2,768 research outputs found

    Comparison of MIMO channels from multipath parameter extraction and direct channel measurements

    Get PDF

    UTHM water quality classification based on sub index

    Get PDF
    River or stream at their source is unpolluted, but as water flow downstream, the river or lake is receiving point and non-point pollutant source. Ammoniacal nitrogen (NH3- N) and suspended solids (SS) strongly influences the dynamics of the dissolved oxygen in the water. Studies on monitoring this parameter were conducted for a river or lake but limited to the small man-made lake. This study is initiate to determine the changes in water quality of UTHM watershed as the water flows from upstream to downstream. The monitoring of NH3-N and TSS were monitored at two sampling schemes, 1) at the two-week interval and, 2) at a daily basis followed by the determination of the water quality sub-index particularly SIAN and SISS. The results showed that the two lakes in UTHM watershed were classified as polluted. In conclusion, the remedial action should be implemented to improve the water quality to meet the requirements at least to meet the recreational purpose

    Indoor wireless communications and applications

    Get PDF
    Chapter 3 addresses challenges in radio link and system design in indoor scenarios. Given the fact that most human activities take place in indoor environments, the need for supporting ubiquitous indoor data connectivity and location/tracking service becomes even more important than in the previous decades. Specific technical challenges addressed in this section are(i), modelling complex indoor radio channels for effective antenna deployment, (ii), potential of millimeter-wave (mm-wave) radios for supporting higher data rates, and (iii), feasible indoor localisation and tracking techniques, which are summarised in three dedicated sections of this chapter

    A new stochastic spatio-temporal propagation model (SSTPM) for mobile communications with antenna arrays

    Get PDF

    Massive MIMO for Next Generation Wireless Systems

    Full text link
    Multi-user Multiple-Input Multiple-Output (MIMO) offers big advantages over conventional point-to-point MIMO: it works with cheap single-antenna terminals, a rich scattering environment is not required, and resource allocation is simplified because every active terminal utilizes all of the time-frequency bins. However, multi-user MIMO, as originally envisioned with roughly equal numbers of service-antennas and terminals and frequency division duplex operation, is not a scalable technology. Massive MIMO (also known as "Large-Scale Antenna Systems", "Very Large MIMO", "Hyper MIMO", "Full-Dimension MIMO" & "ARGOS") makes a clean break with current practice through the use of a large excess of service-antennas over active terminals and time division duplex operation. Extra antennas help by focusing energy into ever-smaller regions of space to bring huge improvements in throughput and radiated energy efficiency. Other benefits of massive MIMO include the extensive use of inexpensive low-power components, reduced latency, simplification of the media access control (MAC) layer, and robustness to intentional jamming. The anticipated throughput depend on the propagation environment providing asymptotically orthogonal channels to the terminals, but so far experiments have not disclosed any limitations in this regard. While massive MIMO renders many traditional research problems irrelevant, it uncovers entirely new problems that urgently need attention: the challenge of making many low-cost low-precision components that work effectively together, acquisition and synchronization for newly-joined terminals, the exploitation of extra degrees of freedom provided by the excess of service-antennas, reducing internal power consumption to achieve total energy efficiency reductions, and finding new deployment scenarios. This paper presents an overview of the massive MIMO concept and contemporary research.Comment: Final manuscript, to appear in IEEE Communications Magazin

    Secret Key Generation Based on AoA Estimation for Low SNR Conditions

    Full text link
    In the context of physical layer security, a physical layer characteristic is used as a common source of randomness to generate the secret key. Therefore an accurate estimation of this characteristic is the core for reliable secret key generation. Estimation of almost all the existing physical layer characteristic suffer dramatically at low signal to noise (SNR) levels. In this paper, we propose a novel secret key generation algorithm that is based on the estimated angle of arrival (AoA) between the two legitimate nodes. Our algorithm has an outstanding performance at very low SNR levels. Our algorithm can exploit either the Azimuth AoA to generate the secret key or both the Azimuth and Elevation angles to generate the secret key. Exploiting a second common source of randomness adds an extra degree of freedom to the performance of our algorithm. We compare the performance of our algorithm to the algorithm that uses the most commonly used characteristics of the physical layer which are channel amplitude and phase. We show that our algorithm has a very low bit mismatch rate (BMR) at very low SNR when both channel amplitude and phase based algorithm fail to achieve an acceptable BMR

    A Generalized Spatial Correlation Model for 3D MIMO Channels based on the Fourier Coefficients of Power Spectrums

    Full text link
    Previous studies have confirmed the adverse impact of fading correlation on the mutual information (MI) of two-dimensional (2D) multiple-input multiple-output (MIMO) systems. More recently, the trend is to enhance the system performance by exploiting the channel's degrees of freedom in the elevation, which necessitates the derivation and characterization of three-dimensional (3D) channels in the presence of spatial correlation. In this paper, an exact closed-form expression for the Spatial Correlation Function (SCF) is derived for 3D MIMO channels. This novel SCF is developed for a uniform linear array of antennas with nonisotropic antenna patterns. The proposed method resorts to the spherical harmonic expansion (SHE) of plane waves and the trigonometric expansion of Legendre and associated Legendre polynomials. The resulting expression depends on the underlying arbitrary angular distributions and antenna patterns through the Fourier Series (FS) coefficients of power azimuth and elevation spectrums. The novelty of the proposed method lies in the SCF being valid for any 3D propagation environment. The developed SCF determines the covariance matrices at the transmitter and the receiver that form the Kronecker channel model. In order to quantify the effects of correlation on the system performance, the information-theoretic deterministic equivalents of the MI for the Kronecker model are utilized in both mono-user and multi-user cases. Numerical results validate the proposed analytical expressions and elucidate the dependence of the system performance on azimuth and elevation angular spreads and antenna patterns. Some useful insights into the behaviour of MI as a function of downtilt angles are provided. The derived model will help evaluate the performance of correlated 3D MIMO channels in the future.Comment: Accepted in IEEE Transactions on signal processin
    • …
    corecore