412 research outputs found

    Automatic Pulmonary Nodule Detection in CT Scans Using Convolutional Neural Networks Based on Maximum Intensity Projection

    Get PDF
    Accurate pulmonary nodule detection is a crucial step in lung cancer screening. Computer-aided detection (CAD) systems are not routinely used by radiologists for pulmonary nodule detection in clinical practice despite their potential benefits. Maximum intensity projection (MIP) images improve the detection of pulmonary nodules in radiological evaluation with computed tomography (CT) scans. Inspired by the clinical methodology of radiologists, we aim to explore the feasibility of applying MIP images to improve the effectiveness of automatic lung nodule detection using convolutional neural networks (CNNs). We propose a CNN-based approach that takes MIP images of different slab thicknesses (5 mm, 10 mm, 15 mm) and 1 mm axial section slices as input. Such an approach augments the two-dimensional (2-D) CT slice images with more representative spatial information that helps discriminate nodules from vessels through their morphologies. Our proposed method achieves sensitivity of 92.67% with 1 false positive per scan and sensitivity of 94.19% with 2 false positives per scan for lung nodule detection on 888 scans in the LIDC-IDRI dataset. The use of thick MIP images helps the detection of small pulmonary nodules (3 mm-10 mm) and results in fewer false positives. Experimental results show that utilizing MIP images can increase the sensitivity and lower the number of false positives, which demonstrates the effectiveness and significance of the proposed MIP-based CNNs framework for automatic pulmonary nodule detection in CT scans. The proposed method also shows the potential that CNNs could gain benefits for nodule detection by combining the clinical procedure.Comment: Submitted to IEEE TM

    LUNG PATTERN CLASSIFICATION VIA DCNN

    Get PDF
    Interstitial lung disease (ILD) causes pulmonary fibrosis. The correct classification of ILD plays a crucial role in the diagnosis and treatment process. In this research work, we disclose a lung nodules recognition method based on a deep convolutional neural network (DCNN) and global features, which can be used for computer-aided diagnosis (CAD) of global features of lung nodules. Firstly, a DCNN is constructed based on the characteristics and complexity of lung computerized tomography (CT) images. Then discussed the effects of different iterations on the recognition results and influence of different model structures on the global features of lung nodules. We also improved the convolution kernel size, feature dimension, and network depth. Finally, the effects of different pooling methods, activation functions and training algorithms on the performance of DCNN were analyzed from the network optimization dimension. The experimental results verify the feasibility of the proposed DCNN for CAD of global features of lung nodules. Selecting appropriate model parameters and model structure and using the elastic momentum training method can achieve good recognition results

    Cancer diagnosis using deep learning: A bibliographic review

    Get PDF
    In this paper, we first describe the basics of the field of cancer diagnosis, which includes steps of cancer diagnosis followed by the typical classification methods used by doctors, providing a historical idea of cancer classification techniques to the readers. These methods include Asymmetry, Border, Color and Diameter (ABCD) method, seven-point detection method, Menzies method, and pattern analysis. They are used regularly by doctors for cancer diagnosis, although they are not considered very efficient for obtaining better performance. Moreover, considering all types of audience, the basic evaluation criteria are also discussed. The criteria include the receiver operating characteristic curve (ROC curve), Area under the ROC curve (AUC), F1 score, accuracy, specificity, sensitivity, precision, dice-coefficient, average accuracy, and Jaccard index. Previously used methods are considered inefficient, asking for better and smarter methods for cancer diagnosis. Artificial intelligence and cancer diagnosis are gaining attention as a way to define better diagnostic tools. In particular, deep neural networks can be successfully used for intelligent image analysis. The basic framework of how this machine learning works on medical imaging is provided in this study, i.e., pre-processing, image segmentation and post-processing. The second part of this manuscript describes the different deep learning techniques, such as convolutional neural networks (CNNs), generative adversarial models (GANs), deep autoencoders (DANs), restricted Boltzmann’s machine (RBM), stacked autoencoders (SAE), convolutional autoencoders (CAE), recurrent neural networks (RNNs), long short-term memory (LTSM), multi-scale convolutional neural network (M-CNN), multi-instance learning convolutional neural network (MIL-CNN). For each technique, we provide Python codes, to allow interested readers to experiment with the cited algorithms on their own diagnostic problems. The third part of this manuscript compiles the successfully applied deep learning models for different types of cancers. Considering the length of the manuscript, we restrict ourselves to the discussion of breast cancer, lung cancer, brain cancer, and skin cancer. The purpose of this bibliographic review is to provide researchers opting to work in implementing deep learning and artificial neural networks for cancer diagnosis a knowledge from scratch of the state-of-the-art achievements

    S4ND: Single-Shot Single-Scale Lung Nodule Detection

    Full text link
    The state of the art lung nodule detection studies rely on computationally expensive multi-stage frameworks to detect nodules from CT scans. To address this computational challenge and provide better performance, in this paper we propose S4ND, a new deep learning based method for lung nodule detection. Our approach uses a single feed forward pass of a single network for detection and provides better performance when compared to the current literature. The whole detection pipeline is designed as a single 3D3D Convolutional Neural Network (CNN) with dense connections, trained in an end-to-end manner. S4ND does not require any further post-processing or user guidance to refine detection results. Experimentally, we compared our network with the current state-of-the-art object detection network (SSD) in computer vision as well as the state-of-the-art published method for lung nodule detection (3D DCNN). We used publically available 888888 CT scans from LUNA challenge dataset and showed that the proposed method outperforms the current literature both in terms of efficiency and accuracy by achieving an average FROC-score of 0.8970.897. We also provide an in-depth analysis of our proposed network to shed light on the unclear paradigms of tiny object detection.Comment: Accepted for publication at MICCAI 2018 (21st International Conference on Medical Image Computing and Computer Assisted Intervention
    corecore