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ABSTRACT 

Eddy current testing, as one of the promising techniques in non-destructive testing, is 

widely applied in various industrial applications achieving high accuracy and 

contactless to the target. In the testing process, electromagnetic calculations are crucial 

to evaluate the performance of sensor probes and inversion algorithms. Electromagnetic 

calculation can be summarised mainly into two categories: analytical methods and 

numerical methods.  

For the analytical methods, Dodd and Deeds analytical solutions have served to 

calculate the eddy current problems for several decades, but it can only be applied to 

infinite plates. In this research, based on the finding that the sample radius is related to 

the integration range, the modified analytical method is proposed which is capable of 

calculating the problems for the case where the radius of the sample plate does not 

satisfy the assumption of infinity.  

Further, for the measurement of ferrous plate magnetic permeability, it suffers from the 

lift-off effect. With increased lift-off, the phase of the measured impedance for steel 

plates reduces. Meanwhile, the magnitude of the impedance signal decreases. Based on 

these facts, a novel algorithm is developed to reduce the error of impedance phase for 

ferrous steels due to sensor lift-offs. By utilising the compensated phase, the prediction 

for the permeability can be more precise.  

The finite element method, as a numerical method, is a versatile tool for eddy currents 

simulations. However, the computation speed of eddy current three-dimensional 

modelling is rather slow. Therefore, two methods to accelerate the customised solver 

for crack detection are proposed. Numerical tests and experiments have been carried 

out to verify the proposed methods. From the flow patterns of eddy currents and the 

calculated inductance change, the effectiveness and robustness of the accelerated solver 
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are proved. Numerical tests show that the computation time can be reduced significantly 

by utilising the accelerated approaches.  
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Chapter 1 Introduction 

In this chapter, the motivation of the research is presented, followed by the aim and 

objectives. Contributions throughout the research and the organization of the thesis are 

also summarised in the following sections.   

1.1 Motivation 

Non-destructive testing techniques have been applied in the fields of aerospace [1-3], 

rail transport [4-5], and pipeline testing [6-7]. Due to its advantage of high sensitivity 

and strong adaptability to the specimen, eddy current testing is widely used in thickness 

measurement, liquid level measurement, and defect detection, etc [8-12]. Generally, as 

a key indicator, the change of the coil impedance of sensor probe is observed in the 

measurements which results from the interaction between the primary magnetic field 

and the secondary magnetic field due to the eddy currents in the conductive samples.  

Eddy current computation plays an essential role in the development of eddy current 

techniques, which can provide theoretical support of investigating eddy current 

phenomena and comparison with measurements. Many works use analytical methods 

to analyse the performance of the electromagnetic (EM) sensor probe and measure the 

material properties, i.e., electrical conductivity and magnetic permeability. Dodd and 

Deeds analytical solution [13] has been widely applied in the calculation of the eddy 

current problems, which offers formulations of some special models, i.e., plate model 

and cylindrical model. However, there are some difficulties to adopt the analytical 

method into practical testing, including crack detection with various EM sensor setups 

and arbitrary geometries of test objects, still remaining for further investigation and 

exploration. 

The advent of the high-speed and high-capacity electronic computers offers another 
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possibility to address the eddy current problem. As one of the powerful numerical tools, 

finite element method (FEM) has been well developed for steady-state, time-varying 

field problems and nonlinear problems from two-dimensional calculation to three-

dimensional calculation [14-15]. The accuracy of FEM is highly related to the 

discretisation of the whole mesh model. In order to achieve high quality solutions, the 

dense model is commonly chosen which results in a high cost of computation. Besides, 

accelerating the computation speed of eddy current three-dimensional finite element 

modelling is also crucial in producing large amount of data for feeding into deep 

learning algorithms. Therefore, the acceleration for the finite element analysis is worth 

exploring in solving the eddy current problems, especially for inspecting conductive 

structure with the surface crack.    

1.2 Aim and Objectives 

The aim of the research focuses on EM calculations for eddy current problems by 

developing new analytical method for the case where samples have finite dimensions， 

exploring the compensation algorithm for the permeability inversion and studying 

FEM-based modelling solver for simulation of eddy current sensor inspecting surface 

crack. The objectives are listed as follows: 

1. To develop a novel theoretical approach adopted for samples with finite 

dimensions. Currently, the plate model proposed by Dodd and Deeds can be 

adopted for the infinite cases (the radius of the testing sample is normally 3-5 

times larger compared with the radius of the sensor coil). In this thesis, based 

on this model, the measured samples that do not meet this condition is 

investigated by finding the relationship between the integration point in the 

analytical model and the radius of the sample plate from both experiments and 

simulations.  

2. To carry out different types of measurements by utilising the proposed 
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theoretical method, for example, thickness measurement using the peak 

frequency feature.   

3. To develop a compensation approach for measurements of magnetic 

permeability for ferrous plates. Both the magnitude and the phase of the 

impedance signal reduces due to the increase of the lift-off. It will result in the 

error in permeability prediction. Therefore, an algorithm to reduce the lift-off 

effect is explored.  

4. To implement first/high order FEM eddy current solver for calculating eddy 

current problems. In the solver, it requires constructing the nodal and edge shape 

functions for each tetrahedral element by using local coordinate method for 

evaluating the element matrix and solving the whole system to obtain the 

simulated fields.  

5. To accelerate the FEM based solver for the eddy current problems in order to 

reduce the computation cost for the crack detection. Due to the existence of the 

small crack, the entire system is slightly perturbed by the small perturbance. In 

this thesis, strategies of hastening the computation of inspecting surface crack 

due to the small perturbance are explored.  

1.3 Contributions 

In this thesis, the contributions in the field of eddy current testing are summarised in 

the following aspects: 

1. Proposed a modified analytical solution for the metallic sample with a finite 

dimension. The novelty of this method is introducing an integral point which is 

found related to the radius of the sample plate so that the inductance change due 

to the finite sample plate can be calculated. With this method, it is capable of 

conducting thickness measurement for the circular samples and the thickness 



25 

 

can be accurately reconstructed with a small error within 2%. 

2. Proposed a phase compensation algorithm for ferrous metallic plates. It corrects 

the phase change due to lift-off from the magnitude of the impedance signal. By 

utilising the measured magnitude and zero-crossing frequency, the phase with 

zero lift-off can be deduced. From the measurements, it shows that the error of 

the permeability estimation from the phase compensation is reduced. 

3. Presented a novel method for accelerating eddy current calculation for crack 

detection using FEM and perturbed matrix inversion (PMI) method. This 

method based on PMI formulation only requires the inversion of a much smaller 

matrix and therefore improves the speed of the computation process. From the 

numerical tests, the computation time of the proposed method was shortened 

about 3 times compared with the original method. 

4. Proposed a novel crack calculation acceleration method for solving the system 

with the perturbance due to the small crack. This method is based on the fact 

that the crack only causes a small perturbance in fields in the surrounding region. 

In the calculation, by utilising the unperturbed field, the subdomain affected by 

the small crack is chosen and calculated. It proved effective in greatly 

shortening the computation time. For larger mesh element number, with the 

proposed method, due to the separation of the small crack perturbation field 

from the unperturbed field, the computation burden is released so that the 

accelerated rate is more significant (i.e., 3 times for 10k elements and 34 times 

for 139k elements).   

1.4 Organization of thesis 

This section introduces the organization of this thesis. It contains 9 chapters. 

Chapter 1 presents a basic introduction of the entire research, including the motivation, 
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aim and objectives, contributions and the outline of the thesis.  

Chapter 2 demonstrates the background of this thesis by reviewing the achievement 

made by other researchers in the field of eddy current testing, including eddy current 

computation and measurements using eddy current techniques.   

Chapter 3 presents the support theory of the thesis in eddy current testing, including 

Dodd and Deeds analytical method and the finite element method, introducing the 

computation of the inductance change due to the sample plate from both methods. In 

addition, the peak frequency feature of the inductance change is also introduced in this 

chapter.  

Chapter 4 presents an overview of the achievements made in this thesis. It can be 

concluded in three folds, the development of the analytical solution for samples with 

finite dimension, the permeability measurement for ferrous plate using the phase 

signature and the acceleration of FEM based solver due to the presence of the small 

crack.  

Chapters 5-8 present the related published works which are summarised in chapter 4.  

Chapter 9 presents the conclusions of the thesis and future works are also considered in 

this chapter.    

Overall, analytical methods and numerical methods are two kinds of basic techniques 

for solving the eddy currents problems. Due to the limitation of the Dodd and Deeds 

models that it requires the sample to be large enough to reach its assumption – infinity, 

it is found that the radius of the sample plate is related to the integration domain, the 

new analytical methods by introducing an initial integral point can be used to calculate 

the inductance change for finite dimension plate. Besides, during the measurement, the 

signal affects by the lift-off of the sensor probe. By utilising the measured data, a phase 

correction method to reduce the error introduced by the lift-off is proposed and the 
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permeability of the sample can be deduced. In addition, compared with the analytical 

methods, finite element method can be applied to object with any geometry, however, 

the disadvantage of finite element method is that it takes long time to obtain the 

simulated results. Therefore, two accelerated approaches are proposed for the 

acceleration of the FEM based solver. 
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Chapter 2 Background 

In this chapter, eddy current testing and its applications in industry are introduced. 

Firstly, the working principle of eddy current testing is stated, followed by the 

introduction of the electromagnetic calculation for eddy current problems. The 

applications using eddy current testing are also demonstrated. 

2.1 Eddy current testing  

With the non-contact capability and high sensitivity to the surface crack, eddy current 

testing has a promising prospect to interrogate the sample, which has been successfully 

applied in a variety of industrial applications. As shown in Figure 2.1, the working 

principle of the eddy current testing is that firstly an alternating current is injected into 

the excitation coil to generate an alternating magnetic field, then the eddy current is 

induced in the conductive samples. Thus, the receiving coil receives the signal 

contributed by both the primary magnetic field from the transmitter and that reflected 

from the sample. The variation of the received signal is examined and analysed to 

determine the underlying problems of the test sample with high detection accuracy [1-

3]. By using this method, it also has the potential of process monitoring [4-6].  

 

Figure 2.1 The working principle of the eddy current testing [7] 
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There are two mainstreams of eddy current testing techniques which are commonly 

used, namely pulsed eddy current testing and single/multi-frequency eddy current 

testing technique.  

2.1.1 Pulsed eddy current testing 

Pulsed eddy current testing, as a time domain method, injects a rectangular stimulus 

signal into the excitation coil during testing. Since the square excitation signal contains 

wide band of frequency data, the evaluation can be completed from frequency aspects 

by the decomposition process from the detected signal [8, 9]. For the excitation coil of 

the pulsed eddy current sensor probe, the coil size is selected to be large due to the 

dominated component from low frequency spectra. While from the receiving side, 

previously, the sensing coil are commonly implemented to detect the changing field 

[10-13]. Later on, it is found that it is more sensitive to detect the magnetic field by 

using the IC chip assembled with Hall sensor or Giant Magnetoresistive (GMR) sensor 

[14-17]. From the received signals, there are three important information can be 

extracted, which are the time to the peak value, the peak value and the lift-off point of 

the intersection respectively. Using these three significant features of the pulsed eddy 

current signal, the characteristic information of samples can be derived [18-21]. The 

signal from a differential-pulsed eddy current probe was used to evaluate the thickness 

of the metal plate in [22]. However, there was a trade-off between the peak value feature 

and the other two features. Until now, more features (zero crossing time, rising point, 

etc.) are investigated by researchers to further address the problems using pulsed eddy 

current testing [23, 24].  

2.1.2 Single/multi-frequency eddy current testing 

Compared with the pulsed eddy current testing, the single/multi-frequency eddy current 

testing only use one or a range of frequencies to conduct the measurements through the 
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consideration of the EM properties of the samples [25, 26]. For the single frequency 

eddy current testing methods, it is essential to choose a proper excitation frequency to 

optimise the performance of the sensor probe [27, 28]. Due to the skin depth effect 

which is related to the material properties (electrical conductivity and magnetic 

permeability) and the excitation frequency, the distribution of the eddy current differs 

from different excitation frequencies. In the aspect of the crack detection, for the 

inspection of the surface crack, a higher frequency is normally chosen while for the 

subsurface crack, a relative low frequency is used to detect deep area. However, the use 

of single frequency eddy current testing methods is limited so that multi-frequency eddy 

current testing methods emerge to overcome the constraints and provide more details 

from the response of the test sample [29, 30]. Therefore, the inversion of the profile of 

the test sample can be achieved accurately, i.e., surface inspection, EM property 

measurement [2-3, 31].     

2.1.3 Lift-off Effect 

The lift-off of the sensor probe is the distance between the sensor probe and the test 

sample. In the eddy current testing, the measured signal is sensitive to the lift-off of the 

sensor probe, resulting in unsuspected error in the inversion of material properties. In 

order to reduce the effect of the lift-off from testing, the approaches by using the eddy 

current techniques have been developed [32, 33]. Giguere, et al. proposed the lift-off 

intersection (LOI) point [10]. Many researchers were inspired by this study result [33-

35] and it was also implemented in the ferromagnetic samples [32]. Yu, et al. found 

that the rising time due to different lift-offs can be reduced by subtracting the signal 

received by zero lift-off and crack free sample [14]. Despite the approach using the 

changing magnetic flux [36] is sensitive to sample plate for the small lift-off, it can be 

utilised for larger lift-offs. Meanwhile, the larger lift-offs can cause a relative low signal 

to noise ratio (SNR), the algorithm based on cumulative integration [37] can be applied 

to enhance the SNR during the measurement. Furthermore, special sensor setups [38-
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40] and data processing strategies [41-43] to eliminate the lift-off effect are also 

exploited. In [44], by using the multi-frequency eddy current testing, it is found that the 

measured signals are independent to the lift-offs in phase spectra, which provides the 

possibility for the measurements that the change of the lift-off is smaller than the pole 

distance of the sensor probe. By utilising these novel techniques, the prediction for the 

sample material can be accurately achieved and make sure the prediction is within a 

reasonable error.  

2.2 Electromagnetic simulation for eddy current problems 

Eddy current testing methods require the support from simulations. To precisely 

simulate the eddy current problems, there are various methods and can be generally 

divided into two groups, that is, analytical methods and numerical methods. For the 

analytical methods, it is fast and convenient for the researchers to compute the 

electromagnetic field for specific cases. Compared with analytical methods, numerical 

methods have the capability to solve the eddy current problem for arbitrary cases, i.e. 

arbitrary geometry of test sample or crack and the sensor setup. However, in order to 

obtain accurate simulation results, a dense mesh model would be generated which leads 

to slow computation. In the following sections, both methods will be introduced in 

detail and the acceleration for numerical methods is also stated.  

2.2.1 Analytical methods  

In recent decades, many researchers have been dedicated in the development of the 

analytical methods. In 1960s, Dodd and Deeds proposed a series of analytical solutions 

for the eddy current probe-coil problems [45-46]. It is capable of calculating impedance 

change for the air-cored sensor probe and provides sufficient theorical support to many 

works regarding eddy current problems [47-49]. By setting the boundary conditions for 

the magnetic field for the test sample, Theodoulidis, et al. introduced the summation 
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expressions with the usage of the eigenvalue of the Bessel function which can be used 

to calculate the impedance of the coil for the truncated cases, namely truncated region 

eigenfunction expansion (TREE) method [50]. The high computational efficiency is 

proved by the good performance of the magnetic field computation for the multi-

layered specimens [51]. With the aid of the TREE method, Tytko et al. proposed a 

computation method suitable for both the E-cored coil with the circular air gap and the 

air gap of I-cored coil [52]. The formulations for typical system configurations are also 

provided, including ferrite-cored probe [53], rectangle planar coil [53], continuous 

conductivity material [55], tilted coil [56]. For the case where the coil is located at the 

corner of the test sample, the edge effect should also be considered. The analytical 

model was presented to obtain a better view of the interaction from the edge of 

conductor [57]. Moreover, not only the crack free model, the expressions for the crack 

models are also derived by the researchers. In [56], the impedance change due to the 

long crack can be derived by using the thin-skin theory – the skin depth is relatively 

small compared with the length and the width of the crack (at least three times) [58]. 

Based on this formulation, the analytical solution for triple-coil drive-pickup EC sensor 

probe was developed to identify the orientation of the surface crack [59].         

2.2.2 Numerical methods  

So far, when it comes to the numerical analysis for electromagnetics, diverse methods 

are proposed to solve for different situations of the eddy current problems, which can 

be roughly summarised into two groups, finite element methods and integral equation 

techniques. In solving the problem caused by the presence of the crack using the integral 

formulation, volume integral [60-63] can be considered for the scattered field. The 

dyadic kernel was applied by Bowler and Jenkins, the direct and reflected field can be 

calculated due to the perturbance of the open crack and meets the continuity for the 

boundary [60]. Supported by the dedicated kernel which lessens massive computations 

for the number of unknown variables, the eddy current problem due to the existence of 
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the edge crack in the conductive quarter region can be addressed [63]. Besides, the 

crack with negligible width can also be treated as a surface with jump in the 

electromagnetic field between the crack and the conductor [64]. The boundary 

condition for the crack in the thin skin regime introduced by Bowler and Harfield 

satisfied with the 2-D Laplace equation and the impedance change can be derived [65].       

Several researches for the development of the finite element methods for different cases 

have been conducted for decades, including curved plates simulation [66], 

ferromagnetic modelling [67-68] and conductive defect simulation [69]. Since the 

received field is affected by the crack, the perturbed field can be calculated by 

improving the formulations in most works. In order to ease the burden from the mesh 

discretization, Badics, et al. introduced a thin sheet crack model for the crack which 

satisfies the condition that the crack width is much smaller than other dimensions of the 

crack [70]. In [71], to tackle the effect caused by the conductive crack, the parallel 

component of the received signal can be calculated with the condition that the width of 

a crack is less than the prepared database.  

2.2.3 Acceleration for the numerical methods  

Due to the fact that the massive computation time is required to achieve high accuracy 

from the simulation, reducing the running time is essential and several significant 

progresses have been made during these decades in this aspect. Prestored database 

method [67, 71-73] and FEM-BEM hybrid method [62,71, 74-76] are popular in solving 

this kind of problem. A fast simulator based on the precomputed unflawed database 

approach was proposed in [72] for the evaluation of the crack size. Due to the advantage 

of its detectability, this method can be used for crack reconstruction. For FEM-BEM 

method, it combines the boundary element region with the finite element region to 

obtain a solution of the non-uniform material distribution. Du, et al. proposed a fast 

calculation solver based on the FEM-BEM method and database for ECT simulations 
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and the running time was significantly shortened with the guarantee of the accuracy 

[71]. Combining the finite element method with the existing analytical methods for the 

unflawed area, the distorted field due to the defect can be directly obtained [77]. The 

adaptive fast multipole method offers the possibility to shrink the operations in the 

computation process and Rubinacci, et al. proved its robustness in [78]. Moreover, new 

shape functions were presented by Morozov adapting the eddy current caused by the 

crack and a small part from the entire system was inverted to obtain the perturbed signal 

which lessons the burden of the computation [62]. Lu, et al. proposed an accelerated 

method by using the optimized initial guess from previous frequency calculation which 

reduces the iteration numbers for the simulation [79]. Combining Darwin 

approximation with the first-order subdomain perturbation (SDP) formulation, a low 

frequency stable formulation was proposed to simulate the near field for eddy current 

problem. In low frequency range, Darwin approximation can decouple the inductive 

and capacitive effects from the system. The computation speed improved significantly 

because the computation burden released from the two sub-problems (the unperturbed 

and perturbed field) compared with the total field simulations [80].  

2.3 Applications based on eddy current testing 

Eddy current testing, as one of the most universal non-destructive techniques, has 

extensive applications for thickness measurement, the inspection of material integrity 

(e.g. crack detection) and the evaluation of material properties (e.g. electrical 

conductivity and magnetic permeability). In the following sections, three types of 

measurements are stated with the support of the eddy current testing in pursuit of a 

better inspection of the test sample.  

2.3.1 Thickness measurement  

Due to the presence of the thick coating, the lift-off effect in pulsed eddy current testing 
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can be reduced by using the reference signals and normalization process [33] and it is 

found that the sensitivity of the sensor coil would be boosted with higher lift-off under 

a certain range of the coil gap [81]. With the support of the look-up table, Tai et al. 

developed a pulsed eddy current technique-based equipment to measure the sample 

thickness [47]. In [82], Fan, et al. proposed that the thickness can be evaluated by using 

the phase of the pulsed eddy current signal which was observed independently to the 

lift-off.  

The potential of multi-frequency eddy current testing has also been explored. It has 

been found that the phase signature from the sensing coil can be used to measure the 

thickness of the metal sample [83-84]. In [85], with the robust feature between the peak 

frequency of the inductance change and the sample thickness, the error of the 

reconstructed thickness could be achieved within 3%. Models and signal processing 

methods are also introduced to estimate the thickness of the sample. Fan, et al. proposed 

the model-based inversion by incorporating the non-ideal behaviour of the eddy current 

sensor proved its reliability in terms of lift-off elimination to deduce the thickness of 

the plate [86]. A novel triple planar coil was been designed for the thickness 

measurement in [87]. The proposed algorithm used single frequency measurement 

approach could improve the testing efficiency which has a potential to apply for real-

time measurements.  

In this thesis, the thickness measurement for the conductive plate with finite dimension 

can be predicted by utilising the modified analytical method with an introduced initial 

integral point. There is a linear trend between the reciprocal of the integral point and 

the plate radius. With the aid of the peak frequency of the inductance change, the 

thickness of the conductive plate can be estimated.  

2.3.2 EM properties measurement  

A precise estimation of the electrical conductivity and the magnetic permeability of the 
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test sample is essential in many applications. Combining the experimental 

measurements and the digital data processing by utilising the linear combination of 

Walsh functions, the experimental method proposed by Egorov et al. provides high 

accuracy and reliable classification of the material properties in the process of 

aluminium alloy testing [88]. Halleux et al. developed an equivalent simplified physical 

model for the electrical conductivity measurement and it can be applied in a wide range 

of metallic samples [89]. Moreover, a robust method by using frequency-dependent 

eddy current measurements was presented by Moulder et al. to determine the electrical 

conductivity of the uniform conductive layers [90]. Conductivity profiling from 

inductance spectroscopic measurements [91] and the conductivity measuring 

instrument for semi-conductors [92] also have been explored. 

In terms of permeability measurements, it is still challenging to determine the 

permeability of the material due to the influence of the environment condition and the 

material conductivity on the response signal. A novel method that can measure the 

conductivity and permeability of the metal samples simultaneously was proposed by 

Ma, et al. [3]. The conductivity can be obtained by the impedance change of the signal 

while the permeability can be measured by utilising the imaginary part of the signal. 

The results were proved to be accurate but the frequency range is limited for estimating 

permeability. Yu et al. proposed the conductivity invariance phenomenon and 

developed a device to determine the permeability by decoupling the influence of the 

conductivity and permeability [93-94]. Besides, a novel algorithm to compensate for 

the zero-crossing frequency point caused by the lift-off effect was proposed by Lu et al. 

and the error caused by the lift-off can be reduced to 7.5% [42, 95]. 

In this thesis, due to the fact that the phase error caused by the lift-offs is non-negligible 

under more precise non-contact measurement with significant lift-offs, a novel 

approach to obtain the correct phase change is developed and therefore the permeability 

of the sample can be estimated more accurately.  
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2.3.4 Crack detection  

Surface crack detection is one of the most essential issues for researchers and engineers 

to improve the service life of the equipment. A small crack can lead to an unreliable 

structure which can greatly shorten the service life of the equipment. Eddy current 

techniques developed for the detection of the crack can effectively prevent unnecessary 

loss and damage. With the presence of the surface crack, the induced eddy current is 

disturbed so that the crack can be detected from the received signal. The crack types in 

the rail can be distinguished by utilising the magnitude and phase of the received signal 

[96]. It is found that they are related to the surface roughness and crack respectively. 

The design of the sensor structure is also essential to improve the sensitive and the 

performance in the process of the inspection, i.e. inclined angle sensor probe [97], 

multi-line excitation coil [98], hybrid differential and absolute probe [99] and 

orthogonal coils [100].  

From the detection, it should be capable of obtaining both the geometry and the 

orientation of the crack. To obtain the orientation of the crack, crack imaging is a direct 

method to acquire the position in the test sample. In [101], it shows that, from the 

collected surface data, the plotted imaging can clearly identify the position of the crack. 

Besides, various excitation profiles of the EC inspection have been proposed to 

quantitively determine the position and size of surface cracks [102-104]. Xu, et al. 

proposed a novel rotating focused eddy current technique which can be used to detect 

arbitrary orientation of the crack. Under this excitation strategy, it suggested that the 

magnitude of the signal stays unchanged for different crack orientations which can be 

used to estimate the depth of the crack. Besides, there is a decreasing trend between the 

orientation of the crack and the phase of the signal. Based on these features, both the 

depth and the orientation of the crack can be deduced [102]. Moreover, the effect of the 

lift-off can also affect the performance of the sensor probe. The phase imaging is more 

effective compared with magnitude imaging under small variation of the lift-off [105]. 
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Yu, et al. found that the rising time due to different lift-offs can be reduced by 

subtracting the signal received by zero lift-off and crack free sample. Taking the merit 

of the linear relationship between the peak value and the lift-off, the depth of the crack 

can be inferred with the maximum error of 6% [14]. Furthermore, the algorithms to 

classify the defects are also explored, i.e. multilayer perceptron neural networks [106] 

and K-means algorithm [107].  

For crack detection, numerical simulation gives the theoretical support and suggestions 

before carrying out experiments (i.e. finding the optimal sensor setup and excitation 

frequency). However, it is rather slow to obtain the simulation results from 3D finite 

element model. In this thesis, in order to hasten the computation speed, the acceleration 

strategies for the finite element method can be used for the crack detection. Due to the 

small perturbation of the crack, by utilising the accelerated solver, the results can be 

quickly obtained by solving the inversion of a much smaller matrix which can 

significantly improve the simulation speed.  
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Chapter 3 Support theory  

In this chapter, both the analytical method and the numerical method are introduced to 

calculate the inductance change due to the test sample. It includes Dodd and Deeds 

formulations for the plate model and the developed finite element method for 

electromagnetic modelling.  

3.1 The inductance calculation based on Dodd & Deeds 

model 

In the field of eddy current testing, the mutual inductance between the excitation coil 

and the sensing coil is a key indicator of the property of the tested conductive sample. 

The analytical solution of the coils upon an infinite large testing plate given by Dodd 

and Deeds has provided a strong theoretical basis. 

3.1.1 Inductance calculation for co-axial sensor probe 

 

Figure 3.1 A coil above an infinite conductive plate 

The co-axial sensor probe is commonly used in the eddy current testing. According to 

Dodd and Deeds model [1], it considers the sample plate as an infinite conductive plate. 
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The inductance change due to the presence of the sample plate induced by the sensor 

probe with two identical coils is calculated. As shown in Figure 3.1, for the model of a 

coil above the infinite testing plate, the vector potential generated by the excitation coil 

in the r-z axis plane is, 

 
A(r, z) =

Iμ0Ne

2
∫

J1(αr)P(α)

α3

∞

0

K(z, α)ϕ(α)dα 3. 1 

With 

ϕ(α) =
(α1 + μ1α)(α1 − μ1α) − (α1 + μ1α)(α1 − μ1α)e2α1D0

−(α1 − μ1α)(α1 − μ1α) + (α1 + μ1α)(α1 + μ1α)e2α1D0
 3. 2 

 α1 = √α2 + jωσμ0μ1 3. 3 

K(z, α) = (2 − eα(z−le2) − e−α(z−le1))/ϕ(α) + e−αz(e−αle1 − e−αle2) 3. 4 

 
P(α) = ∫ τJ1(τ)dτ

αre2

αre1

 3. 5 

Where: D0 ,  μ1 , and 𝜎  denote the thickness, relative permeability, and electrical 

conductivity of the sample plate. μ0 represents the permeability of the free space. ω 

denotes the working angular frequency for the excitation current. I denotes the 

excitation current. Ne denotes the turns of the excitation coil. 𝑟e1 and re2 denote the 

inner and outer radii of the excitation coil. le1 and le2 denote the lower and upper height 

of the excitation coil. J1 denotes a first order Bessel function of the first kind. α and τ 

are the integration variables. 

Further, the induced voltage on the receiver coil is the integral of the induced vector 

potential over the whole receiver coil. 

 
V = Nvjω∫𝐀ds

s

=
2πNvjω

(lv1 − lv2)
2(rv1 − rv2)

2
∫ ∫ rA(r, z)drdz

rv2

rv1

lv2

lv1

 3. 6 

Where: lv1 and lv2 denote the lower and upper height of the receiver coil. rv1 and rv2 
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denote the inner radius and the outer radius of the receiving coil. Nv denotes the turns 

of the receiving coil.  

Then the received voltage with the presence of the sample plate (V𝑠𝑎𝑚𝑝𝑙𝑒) and the 

received voltage without the presence of the sample plate (in free space, V𝑎𝑖𝑟) are  

V𝑠𝑎𝑚𝑝𝑙𝑒 =
jωIπμ0NvN𝑒

(lv1 − lv2)
2(rv1 − rv2)

2
∫

P2(α)

α6

∞

0

(2α(lv2 − lv1) − 𝑒𝑎(lv2−le2)

+ 𝑒𝑎(lv1−le2) + 𝑒−𝑎(lv2−le1) − 𝑒−𝑎(lv1−le1)

+ (e−αlv1 − e−αlv2)(e−αle1 − e−αle2)ϕ(α))dα 

3. 7 

V𝑎𝑖𝑟 =
jωIπμ0NvN𝑒

(lv1 − lv2)
2(rv1 − rv2)

2
∫

P2(α)

α6

∞

0

(2α(lv2 − lv1) − 𝑒𝑎(lv2−le2)

+ 𝑒𝑎(lv1−le2) + 𝑒−𝑎(lv2−le1) − 𝑒−𝑎(lv1−le1))dα 

3. 8 

Thus, the inductance change due to the presence of the sample plate induced by the 

sensor probe with two identical coils is (the subtraction between the inductance with 

the sample and without the sample - i.e. free space), 

ΔL(ω) =
V𝑠𝑎𝑚𝑝𝑙𝑒 − V𝑎𝑖𝑟

jωI
 

=
πNvNeμ0

(lv1 − lv2)
2(rv1 − rv2)

2
∫

P2(α)

α6

∞

0

𝐺(𝛼)ϕ(α)dα 

3. 9 

With 

𝐺(𝛼) = e−α(2𝑙+h+g)(1 − e−αh)2 3. 10 

h = le2 − le1 3. 11 

Where, 𝑙 denotes the lift-off and g the gap between the excitation and receiver coils. 

Since there is a phase difference between the induced voltage and the injected current, 

the impedance calculated should be complex. Therefore, the change of the complex 
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inductance due to the sample plate (subtract to the inductance in the air) can be obtained 

by dividing the impedance change by the excitation frequency. The schematic diagram 

for the infinite non-magnetic metallic sample plate is demonstrated in Figure 3.2. 

It can be seen that the both parts of the inductance change begin from 0 at low frequency. 

As the excitation frequency increases, the magnitude of the real part increases until 

reaching the saturated value. For the imaginary part, the peak value could be achieved 

at the characteristic frequency, termed as peak frequency, then decreases to reach zero 

again. While for the magnetic sample plate, there exists a zero-crossing point for the 

real part of the inductance change.  

 

(a) 

 

(b) 

Figure 3.2 Schematic diagram of the sensor system above the infinite non-magnetic metallic sample 

plate (a) real part (b) imaginary part 

The peak frequency is related to the material properties, it can be obtained from ϕ(α). 

Due to the fact that this term changes very slowly with α with regards to other terms, 

and it reaches its maximum at a characteristic spatial frequency 𝛼0 . Therefore, the 

inductance change can be approximated as 

ΔL(ω) = ϕ(𝛼0)ΔL0 3. 12 

With 
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ΔL0 =
πNvNeμ0

(lv1 − lv2)
2(rv1 − rv2)

2
∫

P2(α)

α6

∞

0

𝐺(α)dα 
3. 13 

From Equation 3. 12 - Equation 3. 13, ΔL0 is the magnitude of the inductance change 

and is related to the sensor probe parameters. The phase feature depends on the term, 

ϕ(𝛼0). According to [3], ϕ(𝛼0) can be approximated as, 

ϕ(𝛼0) =
𝑗

𝜔
𝜔0

𝑗
𝜔
𝜔0

+ 1 +
2𝛼0𝛼1D0

2𝛼0
2D0 + 2𝛼0

 

3. 14 

With 

𝜔0 =
2𝛼0

2D0 + 2𝛼0

𝜎𝜇0D0
 

3. 15 

As can be seen from Equation 3. 14 - Equation 3. 15, the phase of the inductance change 

is a first order system. The peak frequency can be approximated by 𝜔0 and there is a 

linear trend between the peak frequency and 𝛼0 when the coil diameter is much larger 

than the plate thickness (𝛼0D0 ≪ 1). Consequently, the thickness and the conductivity 

of the sample plate can be deduced from this peak frequency feature.  

3.2 FEM based eddy current computation solver 

Due to the limitations of the analytical solution, numerical solution has been widely 

applied in engineering fields. Based on the method of weighted residuals, Galerkin 

method was developed by simplifying the differential equations into linear equations to 

obtain the approximation results and has been regarded as a powerful numerical 

technique.  

A. Nodal shape function 

Nodal shape functions have been introduced in the finite element analysis and they are 

continuous within arbitrary element. They are interpolated into relevant nodes to 
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represent the overall shape of the approximation solutions of the element. It is assumed 

that the nodal shape function interpolated at node i should be nonzero at the node i and 

be zero at other nodes. Figure 3.3 shows the linear interpolation functions in one 

dimensional element. 

 

Figure 3.3 Linear interpolation functions in one dimensional element [3] 

In order to construct the shape function for the tetrahedral elements, the Silvester-

Lagrange polynomial is usually applied. The shape function with the Silvester-

Lagrange polynomial is conveniently expressed as  

 

𝑃𝑖
𝑛(𝜉) =  {

1

𝑖!
∏(𝑛𝜉 − 𝑙),      𝑓𝑜𝑟 1 ≤ 𝑖 ≤ 𝑛

𝑖−1

𝑙=0

                    1,                 𝑓𝑜𝑟 𝑖 = 0               

 3. 16 

where: n is the integer parameter and ξ is the normalised coordinate variable. 

For the Silvester-Lagrange polynomial, the key feature is that 𝑃𝑖
𝑛(𝜉) is unity at the point 

equals to 
𝑖

𝑛
 . It is corresponding to the property of the shape function. Besides, the value 

of n reveals the number of divisions of the interval [0, 1] into uniform subintervals. 

Based on these features, the Silvester-Lagrange polynomial can be used to construct the 

interpolatory polynomials. 

In order to construct the shape functions, four integers I, J, K and L are used to label 

each node within the tetrahedral element. The numbering scheme (IJKL) for tetrahedral 
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element is shown in Figure 3.4. 

 

Figure 3.4 The numbering scheme for tetrahedral elements [4] 

By multiplying every interpolatory polynomial, the nodal shape function can be written 

as 

 𝑁𝑖 = 𝑃𝐼
𝑛(𝜉)𝑃𝐽

𝑛(𝜂)𝑃𝐾
𝑛(𝜁)𝑃𝐿

𝑛(1 − 𝜉 − 𝜂 − 𝜁)       𝐼 + 𝐽 + 𝐾 + 𝐿 = 𝑛 3. 17 

B. Edge shape function 

For the construction of the first order edge shape function, two factors should be 

considered: one is that the normal component, which is interpolated by the divergence-

conforming vector shape function on the face i, should be vanished along the remaining 

faces of the element; another is that the tangential component, which is interpolated by 

the curl-conforming vector shape function on the edge j, should be vanished along the 

remaining edges of the element. The vector function is defined as 

 𝑾𝒊𝟏𝒊𝟐 = 𝜉𝑖1∇𝜉𝑖2 − 𝜉𝑖2∇𝜉𝑖1 3. 18 

where: 𝑖1 and 𝑖2 are the terminal nodes of the ith edge, and ranges from 1 to 4. 

The vector function  𝑾𝒊𝟏𝒊𝟐  has all the features that should be fulfilled for the 

appropriate vector field. Assumed that the length of vector shape function 𝑵𝒊 should be 
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1, the vector shape function can be described as 

 𝑵𝒊 = 𝑙𝑖1𝑖2
𝑾𝒊𝟏𝒊𝟐 3. 19 

Figure 3.5 shows the flow of the vector shape function for a surface of the tetrahedral 

element. 

 

 

Figure 3.5  (a) The tetrahedral element (b) The vector shape function of edge 23 (c) The vector shape 

function of edge 34 (d) The vector shape function of edge 24 

Higher order vector shape functions are constructed by a combination of the first-order 

vector shape function and a set of scalar polynomials. The shifted Silvester polynomials, 



59 

 

denoted as �̂�𝑖
𝑛(𝜉), are used so as to construct the scalar polynomials. Then the (p+1)th 

order vector shape function can be constructed and expressed as [4] 

 

�̂�𝑖
𝑛(𝜉) =  {

1

(𝑖 − 1)!
∏(𝑛𝜉 − 𝑙),      𝑓𝑜𝑟 2 ≤ 𝑖 ≤ 𝑛

𝑖−1

𝑙=1

                    1,                          𝑓𝑜𝑟 𝑖 = 1               

 3. 20 

 
𝛼𝑖𝑗𝑘𝑙

𝑖1𝑖2,𝑝+1
= 

𝑝 + 2

𝑝 + 2 − 𝛽 − 𝛾
𝑙𝑖1𝑖2 3. 21 

 𝑵𝒊𝒋𝒌𝒍
𝟏𝟐,𝒑+𝟏

= 𝛼𝑖𝑗𝑘𝑙
12,𝑝+1

�̂�𝑖
𝑝+2(𝜉1)�̂�𝑗

𝑝+2(𝜉2)𝑃𝑘
𝑝+2(𝜉3)𝑃𝑙

𝑝+2(𝜉4)𝑾12 

𝑵𝒊𝒋𝒌𝒍
𝟏𝟑,𝒑+𝟏

= 𝛼𝑖𝑗𝑘𝑙
13,𝑝+1

�̂�𝑖
𝑝+2(𝜉1)𝑃𝑗

𝑝+2(𝜉2)�̂�𝑘
𝑝+2(𝜉3)𝑃𝑙

𝑝+2(𝜉4)𝑾13 

𝑵𝒊𝒋𝒌𝒍
𝟏𝟒,𝒑+𝟏

= 𝛼𝑖𝑗𝑘𝑙
14,𝑝+1

�̂�𝑖
𝑝+2(𝜉1)𝑃𝑗

𝑝+2(𝜉2)𝑃𝑘
𝑝+2(𝜉3)�̂�𝑙

𝑝+2(𝜉4)𝑾14 

𝑵𝒊𝒋𝒌𝒍
𝟐𝟑,𝒑+𝟏

= 𝛼𝑖𝑗𝑘𝑙
23,𝑝+1

𝑃𝑖
𝑝+2(𝜉1)�̂�𝑗

𝑝+2(𝜉2)�̂�𝑘
𝑝+2(𝜉3)𝑃𝑙

𝑝+2(𝜉4)𝑾23 

𝑵𝒊𝒋𝒌𝒍
𝟐𝟒,𝒑+𝟏

= 𝛼𝑖𝑗𝑘𝑙
24,𝑝+1

𝑃𝑖
𝑝+2(𝜉1)�̂�𝑗

𝑝+2(𝜉2)𝑃𝑘
𝑝+2(𝜉3)�̂�𝑙

𝑝+2(𝜉4)𝑾24 

𝑵𝒊𝒋𝒌𝒍
𝟑𝟒,𝒑+𝟏

= 𝛼𝑖𝑗𝑘𝑙
34,𝑝+1

𝑃𝑖
𝑝+2(𝜉1)𝑃𝑗

𝑝+2(𝜉2)�̂�𝑘
𝑝+2(𝜉3)�̂�𝑙

𝑝+2(𝜉4)𝑾34 

3. 22 

From the equations showed above, it is obvious that, for the point interpolated on the 

edge, there is a corresponding basis function. Figure 3.6 shows the second order vector 

shape functions of the tetrahedral element interpolated on the edges of face 234. There 

are two interpolation functions on each edge.  
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Figure 3.6 Second-order interpolation functions (a) 𝑵𝟎𝟐𝟏𝟎
𝟐𝟑  (b) 𝑵𝟎𝟏𝟐𝟎

𝟐𝟑  (c) 𝑵𝟎𝟐𝟎𝟏
𝟐𝟒  (d) 𝑵𝟎𝟏𝟎𝟐

𝟐𝟒  (e) 𝑵𝟎𝟎𝟐𝟏
𝟑𝟒  (f) 

𝑵𝟎𝟎𝟏𝟐
𝟑𝟒  
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C. Galerkin equations 

With the aid of the edge shape functions and the nodal shape functions, the unknown 

vector potential and scalar potential fields can be approximated. In order to construct 

the shape functions for each tetrahedral element, matrix transformation from global 

space to local space can be used if isotropy is satisfied for every edge element [5].  

 

𝐽 =

[
 
 
 
 
 
 
𝜕𝑥

𝜕𝜉

𝜕𝑦

𝜕𝜉

𝜕𝑧

𝜕𝜉
𝜕𝑥

𝜕𝜂

𝜕𝑦

𝜕𝜂

𝜕𝑧

𝜕𝜂
𝜕𝑥

𝜕𝜁

𝜕𝑦

𝜕𝜁

𝜕𝑧

𝜕𝜁]
 
 
 
 
 
 

 3. 23 

 𝜆𝑣 = 𝐽−1�̂�𝑣 3. 24 

  𝜆𝑠 = 𝐽−1�̂�𝑠 3. 25 

 
𝛻 × 𝜆𝑣 =

1

|𝐽|
𝐽𝑇𝛻 × �̂�𝑣 

3. 26 

Where, 𝐽 denotes the Jacobian matrix, 𝑥𝑦𝑧 denote the coordinates in the global space, 

𝜉𝜂𝜁 denote the coordinates in the local space, �̂�𝑣 and �̂�𝑠 denote the relevant components 

in the local space and 𝜆𝑣 and 𝜆𝑠 denotes the relevant components in the global space. 

Then combine approximated fields with the boundary conditions, Galerkin equations 

can be obtained, shown as followings: 

 
∫ ∇ × 𝑁𝑖 ⋅ 𝑣∇ × 𝑨𝑛𝑑𝛺
𝛺𝑐

+ ∫ 𝑗𝜔𝜎𝑁𝑖 ⋅ 𝑨𝑛𝑑𝛺
𝛺𝑐

+ ∫ 𝑗𝜔𝜎𝑁𝑖 ⋅ ∇𝑉𝑛𝑑𝛺
𝛺𝑐

 

= ∫ ∇ × 𝑁𝑖 ⋅ 𝑣0∇ × 𝑨𝑠
𝛺𝑐

𝑑𝛺 𝑖 = 1,2, . . . ,6 

3. 27 

 
∫ 𝑗𝜔𝜎∇𝐿𝑖 ⋅ 𝑨𝑛𝑑𝛺
𝛺𝑐

+ ∫ 𝑗𝜔𝜎∇𝐿𝑖 ⋅ ∇𝑉𝑛𝑑𝛺
𝛺𝑐

= 0    
3. 28 
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 𝑖 = 1,2, . . . ,4 

Where, 𝑉𝑛 denotes the scalar potential (voltage) of element n. 𝑨𝑛 denotes the induced 

vector potential corresponding to element 𝑛 . 𝜎 denotes the media electrical 

conductivity. 𝑣0 denotes the reluctivity in the free space domain. 𝑣  denotes the 

reluctivity for the target. 

It is noted that, for every arbitrary element n, the matrix 𝑄𝑛 can be expressed by the 

stiffness matrix form which is the combined by the left-hand terms of Equation 3. 27 

and 3. 28. 

 𝑄𝑛 = [
𝐾𝑛 𝐿𝑛

𝑀𝑛 𝑁𝑛] 3. 29 

From the aspect of the whole system, the whole system matrix can be derived by 

combining Equation 3. 29 to Equation 3. 27 and 3. 28 and expressed as 

 

𝑄

[
 
 
 
 
 
[

𝑨1

⋮
𝑨𝑝

]

[

𝑉1

⋮
𝑉𝑞

]
]
 
 
 
 
 

= [𝐾
𝑝×𝑝 𝐿𝑝×𝑞

𝑀𝑞×𝑝 𝑁𝑞×𝑞]

[
 
 
 
 
 
[

𝑨1

⋮
𝑨𝑝

]

[

𝑉1

⋮
𝑉𝑞

]
]
 
 
 
 
 

= 𝐵 3. 30 

with 

 𝐾𝑝×𝑝 = 𝐾1
𝑝×𝑝

+ 𝐾2
𝑝×𝑝

 3. 31 

According to Equation 3. 30 - Equation 3. 31, the 𝐾 matrix consists of two parts, the 

𝐾1 and 𝐾2 matrices. 𝐾1 matrix represents the 1st 𝐴 term of Equation 3. 27 and it plays 

a role for the generation of the basic 𝐴 wave. 𝐾2 represents the 2nd 𝐴 term of Equation 

3. 27 and the eddy current diffusion effect can be revealed by 𝐾2 matrix. 𝐿 represents 

the 1st 𝑉 term of Equation 3. 27, and it monitors the eddy current confined within the 

sample geometry (Maxwell-Wagner effect). 𝑀 represents the 1st term of the left-hand 

side of Equation 3. 28 and 𝑁 represents the 2nd term of the left-hand side of Equation 
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3. 28. The magnetostatic field is governed by both of the terms. B represents the right-

hand side of Equation 3. 27 and Equation 3. 28, and it acts as the environmental 

background field. 𝑝 represents the order of the edge. 𝑞 represents the order of the vertex. 

The pre-conditioning technique is also applied to increase the accuracy of the calculated 

𝑨 and 𝑉 of the whole mesh.  

After obtaining 𝑨 and 𝑉 of the whole mesh through Equation 3. 30, the electric field 

can be formed by combining the canonical 𝑨 - 𝑉 formulation with the Coulomb gauge 

[6]: 

 𝑬𝑛 = −𝑗𝜔𝑨𝑛 − 𝛻𝑉𝑛 3. 32 

According to the principle of Lorentz reciprocity in [7], the inductance measured by the 

sensor can be derived: 

 
𝛥𝐿 =

1

𝑗𝜔𝐼2
∫𝑬𝑎 ⋅ 𝑬𝑏
𝑐

⋅ (𝜎𝑎 − 𝜎𝑏)𝑑𝑣 3. 33 

Where, 𝛥𝐿 represents the variation of the inductance due to the substrate domain of 𝑎 

and 𝑏. 
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Chapter 4 Overview of papers 

This chapter summarises the proposed methods in electromagnetic computation and the 

applications by using the proposed methods are presented.  

For the analytical method of calculating impedance of metallic plates with finite planar 

dimension based on Dodd and Deeds plate model, the proposed method is introducing 

an initial point of the integral. The mathematical deviation demonstrates the deviation 

of the initial point for the integration. Both the simulation and experimental results 

agreed well. The thickness measurement can be carried out and the error of the 

reconstructed thickness is within 2%.  

Moreover, in the permeability measurement for ferrous metallic plates, the lift-off of 

the sensor affects the prediction of the electromagnetic properties for the sample plates. 

The proposed method is to eliminate the deviation on the phase of the signal due to the 

lift-off and based on this compensation, the prediction of permeability is presented. 

From the results, it can be seen that the estimation error due to the lift-off is reduced.   

For the acceleration of the finite element method, a novel method using perturbed 

matrix inversion method is presented. It applies to the eddy current calculation for crack 

detection. Numerical tests prove that the proposed method enhanced the computation 

speed compared with unaccelerated method. Further, it is found that the crack only 

causes a small perturbance in fields in the surrounding region. Based on this property, 

a novel crack calculation method is proposed. From the simulation results, it shows that 

the calculation is greatly shortened with the accelerated rate of 3-34 times which is 

related to the element number.  
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4.1 Analytical methods for eddy current testing  

4.1.1 The modified analytical method for metallic plates with 

finite planar dimension 

A. Theoretical derivations of the modified analytical solution - the initial 

integration point 𝜶𝒓 

For the air-cored sensor probe, the impedance change due to the presence of an infinite 

metal plate can be calculated by the Dodd-Deeds model. However, in practical 

measurements, the sample cannot match with the condition required - ‘infinite’, thus 

the Dodd-Deeds model could not be applied to the disk with finite size and certainly 

not a co-axial hole in the center. Therefore, a modified analytical solution of inductance 

for the plate with finite dimensions is highly requisite.  

 

Figure 4.1 Illustration of the integrational path for the proposed method (a) An infinite plate where r 

ranges from 0 to ∞ (b) A finite plate where r ranges from 0 to rs 

As shown in Figure 4.1, in the Dodd Deeds model, the integration of 𝛼 ranges from 0 
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to infinity, where α = 0 corresponds to the plate section of the infinite radius (r =

rs  = ∞)  and α = ∞  to the centre of the sample plate  (r = 0) . Therefore, in the 

proposed method, by replacing α = 0  with α = αr𝑠
, the inductance for a plate with a 

finite radius can be simulated. The following mathematical manipulation is to explain 

the rationale behind changing the integration range of α. 

By referring to the manipulation of the Dodd Deeds analytical formulations [1], the 

model of a coil above a plate can be divided into four regions, the magnetic vector 

potential formulation 𝐀 can be represented by a product of two polynomials, R(r) 

and Z(z).  

 ∂2A

∂r2
+

1

r

∂A

∂r
+

∂2A

∂z2
−

A

r2
+ ω2μiσiA − jωμiσiA = 0 4. 1 

 r ∈ [0, rs] 4. 2 

Where, i denotes the ith layer/region conductor.  

In Equation 4. 2, the defined range of r for the infinite plate case is from 0 to rs = ∞. 

However, for a sample with finite radius, r ranges from 0 to a constant rs. 

Since the magnetic vector potential can be presented as,   

𝐀 = R(r)Z(z) 4. 3 

By substituting Equation 4. 3 into Equation 4. 1, the field can be expressed as, 

1

 R(r)

∂2R(r)

∂r2
+

1

rR(r)

∂R(r)

∂r
+

1

 Z(z)

∂2Z(z)

∂z2
−

1

r2
+ ω2μiσi − jωμiσi = 0 

4. 4 

Using the principle of separation of variables, a separation ‘constant’ α2 is introduced 

[1], where α is related to the wave number of plane wave.  
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1

 Z(z)

∂2Z(z)

∂z2
= α2 − ω2μiσi + jωμiσi 

4. 5 

Then substitute Equation 4. 5 into Equation 4. 4, which gives, 

α2 =
1

r2
−

1

rR(r)

∂R(r)

∂r
−

1

R(r)

∂2R(r)

∂r2
 

4. 6 

According to Equation 4. 6, the solution of R(r) can be expressed in terms of Bessel 

functions J1(αr) and Y1(αr), R(r) can be represented as [1], 

R(r) = C J1(αr) + D Y1(αr) 4. 7 

Due to the divergence of Y1 at the origin (it tends to infinity when r equals to 0), D 

should be 0 in all regions. C is a constant value obtained from the boundary conditions, 

which is related to the coil parameters and the electrical conductivity of the sample 

plate.  

Combining Equations 4. 6 -  4. 7, then we can obtain α2,  

α2 =
1

r2
−

1

rC J1(αr)

∂C J1(αr)

∂r
−

1

C J1(αr)

∂2C J1(αr)

∂r2
 

=
1

r2
−

α

rJ1(αr)

J0(αr) − J2(αr)

2
−

α2

J1(αr)

−3J1(αr) + J3(αr)

4
 

4. 8 

Where, J0, J2, and J3 are the zero, second, and third order Bessel function of the first 

kind. 

Therefore, α can be derived by finding the solution of Equation 4. 9, 

α2 −
1

r2
+

α

4rJ1(αr)
(2(J0(αr) − J2(αr)) − αr(−3J1(αr) + J3(αr))) = 0 

4. 9 

By multiplying r2 on both sides of Equation 4. 9,  
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(αr)2 − 1 +
αr

4J1(αr)
(2(J0(αr) − J2(αr)) − αr(−3J1(αr) + J3(αr))) = 0 4. 10 

Substitute αr with 𝑥, then Equation 4. 10  is converted as, 

(𝑥)2 − 1 +
𝑥

4J1(𝑥)
(2(J0(𝑥) − J2(𝑥)) − 𝑥(−3J1(𝑥) + J3(𝑥))) = 0 4. 11 

Assuming 𝑥0 is the solution of the above equation, then the integral range of α is related 

to the defined variable r, which can be written as α =  
𝑥0

r
, i.e. α is inversely proportional 

to r. Taking the example of a plate with an infinite planar dimension, the defined range 

of r is from 0 to ∞ (referring to Equation 4. 1 and Equation 4. 2). By referring to 

Equation 4. 11, the corresponding range of α is from α|r=0 = ∞   to α|r=∞ = 0. For a 

plate with a finite radius, r ranges from 0 to r𝑠, the corresponding range of α is from 

α|r=0 = ∞   to a constant value  α|r=r𝑠
= αr𝑠

= 
𝑥0

r𝑠
=

3.518

r𝑠
. 3.518 is the first zero 

obtained from Equation 4. 11, it covers all the domain for different sample plate with 

finite dimension.  

Therefore, for a finite size sample, the vector potential involves the integration from 

 α|r=r𝑠
= αr𝑠

 to α|r=0 = ∞.  

A =
Iμ0Ne

2
∫

J1(αr)P(α)

𝛼3

∞

αr𝑠

K(r, z, α)ϕ(α)dα 
4. 12 

Further, the inductance change due to the presence of the finite-size plate is, 

ΔL(ω) =
πNvNeμ0

(lv1 − lv2)
2(rv1 − rv2)

2
∫

P2(α)

α6

∞

αrs

𝐺(α)ϕ(α)dα 
4. 13 

with αr𝑠
=

3.518

r𝑠
  

Where: r𝑠 is the radius of the sample. 

It can be seen that the integral limit of Equation 4. 13 is different to the case of the 
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infinite-size plate in Equation 3. 9. For the finite sample plate, the new formulation 

integrates all the contributions of plane wave that is interactive with the sample (by 

integrating over the effective region of α, where α is related to the wave number of 

plane wave). The assumption is that the proposed formulation currently works for non-

magnetic thin sample plates.  

B. Experimental and simulation setup 

Both the experimental measurements (by using the impedance analyser) and the 

simulations (by using the modified analytical solution and the software (COMSOL)) 

have been carried out to validate the theoretical deviations. In the process of the 

measurements, the air-cored co-axial sensor was located co-axially with circular planar 

samples, as shown in Figure 4.2. The parameters are listed in Table 4.1. Samples of 

copper and aluminium plates were selected because of availability. The conductivities 

of these two materials are 57 MS/m, and 35 MS/m. The copper plate has a thickness of 

1 mm and range of diameters (from 25 mm to 45 mm in steps of 5 mm), while the 

aluminium plate has a diameter of 40 mm and thickness range from 22 µm to 132 µm. 

The copper plates were used to verify the derived theory while the aluminium plates 

with different thicknesses were used for the further application of the thickness 

measurement. The impedance analyser can operate from 100 Hz to 510 kHz in a 

logarithmic step of 0.02735 with high precision and the excitation voltage in the 

measurement was set to 0.3 V. To test the effect of different sensor geometries, three 

sensors of the different radii (28 mm, 40 mm, and 52 mm) have been used.  



71 

 

  

(a) (b) 

Figure 4.2 Air-cored sensor above the tested plate(a) schematic setup (b) actual setup 

  

(a) (b) 

Figure 4.3 Experimental setup (a) measurement setup (b) circular sample plates 

From Figure 4.6 to Figure 4.10, the mutual impedance (∆Z) between the excitation coil 

and the receiving coil measured via the Zurich impedance analyser (Figure 4.3 (a)) are 

presented. Due to the phase difference between the induced voltage and the excitation 

current, the tested impedance should be complex. Therefore, the inductance can be 

presented by dividing the mutual impedance by the excitation frequency in the 

experimental measurements, as shown in Equation 4. 14 - Equation 4. 16.  

∆Z = R + jω∆L 4. 14 
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∆L = Re(
Z𝑠𝑎𝑚𝑝𝑙𝑒 − Z𝑎𝑖𝑟

jω
) 

4. 15 

−Rω−1 = Im(
Z𝑠𝑎𝑚𝑝𝑙𝑒 − Z𝑎𝑖𝑟

jω
) 

4. 16 

Where: Zsample denotes the impedance caused by the metallic sample plate and Zair 

denotes the impedance in the air. 

Table 4.1 Sensor Parameters 

Inner and outer radii of the excitation coil (re1 / re2) 28 mm/28.25 mm 

40 mm/40.25 mm 

52 mm/52.25 mm 

Inner and outer radii of the sensing coil (rv1 / rv2) 28 mm/28.25 mm 

40 mm/40.25 mm 

52 mm/52.25 mm 

Height of the excitation coil (le2- le1) 4 mm 

Height of the sensing coil (lv2- lv1) 4 mm 

Turns of excitation coil and receiving coil (Ne / Nv) 15/15 

Plate thickness (D0) 1 mm for copper, 22 µm 

– 132 µm for aluminium 

The gap between two coils (g) 15 mm 

 
 

C. Results 

C.1 Validation of the modified analytical solution 

As illustrated in Figure 4.1, compared with the infinite planar plate, the main difference 

for the finite region analytical solution is that it starts at different points for the integral 

path. Firstly, both the analytical solution and the simulation software (COMSOL) were 

compared to validate the proposed method. The simulated models are shown in Figure 

4.4. Figure 4.5 shows the inductance change caused by the copper plate. 
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(a) (b) 

Figure 4.4 The simulated model (a) the plate with a radius of 20 mm (84 k elements) (b) the plate with 

a radius of 100 mm (142 k elements) 

 

(a) 

 

(b) 
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(c) 

 

(d) 

Figure 4.5 (a)The inductance change caused by copper plates with sample radius of 20 mm (b) The 

change of 𝑅𝜔−1caused by copper plates with sample radius of 20 mm (c)The inductance change 

caused by copper plates with sample radius of 100 mm (d) The change of 𝑅𝜔−1caused by copper plates 

with sample radius of 100 mm 

Figure 4.5 shows the inductance change caused by the copper plate. It can be observed 

that, for both metallic plates, the results are matched under the sweeping frequency 

ranging from 10 Hz to 10 MHz. Since the test samples are non-magnetic, there is no 

zero-crossing point for the inductance change. As the frequency increases, it would 

finally reach a saturated value for the inductance change and approach zero for the 

detected resistance-frequency combined term Rω−1. A peak frequency feature can be 
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observed from Rω−1, which is found to be shifted rightwards as the size of the sample 

decreases. This is possibly because the magnetic flux interacts less with the plate for 

the sample with a smaller radius. 

C.2 Effect of the sensor coil dimensions 

The modified analytical solution is associated with the initial point of α. Hence, some 

measurements have been carried out to determine the value of α𝑟. Figure 4.6 and Figure 

4.7 depict the inductance change of both measured results and modified analytical 

solutions under the same three sensors with the radii of 28 mm, 40 mm, and 52 mm 

respectively, but different sample radii. 

From the results of both simulations and measurements, the value of the initial point 

αrs
 is immune to the sensor size. That is, for a fixed-size test sample, no matter what 

size of the sensor, αrs
 remains unchanged (since αrs

is merely related to the size of the 

sample, referring to Equation 4. 10). Besides, the value of αrs
 reduces with the increase 

of the sample radius, which is consistent with the theoretical derivations. 

C.3 Effect of the sample size 

From previous experiments, it can be noticed that αrs
 is not related to the size of the 

sensor. Further, samples with different radii were measured under the same sensor with 

the sensor radius of 40 mm. Figure 4.8 shows the results of both modified analytical 

solutions and measurements for copper plates with different radii. The results are 

matched by finding the appropriate αrs
. The value of αrs

 under different sample radii 

is shown in Figure 4.9. 
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(a) 

 

(b) 

Figure 4.6 (a) The inductance change caused by copper plates with the radius of 17.5 mm (b) Rω−1 

caused by copper plates with the radius of 17.5 mm 
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(a) 

 

(b) 

Figure 4.7 (a) The inductance change caused by copper plates with the radius of 22.5 mm (b) The 

change of Rω−1 caused by copper plates with the radius of 22.5 mm 
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(a) 

 

(b) 

Figure 4.8  (a) The inductance changes under various radius of the copper samples (b) The change of 

Rω−1 under various radius of the copper samples 
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Figure 4.9 Relationship between αrs
 and the reciprocal of sample radius 

As can be seen from Figure 4.9, the value of αrs
 is proportional to the reciprocal of the 

sample radius (i.e. αrs
=const.× 

1

r𝑠
) and, from the experimental experience, the constant 

is ~ 3.518. 

D. Thickness measurement based on the modified analytical solution 

The proposed method can be used to test the thickness of plate samples with the same 

radius. Since αrs
 is immune to the sensor radius but related to the sample radius, it can 

be set to an appropriate fixed value. In our previous studies, the peak frequency caused 

from Rω−1  is associated with the sample thickness and the sample conductivity. 

Applying this principle with the same material samples used in the testing, the larger 

the thickness, the lower the peak frequency. Consequently, the thickness of the test 

samples can be estimated by matching the peak frequency of the modified analytical 

solution (Prior to the measurement, a look-up table is obtained from the modified 

analytical solution which contains the peak frequency information for different 
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thicknesses under the same conductivity. By referring to the table, the thickness of the 

sample can be predicted.). 

In the measurements, the thickness of the aluminium sample varies from 22 µm to 132 

µm. The operation frequency ranges from 1 kHz to 505 kHz. As Figure 4.10 depicts, 

the result of the modified analytical solution matches well with the measurement. 

Besides, the peak frequency by utilising both original analytical solution and modified 

analytical solution is listed in Table 4.2. It can be seen that there is a huge difference 

for finite planar dimension samples compared with original analytical solution. 

Moreover, the principle of the thickness reconstruction is fitting the peak frequency of 

the simulation to that of the measurement, therefore, it leads to a larger error for 

thickness prediction as shown in Table 4.2 and Figure 4.11. The fitting of peak 

frequency feature is one of commonly used methods for sample properties 

reconstruction [2-5]. As in our previous papers [5], we use a first order function to 

approximate the curve and fit the experimental and simulated curves in a least squared 

sense. Once the first order system is obtained, its peak frequency can be obtained easily. 

Table 4.3 illustrates the estimated thickness from the modified analytical solution and 

the error between the actual and estimated thickness. The thickness reconstruction for 

the sample plate is finding the simulated peak frequency of the multi-frequency 

inductance curve (via Equation 4. 13) that is closest to the measured peak frequency 

while changing the thickness. It can be seen from Table 4.3, the error from the testing 

can be achieved within 2%. Figure 4.11 demonstrates the estimation results from both 

methods and the error caused by using the infinite model – the original Dodd Deeds is 

significantly inaccurate. 
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Figure 4.10 The change of Rω−1 under varying thickness samples 

Table 4.2 Peak frequency of Dodd Deeds analytical solution and modified analytical solution for the 

aluminium plates 

Sample thickness (µm) Peak frequency (kHz) 

Dodd Deeds analytical solution Modified analytical solution 

22 13.335 42.170 

44 6.190 23.714 

66 4.217 14.678 

88 3.162 11.007 

110 2.610 9.085 

132 1.957 7.499 
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Table 4.3 Actual and estimated thickness for the aluminium plates using peak frequency feature 

Material Actual thickness (µm) Estimated thickness (µm) Error (%) 

Aluminium 22 22.21 0.95 

44 43.16 -1.91 

66 66.90 1.36 

88 88.05 0.06 

110 108.57 -1.30 

132 129.68 -1.76 

 

Figure 4.11 Estimated thickness by Dodd Deeds analytical solution and modified analytical solution 

4.1.2 A novel lift-off compensation technique on phase 

signature 

A. EM sensor setup 

As can be seen from Figure 4.12 and Table 4.4, considering sensors accessibility for 

experiments and analytical simulations, EM sensor was designed to be 2 co-axially 

coupled air-cored loop coils: excitation coils and pick-up coils with identical size turns 

and materials (copper coil). In Table 4.4, a series of lift-off spacers are used to test the 
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lift-off influences on the impedance phase. 

 

Figure 4.12 EM Sensor 

Table 4.4 Probes properties 

 Values 

2r1(Inner diameter)/mm 32.0 

2r2(Outer diameter)/mm 34.0 

lo (lift-offs)/mm 0.8, 2.3, 3.8 

h (coils height)/mm 10.5 

g (coils gap)/mm 15.5 

Number of turns N1 = N2 

(N1 - Transmitter; N2 - 

Receiver) 

30 

B. Method 

For the coil above the magnetic material, there has a zero-crossing point in the real part 

of the inductance change and the corresponding frequency is termed as the zero-

crossing frequency. For the magnetic sample plate, the magnetic field generated by the 

excitation coil interacts with the magnetic plate in two ways. Initially, the magnetic 

plate is magnetised due to the primary magnetic field. This process increases the 

inductance in the system so that the real part of the inductance change starts from a 

positive value. Besides, it also induces the eddy current in the plate which reduces the 

inductance change in the system. In low frequencies, the magnetization process 

dominants while in high frequencies, the eddy current effect dominants. Therefore, 

there is a zero-crossing point and the corresponded frequency (zero-crossing frequency) 
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can be obtained. From our previous researches [6]-[8], the magnitude of the detected 

response impedance and zero-crossing frequency were found to grow with reduced 

sensor lift-offs. It is also observed that the impedance phase rises up slightly with 

reduced lift-offs. Consequently, it is speculated that a novel approach could be deduced 

for compensating the impedance phase error due to sensor lift-offs with the signal 

amplitude and zero-crossing frequency. The derivations process for compensating the 

zero-crossing frequency 𝜔0 was carried out in [9]. Procedure of the proposed algorithm 

for impedance phase compensation is summarized in Figure 4.13.  

For the previous work, the compensated zero-crossing frequency is 𝜔0 = π2𝜔1/(π
2 +

4ln (𝛥𝐿0/𝛥𝐿𝑚)). Where, 𝜔0 denotes the zero-crossing frequency after compensation; 

𝜔1 is zero-crossing frequency under current unknown lift-off; 𝛥𝐿0 is the inductance 

amplitude under the high-frequency (when the response signal barely changes with 

frequencies) with unknown lift-offs; 𝛥𝐿𝑚  is the inductance amplitude under same 

frequencies with the smallest lift-off. 

In Figure 4.13, 𝑙0denotes the unknown lift-off; θr denotes the measured phase angle 

under any frequency ω and an unknown lift-off; ∆θ denotes the impedance phase angle 

change caused by the unknown lift-off, which should be compensated. θ denotes 

impedance phase angle (i.e. θ = θr - ∆θ) after compensation. 
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Figure 4.13  The procedure of impedance phase compensating deduction 

Considering a magnetic steel sample, at low excitation frequency (100 Hz), the eddy 

current is restrained around the surface of the sample. Due to the eddy current skin 

effect, the magnetic sample can be regarded as a conductive half-space [7], therefore, 

the phase related term (Equation 3. 2) can be expressed as, 

𝜑(𝛼0) =
𝜇𝑟𝛼0 − √𝛼0

2 + 𝑗𝜔𝜎𝜇𝑟𝜇0

𝜇𝑟𝛼0 + √𝛼0
2 + 𝑗𝜔𝜎𝜇𝑟𝜇0

 
4. 17 

𝜑(𝛼0𝑟) =
𝜇𝑟𝛼0𝑟 − √𝛼0𝑟

2 + 𝑗𝜔𝜎𝜇𝑟𝜇0

𝜇𝑟𝛼0𝑟 + √𝛼0𝑟
2 + 𝑗𝜔𝜎𝜇𝑟𝜇0

 
4. 18 

For the metallic plates with 𝑢𝑟 >> 1 (ferrous plates), the compensated phase related 

term 𝜑(𝛼0) and measured phase related term 𝜑(𝛼0𝑟) under unknown lift-off equal, 

𝜑(𝛼0) =
1 − √1/𝜇𝑟

2 + 𝑗𝜔𝜎𝜇0/𝜇𝑟𝛼0
2

1 + √1/𝜇𝑟
2 + 𝑗𝜔𝜎𝜇0/𝜇𝑟𝛼0

2
 

4. 19 

𝜑(𝛼0𝑟) =
1 − √1/𝜇𝑟

2 + 𝑗𝜔𝜎𝜇0/𝜇𝑟𝛼0𝑟
2

1 + √1/𝜇𝑟
2 + 𝑗𝜔𝜎𝜇0/𝜇𝑟𝛼0𝑟

2
 

4. 20 

Here, 𝛼0 is a spatial frequency indicating the geometry feature of the sensor.  

Compensate ω0 with ω1 and ∆L as input under 𝑙0 

Relation between θ and inputs (ω1, θr, ∆L) under 𝑙0 

Dodd and Deeds Formulations 

Approximation of the Bessel term 

with a sinusoid 
Relation between θr and ω1  Relation between θ and ω0 

Relation between ∆θ and inputs (ω1, ω0) under 𝑙0 

Relation between ∆θ and inputs (ω1, ∆L) under 𝑙0 
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Neglecting 1/𝜇𝑟
2 term in above equation and assigning 𝜔0 = 𝜇𝑟𝛼0

2/𝜇0𝜎 , 𝜔1 =

𝜇𝑟𝛼0𝑟
2/𝜇0𝜎. The compensated and measured phase related term under unknown lift-

off can be expressed as followings, 

𝜑(𝛼0) =
1 − √𝑗𝜔/𝜔0

1 + √𝑗𝜔/𝜔0

=
1 −

√2𝜔/𝜔0

2
(1 + 𝑗)

1 +
√2𝜔/𝜔0

2
(1 + 𝑗)

 

4. 21 

𝜑(𝛼0𝑟) =
1 − √𝑗𝜔/𝜔1

1 + √𝑗𝜔/𝜔1

=
1 −

√2𝜔/𝜔1

2
(1 + 𝑗)

1 +
√2𝜔/𝜔1

2
(1 + 𝑗)

 

4. 22 

Then, the measured phase angle under unknown lift-off should be, 

𝜃𝑟 = 𝑡𝑎𝑛−1 (
𝐼𝑚(𝑍𝑟)

𝑅𝑒( 𝑍𝑟)
) = 𝑡𝑎𝑛−1 (

𝐼𝑚(𝜑(𝛼0𝑟))

𝑅𝑒(𝜑(𝛼0𝑟))
) = 𝑡𝑎𝑛−1

(

 
√2𝜔1

𝜔

1 −
𝜔1
𝜔

)

  

4. 23 

Similarly, the compensated phase angle can be derived from ω0, 

𝜃 = 𝑡𝑎𝑛−1 (
√2𝜔0/𝜔

1 − 𝜔0/𝜔
) 

4. 24 

Therefore, the phase change angle caused by the lift-off should be,  

𝛥𝜃 = 𝜃𝑟 − 𝜃 = 𝑡𝑎𝑛−1 (
√2𝜔1/𝜔

1 − 𝜔1/𝜔
) − 𝑡𝑎𝑛−1 (

√2𝜔0/𝜔

1 − 𝜔0/𝜔
) 

4. 25 

Then, the compensated phase angle should be, 

𝜃 = 𝜃𝑟 − 𝛥𝜃 = 𝜃𝑟 − 𝑡𝑎𝑛−1 (
√2𝜔1/𝜔

1 − 𝜔1/𝜔
) + 𝑡𝑎𝑛−1 (

√2𝜔0/𝜔

1 − 𝜔0/𝜔
) 

4. 26 

As shown in the appendix, the relation between 𝜔0 and 𝜔1 is 𝜔0 = 𝜋2𝜔1/(𝜋
2 +

4ln (𝛥𝐿0/𝛥𝐿𝑚) . And the mathematic derivation details of this compensated zero-

crossing frequency are shown at the end of the paper. 
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Finally, the impedance phase angle after compensation is evaluated from  𝜔1 , 𝛥𝐿0, 

and 𝛥𝐿𝑚. 

𝜃 = 𝜃𝑟 − 𝛥𝜃 = 𝜃𝑟 − 𝑡𝑎𝑛−1 (
√2𝜔1/𝜔

1 − 𝜔1/𝜔
)

+ 𝑡𝑎𝑛−1

(

 
√2𝜔1/ (1 +

4
𝜋2 𝑙𝑛 (

𝛥𝐿0

𝛥𝐿𝑚
))𝜔

1 − 𝜔1/ (1 +
4
𝜋2 𝑙𝑛 (

𝛥𝐿0

𝛥𝐿𝑚
))𝜔

)

  

4. 27 

Assigning  𝐺(𝜔) = tan−1(√2𝜔1/𝜔/(1 − 𝜔1/𝜔) , through some mathematic 

manipulations, the compensated phase angle can be obtained. 

𝜃 = 𝜃𝑟 − 𝛥𝜃 = 𝜃𝑟 − 𝐺(𝜔) + 𝐺 ((1 +
4

𝜋2
𝑙𝑛 (

𝛥𝐿0

𝛥𝐿𝑚
))𝜔) 

4. 28 

With  

𝐺(𝜔) = 𝑡𝑎𝑛−1 (
√2𝜔1/𝜔

1 − 𝜔1/𝜔
) 

4. 29 

Where, ∆L0 is the inductance amplitude under the high -frequency (when the response 

signal barely changes with frequencies) with unknown lift-offs; while ∆Lm is obtained 

from Equation 4. 44 by utilising the inductance amplitude under same frequencies with 

the smallest lift-off (here this lift-off in measurement setup is 0.8 mm). 

It can be seen in Equation 4. 29 that with the measured phase, inductance magnitude 

and zero-crossing frequencies from the measurements at an unknown lift-off as inputs, 

impedance phase angles 𝜃  after compensating (phase with zero lift-offs) could be 

obtained using the compensation scheme proposed above. For instance, if the sensor is 

put on a lift-off approaching 0,  ln (𝛥𝐿0/𝛥𝐿𝑚)  should equal 0. As a result, the 

corresponding compensated result 𝜃0 calculated from Equation 4. 28 equals 𝜃𝑟, which 

is reasonable under a negligible lift-off. 
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C. Analytical solutions and measurements 

C.1 Analytical solutions 

For the analytical solutions, Dodd Deeds approach was utilized to compute the sensor’s 

detected response signal - impedance. The sample was chosen to be a duplex-phase 

specimen - DP600 (specimen’s properties and size data are shown in Table 4.5 

Properties of Duplex-phase specimens) under varying lift-offs of 0.8 mm, 2.3 mm, and 

3.8mm. The analytical solver is scripted and operated on MATLAB coding platform, 

which is utilized for the evaluation of inductance ∆L (Equation 4. 30 – Equation 4. 35 

in the appendix) and the compensated phase using Equation 4. 29. 

C.2 Measurements 

In order to measure the impedance/inductance phase of the samples, a symmetric air-

cored electromagnetic sensor was designed for steel micro-structure monitoring in the 

Continuous Annealing & Processing Line (CAPL). As can be seen from Figure 4.14, 

the excitation coil sits in the middle and two receive coils at bottom and top respectively. 

Receiver coil 2 is used as the test coils; receiver coil 1 is served as a reference coil. In 

the paper, only the signal of receiver coil 2 is recorded and served as the response output 

signal. All the coils have the same diameters, i.e. an inner diameter of 32.0 mm and an 

outer diameter of 34.0 mm. Each of the coils has 30 turns, and the coil separation is 

35.0 mm. SI 1260 impedance analyser has been utilized to measure the air-cored sensor 

induced signal response – mutual impedance or inductance of the sensor influenced by 

the tested samples. The working frequency range of the instrument is set from 310 Hz 

to 3 MHz. Moreover, all the samples are tested under a series of lift-offs of 0.8, 2.3, and 

3.8 mm. 
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(a) 

 

(b) 

Figure 4.14  Measurement setup a) EM air-cored Sensor configuration b) SI 1260 impedance analyser 

C.3 Results 

Figure 4.15 exhibits both the real part and imaginary part of the simulations and 

measurements of sensor-plates system mutual inductance multi-frequency spectra. In 

Figure 4.15, it is obviously that inductance curves magnitude drops off with increased 

lift-offs. Meanwhile, the zero-crossing frequency decreases with increased lift-offs. 

Some singular points may be encountered during the measurements which are due to 

the signal noise of SI 1260 impedance analyser, especially under the low frequency. 

Besides, it can be noticed that there is a discrepancy under high frequencies in the real 

part of the inductance change. This is mainly due to the capacitive effect between the 

two coils and the tested specimen. It could lead to resonance effect and skew the 

measurement results in particular in high frequencies.  

Receiver coil 1 

Excitation coil  

Receiver coil 2 
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(a) 

 

(b) 

Figure 4.15 Real and imaginary part of inductance under varying lift-offs - 0.8 mm, 2.3 mm, and 
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3.8mm (a) real part (b) imaginary part 

 

Figure 4.16 Trend of inductance term L0/Lm (for DP 600 specimen) for different lift-offs 

In Figure 4.16, it is observed that the inductance term 𝛥𝐿0/𝛥𝐿𝑚 decreases with 

increased lift-offs. Consequently, the relative loss of the inductance 𝛥𝐿0/𝛥𝐿𝑚 can be 

used for the compensation of inductance or impedance phase due to lift-offs. which can 

be used to compensate the drop in phase with rising lift-offs. Here, 𝛥𝐿𝑚 is the sample’s 

inductance with end point frequency (the last frequency sample for both simulations 

and measurements) for the smallest lift-off (0.8 mm under the sensor setup in Figure 

4.14). 



92 

 

Figure 4.17 shows the simulations, measurements, and the phase multi-frequency 

spectra after the proposed compensation algorithm (Equation 4. 28 and Equation 4. 29). 

It can be seen that both the simulated and measured phase decrease as increased lift-

offs. In addition, the compensated phase is barely affected by the lift-off. Based on the 

compensated phase, ferrous plate magnetic permeability could be easily predicted via 

the measured response of the sensor. The ferrous metallic plates’ magnetic permeability 

measurement technique is validated via the comparison of modelling and measured data 

for the mentioned sensor next to dual-phase (DP) steels with various values of magnetic 

permeability. 
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Figure 4.17 Compensation performance both on simulations and measurements with 0.8, 2.3, 3.8 mm 

lift-offs 

Table 4.5 Properties of Duplex-phase specimens 

Specimens 

Electrical 

conductivity 

(MS/m) 

Relative 

permeability 

Planar 

size 

(mm) 

Thickness 

(mm) 

DP600 4.13 222 
500 × 

400 
7.0 

DP800 3.81 144 
500 × 

400 
7.0 

DP1000 3.80 122 
500 × 

400 
7.0 

Table 4.6 Relative permeability measurements for different lift-offs 

Plate Lift-offs 

(mm) 

Actual 

relative 

permeability 

Relative 

permeability 

without 

compensation 

Relative 

permeability 

inferred 

from 

compensated 

phase 

Relative 

error for 

non-

compensated 

permeability 

Relative 

error for 

compensated 

permeability 
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DP800 0.8 144 138.48 142.37 3.83% 1.13% 

2.3 144 136.76 142.12 5.03% 1.31% 

3.8 144 133.31 141.94 7.42% 1.43% 

DP1000 0.8 122 117.68 120.72 3.54% 1.05% 

2.3 122 115.27 120.57 5.52% 1.17% 

3.8 122 111.98 120.15 8.21% 1.52% 

In principle, the magnetic permeability reconstruction for the tested specimens is 

finding the simulated multi-frequency inductance/impedance curve (via Equation 4. 30 

- Equation 4. 35 in appendix) that is closest to the measured multi-frequency spectra 

data (after the proposed compensation algorithms - Equation 4. 28 and Equation 4. 29) 

while changing the permeability. In order to validate the proposed magnetic 

permeability reconstruction technique via the compensated phase, multi-frequency 

inductances of two ferrous specimens have been tested (specimens’ properties and size 

data are shown in Table 4.5). In the measurement process, 120 logarithmically spaced 

frequencies samples range from 310 Hz to 3 MHz have been chosen as the operation 

frequencies. In addition, both DP steel specimens have identical size of 500 × 400 × 7.0 

mm. Consequently, magnetic permeability comparisons for compensated phase and the 

measured phase without compensation is shown in Table 4.6. 

It can be concluded from Table 4.6 that the magnetic permeability reconstruction shows 

a better performance through the proposed impedance or inductance phase 

compensation scheme (Equation 4. 28 and Equation 4. 29). 

In practical application, the lift-offs range may be different. However, it has been found 

that the error of the measured permeability is always within a small value of 5%. 

Appendix 

The deviations of the compensated zero-crossing frequency (ZCF) 𝜔0  from the 

measured ZCF and inductance (𝜔1 and 𝛥𝐿) under a lift-off of 𝑙0: 

The inductance due to the appearance of the sample is the subtraction of the sensor 
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tested inductance when sensor is put on a specimen (𝐿(𝜔)) and that when sensor is in 

empty region (𝐿𝐴(𝜔)): 𝛥𝐿(𝜔) = 𝐿(𝜔) − 𝐿𝐴(𝜔). 

Dodd Deeds formulations are listed as follows: 

𝛥𝐿(𝜔) = 𝐾 ∫
𝑃2(𝛼)

𝛼6
𝐴(𝛼)𝜙(𝛼)𝑑𝛼

∞

0

 
4. 30 

Where,  

𝐴(𝛼) = 𝑒−𝛼(𝐺+ℎ+2𝑙0)(1 − 𝑒−𝛼ℎ)2 4. 31 

𝜙(𝛼) =
(𝜇𝑟𝛼 − 𝛼1)

(𝜇𝑟𝛼 + 𝛼1)
=

𝜇𝑟𝛼 − √𝛼2 + 𝑗𝜔𝜎𝜇𝑟𝜇0

𝜇𝑟𝛼 + √𝛼2 + 𝑗𝜔𝜎𝜇𝑟𝜇0

=
1 − √1/𝜇𝑟

2 + 𝑗𝜔𝜎𝜇0/𝜇𝑟𝛼
2

1 + √1/𝜇𝑟
2 + 𝑗𝜔𝜎𝜇0/𝜇𝑟𝛼

2
 

4. 32 

𝐾 =
𝜋𝜇0𝑁

2

ℎ2(𝑟1 − 𝑟2)
2
 

4. 33 

𝑃(𝛼) = ∫ 𝑥𝐽1(𝑥)𝑑𝑥
𝛼𝑟2

𝛼𝑟1

 
4. 34 

𝛼1 = √𝛼2 + 𝑗𝜔𝜎𝜇𝑟𝜇0 4. 35 

𝑙0 is sensor’s lift-off; ℎ is sensor’s coil height; 𝑁 is sensor’s coil turn number; 𝑟1 and 𝑟2 

are inner and outer radii of sensor’s coil; 
𝑟
 is the specimen’s relative permeability. 

0
 

is the vacuum permeability; 𝐺 is the distance between the excitation coil and receiving 

coil. 

In Equation 4. 30, since the (𝛼) term barely change with 𝛼  (compared with 𝐴(𝛼) 

and𝑃(𝛼)), could be estimated as Equation 4. 37,  

𝛥𝐿(𝜔) = 𝜙(𝛼0)𝛥𝐿0 4. 36 

𝛼0 is the spatial frequency, which is a constant controlled by the sensor configuration.            
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From Equation 4. 36, the phase of tested inductance or impedance is merely controlled 

via (𝛼0). 

𝜙(𝛼0) =
−√1/𝜇𝑟

2 + 𝑗𝜇0𝜎𝜔/𝜇𝑟𝛼0
2 + 1

√1/𝜇𝑟
2 + 𝑗𝜇0𝜎𝜔/𝜇𝑟𝛼0

2 + 1
 

4. 37 

Neglect 1/𝜇𝑟
2in Equation 4. 37,  

𝜙(𝛼0) =
−√𝑗𝜇0𝜎𝜔/𝜇𝑟𝛼0

2 + 1

√𝑗𝜇0𝜎𝜔/𝜇𝑟𝛼0
2 + 1

 
4. 38 

In Equation 4. 38, it can be observed that (𝛼0) is sample and sensor related (controlled 

by 𝜎 and 𝜇𝑟). Assign 
𝜇𝑟𝛼0

2

𝜇0𝜎
 with 𝜔1, Equation 4. 38 can be expressed as,  

𝜙(𝛼0) =
−√𝑗𝜔/𝜔1 + 1

√𝑗𝜔/𝜔1 + 1
 

4. 39 

In Equation 4. 36, ∆𝐿0 denotes the magnitude of the tested inductance, which is solely 

controlled by the sensor configuration (cannot affected by the specimen properties).  

From our previously work, a simple function 𝑠𝑖𝑛2 (
𝛼𝜋

2𝛼0
) with its maximum at 0 is used 

to approximate 𝛥𝐿0[6].  

𝛥𝐿0 ≈ 𝛥𝐿𝑚𝑒−2𝛼𝑙0 𝑠𝑖𝑛2(
𝛼𝜋

2𝛼0
) 4. 40 

Where Δ𝐿𝑚 is the sample’s inductance with start point frequency (the first frequency 

sample for both simulations and measurements) for zero lift-off (0 mm under the sensor 

setup).                                                                    

The revised 𝛼 should maximize 𝑒−2𝛼𝑙0𝑠𝑖𝑛2 (
𝛼𝜋

2𝛼0
)and therefore 𝑒−𝛼𝑙0𝑠𝑖𝑛 (

𝛼𝜋

2𝛼0
). 

In our previous work [9], the shift in 𝛼0 caused by the lift-off effect - 𝛼0𝑟 can be derived 

as,  
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𝛼0𝑟 = 𝛼0 −
4𝛼0

2𝑙0
𝜋2

 
4. 41 

Therefore, the revised 𝜔1 becomes 

𝜔1 =
(𝛼0

2𝜋4 − 8𝜋2𝛼0
3𝑙0 + 16𝛼0

4𝑙0
2)𝜇𝑟

𝜋4𝜎𝜇0
 

4. 42 

Combining Equation 4. 40 with Equation 4. 41, ∆𝐿0 becomes 

𝛥𝐿0 = 𝛥𝐿𝑚𝑒
−2(𝛼0−

4𝛼0
2𝑙0

𝜋2 )𝑙0cos2(
2𝛼0𝑙0

𝜋
)

= 𝛥𝐿𝑚𝑒
−2(𝛼0−

4𝛼0
2𝑙0

𝜋2 )𝑙0(
cos(

4𝛼0𝑙0
𝜋 ) + 1

2
) 

4. 43 

Considering 𝛼0𝑙0 ≪ 1 and based on small-angle approximation cos(𝜃) ≈ 1 − 𝜃2/2, 

cos(4𝛼0𝑙0/𝜋) is substituted with 1 − (4𝛼0𝑙0/𝜋)2/2. 

∆𝐿0 becomes 𝛥𝐿0 = 𝛥𝐿𝑚𝑒
−2(𝛼0−

4𝛼0
2𝑙0

𝜋2 )𝑙0(1 −
4𝛼0

2𝑙0
2

𝜋2 ) , substituting (1 −
4𝛼0

2𝑙0
2

𝜋2 )   with 

𝑒
−

4𝛼0
2𝑙0

2

𝜋2 , 

𝛥𝐿0 = 𝛥𝐿𝑚𝑒
−2(𝛼0−

4𝛼0
2𝑙0

𝜋2 )𝑙0𝑒
−

4𝛼0
2𝑙0

2

𝜋2 = 𝛥𝐿𝑚𝑒
−2(𝛼0−

2𝛼0
2𝑙0

𝜋2 )𝑙0 
4. 44 

Then, 

𝑙𝑛
𝛥𝐿0

𝛥𝐿𝑚
= −2(𝛼0 −

2𝛼0
2𝑙0

𝜋2
)𝑙0 

4. 45 

And further derivation from Equation 4. 45: 

4𝛼0
2𝑙0

2 − 2𝜋2𝛼0𝑙0 − 𝜋2 𝑙𝑛
𝛥𝐿0

𝛥𝐿𝑚
= 0 

4. 46 

This is now a quadratic equation with 𝛼0𝑙0 as its variable. 

Therefore, the solution for 𝛼0𝑙0 is 
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𝛼0𝑙0 =
𝜋2 − √𝜋4 + 4𝜋2ln

∆𝐿0

∆𝐿𝑚

4
 

4. 47 

Since𝛼0𝑙0 ≪ 1, the other solution, the other solution 𝛼0𝑙0 =
𝜋2+√𝜋4+4𝜋2ln

∆𝐿0
∆𝐿𝑚

4
 therefore 

is discarded.  

From Equation 4. 47, lift-off can be estimated as  

𝑙0 =
𝜋2 − √𝜋4 + 4𝜋2ln

∆𝐿0

∆𝐿𝑚

4𝛼0
 

4. 48 

Combining Equation 4. 42 with Equation 4. 48,  

𝜔1 =
𝛼0

2 (𝜋2 + 4ln
∆𝐿0

∆𝐿𝑚
) 𝜇𝑟

𝜋2𝜎𝜇0
 

4. 49 

Further derivation from 4. 49 - 𝛼0
2(𝜋2 + 4 𝑙𝑛

𝛥𝐿0

𝛥𝐿𝑚
)𝜇𝑟 − 𝜋2𝜎𝜇0𝜔1 = 0 

And the solution is 

𝛼0 = √
𝜋2𝜎𝜇0𝜔1

(𝜋2 + 4 𝑙𝑛
𝛥𝐿0

𝛥𝐿𝑚
) 𝜇𝑟

 

4. 50 

Thus, the zero-crossing frequency can be compensated as following, 

𝜔0 =
𝜇𝑟𝛼0

2

𝜇0𝜎
=

𝜋2𝜔1

(𝜋2 + 4 𝑙𝑛
𝛥𝐿0

𝛥𝐿𝑚
)
 

4. 51 
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4.2 FEM solver for eddy current computation  

4.2.1 Acceleration based on perturbed matrix inversion 

A. Method 

Fast eddy current computation is vital for non-destructive testing. The perturbed matrix 

inversion (PMI) method was used for solving the linear system of equations in FEM 

when a small defect is present on the sample. As described in Equation 3. 27 and 

Equation 3. 28, it can be regarded as solving a large system of algebraic equations. 

Assume that a small defect is present on the sample, the system matrix is a slightly 

varied matrix to the sample without the defect. The variation matrix (or the perturbation 

matrix) due to the defect can be expressed as 

𝐷 = [
−𝐾2′ −𝐿′

−𝑀′ −𝑁′] 
4. 52 

Where: 𝐾2′ and 𝐿′ present the change from the second and third terms due to the 

perturbation in Equation 3. 27. 𝑀′  and 𝑁′  present the change from the first and 

second terms due to the perturbation in Equation 3. 28. 

According to the Sherman-Morrison-Woodbury formula, the inversion can be 

expressed as 

(𝑄 + 𝐷)−1 = 𝑄−1 − 𝑄−1(𝑄−1 + 𝐷−1)−1𝑄−1 4. 53 

Simplify the notation by denoting 𝑄−1 as 𝑄𝑖, then Equation 4. 53 can be simplified as 

[10] 

(𝑄 + 𝐷)−1 = 𝑄𝑖 − 𝑄𝑖𝐷(𝐼 + 𝑄𝑖𝐷)−1𝑄𝑖 4. 54 

Consequently, the solution can be obtained through the PMI method. All the 

computations were operated on the platform ThinkCentre M910s, with 16GB RAM and 

Intel Core i7-6700 processor.  
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B. Model 

  

Figure 4.18 Model Geometry (a) metal plate (b) metal plate with the defect 

In Figure 4.18, the objects have been modelled as an unflawed metallic plate and a 

metallic plate with a defect in the centre. For both metal plates in (a) and (b), the length, 

width and height are 20 mm, 20 mm and 5 mm respectively. For the metal plate with 

the defect in (b), the simulated defect is placed in the centre with a length of 5 mm, a 

width of 0.5 mm and a height of 3 mm. Two blocks are centred at (10, 10, 3.5) mm. To 

validate the solver, two materials are chosen for the metal plates, one is aluminium with 

the electrical conductivity of 35 MS/m at 20 degrees, and another is copper with the 

electrical conductivity of 57 MS/m at 20 degrees. 

In the simulation, as shown in Figure 4.19 and Table 4.7, a coaxial sensor is used in the 

simulation process. Both the radius of the excitation coil and the receiving coil are set 

to 0.5 mm. The lift-off of the sensor is 0.05 mm and the gap between the excitation coil 

and the receiving coil is 0.2 mm. The magnitude of the injection current in excitation 

coil is 1 A. During the simulation for crack inspection, the coils are moving in parallel 

along the y-axis (from (10, 0, 5) mm to (10, 20, 5) mm if there is no lift-off).  
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Figure 4.19 Sensor Configuration 

Table 4.7 Sensor Parameters 

Radius of excitation coil 𝑟1 0.5 mm 

Radius of receiving coil 𝑟2 0.5 mm 

Height of coil  ℎ 0.25 mm 

Gap between two coils 𝑔 0.2 mm 

Lift off 𝑙0 0.05 mm 

Thickness of the plate 𝑐 5 mm 

C. Test of the accelerated FEM 

According to the Dodd Deeds formulas, the inductance variation due to the sample 

plates (aluminium and copper) without defect can be calculated, shown in Figure 4.20 

and Figure 4.21. The sweeping frequency changes from 10 Hz to 1 MHz in the 

analytical solution. 

 

Figure 4.20 The real part of the inductance due to the aluminium and copper plate without defect 
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Figure 4.21 The imaginary part of the inductance caused by the aluminium and copper plate without 

defect 

It can be seen from the figures above that edge FEM simulation and analytical results 

are matched well with each other under the frequency range from 10 Hz to 100 kHz. 

Compared with the results from the aluminium plate, the characteristic frequency 

reduces when the copper plate was used, which is in accordance with the relationship 

between the conductivity and the characteristic frequency. In addition, given that the 

solution from analytical formulas is the results for the plate with infinite width and 

length, for the imaginary part of the inductance results, there exists some error as the 

frequency sweeping from 100 kHz to 1 MHz. 

D. Acceleration Performance in Crack Scanning 

As the perturbation matrix due to the presence of the defect on the sample was assigned 

to be the perturbation matrix D, the acceleration performance from the PMI approach 

can be obtained in order to detect the presence of the defect. The result of the PMI 

approach was compared with that calculated from the conventional conjugate gradient 

squared (CGS) method. The frequency was set to 10 Hz. The defect depths of the 
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sample plate are 1 mm, 2 mm and 3 mm respectively. The results are shown in the 

following subsections. 

D.1 Verification of the PMI-based Acceleration Solver 

Figure 4.22 and Figure 4.23 demonstrate the changes of induced voltage on the receiver 

coil as the sensor scans along the y axis above the sample plates (Figure 4.18(b)) with 

three different depths of the defects under the same frequency and lift-off. It can be 

seen that CGM and PMI methods agree well. As expected, the maximum value (peak 

value) of the voltage occurs at the center of the sample where the defect is located. The 

deeper the defect is, the larger the change in the induced voltage. There is a larger drop 

as defect depth increases from1mm to 2 mm than from 2 mm to 3 mm, which is due to 

the strength of eddy current decreases as the depth increases. Compared with the results 

from the aluminum plate, the change of the received voltage from the copper plate is 

slightly larger which is due to a higher conductivity for copper. 

Figure 4.24 illustrates the effect of the lift-off for the crack detection simulated from 

the copper plate with a 3 mm depth defect in the middle of the plate. The lift-off of the 

sensor is 0.05 mm and 0.5 mm respectively. The results from both methods agree well 

and the peaks of the voltage change are located at the same place. With the increase of 

the lift-off, the peak value decreases around 2.5 times which also proves the lift-off is 

one of the crucial factors in the crack detection process. 
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Figure 4.22 Computation results for the aluminum plate with different depths of defect, lift-off is 0.05 

mm 

 

Figure 4.23 Computation results for the copper plate with different depths of defect, lift-off is 0.05 mm 

 

Figure 4.24 Computation results for the copper plate with different lift-offs 
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D.2 Effect of Sampling Point Density during Scanning 

The effect of the sampling point density for crack detection is presented in Figure 4.25. 

The aluminium plate with a 3 mm depth of defect was used in the simulation process. 

The computation time varies from 100 s to 300 s for each scanning process by using 

the PMI method while it consumes 300 s to 900 s by using the conventional CGS 

method as the scanning sample points increasing from 50 to 150 in the step of 4. It can 

be noticed that the computation speed of the PMI method is about 3 times faster than 

the conventional CGS method. As shown in Figure 4.25, the computation time for both 

methods are increasing linearly with the increase of the sampling point density. Besides, 

the time shrinks more significantly for high density of sampling points by using the 

accelerated method. 

 

Figure 4.25 Computation time of PMI method and CGS method for different scanning sample numbers 

D.3 Effect of Frequency 

As shown in Figure 4.26, the relationship between the frequency used in the simulation 

and the computation time is plotted. The frequency used ranges from 10 Hz to 10 kHz 

in a logarithmic scale in the simulation process. After adopting the PMI method, the 

scanning speed is much faster than the conventional CGS method. The computation 

time used for PMI and conventional CGS methods almost remains stable regardless of 
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frequency settings, around 200 s, and 550 s respectively. It can be concluded that the 

acceleration efficiency remains almost the same concerning the frequency in the 

scanning process. 

 

Figure 4.26 Computation time of PMI method and CGS method under different frequencies 

D.4 Effect of Defect Depth 

As can be seen from Table 4.8, for the PMI method, the computation time slightly 

increases as the defect depth increases to 3 mm when aluminium plate was used while 

the speed almost maintains stable when the copper plate is used. Meanwhile, for the 

CGS method, the computation time increases as the depth increases for both materials. 

It can be noticed that the acceleration efficiency under the defect depth of 3 mm is 

slightly higher than that under the defect depth of 1 mm and 2 mm. 

Table 4.8 CGS method and PMI method computation time for different defect depths 

                   Computation Time (s) 

Defect 

Depth 

Aluminium Copper 

PMI CGS PMI CGS 

1mm 165.64 436.32 166.12 446.55 

2mm 168.64 449.51 167.97 450.31 

3mm 170.96 458.12 167.79 455.75 
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4.2.2 Accelerated calculation for the algebraic system due to 

small perturbation 

A. Method 

The final solution of the FEM problem results in a large algebraic equation system, as 

shown in Equation 3. 30. Now considering that there is a small crack in the tested 

sample, the original system matrix (crack free sample) can be expressed with the 

matrices affected/unaffected by the small perturbation, shown as 

[

𝐾1 𝐾2

𝐾3 𝐾4

𝐿1 𝐿2

𝐿3 𝐿4

𝑀1 𝑀2

𝑀3 𝑀4

𝑁1 𝑁2

𝑁3 𝑁4

] [

𝑨𝑢

𝑨𝑐

𝑉𝑢
𝑉𝑐

] = [

𝑋𝑢1

𝑋𝑐1

𝑋𝑢2

𝑋𝑐2

] 

4. 55 

Then reordering Equation 4. 55, four new submatrices (𝑄11, 𝑄12, 𝑄21 and 𝑄22) can be 

used to present the current crack free system matrix and given as 

[

𝐾1 𝐿1

𝑀1 𝑁1

𝐾2 𝐿2

𝑀2 𝑁2

𝐾3 𝐿3

𝑀3 𝑁3

𝐾4 𝐿4

𝑀4 𝑁4

] [

𝑨𝑢

𝑉𝑢
𝑨𝑐

𝑉𝑐

] = [

𝑋𝑢1

𝑋𝑢2

𝑋𝑐1

𝑋𝑐2

] 

4. 56 

[
𝑄11 𝑄12

𝑄21 𝑄22
] [

𝑆𝑢

𝑆𝑐
] = [

𝑋𝑢

𝑋𝑐
] 

4. 57 

Where:  

 𝑄11 = [
𝐾1 𝐿1

𝑀1 𝑁1
] , 𝑄12 = [

𝐾2 𝐿2

𝑀2 𝑁2
] , 𝑄21 = [

𝐾3 𝐿3

𝑀3 𝑁3
] , 𝑄22 =

[
𝐾4 𝐿4

𝑀4 𝑁4
] , 𝑆𝑢 = [

𝑨𝑢

𝑉𝑢
] , 𝑆𝑐 = [

𝑨𝑐

𝑉𝑐
] , 𝑋𝑢 = [

𝑋𝑢1

𝑋𝑢2
] , 𝑋𝑐 = [

𝑋𝑐1

𝑋𝑐2
] 

4. 58 

Here submatrix 𝑄11 represents the domain of elements which has no influence due to 

the existence of the crack while submatrices 𝑄12, 𝑄21 and 𝑄22 represent the domain of 

elements near the crack and are affected by this small perturbation. Submatrices 𝑄12 

and 𝑄21 are transposed. Matrix 𝑋 is the right-hand side matrix of the system which is 
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partitioned into two column matrices 𝑋𝑢  and 𝑋𝑐  and matrix 𝑆 is the solution for the 

matrix system, consisting of two submatrices 𝑆𝑢  and 𝑆𝑐 . Then the system equations 

change to  

𝑄11𝑆𝑢 + 𝑄12𝑆𝑐 = 𝑋𝑢 4. 59 

𝑄21𝑆𝑢 + 𝑄22𝑆𝑐 = 𝑋𝑐 4. 60 

Now due to the presence of the crack, the left-hand side of the crack free sample system 

matrix is very slightly perturbed. then the system equations with the small perturbation 

turn to   

𝑄11 𝑆𝑢
′ + (𝑄12 + ∆𝑄12)𝑆𝑐

′ = 𝑋𝑢 4. 61 

(𝑄21 + ∆𝑄21)𝑆𝑢
′ + (𝑄22 + ∆𝑄22)𝑆𝑐

′ = 𝑋𝑐 4. 62 

Where: ∆𝑄12, ∆𝑄21 and ∆𝑄22 are the submatrices affected due to the small perturbation. 

𝑆𝑢
′ and  𝑆𝑐

′ are the solution for the new system equations. 

Since that the element domain of submatrix 𝑄11 is hardly affected by the presence of 

the small perturbance, the vector and scalar potential solution of 𝑆𝑢
′ for this domain is 

regarded equal to the unperturbed solution without the crack in the sample plate, which 

gives 

𝑆𝑢
′ ≈ 𝑆𝑢 4. 63 

Using Equation 4. 63 and Equation 4. 62, the solution 𝑆𝑐
′ can be derived from equation 

(4.29)  

𝑆𝑐
′ = (𝑄22 + ∆𝑄22)

−1(−∆𝑄21𝑆𝑢 + 𝑄22𝑆𝑐) 4. 64 

The solution 𝑆𝑐
′ should also satisfy Equation 4. 61. By referring to [10], and assume 

that 𝑄22𝑖
 is the inversion matrix of 𝑄22, then  
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(𝑄22 + ∆𝑄22)
−1 = 𝑄22𝑖

− 𝑄22𝑖
∆𝑄22(𝐼 + 𝑄22𝑖

∆𝑄22)
−1𝑄22𝑖

 4. 65 

Substitute Equation 4. 65 to Equation 4. 64, it turns to  

𝑆𝑐
′ = (𝑄22𝑖

− 𝑄22𝑖
∆𝑄22(𝐼 + 𝑄22𝑖

∆𝑄22)
−1𝑄22𝑖

)(−∆𝑄21𝑆𝑢 + 𝑄22𝑆𝑐)  4. 66 

Now substitute Equation 4. 63 and Equation 4. 64 to the left-hand side of Equation 4. 

61 and it gives 

𝑄11 𝑆𝑢
′ + (𝑄12 + ∆𝑄12)𝑆𝑐

′ = 𝑄11𝑆𝑢 + (𝑄12 + ∆𝑄12)(𝑆𝑐 − 𝐻𝑆𝑢 +

𝐺(𝐼 + 𝐺)−1𝐻𝑆𝑢 − 𝐺(𝐼 + 𝐺)−1𝑆𝑐)  

4. 67 

Where:  

𝐺 = 𝑄22𝑖
∆𝑄22, 𝐻 = 𝑄22𝑖

∆𝑄21 4. 68 

The matrices ∆𝑄12, 𝐺 and 𝐻 are perturbed matrices with small element values, terms 

containing these matrices can be eliminated, then Equation 4. 67 can be approximated 

as Equation 4. 69, which is satisfied with the right-hand side of Equation 4. 59. 

𝑄11 𝑆𝑢
′ + (𝑄12 + ∆𝑄12)𝑆𝑐

′ ≈ 𝑄11𝑆𝑢 + 𝑄12𝑆𝑐 = 𝑋𝑢 4. 69 

Consequently, Equation 4. 61 is valid. Therefore, the final solution of equation system 

with the perturbation of the crack can be approximately calculated as 

{
𝑆𝑢

′ = 𝑆𝑢

(𝑄22 + ∆𝑄22)𝑆𝑐
′ = 𝑋𝑐 − (𝑄21 + ∆𝑄21)𝑆𝑢

 
4. 70 

After obtaining both the vector potential and scalar potential, the eddy current, the 

voltage and the inductance change can be calculated respectively.  

B. Simulation setup 

An EM sensor probe is designed for the simulations to verify the proposed method. As 

shown in Figure 4.27, the sensor probe is the co-axial type sensor. The coil parameters 

are listed in Table 4.9. The exciting coil and receiving coil have identical radius and 
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height with single turn. The sensor probe is placed 0.5 mm above the sample plate and 

the gap between the coils is 0.5 mm. The excitation current with the magnitude of 1 A 

and the frequency of 1 kHz is injected into the exciting coil, the induced inductance 

with the presence of the sample plate can be received from the receiving coil. The 

conductivity and thickness of the sample plate is set to 57 MS/m and 2 mm respectively. 

It can be seen from Figure 4.28 that there are different shapes of crack would be tested. 

These cracks are generated in the middle of the sample plate. 

 

Figure 4.27 The configuration of EM sensor probe 

Table 4.9 Coil Parameters 

Exciting coil Radius (𝑟𝑒) 3 mm 

Height (ℎ𝑒) 0.3 mm 

Receiving coil Radius (𝑟𝑝) 3 mm 

Height (ℎ𝑝) 0.3 mm 

Lift off 𝑙0 0.5 mm 

Gap between the exciting coil and 

receiving coil g 

0.5 mm 

Thickness of the sample plate 𝑐 2 mm 

Working frequency 𝑓 1 kHz 
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Figure 4.28 Crack shapes (a) Triangle (b) Rectangle (c) Circular sector (d) X shape 

C. Results 

C.1 Verification of FE analysis 

The movement of eddy current is a key point in the inspection of eddy current testing. 

It would be disturbed due to the presence of the crack. As shown in Figure 4.29, eddy 

current flows on the sample plate without crack or with different shapes of crack. It can 

be seen that the eddy current is rotational as there is no crack on the sample plate. Then 

when it encounters with a crack, it will be flow around the edge of the crack but the 

overall trend remains the same. From the vector diagram of the eddy current, the crack 

shape can be seen clearly and same compared with Figure 4.28. The inductance change 

due to the sample plate with a rectangle crack under different element number was 

calculated. As listed in Table 4.10, the deviation is within 5% and the speed of the 

computation is significantly improved, i.e., the time for the calculation is shortened 3.79 

times as the total element number is 10 k with the variation of 2.56 % while 34.24 times 

as the total element number is 139 k with the variation of 3.56%. Figure 4.30 shows the 

relative residual of varying iteration number under different element number and it can 
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be also revealed that it needs less iteration cycles to achieve the convergence. 

 

(a) 

 

(b) 
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(c) 

 

(d) 
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(e) 

Figure 4.29 Eddy current (a) without crack and with crack (b) triangle (c) rectangle (d) circular sector 

(e) X shape 

Table 4.10 The accelerated rate and deviation of the inductance change due to the sample plate under 

different element number 

Element 

Number  

Calculation time of the 

method without 

acceleration (s) 

Calculation time of the 

proposed method (s) 

Accelerated rate 

(times) 

Calculation deviation 

(%) 

10 k 7.69 2.03 3.79 2.56 

51 k 57.74 3.56 16.22 3.22 

139 k 306.79 8.96 34.24 3.56 
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Figure 4.30 Relative residual under different element number 

C.2 Crack scanning  

FE calculation can be used in the detection for the crack. As depicted in Figure 4.31, 

the sensor probe scans a crack with the length of 10 mm and the width of 0.5 mm in the 

centre of the sample plate (same with the sample plate with a rectangle crack, shown in 

Figure 4.28(b) and Figure 4.29(c)) and it scans along x and y axis respectively. The 

results agreed with the simulation results without using the acceleration method and, as 

listed in Table 4.11, the speed is enhanced approx. 7 folds. It can be noted that the 

sensor probe closes to the crack, the received voltage is decreasing then stays stable and 

the voltage increases until it leaves the crack. This phenomenon is due to the 

perturbance of the crack, the distribution of the eddy current changes on the sample 

plate which results in the change of the magnetic field.   
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(a) 

 

(b) 

Figure 4.31 The sensor probe scans across the crack along (a) x axis (b) y axis 

Table 4.11 The computation time for one step 

Scanning direction  Calculation time (s) 

Proposed method Method without acceleration 

X axis 5.47 35.92 

Y axis 5.68 36.08 

Figure 4.32 shows the experimental setup consisting of an EM instrument, a sensor 
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probe and the sample plate. Then the detected data would be transmitted to the host PC. 

Here a differential sensor probe was made for detecting different depths of the crack 

from 0.1 mm to 2 mm with the increment of 0.1 mm. The crack has the length of 10 

mm and the width of 0.1 mm. The sensor parameters are listed in Table 4.12. The lift-

off of the sensor probe was 1 mm and the working frequency was 20 kHz. The 

conductivity and the thickness of the sample plate are 1.4 MS/m and 2 mm respectively.  

 

Figure 4.32 Experimental setup 

Table 4.12 Experiment sensor parameters 

Excitation 

coil 

Length (mm) 8 

Width (mm) 4 

Height (mm) 10 

Turns N 20 

Receiving 

coil 

Radius (mm) 0.5 

Turns N 250 

Length (mm) 10 

Width (mm) 0.1 

Surface crack Depth (mm) 
0.1 to 2 mm in step of 

0.1 mm 

Lift-off 𝑙0 (mm) 1 

Excitation frequency (kHz) 20 

Plate thickness (mm) 2 

Plate conductivity (MS/m) 1.4 
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The received and simulated data are plotted in Figure 4.33. The simulated results are 

agreed with the measured ones. It can be seen that, when the sensor probe scan across 

the crack, there is a sine relationship between the scanning distance and the received 

voltage of the measured and simulated data. The peak voltage is related to the depth of 

the crack, i.e., the deeper the crack depth, the larger the received result. The peak 

voltage can be used to predict the depth of the crack. Besides, it can be deduced that 

the length of the crack is 10 mm which is consistent with the sample crack. 

 

Figure 4.33 Measured and simulated results under different depths 
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Chapter 5 Thickness measurement of 

metallic plates with finite planar dimension 

using eddy current method 

_____________________________________________________________________ 

 

Ruochen Huang, Mingyang Lu, Anthony Peyton, Wuliang Yin 

 

IEEE Transactions on Instrumentation and Measurement, vol. 69, no. 10, 2020. 

 

In this chapter, a modified analytical solution based on the Dodd - Deeds model is 

proposed. It is applied for the metallic sample with a finite dimension. In this method, 

it is found that the radius of the sample is related to the integral point of analytical 

algorithm, therefore, for the sample with finite dimension, a new initial integral point 

is introduced to calculate the inductance change using eddy current sensor. Both the 

experiment and simulation have been carried out to verify the proposed method. 

Moreover, it can also be used for the thickness measurement and the retrieved thickness 

for the sample plate is within the error of 2%. 
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Chapter 6 Measurement of permeability for 

ferrous metallic plates using a novel lift-off 

compensation technique on phase signature 

_____________________________________________________________________ 

 

Mingyang Lu, Ruochen Huang, Wuliang Yin, Qian Zhao, Anthony Peyton 

 

IEEE Sensors Journal, vol. 19, no. 17, 2019. 

 

In this chapter, a novel algorithm is proposed to eliminate the deviation of the phase for 

ferrous sample plates caused by the lift-off of the sensor probe. The algorithm is based 

on two basic features. Firstly, in the multi-frequency spectra, the phase of the 

impedance will grow with the decreased lift-off. Secondly, the amplitude of the 

detected induced response (impedance) will rise up with small sensor lift-offs. Based 

on this sophisticated phase compensating algorithm, the phase without the effect of the 

unknown lift-off can be reconstructed and the magnetic permeability of the ferrous plate 

can be estimated from the measured impedance.  
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Chapter 7 A Novel Perturbed Matrix 

Inversion Based Method for the Acceleration 

of Finite Element Analysis in Crack-

Scanning Eddy Current NDT 

_____________________________________________________________________ 

 

Ruochen Huang, Mingyang Lu, Anthony Peyton, Wuliang Yin 

 

IEEE Access, 2020. 

 

The finite element method is commonly used to calculate the EM field of eddy current 

sensors and inspect the surface crack of metals. However, FEM takes hours of 

computation time due to the significant number of mesh elements. In this chapter, an 

accelerated method based on the perturbed matrix inversion method is proposed. For 

the calculation of the crack detection, it only needs the inversion for a much smaller 

matrix, consequently, it reduces the computation time by three folds. This method is 

proved by the numerical tests.  

 

 

 

 

  



139 

 

 

  



140 

 

 

 

  



141 

 

 

 

  



142 

 

 

 

  



143 

 

 

 

  



144 

 

 

 

  



145 

 

 

 

 

 

  



146 

 

Chapter 8 A novel acceleration method for 

eddy current crack computation using finite 

element analysis 

_____________________________________________________________________ 

 

Ruochen Huang, Mingyang Lu, Ziqi Chen, Yuchun Shao, Gang Hu, Anthony Peyton, 

Wuliang Yin 

 

NDT & E International, submitted. 

 

In this chapter, due to the fact that a small crack only causes a small perturbance of the 

fields in the surrounding region. Based on this feature and by solving the field of crack 

surrounding region, a novel crack calculation acceleration method is proposed. Both 

the eddy current and the inductance change due to the sample plate are calculated and 

it shows that the more the element number, the more the computation speed increases. 

The experiment of crack scanning has also been conducted and the results agree with 

the simulation results. 
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Abstract 

Finite element analysis plays an essential role in the field of eddy current computation 

and analysis for non-destructive testing applications. There are some analytical 

solutions that can be used to solve eddy current problems, however, in most cases, there 

is no suitable analytical method, i.e., the test sample with arbitrary geometry or with 

arbitrary shape of crack. Therefore, finite element method is a fundamental tool in 

conducting the investigations. A key feature of using finite element method for eddy 
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current simulation is being versatile but slow. In this paper, exploiting the fact that the 

crack only causes a small perturbance in fields in the surrounding region, a novel crack 

calculation acceleration method is proposed. The algorithm proves that the calculation 

can be mainly executed within the perturbance domain. Both numerical and 

experimental tests have been conducted for verification. The speed of the calculation is 

enhanced greatly (up to 34 folds in the tested cases) while deviation from the full 

solution is within 5%. Moreover, the measured results have a good agreement with the 

simulated ones under different depths of crack. 

Keywords: finite element method, crack detection, eddy current, acceleration. 

Introduction 

Non-destructive techniques have been widely applied in the industrial applications due 

to its merits, i.e., non-contact, reliability and no damage to the target [1-2]. Eddy current 

testing, as one of the categories, is commonly utilised to measure the product 

characteristics, i.e., electrical conductivity and magnetic permeability [3-5], predict the 

coating thickness [6-8] and detect the crack existing in the target sample [9-10]. As 

known, due to the aging and long-time running, the presence of the crack can lead to 

severe consequences and financial losses. Thus, the facilities would be examined 

regularly to prevent from unexpected failure [11-12].  

Many researches have been investigated and carried out to detect the crack using the 

eddy current testing methods. In [13], Nafiah, et al. used the features extracting from 

the scanning data to develop different models (multiple linear regression model, 

hierarchical linear model and artificial neural network) to predict the depth and angle 

of the crack. From the results, it was found that ANN model has the most accurate 

performance compared with other models. A sensor probe with orthogonal transmitters 

was made to produce different excitation current for crack detection and proved to be 

feasible [14]. Besides, Liu, et al. designed a non-encircling sensor structure with L 
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shape using electromagnetic tomography to achieve the reconstruction of rail defect 

inspection [15]. In [16], Yang et al. considered the uniform sensitivity property of the 

rotational electromagnetic field and applied it into the detection for the crack with 

arbitrary angle. However, both sensor design and data analysis require accurate 

modelling of the eddy current phenomena.  

To precisely simulate the eddy current problem due to the effect of the crack, there are 

various methods and can be generally divided into three groups, that is, analytical 

methods, finite element methods and integral equation techniques. Analytical methods 

are generally fast and convenient for computing eddy current in some special cases, i.e., 

an infinitely long-slot crack [17] and co-axial hole [18]. For example, Lu, et al. 

developed the analytical solution for triple-coil drive-pickup EC sensor probe to 

identify the orientation of the surface crack [19]. Compared with analytical methods, 

finite element methods and integral equation techniques have the capability to solve the 

eddy current problem for arbitrary geometry of crack or target sample and the sensor 

setup.  

In solving the problem caused by the presence of the crack using the integral 

formulation, volume integral [20-23] can be considered for the scattered field. The 

dyadic kernel was applied by Bowler and Jenkins, the direct and reflected field can be 

calculated due to the perturbance of the open crack and meets the continuity for the 

boundary [20]. Supported by the dedicated kernel which lessens massive computations 

for the number of unknown variables, the eddy current problem due to the existence of 

the edge crack in the conductive quarter region can be addressed [23]. Besides, the 

crack with negligible width can also be treated as a surface with jump in the 

electromagnetic field between the crack and the conductor [24]. The boundary 

condition for the crack in the thin skin regime introduced by Bowler and Harfield 

satisfied with the 2-D Laplace equation and the impedance change can be derived [25].       

Several researches for the development of the finite element methods for different cases 
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have been conducted for decades, including curved plates simulation [26], 

ferromagnetic modelling [27-28] and conductive defect simulation [29]. Since the 

received field is affected by the crack, the perturbed field can be calculated by 

improving the formulations in most works. In order to ease the burden from the mesh 

discretization, Badics, et al. introduced a thin sheet crack model for the crack which 

satisfies the condition that the crack width is much smaller than other dimensions of the 

crack [30]. In [29], to tackle the effect caused by the conductive crack, the parallel 

component of the received signal can be calculated with the condition that the width of 

a crack is less than the prepared database.  

Due to the fact that the massive computation time is required to achieve high accuracy 

from the simulation, reducing the running time is essential and several significant 

progresses have been made during these decades in this aspect. Prestored database 

method [27, 31-33] and FEM-BEM hybrid method [22, 31] are popular in solving this 

kind of problem. Du, et al. proposed a fast calculation solver based on the FEM-BEM 

method and database for ECT simulations and the running time was significantly 

shortened with the guarantee of the accuracy [31]. Combining the finite element method 

with the existing analytical methods for the unflawed area, the distorted field due to the 

defect can be directly obtained [34]. The adaptive fast multipole method offers the 

possibility to shrink the operations in the computation process and Rubinacci, et al, 

proved its robustness in [35]. Moreover, new shape functions were presented by 

Morozov adapting the eddy current caused by the crack and a small part from the entire 

system was inverted to obtain the perturbed signal which lessons the burden of the 

computation [22]. Lu, et al. proposed an accelerated method by using the optimized 

initial guess from previous frequency calculation which reduces the iteration numbers 

for the simulation [36]. With the aid of Darwin approximation, the subdomain 

perturbation (SDP) formulation can be usefully adopted to simulate the near field for 

eddy current problem both the accuracy from the low frequency aspects and the 

computation speed [37].  
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In this paper, to address this issue, a fast crack calculation method is proposed. Due to 

the presence of the crack, the system is mainly affected around the crack area. Utilising 

this feature, the solution due to the perturbation by the crack can be calculated. The 

theoretical manipulations have been presented in the following part and numerical and 

experimental tests have been carried out for the verification of the proposed method.  

Theoretical manipulations for crack calculation 

A. Edge element analysis based on FEM  

Finite element method (FEM) is a powerful tool in electromagnetic computing and is 

widely used in the field of non-destructive testing. The FEM program based on A-V 

Edge-Element Formulation was scripted in MATLAB by utilising the constructed mesh 

models (mesh information, including coordinates of subdomain elements) of the tested 

sample. Taking the boundary conditions into account, the Galerkin method is employed 

to compute the scalar potential (V) and vector potential (𝑨) of the whole domain. For 

each tetrahedral subdomain element, the equations are shown as follows: 

∫ ∇ × 𝑁𝑖 ⋅ 𝑣∇ × 𝑨𝑛𝑑𝛺
𝛺𝑐

+ ∫ 𝑗𝜔𝜎𝑁𝑖 ⋅ 𝑨𝑛𝑑𝛺
𝛺𝑐

+ ∫ 𝑗𝜔𝜎𝑁𝑖 ⋅ ∇𝑉𝑛𝑑𝛺
𝛺𝑐

 

= ∫ ∇ × 𝑁𝑖 ⋅ 𝑣0∇ × 𝑨𝑠𝛺𝑐
𝑑𝛺 𝑖 = 1,2, . . . ,6                                                                (1)  

∫ 𝑗𝜔𝜎∇𝐿𝑖 ⋅ 𝑨𝑛𝑑𝛺
𝛺𝑐

+ ∫ 𝑗𝜔𝜎∇𝐿𝑖 ⋅ ∇𝑉𝑛𝑑𝛺
𝛺𝑐

= 0     𝑖 = 1,2, . . . ,4                                (2) 

Where: 𝑁𝑖 denotes the ith edge shape (interpolation) function; 𝐿𝑖 denotes the ith nodal 

shape (interpolation) function; 𝛺𝑐 denotes the conductive region of the model; 𝑣 and 𝜎 

denote the reluctivity and the conductivity of the tested sample; 𝑣0 denotes reluctivity 

in the vacuum.  

Considering the uniqueness of shape (interpolation) functions for individual tetrahedral 

element, the coordinate transformation is used to converts the global coordinates (𝜆𝑣, 𝜆𝑠) 

to the local coordinates ( �̂�𝑣, �̂�𝑠 ), in order to reduce the burden for computation. 
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Consequently, the shape functions can be expressed as 

𝐽 =

[
 
 
 
 
𝜕𝑥

𝜕𝜉

𝜕𝑦

𝜕𝜉

𝜕𝑧

𝜕𝜉

𝜕𝑥

𝜕𝜂

𝜕𝑦

𝜕𝜂

𝜕𝑧

𝜕𝜂

𝜕𝑥

𝜕𝜁

𝜕𝑦

𝜕𝜁

𝜕𝑧

𝜕𝜁]
 
 
 
 

                                                                                                         (3)   

𝜆𝑣 = 𝐽−1�̂�𝑣                                                                                                                   (4) 

 𝜆𝑠 = 𝐽−1�̂�𝑠                                                                                                                  (5) 

𝛻 × 𝜆𝑣 =
1

|𝐽|
𝐽𝑇𝛻 × �̂�𝑣                                                                                                  (6) 

Where, 𝐽 is the Jacobian matrix, 𝜆𝑣 is the vector component in the global coordinates, 

𝜆𝑠 is the scalar component in the global coordinates, �̂�𝑣 is the vector component in the 

local coordinates,  �̂�𝑠 is the scalar component in the local coordinates. 

Combining equations (1) and (2), the whole system matrix can be derived as a linear 

system of algebraic equations with the support of the stiffness matrix Q.  

𝑄 = [𝐾
𝑝×𝑝 𝐿𝑝×𝑞

𝑀𝑞×𝑝 𝑁𝑞×𝑞]                                                                                                    (7) 

𝑄

[
 
 
 
 
 
[

𝑨1

⋮
𝑨𝑝

]

[

𝑉1

⋮
𝑉𝑞

]
]
 
 
 
 
 

= 𝑋                                                                                                               (8) 

Here, 𝑝 denotes the number of edges and 𝑞 denotes the number of vertex nodes. 𝐾, 

which is related to the summation of the first two terms of equation (1), mainly 

dominates by the vector field and contributes to the generation of the vector potential. 

𝐿  is the third term of equation (2), controlling the flow of the eddy current as it 

encounters with the notch. 𝑀 and 𝑁 are the terms of left-hand side of equation (2), 

satisfying the conditions of magnetostatic field. 𝑋 is the terms of right-hand side of 
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equation (1) and (2), providing the background field of the entire system. Therefore, 

the magnetic vector potential field 𝑨 along all the edges and electric scalar potential 

field 𝑉 on all the vertex of the entire system can be calculated by equation (9). Then, 

the eddy current produced in the tested sample is equal as 

 𝐽𝑠 = 𝜎𝐸 =  −𝑗𝜔𝜎𝑨 − 𝜎𝛻𝑉                                                                                         (9)  

Where, 𝐸 is the electric field contributed by both the vector and scalar potential field. 

As stated in paper [38], the calculated inductance change (𝛥𝐿) due to the sample can be given as 

𝛥𝐿 =
1

𝑗𝜔𝐼2
∫ 𝑬𝑎 ⋅ 𝑬𝑏𝑐

⋅ (𝜎𝑎 − 𝜎𝑏)𝑑𝑣                                                                           (10) 

Here the inductance change is derived from the substrate domain of 𝑎 and 𝑏. 

B. Accelerated calculation for the algebraic system due to small 

perturbation   

The final solution of the FEM problem results in a large algebraic equation system, as 

shown in equation (8). Considering that there is a small crack in the tested sample, the 

original system matrix (crack free sample) can be expressed with the matrices 

affected/unaffected by the small perturbation, shown as 

[

𝐾1 𝐾2

𝐾3 𝐾4

𝐿1 𝐿2

𝐿3 𝐿4

𝑀1 𝑀2

𝑀3 𝑀4

𝑁1 𝑁2

𝑁3 𝑁4

] [

𝑨𝑢

𝑨𝑐

𝑉𝑢
𝑉𝑐

] = [

𝑋𝑢1

𝑋𝑐1

𝑋𝑢2

𝑋𝑐2

]                                                                          (11) 

Then reordering equation (11), four new submatrices (𝑄11, 𝑄12, 𝑄21 and 𝑄22) can be 

used to present the current crack free system matrix and given as 

[

𝐾1 𝐿1

𝑀1 𝑁1

𝐾2 𝐿2

𝑀2 𝑁2

𝐾3 𝐿3

𝑀3 𝑁3

𝐾4 𝐿4

𝑀4 𝑁4

] [

𝑨𝑢

𝑉𝑢
𝑨𝑐

𝑉𝑐

] = [

𝑋𝑢1

𝑋𝑢2

𝑋𝑐1

𝑋𝑐2

]                                                                          (12) 

[
𝑄11 𝑄12

𝑄21 𝑄22
] [

𝑆𝑢

𝑆𝑐
] = [

𝑋𝑢

𝑋𝑐
]                                                                                            (13) 
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Where:𝑄11 = [
𝐾1 𝐿1

𝑀1 𝑁1
] , 𝑄

12
= [

𝐾2 𝐿2

𝑀2 𝑁2
] , 𝑄

21
= [

𝐾3 𝐿3

𝑀3 𝑁3
]  , 𝑄

22
= [

𝐾4 𝐿4

𝑀4 𝑁4
] , 𝑆𝑢 =

[
𝑨𝑢

𝑉𝑢
] , 𝑆𝑐 = [

𝑨𝑐

𝑉𝑐
] , 𝑋𝑢 = [

𝑋𝑢1

𝑋𝑢2
] , 𝑋𝑐 = [

𝑋𝑐1

𝑋𝑐2
]        

Here submatrix 𝑄11 represents the domain of elements which has no influence due to 

the existence of the crack while submatrices 𝑄12, 𝑄21 and 𝑄22 represent the domain of 

elements near the crack and are affected by this small perturbation. Submatrices 𝑄12 

and 𝑄21 are transposed. Matrix 𝑋 is the right-hand side matrix of the system which is 

partitioned into two column matrices 𝑋𝑢  and 𝑋𝑐  and matrix 𝑆 is the solution for the 

matrix system, consisting of two submatrices 𝑆𝑢  and 𝑆𝑐 . Then the system equations 

change to  

𝑄11𝑆𝑢 + 𝑄12𝑆𝑐 = 𝑋𝑢                                                                                                 (14) 

𝑄21𝑆𝑢 + 𝑄22𝑆𝑐 = 𝑋𝑐                                                                                                 (15) 

Now due to the presence of the crack, the left-hand side of the crack free sample system 

matrix is very slightly perturbed. then the system equations with the small perturbation 

turn to  

𝑄11 𝑆𝑢
′ + (𝑄12 + ∆𝑄12)𝑆𝑐

′ = 𝑋𝑢                                                                              (16) 

(𝑄21 + ∆𝑄21)𝑆𝑢
′ + (𝑄22 + ∆𝑄22)𝑆𝑐

′ = 𝑋𝑐                                                              (17)  

Where: ∆𝑄12, ∆𝑄21 and ∆𝑄22 are the submatrices affected due to the small perturbation. 

𝑆𝑢
′ and  𝑆𝑐

′ are the solution for the new system equations. 

Since that the element domain of submatrix 𝑄11 is hardly affected by the presence of 

the small perturbance, the vector and scalar solution of 𝑆𝑢
′ for this domain is regarded 

equal to the unperturbed solution without the crack in the sample plate, which gives 

𝑆𝑢
′ ≈ 𝑆𝑢                                                                                                                    (18) 
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Using equations (18) and (15), the solution 𝑆𝑐
′ can be derived from equation (17).  

𝑆𝑐
′ = (𝑄22 + ∆𝑄22)

−1(−∆𝑄21𝑆𝑢 + 𝑄22𝑆𝑐)                                                              (19) 

The solution 𝑆𝑐
′ should also satisfy equation (16). It can be proved as below. 

By referring to [39], and assume that 𝑄22𝑖
 is the inversion matrix of 𝑄22, then  

(𝑄22 + ∆𝑄22)
−1 = 𝑄22𝑖

− 𝑄22𝑖
∆𝑄22(𝐼 + 𝑄22𝑖

∆𝑄22)
−1𝑄22𝑖

                                   (20) 

Substitute equation (20) to equation (19), it turns to  

𝑆𝑐
′ = 𝑆𝑐 − 𝑄22𝑖

∆𝑄21𝑆𝑢 + 𝑄22𝑖
∆𝑄22(𝐼 + 𝑄22𝑖

∆𝑄22)
−1

𝑄22𝑖
∆𝑄21𝑆𝑢 − 𝑄22𝑖

∆𝑄22(𝐼 +

𝑄22𝑖
∆𝑄22)

−1
𝑆𝑐                                                                                                          (21) 

Now substitute equations (18) and (21) to the left-hand side of equation (16) and assume 

that 𝐺 = 𝑄
22𝑖

∆𝑄
22

, 𝐻 = 𝑄
22𝑖

∆𝑄
21

, it gives 

𝑄11 𝑆𝑢
′ + (𝑄12 + ∆𝑄12)𝑆𝑐

′ = 𝑄11𝑆𝑢 + (𝑄12 + ∆𝑄12)(𝑆𝑐 − 𝐻𝑆𝑢 + 𝐺(𝐼 + 𝐺)−1𝐻𝑆𝑢 −

𝐺(𝐼 + 𝐺)−1𝑆𝑐)                                                                                                          (22) 

The matrices ∆𝑄12, 𝐺 and 𝐻 are perturbed matrices with small element values, terms 

containing these matrices can be eliminated, then equation (22) can be approximated as 

equation (23), which is satisfied with the right-hand side of equation (14). 

𝑄11 𝑆𝑢
′ + (𝑄12 + ∆𝑄12)𝑆𝑐

′ ≈ 𝑄11𝑆𝑢 + 𝑄12𝑆𝑐 = 𝑋𝑢                                                (23) 

Consequently, equation (16) is valid. Therefore, the final solution of equation system 

(16-17) with the perturbation of the crack can be approximately calculated as 

{
𝑆𝑢

′ = 𝑆𝑢

(𝑄22 + ∆𝑄22)𝑆𝑐
′ = 𝑋𝑐 − (𝑄21 + ∆𝑄21)𝑆𝑢

                                                              (24) 

Combine the proposed method with the conjugate gradient squared method, the vector 
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and scalar potential can be calculated.  

Simulation setup 

An EM sensor probe is designed for the simulations to verify the proposed method. As 

shown in Fig. 1, the sensor probe is the co-axial type sensor. As listed in Table 1, the 

exciting coil and receiving coil have identical radius and height. The sensor probe is 

placed 0.5 mm above the sample plate and the gap between the coils is 0.5 mm. The 

excitation current with the magnitude of 1 A and the frequency of 1 kHz is injected into 

the exciting coil, the induced inductance with the presence of the sample plate can be 

received from the receiving coil. The conductivity and thickness of the sample plate is 

set to 57 MS/m and 2 mm respectively. It can be seen from Fig. 2 that there are different 

shapes of crack would be tested. These cracks are generated in the middle of the sample 

plate. 

 

Fig. 1 The configuration of EM sensor probe 

TABLE I 

Coil Parameters 

Exciting coil Radius (𝑟𝑒) 3 mm 

Height (ℎ𝑒) 0.3 mm 

Receiving coil Radius (𝑟𝑝) 3 mm 

Height (ℎ𝑝) 0.3 mm 

Lift off 𝑙0 0.5 mm 

Gap between the exciting coil and 0.5 mm 
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receiving coil g 

Thickness of the sample plate 𝑐 2 mm 

Working frequency 𝑓 1 kHz 

 

Fig. 2 Crack shapes (a) Triangle (b) Rectangle (c) Circular sector (d) X shape 

Results 

A. Verification of FE analysis 

The movement of eddy current is a key point in the inspection of eddy current testing. 

It would be disturbed due to the presence of the crack. As shown in Fig. 3, eddy current 

flows on the sample plate without crack or with different shapes of crack. It can be seen 

that the eddy current is rotational as there is no crack on the sample plate. Then when 

it encounters with a crack, it will be flow around the edge of the crack but the overall 

trend remains the same. From the vector diagram of the eddy current, the crack shape 

can be seen clearly and same compared with Fig. 2. The inductance change due to the 

sample plate with a rectangle crack under different element number was calculated. As 

listed in Table II, the deviation is within 5% and the speed of the computation is 

significantly improved, i.e., the time for the calculation is shortened 3.79 times as the 

total element number is 10 k with the variation of 2.56 % while 34.24 times as the total 
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element number is 139 k with the variation of 3.56%. Fig. 4 shows the relative residual 

of varying iteration number under different element number and it can be also revealed 

that it needs less iteration cycles to achieve the convergence.   

 

(a) 

 

(b) 
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(c) 

 

(d) 
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(e) 

Fig. 3 Eddy current (a) without crack and with crack (b) triangle (c) rectangle (d) 

circular sector (e) X shape 

 

TABLE II 

The accelerated rate and deviation of the inductance change due to the sample plate under different 

element number 

Element Number  Calculation time of the method 

without acceleration (s) 

Calculation time of the 

proposed method (s) 

Accelerated rate (times) Calculation deviation (%) 

10 k 7.69 2.03 3.79 2.56 

51 k 57.74 3.56 16.22 3.22 

139 k 306.79 8.96 34.24 3.56 
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Fig. 4 Relative residual under different element number 

B. Crack scanning 

FE calculation can be used in the detection for the crack. As depicted in Fig. 5, the 

sensor probe scans a crack with the length of 10 mm and the width of 0.5 mm in the 

centre of the sample plate (same with the sample plate with a rectangle crack, shown in 

Fig. 2(b) and Fig. 3(c)) and it scans along x and y axis respectively. The results agreed 

with the simulation results without using the acceleration method and, as listed in Table 

III, the speed is enhanced approx. 7 folds. It can be noted that the sensor probe closes 

to the crack, the received voltage is decreasing then stays stable and the voltage 

increases until it leaves the crack. This phenomenon is due to the perturbance of the 

crack, the distribution of the eddy current changes on the sample plate which results in 

the change of the magnetic field. 
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(a) 

 

(b) 

Fig. 5 The sensor probe scans across the crack along (a) x axis (b) y axis 

TABLE III 

The computation time for one step 

Scanning direction  Calculation time (s) 

Proposed method Method without acceleration 

X axis 5.47 35.92 

Y axis 5.68 36.08 
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Fig. 6 Experimental setup 

TABLE IV 

Experiment sensor parameters 

Excitation 

coil 

Length (mm) 8 

Width (mm) 4 

Height (mm) 10 

Turns N 20 

Receiving 

coil 

Radius (mm) 0.5 

Turns N 250 

Lift-off 𝑙0 (mm) 1 

Excitation frequency (kHz) 20 

Figure 6 shows the experimental setup consisting of an EM instrument, a sensor probe 

and the sample plate. Then the detected data would be transmitted to the host PC. Here 

a differential sensor probe was made for detecting different depths of the crack from 

0.1 mm to 2 mm with the increment of 0.1 mm. The crack has the length of 10 mm and 

the width of 0.1 mm. The sensor parameters are listed in Table IV. The lift-off of the 

sensor probe was 1 mm and the working frequency was 20 kHz. The conductivity and 

the thickness of the sample plate are 1.4 MS/m and 2 mm respectively. The received 

and simulated data are plotted in Fig. 7. The simulated results are agreed with the 

measured ones. It can be seen that, when the sensor probe scan across the crack, there 

is a sine relationship between the scanning distance and the received voltage of the 

measured and simulated data. The peak voltage is related to the depth of the crack, i.e., 

the deep the crack, the larger the received result. The peak voltage can be used to predict 

the depth of the crack. Besides, it can be deduced that the length of the crack is 10 mm 
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which is consistent with the sample crack.  

 

Fig. 7 Measured and simulated results under different depths 

Conclusions 

In this paper, an acceleration method using finite element method is proposed. Instead 

of calculating the entire domain for the tested sample, it computes for the region 

affected by the crack from the crack free region in the simulation. The algorithm is 

proved effective in greatly shortening the computation time. For this method, the 

larger the element number of the tested sample, the more the computation speed 

increases. The accuracy has been verified by numerical tests and it can also be applied 

for the detection of the crack.  
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Chapter 9 Conclusions and future works 

This chapter summarises the conclusions from previous chapters, followed by the 

recommendation of future works. 

9.1 Conclusions 

In this study, it concentrates on the electromagnetic calculations in eddy current 

problems. Electromagnetic simulations are significant in the first stage of the industrial 

applications, which lay a solid foundation for the inversions of sample profile. 

Analytical solutions and finite element methods are the two kinds of methods 

commonly applied in eddy current testing techniques. Although the analytical solutions 

proposed by Dodd and Deeds can solve many types of the models, there are still some 

issues needed to be addressed, such as the conductive sample with finite dimension. To 

address this problem, the proposed novel method for simulations for this occasion and 

the thickness measurement have been carried out. Another issue in the testing is the 

effect due to the lift-off of the sensor probe. For the permeability measurement, the 

method to reduce the error on the phase of the signal due to the lift-off is proposed. For 

finite element method, in order to increase the computation time in the simulation, the 

customised solver can be accelerated by using the proposed methods for the crack 

detection techniques, which are verified by both simulations and experiments.  

9.1.1 Analytical solution based on Dodd and Deeds plate 

model 

A. Thickness measurement technique based on modified analytical method 

In this section, a modified analytical solution for the metallic sample with a finite 

dimension is proposed. Based on this method, an eddy current thickness measurement 
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technique has been presented. Previously, it has been found that the Dodd Deeds 

analytical solution cannot be applied to the situation when the radius of the testing 

sample does not exceed 3-5 times of the sensor coil. In this thesis, an alternative initial 

integral point αrs
 has been found in the modified analytical solution for the finite-size 

samples. From the results of measurements and modified analytical solutions, it is 

shown that αrs
 is related to the size of the testing sample, instead of the size of the 

sensor. Moreover, αrs
 has been found to be inversely proportional to the size of the 

testing sample. By utilising this method, the thickness of the circular sample can be 

accurately reconstructed with a small error within 2%.  

In this method, the peak frequency feature (instead of the magnitude) is used to 

reconstruct the thickness of the sample. Before measuring, the conductivity of the 

sample material is taken as known. Besides, the samples have to be cylindrical, for non-

cylindrical shapes, the analytical solution is not valid. The results from the 

measurements are obtained based on the coil-sample co-axially assembled condition. 

Error will be induced due to axial offset situation. 

B. Measurement of Permeability for Ferrous Metallic Plates 

In this section, a compensation technique is developed for the relief of lift-off effects 

on impedance phase for metallic ferrous plates. From the results, it can be easily 

observed that both phase and signal (impedance/inductance) magnitude decrease as lift-

off increases. And the measured inductance or impedance can be used for the 

compensation of impedance phase loss due to lift-offs via the proposed algorithms. 

Based on the proposed phase compensation approach, a magnetic permeability 

measurement technique was proposed that is also virtually independent of lift-offs. The 

results have been verified with both measurements and simulations of selected cases. 
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9.1.2 Finite element method 

A. Acceleration method based on perturbed matrix inversion method 

In this section, a method to accelerate the computation for the crack detection is 

proposed in FEM eddy current calculation by using a PMI method. Based on the 

perturbed matrix inversion (PMI) method, the effect of the perturbation matrix caused 

by the defect can be easily taken into account without inverting a full matrix.    

From the results of the numerical tests, a good agreement can be found between the 

edge FEM and the analytical solution by Dodd and Deeds, which verifies the accuracy 

of the FEM solver. Besides, the PMI method agrees with the conventional CGS method 

but has higher computational efficiency. In numerical tests, two materials (aluminium 

and copper) are modelled. The results from both materials showed that the computation 

time by the PMI method was shortened about 3 times compared with that by the 

conventional CGS method. Moreover, the acceleration efficiency is slightly related to 

the crack depth due to the degree of perturbation on the stiffness matrix with different 

crack depths, but it remains almost the same for the frequency used in the scanning 

process.  

B. Acceleration method based on a small perturbance of the crack 

In this section, an acceleration method using finite element method is proposed. From 

the fact that the crack only causes a small perturbance in fields in the surrounding region, 

it computes for the region affected by the crack from the crack free region in the 

simulation. By using the proposed algorithm, the eddy current disturbed by the crack 

can be effectively simulated. The eddy current flows around the edge of the crack when 

it is blocked by the crack. Besides, from the simulation results, the algorithm is shown 

effective in greatly shortening the computation time (i.e., 3 times for 10k elements and 

34 times for 139k elements). The accuracy has been verified by numerical tests with 
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the deviation up to 5% and it can be applied for the detection of the crack. 

In recent decades, approaches to hasten the calculation of electromagnetic problem can 

be summarized into two kinds, that is, the improvements in the eddy current 

formulations and the advancement of finding the solution. Some researchers proposed 

novel formulations to address the crack perturbation problem with some 

approximations/techniques, i.e., zero-thickness defect [1], dedicated kernel [2], FEM-

BEM combined method [3-4]. In this study, the formulations proposed by Biro [5] are 

used to solve the electromagnetic problem and improve the computation in the 

numerical solution process. In [6], some terms in the proposed formulations remain 

unchanged (unaffected by the crack) so that they can be precalculated and stored in a 

database. It can be used repeatedly for arbitrary geometry of the crack, consequently, it 

saves the computation time. By introducing a preconditioner – the optimized initial 

guess, a fast FEM approach was proposed for the evaluation of eddy current 

formulation [7]. In this method, using the proposed computation algorithm with the 

unperturbed field, it effectively shrinks the time needed for the crack inspection due to 

the small perturbation. Moreover, compared with the acceleration method using PMI 

method, it is more prospective for solving a large-scale crack detection model. The 

larger the element number of the tested sample, the more the computation speed 

increases. It further improved the computation efficiency due to the perturbance of the 

crack. 

Overall, the study aims have been achieved by using both analytical method and finite 

element method. With the support of Dodd and Deed method, the thickness 

measurement for finite dimension plate can be conducted with small error. Besides, the 

permeability of the sample plate can be estimated without the lift-off effect. Further, 

based on the finite element method, the proposed methods for solving the crack 

perturbation problems can be employed to accelerate the computation speed.    
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9.2 Future works 

Based on the conclusions stated in this study, future works are recommended for the 

further study of electromagnetic calculations. 

(1) The modified analytical methods for the inductance calculation due to the sample 

plate with finite dimension can be used for co-axial testing. The condition for the 

axial offset between the sample and the sensor probe can lead to some error and it 

is worth considering in the future. 

(2) The analytical method used in the study is the plate model. In the future, more other 

kinds of the model can also be considered by using the eddy current testing methods, 

i.e. cylindrical model, spherical model.    

(3) In the industrial manufacture, the sensor probe is commonly a ferrite-cored sensor 

probe with higher resolution. In this study, the air-cored sensor is used for the 

testing. Therefore, the analytical solution for the ferrite-cored sensor can be studied 

and applied to the measurements.  

(4) So far, the measurements are based on the multi-frequency eddy current testing 

methods. The potential of the pulsed eddy current testing can be investigated. The 

half-bridge circuit used in the pulsed eddy current testing is modified to produce 

larger current so that signal to noise ratio of the system can be improved and suitable 

for measuring plates of larger thickness. Further, the circuit can be manufactured 

and tested, then the material properties profiling by using the pulsed eddy current 

method can be studied.  

(5) The proposed accelerated method using finite element method needs the pre-

computed field database. The preparation time is related to the generated mesh. In 

the future work, by utilising the analytical solutions for the unperturbed field, the 

time for the preparation of the database can be significantly shortened.  
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(6) For the solver based on the finite element method, there are some errors when the 

test sample is magnetic material. It may be due to the skin depth effect which needs 

very dense mesh to obtain accurate results. Therefore, a novel method can be 

considered to reduce the error due to the skin depth effect. Further, the sensor with 

ferrite core can also be considered in the simulation.  
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