sample plate for the small lift-off, it can be
utilised for larger lift-offs. Meanwhile, the larger lift-offs can cause a relative low signal
to noise ratio (SNR), the algorithm based on cumulative integration [37] can be applied

to enhance the SNR during the measurement. Furthermore, special sensor setups [38-
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40] and data processing strategies [41-43] to eliminate the lift-off effect are also
exploited. In [44], by using the multi-frequency eddy current testing, it is found that the
measured signals are independent to the lift-offs in phase spectra, which provides the
possibility for the measurements that the change of the lift-off is smaller than the pole
distance of the sensor probe. By utilising these novel techniques, the prediction for the
sample material can be accurately achieved and make sure the prediction is within a

reasonable error.

2.2 Electromagnetic simulation for eddy current problems

Eddy current testing methods require the support from simulations. To precisely
simulate the eddy current problems, there are various methods and can be generally
divided into two groups, that is, analytical methods and numerical methods. For the
analytical methods, it is fast and convenient for the researchers to compute the
electromagnetic field for specific cases. Compared with analytical methods, numerical
methods have the capability to solve the eddy current problem for arbitrary cases, i.e.
arbitrary geometry of test sample or crack and the sensor setup. However, in order to
obtain accurate simulation results, a dense mesh model would be generated which leads
to slow computation. In the following sections, both methods will be introduced in

detail and the acceleration for numerical methods is also stated.

2.2.1 Analytical methods

In recent decades, many researchers have been dedicated in the development of the
analytical methods. In 1960s, Dodd and Deeds proposed a series of analytical solutions
for the eddy current probe-coil problems [45-46]. It is capable of calculating impedance
change for the air-cored sensor probe and provides sufficient theorical support to many
works regarding eddy current problems [47-49]. By setting the boundary conditions for

the magnetic field for the test sample, Theodoulidis, et al. introduced the summation
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expressions with the usage of the eigenvalue of the Bessel function which can be used
to calculate the impedance of the coil for the truncated cases, namely truncated region
eigenfunction expansion (TREE) method [50]. The high computational efficiency is
proved by the good performance of the magnetic field computation for the multi-
layered specimens [51]. With the aid of the TREE method, Tytko et al. proposed a
computation method suitable for both the E-cored coil with the circular air gap and the
air gap of I-cored coil [52]. The formulations for typical system configurations are also
provided, including ferrite-cored probe [53], rectangle planar coil [53], continuous
conductivity material [55], tilted coil [56]. For the case where the coil is located at the
corner of the test sample, the edge effect should also be considered. The analytical
model was presented to obtain a better view of the interaction from the edge of
conductor [57]. Moreover, not only the crack free model, the expressions for the crack
models are also derived by the researchers. In [56], the impedance change due to the
long crack can be derived by using the thin-skin theory — the skin depth is relatively
small compared with the length and the width of the crack (at least three times) [58].
Based on this formulation, the analytical solution for triple-coil drive-pickup EC sensor

probe was developed to identify the orientation of the surface crack [59].

2.2.2 Numerical methods

So far, when it comes to the numerical analysis for electromagnetics, diverse methods
are proposed to solve for different situations of the eddy current problems, which can
be roughly summarised into two groups, finite element methods and integral equation
techniques. In solving the problem caused by the presence of the crack using the integral
formulation, volume integral [60-63] can be considered for the scattered field. The
dyadic kernel was applied by Bowler and Jenkins, the direct and reflected field can be
calculated due to the perturbance of the open crack and meets the continuity for the
boundary [60]. Supported by the dedicated kernel which lessens massive computations

for the number of unknown variables, the eddy current problem due to the existence of
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the edge crack in the conductive quarter region can be addressed [63]. Besides, the
crack with negligible width can also be treated as a surface with jump in the
electromagnetic field between the crack and the conductor [64]. The boundary
condition for the crack in the thin skin regime introduced by Bowler and Harfield

satisfied with the 2-D Laplace equation and the impedance change can be derived [65].

Several researches for the development of the finite element methods for different cases
have been conducted for decades, including curved plates simulation [66],
ferromagnetic modelling [67-68] and conductive defect simulation [69]. Since the
received field is affected by the crack, the perturbed field can be calculated by
improving the formulations in most works. In order to ease the burden from the mesh
discretization, Badics, et al. introduced a thin sheet crack model for the crack which
satisfies the condition that the crack width is much smaller than other dimensions of the
crack [70]. In [71], to tackle the effect caused by the conductive crack, the parallel
component of the received signal can be calculated with the condition that the width of

a crack is less than the prepared database.

2.2.3 Acceleration for the numerical methods

Due to the fact that the massive computation time is required to achieve high accuracy
from the simulation, reducing the running time is essential and several significant
progresses have been made during these decades in this aspect. Prestored database
method [67, 71-73] and FEM-BEM hybrid method [62,71, 74-76] are popular in solving
this kind of problem. A fast simulator based on the precomputed unflawed database
approach was proposed in [72] for the evaluation of the crack size. Due to the advantage
of its detectability, this method can be used for crack reconstruction. For FEM-BEM
method, it combines the boundary element region with the finite element region to
obtain a solution of the non-uniform material distribution. Du, et al. proposed a fast

calculation solver based on the FEM-BEM method and database for ECT simulations
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and the running time was significantly shortened with the guarantee of the accuracy
[71]. Combining the finite element method with the existing analytical methods for the
unflawed area, the distorted field due to the defect can be directly obtained [77]. The
adaptive fast multipole method offers the possibility to shrink the operations in the
computation process and Rubinacci, et al. proved its robustness in [78]. Moreover, new
shape functions were presented by Morozov adapting the eddy current caused by the
crack and a small part from the entire system was inverted to obtain the perturbed signal
which lessons the burden of the computation [62]. Lu, et al. proposed an accelerated
method by using the optimized initial guess from previous frequency calculation which
reduces the iteration numbers for the simulation [79]. Combining Darwin
approximation with the first-order subdomain perturbation (SDP) formulation, a low
frequency stable formulation was proposed to simulate the near field for eddy current
problem. In low frequency range, Darwin approximation can decouple the inductive
and capacitive effects from the system. The computation speed improved significantly
because the computation burden released from the two sub-problems (the unperturbed

and perturbed field) compared with the total field simulations [80].

2.3 Applications based on eddy current testing

Eddy current testing, as one of the most universal non-destructive techniques, has
extensive applications for thickness measurement, the inspection of material integrity
(e.g. crack detection) and the evaluation of material properties (e.g. electrical
conductivity and magnetic permeability). In the following sections, three types of
measurements are stated with the support of the eddy current testing in pursuit of a

better inspection of the test sample.

2.3.1 Thickness measurement

Due to the presence of the thick coating, the lift-off effect in pulsed eddy current testing
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can be reduced by using the reference signals and normalization process [33] and it is
found that the sensitivity of the sensor coil would be boosted with higher lift-off under
a certain range of the coil gap [81]. With the support of the look-up table, Tai et al.
developed a pulsed eddy current technique-based equipment to measure the sample
thickness [47]. In [82], Fan, et al. proposed that the thickness can be evaluated by using
the phase of the pulsed eddy current signal which was observed independently to the

lift-off.

The potential of multi-frequency eddy current testing has also been explored. It has
been found that the phase signature from the sensing coil can be used to measure the
thickness of the metal sample [83-84]. In [85], with the robust feature between the peak
frequency of the inductance change and the sample thickness, the error of the
reconstructed thickness could be achieved within 3%. Models and signal processing
methods are also introduced to estimate the thickness of the sample. Fan, et al. proposed
the model-based inversion by incorporating the non-ideal behaviour of the eddy current
sensor proved its reliability in terms of lift-off elimination to deduce the thickness of
the plate [86]. A novel triple planar coil was been designed for the thickness
measurement in [87]. The proposed algorithm used single frequency measurement
approach could improve the testing efficiency which has a potential to apply for real-

time measurements.

In this thesis, the thickness measurement for the conductive plate with finite dimension
can be predicted by utilising the modified analytical method with an introduced initial
integral point. There is a linear trend between the reciprocal of the integral point and
the plate radius. With the aid of the peak frequency of the inductance change, the

thickness of the conductive plate can be estimated.

2.3.2 EM properties measurement

A precise estimation of the electrical conductivity and the magnetic permeability of the
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test sample is essential in many applications. Combining the experimental
measurements and the digital data processing by utilising the linear combination of
Walsh functions, the experimental method proposed by Egorov et al. provides high
accuracy and reliable classification of the material properties in the process of
aluminium alloy testing [88]. Halleux et al. developed an equivalent simplified physical
model for the electrical conductivity measurement and it can be applied in a wide range
of metallic samples [89]. Moreover, a robust method by using frequency-dependent
eddy current measurements was presented by Moulder et al. to determine the electrical
conductivity of the uniform conductive layers [90]. Conductivity profiling from
inductance spectroscopic measurements [91] and the conductivity measuring

instrument for semi-conductors [92] also have been explored.

In terms of permeability measurements, it is still challenging to determine the
permeability of the material due to the influence of the environment condition and the
material conductivity on the response signal. A novel method that can measure the
conductivity and permeability of the metal samples simultaneously was proposed by
Ma, et al. [3]. The conductivity can be obtained by the impedance change of the signal
while the permeability can be measured by utilising the imaginary part of the signal.
The results were proved to be accurate but the frequency range is limited for estimating
permeability. Yu et al. proposed the conductivity invariance phenomenon and
developed a device to determine the permeability by decoupling the influence of the
conductivity and permeability [93-94]. Besides, a novel algorithm to compensate for
the zero-crossing frequency point caused by the lift-off effect was proposed by Lu et al.

and the error caused by the lift-off can be reduced to 7.5% [42, 95].

In this thesis, due to the fact that the phase error caused by the lift-offs is non-negligible
under more precise non-contact measurement with significant lift-offs, a novel
approach to obtain the correct phase change is developed and therefore the permeability
of the sample can be estimated more accurately.
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2.3.4 Crack detection

Surface crack detection is one of the most essential issues for researchers and engineers
to improve the service life of the equipment. A small crack can lead to an unreliable
structure which can greatly shorten the service life of the equipment. Eddy current
techniques developed for the detection of the crack can effectively prevent unnecessary
loss and damage. With the presence of the surface crack, the induced eddy current is
disturbed so that the crack can be detected from the received signal. The crack types in
the rail can be distinguished by utilising the magnitude and phase of the received signal
[96]. It is found that they are related to the surface roughness and crack respectively.
The design of the sensor structure is also essential to improve the sensitive and the
performance in the process of the inspection, i.e. inclined angle sensor probe [97],
multi-line excitation coil [98], hybrid differential and absolute probe [99] and

orthogonal coils [100].

From the detection, it should be capable of obtaining both the geometry and the
orientation of the crack. To obtain the orientation of the crack, crack imaging is a direct
method to acquire the position in the test sample. In [101], it shows that, from the
collected surface data, the plotted imaging can clearly identify the position of the crack.
Besides, various excitation profiles of the EC inspection have been proposed to
quantitively determine the position and size of surface cracks [102-104]. Xu, et al.
proposed a novel rotating focused eddy current technique which can be used to detect
arbitrary orientation of the crack. Under this excitation strategy, it suggested that the
magnitude of the signal stays unchanged for different crack orientations which can be
used to estimate the depth of the crack. Besides, there is a decreasing trend between the
orientation of the crack and the phase of the signal. Based on these features, both the
depth and the orientation of the crack can be deduced [102]. Moreover, the effect of the
lift-off can also affect the performance of the sensor probe. The phase imaging is more

effective compared with magnitude imaging under small variation of the lift-off [105].
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Yu, et al. found that the rising time due to different lift-offs can be reduced by
subtracting the signal received by zero lift-off and crack free sample. Taking the merit
of the linear relationship between the peak value and the lift-off, the depth of the crack
can be inferred with the maximum error of 6% [14]. Furthermore, the algorithms to
classify the defects are also explored, i.e. multilayer perceptron neural networks [106]

and K-means algorithm [107].

For crack detection, numerical simulation gives the theoretical support and suggestions
before carrying out experiments (i.e. finding the optimal sensor setup and excitation
frequency). However, it is rather slow to obtain the simulation results from 3D finite
element model. In this thesis, in order to hasten the computation speed, the acceleration
strategies for the finite element method can be used for the crack detection. Due to the
small perturbation of the crack, by utilising the accelerated solver, the results can be
quickly obtained by solving the inversion of a much smaller matrix which can

significantly improve the simulation speed.

Reference

[1]. D. J. Harrison, L. D. Jones, and S. K. Burke, “Benchmark problems for defect size
and shape determination in eddy-current nondestructive evaluation,” Journal of
Nondestructive Evaluation, vol. 15, no.1, pp. 21-34, 1996

[2]. A. Bernieri, G. Betta, L. Ferrigno, and M. Laracca, “Crack Depth Estimation by
Using a Multi-Frequency ECT Method,” IEEE Transactions on Instrumentation and
Measurement, vol. 62, no. 3, pp. 544-552, Mar. 2013.

[3]. X. Ma, A. J. Peyton, and Y. Y. Zhao, “Eddy current measurements of electrical
conductivity and magnetic permeability of porous metals,” NDT & E International, vol.
39, no. 7, pp. 562-568, 2006.

[4]. S. Miyazawa, H. Yoshida, and Y. Murakoshi, “Monitoring of metal-powder

diameter by eddy-current sensor,” Journal of materials processing technology, vol. 63,

39



no. 1-3, pp. 303-306, 1997.

[5]. C. Schmidt, C. Schultz, P. Weber, and B. Denkena, “Evaluation of eddy current
testing for quality assurance and process monitoring of automated fiber placement,”
Composites Part B: Engineering, vol. 56, pp. 109-116, 2014.

[6]. H. A. Sodano, “Development of an automated eddy current structural health
monitoring technique with an extended sensing region for corrosion detection,”
Structural Health Monitoring, vol. 6, no. 2, pp. 111-119, 2007.

[7]. P. Rizzo, “Sensing solutions for assessing and monitoring railroad tracks,” Sensor
Technologies for Civil Infrastructures, vol. 2, pp. 497-524, 2014.

[8]. G. Y. Tian, Y. He, I. Adewale, and A. Simm, “Research on spectral response of
pulsed eddy current and NDE applications,” Sensors and Actuators A: Physical, vol.
189, pp. 313-320, 2013.

[9]. M. S. Safizadeh, B. A. Lepine, D. S. Forsyth, and A. Fahr, “Time-frequency
analysis of pulsed eddy current signals,” Journal of Nondestructive Evaluation, vol. 20,
no. 2, pp. 73-86, 2001.

[10]. S. Giguere, B. A. Lepine, and J. M. S. Dubois. “Pulsed eddy current technology:
characterizing material loss with gap and lift-off wvariations,” Research in
Nondestructive Evaluation, vol. 13, no. 3, pp. 119-129, 2001.

[11]. B. A. Lepine, J. S. R. Giguere, D. S. Forsyth, A. Chahbaz, and J. M. S. Dubois,
“Interpretation of pulsed eddy current signals for locating and quantifying metal loss in
thin skin lap splices,” AIP Conference Proceedings, vol. 615, no. 1, pp. 415-422, May
2002.

[12]. Y. He, F. Luo, X. Hu, B. Liu, and J. Gao, “Defect identification and evaluation
based on three-dimensional magnetic field measurement of pulsed eddy current,”
Insight-Non-Destructive Testing and Condition Monitoring, vol. 51, no. 6, pp. 310-314,
20009.

[13]. Y. He, F. Luo, M. Pan, X. Hu, J. Gao, and B. Liu, “Defect classification based on
rectangular pulsed eddy current sensor in different directions,” Sensors and Actuators

40



A: Physical, vol. 157, no. 1, pp. 26-31, 2010.

[14]. Y. Yu, Y. Yan, F. Wang, G. Tian, and D. Zhang, “An approach to reduce lift-off
noise in pulsed eddy current nondestructive technology,” NDT & E International, vol.
63, pp. 1-6, 2014.

[15]. J. Kim, G. Yang, L. Udpa, and S. Udpa, “Classification of pulsed eddy current
GMR data on aircraft structures,” NDT & E International, vol. 43, no. 2, pp. 141-144,
2010.

[16]. G. Yang, A. Tamburrino, L. Udpa, S. S. Udpa, Z. Zeng, Y. Deng, and P. Que,
“Pulsed Eddy-Current Based Giant Magnetoresistive System for the Inspection of
Aircraft Structures,” IEEE Transactions on Magnetics, vol. 46, no. 3, pp. 910-917,
March 2010.

[17]. T. Clauzon, F. Thollon, and A. Nicolas, “Flaws characterization with pulsed eddy
currents NDT,” IEEE Transactions on Magnetics, vol. 35, no. 3, pp. 1873-1876, May
1999.

[18]. A. Sophiana, G. Y. Tiana, D. Taylora, and J. Rudlinb, “A feature extraction
technique based on principal component analysis for pulsed Eddy current NDT,” NDT
& E International, vol. 36, no. 1, pp. 37-41, Jan. 2003.

[19]. D. Vasic, V. Bilas, and D. Ambrus, “Pulsed eddy-current nondestructive testing
of ferromagnetic tubes,” IEEE Transactions on Instrumentation and Measurement, vol.
53, no. 4, pp. 1289-1294, Aug. 2004.

[20]. I. Z. Abidin, C. Mandache, G. Y. Tian, and M. Morozov, “Pulsed eddy current
testing with variable duty cycle on rivet joints,” NDT & E International, vol. 42, no. 7,
pp. 599-605, 2009.

[21]. Y. He, G. Tian, H. Zhang, M. Alamin, A. Simm, and P. Jackson, “Steel corrosion
characterization using pulsed eddy current systems,” IEEE Sensors Journal, vol. 12, no.
6, pp. 2113-2120, June 2012.

[22]. Y. Shin, D. Choi, Y. Kim, and S. Lee, “Signal characteristics of differential-pulsed
eddy current sensors in the evaluation of plate thickness,” NDT & E International, vol.

41



42, no. 3, pp. 215-221, 2009.

[23]. X. Chen, D. Hou, L. Zhao, P. Huang, and G. Zhang, “Study on defect
classification in multi-layer structures based on Fisher linear discriminate analysis by
using pulsed eddy current technique,” NDT & E International, vol. 67, pp. 46-54, 2014.
[24]. G. Y. Tian and A. Sophian, “Defect classification using a new feature for pulsed
eddy current sensors,” NDT & E International, vol. 38, no. 1, pp. 77-82, 2005.

[25]. M. Lu, X. Meng, R. Huang, L. Chen, A. Peyton, W. Yin, and Z. Qu, “Thickness
measurement of circular metallic film using single-frequency eddy current sensor,”
NDT & E International, vol. 119, 2021.

[26]. T. Chady, M. Enokizono, and R. Sikora, “Neural network models of eddy current
multi-frequency system for nondestructive testing,” IEEE transactions on Magnetics,
vol. 36, no. 4, pp. 1724-1727, 2000.

[27]. C. Ye, A. Rosell, M. Haq, E. Stitt, L. Udpa, and S. Udpa, “EC probe with
orthogonal excitation coils and TMR sensor for CFRP inspection,” International
Journal of Applied Electromagnetics and Mechanics, vol. 59, no. 4, pp. 1247-1255,
2019.

[28]. M. Fan, Q. Wang, B. Cao, B. Ye, B, A. I. Sunny, and G. Tian, “Frequency
optimization for enhancement of surface defect classification using the eddy current
technique,” Sensors, vol.16, no. 5, 2016.

[29]. A. Bernieri, G. Betta, L. Ferrigno, and M. Laracca, “Multi-frequency Eddy
Current Testing using a GMR based instrument,” International Journal of Applied
Electromagnetics and Mechanics, vol. 39, no. 1-4, pp. 355-362, 2012.

[30]. B. van den Bos, S. Sahlen, and J. Andersson, “Automatic scanning with multi-
frequency eddy current on multi-layered structures,” Aircraft Engineering and
Aerospace Technology, 2003.

[31]. T. Reyno, P. R. Underhill, T. W. Krause, C. Marsden, and D. Wowk, “Surface
profiling and core evaluation of aluminum honeycomb sandwich aircraft panels using
multi-frequency eddy current testing,” Sensors, vol. 17, no. 9, pp. 2114, 2017.

42



[32]. D. Wen, M. Fan, B. Cao, B. Ye, and G. Tian, “Extraction of LOI Features from
spectral pulsed eddy current signals for evaluation of ferromagnetic samples,” IEEE
Sensors Journal, vol. 19, no. 1, pp. 189-195, 1 Jan.1, 2019.

[33]. G. Y. Tian and A. Sophian, “Reduction of lift-off effects for pulsed eddy current
NDT,” NDT & E International, vol. 38, no. 4, pp. 319-324, 2005.

[34]. C. Mandache and J. H. V. Lefebvre, “Transient and harmonic eddy currents: Lift-
off point of intersection,” NDT & E International, vol. 39, no. 1, pp. 57-60, Jan. 2006.
[35]. G. Y. Tian, Y. Li, and C. Mandache, “Study of lift-off invariance for pulsed eddy-
current signals,” IEEE transactions on Magnetics, vol. 45, no. 1, pp. 184-191, Jan.
2009.

[36]. J. Li, X. Wu, Q. Zhang, P. Sun, “Measurement of lift-off using the relative
variation of magnetic flux in pulsed eddy current testing,” NDT & E International, vol.
75, pp. 57-64, 2015.

[37]. C. Huang and X. Wu, “An improved ferromagnetic material pulsed eddy current
testing signal processing method based on numerical cumulative integration,” NDT &
E International, vol. 69, pp. 35-39, 2015.

[38]. H. Hoshikawa and K. Koyama, “A new eddy current surface probe without lift-
off noise,” 10th APCNDT Proceedings, Brisbane, Australia, pp. 275-8575, 2001.

[39]. W. Yin and K. Xu, “A Novel Triple-Coil Electromagnetic Sensor for Thickness
Measurement Immune to Lift-Off Variations,” IEEE Transactions on Instrumentation
and Measurement, vol. 65, no. 1, pp. 164-169, Jan. 2016.

[40]. M. Lu, X. Meng, R. Huang, L. Chen, A. Peyton and W. Yin, “Liftoff Tolerant
Pancake Eddy-Current Sensor for the Thickness and Spacing Measurement of
Nonmagnetic Plates,” IEEE Transactions on Instrumentation and Measurement, vol.
70, pp. 1-9, 2021.

[41]. D. Kim, L. Udpa, and S. S. Udpa, “Lift-off invariance transformations for eddy
current nondestructive evaluation signals,” AIP Conference Proceedings, vol. 615, pp.
615-622, 2002.

43



[42]. M. Lu, W. Zhu, L. Yin, A. J. Peyton, W. Yin and Z. Qu, “Reducing the Lift-Off
Effect on Permeability Measurement for Magnetic Plates From Multifrequency
Induction Data,” IEEE Transactions on Instrumentation and Measurement, vol. 67, no.
1, pp. 167-174, Jan. 2018.

[43]. X. Meng, M. Lu, W. Yin, A. Bennecer and K. J. Kirk, “Inversion of Lift-Off
Distance and Thickness for Nonmagnetic Metal Using Eddy Current Testing,” IEEE
Transactions on Instrumentation and Measurement, vol. 70, pp. 1-8, 2021.

[44]. W. Yin, R. Binns, S. J. Dickinson, C. Davis and A. J. Peyton, “Analysis of the
Liftoff Effect of Phase Spectra for Eddy Current Sensors,” IEEE Transactions on
Instrumentation and Measurement, vol. 56, no. 6, pp. 2775-2781, Dec. 2007.

[45]. C. V. Dodd, W. E. Deeds, J. W. Luquire and W. G. Spoeri, “Some Eddy-Current
Problems and Their Integral Solutions”, Oak Ridge National Laboratory, April 19609.
[46]. C. V. Dodd, and W. E. Deeds. “Analytical solutions to eddy-current probe-coil
problems,” Journal of applied physics, vol. 39, no. 6, pp. 2829-2838, 1968.

[47]. C. C. Tai, J. H. Rose, and J. C. Moulder, “Thickness and conductivity of metallic
layers from pulsed eddy-current measurements,” Review of scientific Instruments, vol.
67, no. 11, pp. 3965-3972, 1996.

[48]. N. Bowler, and Y. Huang, “Electrical conductivity measurement of metal plates
using broadband eddy-current and four-point methods,” Measurement Science and
Technology, vol. 16, no. 11, pp. 2193, 2005.

[49]. M. Lu, X. Meng, R. Huang, L. Chen, A. Peyton and W. Yin, “Inversion of
Distance and Magnetic Permeability Based on Material-Independent and Liftoff
Insensitive Algorithms Using Eddy Current Sensor,” IEEE Transactions on
Instrumentation and Measurement, vol. 70, pp. 1-9, 2021.

[50]. T. Theodoulidis and E. E. Kriezis, “Eddy current canonical problems (with
applications to nondestructive evaluation),” Tech Science Press, 1st edition, Apr. 2006.
[51]. Y. Li, T. Theodoulidis and G. Y. Tian, “Magnetic field-based eddy-current
modeling for multilayered specimens,” IEEE Transactions on Magnetics, vol. 43, no.

44



11, pp. 4010-4015, Nov. 2007.

[52]. G. Tytko and L. Dziczkowski, “E-Cored coil with a circular air gap inside the core
column used in eddy current testing,” IEEE Transactions on Magnetics, vol. 51, no. 9,
pp. 1-4, Sept. 2015.

[53]. T. P. Theodoulidis, “Model of ferrite-cored probes for eddy current nondestructive
evaluation,” Journal of applied physics, vol. 93, no. 5, pp. 3071-3078, 2003.

[54]. J. O. Fava and M. C. Ruch, “Calculation and simulation of impedance diagrams
of planar rectangular spiral coils for eddy current testing,” NDT & E International, vol.
39, no. 5, pp. 414-424, 2006.

[55]. T. P. Theodoulidis, T. D. Tsiboukis, and E. E. Kriezis, “Analytical solutions in
eddy current testing of layered metals with continuous conductivity profiles,” IEEE
Transactions on Magnetics, vol. 31, no. 3, pp. 2254-2260, 1995.

[56]. T. Theodoulidis, “Analytical model for tilted coils in eddy-current nondestructive
inspection,” IEEE Transactions on Magnetics, vol. 41, no. 9, pp. 2447-2454, Sept. 2005.
[57]. T. Theodoulidis and J. R. Bowler, “Interaction of an Eddy-Current Coil With a
Right-Angled Conductive Wedge,” IEEE Transactions on Magnetics, vol. 46, no. 4, pp.
1034-1042, April 2010.

[58]. N. Harfield and J. R. Bowler, “Theory of thin-skin eddy-current interaction with
surface cracks,” Journal of applied physics, vol. 82, no. 9, pp. 4590-4603, 1997.

[59]. M. Lu, X. Meng, R. Huang, L. Chen, Z. Tang, J. Li, A. Peyton, and W. Yin,
“Determination of Surface Crack Orientation Based on Thin-Skin Regime Using
Triple-Coil  Drive-Pickup  Eddy-Current Sensor,” IEEE Transactions on
Instrumentation and Measurement, vol. 70, pp. 1-9, 2021.

[60]. J. R. Bowler, S. A. Jenkins, L. D. Sabbagh, and H. A. Sabbagh, “Eddy-current
probe impedance due to a volumetric flaw,” Journal of Applied Physics, vol. 70, no. 3,
pp. 1107-1114, 1991.

[61]. A. Skarlatos, G. Pichenot, D. Lesselier, M. Lambert, and B. Duchene,
“Electromagnetic modeling of a damaged ferromagnetic metal tube by a volume

45



integral equation formulation,” IEEE Transactions on Magnetics, vol. 44, no. 5, pp.
623-632, 2008.

[62]. M. Morozov, G. Rubinacci, A. Tamburrino and S. Ventre, “Numerical models of
volumetric insulating cracks in eddy-current testing with experimental validation,”
IEEE Transactions on Magnetics, vol. 42, no. 5, pp. 1568-1576, May 2006.

[63]. J. R. Bowler, T. P. Theodoulidis, and N. Poulakis. “Eddy current probe signals
due to a crack at a right-angled corner.” IEEE Transactions on Magnetics, vol. 48, no.12,
pp. 4735-4746, 2012.

[64]. J. R. Bowler, “Eddy-current interaction with an ideal crack. I. The forward
problem,” Journal of Applied Physics, vol. 75, no. 12, pp. 8128-8137, 1994.

[65]. J. R. Bowler and N. Harfield, “Thin-skin eddy-current interaction with
semielliptical and epicyclic cracks,” IEEE Transactions on Magnetics, vol. 36, no. 1,
pp. 281-291, Jan. 2000.

[66]. Y. Le Bihan, “3-D finite-element analysis of eddy-current evaluation of curved
plates,” IEEE Transactions on Magnetics, vol. 38, no. 2, pp. 1161-1164, March 2002.
[67]. H. Huang, T. Takagi and T. Uchimoto, “Crack shape reconstruction in
ferromagnetic materials using a novel fast numerical simulation method,” IEEE
Transactions on Magnetics, vol. 40, no. 2, pp. 1374-1377, March 2004.

[68]. B. Gupta, B. Ducharne, G. Sebald and T. Uchimoto, “A Space Discretized
Ferromagnetic Model for Non-Destructive Eddy Current Evaluation,” IEEE
Transactions on Magnetics, vol. 54, no. 3, pp. 1-4, March 2018.

[69]. Z. Chen, M. Rebican, N. Yusa and K. Miya, “Fast simulation of ECT signal due
to a conductive crack of arbitrary width,” IEEE Transactions on Magnetics, vol. 42, no.
4, pp. 683-686, April 2006.

[70]. Z. Badics, H. Komatsu, Y. Matsumoto, K. Aoki, F. Nakayasu and K. Miya, “A
thin sheet finite element crack model in eddy current NDE,” IEEE Transactions on
Magnetics, vol. 30, no. 5, pp. 3080-3083, Sept. 1994,

[71]. Y. Du, S. Xie, X. Li, Z. Chen, T. Uchimoto and T. Takagi, “A Fast Forward

46



Simulation Scheme for Eddy Current Testing of Crack in a Structure of Carbon Fiber
Reinforced Polymer Laminate,” IEEE Access, vol. 7, pp. 152278-152288, 2019.

[72]. T. Takagi, Haoyu Huang, H. Fukutomi and J. Tani, “Numerical evaluation of
correlation between crack size and eddy current testing signal by a very fast simulator,”
IEEE Transactions on Magnetics, vol. 34, no. 5, pp. 2581-2584, Sept. 1998.

[73]. H. Huang, T. Takagi, and T. Uchimoto, “A fast numerical calculation for crack
modeling in eddy current testing of ferromagnetic materials,” Journal of Applied
Physics, vol. 94, pp. 5866-5872, Nov. 2003.

[74]. K. Zhao, M. N. Vouvakis and J. F. Lee, “Solving electromagnetic problems using
a novel symmetric FEM-BEM approach,” IEEE Transactions on Magnetics, vol. 42,
no. 4, pp. 583-586, Apr. 2006.

[75]. F. Matsuoka and A. Kameari, “Calculation of three dimensional eddy current by
FEM-BEM coupling method,” IEEE Transactions on Magnetics, vol. 24, no. 1, pp.
182-185, Jan. 1988.

[76]. T. Steinmetz, N. Godel, G. Wimmer, M. Clemens, S. Kurz and M. Bebendorf,
“Efficient symmetric FEM-BEM coupled simulations of electro-quasistatic fields,”
IEEE Transactions on Magnetics, vol. 44, no. 6, pp. 1346-1349, Jun. 2008.

[77]. Z. Badics, Y. Matsumoto, K. Aoki, F. Nakayasu, M. Uesaka, and K. Miya, “An
effective 3-D finite element scheme for computing electromagnetic field distortions due
to defects in eddy-current nondestructive evaluation,” IEEE Transactions on Magnetics,
vol. 33, no. 2, pp. 1012-1020, Mar. 1997.

[78]. G. Rubinacci, A. Tamburrino, S. Ventre, and F. Villone, “A fast 3-D multipole
method for eddy-current computation,” IEEE Transactions on Magnetics, vol. 40, no.
2, pp. 1290-1293, March 2004.

[79]. M. Lu, A. Peyton and W. Yin, “Acceleration of Frequency Sweeping in Eddy-
Current Computation,” IEEE Transactions on Magnetics, vol. 53, no. 7, pp. 1-8, July
2017.

[80]. Z. Badics, J. Pavo, S. Bilicz and S. Gyiméthy, “Subdomain Perturbation Finite-

a7



Element Method for Quasi-static Darwin Approximation,” IEEE Transactions on
Magpnetics, vol. 56, no. 1, pp. 1-4, Jan. 2020.

[81]. D. 1. Ona, G. Y. Tian, R. Sutthaweekul and S. M. Naqvi, “Design and optimisation
of mutual inductance based pulsed eddy current probe”, Measurement, vol. 144, pp.
402-409, Oct. 2019.

[82]. M. Fan, B. Cao, A. I. Sunny, W. Li, G. Tian, and B. Ye, “Pulsed eddy current
thickness measurement using phase features immune to liftoff effect,” NDT & E
International, vol. 86, pp. 123-131, 2017.

[83]. E. Pinotti and E. Puppin, “Simple Lock-In Technique for Thickness Measurement
of Metallic Plates,” IEEE Transactions on Instrumentation and Measurement, vol. 63,
no. 2, pp. 479-484, Feb. 2014.

[84]. W. Yin and A. J. Peyton, “Thickness Measurement of Metallic Plates With an
Electromagnetic Sensor Using Phase Signature Analysis,” IEEE Transactions on
Instrumentation and Measurement, vol. 57, no. 8, pp. 1803-1807, Aug. 2008.

[85]. W. Yin and A. J. Peyton, “Thickness measurement of non-magnetic plates using
multi-frequency eddy current sensors,” NDT & E International, vol. 40, no. 1, pp. 43-
48, 2007.

[86]. M. Fan, B. Cao, P. Yang, W. Li, and G. Tian, “Elimination of liftoff effect using
a model-based method for eddy current characterization of a plate,” NDT & E
International, vol. 74, pp. 66-71, 2015.

[87]. M. Lu, X. Meng, W. Yin, Z. Qu, F. Wu, J. Tang, et al., “Thickness measurement
of non-magnetic steel plates using a novel planar triple-coil sensor,” NDT & E
International, vol. 107, 2019.

[88]. A. V. Egorov, V. V. Polyakov, D. S. Salita, E. A. Kolubaev, et al., “Inspection of
aluminum alloys by a multi-frequency eddy current method,” Defence Technology, vol.
11, no. 2, pp. 99-103, 2015.

[89]. B. Halleux, B. L. Stirum, and A. I'tchelintsev, “Eddy current measurement of the
wall thickness and conductivity of circular non-magnetic conductive tubes,” NDT & E

48



International, vol. 29, no. 2, pp. 103-109, Apr. 1996.

[90]. J. C. Moulder, E. Uzal, and J. H. Rose, “Thickness and conductivity of metallic
layers from eddy current measurements,” Review of Scientific Instruments, vol. 63, no.
6, pp. 3455-3465, Jan. 1992.

[91]. W. Yin, S. J. Dickinson, and A. J. Peyton, “Imaging the continuous conductivity
profile within layered metal structures using inductance spectroscopy,” |IEEE Sensors
Journal, vol. 5, no. 2, pp. 161-166, Apr. 2005.

[92]. F. Loete, Y. Le Bihan and D. Mencaraglia, “Novel Wideband Eddy Current
Device for the Conductivity Measurement of Semiconductors,” IEEE Sensors Journal,
vol. 16, no. 11, pp. 4151-4152, June, 2016.

[93]. Y. Yu, Y. Zou, M. A. Hosani and G. Tian, “Conductivity Invariance Phenomenon
of Eddy Current NDT: Investigation, Verification, and Application,” IEEE
Transactions on Magnetics, vol. 53, no. 1, pp. 1-7, Jan. 2017.

[94]. Y. Yu, Y. Zou, M. Jiang and D. Zhang, “Investigation on conductivity invariance
in eddy current NDT and its application on magnetic permeability measurement,” 2015
IEEE Far East NDT New Technology & Application Forum (FENDT), pp. 257-262,
2015.

[95]. M. Lu, R. Huang, W. Yin, Q. Zhao and A. Peyton, “Measurement of Permeability
for Ferrous Metallic Plates Using a Novel Lift-Off Compensation Technique on Phase
Signature,” IEEE Sensors Journal, vol. 19, no. 17, pp. 7440-7446, 1 Sept. 2019.

[96]. Z. Song, T. Yamada, H. Shitara, and Y. Takemura, “Detection of damage and
crack in railhead by using eddy current testing,” Journal of Electromagnetic Analysis
and Applications, 2011.

[97]. Y. J. Kim, and S. S. Lee, “Eddy current probes of inclined coils for increased
detectability of circumferential cracks in tubing,” NDT & E International, vol. 49, no.
77-82,2012.

[98]. Z. Zeng, Y. Deng, X. Liu, L. Udpa, S. S. Udpa, B. E. C. Koltenbah, et. al, “EC-
GMR Data Analysis for Inspection of Multilayer Airframe Structures,” IEEE

49



Transactions on Magnetics, vol. 47, no. 12, pp. 4745-4752, Dec. 2011.

[99]. A. N. Abdalla, K. Ali, J. K. Paw, D. Rifai, and M. A. Faraj, “A novel eddy current
testing error compensation technique based on mamdani-type fuzzy coupled
differential and absolute probes,” Sensors, vol. 18, no. 7, pp. 2108, 2018.

[100]. C. Ye, A. Rosell, M. Haq, E. Stitt, L. Udpa and S. Udpa, “EC probe with
orthogonal excitation coils and TMR sensor for CFRP inspection,” International
Journal of Applied Electromagnetics and Mechanics, vol. 59, no. 4, pp. 1247-1255,
20109.

[101]. J. R. S. Avila, Z. Chen, H. Xu and W. Yin, “A multi-frequency NDT system for
imaging and detection of cracks,” 2018 IEEE International Symposium on Circuits and
Systems (ISCAS), pp. 1-4, 2018.

[102]. Z. Xu, X. Wang and Y. Deng, “Rotating Focused Field Eddy-Current Sensing
for Arbitrary Orientation Defects Detection in Carbon Steel,” Sensors, vol. 20, no. 8,
2020.

[103]. C. Ye, Y. Huang, L. Udpa and S. S. Udpa, “Novel Rotating Current Probe With
GMR Array Sensors for Steam Generate Tube Inspection,” IEEE Sensors Journal, vol.
16, no. 12, pp. 4995-5002, Junel5, 2016.

[104]. R. Hamia, C. Cordier, and C. Dolabdjian, “Eddy-current non-destructive testing
system for the determination of crack orientation,” Ndt & E International, vol. 61, pp.
24-28, 2014.

[105]. M. Ricci, G. Silipigni, L. Ferrigno, M. Laracca, I. D. Adewale, and G. Y. Tian,
“Evaluation of the lift-off robustness of eddy current imaging techniques,” NDT & E
International, vol. 85, pp. 43-52, 2017.

[106]. N. H. Jo, and H. B. Lee, “A novel feature extraction for eddy current testing of
steam generator tubes,” NDT & E International, vol. 42, no. 7, pp. 658-663, 2009.
[107]. Y. Tao, H. Xu, Z. Chen, R. Huang, Q. Ran, Q. Zhao, et al, “Automatic feature
extraction method for crack detection in eddy current testing,” 2019 IEEE International
Instrumentation and Measurement Technology Conference (I2ZMTC), pp. 1-6, 2019.

50



Chapter 3 Support theory

In this chapter, both the analytical method and the numerical method are introduced to
calculate the inductance change due to the test sample. It includes Dodd and Deeds
formulations for the plate model and the developed finite element method for

electromagnetic modelling.

3.1 The inductance calculation based on Dodd & Deeds

model
In the field of eddy current testing, the mutual inductance between the excitation coil
and the sensing coil is a key indicator of the property of the tested conductive sample.

The analytical solution of the coils upon an infinite large testing plate given by Dodd

and Deeds has provided a strong theoretical basis.

3.1.1 Inductance calculation for co-axial sensor probe

~ %<+ Excitationcoil

+<—— Receiver coil

- Testing
sample

Figure 3.1 A coil above an infinite conductive plate

The co-axial sensor probe is commonly used in the eddy current testing. According to

Dodd and Deeds model [1], it considers the sample plate as an infinite conductive plate.
51



The inductance change due to the presence of the sample plate induced by the sensor
probe with two identical coils is calculated. As shown in Figure 3.1, for the model of a
coil above the infinite testing plate, the vector potential generated by the excitation coil

in the r-z axis plane is,

TN, f‘” J1 (ar)P(a)
0 o

Ar,z) = — K(z, @) (a)da 3.1

With

(g + ) (o — pya) — (o + pya) (o — pya)e?®bo

—(og — o) (ay — pya) + (o + pya) (o + pya)e?lo

oy = /0% + jwopgy 3.3

K(z,a) = (2 — e*®lea) — e=(z"le1)) /() + e‘"‘z(e_Odel - e_“lez) 3.4

$(0) =

P(a) =J ezrll(r)dr 3.5

Where: Dy, u,;, and o denote the thickness, relative permeability, and electrical
conductivity of the sample plate. p, represents the permeability of the free space. w
denotes the working angular frequency for the excitation current. 1 denotes the
excitation current. N, denotes the turns of the excitation coil. r,; and r,, denote the
inner and outer radii of the excitation coil. 1.; and 1., denote the lower and upper height
of the excitation coil. ], denotes a first order Bessel function of the first kind. o and t

are the integration variables.

Further, the induced voltage on the receiver coil is the integral of the induced vector

potential over the whole receiver coil.

21N, jo lvz

(v1 — lvz)z(rvl - I'v2)2 ly1

V= ijoofAds =
S

Ty2
j- rA(r,z)drdz 3.6
Iy

Where: 1,4 and 1, denote the lower and upper height of the receiver coil. ry; and ry,
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denote the inner radius and the outer radius of the receiving coil. N, denotes the turns

of the receiving coil.

Then the received voltage with the presence of the sample plate (Vsgmpie) and the
received voltage without the presence of the sample plate (in free space, V,;,) are
jwlttpo NN ®P2(a
] 50 . 2 (6 ) (za(lvz - 1Vl) - ea(lvz—lez)
(lvl - 1v2) (rvl - er) 0 a

+ ea(lvl_lez) + e_a(lvz_lel) — e_a(lvl_lel)

Vsample =
3.7

n (e—alvl _ e—alvz)(e—alm — e_“lez)q)((x))da

jolmioNyNe “ P (a) lyp-1
B (Iy1 = L2)?(ryg — 1y2)? 0 ab 2allyz = 1y1) = e@Uvz=lez)

+ ea(lvl_lez) + e_a(lvz_lel) — e_a(lvl_lel))da

Vair 3.8

Thus, the inductance change due to the presence of the sample plate induced by the
sensor probe with two identical coils is (the subtraction between the inductance with

the sample and without the sample - i.e. free space),

Vsample - Vair

jwl
3.9
TNy NeHo f‘” P2(a)
- G(a)d(a)da
vy — 1y2)%(ryy — 1y2)% ),  a® (@) ()
With
G (&) = e~@l+h+g) (] _ g=ahy2 3.10
h=le ~les 3. 11

Where, [ denotes the lift-off and g the gap between the excitation and receiver coils.

Since there is a phase difference between the induced voltage and the injected current,

the impedance calculated should be complex. Therefore, the change of the complex
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Real(AL) (H)

inductance due to the sample plate (subtract to the inductance in the air) can be obtained
by dividing the impedance change by the excitation frequency. The schematic diagram

for the infinite non-magnetic metallic sample plate is demonstrated in Figure 3.2.

It can be seen that the both parts of the inductance change begin from 0 at low frequency.
As the excitation frequency increases, the magnitude of the real part increases until
reaching the saturated value. For the imaginary part, the peak value could be achieved
at the characteristic frequency, termed as peak frequency, then decreases to reach zero
again. While for the magnetic sample plate, there exists a zero-crossing point for the

real part of the inductance change.

x10® x10°8

.
g
12

Imag(AL) (H)

10* 10° 108 10° 102 10° 10* 10°

f (Hz) f(Hz)

(a) (b)

Figure 3.2 Schematic diagram of the sensor system above the infinite non-magnetic metallic sample

102 10°

plate (a) real part (b) imaginary part

The peak frequency is related to the material properties, it can be obtained from ¢ (o).
Due to the fact that this term changes very slowly with a with regards to other terms,
and it reaches its maximum at a characteristic spatial frequency «,. Therefore, the

inductance change can be approximated as

AL(w) = d(a)ALg 3.12

With
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From Equation 3. 12 - Equation 3. 13, AL, is the magnitude of the inductance change
and is related to the sensor probe parameters. The phase feature depends on the term,

d(ay). According to [3], d(ay) can be approximated as,

€L 3.14
Wy
a =
(I)( 0) ]_+1+ ZzaoalDO
Wy 2a¢0“Dg + 2
With
_ 2a¢°Dg + 24 3.15
@o = oDy

As can be seen from Equation 3. 14 - Equation 3. 15, the phase of the inductance change
is a first order system. The peak frequency can be approximated by w, and there is a
linear trend between the peak frequency and a, when the coil diameter is much larger
than the plate thickness (ayD, « 1). Consequently, the thickness and the conductivity

of the sample plate can be deduced from this peak frequency feature.

3.2 FEM based eddy current computation solver

Due to the limitations of the analytical solution, numerical solution has been widely
applied in engineering fields. Based on the method of weighted residuals, Galerkin
method was developed by simplifying the differential equations into linear equations to
obtain the approximation results and has been regarded as a powerful numerical

technique.
A. Nodal shape function

Nodal shape functions have been introduced in the finite element analysis and they are

continuous within arbitrary element. They are interpolated into relevant nodes to
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represent the overall shape of the approximation solutions of the element. It is assumed
that the nodal shape function interpolated at node i should be nonzero at the node i and
be zero at other nodes. Figure 3.3 shows the linear interpolation functions in one

dimensional element.

Figure 3.3 Linear interpolation functions in one dimensional element [3]

In order to construct the shape function for the tetrahedral elements, the Silvester-
Lagrange polynomial is usually applied. The shape function with the Silvester-

Lagrange polynomial is conveniently expressed as

i-1
1 .
PR(E) = En(nf —1), forl<i<n 3 16
1=0
1, fori=20

where: n is the integer parameter and & is the normalised coordinate variable.

For the Silvester-Lagrange polynomial, the key feature is that P*(£) is unity at the point
equals to i . Itis corresponding to the property of the shape function. Besides, the value

of n reveals the number of divisions of the interval [0, 1] into uniform subintervals.
Based on these features, the Silvester-Lagrange polynomial can be used to construct the

interpolatory polynomials.

In order to construct the shape functions, four integers I, J, K and L are used to label

each node within the tetrahedral element. The numbering scheme (IJKL) for tetrahedral
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element is shown in Figure 3.4.

1
(2000)

I
( 1000) 5
(1100}

 J

(1001)

-
4 (0002)

(D001) (0200) 9

(0100)
(0011)

8

3 (0110) 3

(0010) (00200
Linear Quadratic

Figure 3.4 The numbering scheme for tetrahedral elements [4]

By multiplying every interpolatory polynomial, the nodal shape function can be written

as

N, = PROPPMPROPIA—E-n—{) [+]+K+L=n 3.17
B. Edge shape function

For the construction of the first order edge shape function, two factors should be
considered: one is that the normal component, which is interpolated by the divergence-
conforming vector shape function on the face i, should be vanished along the remaining
faces of the element; another is that the tangential component, which is interpolated by
the curl-conforming vector shape function on the edge j, should be vanished along the

remaining edges of the element. The vector function is defined as
Wi1i2 = fllvflz - Elzvfll 3- 18
where: i; and i, are the terminal nodes of the i"" edge, and ranges from 1 to 4.

The vector function W, ; has all the features that should be fulfilled for the

1i2

appropriate vector field. Assumed that the length of vector shape function N; should be
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1, the vector shape function can be described as
Ni =1, Wi, 3.19

Figure 3.5 shows the flow of the vector shape function for a surface of the tetrahedral

element.
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Figure 3.5 (a) The tetrahedral element (b) The vector shape function of edge 23 (c) The vector shape

function of edge 34 (d) The vector shape function of edge 24

Higher order vector shape functions are constructed by a combination of the first-order

vector shape function and a set of scalar polynomials. The shifted Silvester polynomials,
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denoted as P[*(&), are used so as to construct the scalar polynomials. Then the (p+1)™"

order vector shape function can be constructed and expressed as [4]

i—1
PrE) = (i—11)![1[(”€_l)' forzsisn 3.20
1, fori=1
“ii}lizl’pﬂ = %liliz 3.21
Nilji';’ﬂ = ailﬁfﬂﬁipu(51)pjp+2(8(2)Pkp+2(53)P1p+2(€4)W12
NP = al P B () PP () BY 2 (6) PP P ()W
Nt = al i PP (E) PP () BY 2 (E) PP (§)W s
3.22

23, 1 23, 1 2 =~ 2 A 2 2
N ™ = al T PP (EDBP T2 (8B P (E) PP TP (E)W s

24, 1 24, 1 2 a 2 2 e 2
N ™ = al T PP (E)BP T2 (8P P (E)BP TP (E)W oy

34, 1 34, 1 2 2 =3 2 e 2
N ™ = al T PP (E) PP (8B P (E) B TP (£ Wy

From the equations showed above, it is obvious that, for the point interpolated on the
edge, there is a corresponding basis function. Figure 3.6 shows the second order vector
shape functions of the tetrahedral element interpolated on the edges of face 234. There

are two interpolation functions on each edge.
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C. Galerkin equations

With the aid of the edge shape functions and the nodal shape functions, the unknown
vector potential and scalar potential fields can be approximated. In order to construct
the shape functions for each tetrahedral element, matrix transformation from global

space to local space can be used if isotropy is satisfied for every edge element [5].

[dx dy 0z
9§ 0§ 0%
_|0x 9y oz 3. 93
T=\an an @ '
dx 0dy 0z
0 09 ¢
A‘U :]_1/:{” 3 24
A =] 1A 3.25
1 N
|7></11,=|]—|]T\7></1v 3.26

Where, ] denotes the Jacobian matrix, xyz denote the coordinates in the global space,
&n¢ denote the coordinates in the local space, A, and A denote the relevant components

in the local space and 4, and A, denotes the relevant components in the global space.

Then combine approximated fields with the boundary conditions, Galerkin equations

can be obtained, shown as followings:

J VX N; - vV x A"dN + J jwoN; - A*dN + j jwoN; - VV™dN
0¢ 0c Q¢

3.27
=f VXN, -v,VXA;d2 i=12,...6
N

(4

.[ jwoVL; - A"dA +f JjwoVL; -VVdN =0 3.28
0

c 'QC
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i=12,...4

Where, V™ denotes the scalar potential (voltage) of element n. A™ denotes the induced
vector potential corresponding to element n . o denotes the media electrical
conductivity. v, denotes the reluctivity in the free space domain. v denotes the

reluctivity for the target.

It is noted that, for every arbitrary element n, the matrix Q™ can be expressed by the
stiffness matrix form which is the combined by the left-hand terms of Equation 3. 27
and 3. 28.

n_ [K" L”]

=[yn wn 3.29

From the aspect of the whole system, the whole system matrix can be derived by

combining Equation 3. 29 to Equation 3. 27 and 3. 28 and expressed as

— A1 - - Al-_
A pXp pxqq|lA4
pd| _[K L pd| _
Q| v | = Ly quq] v |=5 3.30
[ [V, ]] (v ]]
with
KPP = KP*P 4 KP*P 3.31

According to Equation 3. 30 - Equation 3. 31, the K matrix consists of two parts, the
K, and K, matrices. K, matrix represents the 1st A term of Equation 3. 27 and it plays
a role for the generation of the basic A wave. K, represents the 2nd A term of Equation
3. 27 and the eddy current diffusion effect can be revealed by K, matrix. L represents
the 1st IV term of Equation 3. 27, and it monitors the eddy current confined within the
sample geometry (Maxwell-Wagner effect). M represents the 1st term of the left-hand

side of Equation 3. 28 and N represents the 2nd term of the left-hand side of Equation
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3. 28. The magnetostatic field is governed by both of the terms. B represents the right-
hand side of Equation 3. 27 and Equation 3. 28, and it acts as the environmental
background field. p represents the order of the edge. g represents the order of the vertex.
The pre-conditioning technique is also applied to increase the accuracy of the calculated

A and V of the whole mesh.

After obtaining A and V of the whole mesh through Equation 3. 30, the electric field

can be formed by combining the canonical A - V formulation with the Coulomb gauge
[6]:

E" = —jwA™ — 7Y™ 3.32

According to the principle of Lorentz reciprocity in [7], the inductance measured by the
sensor can be derived:
1
AL:ja)TfCEa'Eb'(O'a—O'b)dU 3.33
Where, AL represents the variation of the inductance due to the substrate domain of a

and b.
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Chapter 4 Overview of papers

This chapter summarises the proposed methods in electromagnetic computation and the

applications by using the proposed methods are presented.

For the analytical method of calculating impedance of metallic plates with finite planar
dimension based on Dodd and Deeds plate model, the proposed method is introducing
an initial point of the integral. The mathematical deviation demonstrates the deviation
of the initial point for the integration. Both the simulation and experimental results
agreed well. The thickness measurement can be carried out and the error of the

reconstructed thickness is within 2%.

Moreover, in the permeability measurement for ferrous metallic plates, the lift-off of
the sensor affects the prediction of the electromagnetic properties for the sample plates.
The proposed method is to eliminate the deviation on the phase of the signal due to the
lift-off and based on this compensation, the prediction of permeability is presented.

From the results, it can be seen that the estimation error due to the lift-off is reduced.

For the acceleration of the finite element method, a novel method using perturbed
matrix inversion method is presented. It applies to the eddy current calculation for crack
detection. Numerical tests prove that the proposed method enhanced the computation
speed compared with unaccelerated method. Further, it is found that the crack only
causes a small perturbance in fields in the surrounding region. Based on this property,
a novel crack calculation method is proposed. From the simulation results, it shows that
the calculation is greatly shortened with the accelerated rate of 3-34 times which is

related to the element number.
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4.1 Analytical methods for eddy current testing

4.1.1 The modified analytical method for metallic plates with

finite planar dimension

A. Theoretical derivations of the modified analytical solution - the initial

integration point a,.

For the air-cored sensor probe, the impedance change due to the presence of an infinite
metal plate can be calculated by the Dodd-Deeds model. However, in practical
measurements, the sample cannot match with the condition required - ‘infinite’, thus
the Dodd-Deeds model could not be applied to the disk with finite size and certainly
not a co-axial hole in the center. Therefore, a modified analytical solution of inductance

for the plate with finite dimensions is highly requisite.

— —
' D,
T D — TS = 00
o co «— 0
(a)
-_— ; ——
-— u —
H Dy
1
T 0 -
1
a: «—
[0} QA
(b)

Figure 4.1 Illustration of the integrational path for the proposed method (a) An infinite plate where r

ranges from 0 to o« (b) A finite plate where r ranges from 0 to ;s

As shown in Figure 4.1, in the Dodd Deeds model, the integration of a ranges from 0
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to infinity, where a = 0 corresponds to the plate section of the infinite radius (r =
rs = o) and a = oo to the centre of the sample plate (r = 0). Therefore, in the
proposed method, by replacing o = 0 with a = «,_, the inductance for a plate with a
finite radius can be simulated. The following mathematical manipulation is to explain

the rationale behind changing the integration range of .

By referring to the manipulation of the Dodd Deeds analytical formulations [1], the
model of a coil above a plate can be divided into four regions, the magnetic vector
potential formulation A can be represented by a product of two polynomials, R(r)

and Z(z).

0°A 10A 0%A A ) ) 4.1
W-F;E-Fa?—r—z-l-w KioiA — jouio;A =0 .

r € [0,rg] 4.2
Where, i denotes the i layer/region conductor.

In Equation 4. 2, the defined range of r for the infinite plate case is from0torg = .

However, for a sample with finite radius, r ranges from 0 to a constant r.

Since the magnetic vector potential can be presented as,

A = R(DZ(2) 4.3

By substituting Equation 4. 3 into Equation 4. 1, the field can be expressed as,

1 9%R(r) 1 OR(r) 1 0%Z(2) 1+ , . _, 4.4
R(r) or? rR(r) or 7(z) 022 2 T W7HiO) T JWHiG; =

Using the principle of separation of variables, a separation ‘constant” «? is introduced

[1], where « is related to the wave number of plane wave.
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1 9%7(2) _ 4.5
1) 022 ? — w?pi0; + jop;o;

Then substitute Equation 4. 5 into Equation 4. 4, which gives,

1 1 4RI 1 4%R(r) 4.6
r2 rR(r) or R(r) or?

o? =

According to Equation 4. 6, the solution of R(r) can be expressed in terms of Bessel

functions J, (ar) and Y; (ar), R(r) can be represented as [1],

R(r) = CJ;(ar) + DY, (ar) 4.7

Due to the divergence of Y; at the origin (it tends to infinity when r equals to 0), D
should be 0 in all regions. C is a constant value obtained from the boundary conditions,
which is related to the coil parameters and the electrical conductivity of the sample

plate.

Combining Equations 4. 6 - 4. 7, then we can obtain a?,

, 1 1 aCJ,(ar) 1 9%CJ,(ar) 4.8
“rz rC J(ar)  Or - C Ji(ar)  Or?

_1 a  Jolar) —Jp(ar) o =3Jy(ar) +Js(ar)

12y (ar) 2 B J1 (ar) 4

Where, ], ], and J5 are the zero, second, and third order Bessel function of the first

kind.

Therefore, a can be derived by finding the solution of Equation 4. 9,

1
a—_

4.9

M( )(z(lo(ar)—lz(ar))—ar( 33(ar) +J5(an) ) = 0

By multiplying r? on both sides of Equation 4. 9,

68



(ar)? — 1+ 2(Jo(ar) = Jz(ar)) — ar(=3]Jy(ar) + ]g(ar))) —o 410

4]1( )(

Substitute ar with x, then Equation 4. 10 is converted as,

(0 =1+ 3765 (2000 ~ 1) ~ (=31 +1s)) =0 A

4],

Assuming x, is the solution of the above equation, then the integral range of «a is related

to the defined variable r, which can be writtenas a = x—r" I.e. a isinversely proportional

to r. Taking the example of a plate with an infinite planar dimension, the defined range
of r is from 0 to oo (referring to Equation 4. 1 and Equation 4. 2). By referring to
Equation 4. 11, the corresponding range of a is from a|,—, = 0 toal,—, = 0. For a

plate with a finite radius, r ranges from 0 to rg, the corresponding range of a is from

3518
al,_o =0 to a constant value al,_, =a, = =2 = . 3.518 is the first zero
S r

s s I's
obtained from Equation 4. 11, it covers all the domain for different sample plate with

finite dimension.

Therefore, for a finite size sample, the vector potential involves the integration from

O(Irzrs = O(1"5 to a|r=0 = 0.

A=

IugNe (@ P 4.12
Hoz L J1 (0(1’)3 () K(r, 2, o) b () da

Ts

Further, the inductance change due to the presence of the finite-size plate is,

TNy Ne o 4.13

AL) = T )2 ts —1a)?

p2
f 0(( %) G(a)d(a)da

3 518

with a

Is

Where: r, is the radius of the sample.

It can be seen that the integral limit of Equation 4. 13 is different to the case of the
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infinite-size plate in Equation 3. 9. For the finite sample plate, the new formulation
integrates all the contributions of plane wave that is interactive with the sample (by
integrating over the effective region of o, where a is related to the wave number of
plane wave). The assumption is that the proposed formulation currently works for non-

magnetic thin sample plates.

B. Experimental and simulation setup

Both the experimental measurements (by using the impedance analyser) and the
simulations (by using the modified analytical solution and the software (COMSOL))
have been carried out to validate the theoretical deviations. In the process of the
measurements, the air-cored co-axial sensor was located co-axially with circular planar
samples, as shown in Figure 4.2. The parameters are listed in Table 4.1. Samples of
copper and aluminium plates were selected because of availability. The conductivities
of these two materials are 57 MS/m, and 35 MS/m. The copper plate has a thickness of
1 mm and range of diameters (from 25 mm to 45 mm in steps of 5 mm), while the
aluminium plate has a diameter of 40 mm and thickness range from 22 pm to 132 pm.
The copper plates were used to verify the derived theory while the aluminium plates
with different thicknesses were used for the further application of the thickness
measurement. The impedance analyser can operate from 100 Hz to 510 kHz in a
logarithmic step of 0.02735 with high precision and the excitation voltage in the
measurement was set to 0.3 V. To test the effect of different sensor geometries, three

sensors of the different radii (28 mm, 40 mm, and 52 mm) have been used.
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gy - excitation coil
], D < Receiving coil

Test sample

(@) (b)

Figure 4.2 Air-cored sensor above the tested plate(a) schematic setup (b) actual setup

(a) (b)

Figure 4.3 Experimental setup (a) measurement setup (b) circular sample plates

From Figure 4.6 to Figure 4.10, the mutual impedance (AZ) between the excitation coil
and the receiving coil measured via the Zurich impedance analyser (Figure 4.3 (2)) are
presented. Due to the phase difference between the induced voltage and the excitation
current, the tested impedance should be complex. Therefore, the inductance can be
presented by dividing the mutual impedance by the excitation frequency in the

experimental measurements, as shown in Equation 4. 14 - Equation 4. 16.

AZ = R+ joAL 4.14
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AL = Re(Zsampl-e - Zair) 4.15
JW
“Ro~! = Im(zsamp;i)_ Zair) 4.16

Where: Zsampie denotes the impedance caused by the metallic sample plate and Z;,

denotes the impedance in the air.

Table 4.1 Sensor Parameters

Inner and outer radii of the excitation coil (req / rez) 28 mm/28.25 mm
40 mm/40.25 mm
52 mm/52.25 mm
Inner and outer radii of the sensing coil (ry; / 1y2) 28 mm/28.25 mm
40 mm/40.25 mm
52 mm/52.25 mm

Height of the excitation coil (I,- 1¢1) 4 mm

Height of the sensing coil (1,,- 1,4) 4 mm

Turns of excitation coil and receiving coil (N / Ny) 15/15
Plate thickness (D,) 1 mm for copper, 22 pm

— 132 pm for aluminium

The gap between two coils (g) 15 mm

C. Results

C.1 Validation of the modified analytical solution

As illustrated in Figure 4.1, compared with the infinite planar plate, the main difference
for the finite region analytical solution is that it starts at different points for the integral
path. Firstly, both the analytical solution and the simulation software (COMSOL) were
compared to validate the proposed method. The simulated models are shown in Figure

4.4. Figure 4.5 shows the inductance change caused by the copper plate.
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(@) (b)
Figure 4.4 The simulated model (a) the plate with a radius of 20 mm (84 k elements) (b) the plate with

a radius of 100 mm (142 k elements)

%1078
0"""“'"“'7"‘-?.“"""y T rrrrrog H HERERELELER] | T Ty
-0.5 - B
_______________________________________ 4
—_ Ar B
z
8 151 =
c
©
©
S -2r B
°
£
2.5 Modified analytical solution [
Dodd & Deeds analytical solution
3 Simulation with sample radius of 20 mm [
3.5 P | P | | Ll M e
10" 102 10° 10* 10° 10° 107
f (Hz)
(a)
-7
x10
0AArAA A i, ‘:A"'_"",_.---.---.-.-.-A-.-.-‘

/‘-
7 i
s

Rw™! (ohm/Hz)
&

-8 -
-10 Modified analytical solution B
Dodd & Deeds analytical solution
-12 Simulation with sample radius of 20 mm |
14 Ll Lol Lol Lol Lol L
10’ 102 103 104 10° 108 107

f (Hz)

(b)

73



= T — .
-0.5 B
—_ A A 7
£ \
8 151 . -
c
; \
S a2t \ |
°
£ 25l N Modified analytical solution |
e \ Dodd & Deeds analytical solution
‘\ Simulation with sample radius of 100 mm
3 ~\A§ l
3.5 | | R [ S ——————y ol
10’ 10? 10° 10* 10° 106 107
f (Hz)
(c)
x107
T T T T T T T T T T T
0 v v w2 -
— iwiwiwamaa
5 ~ Af‘f‘-
Y 2
2 - ‘\ / i
¢\ ‘/
—~ 4 h 4
N
< \ {
E 6t 3 / i
s \ ;
3 8F / i
14 )
10 - X / -
\ / Modified analytical solution
12 - 3 / Dodd & Deeds analytical solution i
\-“ Simulation with sample radius of 100 mm
14 TR | TR R | Ll TR S R | TR A R | Ll
10’ 102 103 104 10° 10° 107
f (Hz)

Figure 4.5 (a) The inductance change caused by copper plates with sample radius of 20 mm (b) The
change of Rw~1caused by copper plates with sample radius of 20 mm (c)The inductance change
caused by copper plates with sample radius of 100 mm (d) The change of Rw~caused by copper plates

with sample radius of 100 mm

Figure 4.5 shows the inductance change caused by the copper plate. It can be observed
that, for both metallic plates, the results are matched under the sweeping frequency
ranging from 10 Hz to 10 MHz. Since the test samples are non-magnetic, there is no
zero-crossing point for the inductance change. As the frequency increases, it would
finally reach a saturated value for the inductance change and approach zero for the

detected resistance-frequency combined term Rw 1. A peak frequency feature can be
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observed from Rw ™1, which is found to be shifted rightwards as the size of the sample
decreases. This is possibly because the magnetic flux interacts less with the plate for

the sample with a smaller radius.
C.2 Effect of the sensor coil dimensions

The modified analytical solution is associated with the initial point of a. Hence, some
measurements have been carried out to determine the value of «,.. Figure 4.6 and Figure
4.7 depict the inductance change of both measured results and modified analytical
solutions under the same three sensors with the radii of 28 mm, 40 mm, and 52 mm

respectively, but different sample radii.

From the results of both simulations and measurements, the value of the initial point
oy, Is immune to the sensor size. That is, for a fixed-size test sample, no matter what
size of the sensor, a,._ remains unchanged (since a,._is merely related to the size of the
sample, referring to Equation 4. 10). Besides, the value of a,._ reduces with the increase

of the sample radius, which is consistent with the theoretical derivations.
C.3 Effect of the sample size

From previous experiments, it can be noticed that a.._ is not related to the size of the
sensor. Further, samples with different radii were measured under the same sensor with
the sensor radius of 40 mm. Figure 4.8 shows the results of both modified analytical
solutions and measurements for copper plates with different radii. The results are

matched by finding the appropriate a;._. The value of o under different sample radii

is shown in Figure 4.9.
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Figure 4.7 (a) The inductance change caused by copper plates with the radius of 22.5 mm (b) The

change of Rw ™! caused by copper plates with the radius of 22.5 mm
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Figure 4.8 (a) The inductance changes under various radius of the copper samples (b) The change of

Rw ™1 under various radius of the copper samples
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Figure 4.9 Relationship between o, and the reciprocal of sample radius

As can be seen from Figure 4.9, the value of a.._ is proportional to the reciprocal of the
sample radius (i.e. arS:const.xri) and, from the experimental experience, the constant

is ~ 3.518.
D. Thickness measurement based on the modified analytical solution

The proposed method can be used to test the thickness of plate samples with the same
radius. Since a;._ is immune to the sensor radius but related to the sample radius, it can
be set to an appropriate fixed value. In our previous studies, the peak frequency caused
from Rw™1! is associated with the sample thickness and the sample conductivity.
Applying this principle with the same material samples used in the testing, the larger
the thickness, the lower the peak frequency. Consequently, the thickness of the test
samples can be estimated by matching the peak frequency of the modified analytical
solution (Prior to the measurement, a look-up table is obtained from the modified

analytical solution which contains the peak frequency information for different

79



thicknesses under the same conductivity. By referring to the table, the thickness of the

sample can be predicted.).

In the measurements, the thickness of the aluminium sample varies from 22 pm to 132
am. The operation frequency ranges from 1 kHz to 505 kHz. As Figure 4.10 depicts,
the result of the modified analytical solution matches well with the measurement.
Besides, the peak frequency by utilising both original analytical solution and modified
analytical solution is listed in Table 4.2. It can be seen that there is a huge difference
for finite planar dimension samples compared with original analytical solution.
Moreover, the principle of the thickness reconstruction is fitting the peak frequency of
the simulation to that of the measurement, therefore, it leads to a larger error for
thickness prediction as shown in Table 4.2 and Figure 4.11. The fitting of peak
frequency feature is one of commonly used methods for sample properties
reconstruction [2-5]. As in our previous papers [5], we use a first order function to
approximate the curve and fit the experimental and simulated curves in a least squared
sense. Once the first order system is obtained, its peak frequency can be obtained easily.
Table 4.3 illustrates the estimated thickness from the modified analytical solution and
the error between the actual and estimated thickness. The thickness reconstruction for
the sample plate is finding the simulated peak frequency of the multi-frequency
inductance curve (via Equation 4. 13) that is closest to the measured peak frequency
while changing the thickness. It can be seen from Table 4.3, the error from the testing
can be achieved within 2%. Figure 4.11 demonstrates the estimation results from both
methods and the error caused by using the infinite model — the original Dodd Deeds is

significantly inaccurate.
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Figure 4.10 The change of Rw ™! under varying thickness samples

Table 4.2 Peak frequency of Dodd Deeds analytical solution and modified analytical solution for the

aluminium plates

Sample thickness (pm) Peak frequency (kHz)
Dodd Deeds analytical solution Modified analytical solution
22 13.335 42.170
44 6.190 23.714
66 4.217 14.678
88 3.162 11.007
110 2.610 9.085
132 1.957 7.499
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Table 4.3 Actual and estimated thickness for the aluminium plates using peak frequency feature

Material Actual thickness (jum) Estimated thickness (jum) Error (%)
Aluminium 22 22.21 0.95
44 43.16 -1.91
66 66.90 1.36
88 88.05 0.06
110 108.57 -1.30
132 129.68 -1.76

140 T
=¥ Nominal thickness

———— Estimated thickness by Dodd Deeds analytical solution
120 Estimated thickness by modified analytical solution B

-
o
o
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|

\

Estimated thickness (um)
L -]
o o
” T T

20 40 60 80 100 120 140
Actual thickness (um)

Figure 4.11 Estimated thickness by Dodd Deeds analytical solution and modified analytical solution

4.1.2 A novel lift-off compensation technique on phase

signature

A. EM sensor setup

As can be seen from Figure 4.12 and Table 4.4, considering sensors accessibility for
experiments and analytical simulations, EM sensor was designed to be 2 co-axially
coupled air-cored loop coils: excitation coils and pick-up coils with identical size turns

and materials (copper coil). In Table 4.4, a series of lift-off spacers are used to test the
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lift-off influences on the impedance phase.

Coils height: \i/o > Mg > Outer diameter: 34.0 mm

——— _‘1’_ R = 1 —-\‘_> Excitation coils (transmitter)
Coils-gap: %imm LA ~ Inner diameter: 32,0 mm
- - = Pick-up coils (receiver)

Figure 4.12 EM Sensor

Table 4.4 Probes properties

Values
2r1(Inner diameter)/mm 32.0
2r2(Outer diameter)/mm 34.0
lo (lift-offs)/mm 0.8,2.3,3.38
h (coils height)/mm 10.5
g (coils gap)/mm 15.5
Number of turns N1 = N2
(N1 - Transmitter; N2 - 30
Receiver)

B. Method

For the coil above the magnetic material, there has a zero-crossing point in the real part
of the inductance change and the corresponding frequency is termed as the zero-
crossing frequency. For the magnetic sample plate, the magnetic field generated by the
excitation coil interacts with the magnetic plate in two ways. Initially, the magnetic
plate is magnetised due to the primary magnetic field. This process increases the
inductance in the system so that the real part of the inductance change starts from a
positive value. Besides, it also induces the eddy current in the plate which reduces the
inductance change in the system. In low frequencies, the magnetization process
dominants while in high frequencies, the eddy current effect dominants. Therefore,
there is a zero-crossing point and the corresponded frequency (zero-crossing frequency)
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can be obtained. From our previous researches [6]-[8], the magnitude of the detected
response impedance and zero-crossing frequency were found to grow with reduced
sensor lift-offs. It is also observed that the impedance phase rises up slightly with
reduced lift-offs. Consequently, it is speculated that a novel approach could be deduced
for compensating the impedance phase error due to sensor lift-offs with the signal
amplitude and zero-crossing frequency. The derivations process for compensating the
zero-crossing frequency w, was carried out in [9]. Procedure of the proposed algorithm

for impedance phase compensation is summarized in Figure 4.13.

For the previous work, the compensated zero-crossing frequency is w, = 2w, /(t* +
4In (AL,/AL,,)). Where, w, denotes the zero-crossing frequency after compensation;
w1 1S zero-crossing frequency under current unknown lift-off; AL, is the inductance
amplitude under the high-frequency (when the response signal barely changes with
frequencies) with unknown lift-offs; AL,, is the inductance amplitude under same

frequencies with the smallest lift-off.

In Figure 4.13, [,denotes the unknown lift-off; Or denotes the measured phase angle
under any frequency ® and an unknown lift-off; AO denotes the impedance phase angle
change caused by the unknown lift-off, which should be compensated. 6 denotes

impedance phase angle (i.e. 6 = 0r - AO) after compensation.
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/ [ Dodd and Deeds Formulations ]
S

[ Relation between 6, and w; } [ Relation between #and wq

with a sinusoid
A g

[ Relation between A¢ and inputs (o1, wo) under I, [ Compensate wo with w; and AL as input under I, ]

1 Approximation of the Bessel term

[ Relation between A# and inputs (w, AL) under [, J

[ Relation between 6 and inputs (w1, 6, AL) under [, }

Figure 4.13 The procedure of impedance phase compensating deduction

Considering a magnetic steel sample, at low excitation frequency (100 Hz), the eddy
current is restrained around the surface of the sample. Due to the eddy current skin
effect, the magnetic sample can be regarded as a conductive half-space [7], therefore,

the phase related term (Equation 3. 2) can be expressed as,

o(ag) = U@y — [ @p? + jwoi, g 4.17
0) = -
UrQo + \/“02 + jwoli Lo
Aor — +/ Aor? + jwo 4.18
o(aoy) = HrQor \/ or~ T JWOlylg

HrQor + \/a0r2 + j(‘)o-.urﬂo

For the metallic plates with u,. >> 1 (ferrous plates), the compensated phase related

term ¢ (a,) and measured phase related term ¢ («,,.) under unknown lift-off equal,

1—1/u,% + jwouo/u,ao? 4.19
p(ao) = = >
1+ 1/ + jwouo/ura
_ 1- \/1/ﬂr2 +jwo_:u0/.ura0r2 4.20
p(aor) =

1+ \/1//17‘2 +jwo—/10/.ura0r2

Here, a, is a spatial frequency indicating the geometry feature of the sensor.
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Neglecting 1/u,.2 term in above equation and assigning wy, = u,ay?/1eo , W =
Uy Qo2 /1go. The compensated and measured phase related term under unknown lift-
off can be expressed as followings,

[2 4.21
1- YL (14 )

]a)/wo

#(a0) = 1+1/]cu/a)0 1+,/2(; Wy )

/
/
/2 4,22
o(a )_ jo/w; _ 1 ﬂ(l'*‘ )
or 1+1/]a)/a)1 1+,/2a)/w1 A+

Then, the measured phase angle under unknown lift-off should be,

20, 4. 23
o m(Z)\ . (m(e(ae))y . [ Nw
Or = tan 1(@)—“”‘ 1(—Re(¢(a0r)))—f“"1 1-@

Similarly, the compensated phase angle can be derived from wo,

1—wy/w

Therefore, the phase change angle caused by the lift-off should be,

=0, =

1—w,/w 1—wy/w

Then, the compensated phase angle should be,

2 2 4,26
6=06,—10=06 —tan-! (_Wv )+(_vw/w )

1—w;/w 1—wy/w

As shown in the appendix, the relation between w,and w; is wy, = m2w, /(7% +
4In (ALy/AL,,). And the mathematic derivation details of this compensated zero-

crossing frequency are shown at the end of the paper.
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Finally, the impedance phase angle after compensation is evaluated from w,, 4L,

and AL,,.

0 =0, —A0 =6, —tan™! (—"2“)1/0)> .2

1—w;/w

L[ () o

1—w1/(1 +%ln(%))w

+ tan

Assigning G(w) = tan™({/2w;/w/(1 — w,;/w) , through some mathematic

manipulations, the compensated phase angle can be obtained.

6=6,—46=6,—Gw) +G <1+4l (ALO)) .28
=0y =0, — G(w) Zzin AL, w
With
[2 4.29
G(w) = tan™t Y20 /0
1—w;/w

Where, ALo is the inductance amplitude under the high -frequency (when the response
signal barely changes with frequencies) with unknown lift-offs; while ALm is obtained
from Equation 4. 44 by utilising the inductance amplitude under same frequencies with

the smallest lift-off (here this lift-off in measurement setup is 0.8 mm).

It can be seen in Equation 4. 29 that with the measured phase, inductance magnitude
and zero-crossing frequencies from the measurements at an unknown lift-off as inputs,
impedance phase angles 8 after compensating (phase with zero lift-offs) could be
obtained using the compensation scheme proposed above. For instance, if the sensor is
put on a lift-off approaching O, In (4L,/AL,,) should equal 0. As a result, the
corresponding compensated result 6, calculated from Equation 4. 28 equals 6,., which

is reasonable under a negligible lift-off.
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C. Analytical solutions and measurements

C.1 Analytical solutions

For the analytical solutions, Dodd Deeds approach was utilized to compute the sensor’s
detected response signal - impedance. The sample was chosen to be a duplex-phase
specimen - DP600 (specimen’s properties and size data are shown in Table 4.5
Properties of Duplex-phase specimens) under varying lift-offs of 0.8 mm, 2.3 mm, and
3.8mm. The analytical solver is scripted and operated on MATLAB coding platform,
which is utilized for the evaluation of inductance AL (Equation 4. 30 — Equation 4. 35

in the appendix) and the compensated phase using Equation 4. 29.

C.2 Measurements

In order to measure the impedance/inductance phase of the samples, a symmetric air-
cored electromagnetic sensor was designed for steel micro-structure monitoring in the
Continuous Annealing & Processing Line (CAPL). As can be seen from Figure 4.14,
the excitation coil sits in the middle and two receive coils at bottom and top respectively.
Receiver coil 2 is used as the test coils; receiver coil 1 is served as a reference coil. In
the paper, only the signal of receiver coil 2 is recorded and served as the response output
signal. All the coils have the same diameters, i.e. an inner diameter of 32.0 mm and an
outer diameter of 34.0 mm. Each of the coils has 30 turns, and the coil separation is
35.0 mm. SI 1260 impedance analyser has been utilized to measure the air-cored sensor
induced signal response — mutual impedance or inductance of the sensor influenced by
the tested samples. The working frequency range of the instrument is set from 310 Hz
to 3 MHz. Moreover, all the samples are tested under a series of lift-offs of 0.8, 2.3, and

3.8 mm.
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Receiver coil 1

% ¢ EMSenso

Excitation coil Tested sample

Receiver coil 2

Figure 4.14 Measurement setup a) EM air-cored Sensor configuration b) SI 1260 impedance analyser

C.3 Results

Figure 4.15 exhibits both the real part and imaginary part of the simulations and
measurements of sensor-plates system mutual inductance multi-frequency spectra. In
Figure 4.15, it is obviously that inductance curves magnitude drops off with increased
lift-offs. Meanwhile, the zero-crossing frequency decreases with increased lift-offs.
Some singular points may be encountered during the measurements which are due to
the signal noise of SI 1260 impedance analyser, especially under the low frequency.
Besides, it can be noticed that there is a discrepancy under high frequencies in the real
part of the inductance change. This is mainly due to the capacitive effect between the
two coils and the tested specimen. It could lead to resonance effect and skew the

measurement results in particular in high frequencies.
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Figure 4.15 Real and imaginary part of inductance under varying lift-offs - 0.8 mm, 2.3 mm, and
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Figure 4.16 Trend of inductance term Lo/Ln, (for DP 600 specimen) for different lift-offs

In Figure 4.16, it is observed that the inductance term AL,/AL,, decreases with
increased lift-offs. Consequently, the relative loss of the inductance AL,/AL,, can be
used for the compensation of inductance or impedance phase due to lift-offs. which can
be used to compensate the drop in phase with rising lift-offs. Here, AL,,, is the sample’s
inductance with end point frequency (the last frequency sample for both simulations

and measurements) for the smallest lift-off (0.8 mm under the sensor setup in Figure

4.14).

lift-off (m) 10°8
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Figure 4.17 shows the simulations, measurements, and the phase multi-frequency
spectra after the proposed compensation algorithm (Equation 4. 28 and Equation 4. 29).
It can be seen that both the simulated and measured phase decrease as increased lift-
offs. In addition, the compensated phase is barely affected by the lift-off. Based on the
compensated phase, ferrous plate magnetic permeability could be easily predicted via
the measured response of the sensor. The ferrous metallic plates’ magnetic permeability
measurement technique is validated via the comparison of modelling and measured data
for the mentioned sensor next to dual-phase (DP) steels with various values of magnetic

permeability.

92



80

40

20

Phase(Degree)
o

60 [

X

x

—— Simulated Phase when lift-off=3.8mm
Simulated Phase when lift-off=2.3mm
Simulated Phase when lift-off=0.8mm
Compensated Phase when lift-off=0.8mm
—— Compensated Phase when lift-off=2.3mm
Compensated Phase when lift-off=3.8mm
Measured Phase when lift-off=0.8mm
—»#— Measured Phase when lift-off=2.3mm
Measured Phase when lift-off=3.8mm

80

I

103

10%

10°
f (Hz)

Figure 4.17 Compensation performance both on simulations and measurements with 0.8, 2.3, 3.8 mm

lift-offs

Table 4.5 Properties of Duplex-phase specimens

Electrical . Planar .
. o Relative ) Thickness
Specimens | conductivity . size
permeability (mm)
(MS/m) (mm)
500 <
DP600 4.13 222 7.0
400
500 x
DP800 3.81 144 7.0
400
500 x
DP1000 3.80 122 7.0
400

Table 4.6 Relative permeability measurements for different lift-offs

Plate Lift-offs Actual Relative Relative Relative Relative
(mm) relative permeability | permeability error for error for
permeability without inferred non- compensated
compensation from compensated | permeability
compensated | permeability
phase
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DP800 0.8 144 138.48 142.37 3.83% 1.13%
2.3 144 136.76 142.12 5.03% 1.31%
3.8 144 133.31 141.94 7.42% 1.43%
DP1000 0.8 122 117.68 120.72 3.54% 1.05%
2.3 122 115.27 120.57 5.52% 1.17%
3.8 122 111.98 120.15 8.21% 1.52%

In principle, the magnetic permeability reconstruction for the tested specimens is
finding the simulated multi-frequency inductance/impedance curve (via Equation 4. 30
- Equation 4. 35 in appendix) that is closest to the measured multi-frequency spectra
data (after the proposed compensation algorithms - Equation 4. 28 and Equation 4. 29)
while changing the permeability. In order to validate the proposed magnetic
permeability reconstruction technique via the compensated phase, multi-frequency
inductances of two ferrous specimens have been tested (specimens’ properties and size
data are shown in Table 4.5). In the measurement process, 120 logarithmically spaced
frequencies samples range from 310 Hz to 3 MHz have been chosen as the operation
frequencies. In addition, both DP steel specimens have identical size of 500 <400 x<7.0
mm. Consequently, magnetic permeability comparisons for compensated phase and the

measured phase without compensation is shown in Table 4.6.

It can be concluded from Table 4.6 that the magnetic permeability reconstruction shows
a better performance through the proposed impedance or inductance phase

compensation scheme (Equation 4. 28 and Equation 4. 29).

In practical application, the lift-offs range may be different. However, it has been found

that the error of the measured permeability is always within a small value of 5%.
Appendix

The deviations of the compensated zero-crossing frequency (ZCF) w, from the

measured ZCF and inductance (w, and AL) under a lift-off of /,:

The inductance due to the appearance of the sample is the subtraction of the sensor
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tested inductance when sensor is put on a specimen (L(w)) and that when sensor is in

empty region (L, (w)): AL(w) = L(w) — Ly(w).

Dodd Deeds formulations are listed as follows:

“ P?%(a) 4.30
AL(w) = K] por A(a)p(a)da
0
Where,
A(O{) — e—a(G+h+Zlo)(1 _ e—ah)z 4.31
C(wa—a)  pea—a? + jwop.u, 4.32

¢(a) = =
Wra+a) pa+ Va2 + joop, g

_1-V1/u? + joouo/pa®
1+1/u2 + jwoug/pya?

_ mpN? 4.33
B h2(r; — 13)?
arz 4.34
P(a) = f xJ;1(x)dx
ary
@, = @ F joohnrs 4.3

[, is sensor’s lift-off; h is sensor’s coil height; N is sensor’s coil turn number; r; and r,
are inner and outer radii of sensor’s coil; p_ is the specimen’s relative permeability. p
is the vacuum permeability; G is the distance between the excitation coil and receiving

coil.

In Equation 4. 30, since the ¢(a) term barely change with a (compared with A(a)
andP(«)),¢ could be estimated as Equation 4. 37,

a, Is the spatial frequency, which is a constant controlled by the sensor configuration.
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From Equation 4. 36, the phase of tested inductance or impedance is merely controlled

via ¢(a,).

— /1% + juoow/prag? + 1 4.37
V1/12 + jugow/u-aq? + 1

d(ao) =

Neglect 1/u,.2in Equation 4. 37,

—VJjkoow/prap® + 1 4.38

Vitoow/pya? + 1

P(ao) =

In Equation 4. 38, it can be observed that ¢(«a,) is sample and sensor related (controlled

aoz

by o and u,.). Assign ”;—G with w;, Equation 4. 38 can be expressed as,
0

—Jjw/w; +1 4.39

P(a0) = jw/w; +1

In Equation 4. 36, AL, denotes the magnitude of the tested inductance, which is solely

controlled by the sensor configuration (cannot affected by the specimen properties).

From our previously work, a simple function sin? (%) with its maximum at oo is used
0

to approximate AL, [6].

aT
ALy ~ Alye ™20 sin?(-—) 4.40

Qo
Where AL,, is the sample’s inductance with start point frequency (the first frequency
sample for both simulations and measurements) for zero lift-off (O mm under the sensor

setup).

The revised a should maximize e 2%l sin? (g)and therefore e ~*losin (%)
0 0

In our previous work [9], the shift in a, caused by the lift-off effect - «,,. can be derived

as,
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4?1, 4.41

Ror = Ag —

7-,'-2
Therefore, the revised w; becomes
o = (ain* — 8m2adly + 16agl3)u, 4, 42
! ntoug

Combining Equation 4. 40 with Equation 4. 41, AL, becomes

2a,l, 4.43

Considering a,yl, < 1 and based on small-angle approximation cos(8) ~ 1 — 62/2,

cos(4ayly/m) is substituted with 1 — (4a,l,/m)? /2.

4adly 2,2 2,2
AL, becomes ALy = AL, e 2%~ 2 o1 —4?1—0210), substituting (1 — 4’:’210) with
405(2)13
e n?
2 272 2
ALO _ ALme—Z(ao 4-171-[0210)108 467(-[0210 _ ALme_Z(ao_Zi(T()zlo)lO 4 44
Then,
AL, al, 4. 45
lnm = —2((10 - 7)[0
And further derivation from Equation 4. 45:
AL 4. 46
4all% — 2m2agly — w2 In—=> = 0
AL,

This is now a quadratic equation with a,[, as its variable.

Therefore, the solution for a,l, is
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AL,
AL,

m? — \/n“ + 412In
4

aply =

Sinceayl, < 1, the other solution, the other solution ayl, =

is discarded.

From Equation 4. 47, lift-off can be estimated as

AL,
AL,

w2 — \/7‘[4 + 412]n

Iy =

4a

Combining Equation 4. 42 with Equation 4. 48,

ay? (nz + 4In %) Uy

n2op,

wq =

Further derivation from 4. 49 - a2(n? + 4 In %)#r —mlopyw, =0

And the solution is

20 oWy

(nz +4 ln%) Uy

a0=

Thus, the zero-crossing frequency can be compensated as following,

2 2
o = HrQo~ T~ Wy
0 AL,

Hoo (nz + 4 lnm)

2,4 21nALo.
e+ 1'L'+4rclnALm
4

4.47

therefore

4.48

4.49

4.50

4.51
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4.2 FEM solver for eddy current computation

4.2.1 Acceleration based on perturbed matrix inversion

A. Method

Fast eddy current computation is vital for non-destructive testing. The perturbed matrix
inversion (PMI) method was used for solving the linear system of equations in FEM
when a small defect is present on the sample. As described in Equation 3. 27 and
Equation 3. 28, it can be regarded as solving a large system of algebraic equations.
Assume that a small defect is present on the sample, the system matrix is a slightly
varied matrix to the sample without the defect. The variation matrix (or the perturbation

matrix) due to the defect can be expressed as

_[-K2" =L 4,52
D=1_w —N’]
Where: K2 and L present the change from the second and third terms due to the

perturbation in Equation 3. 27. M and N  present the change from the first and

second terms due to the perturbation in Equation 3. 28.

According to the Sherman-Morrison-Woodbury formula, the inversion can be
expressed as

@+D) =0 —Q (@ + D) 4.53
Simplify the notation by denoting Q1 as Q;, then Equation 4. 53 can be simplified as
[10]

(Q@+D)'=0Q;— QDU +QD)'Q; 4.54

Consequently, the solution can be obtained through the PMI method. All the

computations were operated on the platform ThinkCentre M910s, with 16GB RAM and

Intel Core i7-6700 processor.
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B. Model

(a)

Smm
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Figure 4.18 Model Geometry (a) metal plate (b) metal plate with the defect

In Figure 4.18, the objects have been modelled as an unflawed metallic plate and a
metallic plate with a defect in the centre. For both metal plates in (a) and (b), the length,
width and height are 20 mm, 20 mm and 5 mm respectively. For the metal plate with
the defect in (b), the simulated defect is placed in the centre with a length of 5 mm, a
width of 0.5 mm and a height of 3 mm. Two blocks are centred at (10, 10, 3.5) mm. To
validate the solver, two materials are chosen for the metal plates, one is aluminium with
the electrical conductivity of 35 MS/m at 20 degrees, and another is copper with the

electrical conductivity of 57 MS/m at 20 degrees.

In the simulation, as shown in Figure 4.19 and Table 4.7, a coaxial sensor is used in the
simulation process. Both the radius of the excitation coil and the receiving coil are set
to 0.5 mm. The lift-off of the sensor is 0.05 mm and the gap between the excitation coil
and the receiving coil is 0.2 mm. The magnitude of the injection current in excitation
coil is 1 A. During the simulation for crack inspection, the coils are moving in parallel

along the y-axis (from (10, 0, 5) mm to (10, 20, 5) mm if there is no lift-off).
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Figure 4.19 Sensor Configuration

Table 4.7 Sensor Parameters

Radius of excitation coil r; 0.5 mm
Radius of receiving coil r, 0.5mm

Height of coil h 0.25 mm

Gap between two coils g 0.2 mm

Lift off [, 0.05 mm
Thickness of the plate ¢ 5mm

C. Test of the accelerated FEM

According to the Dodd Deeds formulas, the inductance variation due to the sample
plates (aluminium and copper) without defect can be calculated, shown in Figure 4.20
and Figure 4.21. The sweeping frequency changes from 10 Hz to 1 MHz in the

analytical solution.

0.2 - B
Aluminium Edge FEM
-0.4 -| O Aluminium Analytical solution
Copper Edge FEM
-0.6 -| O Copper Analytical solution
- -0.8
-
a 41
T
14
1.2
1.4 -
-1.6
1.8 -
_2 1 1
10" 102 10° 10* 10° 10°

f (Hz)

Figure 4.20 The real part of the inductance due to the aluminium and copper plate without defect
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Figure 4.21 The imaginary part of the inductance caused by the aluminium and copper plate without

defect

It can be seen from the figures above that edge FEM simulation and analytical results
are matched well with each other under the frequency range from 10 Hz to 100 kHz.
Compared with the results from the aluminium plate, the characteristic frequency
reduces when the copper plate was used, which is in accordance with the relationship
between the conductivity and the characteristic frequency. In addition, given that the
solution from analytical formulas is the results for the plate with infinite width and
length, for the imaginary part of the inductance results, there exists some error as the

frequency sweeping from 100 kHz to 1 MHz.

D. Acceleration Performance in Crack Scanning

As the perturbation matrix due to the presence of the defect on the sample was assigned
to be the perturbation matrix D, the acceleration performance from the PMI approach
can be obtained in order to detect the presence of the defect. The result of the PMI
approach was compared with that calculated from the conventional conjugate gradient
squared (CGS) method. The frequency was set to 10 Hz. The defect depths of the
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sample plate are 1 mm, 2 mm and 3 mm respectively. The results are shown in the

following subsections.

D.1 Verification of the PMI-based Acceleration Solver

Figure 4.22 and Figure 4.23 demonstrate the changes of induced voltage on the receiver
coil as the sensor scans along the y axis above the sample plates (Figure 4.18(b)) with
three different depths of the defects under the same frequency and lift-off. It can be
seen that CGM and PMI methods agree well. As expected, the maximum value (peak
value) of the voltage occurs at the center of the sample where the defect is located. The
deeper the defect is, the larger the change in the induced voltage. There is a larger drop
as defect depth increases fromlmm to 2 mm than from 2 mm to 3 mm, which is due to
the strength of eddy current decreases as the depth increases. Compared with the results
from the aluminum plate, the change of the received voltage from the copper plate is

slightly larger which is due to a higher conductivity for copper.

Figure 4.24 illustrates the effect of the lift-off for the crack detection simulated from
the copper plate with a 3 mm depth defect in the middle of the plate. The lift-off of the
sensor is 0.05 mm and 0.5 mm respectively. The results from both methods agree well
and the peaks of the voltage change are located at the same place. With the increase of
the lift-off, the peak value decreases around 2.5 times which also proves the lift-off is

one of the crucial factors in the crack detection process.
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Figure 4.22 Computation results for the aluminum plate with different depths of defect, lift-off is 0.05

mm
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Figure 4.23 Computation results for the copper plate with different depths of defect, lift-off is 0.05 mm

CGS lift-off 0.05mm
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Figure 4.24 Computation results for the copper plate with different lift-offs
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D.2 Effect of Sampling Point Density during Scanning

The effect of the sampling point density for crack detection is presented in Figure 4.25.
The aluminium plate with a 3 mm depth of defect was used in the simulation process.
The computation time varies from 100 s to 300 s for each scanning process by using
the PMI method while it consumes 300 s to 900 s by using the conventional CGS
method as the scanning sample points increasing from 50 to 150 in the step of 4. It can
be noticed that the computation speed of the PMI method is about 3 times faster than
the conventional CGS method. As shown in Figure 4.25, the computation time for both
methods are increasing linearly with the increase of the sampling point density. Besides,
the time shrinks more significantly for high density of sampling points by using the

accelerated method.
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Figure 4.25 Computation time of PMI method and CGS method for different scanning sample numbers

D.3 Effect of Frequency

As shown in Figure 4.26, the relationship between the frequency used in the simulation
and the computation time is plotted. The frequency used ranges from 10 Hz to 10 kHz
in a logarithmic scale in the simulation process. After adopting the PMI method, the
scanning speed is much faster than the conventional CGS method. The computation

time used for PMI and conventional CGS methods almost remains stable regardless of
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frequency settings, around 200 s, and 550 s respectively. It can be concluded that the

acceleration efficiency remains almost the same concerning the frequency in the

scanning process.

Computation time (s)

.
102

f (Hz)

.
103
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Figure 4.26 Computation time of PMI method and CGS method under different frequencies

D.4 Effect of Defect Depth

As can be seen from Table 4.8, for the PMI method, the computation time slightly

increases as the defect depth increases to 3 mm when aluminium plate was used while

the speed almost maintains stable when the copper plate is used. Meanwhile, for the

CGS method, the computation time increases as the depth increases for both materials.

It can be noticed that the acceleration efficiency under the defect depth of 3 mm is

slightly higher than that under the defect depth of 1 mm and 2 mm.

Table 4.8 CGS method and PMI method computation time for different defect depths

Computation Time (s)
Defect Aluminium Copper
Depth PMI CGS PMI CGS
Imm 165.64 436.32 166.12 446.55
2mm 168.64 449.51 167.97 450.31
3mm 170.96 458.12 167.79 455.75
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4.2.2 Accelerated calculation for the algebraic system due to

small perturbation

A. Method

The final solution of the FEM problem results in a large algebraic equation system, as
shown in Equation 3. 30. Now considering that there is a small crack in the tested
sample, the original system matrix (crack free sample) can be expressed with the

matrices affected/unaffected by the small perturbation, shown as

Ky K, Ly Ly|[Ay Xu1 4.55
Ky Ky Lz La||Ac|_ |Xax
My M, Ny Np|| W Xuz
Mz M, N3 NgllV; Xe2

Then reordering Equation 4. 55, four new submatrices (Q,4, Q1,, Q»; and Q,,) can be

used to present the current crack free system matrix and given as

Ky Ly K, L;][Au Xu1 4.56
M; Ny M, N||V Xuz
K; Ly K, Li||Ac Xe1
Mz Nz M, NgllV; Xe2

o 2] [ = ] .

Where:

Q“:[l\lfll ]L\}l];Qn—[ ? ] Q21 = [ ’ ] Q22 = 4.58

5 b o[ [ -

Here submatrix Q,, represents the domain of elements which has no influence due to
the existence of the crack while submatrices Q,,, Q,; and Q,, represent the domain of
elements near the crack and are affected by this small perturbation. Submatrices Q;,

and Q,, are transposed. Matrix X is the right-hand side matrix of the system which is
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partitioned into two column matrices X,, and X, and matrix S is the solution for the
matrix system, consisting of two submatrices S,, and S.. Then the system equations

change to
Q115y + Q125 = Xy 4.59
Q215y + Q225. = X, 4.60
Now due to the presence of the crack, the left-hand side of the crack free sample system

matrix is very slightly perturbed. then the system equations with the small perturbation

turn to
Q11 Sy + (Q12 + AQ12)S. =X, 4.61

(Qa1 +AQ21)S," + (Qa2 + AQ2,)S. =X, 4.62

Where: AQ;,, AQ,; and AQ,, are the submatrices affected due to the small perturbation.

S, and S_.' are the solution for the new system equations.

Since that the element domain of submatrix Q,, is hardly affected by the presence of
the small perturbance, the vector and scalar potential solution of S,," for this domain is
regarded equal to the unperturbed solution without the crack in the sample plate, which

gives

S, =S, 4.63

Using Equation 4. 63 and Equation 4. 62, the solution S.." can be derived from equation

(4.29)

S¢' = (Qgz + AQ22) "1 (—AQ21 S, + Q225.) 4.64

The solution S, should also satisfy Equation 4. 61. By referring to [10], and assume

that Q,,, is the inversion matrix of @,,, then
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(QZZ + AQZZ)_l = Q22i - QZZiAQZZ(I + QZZiAQZZ)_lQZZi 4.65

Substitute Equation 4. 65 to Equation 4. 64, it turns to

S = (szi - sziAsz(I + sziAsz)_lezi)(—AQmSu + Q225.) 4. 66

Now substitute Equation 4. 63 and Equation 4. 64 to the left-hand side of Equation 4.

61 and it gives

Q11 Sy + (Q12 + AQ12)S." = Q11Sy + (Q12 + AQ12)(S. — HS,, + 4.67
G(I + G)"HS, — G(I + G)~1S,)

Where:

G = sziAsz, H = sziAQ21 4.68

The matrices AQ,,, G and H are perturbed matrices with small element values, terms
containing these matrices can be eliminated, then Equation 4. 67 can be approximated

as Equation 4. 69, which is satisfied with the right-hand side of Equation 4. 59.

Q11 Sul + (@12 + AQIZ)SC, ~ 115y + Q125 = Xy 4.69
Consequently, Equation 4. 61 is valid. Therefore, the final solution of equation system
with the perturbation of the crack can be approximately calculated as

{ S, =S, 4.70
(Qz2 + AQ22)S." = X — (Qz1 + AQ21)S,

After obtaining both the vector potential and scalar potential, the eddy current, the

voltage and the inductance change can be calculated respectively.
B. Simulation setup

An EM sensor probe is designed for the simulations to verify the proposed method. As
shown in Figure 4.27, the sensor probe is the co-axial type sensor. The coil parameters

are listed in Table 4.9. The exciting coil and receiving coil have identical radius and
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height with single turn. The sensor probe is placed 0.5 mm above the sample plate and
the gap between the coils is 0.5 mm. The excitation current with the magnitude of 1 A
and the frequency of 1 kHz is injected into the exciting coil, the induced inductance
with the presence of the sample plate can be received from the receiving coil. The
conductivity and thickness of the sample plate is set to 57 MS/m and 2 mm respectively.
It can be seen from Figure 4.28 that there are different shapes of crack would be tested.

These cracks are generated in the middle of the sample plate.

%
i T \ 4

Figure 4.27 The configuration of EM sensor probe

Table 4.9 Coil Parameters

Exciting coil Radius (7;) 3mm

Height (h,) 0.3mm

Receiving coil Radius (r;,) 3mm

Height (k) 0.3 mm
Lift off 1, 0.5mm
Gap between the exciting coil and 0.5 mm

receiving coil g

Thickness of the sample plate ¢ 2mm
Working frequency f 1 kHz
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Figure 4.28 Crack shapes (a) Triangle (b) Rectangle (c) Circular sector (d) X shape

C. Results

C.1 Verification of FE analysis

The movement of eddy current is a key point in the inspection of eddy current testing.
It would be disturbed due to the presence of the crack. As shown in Figure 4.29, eddy
current flows on the sample plate without crack or with different shapes of crack. It can
be seen that the eddy current is rotational as there is no crack on the sample plate. Then
when it encounters with a crack, it will be flow around the edge of the crack but the
overall trend remains the same. From the vector diagram of the eddy current, the crack
shape can be seen clearly and same compared with Figure 4.28. The inductance change
due to the sample plate with a rectangle crack under different element number was
calculated. As listed in Table 4.10, the deviation is within 5% and the speed of the
computation is significantly improved, i.e., the time for the calculation is shortened 3.79
times as the total element number is 10 k with the variation of 2.56 % while 34.24 times
as the total element number is 139 k with the variation of 3.56%. Figure 4.30 shows the
relative residual of varying iteration number under different element number and it can
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be also revealed that it needs less iteration cycles to achieve the convergence.
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Figure 4.29 Eddy current (a) without crack and with crack (b) triangle (c) rectangle (d) circular sector

(e) X shape

Table 4.10 The accelerated rate and deviation of the inductance change due to the sample plate under

different element number

Element Calculation time of the | Calculation time of the Accelerated rate Calculation deviation
Number method without proposed method (s) (times) (%)
acceleration (s)
10 k 7.69 2.03 3.79 2.56
51k 57.74 3.56 16.22 3.22
139 k 306.79 8.96 34.24 3.56
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Method without acceleration 10k elements
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Figure 4.30 Relative residual under different element number
C.2 Crack scanning

FE calculation can be used in the detection for the crack. As depicted in Figure 4.31,
the sensor probe scans a crack with the length of 10 mm and the width of 0.5 mm in the
centre of the sample plate (same with the sample plate with a rectangle crack, shown in
Figure 4.28(b) and Figure 4.29(c)) and it scans along x and y axis respectively. The
results agreed with the simulation results without using the acceleration method and, as
listed in Table 4.11, the speed is enhanced approx. 7 folds. It can be noted that the
sensor probe closes to the crack, the received voltage is decreasing then stays stable and
the voltage increases until it leaves the crack. This phenomenon is due to the
perturbance of the crack, the distribution of the eddy current changes on the sample

plate which results in the change of the magnetic field.
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Figure 4.31 The sensor probe scans across the crack along (a) x axis (b) y axis

Table 4.11 The computation time for one step

Scanning direction

Calculation time (s)

Proposed method

Method without acceleration

X axis

5.47

35.92

Y axis

5.68

36.08

Figure 4.32 shows the experimental setup consisting of an EM instrument, a sensor
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probe and the sample plate. Then the detected data would be transmitted to the host PC.
Here a differential sensor probe was made for detecting different depths of the crack
from 0.1 mm to 2 mm with the increment of 0.1 mm. The crack has the length of 10
mm and the width of 0.1 mm. The sensor parameters are listed in Table 4.12. The lift-
off of the sensor probe was 1 mm and the working frequency was 20 kHz. The

conductivity and the thickness of the sample plate are 1.4 MS/m and 2 mm respectively.

EMinstrument

Figure 4.32 Experimental setup

Table 4.12 Experiment sensor parameters

Length (mm) 8

Excitation Width (mm) 4
coil Height (mm) 10
Turns N 20
Radius (mm) 0.5
Receiving Turns N 250
coil Length (mm) 10
Width (mm) 0.1

Surface crack | Depth (mm) 0.1to2mm in step of
0.1 mm

Lift-off L, (mm) 1
Excitation frequency (kHz) 20

Plate thickness (mm) 2
Plate conductivity (MS/m) 1.4
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The received and simulated data are plotted in Figure 4.33. The simulated results are
agreed with the measured ones. It can be seen that, when the sensor probe scan across
the crack, there is a sine relationship between the scanning distance and the received
voltage of the measured and simulated data. The peak voltage is related to the depth of
the crack, i.e., the deeper the crack depth, the larger the received result. The peak
voltage can be used to predict the depth of the crack. Besides, it can be deduced that

the length of the crack is 10 mm which is consistent with the sample crack.
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Figure 4.33 Measured and simulated results under different depths
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Chapter 5 Thickness measurement  of
metallic plates with finite planar dimension

using eddy current method

Ruochen Huang, Mingyang Lu, Anthony Peyton, Wuliang Yin

IEEE Transactions on Instrumentation and Measurement, vol. 69, no. 10, 2020.

In this chapter, a modified analytical solution based on the Dodd - Deeds model is
proposed. It is applied for the metallic sample with a finite dimension. In this method,
it is found that the radius of the sample is related to the integral point of analytical
algorithm, therefore, for the sample with finite dimension, a new initial integral point
is introduced to calculate the inductance change using eddy current sensor. Both the
experiment and simulation have been carried out to verify the proposed method.
Moreover, it can also be used for the thickness measurement and the retrieved thickness

for the sample plate is within the error of 2%.
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Thickness Measurement of Metallic Plates
With Finite Planar Dimension Using
Eddy Current Method
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Abstract— Until now, the Dodd-Deeds model has been used
to evaluate the inductance change in an air-cored sensor in
the presence of an infinitely large conducting plate. In practice,
it can be applied to the sample relatively larger than the radius
of the sensor coil (normally >3-5 times larger), which can be
regarded as a plate sample with infinite planar size. However,
in various practical applications, the size of the tested sample may
not satisfy this condition. In this article, a modified analytical
solution based on the Dodd-Deeds model is proposed, which has
introduced a new initial integration point instead of 0 for the
analytical inductance of the finite-size metallic plate. Theoretical
derivation has been presented for the derivation of the initial
integration point. Moreover, an inversely proportional relation
can be observed between the initial integration point and the
radius of the test sample. The simulation and experimental
measurements for the thickness of several finite-size metallic
samples have been carried out for the verification of the proposed
method.

Index Terms—Eddy current testing, finite region, magnetic
induction, nondestructive testing, thickness measurement.

I. INTRODUCTION

N RECENT decades, nondestructive testing techniques

have been developed for the need of sample evaluation.
Compared with ultrasonic [1], [2] and X-ray [3] testing,
eddy current testing is also one of the most widely used
techniques in the field of nondestructive testing. As a
noncontact detection method, eddy current testing has proved
its reliability in a wide range of applications, such as defect
inspection, conductivity and permeability measurements, and
process monitoring [4]-[12]. Other than these applications,
thickness measurement is also a significant application.
Meanwhile, the analytical solutions proposed by Dodd and
Deeds have been serving for decades for solving various
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kinds of eddy current sensing problems such as thickness
measurement of metallic plates [13].

Tai ef al. [14] developed a self-designed instrument based on
the pulsed eddy current to measure the sample thickness using
a look-up table. The potential of multifrequency eddy current
testing has also been explored. It has been found that the phase
signature from the sensing coil can be used to measure the
thickness of the metal sample [15], [16]. In [17], with the
robust feature between the peak frequency and the sample
thickness, the accuracy of the reconstructed thickness could
be achieved within 3%. However, the error can arise with
increased lift-offs. Various approaches from the time domain
to the frequency domain have been exploited to address this
issue [18]-[26]. Using the multifrequency spectra, a simplified
model has been derived from the Dodd-Deeds analytical
solution to compensate the error effect caused by the lift-off
[18], [19]. In addition, an equivalent effect—a proportional
relationship between the conductivity and thickness—has been
found in thin plates [27]. Furthermore, Lu ef al. [28] proposed
a single-frequency measurement method with a planar sen-
sor, which has a potential of on-line real-time measurement.
However, these approaches are based on the condition that the
size of the test samples is much larger (normally >3-5 times
larger) than that of the sensor coils. Moreover, the truncated
region eigenfunction expansion (TREE) method has been
commonly used to make the computation numerically to solve
it efficiently [29]. With the complicated and cumbersome
boundary conditions for the small disk samples, TREE method
can also be utilized for the computation of the impedance.
However, with our modified analytical solution, the induc-
tance/impedance can be accurately and efficiently simulated
for the small sample.

In this article, to address the issue of the finite-size sample,
we proposed a modified analytical solution for the inductance
of a coil in the presence of a sample with a finite circular
planar region. For this proposed method, the tested sample
should be coaxial with the sensor. Through theoretical manip-
ulations, the initial point of the integral, «,, can be determined
by the radius of the test sample. Moreover, experiments
and simulations for the thickness measurements of several
samples have been carried out for the verification of this
feature. Sections II-TV present the mathematical derivations
and experimental verifications of the proposed method.

0018-9456 © 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
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Region 1
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Region 4 % :::::Ii
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Fig. 1. Coil above an infinite conductive plate.

II. THEORETICAL DERIVATIONS OF THE MODIFIED
ANALYTICAL SOLUTION—THE INITIAL
INTEGRATION POINT ¢,

In the field of eddy current testing, the mutual inductance
between the excitation coil and the sensing coil is a key
indicator of the property of the tested conductive sample. The
analytical solution of a coil upon an infinite large testing plate
given by Dodd and Deeds has provided a strong theoreti-
cal basis. However, this model can only be adopted in the
condition that the size of the testing plate is three to five
times larger than that of the sensor coil. However, in many
practical applications, the size of the test sample may not
satisfy this condition. Therefore, a modified analytical solution
of inductance for the plate with finite dimensions is highly
requisite.

As shown in Fig. 1, for the model of a coil above the infinite
testing plate, the vector potential generated by the excitation
coil in the r—z axis is [13]

/X) Jilar)P(a)

03

. I/IONe

A(r, 2) >

K(r,z,a0)p(0)da (1)

where

201 Dy

(o1 +p10) (0 — p10) — (01 +p10) (0 — pra)e

#(a)= — (o1 = p10) (o = pro) + (o1 + oy o) (o + py a)e>1 Do
(2)
a; = va + joo pypo (3)

K(r,z,0)
=2 _ ef—a(xflez) i ~0.(z—1e1) +e 'az(e"a[el _ e——alez) (4)

Ote2
P(a) =/ tJi(t)dr. (5)
ary

Furthermore, the induced voltage on the receiver coil is the
integral of the induced vector potential over the whole receiver
coil

N, jomry
V=N;j Ads =
l JCU/\ (lul - 102)2("111 - "112)2
ol o2
/ / rA(r,z)drdz (6)
lv,\l 1
o1 + 12
rog = ——. 7
0 2 (7

Thus, the inductance change due to the presence of the
sample is (the subtraction between the inductance with the
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sample and without the sample, i.e., free space [11])

AL(w) = V[”’/‘l _ 4P o
jol
= ) / P (0) aQlthtg)
= (lvl —1,0)2(ro1 — 72)
e Mpla)da. i
h= 182 — 1. &

Dy, w1, and o denote the thickness, relative permeability,
and electrical conductivity of the sample, respectively. ugo
represents the permeability of the free space. N, and N, denote
the turns of the excitation and receiver coil, respectively. 71
and r,» denote the inner and outer radii of the excitation
coil, respectively. r,; and r,, denote the inner and outer
radii of the receiver coil, respectively. [,; and [, denote the
lower and upper height of the excitation coil, respectively.
l,1 and l,» denote the lower and upper height of the receiver
coil, respectively. [ denotes the lift-off and ¢ the gap between
the excitation and receiver coils. J; denotes a first-order Bessel
function of the first kind. o and 7 are the integration variables.

As shown in Fig. 2, in the Dodd-Deeds model, the integra-
tion of o ranges from 0 to infinity, where o = 0 corresponds
to the plate section of the infinite radius (r = ry = o) and
o = oo to the center of the sample plate (+ = 0). Therefore,
in the proposed method, by replacing a = 0 with a = a,,, the
inductance for a plate with a finite radius can be simulated.
The following mathematical manipulation is to explain the
rationale behind changing the integration range of a.

By referring to the manipulation of the Dodd-Deeds ana-
lytical formulations [13], the model of a coil above a plate
can be divided into four regions, as shown in Fig. 1. For each
region, the magnetic vector potential formulation A can be
represented by a product of two polynomials, R(r) and Z(z)

9?A 16A %A A ,

e ——+(u 1ioiA — jou;g;A =0 (10)
ort ror 072

r € [0,rs] (11)

where i denotes the ith layer/region conductor.

In (11), the defined range of r for the infinite plate case is
from O to ry = oo. However, for a sample with finite radius,
r ranges from 0 to a constant ;.

By substituting A with R(r)Z(z), the field can be expressed
as

1 &°R(r) 1
R(r) rR(r) or

AR(r) 1 8%°Z(@2)
Z(z) 072

or?

1
o + &*pioi—jouie; = 0. (12)

Using the principle of separation of variables, a separation
“constant” @ is introduced [13]

1 &2l

2(z) o2 = o’ — o’ pioi+jouio; (13)
Then substitute (13) into (12), which gives
1 1 OR(r 1 R
al=—- N Afr) (14)
2 rR(r) or R(r) or?
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Fig. 2.
0 to ry.

Since the solution of R(r) can be expressed in terms of
Bessel functions, R(r) can be represented as [13]
R(r) = CJi(ar) + DY (ar). (15)
Due to the divergence of Y; at the origin, D=0 in all
regions.
Combining (14) and (15), we can obtain «?
e et (h(ar) - hian)
O == ar) — Jr(o
r2 d4rJi(or) 0 ne
—ar(=3Ji(ar) + J(ar))) (16)
where Jy, Jo, and J3 are the zero-, second-, and third-order
Bessel function of the first kind.
Therefore, o can be derived by finding the solution of the
following equation:

1
g L, & Y I,
o' =+ FhGD 2(Jo(ar) = h(ar))
—ar(=3Ji(ar) + J(ar))) =0. (17)
By multiplying 7> on both sides of (17)
5 ar
(ar)" =1+ YA 2(Jo(ar) = h(ar))
—ar(=3Ji(ar) + J(ar))) =0. (18)

Substitute ar with x, then equation (18) is converted as

(1) = 1+ —— Qo) — B(x))

4.]1 (A)
—x(=3/1(x) + (x)))=0. (19)
Assuming x; is the solution of the above equation, the
integral range of a is related to the defined variable r, which
can be written as @ =xg/r, that is, a is inversely proportional
to r. Taking the example of a plate with an infinite planar
dimension, the defined range of r is from 0 to oo [referring to
(10) and (11)]. By referring to (19), the corresponding range
of o is from al,_y= 00 to a|,_,= 0. For a plate with a finite
radius, r ranges from O to ry, and the corresponding range
of a is from al,_o= 00 to a constant value al,_, = a, =
Xo/rs = 3.518/rs.
Therefore, for a finite-size sample, the vector potential
involves the integration from a|,_, = a, 0 al,_y = .

A

_ TuoN, /m Ji(ar)P(a)

2 ) K(r,z,a)p(a)da.

(20)

s
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® «  a,

[Mustration of the integrational path for the proposed method. (a) Infinite plate where r ranges from 0 to oc. (b) Finite plate where r ranges from

Furthermore, the inductance change due to the presence of
the finite-size plate is

o 2
. mroN, N, pio * P(a) o0 2I+htg)
(lul - 102)2(7‘01 = ru2) a ab

Ts

(1 —e "¢ (0)da

AL(w)

21

with a,, = 3.518/r; where r, is the radius of the sample.
It can be seen that the integral limit of (21) is different to
the case of the infinite-size plate (8).

III. EXPERIMENTAL AND SIMULATION SETUP

In this article, both the experimental measurements (using
the impedance analyzer) and the simulations [using the mod-
ified analytical solution and the software (COMSOL)] have
been carried out to validate the theoretical deviations. In the
process of the measurements, the air-cored coaxial sensor
was located coaxially with circular planar samples, as shown
in Fig. 3. Samples of copper and aluminum plates were
selected because of availability. The conductivities of these
two materials are 57 and 35 MS/m. The copper plate has
a thickness of 1 mm and s range of diameters (from 25 to
45 mm in steps of 5 mm), while the aluminum plate has a
diameter of 40 mm and thickness range from 22 to 132 xm.
The copper plates were used to verify the derived theory,
while the aluminum plates with different thicknesses were
used for further application of the thickness measurement. The
impedance analyzer can operate from 100 Hz to 510 kHz in
a logarithmic step of 0.02735 with high precision and the
excitation voltage in the measurement was set to 0.3 V. To
test the effect of different sensor geometries, three sensors of
the different radii (28, 40, and 52 mm) have been used. The
experimental and sensor setup are shown in Fig. 4 and Table L.

From Figs. 611, the mutual impedance (A Z) between the
excitation coil and the receiving coil measured through the
Zurich impedance analyzer [Fig. 4(a)] are presented. Due to
the phase difference between the induced voltage and the
excitation current, the tested impedance should be complex.
Therefore, the inductance can be presented by dividing the
mutual impedance by the excitation frequency in the experi-
mental measurements, as shown in the following equations:

AZ = R+ joAL (22)
B i
AL = Re(M) (23)
Jo
B — i
Ro™' = —Im(—samp"j’ “) j (24)
Jw

Authorized licensed use limited to: University of Manchester. Downloaded on August 02,2021 at 10:59:31 UTC from IEEE Xplore. Restrictions apply.



HUANG et al.: THICKNESS MEASUREMENT OF METALLIC PLATES WITH FINITE PLANAR DIMENSION

- I - Excitation coil
1!, I < Receiving coil
T T I Test sample

Fig. 3. Air-cored sensor above the tested plate. (a) Schematic setup. (b)
Actual setup.

TABLE 1
SENSOR PARAMETERS
Inner and outer radii of the excitation coil (Te; / 28 mm/28.25 mm
Iez) 40 mm/40.25 mm
52 mm/52.25 mm
Inner and outer radii of the sensing coil (ry, / 28 mm/28.25 mm
Iy2) 40 mm/40.25 mm
52 mm/52.25 mm
Height of the excitation coil (lgz- le1) 4 mm
Height of the sensing coil (- 1,1) 4 mm
Turns of excitation coil and receiving coil (N, / 15/15
Ny)
Plate thickness (Dy) 1 mm for copper, 22 pm
— 132 pm for aluminium
The gap between two coils (g) 15 mm

where Zgmple denotes the impedance caused by the metallic
sample plate and Z,; denotes the impedance in the air.

IV. RESULTS
A. Validation of the Modified Analytical Solution

As illustrated in Fig. 2, compared with the infinite planar
plate, the main difference for the finite region analytical
solution is that it starts at different points for the integral path.
First, both the analytical solution and the simulation software
(COMSOL) were compared to validate the proposed method.
The simulated models are shown in Fig. 5. Fig. 6 shows the
inductance change caused by the copper plate.

It can be observed that for both metallic plates, the results
are matched under the sweeping frequency ranging from 10 Hz

8427

Fig. 4.
plates.

Experimental setup. (a) Measurement setup. (b) Circular sample

Fig. 5. Simulated model. (a) Plate with a radius of 20 mm (84k elements).
(b) Plate with a radius of 100 mm (142k elements).

to 10 MHz. Since the test samples are nonmagnetic, there
is no zero-crossing point for the inductance change. As the
frequency increases, it would finally reach a saturated value
for the inductance change and approach zero for the detected
resistance—frequency combined term Rew~'. A peak frequency
feature can be observed from Rew™', which is found to be
shifted rightward as the size of the sample decreases. This is
possibly because the magnetic flux interacts less with the plate
for the sample with a smaller radius.
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Fig. 6. (a) Inductance change caused by copper plates. (b) Change in Ro™!
caused by copper plates.

B. Effect of the Sensor Coil Dimensions

The modified analytical solution is associated with the
initial point of «. Hence, some measurements have been
carried out to determine the value of ¢,. Figs. 7 and 8 depict
the inductance change in both the measured results and the
modified analytical solutions under the same three sensors
with the radii of 28, 40, and 52 mm, respectively, but different
sample radii.

From the results of both simulations and measurements,
the value of the initial point ¢, is immune to the sensor size.
That is, for a fixed-size test sample, no matter what size of
the sensor, ¢, remains unchanged [since ¢, is merely related
to the size of the sample, referring to (18)]. Besides, the value
of ¢, reduces with the increase in the sample radius, which
is consistent with the theoretical derivations.

C. Effect of the Sample Size

From previous experiments, it can be noticed that «,, is
not related to the size of the sensor. Furthermore, samples
with different radii were measured under the same sensor with
the sensor radius of 40 mm. Fig. 9 shows the results of both
the modified analytical solutions and measurements for copper
plates with different radii. The results are matched by finding
the appropriate «, . The value of ¢, under different sample
radii is shown in Fig. 10.
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Fig. 7. (a) Inductance change caused by copper plates with the radius
of 17.5 mm. (b) R~ caused by copper plates with the radius of 17.5 mm.

As can be seen from Fig. 10, the value of «,, is proportional
to the reciprocal of the sample radius (i.e., &, = const. x1/r;)
and, from the experimental experience, the constant is ~3.518.

D. Thickness Measurement Based on the Modified
Analytical Solution

The proposed method can be used to test the thickness of
plate samples with the same radius. Since ¢, is immune to the
sensor radius but related to the sample radius, it can be set to
an appropriate fixed value. In our previous studies, the peak
frequency caused from Re~! is associated with the sample
thickness and the sample conductivity. Applying this principle
with the same material samples used in the testing, the larger
the thickness, the lower the peak frequency. Consequently, the
thickness of the test samples can be estimated by matching
the peak frequency of the modified analytical solution. (Prior
to the measurement, a look-up table is obtained from the
modified analytical solution which contains the peak frequency
information for different thicknesses under the same conduc-
tivity. By referring to the table, the thickness of the sample
can be predicted.)

In the measurements, the thickness of the aluminum sam-
ple varies from 22 to 132 um. The operation frequency
ranges from 1 to 505 kHz. As Fig. 11 depicts the result
of the modified analytical solution matches well with the
measurement. Besides, the peak frequency using both the
original analytical solution and the modified analytical solution

Authorized licensed use limited to: University of Manchester. Downloaded on August 02,2021 at 10:59:31 UTC from |EEE Xplore. Restrictions apply.



HUANG et al.: THICKNESS MEASUREMENT OF METALLIC PLATES WITH FINITE PLANAR DIMENSION 8429

Inductance (H)
£
T T

O Measurements,sensor radius of 28mm
O Measurements,sensar radius of 40mm
' Measurements,sensor radius of $2mm

10" 10* 10° 10 10° 10° 107

Ruw™' (ohm/Hz)

= Modified analytical solution, sensor radius of 28mm
s Modified analytical solution, sensor radius of 40mm
Modified analytical solution, seneor radlus of 52mm
O Measurements,sensor radius of 28mm
O Mossuremonts,sensor radius of 40mm
©  Measurements,sensor radius of 52mm

15 L
10" 10* 10° 10* 10° 10° 107
f(Hz)

(b)

Fig. 8. (a) Inductance change caused by copper plates with the radius
of 22.5 mm. (b) Change in Rw ™! caused by copper plates with the radius
of 22.5 mm.

TABLE II
PEAK FREQUENCY OF DODD-DEEDS ANALYTICAL SOLUTION AND
MODIFIED ANALYTICAL SOLUTION FOR THE ALUMINUM PLATES

Sample Peak frequency (kHz)
thickness Dodd Deeds Modified
(pm) analytical analytical
solution solution
22 13.335 42.170
44 6.190 23.714
66 4217 14.678
88 3.162 11.007
110 2.610 9.085
132 1.957 7.499
TABLE IIT

ACTUAL AND ESTIMATED THICKNESS FOR THE ALUMINUM PLATES

Material Actual Estimated Error (%)
thickness thickness (pm)
(um)
Aluminium 22 22.21 0.95
44 43.16 -1.91
66 66.90 1.36
88 88.05 0.06
110 108.57 -1.30
132 129.68 -1.76

is listed in Table II. It can be seen that there is a huge
difference for finite planar dimension samples compared with
the original analytical solution. Moreover, the principle of
the thickness reconstruction is fitting the peak frequency of

3
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Fig. 9. (a) Inductance changes under various radii of the copper samples.
(b) Change in Re~! under various radii of the copper samples.
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Fig. 10. Relationship between oy and the reciprocal of sample radius.

the simulation to that of the measurement, and therefore,
it leads to a larger error for thickness prediction as shown
in Table 1T and Fig. 12. The fitting of the peak frequency
feature is one of the commonly used methods for sample
properties’ reconstruction [17]-[19], [30]. As in [30], we use
a first-order function to approximate the curve and fit the
experimental and simulated curves in a least squared sense.
Once the first-order system is obtained, its peak frequency can
be obtained easily. Table 1T illustrates the estimated thickness
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Fig. 12. Estimated thickness by Dodd Deeds analytical solution and modificd
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from the modified analytical solution and the error between
the actual and the cstimated thicknesses. Tt can be scen from
Table III that the error from testing can be achieved within 2%.
Fig. 12 demonstrates the estimation results [rom both methods
and the error caused using the infinite model—the original
Dodd-Deeds is significantly inaccurate.

V. CONCLUSION

This article has proposed a modified analytical solution for
the metallic sample with a finite dimension. Based on this
method, an eddy current thickness measurement technique has
been presented. Previously, it was found that the Dodd-Deeds
analytical solution cannot be applied to the situation when the
radius of the testing sample does not exceed three Lo (ive times
of the sensor coil. In this article, an alternative initial integral
point a,, has been found in the modified analytical solution for
the finite-size samples. From the results of measurements and
modified analylical solutions, it is shown that ¢, is related to
the size of the testing sample, instead of the size of the sensor.
Moreover, a, has been found to be inversely proportional to

the size of the testing sample. Using this method, the thickness
of the circular sample can be accurately reconstructed with a
small error within 2%.

In this method, the peak frequency feature (instead of the
magnitude) is used to reconstruct the thickness of the sample.
Before measuring, the conductivity of the sample material is
taken as known. Besides, the samples have to be cylindrical,
and for noncylindrical shapes, the analytical solution is not
valid. The results from the mecasurements arc obtained based
on the coil-sample coaxially assembled condition. Error will
be induced due to axial offset situation.
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Chapter 6 Measurement of permeability for
ferrous metallic plates using a novel lift-off

compensation technique on phase signature
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In this chapter, a novel algorithm is proposed to eliminate the deviation of the phase for
ferrous sample plates caused by the lift-off of the sensor probe. The algorithm is based
on two basic features. Firstly, in the multi-frequency spectra, the phase of the
impedance will grow with the decreased lift-off. Secondly, the amplitude of the
detected induced response (impedance) will rise up with small sensor lift-offs. Based
on this sophisticated phase compensating algorithm, the phase without the effect of the
unknown lift-off can be reconstructed and the magnetic permeability of the ferrous plate

can be estimated from the measured impedance.
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Measurement of Permeability for Ferrous Metallic
Plates Using a Novel Lift-Off Compensation
Technique on Phase Signature

Mingyang Lu™, Ruochen Huang, Wuliang Yin~', Senior Member, IEEE, Qian Zhao, and Anthony Peyton

Abstract—Lift-off of sensor affects the prediction of electro-
magnetic properties for both ferrous and non-ferrous steel plates.
In this paper, we developed a strategy to address this issue for
ferrous plates. With increased lift-off, the phase of the measured
impedance for steel plates reduces. Meanwhile, the magnitude of
the impedance signal decreases. Based on these facts, a phase
compensation algorithm is developed which corrects the phase
change due to lift-off considering the magnitude of the impedance
signal. Further, a new magnetic permeability prediction technique
is presented, which has been validated by analytical and mea-
sured results. With this new technique, the error in permeability
prediction is less than 2% within the range of lift-offs tested.

Index Terms— Measurement of magnetic permeability, new
compensation algorithm, phase signature, Eddy current sensor,
lift-off variation, ferrous plates.

I. INTRODUCTION
LECTROMAGNETIC (EM) technique has been applied
for various implications, for example, electrical conduc-

tivity perdition, magnetic permeability measurement, surface
crack detection, and non-destructive online welding [1]-[6].
Nevertheless, sensors lift-offs can influence the performance of
these EM implications. Novel sensor setup, induced responses
post-demodulation, and measurement approaches [7]-[9] were
used to decrease the error caused by sensors lift-offs. Cur-
rently, a few types of research have proposed some new
techniques based on the impedance phase feature of the mea-
sured multi-frequency spectra to compensate measurements
error due to lift-offs [10]. Although the phase can usually be
deduced from some analytical approaches such as Dodd Deeds
method and finite edge-element technique, most of them com-
monly require sophisticated and tedious calculations which
are inefficient and impossible for some simultaneous testing
techniques such as online measurements and welding post-
inspection [11]. Consequently, more efficient and compen-
dious methods are imperative to compute the multi-frequency
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Fig. 1. EM sensor.

impedance phase, which can be used for various EM applica-
tions such as the steels parameters reconstruction and surface
crack inspection. Although the proposed approach from [10]
was verified to be able to reduce the sensors lift-offs effects on
the output multi-frequency impedance phase, the phase error
caused by the lift-offs is non-negligible under more precise
non-contact measurement with significant lift-offs. Moreover,
most of the aforementioned works are related to non-magnetic
specimens or just utilize simple characteristics of impedance
phase of ferrous specimens.

This paper proposes a novel algorithm to reduce the error of
impedance phase for ferrous steels due to sensors lift-offs. The
algorithm is based on two basic features. For one side, multi-
frequency impedance phases will grow with reduced lift-offs.
For the other side, the amplitude of the detected induced
response (impedance) will rise up with small sensor lift-offs.
Based on this sophisticated phase compensating algorithm,
ferrous plate magnetic permeability can be deduced from the
measured impedance. Comparing the analytical and measured
results for some duplex-phase (DP) steels specimens with
various magnetic permeability, this approach has been proved
to be accurate enough for the measurement of ferrous plate’s
magnetic permeability.

II. EM SENSORS SETUP

As can be seen from figure 1 and table 1, considering sen-
sors accessibility for experiments and analytical simulations,
EM sensor was designed to be 2 co-axially coupled air-cored
loop coils: excitation coils and pick-up coils with identical
size turns and materials (copper coil). In table 1, a series of
lift-off spacers are used to test the lift-off influences on the
impedance phase.

ITI. COMPENSATION OF IMPEDANCE PHASE
ERROR DUE TO LIFT-OFFS

From our previous researches, the magnitude of the detected
response impedance and a frequency feature - zero-crossing
frequency were found to grow with reduced sensor lift-
offs [12]-[14]. It is also observed that the impedance phase rise

1558-1748 © 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http:/Awww.ieee.org/publications_standards/publications/rights/index.html for more information.
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TABLE I
PrROBES PROPERTIES

Values
2ry(Inner diametery/mm 320
2r{Quter diameter)/mm 340
To (lift-offs)/mm 08,2338
k (coils height)/mm 105
£ (coils gap)/mm 15.5
Number of tums N, =N, 30
(N, - Transmitter; N, - Receiver)
| Dodd and Desds |
' B N\ T “1; Approximation of ‘
Relation between Relation between & the Bessel term
| Gande || amd ey f| withasimsoid
. @ 3
{ 114 !
Relation between A4 and Compensate wy with @, and
| inputs (021, eo) under I || AL as input under [
Relation between A# and
inputs (e, AL) under I
[ Relation between 8 and

| inputs {a, 6, AZ) under I,

) |
wtt

Fig. 2. The procedure of impedance phase compensating deduction.

up slightly with reduced lift-offs. Consequently, it is speculated
that a novel approach could be deduced for compensating
the impedance phase error due to sensor lift-offs with the
signal amplitude and zero-crossing frequency. The derivations
process for compensating the zero-crossing frequency wgy was
carried out in [13]. Procedure of the proposed algorithm for
impedance phase compensation is summarized in figure 2.

For the previous work, the compensated zero-crossing
frequency is wg = oy /(x? + 4In(ALo/ALy)). Where,
wo denotes the zero-crossing frequency after compensation;
o1 is zero-crossing frequency under current unknown lift-off;
ALy is the inductance amplitude under the high-frequency
(when the response signal barely changes with frequencies)
with unknown lift-offs; AL, is the inductance amplitude
under same frequencies with the smallest lift-off.

In figure 2, Iy denotes the unknown lift-off; &, denotes the
measured phase under any frequency e and an unknown lift-
off; A8 denotes the impedance phase change caused by the
unknown lift-off, which should be compensated. ¢ denotes
impedance phase (i.e. ¢ = 8, — A#) after compensation,

Derivation process of the phase compensation algorithm:

For the metallic plates with #, == 1 (ferrous plates), the
compensated phase ¢ (@) and measured phase o (zo,) under
unknown lift-off equal,

1=V + joo o/}

plag) = (1)

Lty L + joo o/ y o}

7441

L1 + joopo/urd,

L4162 + joo po/prad,

plaos) = 2)

Here, o is a spatial frequency indicating the geometry
feature of the sensor. [6], [12], [13], and [14]

Neglecting 1/ 42 term in above equation and assigning ey =
Hr0d/ poe, o1 = prad /oo

The compensated phase ¢ and measured ¢ under unknown
lift-off can be expressed as followings,

- Jofag 1—242 04 )

— = 3

@(QO) 1+ /_]CO/G)O 14 1232)/@0(1+J) (3)
T _A:Zw/a)l .

wlagy= w00, L7 5 0] g

Lt jolor |4 LBy j)

Then, the measured phase under unknown lift-off should be,

| Im(Z,) B | —Re(L,)
it (Re(zr))‘ta“ (Imm))

_ gl M)

~ (Im(¢5(a0r))

gt (7‘V 2ayfe ) )

l—w/w

Similarly, the compensated phase can be derived from ewq,

6 —tan ! (VZWO/“’) (6)

1 —an/w

Therefore, the phase change caused by the lift-off should be,

A =6,—8
— tan~! (7V o1/ ‘O) — tan~ (7\’ 200/ “’) 7
1w/ 1 —wo/ew
Then, the compensated phase should be,
¢ =6 — A8
G —ta ! (2PN | gt (VIO g
! l—w/o I —wyfo

As shown in the appendix, the relation between e and ey
is @y = wlen/(w? + 4In(ALy/ALy). And the mathematic
derivation details of this compensated zero-crossing frequency
are shown at the end of the paper.

Finally, the impedance phase after compensation is evalu-
ated from ey, ALy, and ALy,

8 =8, — A9
)
_ 0 —tan) (ﬂ)
l— /o

)

Assigning G (@) = tan"'(2w1/0/(1 — w1/w), through
some mathematic manipulations, the compensated phase can

Authorized licensed use limited to: University of Manchester. Downloaded on August 21,2021 at 16:27:49 UTC from IEEE Xplore. Restrictions apply.
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TABLE I
PROPERTIES OF DUPLEX-PHASE SPECIMENS

Electrical

Relative Planar size

Specimens  conductivity & Thickness (mm)
(MS/m) permeability (mm)
DP600 413 222 500 x 400 7.0
DP800 381 144 500 x 400 1.0
DP1000 3.80 122 500 x 400 7.0
be obtained.
6 =6, — A8

~— 0, — G +G ((1 T %m (%)) a)) (10)

With,
G(w) = tan™" (7”“’1/“) (11)
1—w/o

where, AL is the inductance amplitude under the high-
frequency (when the response signal barely changes with fre-
quencies) with unknown lift-offs; while A L,, is the inductance
amplitude under same frequencies with the smallest lift-off
(here this lift-off in measurement setup is 0.8 mm).

It can be seen in equation 11 that with the measured phase,
inductance magnitude and zero-crossing frequencies from the
measurements at an unknown lift-off as inputs, impedance
phases ¢ after compensating (phase with zero lift-offs) could
be obtained using the compensation scheme proposed above.
For instance, if the sensor is put on a lift-off approaching 0,
In(ALo/ALy) should equal 0. As a result, the corresponding
compensated result &y calculated from equation 10 equals &y,
which is reasonable under a negligible lift-off.

IV. ANALYTICAL SOLUTIONS AND MEASUREMENTS

In order to validate the feasibility of the deduced phase
compensating approach, measurements and analytical solution
have been made to compare impedance phases with various
sensor lift-offs. The co-relation between impedance and induc-
tance are shown in followings:

(12)
(13)

Here, Z represents the sensor mutual impedance with speci-
mens; Z,ir denotes the mutual impedance between the sensor’s
transmitter and receiver without specimens; f is the operation
frequency.

Then, the impedance phase can be evaluated,

L (MZ-Zu)\ . {-Re(AL)
¢ (Re(z—zai,))_tan (Im(AL)) L

A. Analytical Solutions

For the analytical solutions, Dodd Deeds approach [11] was
utilized to compute the sensor’s detected response signal -
impedance. The sample was chosen to be a duplex-phase
specimen - DP600 (specimen’s properties and size data are
shown in Table 2) under varying lift-offs of 0.8 mm, 2.3 mm,

IEEE SENSORS JOURNAL, VOL. 19, NO. 17, SEPTEMBER 1, 2019

Receiver coil 1

Excitation ¢oil

Receiver coil 2

Fig. 3. Measurement setup a) EM aircored sensor configuration
b) SI 1260 impedance analyser.

and 3.8mm. The analytical solver is scripted and operated on
MATLAB coding platform, which is utilized for the evaluation
of inductance AL (equations 15 - 20 in the appendix) and the
compensated phase using equation 10.

B. Measurements

In order to measure the impedance/inductance phase of the
samples, a symmetric air-cored electromagnetic sensor was
designed for steel micro-structure monitoring in the Contin-
uous Annealing & Processing Line (CAPL). As can be seen
from Fig. 3, the excitation coil sits in the middle and two
receive coils at bottom and top respectively. The geometry
profile of the sensor is illustrated in Table 1. Receive coil 2 is
used as the test coils; receive coil 1 is served as a reference
coil. In the paper, only receive 2 coil signal is recorded and
served as the response output signal. All the coils have the
same diameters, i.e. an inner diameter of 32.0 mm and an outer
diameter of 34.0 mm. Each of the coils has 30 turns, and the
coil separation is 35.0 mm. ST 1260 impedance analyser has
been utilized to measure the air-core sensor induced signal
response — mutual impedance or inductance of the sensor
influenced by the tested samples. The working frequency range
of the instrument is set from 310 Hz to 3 MHz. Moreover,
all the samples are tested under a series lift-offs of 0.8, 2.3,
and 3.8 mm.

C. Results

Figure 4 exhibits both the real part and imaginary part of the
simulations and measurements of sensor-plates system mutnal
inductance multi-frequency spectra. In figure 4, it is obviously
that inductance curves magnitude drop off with increased lift-
offs. Meanwhile, the zero-crossing frequency decreases with

Authorized licensed use limited to: University of Manchester. Downloaded on August 21,2021 at 16:27:49 UTC from |IEEE Xplore. Restrictions apply.
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Fig. 4. Real and imaginary part of inductance under varying lift-offs —0.8 mm, 2.3 mm, and 3.8mm (a) real part and (b) imaginary pazt.

increased lift-offs. Some singular points may be encountered
during the measurements which are due to the signal noise
of SI 1260 impedance analyser, especially under the low
frequency.

In figure 5, it is observed that the inductance term
ALo/AL, decreases with increased lift-offs. Consequently,
the relative loss of the inductance ALg/ AL, can be used for
the compensation of inductance or impedance phase due to
lift-offs. which can be used to compensate the drop in phase
with rising lift-offs. Here, AL, is the sample’s inductance
(as shown in equation 12) with end point frequency (the last
frequency sample for both simulations and measurements)
for the smallest lift-off (0.8 mm under the sensor setup
in figure 3).

Figure 6 shows the simulations, measurements, and the
phase multi-frequency spectra after the proposed compensation
algorithm (equation 10 and 11). It can be seen that both the
simulated and measured phase decrease as increased lift-offs.
In addition, the compensated phase is barely affected by
the lift-off. Based on the compensated phase, ferrous plate
magnetic permeability could be easily predicted via the mea-
sured response of the sensor. The ferrous metallic plates’
magnetic permeability measurement technique is validated

AL /AL _ - lift-off
0 m

T T T T T T T T T

\\. —— Analytical solver simulation result
\\ — % - Measurements
09F \ ]
\\ k
b
0.8 \\ 1
Euz Ny |
:] N
© ™
-
3 06 N ]
051 N\ 1
\\\
A\
04 \\f‘ : ]
ey
Ty
03 i i ] i i ! | i |
05 1 15 2 25 3 35 4 45 5 55
lift-off (m) %1073
Fig. 5. Trend of inductance term ALo/ALpm (for DP 600 specimen) for

different lift-offs.

via the comparison of modelling and measured data for the
mentioned sensor next to dual-phase (DP) steels with various
values of magnetic permeability.
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Fig. 6. Compensation performance both on simulations and measurements with 0.8, 2.3, 3.8 mm lift-offs.

TABLE III
RELATIVE PERMBABILITY MBASUREMENTS FOR DIFFERENT LIFT-OFRS

Aetual Relative Relative Relative error Relative
Plates Lift-offs relative permenbility permeability for non- error for
(mm) bility without inferred from compensated compensated
perea compensation compensated phase  permeability  permeability
0.8 144 138.48 14237 3.83% 1.13%
DP800 2.3 144 136.76 142.12 5.03% 1.31%
3.8 144 133.31 141.94 7.42% 143%
0.8 122 117.68 120.72 3.54% 1.05%
DP1000 2.3 122 115.27 120.57 5.52% 1.17%
3.8 122 111.98 120.15 8.21% 1.52%

In principle, the magnetic permeability reconstruction for
the tested specimens is finding the simulated multi-frequency
inductance/impedance curve (via equations 15 - 20 in appen-
dix) that is closest to the measured multi-frequency spectra
data (after the proposed compensation algorithms - equation
10 and 11) while changing the permeability. In order to
validate the proposed magnetic permeability reconstruction
technique via the compensated phase, multi-frequency induc-
tances of two ferrous specimens have been tested (speci-
mens’ properties and size data are shown in Table 2). In the
measurement process, 120 logarithmically spaced frequencies
samples range from 310 Hz to 3 MHz have been chosen as
the operation frequencies. In addition, both DP steel specimens
have identical size of 500 x 400 x 7.0 mm. Consequently, mag-
netic permeability comparisons for compensated phase and the
measured phase without compensation is shown in table 3.

It can be concluded from table 3 that the magnetic per-
meability reconstruction shows a better performance through
the proposed impedance or inductance phase compensation
scheme (equation 10 and 11).

In practical application, the lift-offs range may be different.
However, it has been found that the error of the measured
permeability is always within a small value of 5%.

V. CONCLUSIONS

In this paper, a compensation technique is developed for
the relief of lift-off effects on impedance phase for metallic

ferrous plates. From the results, it can be easily observed
that both phase and signal (impedance/inductance) magnitude
decreases as lift-off increases. And the measured inductance
or impedance can be used for the compensation of impedance
phase loss due to lift-offs via the proposed algorithms. Based
on the proposed phase compensation approach, a magnetic
permeability measurement technique was proposed that is also
virtually independent of lift-offs. The results have been verified
with both measurements and simulations of selected cases.

APPENDIX

Inferring the compensated zero-crossing frequency (ZCF)
@y from the measured ZCF and inductance (w; and A L) under
a lift-off of Iy:

Dodd Deeds method has been chosen as the forward simu-
lation solver for the calculation of the inductance due to the
appearance of the sample when tested by an axially symmetric
air-cored sensor [10].

The inductance due to the appearance of the sample is the
subtraction of the sensor tested inductance when sensor is put
on a specimen (L (w)) and that when sensor is in empty region
(La (@) : AL (@) = L (0) — Ly ().

Dodd Deeds formulations are listed as follows:

(o) P2(a)
b

(15)

AL(w) = Kf Ala)d(a)da
0
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where,
Alw) = (1 - e—Zah)e—a(G+h+210) (16)
bo) = (wra—a1) o —+al+ joouu
(wreto1)  peo+Jo? + joouuo
_ 1— 1/ u2 + joo po/ uro? an
1+ /1/u2 + joo pof o
7 uoN?
L, BHOLT 18
h2(r1 —1r2)? )
ary
Pla) = / xJp(x)dx (19
ary

Io is sensor’s lift-off; & is sensor’s coil height; N is sensor’s
coil turn number; 1 and r; are inner and outer radii of sensor’s
coil; u, is the specimen’s relative permeability. wo is the
vacuum permeability; G is the distance between the excitation
coil and receiving coil.

In equation (15), since the ¢ (a) term barely change with
o (compared with A (o) and P (@), ¢ could be estimated as
equation (22),

AL(w) = ¢(a0)ALo

ap is the spatial frequency, which is a constant controlled by
sensor configuration.

From equation (21), the phase of tested inductance or
impedance is merely controlled via ¢ (o).

29

Where,
45(0(0) — _\/1/#% +J (,UO/,ur)UCUOCO2 +1 )
V162 + j (uo/ ur) o wog® + 1
Neglect 1/4,% in equation (22),
_\/-—2
Hlag) = J o/ ur) cwop + 1 23)

Vi (o) pr) s 0 + 1
In equation (23), it can be observed that ¢ (@) is sample
and sensor related (controlled by ¢ and u,).
Assign M with @1, equation (23) can be expressed as,

$(0g) = —vije/e+1
Vjolor +1
In equation (21), ALy denotes the magnitude of the tested
inductance, which is solely controlled by the sensor configu-
ration (cannot affected by the specimen properties).

: ; ; 2 an
From our previously work, a simple function sin (%)

(24)

with its maximum at «¢ is used to approximate ALy [13],

ALo % ALye 2 sin? (2 25)
200

where ALy, is the sample’s inductance (as shown in equa-

tion 12) with start point frequency (the first frequency sample

for both simulations and measurements) for the smallest

lift-off (0.8 mm under the sensor setup in figure 3)

The revised o should maximize e~ 20 5in2 (%‘0 )

—alg
fore e=*0gin (20{ )

and there-

7445

In our previous work [13], the shift in g caused by lift-off
effect - aq, can be derived as,

40(010

Y | 26)
T
Therefore, the revised w; becomes
2 4_8 2 31 16 4[2
o — (257 7a0’lo + 160415) pir @n

w4 o
Combining (25) with (26), ALy becomes
20(010

40,210
ALy = ALme_z(ao_ 2 )100082(—)
T

—2(60—4;‘52[—0)%(008(%) + 1)
2

Considering aglo < 1 and based on small-angle approxi-
mation cos () ~ 1 — 6%/2, cos (4aolo/m) is substituted with
1 — (doolo/7)?/2.

272
AL becomes, ALy = AL,e a0 2 )lo(l 4%[0)
4ot
o 421 g
Substituting (1 — %) with e =2
2 272
ALy = ALme_z(‘m_4%!0)loe_‘k%!O
2
_ ALye~ o0~ (28)
Then,
ALO 20( lo
hlA—Lm:~2( 0— "2 Mo (29)
And further derivation from (29):
ALy
40215 — 2 alo — w* In i 0 (30)

This is now a quadratic equation with agly as its variable.
Therefore, the solution for aply is

- JT 4+47r21nAL°
4

Since agly < 1, the other solution, the other solution agly =

. 4 21 2L0
+. /T H4rfln
Sin therefore is discarded.

From equation (31), lift-off can be estimated as

x4 o* —|—47z21n ALO

0(0[0 = (31)

lo = 32

0 Tog (32)
Combining (27) with (32),

g (7[ + 4ln ALO) Uy
o = : (33)
=0 [o
Further derivation from equation (33),
AL
2(7t +4In A—Lm)ﬂr — %6 powy =0
And the solution is
2
s = =0 [1ow1 (34)

( +41n ALO)ﬂ
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Thus, the zero-crossing frequency can be compensated as
following,

2 )
- Hr &0 _ T — (35)
Koo (7:2 +41n A—L;—)
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Chapter 7A Novel Perturbed Matrix
Inversion Based Method for the Acceleration

of Finite Element Analysis in Crack-

Scanning Eddy Current NDT

Ruochen Huang, Mingyang Lu, Anthony Peyton, Wuliang Yin

IEEE Access, 2020.

The finite element method is commonly used to calculate the EM field of eddy current
sensors and inspect the surface crack of metals. However, FEM takes hours of
computation time due to the significant number of mesh elements. In this chapter, an
accelerated method based on the perturbed matrix inversion method is proposed. For
the calculation of the crack detection, it only needs the inversion for a much smaller
matrix, consequently, it reduces the computation time by three folds. This method is

proved by the numerical tests.
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ABSTRACT Non-destructive testing (NDT) has a promising capability for crack detection. In this paper,
a novel method for accelerating eddy current calculation for crack detection using the finite element
method (FEM) is presented. This method exploits the fact that, due to the presence of a small defect,
the stiffness matrix in FEM for a sample plate with the defect can be regarded as a summation of the stiffness
matrix Q from the sample plate without the presence of the defect and the perturbation matrix D from the
defect. The inversion of the stiffness matrix for a sample plate with the defect can, therefore, be obtained
using the perturbed matrix inversion (PMI) method. PMI method only requires the inversion of a much
smaller matrix and therefore improves the speed of the computation process. Numerical tests verified the
effectiveness of the proposed method in shortening the computation time for crack scanning in FEM.

> INDEX TERMS Finite-element method (FEM), eddy current calculation, perturbed matrix inversion,

computation acceleration, crack scanning.

I. INTRODUCTION

The emergence of high-speed and high-capacity electronic
computers and the rapid development of the numerical analy-
sis algorithms offer favourable conditions and a solid founda-
tion for the development of computational electromagnetics.
So far, when it comes to the numerical analysis for electro-
magnetics, it can be mainly divided into two kinds of meth-
ods, one is the finite element method (FEM) [1], and the other
is the boundary element method (BEM) [2]. Both of them
are universally adopted to obtain the solution with accuracy
and efficiency [3]. FEM can be utilised for electromagnetic
analysis of specimens with arbitrary geometry and media
information and is commonly used in non-destructive evalu-
ation (NDE). It discretises the whole sample model to masses
of subdomains. Moreover, shape functions are interpolated to
approximate the unknown fields. By integrating the equations

The associatc cditor coordinating the review of this manuscript and

approving it for publication was Chong Leong Gan
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of all elements, it is regarded as finding the numerical solution
of the discretized formulations [4], [5].

Inrecent years, to hasten the calculation of electromagnetic
(EM) problems, various approaches have been put forward.
They can be summarised into two kinds, that is, the improve-
ments in the eddy current algorithm as well as the advance-
ment of finding the solution.

From the aspects of improving the formulation/strategy,
a novel multi-layered conductive structures (MCS) model
was developed in [6] for electromagnetic non-destructive
evaluation techniques. Instead of using the integration model,
the computation was simplified by applying the series expres-
sion based on the truncated region eigenfunction expan-
sion (TREE) method. Compared with the conventional FEM,
the computation speed has been hastened over a hundred
times when using the TREE method. However, this method
is usually applied in certain layer-isotropic materials. In addi-
tion, a fast simulator based on the precomputed unflawed
database approach was proposed in [7] for the evaluation
of the crack size. Due to the advantage of its detectability,
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this method can be used for crack reconstruction. Other
researchers have also explored fast computation for non-
destructive testing for crack inspection [8-11]. It has been
found that some terms in the formula are independent of
the crack and can be calculated ahead of time, then stored
in a database. As a result, the computation burden can be
significantly reduced. In [12], Noritaka et al. have developed
a novel algorithm by using the Tabu search for reconstruc-
tion of the crack. Although the algorithm is expected to be
time-consuming, it is compatible with parallel computation
so that the time reduces dramatically. Moreover, the FEM-
BEM approach has been greatly applied [3], [13], [14], which
combines the boundary element region with the finite element
region to obtain a solution of the non-uniform material distri-
bution. For the sake of accelerating the computation speed for
FEM, SuiteSparse [15] and GRID [16] were also developed
to solve systems of linear equations.

To further advance the numerical solution process, in our
previous works, a fast FEM approach has been proposed.
The principle of the acceleration is introducing a precondi-
tioner [17], [18] for the evaluation of eddy current formula-
tion. In addition, an equivalent-effect phenomenon has also
been proposed for the electromagnetic computation of thin
structures [19].

In this paper, a fast edge-element FEM technique for scan-
ning sensors over a sample plate with defects is presented.

This method is based on the perturbed matrix inver-
sion (PMI) method to evaluate the change of the eddy cur-
rent due to a small defect and its effectiveness in improving
the computation speed has been verified through numerical
experiments.

Il. A-V EDGE-ELEMENT FORMULATION AND

PERTURBED MATRIX INVERSION

A. A-V EDGE-ELEMENT FORMULATION

Eddy currents can be induced by the time-varying magnetic
field within a conducting target. With the aid of the edge
shape functions and the nodal shape functions, the unknown
vector potential and scalar potential fields can be approx-
imated. In order to construct the shape functions for each
tetrahedral element, matrix transformation from global space
to local space can be used if isotropy is satisfied for every
edge element [20].

dx dy 0z
d d d
w5 %
o | — o — (1)
an  dn  9n
dx Jdy 9z
¢ 9 9
Ay = J71A, 2)
As = J A (3)
1 .
V XAy = mﬂv X vy )

where, J denotes the Jacobian matrix, xyz denote the coordi-
nates in the global space, §n¢ denote the coordinates in the
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local space, iv and )ALS denote the relevant components in the
local space and A, and Ay denotes the relevant components in
the global space.

Then combine approximated fields with the boundary
conditions, Galerkin equations can be obtained, shown as
followings:

/V X Nj - viAndQ—l—[ JjooN; ~AndQ—|—/0'Ni -VVHQ
(97 Qe S
:/ Vx Ni-voV X Agd2 i=1,2,...,6 (5)

[

/ja)GVL,“A”dQ—F/ oVL - VV'Q=0i=1,2,...,4
Qe Qe
(6)

where, V" denotes the scalar potential (voltage) of element
n. A" denotes the induced vector potential corresponding to
element n. ¢ denotes the media electrical conductivity. v
denotes the reluctivity in the free space domain. v denotes
the reluctivity for the target.

It is noted that, for every arbitrary element n, the matrix
Q" can be expressed by the stiffness matrix form which is the
combined by the left-hand terms of equations (5) and (6).

. [k I
0 —[Mn Nn} 9

From the aspect of the whole system, the whole system
matrix can be derived by combining equation (7) to equa-
tions (5)-(6) and expressed as

A1 Al

Q :AP: = prp [/pxq =AP=
Vi Max?  NIXq Vi

L L Vq_ . L Vq_

= Bwith, KP? = KPP L k5P (8)

According to equation (8), the K matrix consists of two
parts, the K; and K> matrices. K1 matrix represents the 1st A
term of equation (5) and it plays a role for the generation of
the basic A wave. K> represents the 2nd A term of equation (5)
and the eddy current diffusion effect can be revealed by K>
matrix. L represents the 1st V term of equation (5), and it
monitors the eddy current confined within the sample geome-
try (Maxwell-Wagner effect). M represents the 1st term of the
left-hand side of equation (6) and N represents the 2nd term
of the left-hand side of equation (6). The magnetostatic field
is governed by both of the terms. B represents the right-hand
side of equations (5) and (6), and it acts as the environmental
background field. p represents the order of the edge. g repre-
sents the order of the vertex. The pre-conditioning technique
is also applied to increase the accuracy of the calculated A
and V of the whole mesh.

After obtaining A and V of the whole mesh through equa-
tion (8), the electric field can be formed by combining the
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canonical A -V formulation with the Coulomb gauge [21]:
E" = —joA" — VV" ®

According to the principle of Lorentz reciprocity in [22],
the inductance measured by the sensor can be derived:

1 1
ML= [ BaJodv = s [ Bo- By oumany v (10
jol* J; joI*J.
where, AL represents the variation of the inductance due to
the substrate domain of g and .

B. ACCELERATION BASED ON PERTURBED

MATRIX INVERSION

Fast eddy current computation is vital for non-destructive
testing. The perturbed matrix inversion (PMI) method was
used for solving the linear system of equations in FEM when
a small defect is present on the sample. As described in
equation (8), it can be regarded as solving a large system of
algebraic equations. Assume that a small defect is present on
the sample, the system matrix is a slightly varied matrix to
the sample without the defect. The variation matrix (or the
perturbation matrix) due to the defect can be expressed as

-K2  -L
b= Y] an

According to the Sherman-Morrison-Woodbury formula,
the inversion can be expressed as

@+D)t=0r-0o o t+pH ot 12

Then substitute @~ with @', then equation 11 can be
simplified as [23]

Q+D =0 -0DI+ QDY (13)

Consequently, the solution can be obtained through the
PMI method. All the computations were operated on the
platform ThinkCentre M910s, with 16GB RAM and Intel

Core i7-6700 processor.

11l. NUMERICAL EXPERIMENTS AND VERIFICATION

OF THE PMI METHOD

A. MODELS

In Fig. 1, the objects have been modelled as an unflawed
metallic plate and a metallic plate with a defect in the centre.
For both metal plates in (a) and (b), the length, width and
height are 20 mm, 20 mm and 5 mm respectively. For the
metal plate with the defect in (b), the simulated defect is
placed in the centre with a length of 5 mm, a length of 0.5 mm
and a height of 3 mm. Two blocks are centred at (10, 10,
2.5) mm. To validate the solver, two materials are chosen
for the metal plates, one is aluminium with the electrical
conductivity of 35 MS/m at 20 degrees, and another is copper
with the electrical conductivity of 57 MS/m at 20 degrees.
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FIGURE 2. Sensor configuration.

TABLE 1. Sensor parameters.

Radius of excitation coil ry 0.5 mm
Radius of receiving coil 1, 0.5 mm
Height of coil h 0.25 mm
Gap between two coils g 0.2 mm
Lift off I, 0.05 mm
Thickness of the plate ¢ Smm

B. SENSOR CONFIGURATION

The sensor schematic and the sensor parameters are exhib-
ited in figure 2 and table 1, a coaxial sensor is used in the
simulation process. Both the radius of the excitation coil and
the receiving coil are set to 0.5 mm. The lift-off of the sensor
is 0.05 mm and the gap between the excitation coil and the
receiving coil is 0.2 mm. The magnitude of the injection
current in excitation coil is 1 A. During the simulation for
crack inspection, the coils are moving in parallel along the
y-axis (from (10, 0, 5) mm to (10, 20, 5) mm).

C. TESTOF THE ACCELERATED FEM

According to the Dodd Deeds formulas, the inductance varia-
tion due to the sample plates (aluminium and copper) without
defect can be calculated, shown in figure 3 and figure 4. The
sweeping frequency changes from 10 Hz to 1 MHz in the
analytical solution.

It can be seen from the figures above that edge FEM simu-
lation and analytical results are matched well with each other
under the frequency range from 10 Hz to 100 kHz. Compared
with the results from the aluminium plate, the characteristic
frequency reduces when the copper plate was used, which is
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FIGURE 3. The real part of the inductance due to the aluminium and
copper plate without defect.
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FIGURE 4. The imaginary part of the inductance caused by the aluminium
and copper plate without defect.

in accordance with the relationship between the conductivity
and the characteristic frequency. In addition, given that the
solution from analytical formulas is the results for the plate
with infinite width and length, for the imaginary part of the
inductance results, there exists some error as the frequency
sweeping from 100 kHz to 1 MHz.

D. ACCELERATION PERFORMANCE IN CRACK

SCANNING

As the perturbation matrix due to the presence of the defect
on the sample was assigned to be the perturbation matrix D,
the acceleration performance from the PMI approach can be
obtained in order to detect the presence of the defect. The
result of the PMI approach was compared with that calculated
from the conventional conjugate gradient squared (CGS)
method. The frequency was set to 10 Hz. The defect depths
of the sample plate are 1 mm, 2 mm and 3 mm respectively.
The results are shown in the following subsections.
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FIGURE 5. Computation results for the aluminum plate with different
depths of defect, lift-off is 0.05 mm.
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FIGURE 6. Computation results for the copper plate with different
depths of defedt, lift-off is 0.05 mm.

1) VERIFICATION OF THE PMI-BASED

ACCELERATION SOLVER

Figures 5 and 6 demonstrate the changes of induced voltage
on the receiver coil as the sensor scans along the y axis above
the sample plates (figure 1(b)) with three different depths of
the defects under the same frequency and lift-off. It can be
seen that CGM and PMI methods agree well. As expected,
the maximum value (peak value) of the voltage occurs at the
center of the sample where the defect is located. The deeper
the defect is, the larger the change in the induced voltage.
There is a larger drop as defect depth increases fromlmm to
2 mm than from 2 mm to 3 mm, which is due to the strength
of eddy current decreases as the depth increases. Compared
with the results from the aluminum plate, the change of the
received voltage from the copper plate is slightly larger which
is due to a higher conductivity for copper.

Figure 7 illustrates the effect of the lift-off for the crack
detection simulated from the copper plate with a 3 mm depth
defect in the middle of the plate. The lift-off of the sensor
is 0.05 mm and 0.5 mm respectively. The results from both
methods agree well and the peaks of the voltage change are
located at the same place. With the increase of the lift-off,
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FIGURE 7. Computation results for the copper plate with different
lift-offs.
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FIGURE 8. Computation time of PMI method and CGS method for
different scanning sample numbers.

the peak value decreases around 2.5 times which also proves
the lift-off is one of the crucial factors in the crack detection
process.

2) EFFECT OF SAMPLING POINT DENSITY

DURING SCANNING

The effect of the sampling point density for crack detection is
presented in Fig. 8. The aluminium plate with a 3 mm depth of
defect was used in the simulation process. The computation
time varies from 100 s to 300 s for each scanning process by
using the PMI method while it consumes 300 s to 900 s by
using the conventional CGS method as the scanning sample
points increasing from 50 to 150 in the step of 4. It can
be noticed that the computation speed of the PMI method
is about 3 times faster than the conventional CGS method.
As the sampling point density increases, the time needed is
increasing linearly and the time for high density of sampling
points shrinks a lot as using the accelerated method.

3) EFFECT OF FREQUENCY

As shown in Fig. 9, the relationship between the frequency
used in the simulation and the computation time is plotted.
The frequency used ranges from 10 Hz to 10 kHz in a
logarithmic scale in the simulation process. After adopting
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FIGURE 9. Computation time of PMI method and CGS method under
different frequendes.

TABLE 2. CGS method and PM1 method computation time for different
defect depths.

Computation Time (8)
Defect Aluminiom Copper
Depth PMI CGS PMI CGS
1mm 165.64 436,32 166.12 446.55
2mm 168.64 449,51 167.97 45031
3mm 170.96 458.12 167.79 455.75

the PMI method, the scanning speed is much faster than
the conventional CGS method. The computation time used
for PMI and conventional CGS methods almost remains
stable regardless of frequency settings, around 200 s, and
550 s respectively. It can be concluded that the acceleration
efficiency remains almost the same concerning the frequency
in the scanning process.

4) EFFECT OF DEFECT DEPTH

As can be seen from table 2, for the PMI method, the compu-
tation time slightly increases as the defect depth increases to
3 mm when aluminium plate was used while the speed almost
maintains stable when the copper plate is used. Meanwhile,
for the CGS method, the computation time increases no mat-
ter which material is used. It can be noticed that the accel-
eration efficiency under the defect depth of 3 mm is slightly
higher than that under the defect depth of 1 mm and 2 mm.

IV. CONCLUSION

This paper has proposed a method to accelerate the compu-
tation for the crack detection in FEM eddy current calcula-
tion by using a PMI method. Based on the perturbed matrix
inversion (PMI) method, the effect of the perturbation matrix
caused by the defect can be easily taken into account without
inverting a full matrix.

From the results of the numerical tests, a good agreement
can be found between the edge FEM and the analytical
solution by Dodd and Deeds, which verifies the accuracy
of the FEM solver. Besides, the PMI method agrees with
the conventional CGS method but has higher computational
efficiency. In numerical tests, two materials (aluminium and
copper) are modelled. The results from both materials showed
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that the computation time by the PMI method was short-
ened about 3 times compared with that by the conventional
CGS method. Moreover, the acceleration efficiency is slightly
related to the crack depth due to the degree of perturbation on
the stiffness matrix with different crack depths, but it remains
almost the same for the frequency used in the scanning
process. It should be noted that the initial inversed stiffness
matrix Q needs to be calculated prior in order for this method
to be effective.

APPENDIX

Firstly, the Dodd Deeds formulation is applied in order to
obtain the variation of the inductance between the trans-
mitter and receiver due to the presence of the testing sam-
ple [24], [25]. The complex inductance variation can be
represented as

AL(w) = L(w) — Ly (w) (14)

where: L(w) and L (w) denotes the inductance with and
without the presence of the sample.

The equations of Dodd Deeds analytical formulation are
shown in followings:

oo p2

Allw) =K f 3 (:)A(a)go(a)dd (15)
0 a

@) = e1ta)en —a) — (e + a)or — e 16)

s —(ag — a)ag — @) + (1 + @) +a)edae

o =/ a2 + jwo o (17)
N JTM()NZ

K= -y v

Pla) = f 2le()c)d.)c (19)

ary
A(C!) s e—a(210+h+g)(e—2ah - 1) (20)

where, ¢ represents the sample thickness. o represents the
sample conductivity. o represents the magnetic permeability
in the vacuum space. ry and r; represent the inner and outer
radii of the probe. & and I, represent the probe height and the
lift-off of the sensor probe. N represents the coil turns.
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Chapter 8 A novel acceleration method for
eddy current crack computation using finite

element analysis

Ruochen Huang, Mingyang Lu, Zigi Chen, Yuchun Shao, Gang Hu, Anthony Peyton,

Wouliang Yin

NDT & E International, submitted.

In this chapter, due to the fact that a small crack only causes a small perturbance of the
fields in the surrounding region. Based on this feature and by solving the field of crack
surrounding region, a novel crack calculation acceleration method is proposed. Both
the eddy current and the inductance change due to the sample plate are calculated and
it shows that the more the element number, the more the computation speed increases.
The experiment of crack scanning has also been conducted and the results agree with

the simulation results.
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Abstract

Finite element analysis plays an essential role in the field of eddy current computation
and analysis for non-destructive testing applications. There are some analytical
solutions that can be used to solve eddy current problems, however, in most cases, there
IS no suitable analytical method, i.e., the test sample with arbitrary geometry or with
arbitrary shape of crack. Therefore, finite element method is a fundamental tool in

conducting the investigations. A key feature of using finite element method for eddy
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current simulation is being versatile but slow. In this paper, exploiting the fact that the
crack only causes a small perturbance in fields in the surrounding region, a novel crack
calculation acceleration method is proposed. The algorithm proves that the calculation
can be mainly executed within the perturbance domain. Both numerical and
experimental tests have been conducted for verification. The speed of the calculation is
enhanced greatly (up to 34 folds in the tested cases) while deviation from the full
solution is within 5%. Moreover, the measured results have a good agreement with the

simulated ones under different depths of crack.

Keywords: finite element method, crack detection, eddy current, acceleration.

Introduction

Non-destructive techniques have been widely applied in the industrial applications due
to its merits, i.e., non-contact, reliability and no damage to the target [1-2]. Eddy current
testing, as one of the categories, is commonly utilised to measure the product
characteristics, i.e., electrical conductivity and magnetic permeability [3-5], predict the
coating thickness [6-8] and detect the crack existing in the target sample [9-10]. As
known, due to the aging and long-time running, the presence of the crack can lead to
severe consequences and financial losses. Thus, the facilities would be examined

regularly to prevent from unexpected failure [11-12].

Many researches have been investigated and carried out to detect the crack using the
eddy current testing methods. In [13], Nafiah, et al. used the features extracting from
the scanning data to develop different models (multiple linear regression model,
hierarchical linear model and artificial neural network) to predict the depth and angle
of the crack. From the results, it was found that ANN model has the most accurate
performance compared with other models. A sensor probe with orthogonal transmitters
was made to produce different excitation current for crack detection and proved to be

feasible [14]. Besides, Liu, et al. designed a non-encircling sensor structure with L
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shape using electromagnetic tomography to achieve the reconstruction of rail defect
inspection [15]. In [16], Yang et al. considered the uniform sensitivity property of the
rotational electromagnetic field and applied it into the detection for the crack with
arbitrary angle. However, both sensor design and data analysis require accurate

modelling of the eddy current phenomena.

To precisely simulate the eddy current problem due to the effect of the crack, there are
various methods and can be generally divided into three groups, that is, analytical
methods, finite element methods and integral equation techniques. Analytical methods
are generally fast and convenient for computing eddy current in some special cases, i.e.,
an infinitely long-slot crack [17] and co-axial hole [18]. For example, Lu, et al.
developed the analytical solution for triple-coil drive-pickup EC sensor probe to
identify the orientation of the surface crack [19]. Compared with analytical methods,
finite element methods and integral equation techniques have the capability to solve the
eddy current problem for arbitrary geometry of crack or target sample and the sensor

setup.

In solving the problem caused by the presence of the crack using the integral
formulation, volume integral [20-23] can be considered for the scattered field. The
dyadic kernel was applied by Bowler and Jenkins, the direct and reflected field can be
calculated due to the perturbance of the open crack and meets the continuity for the
boundary [20]. Supported by the dedicated kernel which lessens massive computations
for the number of unknown variables, the eddy current problem due to the existence of
the edge crack in the conductive quarter region can be addressed [23]. Besides, the
crack with negligible width can also be treated as a surface with jump in the
electromagnetic field between the crack and the conductor [24]. The boundary
condition for the crack in the thin skin regime introduced by Bowler and Harfield
satisfied with the 2-D Laplace equation and the impedance change can be derived [25].

Several researches for the development of the finite element methods for different cases
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have been conducted for decades, including curved plates simulation [26],
ferromagnetic modelling [27-28] and conductive defect simulation [29]. Since the
received field is affected by the crack, the perturbed field can be calculated by
improving the formulations in most works. In order to ease the burden from the mesh
discretization, Badics, et al. introduced a thin sheet crack model for the crack which
satisfies the condition that the crack width is much smaller than other dimensions of the
crack [30]. In [29], to tackle the effect caused by the conductive crack, the parallel
component of the received signal can be calculated with the condition that the width of

a crack is less than the prepared database.

Due to the fact that the massive computation time is required to achieve high accuracy
from the simulation, reducing the running time is essential and several significant
progresses have been made during these decades in this aspect. Prestored database
method [27, 31-33] and FEM-BEM hybrid method [22, 31] are popular in solving this
kind of problem. Du, et al. proposed a fast calculation solver based on the FEM-BEM
method and database for ECT simulations and the running time was significantly
shortened with the guarantee of the accuracy [31]. Combining the finite element method
with the existing analytical methods for the unflawed area, the distorted field due to the
defect can be directly obtained [34]. The adaptive fast multipole method offers the
possibility to shrink the operations in the computation process and Rubinacci, et al,
proved its robustness in [35]. Moreover, new shape functions were presented by
Morozov adapting the eddy current caused by the crack and a small part from the entire
system was inverted to obtain the perturbed signal which lessons the burden of the
computation [22]. Lu, et al. proposed an accelerated method by using the optimized
initial guess from previous frequency calculation which reduces the iteration numbers
for the simulation [36]. With the aid of Darwin approximation, the subdomain
perturbation (SDP) formulation can be usefully adopted to simulate the near field for
eddy current problem both the accuracy from the low frequency aspects and the

computation speed [37].
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In this paper, to address this issue, a fast crack calculation method is proposed. Due to
the presence of the crack, the system is mainly affected around the crack area. Utilising
this feature, the solution due to the perturbation by the crack can be calculated. The
theoretical manipulations have been presented in the following part and numerical and

experimental tests have been carried out for the verification of the proposed method.

Theoretical manipulations for crack calculation

A. Edge element analysis based on FEM
Finite element method (FEM) is a powerful tool in electromagnetic computing and is

widely used in the field of non-destructive testing. The FEM program based on A-V
Edge-Element Formulation was scripted in MATLAB by utilising the constructed mesh
models (mesh information, including coordinates of subdomain elements) of the tested
sample. Taking the boundary conditions into account, the Galerkin method is employed
to compute the scalar potential (V) and vector potential (A) of the whole domain. For

each tetrahedral subdomain element, the equations are shown as follows:

f VXN; vV X A"dN + f jwoN; - A"dN + f jwoN; - VVdN
0 0 0

=fnCV><Nl--v0V><ASdQ i=12,...6 (1)
J, jwoVL; - AdQ + [, jooVL;-VV"dD =0 i=12,...4 (2)

Where: N; denotes the ith edge shape (interpolation) function; L; denotes the ith nodal
shape (interpolation) function; 2. denotes the conductive region of the model; v and o
denote the reluctivity and the conductivity of the tested sample; v, denotes reluctivity

in the vacuum.

Considering the uniqueness of shape (interpolation) functions for individual tetrahedral
element, the coordinate transformation is used to converts the global coordinates (1,,, A;)
to the local coordinates (A,,4), in order to reduce the burden for computation.
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Consequently, the shape functions can be expressed as

ox oy oz

0 0f 0¢

N
]_ on 0n 0dn (3)

ox oy s

a¢ o¢ ¢
Ay =]_1iv (4)
As :]_1/15 (5)
\7></1,,=|]i|]T|7xi,, (6)

Where, J is the Jacobian matrix, A, is the vector component in the global coordinates,
A, is the scalar component in the global coordinates, 1, is the vector component in the

local coordinates, A is the scalar component in the local coordinates.

Combining equations (1) and (2), the whole system matrix can be derived as a linear

system of algebraic equations with the support of the stiffness matrix Q.

_[KPXP [pXa
- [qup quq] (7)
_ Al-
Ay X 8
Q Vl_ - ()
A

Here, p denotes the number of edges and q denotes the number of vertex nodes. K,
which is related to the summation of the first two terms of equation (1), mainly
dominates by the vector field and contributes to the generation of the vector potential.
L is the third term of equation (2), controlling the flow of the eddy current as it
encounters with the notch. M and N are the terms of left-hand side of equation (2),

satisfying the conditions of magnetostatic field. X is the terms of right-hand side of
152



equation (1) and (2), providing the background field of the entire system. Therefore,
the magnetic vector potential field A along all the edges and electric scalar potential
field V7 on all the vertex of the entire system can be calculated by equation (9). Then,

the eddy current produced in the tested sample is equal as
Js =0E = —jwcA — aVV 9

Where, E is the electric field contributed by both the vector and scalar potential field.

As stated in paper [38], the calculated inductance change (4L) due to the sample can be given as

- f E, Ej- (Ua - O-b)dv (10)

jwI? Jc

AL =

Here the inductance change is derived from the substrate domain of a and b.

B. Accelerated calculation for the algebraic system due to small
perturbation

The final solution of the FEM problem results in a large algebraic equation system, as
shown in equation (8). Considering that there is a small crack in the tested sample, the
original system matrix (crack free sample) can be expressed with the matrices
affected/unaffected by the small perturbation, shown as

Ki K, Ly Lp][Ay

Ky Ky Ly Ly|[Ac| _|Xa 1)
M, M, N; Np|[W

M; My N3 N LV,

Then reordering equation (11), four new submatrices (Q,;, Q12, @,; and Q,,) can be
used to present the current crack free system matrix and given as

Ky Ly Ky Lp][Ay

Ml Nl MZ NZ Vu — XuZ (12)
Ky L3 K, Ly4||Ac

-MS NS M4- N4- VC

o ollls= 1% (13)
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Where:Q,; = [Kl =, N4] S, =

My N, Q= M, Npl’*2t (M3 N
Au _ Ac _ Xul _ Xcl

o] se= o] %= L] e = [

Here submatrix Q,, represents the domain of elements which has no influence due to
the existence of the crack while submatrices Q,,, Q,; and Q,, represent the domain of
elements near the crack and are affected by this small perturbation. Submatrices Q,,
and Q,, are transposed. Matrix X is the right-hand side matrix of the system which is

partitioned into two column matrices X,, and X, and matrix S is the solution for the

matrix system, consisting of two submatrices S,, and S.. Then the system equations

change to
Q118y + Q125 = Xy, (14)
Q215 + Q225 = X, (15)

Now due to the presence of the crack, the left-hand side of the crack free sample system

matrix is very slightly perturbed. then the system equations with the small perturbation

turn to
Q11 Su, + (Q12 + AQ12)5c’ =Xy (16)
(Q21 + 8Q21)Sy" + (Q22 + AQ2)S." = X, (17)

Where: AQ;,, AQ,, and AQ,, are the submatrices affected due to the small perturbation.

S, and S_.' are the solution for the new system equations.

Since that the element domain of submatrix Q, is hardly affected by the presence of
the small perturbance, the vector and scalar solution of S,," for this domain is regarded

equal to the unperturbed solution without the crack in the sample plate, which gives

S, =S, (18)
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Using equations (18) and (15), the solution S." can be derived from equation (17).
S¢' = (Qz + AQ2) ' (—AQ21 Sy + Q225c) (19)
The solution S,.” should also satisfy equation (16). It can be proved as below.

By referring to [39], and assume that @, is the inversion matrix of @, then

(Q22 + AQ22) ™" = Qa2; — Q22,8022 (I + Q22,AQ22) Q22 (20)

Substitute equation (20) to equation (19), it turns to

, -1

Sc =S¢ = Q22,0215 + sziAsz(I + sziAsz) Q22;40215, — sziAsz(I +
-1

sziAsz) Se (21)

Now substitute equations (18) and (21) to the left-hand side of equation (16) and assume

that G = Q,, AQ,,, H = Q,, AQ,,, it gives

Q11 Sy + (Q12 + AQ12)S:’ = Q118 + (Q12 + AQ12)(S. — HS, + G(I + G)™'HS,, —
G+ 6)7ts,) (22)

The matrices AQ,,, G and H are perturbed matrices with small element values, terms
containing these matrices can be eliminated, then equation (22) can be approximated as

equation (23), which is satisfied with the right-hand side of equation (14).

Q11 Su, + (Qq2 + AQ12)5c’ ~ Q115 + 0125, = Xy, (23)

Consequently, equation (16) is valid. Therefore, the final solution of equation system

(16-17) with the perturbation of the crack can be approximately calculated as

S' =S
u u 24
{(sz +AQ52)S. = X, — (Qz1 + AQ21)S, @)

Combine the proposed method with the conjugate gradient squared method, the vector
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and scalar potential can be calculated.

Simulation setup

An EM sensor probe is designed for the simulations to verify the proposed method. As
shown in Fig. 1, the sensor probe is the co-axial type sensor. As listed in Table 1, the
exciting coil and receiving coil have identical radius and height. The sensor probe is
placed 0.5 mm above the sample plate and the gap between the coils is 0.5 mm. The
excitation current with the magnitude of 1 A and the frequency of 1 kHz is injected into
the exciting coil, the induced inductance with the presence of the sample plate can be
received from the receiving coil. The conductivity and thickness of the sample plate is
setto 57 MS/m and 2 mm respectively. It can be seen from Fig. 2 that there are different

shapes of crack would be tested. These cracks are generated in the middle of the sample

plate.

ﬁ
ﬁ

Fig. 1 The configuration of EM sensor probe

TABLE |
Coil Parameters

Exciting coil Radius (r,) 3mm
Height (h,) 0.3 mm
Receiving coil Radius (r;,) 3mm
Height (k) 0.3 mm

Lift off 1, 0.5 mm

Gap between the exciting coil and 0.5 mm
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receiving coil g

Thickness of the sample plate ¢ 2mm

Working frequency f 1 kHz

Fig. 2 Crack shapes (a) Triangle (b) Rectangle (c) Circular sector (d) X shape

Results

A. Verification of FE analysis
The movement of eddy current is a key point in the inspection of eddy current testing.

It would be disturbed due to the presence of the crack. As shown in Fig. 3, eddy current
flows on the sample plate without crack or with different shapes of crack. It can be seen
that the eddy current is rotational as there is no crack on the sample plate. Then when
it encounters with a crack, it will be flow around the edge of the crack but the overall
trend remains the same. From the vector diagram of the eddy current, the crack shape
can be seen clearly and same compared with Fig. 2. The inductance change due to the
sample plate with a rectangle crack under different element number was calculated. As
listed in Table Il, the deviation is within 5% and the speed of the computation is
significantly improved, i.e., the time for the calculation is shortened 3.79 times as the
total element number is 10 k with the variation of 2.56 % while 34.24 times as the total
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element number is 139 k with the variation of 3.56%. Fig. 4 shows the relative residual
of varying iteration number under different element number and it can be also revealed

that it needs less iteration cycles to achieve the convergence.
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TABLE Il

The accelerated rate and deviation of the inductance change due to the sample plate under different

element number

Element Number

Calculation time of the method

without acceleration (s)

Calculation time of the
proposed method (S)

Accelerated rate (times)

Calculation deviation (%)

10k 7.69 2.03 3.79 2.56
51k 57.74 3.56 16.22 3.22
139k 306.79 8.96 34.24 3.56
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B. Crack scanning
FE calculation can be used in the detection for the crack. As depicted in Fig. 5, the

sensor probe scans a crack with the length of 10 mm and the width of 0.5 mm in the
centre of the sample plate (same with the sample plate with a rectangle crack, shown in
Fig. 2(b) and Fig. 3(c)) and it scans along x and y axis respectively. The results agreed
with the simulation results without using the acceleration method and, as listed in Table
I11, the speed is enhanced approx. 7 folds. It can be noted that the sensor probe closes
to the crack, the received voltage is decreasing then stays stable and the voltage
increases until it leaves the crack. This phenomenon is due to the perturbance of the
crack, the distribution of the eddy current changes on the sample plate which results in

the change of the magnetic field.
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TABLE Il

The computation time for one step

Scanning direction

Calculation time (s)

Proposed method

Method without acceleration

X axis

5.47

35.92

Y axis

5.68

36.08
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EMinstrument

Fig. 6 Experimental setup

TABLE IV
Experiment sensor parameters

Length (mm) 8

Excitation Width (mm) 4
coil Height (mm) 10
Turns N 20
Receiving Radius (mm) 0.5
coil Turns N 250
Lift-off [, (mm) 1
Excitation frequency (kHz) 20

Figure 6 shows the experimental setup consisting of an EM instrument, a sensor probe
and the sample plate. Then the detected data would be transmitted to the host PC. Here
a differential sensor probe was made for detecting different depths of the crack from
0.1 mm to 2 mm with the increment of 0.1 mm. The crack has the length of 10 mm and
the width of 0.1 mm. The sensor parameters are listed in Table IV. The lift-off of the
sensor probe was 1 mm and the working frequency was 20 kHz. The conductivity and
the thickness of the sample plate are 1.4 MS/m and 2 mm respectively. The received
and simulated data are plotted in Fig. 7. The simulated results are agreed with the
measured ones. It can be seen that, when the sensor probe scan across the crack, there
is a sine relationship between the scanning distance and the received voltage of the
measured and simulated data. The peak voltage is related to the depth of the crack, i.e.,
the deep the crack, the larger the received result. The peak voltage can be used to predict

the depth of the crack. Besides, it can be deduced that the length of the crack is 10 mm
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which is consistent with the sample crack.
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Conclusions

In this paper, an acceleration method using finite element method is proposed. Instead
of calculating the entire domain for the tested sample, it computes for the region
affected by the crack from the crack free region in the simulation. The algorithm is
proved effective in greatly shortening the computation time. For this method, the
larger the element number of the tested sample, the more the computation speed
increases. The accuracy has been verified by numerical tests and it can also be applied

for the detection of the crack.
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Chapter 9 Conclusions and future works

This chapter summarises the conclusions from previous chapters, followed by the

recommendation of future works.

9.1 Conclusions

In this study, it concentrates on the electromagnetic calculations in eddy current
problems. Electromagnetic simulations are significant in the first stage of the industrial
applications, which lay a solid foundation for the inversions of sample profile.
Analytical solutions and finite element methods are the two kinds of methods
commonly applied in eddy current testing techniques. Although the analytical solutions
proposed by Dodd and Deeds can solve many types of the models, there are still some
issues needed to be addressed, such as the conductive sample with finite dimension. To
address this problem, the proposed novel method for simulations for this occasion and
the thickness measurement have been carried out. Another issue in the testing is the
effect due to the lift-off of the sensor probe. For the permeability measurement, the
method to reduce the error on the phase of the signal due to the lift-off is proposed. For
finite element method, in order to increase the computation time in the simulation, the
customised solver can be accelerated by using the proposed methods for the crack

detection techniques, which are verified by both simulations and experiments.

9.1.1 Analytical solution based on Dodd and Deeds plate

model

A. Thickness measurement technique based on modified analytical method

In this section, a modified analytical solution for the metallic sample with a finite

dimension is proposed. Based on this method, an eddy current thickness measurement
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technique has been presented. Previously, it has been found that the Dodd Deeds
analytical solution cannot be applied to the situation when the radius of the testing
sample does not exceed 3-5 times of the sensor coil. In this thesis, an alternative initial
integral point ;.. has been found in the modified analytical solution for the finite-size
samples. From the results of measurements and modified analytical solutions, it is
shown that o, is related to the size of the testing sample, instead of the size of the
sensor. Moreover, o, has been found to be inversely proportional to the size of the
testing sample. By utilising this method, the thickness of the circular sample can be

accurately reconstructed with a small error within 2%.

In this method, the peak frequency feature (instead of the magnitude) is used to
reconstruct the thickness of the sample. Before measuring, the conductivity of the
sample material is taken as known. Besides, the samples have to be cylindrical, for non-
cylindrical shapes, the analytical solution is not valid. The results from the
measurements are obtained based on the coil-sample co-axially assembled condition.

Error will be induced due to axial offset situation.
B. Measurement of Permeability for Ferrous Metallic Plates

In this section, a compensation technique is developed for the relief of lift-off effects
on impedance phase for metallic ferrous plates. From the results, it can be easily
observed that both phase and signal (impedance/inductance) magnitude decrease as lift-
off increases. And the measured inductance or impedance can be used for the
compensation of impedance phase loss due to lift-offs via the proposed algorithms.
Based on the proposed phase compensation approach, a magnetic permeability
measurement technique was proposed that is also virtually independent of lift-offs. The

results have been verified with both measurements and simulations of selected cases.
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9.1.2 Finite element method

A. Acceleration method based on perturbed matrix inversion method

In this section, a method to accelerate the computation for the crack detection is
proposed in FEM eddy current calculation by using a PMI method. Based on the
perturbed matrix inversion (PMI) method, the effect of the perturbation matrix caused

by the defect can be easily taken into account without inverting a full matrix.

From the results of the numerical tests, a good agreement can be found between the
edge FEM and the analytical solution by Dodd and Deeds, which verifies the accuracy
of the FEM solver. Besides, the PMI method agrees with the conventional CGS method
but has higher computational efficiency. In numerical tests, two materials (aluminium
and copper) are modelled. The results from both materials showed that the computation
time by the PMI method was shortened about 3 times compared with that by the
conventional CGS method. Moreover, the acceleration efficiency is slightly related to
the crack depth due to the degree of perturbation on the stiffness matrix with different
crack depths, but it remains almost the same for the frequency used in the scanning

process.
B. Acceleration method based on a small perturbance of the crack

In this section, an acceleration method using finite element method is proposed. From
the fact that the crack only causes a small perturbance in fields in the surrounding region,
it computes for the region affected by the crack from the crack free region in the
simulation. By using the proposed algorithm, the eddy current disturbed by the crack
can be effectively simulated. The eddy current flows around the edge of the crack when
it is blocked by the crack. Besides, from the simulation results, the algorithm is shown
effective in greatly shortening the computation time (i.e., 3 times for 10k elements and

34 times for 139k elements). The accuracy has been verified by numerical tests with
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the deviation up to 5% and it can be applied for the detection of the crack.

In recent decades, approaches to hasten the calculation of electromagnetic problem can
be summarized into two kinds, that is, the improvements in the eddy current
formulations and the advancement of finding the solution. Some researchers proposed
novel formulations to address the crack perturbation problem with some
approximations/techniques, i.e., zero-thickness defect [1], dedicated kernel [2], FEM-
BEM combined method [3-4]. In this study, the formulations proposed by Biro [5] are
used to solve the electromagnetic problem and improve the computation in the
numerical solution process. In [6], some terms in the proposed formulations remain
unchanged (unaffected by the crack) so that they can be precalculated and stored in a
database. It can be used repeatedly for arbitrary geometry of the crack, consequently, it
saves the computation time. By introducing a preconditioner — the optimized initial
guess, a fast FEM approach was proposed for the evaluation of eddy current
formulation [7]. In this method, using the proposed computation algorithm with the
unperturbed field, it effectively shrinks the time needed for the crack inspection due to
the small perturbation. Moreover, compared with the acceleration method using PMI
method, it is more prospective for solving a large-scale crack detection model. The
larger the element number of the tested sample, the more the computation speed
increases. It further improved the computation efficiency due to the perturbance of the

crack.

Overall, the study aims have been achieved by using both analytical method and finite
element method. With the support of Dodd and Deed method, the thickness
measurement for finite dimension plate can be conducted with small error. Besides, the
permeability of the sample plate can be estimated without the lift-off effect. Further,
based on the finite element method, the proposed methods for solving the crack

perturbation problems can be employed to accelerate the computation speed.
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9.2 Future works

Based on the conclusions stated in this study, future works are recommended for the

further study of electromagnetic calculations.

(1) The modified analytical methods for the inductance calculation due to the sample
plate with finite dimension can be used for co-axial testing. The condition for the
axial offset between the sample and the sensor probe can lead to some error and it

is worth considering in the future.

(2) The analytical method used in the study is the plate model. In the future, more other
kinds of the model can also be considered by using the eddy current testing methods,

i.e. cylindrical model, spherical model.

(3) In the industrial manufacture, the sensor probe is commonly a ferrite-cored sensor
probe with higher resolution. In this study, the air-cored sensor is used for the
testing. Therefore, the analytical solution for the ferrite-cored sensor can be studied

and applied to the measurements.

(4) So far, the measurements are based on the multi-frequency eddy current testing
methods. The potential of the pulsed eddy current testing can be investigated. The
half-bridge circuit used in the pulsed eddy current testing is modified to produce
larger current so that signal to noise ratio of the system can be improved and suitable
for measuring plates of larger thickness. Further, the circuit can be manufactured
and tested, then the material properties profiling by using the pulsed eddy current

method can be studied.

(5) The proposed accelerated method using finite element method needs the pre-
computed field database. The preparation time is related to the generated mesh. In
the future work, by utilising the analytical solutions for the unperturbed field, the

time for the preparation of the database can be significantly shortened.
174



(6) For the solver based on the finite element method, there are some errors when the
test sample is magnetic material. It may be due to the skin depth effect which needs
very dense mesh to obtain accurate results. Therefore, a novel method can be
considered to reduce the error due to the skin depth effect. Further, the sensor with

ferrite core can also be considered in the simulation.
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