11,802 research outputs found

    Empirical comparison of the performance of location estimates of fuzzy number-valued data

    Get PDF
    © Springer Nature Switzerland AG 2019. Several location measures have already been proposed in the literature in order to summarize the central tendency of a random fuzzy number in a robust way. Among them, fuzzy trimmed means and fuzzy M-estimators of location extend two successful approaches from the real-valued settings. The aim of this work is to present an empirical comparison of different location estimators, including both fuzzy trimmed means and fuzzy M-estimators, to study their differences in finite sample behaviour.status: publishe

    Chaotic multi-objective optimization based design of fractional order PI{\lambda}D{\mu} controller in AVR system

    Get PDF
    In this paper, a fractional order (FO) PI{\lambda}D\mu controller is designed to take care of various contradictory objective functions for an Automatic Voltage Regulator (AVR) system. An improved evolutionary Non-dominated Sorting Genetic Algorithm II (NSGA II), which is augmented with a chaotic map for greater effectiveness, is used for the multi-objective optimization problem. The Pareto fronts showing the trade-off between different design criteria are obtained for the PI{\lambda}D\mu and PID controller. A comparative analysis is done with respect to the standard PID controller to demonstrate the merits and demerits of the fractional order PI{\lambda}D\mu controller.Comment: 30 pages, 14 figure

    Fast Color Quantization Using Weighted Sort-Means Clustering

    Full text link
    Color quantization is an important operation with numerous applications in graphics and image processing. Most quantization methods are essentially based on data clustering algorithms. However, despite its popularity as a general purpose clustering algorithm, k-means has not received much respect in the color quantization literature because of its high computational requirements and sensitivity to initialization. In this paper, a fast color quantization method based on k-means is presented. The method involves several modifications to the conventional (batch) k-means algorithm including data reduction, sample weighting, and the use of triangle inequality to speed up the nearest neighbor search. Experiments on a diverse set of images demonstrate that, with the proposed modifications, k-means becomes very competitive with state-of-the-art color quantization methods in terms of both effectiveness and efficiency.Comment: 30 pages, 2 figures, 4 table

    Linear, Deterministic, and Order-Invariant Initialization Methods for the K-Means Clustering Algorithm

    Full text link
    Over the past five decades, k-means has become the clustering algorithm of choice in many application domains primarily due to its simplicity, time/space efficiency, and invariance to the ordering of the data points. Unfortunately, the algorithm's sensitivity to the initial selection of the cluster centers remains to be its most serious drawback. Numerous initialization methods have been proposed to address this drawback. Many of these methods, however, have time complexity superlinear in the number of data points, which makes them impractical for large data sets. On the other hand, linear methods are often random and/or sensitive to the ordering of the data points. These methods are generally unreliable in that the quality of their results is unpredictable. Therefore, it is common practice to perform multiple runs of such methods and take the output of the run that produces the best results. Such a practice, however, greatly increases the computational requirements of the otherwise highly efficient k-means algorithm. In this chapter, we investigate the empirical performance of six linear, deterministic (non-random), and order-invariant k-means initialization methods on a large and diverse collection of data sets from the UCI Machine Learning Repository. The results demonstrate that two relatively unknown hierarchical initialization methods due to Su and Dy outperform the remaining four methods with respect to two objective effectiveness criteria. In addition, a recent method due to Erisoglu et al. performs surprisingly poorly.Comment: 21 pages, 2 figures, 5 tables, Partitional Clustering Algorithms (Springer, 2014). arXiv admin note: substantial text overlap with arXiv:1304.7465, arXiv:1209.196
    corecore