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Abstract. Several location measures have already been proposed in the
literature in order to summarize the central tendency of a random fuzzy
number in a robust way. Among them, fuzzy trimmed means and fuzzy
M-estimators of location extend two successful approaches from the real-
valued settings. The aim of this work is to present an empirical compari-
son of di�erent location estimators, including both fuzzy trimmed means
and fuzzy M-estimators, to study their di�erences in �nite sample be-
haviour.
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1 Introduction

Fuzzy numbers are a useful tool to deal with the imprecision underlying many
real-life experiments. For this reason, a methodology to analyze fuzzy number-
valued data statistically is of interest and has already provided us with di�erent
tools to deal with this kind of data. For example, we could think of regression
analysis techniques, clustering, principal components, etc. An important draw-
back is that a lot of such procedures are based on the use of the Aumann-type
mean, which is a generalization of the concept of mean of a random variable.
Even when the Aumann-type mean ful�lls numerous convenient properties, both
from the statistical and probabilistic points of view, it also inherits the lack of
robustness of the mean of a random variable. This means that any atypical ob-
servation or outlier, or any data changes, may invalidate the conclusions of our
study. Unfortunately, it is not uncommon to collect data that include some `con-
taminated observations' in real-life experiments. This motivates the search for
robust location measures to summarize fuzzy number-valued data sets.

Di�erent robust location alternatives for fuzzy numbers have already been
proposed in the literature (see e.g. [1,2,3,4,5]). Among them, the adaptation of
trimmed means and M-estimators of location to the fuzzy number-valued settings
could be highlighted due to their importance and success for real-valued random
variables. The main aim of this paper is to empirically compare the behaviour of
fuzzy trimmed means and fuzzy M-estimators in presence of outliers, but other
location estimates will also be included in the simulations in order to complete
the study.
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2 Preliminaries

A (bounded) fuzzy number is a mapping Ũ : R→ [0, 1] such that its α-levels

Ũα =

{
{x ∈ R : Ũ(x) ≥ α} if α ∈ (0, 1]

cl{x ∈ R : Ũ(x) > 0} if α = 0,

where cl denotes the closure, are nonempty compact convex sets. Therefore,
each fuzzy number Ũ can be uniquely characterized by means of the in�ma and
suprema of all its α-level. Fc(R) will denote the space of fuzzy numbers.

If X is a random fuzzy number (a fuzzy number-valued mapping associ-
ated with a probability space and such that, for each α, the α-level interval-
valued mapping is a random interval associated with the probability space), let
x̃n = (x̃1, . . . , x̃n) be a sample of fuzzy number-valued observations from X . To
represent the central tendency of a data set consisting of several fuzzy numbers,
the following measures have been proposed.

• The sample Aumann-type mean [6] is the fuzzy number x̃n such that for all
α ∈ [0, 1] its α-levels are given by

(x̃n)α =

[
n∑
i=1

inf (x̃i)α/n,

n∑
i=1

sup (x̃i)α/n

]
.

• The sample fuzzy trimmed mean [3] is the fuzzy number 1
h

∑
j∈Êx̃n

x̃j , where

Êx̃n
denotes the corresponding sample trimming region, that is,

Êx̃n
= arg min

E⊂{1,...,n}
#E=h

1

h

∑
i∈E

Dθ

x̃i, 1
h

∑
j∈E

x̃j

2

= argmin
E∈E

V ar(x̃n|E),

with the set E = {E ⊂ {1, . . . , n} : #E = h} consisting of all the subsets
of h di�erent natural numbers which are up to the sample size, θ ∈ (0,+∞)
and Dθ represents the following L2 metric between fuzzy numbers. Given
any Ũ , Ṽ ∈ Fc(R),

Dθ(Ũ , Ṽ ) =

[∫
[0,1]

(
mid Ũα −mid Ṽα

)2
d`(α)

+ θ

∫
[0,1]

(
spr Ũα − spr Ṽα

)2
d`(α)

]1/2
,

where mid Ũα = (inf Ũα + sup Ũα)/2 and spr Ũα = (sup Ũα − inf Ũα)/2.
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• The sample M-estimator of location associated with certain loss function ρ
[1] is the fuzzy number that minimizes the expression 1

n

∑n
i=1 ρ(Dθ(x̃i, Ũ)),

over Ũ ∈ Fc(R) (if it exists). Concerning the choice of the loss function,
Huber's and Hampel's loss functions will be considered along this work. The
Huber loss function, given by

ρHa (x) =

{
x2/2 if 0 ≤ x ≤ a

a(x− a/2) otherwise,

with a > 0 a tuning parameter, is a convex function and puts less emphasis
on large errors compared to the squared error loss. On the other hand, the
Hampel loss function corresponds to

ρa,b,c(x) =



x2/2 if 0 ≤ x < a

a(x− a/2) if a ≤ x < b

a(x− c)2

2(b− c)
+
a(b+ c− a)

2
if b ≤ x < c

a(b+ c− a)
2

if c ≤ x,

where the nonnegative parameters a < b < c allow us to control the degree of
suppression of large errors. The smaller their values, the higher this degree.
Hampel's family of loss functions is not convex anymore and can better
cope with extreme outliers, since observations far from the center (x ≥ c) all
contribute equally to the loss. The following two measures are also particular
cases of M-estimators of location.

• The sample 1-norm median [5] is the fuzzy number such that for all α ∈ [0, 1]
the corresponding α-level is given by the interval

[Me({inf (x̃i)α}ni=1),Me({sup (x̃i)α}ni=1)].

• The sample wabl/ldev/rdev-median [2] is the fuzzy number such that for all
α ∈ [0, 1] the corresponding α-level is given by the interval

[Me({wabl x̃i}ni=1)−Me({ldev (x̃i)α}ni=1),

Me({wabl x̃i}ni=1) +Me({rdev (x̃i)α}ni=1)],

where wabl, ldevα and rdevα provide us with an alternative characterization
of a fuzzy number. Wabl represents the real number in the interior set int(Ũ0)
such that

wabl(Ũ) =

∫
[0,1]

mid Ũα d`(α)

with ` the Lebesgue measure, and ldev and rdev functions inform of the left
and right deviations w.r.t. wabl, respectively

ldevŨ (α) = wabl(Ũ)− inf Ũα,

rdevŨ (α) = sup Ũα − wabl(Ũ).
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3 Simulation study

This simulation study aims to empirically compare the di�erent alternatives
to summarize the central tendency of fuzzy number-valued data in Section 2:
fuzzy trimmed means, Huber and Hampel fuzzy M-estimates, 1-norm median
and wabl/ldev/rdev-median. In all of them θ is assumed to range in {1/3, 1},
which are two common choices in the literature (with θ = 1/3 all the points in the
α-levels have the same importance for the computation of theDθ metric, whereas
with θ = 1, only the in�ma and suprema of the α-levels are taken into account).
For each of the measures/estimates, the bias, the variance and the mean squared
error have been approximated. Di�erent sample sizes (n = 100, n = 10000)
and di�erent non-contaminated (symmetric and asymmetric) and contaminated
distributions have been considered.

Please note that only trapezoidal fuzzy numbers have been considered in
order to ease the computation, since a sensitivity analysis has shown that the
shape of the fuzzy numbers seems to scarcely a�ect statistical conclusions (see
[7] for more details).

The general scheme of the simulation study is as follows:

Step 1. A sample of n trapezoidal fuzzy number-valued data has been simulated
from a random fuzzy number X for each of the di�erent situations in such
a way that
• to generate the trapezoidal fuzzy data, we have considered four real-
valued random variables as follows: X = Tra(X1−X2−X3, X1−X2, X1+
X2, X1+X2+X4), withX1 = midX1,X2 = sprX1,X3 = inf X1−inf X0

and X4 = sup X0 − sup X1 or, alternatively, four ordered real-valued
statisticsX(1),X(2),X(3) andX(4) such that X = [X(1), X(2), X(3), X(4)],
i.e., X(1) = inf X0, X(2) = inf X1, X(3) = sup X1 and X(4) = sup X0;

• each sample is split into a subsample of size n(1− cp) (where cp denotes
the proportion of contamination and ranges in {0, 0.1, 0.2, 0.4}) associ-
ated with a non-contaminated distribution and a subsample of size n · cp
associated with a contaminated one, where an additional contamination
role is played by CD (which measures the relative distance between the
distribution of the two subsamples and ranges in {0, 1, 5, 10, 100});

• 16 situations with di�erent values of cp and CD have been considered.
For each of these situations two cases have been selected, namely, one in
which random variables Xi (or X(i)) are independent (CASES 1 and 3)
and another one in which they are dependent (CASES 2, 2' and 4).

Step 2. N = 1000 replications of Step 1 have been considered for the situation
cp = CD = 0 in order to approximate the population measures by using
a Monte Carlo approach.

Step 3. N = 1000 replications of Step 1 have been considered for all the situations
(cp, CD) and the approximated estimates, bias, variance and mean squared
error have been computed for each location measure.

The choices of the non contaminated and contaminated distributions in each
study will be speci�ed now.
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Study 1

In the �rst study, the sample size is n = 100, CASE 1 uses

• X1 ∼ N (0, 1) and X2, X3, X4 ∼ χ2
1 for the non-contaminated subsample,

• X1 ∼ N (0, 3)+CD, X2, X3, X4 ∼ χ2
4+CD for the contaminated subsample,

whereas CASE 2 uses

• X1 ∼ N (0, 1) andX2, X3, X4 ∼ 1/(X2
1+1)2+0.1·χ2

1 for the non-contaminated
subsample,
• X1 ∼ N (0, 3) + CD and X2, X3, X4 ∼ 1/(X2

1 + 1)2 + 0.1 · χ2
1 + CD for the

contaminated subsample.

and CASE 2' uses

• X1 ∼ N (0, 1) andX2, X3, X4 ∼ 1/(X2
1+1)2+

√
χ2
1 for the non-contaminated

subsample,
• X1 ∼ N (0, 3) + CD and X2, X3, X4 ∼ 1/(X2

1 + 1)2 +
√
χ2
1 + CD for the

contaminated subsample.

Study 2

In the second study, the sample size is n = 10000 and in CASES 1, 2 and
2' the distributions for X1, X2, X3 and X4 in the no-contaminated and the
contaminated samples coincide with those for Study 1.

Study 3

In the third study, the sample size is n = 100, CASE 3 uses

• X(1), X(2), X(3), X(4) ∼ Beta(5, 1) (they are simply chosen at random and
ordered) for the non-contaminated subsample,

• X(1), X(2), X(3), X(4) ∼ Beta(1, CD + 1) for the contaminated subsample,

whereas CASE 4 uses
• X1 ∼ Beta(5, 1), X2 ∼ Uniform[0,min{X1, 1−X1}], X3 ∼ Uniform[0, X1 −
X2] and X4 ∼ Uniform[0, 1−X1−X2] for the non-contaminated subsample,

• X1 ∼ Beta(1, CD + 1), X2 ∼ min{X1, 1 − X1} · Beta(1, CD + 1), X3 ∼
(X1 −X2) · Beta(1, CD + 1) and X4 ∼ (1 −X1 −X2) · Beta(1, CD + 1) for
the contaminated subsample.

Study 4

In the fourth study, the sample size is n = 10000 and in CASES 3 and 4 the dis-
tributions forX(1),X(2),X(3),X(4),X1,X2,X3 andX4 in the non-contaminated
and contaminated samples coincide with those for Study 3.

4 Results

For the bias, variance and mean square error, the conclusions for the di�erent
studies are summarized in Tables 1 to 4. The row called Dispersion indicates how
variable the choice of the best location measure w.r.t. bias, variance of MSE is
(�none� means that the corresponding estimator is the best in all the considered
situations; �low�, in most of the situations; and �high� if the choice of the best es-
timator highly depends on the values of the parameters cp and CD). For more de-
tails about the results, visit http://bellman.ciencias.uniovi.es/SMIRE/Fuzsimul.html.
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Table 1. Summary of the main conclusions from Study 1: the best performing (if any)
location measures/estimates are indicated for each of the situations

STUDY 1 CASE 1 CASE 2 CASE 2'

Bias

cp ≤ 0.2 Hampel 1-norm median Hampel (θ = 1)

cp = 0.4 trimmed 1-norm median trimmed (θ = 1)

Dispersion none low low

Variance

cp = 0 1-norm median 1-norm median
1-norm median

mean

cp ≤ 0.2
1-norm median

1-norm median 1-norm median
Hampel (θ = 1)

cp = 0.4
wabl median

1-norm median 1-norm median
1-norm median

Dispersion low low high

MSE

cp = 0
Huber (θ = 1)

1-norm median
1-norm median

1-norm median mean

cp ≤ 0.2 Hampel 1-norm median
1-norm median
Hampel (θ = 1)

cp = 0.4 trimmed 1-norm median trimmed (θ = 1)

Dispersion low low high

Table 2. Summary of the main conclusions from Study 2: the best performing (if any)
location measures/estimates are indicated for each of the situations

STUDY 2 CASE 1 CASE 2 CASE 2'

Bias

cp ≤ 0.2 Hampel 1-norm median Hampel (θ = 1)

cp = 0.4 trimmed 1-norm median trimmed (θ = 1)

Dispersion none medium low

Variance

cp = 0 Huber (θ = 1) 1-norm median 1-norm median

cp ≤ 0.2 Hampel
1-norm median 1-norm median
Hampel (θ = 1) trimmed

trimmed (θ = 1/3) Hampel (θ = 1)

cp = 0.4 trimmed trimmed trimmed

Dispersion medium low medium

MSE

cp = 0 Huber (θ = 1) 1-norm median 1-norm median

cp ≤ 0.2 Hampel 1-norm median Hampel (θ = 1)

cp = 0.4 trimmed 1-norm median trimmed (θ = 1)

Dispersion none low low

5 Conclusions

On the basis of the conclusions gathered in Tables 1, 2, 3 and 4, one can con-
clude that there is no uniformly most appropriate location estimate. Actually,
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Table 3. Summary of the main conclusions from Study 3: the best performing (if any)
location measures/estimates are indicated for each of the situations

STUDY 3 CASE 3 CASE 4

Bias

cp ≤ 0.2
Hampel (θ = 1/3)

Hampel (θ = 1/3)
trimmed (θ = 1/3)

cp = 0.4 trimmed (θ = 1/3) trimmed (θ = 1/3)

Dispersion none low

Variance

cp = 0
mean

1-norm median
Huber (θ = 1/3)

cp ≤ 0.2
trimmed (θ = 1) 1-norm median
wabl median Huber (θ = 1/3)

cp = 0.4 trimmed (θ = 1)
wabl median

trimmed (θ = 1/3)

Dispersion high high

MSE

cp = 0
mean mean

Huber (θ = 1/3) 1-norm median

cp ≤ 0.2
trimmed (θ = 1/3)

Huber (θ = 1/3)

Hampel (θ = 1/3)
Hampel (θ = 1/3)

wabl median

cp = 0.4 trimmed (θ = 1/3)
trimmed (θ = 1/3)

wabl median

Dispersion medium high

Table 4. Summary of the main conclusions from Study 4: the best performing (if any)
location measures/estimates are indicated for each of the situations

STUDY 4 CASE 3 CASE 4

Bias

cp ≤ 0.2
Hampel (θ = 1/3)

Hampel (θ = 1/3)
trimmed (θ = 1/3)

cp = 0.4 trimmed (θ = 1/3) trimmed (θ = 1/3)

Dispersion none low

Variance

cp = 0 1-norm median wabl median

cp ≤ 0.2
trimmed (θ = 1) Hampel
Hampel (θ = 1/3) trimmed (θ = 1)
1-norm median 1-norm median

cp = 0.4 trimmed (θ = 1)
trimmed (θ = 1/3)
1-norm median

Dispersion medium high

MSE

cp = 0 wabl median
mean

wabl median

cp ≤ 0.2
Hampel (θ = 1/3)

Hampel
trimmed (θ = 1/3)

cp = 0.4 trimmed (θ = 1/3) trimmed (θ = 1/3)

Dispersion low medium
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the results seem to indicate that the results depend more on the distributions
considered for the non-contaminated and contaminated distributions, or the in-
volved case, than on the sample size. A rather general assertion is that the
1-norm median is the best choice in many cases of Study 1 and Study 2 in
terms of any of the considered measures (bias, variance or mean square error),
above all in Case 2. In the other cases and studies, the best estimate is not as
clear as in Case 2. The Huber and Hampel M-estimators generally behave well
for small contamination level while the trimmed means behave well when the
proportion of contamination is increased. In Cases 3 and 4, with asymmetric
non-contaminated distribution and fuzzy numbers having 0-levels contained in
the interval [0, 1], the distinction between the advantages of using these estimates
in situations of small or big amounts of contamination is not as evident.
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