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Abstract—Accurate pulmonary nodule detection is a crucial step 

in lung cancer screening. Computer-aided detection (CAD) 

systems are not routinely used by radiologists for pulmonary 

nodule detection in clinical practice despite their potential benefits. 

Maximum intensity projection (MIP) images improve the 

detection of pulmonary nodules in radiological evaluation with 

computed tomography (CT) scans. Inspired by the clinical 

methodology of radiologists, we aim to explore the feasibility of 

applying MIP images to improve the effectiveness of automatic 

lung nodule detection using convolutional neural networks 

(CNNs). We propose a CNN-based approach that takes MIP 

images of different slab thicknesses (5 mm, 10 mm, 15 mm) and 1 

mm axial section slices as input. Such an approach augments the 

two-dimensional (2-D) CT slice images with more representative 

spatial information that helps discriminate nodules from vessels 

through their morphologies. Our proposed method achieves 

sensitivity of 92.7% with 1 false positive per scan and sensitivity of 

94.2% with 2 false positives per scan for lung nodule detection on 

888 scans in the LIDC-IDRI dataset. The use of thick MIP images 

helps the detection of small pulmonary nodules (3 mm-10 mm) 

and results in fewer false positives. Experimental results show 

that utilizing MIP images can increase the sensitivity and lower 

the number of false positives, which demonstrates the 

effectiveness and significance of the proposed MIP-based CNNs 

framework for automatic pulmonary nodule detection in CT 

scans. The proposed method also shows the potential that CNNs 

could gain benefits for nodule detection by combining the clinical 

procedure. 

Index Terms—Maximum intensity projection (MIP), 

convolutional neural network (CNN), computer-aided detection 

(CAD), pulmonary nodule detection, computed tomography scan 
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I. INTRODUCTION 

UNG cancer, as one of the most severe cancers with high 

incidence, has a devastating effect on human lives [1]. It 

has been predicted to be one of the greatest single cause of 

mortality among the European population in 2019 [2]. 

Radiotherapy and chemotherapy have a good effect to treat this 

disease. However, individuals who are diagnosed with lung 

cancer only have a 16% five-year survival rate [3]. Early 

detection of lung cancer is a crucial step since it could improve 

chances of survival [4]. 

With continuously updated technology, computer-aided 

detection (CAD) plays an increasingly important role to assist 

radiologists in staging lung cancer tumors. It also helps to 

improve the accuracy of lung nodule detection as well as to 

reduce the number of missed nodules and misdiagnoses [5]. 

Nodule candidate detection and false positive reduction are two 

essential parts in a well-performing pulmonary CAD system. 

Nodule candidate detection tries to find as many nodule 

candidates as possible, whereas false positive reduction as a 

necessary follow-up procedure aims to eliminate wrong 

findings. In the nodule candidate detection stage, the system 

attempts to include all the potential candidates. But it could also 

detect numerous false positives, which results in interference 

for the diagnosis. In the false positive reduction stage, although 

some CAD systems can achieve a low false positive rate with a 

high sensitivity, it can still miss a few nodules. The difficulty of 

CAD systems for detection is because of the variety of nodules. 

Specifically, pulmonary nodules have complex features, such 

as size, shapes, margin information, and calcification patterns. 

These features are also used to diagnose nodules [6]. 

To provide benefits for early diagnosis, a large number of 

researchers have developed CAD systems for nodule detection. 

Gurcan et al. [7] proposed rule-based classifiers to differentiate 

lung nodules from other similar structures by utilizing 2-D and 

3-D features, followed by a linear discriminant analysis to 

reduce false positives. In another approach, Messay et al. [8] 

combined the multiple intensity thresholding approaches and 

morphological opening to detect nodule candidates. Then, they 

used the Fisher Linear Discriminant (FLD) classifier and a 

quadratic classifier to discriminate between false predictions 

and true candidates. In the effort to detect nodules by their 

features, Wook-Jin Choi and Tae-Sun Choi [9] proposed a 

Automatic Pulmonary Nodule Detection in CT 

Scans Using Convolutional Neural Networks 

Based on Maximum Intensity Projection 

Sunyi Zheng, Jiapan Guo*, Xiaonan Cui, Raymond N. J. Veldhuis, Matthijs Oudkerk, and Peter M.A. 

van Ooijen 

L 

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at  http://dx.doi.org/10.1109/TMI.2019.2935553

Copyright (c) 2019 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

mailto:pubs-permissions@ieee.org


three-dimensional shape-based feature descriptor for nodule 

detection and a support vector machine-based classifier to 

refine the detected candidates. In recent years, deep learning 

algorithms have shown outstanding performance in computer 

science for object detection [10], natural scene recognition [11], 

medical image analysis [12], etc. An increasing number of 

newer approaches, relying on deep learning techniques, has 

been applied for lung nodule detection. For example, Ypsilantis 

et al. [13] exploited a recurrent neural network (RNN) to detect 

pulmonary nodules, in order to increase the sensitivity without 

increasing the false positive rate. In a different method, Setio et 

al. [14] used 2-D multi-view convolutional neural networks and 

a dedicated fusion method to combine the classification results 

from different views. To reduce the number of false positives, 

Dou et al. [15] tried multilevel contextual 3-D convolutional 

neural networks (CNNs) by utilizing different sizes of cubes as 

the input. In addition, Wang et al. [16] transformed 2-D slices 

to 3-D RGB images by using volumetric information and used 

these generated images for nodule detection. Two different 2-D 

convolutional networks were implemented for false positive 

reduction. Another approach is that Narayanan et al. [17] 

utilized CT images with different slice thicknesses as training 

data to detect candidates. To include all the potential nodule 

candidates, Zhang et al. [18] proposed a method, using 

multi-scale LoG filters to localize nodules. Further, a densely 

dilated 3-D deep convolutional neural network was applied to 

reduce the number of false positives.  

Although these CAD systems showed high efficiency and 

benefits in lung nodule detection, only a few studies developed 

approaches that take the routine workflow of the radiologists 

into consideration. In clinical practice, radiologists first take a 

quick look at the maximum intensity projection (MIP) images 

in order to roughly locate the nodule candidates for further 

examinations on specific slices. MIP [19] is a postprocessing 

method that projects 3-D voxels with maximum intensity to the 

plane of projection. It is widely used for the detection of lung 

nodules in the nodule screening since it enhances the 

visualization of nodules in comparison to the presence of 

bronchi and vasculature. Inspired by such an initial procedure, 

we propose a novel CAD system based on deep learning, which 

we call a MIP-based convolutional neural networks approach. 

The purpose of this study is to explore whether the images 

based on MIP could help convolutional neural networks to 

increase accuracy in automatic detection of lung nodules. 

The main contributions of this paper are as follows. (1) 

Following clinical procedures, we took into account the 

workflow of lung cancer screening by radiologists who used 

MIP images during the nodule screening stage. (2) We 

proposed a multi-views MIP-based framework for lung nodule 

detection that adds spatial information into 2-D images to 

discriminate between nodules and vessels. (3) We applied 

multiple deep CNNs to reduce false positive candidates and 

fused the final predictions. This provides complementary 

information and leads to more accurate and robust performance 

of the system. (4) We provided a clinical-methodology-based 

lung nodule detection system that is more easily interpretable 

for radiologists. (5) We proved the feasibility of combining the 

clinical screening method and CNNs to improve the detection 

of lung nodules. 

II. MATERIALS 

A. Database  

The Lung Image Database Consortium and Image Database 

Resource Initiative (LIDC/IDRI) [20] was an established 

repository of computed tomography scans to facilitate 

computer-aided systems on the assessment of lung nodule 

detection, classification and quantification. The LIDC/IDRI 

database consists of 1018 thoracic CT scans with the 

corresponding nodule annotations. Based on this database, the 

Lung Nodule Analysis 2016 (LUNA16) challenge was 

launched as a benchmarking to allow large-scale evaluation of 

automatic nodule detection algorithms. In this dataset, the 

image slice thickness varied from 0.6 mm to 5.0 mm. The 

competition removed scans with the slice thickness larger than 

2.5 mm since it was not recommended for clinical nodule 

screening [21, 22]. Therefore, in total 888 scans remained. 

They acquired annotated nodule information after the scans 

were viewed by four experienced radiologists in a two-stage 

reading procedure. More specifically, every radiologist 

annotated nodules independently in the first period, whereafter 

they repeated the analysis separately based on the unblinded 

four results from the first stage. There were three nodule 

categorizations which were non-nodules, nodules with a size 

less than 3 mm in diameter and nodules with a size of equal to 

or larger than 3 mm in diameter. The non-nodule and small 

nodule categorizations were not taken into consideration since 

they lack clinical relevance [23]. Hence, only the lung nodules 

equal to or larger than 3 mm were manually segmented. In 

addition, the nodules accepted by at least 3 out of 4 radiologists 

were used as the reference standard. In this way, 1186 valid 

nodules remained for the experiments. The procedure of nodule 

selection is displayed in Fig. 1. In this work, we use the 

diameter of each nodule provided in the LUNA16 competition 

to generate a bounding box as the label for the detection of 

nodules. For detailed information about LUNA16 see [24]. 

 
 

Fig. 1. The selection process of meaningful nodules in the LUNA 16 challenge. 
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III. METHODS 

Our proposed system for nodule detection consists of two 

stages, namely nodule candidate detection and false positive 

reduction. At the nodule candidate detection stage, we first 

segment the lung parenchyma and then apply four 2-D 

convolutional neural networks, each of which takes the MIP 

images with a certain slab parameter as inputs. We then merge 

the detected nodules from these four CNNs as nodule 

candidates. During the second stage, we use cubic image 

patches which are centered on the nodule candidates for 

training. We ensemble 3-D convolutional neural networks to 

classify them as real nodules or not. Details of the CAD system 

are given in the following sections.  

A. Lung Parenchyma Segmentation 

To exclude irrelevant regions, such as clothes, machine 

objects, tissues, spines, or ribs, we employ a scheme to 

automatically segment the lung parenchyma in thoracic CT 

scans. The processing steps of segmenting lung parenchyma are 

shown in Fig. 2. Since the data set is collected from various CT 

scanners in the LIDC/IDRI dataset, we set the window level 

from -1000 HU to 400 HU and normalize images to the range 

between 0 and 1. We use the mean value of the whole image as 

a threshold to divide the chest into the outside and inside 

regions for a rough classification, as shown in Fig. 2(b). Then 

we remove isolated pixels which are connected to the white 

label border. We also adopt a 4-connected neighborhood 

operator to eliminate these unrelated tissues as well as the noise 

from the CT detector. The two largest connected black 

components are selected as the internal chest region. This gives 

a mask of the internal chest and removes the outer unimportant 

area of the chest, as shown in Fig. 2(c). In order to avoid 

missing wall-attached lesions that might be nodules, we keep 

more boundary information by binary morphology operations, 

i.e., closing and dilation. However, there are some small noisy 

areas, such as graininess, vessels and tissues, which appear in 

the processed image. The morphology method called “binary 

fill holes” [25] is applied. This approach eliminates graininess 

and vessels that incurred into the lung cavity by the removal of 

radio-opaque tissue. The complete mask can be seen in Fig. 2(d) 

and the well-segmented lung parenchyma is shown in Fig. 2(e).  

B. Maximum Intensity Projection 

In clinical practice, radiologists go through several 1 mm 

axial section slices to differentiate between suddenly appeared 

nodules and vessels, since nodules can be easily confused with 

vessels in a single slice. Moreover, maximum intensity 

projection images are also used routinely by radiologists to 

improve detection of pulmonary nodules, especially small 

nodules. MIP images are the superposition of maximum grey 

values at each coordinate from a stack of consecutive slices. 

Such a combined image shows morphological structures of 

isolated nodules and continuous vessels. In our work, we use 

MIP images as the input for convolutional neural networks to 

detect nodule candidates. To normalize the size of images, we 

rescale each image to a 1 mm slice spacing in the z-direction 

and keep the original spacing in the other two relatively vertical 

planes (i.e., x and y directions). For a wide range of nodule 

diameters, this step creates 1 mm axial section slices and MIP 

images with slab thickness equals to 5 mm, 10 mm, 15 mm 

from each scan. We choose these slab thicknesses because 

clinically they show significant improvements in nodule 

detection [26-29]. Specifically, they enhance textural 

 
Fig. 2. The procedures of lung parenchyma segmentation. (a) A raw thoracic CT image; (b) The mask of labeled chest; (c) The mask after the removal of irrelevant 

objects; (d) The mask of patched lung parenchyma; (e) The image of segmented lung parenchyma. 

 

 

 
Fig. 3. Examples of maximum intensity projection (MIP) images with diverse 
slab thicknesses. (a) A 1 mm axial section slice. (b-d) MIP images under the 

slab thickness of 5 mm, 10 mm and 15 mm, respectively. Each nodule is 

highlighted by a red bounding box. 
  

  

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at  http://dx.doi.org/10.1109/TMI.2019.2935553

Copyright (c) 2019 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



information and prevent missing details of the nodule which are 

occluded by vessels or lung tissues. Examples of MIP images 

with various slab parameters are shown in Fig. 3. These images 

are from the same patient scan. The isolated nodules and 

consecutive vessels are better visible in MIP images than those 

in the 1 mm axial section slices.  

C. MIP-based Convolutional Networks and Model Fusion 

Fig. 4(b) illustrates the proposed MIP-based 2-D CNN 

framework with different slab thicknesses for automatic lung 

nodule detection. The nodule detection stage is constructed by 

combining four streams of the 2-D convolutional neural 

network. Each stream acquires different contextual information 

and the discrimination of nodules from vessels through their 

morphologies based on the images in a specific slab thickness. 

The 2-D CNN architecture is shown in Fig. 4(d). It is based 

on the U-net [30], which consists of an encoding and a 

decoding part. The inputs of the network are MIP images of 

size 512 × 512  pixels with different slab thicknesses (Fig. 

4(a)). In the encoding part, there is a repeated application of two 

convolutions with kernel sizes of 3 × 3 , two batch 

normalization layers, two activation layers and a max-pooling 

layer. The convolution layer starts with a 32-component feature 

map, and the number of feature components doubles after every 

application. Each convolutional layer is followed by a batch 

normalization layer and a rectified linear unit (ReLU) as the 

activation function [31]. After the second activation function in 

every application, there is a 2 × 2 max pooling operation with a 

stride of 2. In the decoding part, the application starts from a 

2 × 2 up-sampling layer followed by concatenation with the 

corresponding feature map from the encoding period, two 

3 × 3 convolutional layers, two batch normalization layers and 

two ReLU activation layer. Specifically, a batch normalization 

layer and a ReLU activation function come after each 

convolutional layer. The convolution in the decoding part starts 

with a 128-component feature map and the number of feature 

components halves after every application. The last layer is a 

 
Fig. 4. The overview of the designed computer-aided detection system. (a) Examples of input images for architecture 1 (Archi-1). Those 1 mm axial section slices 

and maximum intensity projection (MIP) images with varied slab thicknesses (5 mm, 10 mm and 15 mm) are generated as inputs. (b) The scheme for nodule 
candidate detection in CT scans. Every scan is checked by networks in four streams and all the potential candidates are fused at the merging stage. (c) The 

framework for false positive reduction. After soft-max layer, results are merged to give a probability of being a nodule to each location. (d) The structure of 

architecture 1 for finding potential candidates. (e) The structures of architecture 2 and 3 (Archi-2 and Archi-3) with cubic patches of various size for the reduction 
of false positives. 

 

 

a)

b)

d) e)

c)

Archi-1 Archi-2

Archi-3
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1 × 1  convolution that is followed by a sigmoid activation 

function. In total, the network has 18 convolutional layers.  

In the stage of merging results, we combine a contour 

retrieval mode and an approximation method [32] to extract and 

refine the predicted candidates’ label information (i.e., 

coordinates and bounding box widths). In order to detect as 

many nodules as possible, we take all the potential candidates 

with regular-shaped predicted labels into consideration. We 

also notice that there are some candidates of which the centers 

are too close to each other. We used a distance ratio of 1.1 to 

consider whether two candidates are one finding or two 

individual findings. The distance ratio is the distance between 

the centers of two detected candidates on the same slice divided 

by the predicted side of the bounding box from the larger 

candidate. It is determined by the grid search experiments on a 

pilot study on one-fold of the dataset. Increasing this ratio leads 

to the loss of close nodules, although the number of false 

positives decrease. Two separate nodules should not be too 

close to each other. Besides, some different potential 

candidates may have the same location in the 2-D plane. These 

cases are differentiated through their slice numbers. Finally, we 

combine the results from each stream to obtain the fused 

prediction. 

D. False Positive Reduction 

The proposed framework for classification between nodule 

and non-nodule is illustrated in Fig. 4(c). We train the 3-D CNN 

based on the merged candidates from the candidate detection 

stage to estimate the probability of being a nodule. We analyze 

the size from the potential candidates and most of the diameters 

are less than 16 pixels. Thus, we choose 16 pixels and 32 pixels 

as the cube sizes to differentiate nodules and non-nodules. 

Fig. 4(e) shows the 3-D CNN scheme which includes 

Archi-2 and Archi-3 for discrimination between nodules and 

irrelevant findings. It is based on the VGG-net, which gives 

good performance on image classification and is a commonly 

used deep learning network for feature extraction [33]. Based 

on the analysis of the size of nodules, we use cubic patches with 

volume sizes of 32 × 32 × 32  and 16 × 16 × 16  voxels as 

inputs to the networks. The Archi-3 consists of 12 layers, using 

the 16 × 16 × 16  patches as inputs. There is a repeated 

application of layers which have two convolutional layers with 

16 kernels of size 3 × 3 × 3, a max-pooling layer and a batch 

normalization layer. This architecture contains three 

applications and the number of kernels doubles in every 

application. After all the applications, there is a global 

max-pooling layer which is used to retain the most important 

features in global parameters. The final part is two dense layers. 

Archi-2 has a structure similar to that of Archi-3. However, due 

to the larger patch size, this architecture includes three more 

convolutional layers, a max-poling layer and a batch 

normalization layer. In addition, the maximum number of 

kernels is 128. 

E. Training Process 

In the nodule candidate detection stage, the whole dataset is 

equally split into 10 subsets in the LUNA16 competition. We 

perform 10-fold cross-validation to evaluate the performance of 

the system. For each fold, we use 63% of the dataset for training, 

27% of the dataset for validation, and 10% of the dataset for 

testing. The best parameters are found in a pilot study on a 

smaller dataset. The batch size is set to 5 due to the maximum 

memory of the GPU and the depth of CNNs. The learning rate 

ranges from 10−3 to 10−7 with a reduced factor of 0.01 to learn 

features gradually and carefully. We use early stopping with a 

patience of 10 epochs to avoid overfitting. This study uses the 

dice score coefficient to calculate the loss value: 

                                      Loss = 1 −
2|𝑋 ⋂𝑌|

|𝑋| + |𝑌|
                             (1) 

Where 𝑋 and 𝑌 are the predicted image and the ground truth 

image, respectively. The initializer in the convolution layer is 

He initialization[34] which has better performance for layers 

with ReLU activation. The He Initialization function is shown 

as follows: 

                                            y𝑙 = 𝑊𝑙𝑥𝑙 + 𝑏𝑙                                     (2) 

                                    
1

2
𝑛𝑙𝑉𝑎𝑟[𝑤𝑙] = 1,    ∀𝑙,                            (3) 

Where 𝑊 is a 𝑑 x 𝑛 matrix, 𝑏 is the vector of biases, 𝑦 is the 

response value at one pixel and 𝑥 is a 𝑘2𝑐 vector which 

represents 𝑘 x 𝑘  pixels in 𝑐 input channels. The number of 

filters is 𝑑 and 𝑙 is used to index a layer. In equation (3), 𝑤𝑙  is a 

random variable in 𝑊𝑙  and 𝑛  equals to 𝑘2𝑐 . We use Adam 

stochastic optimization in the backpropagation [35]. We also 

augment the training data to improve the performance of the 

system. Image patches including nodules are translated for 30 

voxels along each axis and they are rotated at angles of 0 

degrees, 90 degrees, 180 degrees and 270 degrees randomly. 

Flip is added to transform images vertically, horizontally or 

both. 

TABLE I 
PERFORMANCE OF THE SYSTEM AT THE NODULE CANDIDATE DETECTION STAGE 

Total number of scans: 888 

Total number of nodules: 1186 (3-10 mm: 905, 10-20 mm: 231, ≥20 mm: 50) 

Stream The slab 

thickness of 

the training 
data 

Number of 

detected 

nodules 
(3-10 mm) 

Number of 

detected 

nodules 
(10-20 mm) 

Number of 

detected 

nodules 

 (≥20 mm) 

Total number 

of detected 

nodules 

Sensitivity 

(%) 

False 

Positives 

(FPs) 

FPs per scan 

Stream 1   1 mm 719 213 50   982 82.8  12,940 14.6  

Stream 2   5 mm 774 218 50 1,042 87.9     9,792 11.0 
Stream 3 10 mm 801 216 50 1,067 90.0     6,895   7.8 

Stream 4 15 mm 787 215 50 1,052 88.7    5,602   6.3 

Fusion - 856 225 50 1,131 95.4 16,985 19.1 
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In the false positive reduction stage, we assess the model in 

10-fold cross-validation as well and apply the same proportion 

for training, validation and testing as those at the nodule 

candidate detection stage. The number of false positive nodules 

obtained from the first stage is fifteen times as many as the 

number of true nodules, which means the training set is 

imbalanced. Thus, we augment the data with different rotation 

degrees in three directions. With the Adam optimal function, 

we calculate the binary cross-entropy as the loss function. 

Batch size is set to 16. The learning rate starts from 10−4 since 

it has the best results in the preliminary experiments. We 

evaluate the performance by only using Archi-2 or Archi-3 to 

classify candidates. The performance of using two architectures 

is also assessed. We categorize candidates according to their 

predicted sizes of bounding boxes. Then we perform the false 

positive reduction step to cube images with either Archi-2 or 

Archi-3 depending on the predicted sizes. We fuse the 

probability by weighted linear combination and use grid search 

to determine ratios. The weights from Archi-2, Archi-3 and the 

combination of architectures are one third. The ensemble of 

prediction results provides complementary information, which 

makes final predictions more accurate and robust to differences 

of nodule size.  

The framework is implemented in Python based on the deep 

learning library of Keras [36] with the TensorFlow backend. 

IV. EXPERIMENTAL RESULTS 

A. Candidates Detection 

Table I shows the performance of four streams that have 

input images in different slab thicknesses and their merged 

architecture. The networks trained by 1 mm axial section slice 

set, 5 mm MIP set, 10 mm MIP set and 15 mm MIP set showed 

sensitivity of 82.8%, 87.9%, 90.0%, 88.7%, respectively. After 

we combined the results from four streams, the CAD system 

achieved sensitivity of 95.4% with 19.1 false positives (FPs) 

per scan. The results showed single thicker MIP images 

increased the performance of nodule detection compared to 1 

mm axial section slices. This also demonstrated the fused 

framework achieved a considerable improvement on 

pulmonary nodule detection by using varied MIP images. We 

categorized nodules according to their sizes in diameter (i.e., 

3-10 mm, 10-20 mm, ≥20 mm). It is worth noting that these 

four streams detected a similar number of nodules with the 

diameter larger than 10 mm and did not miss any nodules with a 

diameter larger than 20 mm. Among these four streams, the one 

trained with 10 mm MIP images detected the largest number of 

nodules in small sizes with a relatively low false positive rate, 

whereas the one trained with 1 mm axial section slices had the 

lowest sensitivity with more FPs. It can be also noticed that the 

convolutional neural network utilizing MIP images for training 

could acquire the improvement of sensitivity in nodule 

detection, especially for relatively small nodules (3-10 mm). 

Compared to the first stream, other streams trained by thicker 

MIP images have fewer number of false positives.  

B. False Positive Reduction 

The free-response receiver operating characteristic (FROC) 

[37] curves resulting from our developed CAD system is 

displayed in Fig. 5. We evaluated the performance of the 

system by a competition performance metric (CPM) [38], 

which measures the average sensitivity at various false positive 

rates at x-axis (i.e. 0.125, 0.25, 0.5, 1, 2, 4, 8 and 16 FPs/scan). 

The false positive rate decreases from 16 FPs/scan to 2 

FPs/scan, but the sensitivity remained steady. This evidence 

showed effectiveness of an ensemble of multiple CNNs for 

false positive reduction. All single architectures acquired 

sensitivity of over 90.8% with 1 FPs per scan. Our fusion 

results obtained a good sensitivity of 89.9% and 94.8% at 0.25 

and 4 FPs per scan, which proved that the incorporation of 

spatial nodule information in various scales increases the 

performance of the system. 

V. DISCUSSION 

We presented a novel lung nodule detection CAD system 

which used multiple MIP views with different slab thicknesses 

from thoracic CT scans. The study aimed to explore the 

feasibility of applying MIP images to improve the performance 

of lung nodule detection using convolutional neural networks. 

Inspired by the clinical methodology of radiologists, this study 

provided a new insight on automatic pulmonary nodule 

detection with deep learning techniques. We showed that 

 
Fig. 5. Free-response receiver operating characteristic (FROC) curves of 

various architectures and the fusion results of the computer-aided detection 

system on the LIDC/IDRI database.  

 
 

TABLE II 
PERFORMANCE COMPARISON AT THE NODULE CANDIDATE DETECTION STAGE 

CAD SYSTEM Sensitivity 

(%) 

Total number 

of candidates 

Average number of 

candidates / scan 

Murphy et al. [39] 85.6 298,256 335.9 

Jacobs et al. [40] 36.1 258,075 290.6 
Setio et al. [41] 31.8    42,281 47.6 

Torres et al. [42] 76.8    19,687 22.2 

Tan et al. [43] 92.9  295,686 333.0 
Zhang et al. [18] 100.0 45,939 51.7 

Setio et al. [24] 98.3 754,975 850.2 

Wang et al. [16] 96.8 53,484 60.2 
Our method 95.4   18,116   20.4 
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combining the clinical screening method and CNNs is 

beneficial to improve the performance of nodule detection. 

Comparing to the existing methods which were accessed on the 

LIDC/IDRI database, our MIP-based CAD system 

demonstrated a strong capability in nodule detection while 

maintaining a low false positive rate.  

Candidate detection is an essential step for CAD systems. 

We considered the efficiency and feasibility in different ways 

to combine the results from the networks for nodule detection. 

Among all the possible combinations, merging the results from 

four groups improved the performance from the lowest 

sensitivity of 82.8% to 95.4%, which is a significant 

improvement. Table II shows the performance of individual 

candidate detection systems in the LUNA16 competition. 

Murphy et al. [39], Jacobs et al. [40], Setio et al. [41], Torres et 

al. [42], and Tan et al. [43] employed classical algorithms based 

on machine learning, while Zhang et al. [18], Setio et al. [24] 

and our proposed system applied methods based on deep 

learning. It is interesting to note that the results from deep 

learning approaches showed better sensitivities on nodule 

detection, which indicates the generality of deep learning. 

Zhang et al. [18], Setio et al. [24], and Wang et al. [16] had 

better detection rates. However, in order to detect as many 

nodules as possible, these CAD systems localized more FPs. 

Our system had the least number of candidates per scan with 

sensitivity comparable to that in other systems. 

To provide a comparative analysis and show the generality of 

these systems, we chose the approaches which used the CPM 

for evaluation on the LUNA16 dataset. Recent results from 

published lung nodule detection systems and unpublished top-9 

systems on a public website (http://luna. grand-challenge.org/) 

are listed in Table III. In these published methods, Setio et al. 

[24] had better performance on nodule detection since they 

included some CAD systems which were designed for special 

types of nodules, such as subsolid, juxta-vascular, juxta-pleural 

nodules, etc. Besides, they combined the results from seven 

complete nodule detection systems and five false positive 

reduction systems with varied architectures. However, our 

proposed method was designed for all nodules. It had 

comparable results with only one system which contained two 

types of CNNs, and required less time for processing. Zhang et 

al. [18] tried to include any suspicious candidates by employing 

multi-scale LoG filters and acquired a better result at the nodule 

candidate detection stage. But it had more false positives at the 

candidate detection stage compared to our study. Our networks 

with thicker MIP images could detect nodules with fewer false 

positives because of the ability of MIP to differentiate between 

nodules and vessels. Although Wang et al. [16] had a lower 

CPM score, their sensitivities were higher when the false 

positive rate was larger than one. A possible explanation for 

this is they had more data (1000 scans in total and each scan had 

nodules) to train the model. van Ginneken et al. [44] and Dou et 

al. [15] were able to achieve a low false positive rate, but their 

detection rates needed further improvement. Nine of the 

methods in Table III are unpublished methods, they all applied 

deep learning techniques to find lung nodules but their 

performance cannot be verified. Our CPM score was as same as 

that of the zhongliu_xie system among these methods. 

However, since these systems have not been published a more 

detailed comparison is not possible. 

We used 2-D CNNs to localize the nodules in our framework. 

Although 3-D CNNs might extract more spatial information of 

nodules with higher discrimination capability, they demanded 

more computational power and the training time. In contrast, 

2-D approaches required lower computing resource and less 

storage space, which was more applicable and efficient in 

practice. Benefiting from MIP images, we added extra 

structural 3-D spatial information to 2-D images, which 

enhanced the contextual discrimination between nodules and 

vessels and provided fewer number of potential candidates for 

false positive reduction stage. They can be localized more 

accurately after the first stage, which means that the 

architecture could analyze them in much smaller cubic patches 

with affordable computation. To remove as many false 

positives as possible and keep robust performance, we 

ensembled 3-D networks for candidate nodule classification. 
One of the big challenges of deep learning methods was the 

acceptance of their results by the radiologists since CNN 

TABLE III 
PERFORMANCE COMPARISON WITH OTHER COMPUTER-AIDED DETECTION SYSTEMS ON THE LUNA16 DATASET 

CAD system Year False positives per scan CPM 

0.125 0.25 0.5 1 2 4 8 

Our framwork 2019 0.876 0.899 0.912 0.927 0.942 0.948 0.953 0.922 
Setio et al. [24] 2017 0.859 0.937 0.958 0.969 0.976 0.982 0.982 0.952  

Zhang et al. [18] 2018 0.890  0.931  0.944  0.949  0.965  0.972  0.976  0.947  

Wang et al. [16]  2019 0.788 0.847 0.895 0.934 0.952 0.959 0.963 0.905  
Dou et al. [15] 2017 0.677 0.737 0.815 0.848 0.879 0.907 0.922 0.826  

van Ginneken et al. [44] 2015 0.600 0.660 0.710 0.730 0.760 0.770 0.770 0.714  

PAtech 2018 0.919 0.923 0.933 0.953 0.969 0.977 0.983 0.951  
JianPeiCAD 2017 0.881 0.941 0.960 0.962 0.967 0.969 0.970 0.950  

LUNA16FONOVACAD 2017 0.917 0.929 0.943 0.956 0.958 0.962 0.964 0.947  
iFLYTEK-MIG 2017 0.842 0.905 0.937 0.961 0.979 0.981 0.982 0.941  

zhongliu_xie 2017 0.805 0.858 0.919 0.952 0.967 0.976 0.977 0.922  

iDST-VC 2017 0.740 0.826 0.890 0.928 0.953 0.969 0.973 0.897  
qfpxfd 2017 0.744 0.853 0.887 0.922 0.938 0.945 0.948 0.891  

CASED 2017 0.771 0.828 0.872 0.906 0.929 0.942 0.961 0.887  

3DCNN_NDET 2017 0.731 0.810 0.874 0.918 0.938 0.946 0.957 0.882  

The highest score of each column is shown in bold type. 
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models were not very easily interpretable to them. Following 

the procedures of radiologists, we connected the clinical work 

to this task by using varied MIP images. We tried to provide an 

explanation by showing that CNNs could accurately find 

nodules based on the MIP images which were used clinically 

during screening practices. 

Regarding the use of our proposed method for clinical lung 

cancer screening, there is still room for improvement on the 

detection rate and false positive rate. We can optimize our work 

in the future in these directions. It is of interest to evaluate our 

lung nodule detection system on more lung screen trial data and 

low-dose CT scans. Furthermore, we need to improve the 

detection performance on small nodules and ground nodules 

since they can be easily overlooked during the screening. 

VI. CONCLUSION 

In this work, we design a novel lung nodule detection CAD 

system, applying multiple MIP views with various slab 

thicknesses. The performance of the framework demonstrates 

the significance and effectiveness of integrating multi-slab 

thicknesses MIP images for lung nodule detection in CT scans. 

The combination of networks in various scales yields accurate 

and robust performance for false positive reduction. We also 

prove that MIP images can provide conspicuous benefits when 

exploiting CNNs to detect pulmonary lesions, especially small 

ones. The proposed CAD system can improve the radiologists’ 

work efficiency by largely reducing the number of scans that 

needs to be evaluated. Our designed system will be further 

explored and validated on other clinical data. Hopefully, it will 

be promoted in lung cancer screening. 
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