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Abstract: In this paper, we first describe the basics of the field of cancer diagnosis, which includes
steps of cancer diagnosis followed by the typical classification methods used by doctors, providing a
historical idea of cancer classification techniques to the readers. These methods include Asymmetry,
Border, Color and Diameter (ABCD) method, seven-point detection method, Menzies method, and
pattern analysis. They are used regularly by doctors for cancer diagnosis, although they are not
considered very efficient for obtaining better performance. Moreover, considering all types of
audience, the basic evaluation criteria are also discussed. The criteria include the receiver operating
characteristic curve (ROC curve), Area under the ROC curve (AUC), F1 score, accuracy, specificity,
sensitivity, precision, dice-coefficient, average accuracy, and Jaccard index. Previously used methods
are considered inefficient, asking for better and smarter methods for cancer diagnosis. Artificial
intelligence and cancer diagnosis are gaining attention as a way to define better diagnostic tools.
In particular, deep neural networks can be successfully used for intelligent image analysis. The basic
framework of how this machine learning works on medical imaging is provided in this study, i.e.,
pre-processing, image segmentation and post-processing. The second part of this manuscript describes
the different deep learning techniques, such as convolutional neural networks (CNNs), generative
adversarial models (GANs), deep autoencoders (DANs), restricted Boltzmann’s machine (RBM),
stacked autoencoders (SAE), convolutional autoencoders (CAE), recurrent neural networks (RNNs),
long short-term memory (LTSM), multi-scale convolutional neural network (M-CNN), multi-instance
learning convolutional neural network (MIL-CNN). For each technique, we provide Python codes, to
allow interested readers to experiment with the cited algorithms on their own diagnostic problems.
The third part of this manuscript compiles the successfully applied deep learning models for different
types of cancers. Considering the length of the manuscript, we restrict ourselves to the discussion of
breast cancer, lung cancer, brain cancer, and skin cancer. The purpose of this bibliographic review is to
provide researchers opting to work in implementing deep learning and artificial neural networks for
cancer diagnosis a knowledge from scratch of the state-of-the-art achievements.

Keywords: deep learning; convolutional neural networks (CNNs); generative adversarial models
(GANs); deep autoencoders (DANs); restricted Boltzmann’s machine (RBM); recurrent neural
networks (RNNs); long short-term memory (LTSM)

1. Introduction

Cancer is the leading cause of deaths worldwide [1]. Both researchers and doctors are facing the
challenges of fighting cancer [2]. According to the American cancer society, 96,480 deaths are expected
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due to skin cancer, 142,670 from lung cancer, 42,260 from breast cancer, 31,620 from prostate cancer, and
17,760 deaths from brain cancer in 2019 (American Cancer Society, new cancer release report 2019) [3].
Early detection of cancer is the top priority for saving the lives of many. Typically, visual examination
and manual techniques are used for these types of a cancer diagnosis. This manual interpretation of
medical images demands high time consumption and is highly prone to mistakes.

For this reason, in the early 1980s [4], computer-aided diagnosis (CAD) systems were brought
to assist doctors to improve the efficiency of medical image interpretation. Feature extraction is the
key step to adopt machine learning. Different methods of feature extraction for different types of
cancer have been investigated in [5–21]. However, these methods based on feature extraction have
weaknesses. To overcome these weaknesses and to enhance the performance, representation learning
has been proposed in [22,23]. Deep learning has the advantage of generating directly from raw images
the high-level feature representation. In addition to deep learning, Graphics Processing Units (GPU)
are also being used in parallel, for feature extraction and image recognition. For example, convolutional
neural networks have been able to detect cancer with promising performance [24].

To test these algorithms, there are publicly available datasets. These include INbreast and
BreakHis for breast cancer testing; Digital Database for Screening Mammography (DDSM)for mass
detection; MITOSTAPIA for mitosis detection; Japenese Society of Radiological Technology (JSRT),
The Lung Image Database Consortium (LIDC) and Image Database Resource Initiative (IDRI), and
Danish Lung Cancer Screening Trial (DLCST) for lung nodule classification; multimodal Brain Tumor
Segmentation challenge (BraTS) for brain cancer identification; and Dermoscopic Image Segmentation
(DermIS) as well as data given to the public by International Skin Image Collaboration (ISIC) for
skin cancers.

2. Steps of Cancer Diagnosis

2.1. Pre-Processing

Raw images contain noise in it so the first step in detection procedure is preprocessing, i.e.,
improving the quality of an image to be used further by the removal of unwanted image information,
which is referred to as the image noises. Several inaccuracies may occur in the classification if this
issue is not entertained properly. In addition to inaccuracies, the requirement of performing this
preprocessing is because of low contrast among skin lesion and surrounding healthy skin, irregular
border and the skin artifacts, which are hairs, skin lines, and black frames. Many filters can be applied
for removal of Gaussian noise, speckle noise, Poisson noise, and salt and pepper noise, including
median filter, mean filter, adaptive median filter, Gaussian filter, and adaptive wiener filter. For
example, an image containing hairs in it along with the lesion may cause misclassification.

The image noises are supposed to be removed or adjusted by performing pre-processing tasks
such as contrast adjustment, vignetting effect removal, color correction, image smoothing, hair removal,
normalization, and localization. The right combination of pre-processing tasks gives more accuracy.
Some of the preprocessing techniques are black frame removal techniques, automatic color equalization,
hair removal technique, dull Razor, Karhunen–Loe’ve transform [25], Gaussian filter, pseudo-random
filter, non-skin masking, color space transform, and contrast enhancement. The MRI images of brain
cancer are at first converted into greyscale and then undergo contrast adjustment using smoothing
operation [26]. Skull stripping is also performed on brain MRI images using a brain extraction tool
(BET) and the extraction of brain tissues from other parts of skull [27]. Using X-ray machines, the
computed tomographic (CT) images obtained for lung cancer diagnosis are preprocessed by first
converting them into grayscale images, followed by the normalization procedure and noise reduction.
These images are then converted into binary images, after which the unwanted part is removed [28].
Preprocessing in breast cancer particularly consists of delineation of tumors from the background,
breast border extraction and pectoral muscle suppression. Mammograms, which are used for breast
cancer diagnosis, include many noises, which are the high-intensity rectangular label, low-intensity
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label, and tape artifacts. Thus, mammogram labeling, orientation, and segmentation are done using
preprocessing [29]. For prostate cancer diagnosis, transrectal ultrasound (TRUS) images are obtained,
which have inherent noise and low resolution of images. The preprocessing module used for the
noise suppression and artifacts consists of: (a) tree-structured nonlinear filtering (TSF); (b) directional
wavelet transform (DWT); and (c) tree-structured wavelet transform (TSWT) [30].

2.2. Image Segmentation

Division of the input image into regions where the necessary information for further processing
can be extracted is known as segmentation. Segmentation is basically the separation of a region of
interest (ROI) from the background of the image. ROI is the part of the image that we want to use. In
the case of cancerous images, we need the lesion part to extract the features from the diseased part.
Segmentation can be divided into four main classes: (i) threshold-based segmentation; (ii) region-based
segmentation; (iii) pixel-based segmentation; and (iv) model-based segmentation. Threshold-based
segmentation includes Ostu’s method, maximum entropy, local and global thresholding, and
histogram-based thresholding. Watershed segmentation and seeded region growing are examples
of region-based segmentation. Fuzzy c-means clustering, artificial neural networks, and Markov
field method are some of the methods of the class of pixel-based segmentation. Model-based
segmentation is a parametric deformable model, e.g. level sets. There are many other methods for
image segmentation: histogram thresholding, adaptive thresholding, gradient flow vector, distributed
and localized region identification, clustering and statistical region growing [31], bootstrap learning
[32], active contours, supervised learning, edge detection, fuzzy-C Mean clustering, probabilistic
modeling, sparse coding [33], contextual hypergraph [34], cooperative neural network segmentation,
principle component transform, and region fused band and narrow band graph partition [35], among
others. Hybrid models of these methods by combining two or more have been used to improve the
accuracy of the system.

2.3. Post-Processing

After passing through the stages of preprocessing and image segmentation, there awaits
post-processing where the task is to grab features. To accomplish this, the most common
post-processing methods are opening and closing operations, island removal, region merging,
border expansion, and smoothing. Some techniques used for the feature extraction are: principle
component analysis (PCA), wavelet Packet Transform (WPT) [36,37], grey level co-occurrence matrix
(GLCM) [38], fourier power spectrum (FPS) [39], Gaussian derivative kernels [40], and decision
boundary features [41]. The basic steps of cancer diagnosis are summarized in Table 1.

Table 1. Steps of cancer diagnosis.

Pre-Processing Image Segmentation Post-Processing

Contrast adjustment Histogram thresholding Opening and closing operations
Vignetting effect removal Distributed and localized Island removal

Region identification
Color correction Clustering & Active contours Region merging
Image smoothing Supervised learning Border expansion
Hair removal Edge detection & Fuzzy logic Smoothing
Normalization and localization Probabilistic modeling and graph theory

2.4. ABCD-Rule

ABCD-rule analysis [42] refers to asymmetry (A), border (B), color (C) and diameter (D) of the
lesion image). (A) Asymmetry: The input image is divided into a perpendicular axis in such a way
that it gives the lowest possible value of asymmetry score. The score will be 2 if the asymmetry is with
respect to the axes. If it is asymmetric on one axis, then its score will be 1. No asymmetry gives 0 scores.
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(B) Border: The image is divided into eight and checked for sharp and abrupt changes. Then, the score
is checked, where a sharp cut off scores 1 and gradually scores 0. (C) Color: There are shades of colors
for cancer detection: black and brown, but also sometimes white, red or pink. Colors are counted. (D)
Diameter: The diameter of the lesion is carefully checked. If it is larger than 6 mm in diameter, then it
is melanoma. Figure 1 shows the block diagram of all the methods described in this section.

Figure 1. Summary of typically used skin cancer classification methods.

2.5. Seven-Point Checklist Method

There are two types of criteria based on which classification is done. These are major and minor
criteria. The major criteria have three points, and each point has a score value of 2, whereas minor
criteria have four points each with a score value of 1. If the score value is at least 3, the classification
result would be malignant melanoma [43].

2.5.1. Major Criteria

Blue-white veil: These are blue blotches with a white haze around it having no defined structure.
Atypical pigment network: In this network, the lesion has asymmetric distribution within it

along with reticular lines while the color and thickness are heterogeneous in nature.
Atypical vascular pattern: These are irregular globular or dotted vessels having linearity in it.

2.5.2. Minor Criteria

Irregular globules/dots: Dots have an irregular shape, color, and distribution with size less than
0.1 mm, whereas globules size should be greater than 0.1 mm.

Irregular blotches: These are areas having different colors white, black or brown and no certain
shape or regularity (no defined distribution or structure).

Irregular Streaks: When melanoma start growing radially, it forms radial streak type pattern and
pseudopods, which are located at the edges of the lesion area.

Regression structures: These are scars such as de-pigmentation, particularly white in color.
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2.6. Menzies Method

There are a few positive features (Pos.F) and negative features (Neg.F). The presence of any
negatives declares melanoma to be malignant. It would be benign if both negatives are absent and one
or more positives are true [43]. These are summarized in Table 2.

Table 2. Menzies method.

Pos.F Neg.F

Blue-white veil Lesion’s symmetry
Depegmentation like scars Single color presence

Multi-colors
Gray and blue dots

Broadened networks
Psuedopods

Globules
Radial streaming

2.7. Pattern Analysis

There is a method based on finding patterns which are local or global. Global patterns can be
homogenous, globular, starburst, reticular, parallel multi-component, or cobblestone. Local patterns
can be the irregular steaks, inadequate pigmentation, pigment network, regression structures, globules,
black dots, vascular structures or blue-white veil. The basis of this method is the qualitative assessment
of the dermoscopic criteria individually.

3. Artificial Neural Networks

Neural networks are capable of performing the tasks of complex computation because of the
nonlinear processing of neurons. An artificial neural network is shown in Figure 2 As the artificial
neural network has the power of prediction, it can be used for medical images. In a general artificial
neural network, test images are given to the neurons for training. To train neurons, back-propagation
algorithm is used, with the flow in the forward direction. Then, the generated output is matched with
the desired output and the error signal is generated in the case the outputs do not match. This error
propagates in the backward direction. Weights are adjusted for error reduction. This processing is
repeated until the error becomes zero. There is a layered structure in the neural network with the
number of interconnected nodes and an activation function among them. These activation functions
are tangent hyperbolic function, sigmoid function, piece-wise linear function, and threshold function.
Input patterns are presented to the network through an input layer, which then connects to the hidden
layer, and this hidden layer connects to the output layer. Below, some of the ANNs are explained
in detail and the links to their corresponding codes are provided in Table 3.
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Table 3. List of available codes online.

Method Name Online Code Link

Convolutional https://sefiks.com/2018/03/23/convolutional-autoencoder-clustering-images-with-neural
Autoencoder -networks/

Stacked https://github.com/siddharth-agrawal/Stacked-AutoencoderAutoencoder

Restricted Boltzmann Machine https://github.com/echen/restricted-boltzmann-machines

Recurrent neural networks https://github.com/anujdutt9/RecurrentNeuralNetwork

Convolutional https://gist.github.com/JiaxiangZheng/a60cc8fe1bf6e20c1a41abc98131d518

Neural networks https://github.com/siddharth-agrawal/Convolutional-Neural-Network

Multi-scale CNN https://github.com/alexhagiopol/multiscale-CNN-classifier

Multi-instance https://github.com/AMLab-Amsterdam/AttentionDeepMIL

Learning CNN https://github.com/yanyongluan/MINNs

Long short-term memory https://github.com/wojzaremba/lstm

Figure 2. Artificial Neural Networks (ANNs).

3.1. Convolutional Neural Networks

CNN is a feed-forward neural network as shown in Figure 3. Here, the signal is processed directly
without any loops or cycles. This can be represented as

G(X) = gN(gN−1(...(g1(X)))) (1)

where N represents number of hidden layers, X is the input signal and gN denotes the corresponding
function to the layer N. A basic CNN model has a convolutional layer, which consists of a function g

https://sefiks.com/2018/03/23/convolutional-autoencoder-clustering-images-with-neural
-networks/
https://github.com/siddharth-agrawal/Stacked-Autoencoder
https://github.com/echen/restricted-boltzmann-machines 
https://github.com/anujdutt9/RecurrentNeuralNetwork 
https://gist.github.com/JiaxiangZheng/a60cc8fe1bf6e20c1a41abc98131d518
https://github.com/siddharth-agrawal/Convolutional-Neural-Network
https://github.com/alexhagiopol/multiscale-CNN-classifier
https://github.com/AMLab-Amsterdam/AttentionDeepMIL 
https://github.com/yanyongluan/MINNs
https://github.com/wojzaremba/lstm
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with multiple convolutional kernels (h1, ... hk−1, hk). Every hk denotes a linear function in kth kernel,
represented as follows:

hk(x, y) =
m

∑
s=−m

n

∑
t=−

w

∑
v=−d

Vk(s, t, v)X(x− s, y− t, z− v) (2)

where (x, y, z) represents pixel position of input X, m represents height, n denotes width, w is depth of
the filter, and Vk represents weight of kth kernel.

Figure 3. General convolutional neural networks.

The basic purpose of pooling in CNN is the task of subsampling i.e., it summarizes the nearby
neighborhood pixels and replaces them in the output at a location with summarized characteristics.
Pooling reduces the dimensionality and performs the invariance of rotational transformations and
translation transformations. There are many pooling functions [44]; one of the most famous is max
pooling, in which the output is the maximum value of the rectangular pixel neighborhood. In average
pooling function, the output becomes the average of the rectangular neighborhood. Another type
consists of the weighted average based on the distance from the central pixel. Pooling helps to make
the representation invariant to small changes to the translation in the input.

Atrous Convolution is given by the following equation:

y[i] =
K

∑
k=1

x[i + r · k]w[k] (3)

where x[i] is the 1D input signal, w[k] is the filter of length of k, and r is the stride rate with which the
input signal is sampled. y[i] is the output of the atrous convolution. Atrous convolution is applied over
the input x for each location i on the output y and a filter w with the atrous rate r, which corresponds
to the stride rate.

Deep residual learning is used to counter the degradation problem, which arises when the deep
network starts to converge, i.e., a saturation of accuracy and degradation with the increasing depth.
The residual network explicitly allows the stacked layers to fit in the residual map rather than a desired
underlying map. According to the experimental results, the optimization of residual networks is
easier, and the accuracy is achievable with a considerable increase in depth. Skip connections help the
transverse information in deep neural networks. Due to passing through many layers, the gradient
information may be lost, which is known as the vanishing gradients problem. Skip connection has
the advantage of passing the feature information to lower layers, which makes it easier to classify the
minute details. Some of the spatial information is lost due to the max-pooling operation, whereas
skip connections make it possible to have more information on the final layer so that the classification
accuracy increases.

In activation layer, different activation functions that can be used:
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(i) Sigmoid activation function [45] is given by the equation:

σ(x) =
1

1 + e−x (4)

It is nonlinear in nature; its combination will also be nonlinear in nature, which gives us the liberty
to stack the layers together. Its range is from −2 to 2 on the x-axis and on y-axis it is fairly steep,
which shows the sudden changes in the values of y with respect to small changes in the values of
x. One of the advantages of this activation function is its output always remains within the range
of (0,1).

(ii) Tanh function is defined as follows,

f (x) = tanh(x) =
2

1 + e−2x − 1 (5)

This is also known as the scaled sigmoid function:

tanh(x) = 2sigmoid(2x)− 1 (6)

Its range is from −1 to 1. The gradient is stronger for the tanh than the sigmoid function.
(iii) Rectified linear unit (ReLU) is the most commonly used activation function [45–47], where g

denotes pixel-wise function, which is nonlinear in nature. That is, it gives the output x, if x is
positive and it is 0 otherwise.

g(x) = max(0, x) (7)

ReLU is nonlinear in nature and its combination is also nonlinear, meaning different layers can be
stacked together. Its range is from 0 to infinity, meaning it can also blow up the activation. For
the pooling layer, g reduces the size of the features while acting as a layer-wise down-sampling
nonlinear function. A fully connected layer has a 1 × 1 convolutional kernel. Prediction layer has
a softmax which predicts the probability belonging of Xj to different possible classes.

3.2. Multi-Scale Convolutional Neural Network (M-CNN)

One of the multi-scale CNN architectures, as described by researchers in [48], consists of three
convolutional blocks, each of which comprises a convolutional layer and a rectified linear unit
(ReLU) followed by the max-pooling layer and two fully connected layers. Each input image is
first down-sampled to multiple different scales and then the patches are collected. These patches are
passed to the multi-scale CNN model scale-wise.

3.3. Multi-Instance Learning Convolutional Neural Network (MIL-CNN)

The problems in which the available labels are only for the set of data points are dealt with by the
multi-instance learning MIL. Here, bags are used for the sets of data points and specific data points
are referred to as instances. While using the binary labels, the most commonly made assumption is
to consider a bag positive if at least one instance within the bag is positive. The mapping of instance
space to the bag space has been made by using many functions, including Noisy-OR, generalization
mean (GM), and log-sum-exponential (LSE).

3.3.1. CNN Architectures

Many CNN architectures have been proposed by several researchers in the past. They are briefly
described in this section and the summary of CNN application are given in Tables 4 and 5.

(i) LeNet-5
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In 1998, a seven-level convolutional neural network was proposed, which was named as LeNet-5
by LeCun et al. The main advantage of this network was digit classification and was used by
banks for the classification of handwritten numbers by costumers. They used 32 × 32 pixel
grey-scale images as input for the classification. To process large images, high-resolution demands
more convolutional layers, which limits this architecture.

(ii) AlexNet

AlexNet was a challenge winner architecture in 2012, by reducing the top-5 errors from 26% to
15.3%. This network is similar to LeNet but is deeper, with an increased number of filters per
layer and more stacked convolutional layers. It consists of 11 × 11, 5 × 5, and 3 × 3 convolutional
kernels, max pooling, dropout, data augmentation, and ReLU activations. ReLU activation
is attached after every convolutional and fully connected layer. It takes two days to test this
network on GPU580 Nvidia Geforce, which is why they split the network into two pipelines. The
designers of ALexNet are a supervision group consisting of Alex Krizhevsky, Geoffrey Hinton,
and Ilya Sutskever.

(iii) ZFNet

ZFNet was the winner of ImageNet Large Scale Visual Recognition Competition (ILSVRC) 2013.
The authors reduced the top-5 error rate to 14.8%, which is half the non-neural error rate. They
achieved it by keeping the AlexNet structure the same but changing its hyperparameters.

(iv) GoogleNet/ Inception V1

This was the winner of ILSVRC 2014 with the top-5 error rate of 6.67%, which is very close
to human-level performance, thus the creators of the network were forced to perform human
evaluation. After weeks of training, the human experts achieved top-5 error rate of 5.1% (single
model) and 3.6% for ensemble. The network is a CNN based on LeNet dubbed with the inception
module. It uses batch normalization, image distortions, and RMSprop. This is a 22-deep-layered
CNN network but can reduce the parameters from 60 million to 4 million.

(v) VGGNet

VGGNet was the runner-up in ILSVRC 2014. It is made up of 16 convolutional layers and a uniform
architecture. It has only 3 × 3 convolution but many filters. It was trained for three weeks on 4
GPUs. Because of its architectural uniformity, it is the most appealing network for the purpose
of feature extraction from images. The weighted configurations of this architecture were made
public and is has been used as the baseline for many applications and challenges as the feature
extractor. The biggest challenge one faces for this network is its 138 million parameters, which
become difficult to handle.

(vi) ResNet

Residual neural network (ResNet) at the ILSVRC 2015 uses skip connections and feature batch
normalization. Those skip connections are also known as gated recurrent units, which are similar
to the elements being applied recently in RNNS. This network-enables training a neural network
with a 152 layers and a reduced complexity comparable to VGGNet. The achieved error rate of
top-5 was 3.57%, thus it beats the human-level performance on the given dataset.
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Table 4. Summary of references with CNN Applications. (Histo.path: histogram pathology, vol.CT:
Volumetric computed, MG: Mammographs, MRI: Magnetic Resonance Imaging, DermoS: Dermoscopic
Segmentation, and BraTS: Brain tumor segmentation.)

Application Type Modality Dataset Reference

Breast Cancer Classification Histo.path BreakHis Spanhol et al. [49]

Mass Detection Histo.path INbreast Wichakam et al. [50]

Mass segmentation Mammo.graph. DDSM Ertosun et al. [51]

Mitosis Detection Histo.path MITOSATYPIA-14 Albayrak et al. [52]

Lesion recognition Mammo.graph. DDSM Swiderski et al. [53]

Mass Detection Histo.path DDSM Suzuki et al. [54]

Lung nodule (LN) Classification CT Slices JSRT Wang et al. [55]

Pulmonary nodule Detection Volumetric CT LIDC-IDRI Dou et al. [56]

Lung nodule (LN) Volumetric CT LIDC-IDRI Shen et al. [57]Suspiciousness classification

Nodule characterization Volumetric CT LIDC-IDRI Hua et al. [58]

Ground glass opacity CT Slices LIDC Hirayama et al. [59](GCO) extraction

Pulmonary nodules detect. Volumetric CT LIDC Setio et al. [60]

Nodule Characterization Volumetric CT DLCST, LIDC, Hussein et al. [61]NODE09

Skin lesion classification Dermo.S. ISIC Mahbod et al. [62]

Skin lesion classification Dermo.S. DermIS, Pomponiu et al. [65]DermQuest [63,64]

Skin lesion classification Dermo.S. ISIC [66] Majtner et al. [67]

Dermoscopy patterns classification Dermo.S. ISIC Demyanov et al. [68]

Melanoma detection Clinical photoghrapy MED-NODE [69] Nasr-Esfahani et al. [70]

Lesion border detection Clinical photoghrapy DermIS, Online dataset, Sabouri et al. [74]DermQuest [71–73]

Prostate Segmentation MRI PROMISE12 [75] Yan et al. [76]

Prostate Segmentation CT Scans PROMISE12 Maa et al. [77]

Brain tumor Segmentation MRI BraTS [78] Zhao et al. [79]Cancer detection

Brain tumor Segmentation MRI BraTS Pereira et al. [80]

Brain tumor Segmentation MRI BraTS KAmnitsas et al. [81]

Prostate segmentation MRI BraTS Zhao et al. [82]

Gland segmentation Histo.path Warwick-QU [83,84] Chen et al. [85]

Table 5. Summary of references with CNN Applications.

Application Type Modality Reference

Dermatologists-level skin cancer Dermo.S. Esteva et al. [86]

Survival Prediction CT Slices Paul et al. [87]

Latent bi[]=lateral feature representation learning Tomosynthesis Kim et al. [88]

Feature learning of Brain tumor MRI Liu et al. [89]

Gleason grading Histo.path Kallen et al. [90]

Gleason grading Histo.path Gummeson et al. [91]
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Table 5. Cont.

Application Type Modality Reference

Lumen-based Prostate Histo.path Kwak et al. [92]

Survival analysis Histo.path Zhu et al. [93]

Classification of Brain tumor MRI Ahmed et al. [94]

Cervical cytoplasm and nuclei segmentation Histo.path Song et al. [95]

Urinary bladder CT Slices segmentation Cha et al. [96]

Liver segmentation on Laparoscopic videos Laparoscopy Gibson et al. [97]

Inner/outer bladder wall segmentation CT Slices Gordon et al. [98]

Cervical dysplasia diagnosis Digital cervicigraphy Xu et al. [99]

Colon adenocarcinoma glands segmentation Histo.path BenTaieb et al. [100]

Nucleus segmentation Histo.path Xing et al. [101]

Circulating tumor-cell detection Histo.path Mao et al. [102]

Liver tumor segmentation CT Slices Li et al. [103]

Cervical cytoplasm segmentation Histo.path Song et al. [104]

bladder cancer Treatment response assessment CT Slices Cha et al. [105]

3.4. Fully Convolutional Networks (FCNs)

FCN differs from CNN as in FCNs the fully connected layer is replaced by an up-sampling
layer and a deconvolutional layer [106] as shown in Figure 4. These layers are considered to be the
backward versions of pooling and convolutional layers, respectively. FCNs generate a score map for
each class instead of generating one probability score. This map has the exact same size as the input
image and classifies the image pixel by pixel. Then, accuracy is improved by using upsampling and
deconvolutional layers (this is called skip connection). These new layers are used for the development
of many deep learning algorithms in many applications [107–109].

Figure 4. Fully convolutional neural networks.

3.4.1. U-Net Fully Convolutional Neural Network

O.Ronneberger developed U-Net for biomedical image segmentation. Their architecture consists
of two paths. The first contraction path is known as an encoder, which captures the context in the
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image. This is mainly a stack of convolution and pooling layers. The second path is the symmetric
expanding path, also known as a decoder, which uses transposed convolutions and enables the precise
localization. It is an end-to-end FCN network with no dense layer, only convolutional layers. Therefore,
it can accept an image of any size.

3.4.2. Generative Adversarial Networks (GANs)

Goodfellow et al. introduced a method named as a generative adversarial network GAN [110],
which is basically a two-player min-max game having a generator as the first player and discriminatory
as the second player. The transformation from the prior distribution pz of the random noise z ∼ pz

to realistically looking images G(z) ∼ p f ake is done by generative network G. [111]. Discriminator D
network classifies the fake sample that generator G(z) generated, from the real training data distribution
x ∼ preal . Parameters of the generator G are adjusted using the feedback information from the
discriminator D so that generators samples are able to fool the discriminator in the classification task.
D produces better and more realistic fake samples while G learns and produces the real samples. GANs
have the ability to map the random to a realistic distribution [112,113]. GANs have been used for
various applications including reconstruction [114–116], segmentation [117–119], domain adaptation
[120,121] and detection [122,123]. GANs have also been used for the synthetic data generation; for
example, Hou et al. used nuclei masks dealing with the foreground and background separately to
generate pathology data. For the 3D segmentation of images, the generator of GAN architecture is
used to generated images from the learned data distribution pdata(x) with the simultaneous training
of the discriminator to differentiate between the generated images and true examples [124]. The
generator maps the noise to the synthetic image vector. V.K.Singh [125] and his fellow researchers
used conditional adversarial networks for the segmentation of breast mass from the mammography .

3.5. Recurrent Neural Networks (RNNs)

Recurrent neural networks are a powerful model of sequential data [126]. A hidden vector
sequence f = ( f1, ..., fT) is computed by the RNN from input sequence v = (v1, ..., vT) by iteration of
t = 1 to T and an output sequence o = (o1, ..., oT) is obtained:

ft = F(Wv f vt + W f f ft−1 + b f ) (8)

ot = W f o ft + bo (9)

where W denotes the weight matrix and b represents the bias vectors. F is the hidden layer function,
which is usually sigmoid function. Recurrent neural networks are deep in time because they are a
function of all the previous hidden states.

3.6. Long Short-Term Memory (LTSM)

Long short-term memory (LTSM) is a form of recurrent neural network [127] introduced by
Hochreiter and Schmidhuber in 1997. The main purpose of designing the LTSMs was to avoid the
long-term dependency problem. Remembrance of information is their default behavior. It has feedback
connections, thus it is also referred to as a general-purpose computer. It has the ability to process
sequences of data, for example, audio speech signal or video signals, along with single point dataset,
i.e., images.

3.7. Restricted Boltzmann Machine (RBM)

The restricted Boltzmann machine is characterized by a very simple architecture. It is made
up of a visible layer, which is also referred to as the input layer, and a hidden layer, arranged as a
bipartite graph since there is intra-layer communication in RBM, which is the major restriction in this
architecture. Restricted Boltzmann machines are trained to maximize the product of probabilities
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assigned to each pattern in a given training set, by a contrastive divergence algorithm performing
Gibbs sampling.

3.8. Autoencoders (AEs)

Autoencoders belong to the unsupervised learning class of neural networks [128]. A general
example of auto-encoder is shown in Figure 5. They learn from the input data a lower dimensionality
feature representation. The basic structure of AEs has an input layer followed by the hidden layer and
an output layer [129]. Training is done through two stages: coding and decoding. In the first stage,
input I is encoded by some representation J by some weight matrix YI,J and bias BI,J :

J = σ(YI,J I + BI,J) (10)

where σ is an activation function, also known as sigmoid function as given in (10).
In the second step, the representation J is decoded using new weight matrix YJ, Î and bias BJ, Î to

reconstruct Î:
Î = σ′(YJ, Î + BJ, Î) (11)

where σ′ is also an activation function. YJ, Î can be considered as the transpose of YI,J or new learnable
matrix. These AEs are trained to minimize the error defined as:

arg max
Y,B

∥∥I − Î
∥∥ 2 (12)

Figure 5. Autoencoders.

3.9. Stacked Autoencoders

Stacking of n autoencoders into n hidden layers using unsupervised layer-wise learning followed
by the fine-tuning using a supervised method makes the basic structure of the stacked autoencoders
(SAEs) [130]. Hence, the SAE method is composed of three steps: Firstly, using input data, the first
autoencoder is trained and the feature vector is formed. Secondly, this feature vector is the input
of the next layer and the process is repeated until the end of the training of hidden layers. Third, a
backpropagation (BP) scheme is used for minimization of the cost function after the training of the
hidden layers and the weights are updated with labeled training set to obtain the fine-tuning.
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3.10. Sparse Autoencoders SAE

These are a special type of autoencoders in which sparsity is introduced in the hidden units of
the hidden layer by making the number of nodes in a hidden layer larger than the input layer. Stack
of SAE (SSAE) is trained in greedy fashion while they are connected with the encoding part only.
First, the hidden layer is separately trained as SAE, and the output of this layer becomes the input
of the next layer training. Features are extracted by using low-level SAE, after which multiple SAE
are stacked together where these extracted features are fed to the input of high-level SAE for the
extraction of deeper features. Hence, these SSAEs are able to extract the deeper features from the data.
A fully unsupervised sparse convolutional autoencoder (CAE) for the detection of the nucleus and
for feature extraction of tissues from histopathology images was proposed by the researchers in [131].
The CAE network is composed of six convolutional layers and two average-pooling layers. Then, the
network is divided into three branches: the nucleus detection branch, the foreground feature branch,
and the background branch. The reconstructed images of foreground and background are made by
decoding the foreground and background feature maps. The final image is constructed by adding the
two intermediate images. The authors evaluated their method on four datasets and they could reduce
the state-of-the-art system errors by up to 42%.

3.11. Convolutional Autoencoders CAE

Convolutional autoencoders learn features from the unlabeled images by using end-to-end
learning scheme [132]. The spatial relationship between the image pixels makes it superior to the
stacked autoencoders. It belongs to the category of unsupervised learning algorithms. Features can
be extracted from them once the filters have been learned. The extracted features can easily be used
to reconstruct the input. In CAEs, the number of parameters required to create an activation map
is always the same, which makes it well suited for the scaled high dimensional images. If the fully
connected layers of a simple autoencoder are replaced by the convolutional layer, it becomes the
convolutional autoencoder. The sizes of the input layer and the output layer remain the same as in the
simple autoencoder, except the decoding part, which changes to the convolutional network [133]. A
self-clustering adversarial convolutional network with an unsupervised principle was proposed for
the classification of prostate tissue as a tumor or non-tumor without the labeled data.

3.12. Deep Belief Networks (DBN)

Using the stack of Restricted Boltzmann Machines (RBM) [134], a probabilistic generative model
is constructed, which is named as Deep belief network (DBN) given in Figure 6. There are two layers
of RBN, a visible layer and a hidden layer. Energy function used by RBN is defined as:

E(u, J) = aTu− bT J − uTYJ (13)
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Figure 6. Deep belief networks (DBNs).

where a is the bias vector of visible layer and b is the bias vector of hidden layer. The product of
probability of the visible vectors are maximized by the RBM using the following energy function:

arg max
Y,a

P(u) =
1
Z ∑

J
exp (−E(u, J)) (14)

where Z is the partition function. RBM is optimized using the contrastive divergence theorem, which
basically combines the Gibbs sampling and gradient descent [135]. DBN is also trained in the greedy
fashion. AEs and RBMs share a similar structure.

3.13. Adaptive Fuzzy Inference Neural Network (AFINN)

The inference ability of fuzzy, human knowledge expertise and adaptive learning of neural
network are combined into a particular machine learning approach known as adaptive fuzzy inference
neural network (AFINN). This is a more powerful approach than those based on neural networks
or fuzzy logic alone. Sometimes the information gain method is used for the reduction of a number
of inputs in AFINN systems. It consists of two layers. One is the input–output (I/O) layer and the
other is the rule-layer. The I/O layer consists of the input-part and the output-part. Each node in the
rule-layer represents one fuzzy rule. Weights from the rule-layer to the output-part are fully connected
and they store fuzzy if-then rules. At learning, stage membership function is automatically tuned.
Weights are adjusted in AFINN by backpropagation.

4. Evaluation Metrics

True positive (TP) is the correct classification of the positive class, for example if an image contains
cancerous cells and the model segments the cancer part successfully and the outcome classifies the
presence of cancer. True negative (TN) is the correct classification of the negative class, for example
there is no cancer present in the image and the model after classification declares that the cancer is not
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present. False positive (FP) is the incorrect prediction of the positives, for example the image does have
cancerous cells but the model classifies that the image does not contain cancer in it. False negative
(FN) is the incorrect prediction of the negatives, for example there is no cancer in the image but the
model says an image is a cancerous one.

4.1. Receiver Operating Characteristic Curve (ROC-Curve)

The receiver operating characteristic curve (ROC-curve) represents the performance of the
proposed model at all classification thresholds. It is the graph of true positive rate vs. false positive
rate (TPR vs. FPR).

TPR =
TP

TP + FN
(15)

FPR =
FP

FP + TN
(16)

4.2. Area under the ROC Curve (AUC)

AUC provides the area under the ROC-curve integrated from (0, 0) to (1, 1). It gives the aggregate
measure of all possible classification thresholds. AUC has a range from 0 to 1. A 100% correct classified
version will have the AUC value 1.0 and it will be 0.0 if there is a 100% wrong classification. It is
attractive for two reasons: first, it is scale-invariant, which means it checks how well the model is
predicted rather than checking the absolute values; and, second, it is classification threshold invariant
as it will check the model’s performance irrespective of the threshold being chosen.

4.3. F1-Score

Precision: It checks how precise the model works by checking the correct true positives from the
predicted ones.

Precision =
TP

TP + FP
(17)

Recall: It calculates how many actual true positives the model hase captured, labeling them
as positives.

Recall =
TP

TP + FN
(18)

F1-score is the function of precision and recall. It is calculated when a balance between precision
and recall is needed.

F1 = 2× Precision× Recall
Precision + Recall

(19)

4.4. Accuracy

Accuracy determines that how many true positives TP, True negatives TN, False positive FP and
False negatives FN were correctly classified:

Acc. =
TP + TN

TP + TN + FN + FP
(20)

4.5. Specificity

It is the rate of correct identification of negative items:

Spe f . =
TN

TN + FN
(21)
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4.6. Sensitivity

Sensitivity is the amount of positive items correctly identified:

Sens. =
TP

TN + FN
(22)

4.7. Precision

It is the ratio of correctly predicted positive items to the total predicted items:

Prec. =
TP

TP + FP
(23)

4.8. Jaccard Index

It is a measure of similarity rate between two sample sets:

Jacidx. =
TP

TP + FP + FN
(24)

4.9. Dice-Coefficient

It is a statistical measure of similarity rate between two sample sets:

Diceco f . =
2× TP

2× TP + FP + FN
(25)

4.10. Average Accuracy

It is a measure of effectiveness of the classifier:

Avgacc.. =

m
∑

s=1

TP+TN
TP+TN+FP+FN

m
(26)

where m is the total number outputs of the system.

5. Models and Algorithms

5.1. Breast Cancer

Much research has already been done for the detection and diagnosis of breast cancer in the past
few years. Some of the related papers are briefly discussed here in this section. Albayrak et al. [52]
designed a method based on deep learning for the extraction of features applied on histopathological
images of the breast, in particular, focused on the detection of mitosis. The proposed model extracted
the features from CNN which were fed to support vector machine for its training and the mitosis
of the breast was detected. AlexNet was used for the construction of CNN to classify the benign
mitosis from the malignant one using the histopathological images [49]. A deep cascade network was
proposed for the detection of mitosis from the breast histology slides [85]. From the histology slides,
the mitosis candidates were extracted using the trained FCN model. Then, a CaffeNet model [114]
was finely tuned and pretrained from the ImageNet images for the mitosis classification. Then, three
networks with fully connected layers but different configurations were trained and the outputs were
generated in the form of multiple scores or probabilities. These scores were averaged and the final
output was generated. In the biomedical context, deep CNNs were explored by Albarqouni and his
fellow researchers for non-expert crowd annotations. They proposed a multi-scale CNN architecture
in which CNN was combined with the crowd annotations, in such a way that after every softmax layer
they introduced an aggression layer (AL) to aggregate the prediction results from multiple participants



Cancers 2019, 11, 1235 18 of 36

with annotation results. Classification of nuclei from breast histopathological images using a stacked
sparse autoencoder (SSAE) based algorithm was presented in [24]. Optimization of SSAE was done
using the greedy strategy, where only one hidden layer at a time was trained and the previous layer’s
output becomes the input of the forthcoming hidden layer. In addition to the histopathological images
based detection of breast cancer, another dataset was also used in the studies for breast cancer detection
that included mammographic images. A hybrid model by combining a CNN along with SVM was
introduced in [50] for mass detection on digital mammograms. Mammogram patches were used for
the training of the CNN model and high-level feature representation was obtained from the output of
the last fully connected layer. This high-level feature representation was used to train the SVM for the
classification. In [54], a transfer learning strategy was employed to train a CNN model as the training
data were insufficient for training. Using this CNN, it was possible to detect the mass from the available
mammograms. When the training data is limited to a few patterns over-fitting can occur. To overcome
it, Swiderski et al. presented a way to enrich the training data using a non-negative matrix factorization
(NMF) and statistical self-similarity [53]. Ertosun et al. presented a model which at first detects the
presence of the mass in the mammograms and then it locates the mass from the mammographic
images [51]. To learn the features form mammograms in the multiple scales, Kallenberg et al. trained a
model with stacked convolutional sparse autoencoder (SCAE) [136]. The robustness of the model was
enhanced by considering a sparsity regularizer in the proposed model. Different potential functions
were combined by Dhungel et al. by using a structured support vector machine [137]. These potential
functions included the Gaussian mixture model, prior to location, and a deep belief network for the
mass segmentation in the mammograms. Dhungel et al. proposed another model using the cascade of
random forest classifiers and deep learning for mass detection in another paper [138]. A 3D multi-view
model for the learning of bilateral features from digital breast tomosynthesis (DBT) was proposed
in [88]. From the source volume, they obtained the volume of interest (VOI), which was treated as
a separate input than the VOI in the registered target. To extract high-level features from these two
separate VOIs, two separate CNNs were used.

5.2. Lung Cancer

In addition to breast cancer, deep learning has found its use in lung cancer as well. Some of the
studies which have applied deep learning for this purposed are discussed in this section. Patients
survival time was successfully predicted using deep convolutional neural networks by Zhu et al.
directly from the lung cancer pathological images [93]. A pretrained CNN, which was trained on a
large scale data, was adopted by Paul et al., for the detection of lung cancer by extracting features
from the CT images [87]. On the raw images of the lung, the DBN and CNN were applied with
end-to-end learning [13]. They used 2D CT images for pulmonary node classifications, whereas, in [61],
researchers used 3D CT images on multi-view CNN, which were could be used for end-to-end training.
They extracted the 2D patches from the 3D images and used them on CNN for feature extraction. The
features were fed to the classifier after fusing them together. As observed in the research study by Dou
et al., they formed a model with CNN, which dealt with 3D images directly instead of mapping them
into a 2D model [56].

A multi-variant Convolutional neural network (Mc-CNN) was constructed [57]. This model was
designed to overcome the problem of variable nodule size. It produces the multi-scale features by
replacing the max-pooling layer with the multi-crop pooling layer in the CNN structure. For the
nonlinear transform, a randomized leaky rectified linear units (RReLU) was used. Convolutional
operation is defined as follows,

yl = RReLU(∑
k

ckl × hk + bl) (27)
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where hk is the kth input map and yl is lth output map. ckl are the convolutional kernels between the
kth input map and lth output map. bl is the bias of the lth output map. There were 64 CT slices and so
the output features maps were also 64. RReLU is defined as:

RReLU =

{
x if x ≥ 0
x
a if x < 0, a ∼ U(bl , bu)

(28)

where U(bl , bu) is the uniform distribution and a is a random factor sampled from this distribution.
bl is the lower bound of the distribution and bu is the upper bound of the distribution. The used
max-pooling is defined as:

yi
(j,k) = max

0≤m,n<s
hi
(j−s+m,k−s+m) (29)

where yi
(j,k) and hi

(j−s+m,k−s+m)
are the neuron’s position at (j, k) and (j − s + m, k − s + m) in the

ith output, respectively, and m and n are the position offsets, whereas s is the pool size. Multi-crop
pooling strategy is able to capture nodule centric visual features, whereas the traditional max pool
is used for the feature subset selection and feature map size reduction. Thus, it can be said that the
pooling operation is basically a one-level reduction of the features. In the multi-crop pooling, repetitive
pooling strategy is used, which enables the system to obtain multi-scale features. Consider the three
concatenated nodule-centric features f = [ f0, f1, f2] formed from R0, R1 and R2 respectively. The size
of R0 is l × l × n, R1 has the size l/2× l/2× n and R2 has the size l/4× l/4× n. n is the number
of features.

fi = max− pool(2−i)Ri, i = 0, 1, 2 (30)

max− pool tells the frequency of the max pooling used on the regions Ri. R1 is the center region
cropped from the R0 thus it is called one time for max pool to generate the feature f0. R0 is max-pooled
twice and generates the feature f1. R2 is the center region cropped from R1; it is not max-pooled but
it serves as feature f2. The final result of multi-crop would be the concatenation of these features.
Minimization of the entropy is done for the learning of this network and is defined as:

LOSS = −(qlogP1 + (1− q)logp0) (31)

where q has the suspiciousness value of 1 for high suspiciousness and 0 for the low suspiciousness.
Stochastic Gradient descent is followed for the training of the network. The dataset used comprises
1010 patients with the nodule diameter ranging from 3 mm to 30 mm. They achieved an accuracy of
87.14%, sensitivity of 0.77% and specificity of 0.93%.

According to the research carried out by Wang et al., the deep model implementation on lung
cancer classification can capture additional information with respect to considering only lung nodules,
the information of interest [12]. To avoid this extra information, they calculated 26 handcrafted features
and fused them with the CNN extracted features for lung nodules detection [12]. Ground glass opacity
(GGO) candidate region selection was made by Hirayama et al. using the fine-tuned CNN model
instead of using a pre-trained CNN [59]. GGO candidate regions were calculated by the equation:

g(x, y, z) =

√
(

∆ρx
∆x

)2 + (
∆ρy
∆y

)2 + (
∆ρz
∆z

)2 (32)

where x, y and z directions were determined by the equations:

∆ρx = |ρ(x + 1, y, z)− ρ(x, y, z)|+ |ρ(x, y, z)− ρ(x− 1, y, z)| (33)

∆ρx = |ρ(x, y + 1, z)− ρ(x, y, z)|+ |ρ(x, y, z)− ρ(x, y− 1, z)| (34)

∆ρx = |ρ(x, y, z + 1)− ρ(x, y, z)|+ |ρ(x, y, z)− ρ(x, y, z− 1)| (35)
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The morphological opening was performed followed by the labeling techniques and the noise
was reduced using thresholding methods for each label volume sphericity. This process generated the
GGO candidates at the end. They used the support vector machine classifier and achieved 93% true
positives and 210.52% false positives.

5.3. Brain Cancer

Brain cancer has an uncontrolled growth and it may occur in any part of the brain. It has been
quite challenging to detect which part of the brain contains cancer. Consequently, the biggest challenge
for brain cancer is the segmentation of the brain from the healthy part. Several challenges have been
conducted by BRATS for this purpose. Here, we include some of the research work in which deep
learning has been successfully applied to brain images. Two algorithms based on 2D CNN and 3D
CNN were proposed by Gao et al., working on 2D sliced images and 3D images, respectively. The final
result was obtained by fusing the output from these two models. This hybrid model outperformed the
2D and 3D scale-invariant features swift (SIFT) and Kaze features. The automatic magnetic resonant
image segmentation method based on CNN was discussed by Author1 [80]. They investigated the
intensity normalization and augmentation for brain tumor detection. By exploring the local and
global contextual features in the CNN model, Havaei et al. used a fully connected layer in the final
layer of CNN to increase the speed of the system and detected the brain cancer successfully. A fully
connected convolutional neural network (FCN) and conditional random field (CRFs) were used in [79]
for the brain cancer segmentation. First, the image patches were used to train the FCN model and
the training of CRF was done. In the end, the system was finely tuned using the image slices directly.
Adjacent image patches were joined together into one pass using a dense training scheme in the CNN
model [81]. The false positives were removed by using the 3D fully connected random field, after
the 3D segmentation of the images using modality of CNN. Zhao et al. combined the multi-modality
information from T1, T1C, T2, and fluid-attenuated inversion recovery (FLAIR) images and trained
the proposed CNN from this information [82]. The algorithm proposed by them was a 3D voxel
classification based on CNN. Different scaled 2D patches were extracted from 2D slices obtained by
slicing the 3D dataset and these 2D patches were fed to multiple CNNs for the learning process.

5.4. Skin Cancer

“Melanoma” is curable if it is detected early. Differentiating between benign melanoma and
malignant melanoma is really difficult, as they appear to be the same in the early stages. The main
causes of melanoma and the risk factors are provided in Table 6 [139]. Many methods have been used
to differentiate among them, including the most famous ABCD rule, seven-point checklist method,
Menzies method, and pattern analysis.

Table 6. Skin cancer risk factors and its causes.

Cause Risk Factors

1. Sunlight
(a) UV radiations leading to cancer
(b) Sunburn Blisters: sunburns in adults are more prone to cancer
(c) Tanning

2. Tanning Booths leads to cancer before the age of 30 and Sun lamps

3. Inherited Two or more careers of melanoma from family inherit this disease
to the descendants

4. Easily burnable skin Gray/Blue eyes, Fair/Pale skin, Blond/Red hairs

5. Medications Side-Effects Side effects of anti-depressants antibiotics and Hormones

Pomponiu et al. used 399 images captured from the standard camera to classify benign nevi
from melanoma [65]. Firstly, preprocessing was performed along with data augmentation. High-level
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features of skin samples were extracted using pre-trained CNN and AlexNet. For lesion classification,
K-nearest neighbor was used. They were able to achieve the accuracy of 93.62% with a specificity
of 95.18% and sensitivity rate of 92.1%. In total, 129,450 images were used by Esteva et al. for the
pretraining of CNN, 2032 of which were from a skin lesion and the rest were taken from dermatoscopic
devices [86]. There were two types of classifications: (1) benign nevi’s classification from malignant
melanoma; and (2) benign seborrheic keratosis classification from keratinocytes carcinomas. They used
transfer learning for the classification. The AUC achieved was 0.96 for both melanomas and carcinomas.
A pre-trained CNN along with pre-trained AlexNet and VGG-16 [140] were used for deep feature
extraction and lesion classification [62]. Using 19,398 images for training a ResNet model, Han et al.
proposed a classifier model for classifying 12 different types of skin diseases [13]. With the help of
the Asan dataset, the achieved AUCs were 0.83 for squamous cell carcinoma, 0.82 for intraepithelial
carcinoma, and 0.96 for melanoma and basal cell carcinoma. Despite the presence of pre-trained CNN’s,
some efforts were made to develop new CNN algorithms. A self-advised semi-supervised learning
model was proposed by massod et al. [141], for melanoma detection. Their proposed system consisted
of a deep belief network and two self-advised support vector machines (SA-SVM) trained on three
different datasets, along with two kernels radial basis function kernel (RBF) and polynomial kernel,
respectively. The maximization of labeled data separation was done by a fine-tuning procedure with
an exponential loss function. Deep features and hand-crafted features were combined in [67]. In the
proposed system there were two SVM classifiers, one trained on local binary patterns (LBPs) and rotated
speeded-up robust features (RSurf), while the other was trained on raw color images using the deep
features extracted by the CNN model and probability scores were generated. The final decision was
based on higher scores. Sabbaghi et al. used deep neural networks and mapped the images to enhance
classification accuracy into bag-of-feature (BoF) space [167]. Demyanov et al. used stochastic gradient
descent to train the CNN model and detect the typical network patterns and regular globules patterns
in [68]. Yu et al. used residual blocks to replace FCN’s convolutional layers and therefore formed a
fully convolutional residual network (FCRN), which is further used for the classification purpose [142].
Nasr-Esfahani et al. detected melanoma by feeding preprocessed images to CNN model [70], whereas
border detection based CNN system was proposed in [74] for skin cancer diagnosis. Author1 [143]
and Author1 [42] used the ABCDE method for cancer detection along with the image processing tools
of segmentation, histogram analysis, and contour tracing. Sujaya et al. studied lesion probability using
graphical user interface [144]. Palak et al. proposed a method using Fuzzy C Mean (FCM) for skin
cancer analysis [145]. Colored Unsupervised segmentation, k means clustering and Gradient Vector
Flow (GVF) were used in [146]. Sumithra et al. used Support Vector Machine (SVM) and K-nearest
neighbors (K-NN) for lesion analysis [147]. In this section, the algorithms proposed in 2018 for skin
cancer detection are briefly summarized. Jianfeng et al. used a backward-propagation method in a
eight-layer CNN model [148]. Nine hundred images were used for classification testing. The achieved
performance were 91.92% and 89.5% accuracy on the training set and test set, respectively. A system
based on content-based image retrieval CBIR was proposed by P. Tschandi et al. in comparison with
CNN. Three datasets were used to train the neural network, including 888, 2750 and 16,691 images. The
prediction was done using Softmax. Performance measures were area under the characteristic-curve
(AUC) and mAP (multi-class-accuracy and mean-average-prediction). Dataset 1 achieved 0.842 AUC
value and 0.830 mAP value; Dataset 2 achieved 0.806 AUC value and 0.810 mAP value; and Dataset
3 achieved 0.852 AUC value and 0.847 mAP value. This was further tested on eight classes and
performed well on that as well with respect to the normal CNN model. The dataset provided by ISIC
in the 2016 challenge was used in [149] for the classification of the lesion using the CNN model along
with ANN. Firstly, image segmentation was performed using intensity thresholding and then they
used CNN for feature extraction. ANN classifier used these features to perform the classification.
According to them, they achieved 98.32% accuracy, which was better than the previous best 97%.
T.C. Pham et al. proposed a method for improvement of classification using CNN along with the
method of data-augmentation [150]. In addition, they tried to overcome the issue of data limitation
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and its influence on the classifier’s performance. The dataset used contained 600 images for testing
and 6162 for training. AUC value achieved was 89.2%, ACC value was 89.0% and AP value was
73.9%. They studied the influence of image augmentation on three different classifiers and found that
they performed differently and showed improved results compared to the standard methods used
previously. Four cutaneous diseases were diagnosed by using deep learning methods [151]. They
made a hierarchical structure to make a summary of classification and diagnosis criteria. They were
able to achieve the accuracy of 87.25% with a probability error of 2.24%. A SkinNet convolutional
neural network was used in [152] for the segmentation and detection of skin cancer. A modified
version of U-net CNN was proposed. A comparison of their results was made with state-of-the-art
techniques. The dataset used in this work was from the 2017 ISBI challenge. They achieved the
average value of the dice-coefficient of 85.10%, Jaccard index of 76.67% and sensitivity evaluation of
93.0%. H.A. Haenssle used 100 test images on google inception V4 CNN model in two levels [153].
At first, only dermoscopic images were used and then clinical images were also used along with
dermoscopic images. Comparison was done with the 58 dermatologists internationally as well as with
the five algorithms from 2016 ISBI challenge. Level 1 achieved the sensitivity of 86.6% with a standard
deviation of 9.3%, and a specificity of 71.3% with a standard deviation of 11.2%. Level 2, where clinical
images were also added, improved results to the sensitivity rate of 88.9% with a standard deviation
of 9.6% and specificity of 75.7% with a standard deviation of 11.7%. Y. Wang used DeepLab 3, where
instead of convolutional neural networks, they proposed atrous convolution method for segmentation
of input image [154]. They achieved the Jaccard index of 0.498. Further improvement is necessary
to improve the performance of the system. Different methods were tested on the vector extracted by
PH2 using a dataset of dermatoscopic images [155]. Overall, 92.5% accuracy and 85.71% precision
using Logistic Regression and VGG19 network was achieved. A multi-task convolutional neural
network with the framework of joint detection and segmentation called faster region-based CNN was
proposed in [156]. Region proposals and bounding boxes were generated by region proposal network
(RPN) for localization of the lesion. Softmax refines these bounding blocks, which were then further
processed for cropping, and SkinNet was used for their segmentation. Using the dataset of the 2017
ISBI challenge, this method achieved a dice coefficient of 0.93, accuracy of 0.96, Jaccard index of 0.88
and sensitivity of 0.95. A. Rezvantalab et al. used multiple state-of-the-art architectures to classify
eight types of skin diseases [157]. The dataset contained 10,135 images including melanoma, nevi,
BCC, BK, AK, ITC, DF, vascular lesion and atypical nevi. The architectures used were ResNet 152,
Inception ResNet v2, Inception v3, and DenseNet 201. The AUC of ResNet 152 for melanoma and BCC
classification was 94.40% and for DenseNet its value was 99.30%, while the average AUC value by
DenseNet 201 was 98.16%. In an article published in JAMA Dermatology in January 2019, Philipp et al.
used combined CNNs for pigmented melanocyte lesions to achieve expert-level accuracy. Their dataset
consisted of 13,724 images, 7895 of which were dermoscopic images and 5829 were closeup images.
The data were collected from 2008 to 2017 of lesions at a skin cancer clinic. Testing of this algorithm
was made in 2072 cases, while the comparison was made by 95 medical experts (Human raters) and 62
board-certified dermatologists. They observed that cCNNs performed well as compared to human
raters and they achieved a high percentage of correct diagnosis. Walker et al. used deep learning to
improve the diagnosis of skin lesion [158]. They conducted two levels of study, one of which called
LABS (Laboratory retrospective study) and the second one non-interventional OBS (Observational
study). For experimenting with LABS, 482 biopsies were used while 63 biopsies were used for OBS. A
deep learning classifier was trained on 3954 training visual data. Then, on the output of this classifier,
sonification was performed (which means the conversion of the signal into sound files). Then, there
was a second ML classifier that operates this raw sound for LABS and image analysis for OBS. This
algorithm provided AUC of 0.976; AUC for raw sound was 0.931, for FFT was 0.90 and for spectrogram
was 0.988. OBS obtained AUC of 0.819 from raw sound and 0.808 from image analysis. They proved
that the addition of the second stage on the DL algorithm including sonification and heuristic analysis
can improve accurate diagnosis. A new cause of cancer found in 2018 by Zioutas and Valachovic
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was counter argued by Hector this year. According to them, there is a connection between melanoma
cancer and dark matter. They proposed the idea that inner planetary motion significantly increases the
dark matter density on Earth. They specifically considered the planetary motion of Mercury and Earth.
According to them, this increase in density of dark matter causes melanoma cancer, to which the black
population is pretty much immune. To counter their argument, Hector used the same large amount of
data and also presented periodic stats provided by Zioutas and Valachovic. Yoshimasa et al. used a
convolutional neural network for the detection of esophageal cancer, SCC (Squamous cell carcinoma),
and adenocarcinoma [159]. The training images used in this study included 8428 images collected from
384 patients in Japan. Test data contained 1118 images where 47 patients had esophageal cancer while
50 did not. They were able to achieve the accuracy of 98% while the sensitivity achieved was 98%. Forty
percent of each image was predicted positively while 95% was negatively predicted because of the
shadows, which was the reason for misdiagnosis. Gomez-Martin et al. studied clinical, dermoscopic
and confocal parameters for the detection of flat leg lesions pink shaded in elders [160]. They achieved
the accuracy of 49.1%, the specificity of 73.4% and the sensitivity of 68.7% with the clinical diagnosis
system. While dermoscopy provided 59.6% accuracy, and 85% and 67.6% sensitivity and specificitym.
respectively. Confocal microscopy achieved accuracy of 85.1%, and 97.5% and 88.2% sensitivity and
specificity, respectively. Parpti et al. used image enhancement to improve the image quality followed
by the multi-scale retinex MSR along with Color restoration to detect skin cancer [161].

5.5. Prostate Cancer

Prostate cancer is the third highest cause of death among men and it has a high chance
of diagnosing in males [162]. To facilitate timely radiotherapy, its successful segmentation is
very important. A combination of sparse patch matching and deep feature learning for prostate
segmentation was proposed by Author1 [162]. To extract the feature representation from the MR
images, they used the SSAE technique. Author1 [76] proposed a prostate cancer detection method
using the SAE classifier (Table 7).

Table 7. Summary of CNN for different cancers.

Application Type Modality Reference

Prostate Segmentation 3D MRI Yu et al. [142]
Prostate Segmentation 3D MRI Milletari et al. [163]
Prostate Segmentation MRI Zhao et al. [79]

Polyp detection clonoscopy Yu et al. [164]

The collected features were improved by the supervised way fine-tuning of the SSAE model. The
recognition map was refined by using the energy minimization procedure based on the neighbor pixel
relationship. Tian et al. used a fully convolutional network for prostate segmentation [165]. Using the
3D MR images, Yu et al. segmented the prostate by using volumetric convolutional networks [142].
They extended their FCN with residual blocks to enable the volume to volume prediction. Maa et al.
Proposed a method using patch-based CNN to use the region of interest and detect prostate cancer
from its [77]. The final segmentation result was obtained by using a multi-atlas label fusion. Lumen
segmentation using the CNN model was done in [92] and for the classification of prostate cancers, they
generated maps. Patch-based CNN was used in [90].

6. Discussion

According to the reviewed studies, CNN has the best in performance of all architectures. The
winner of ImageNet Large Scale Visual Recognition Competition (ILSVRC) 1998 was LeNet, which
is a seven-level CNN architecture, and 2012 it was AlexNet, which is also a very successful version
of CNN. From 2012 to 2015, the winner of this competition has been the CNN architectures AlexNet,
ZFNet, GoogleNet/ Inception V1, VGGNet and ResNet, which shows the success rate of the CNN
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architectures in this field. Since these are all different architectures of the same CNN, as the model
changes, the only evaluation measure is their percentage performance. As described in the competition,
the necessary part was the reduction of top-5 errors, which AlexNet reduced from 26% to 15.3%, while
ZFNet reduced to 14.8%. This performance was beaten by the GoogleNet/Inception V4, achieving the
error reduction to 3.6%. The best performance was shown by ResNet, which beats the human-level
performance by reducing errors to 3.57%.

When implementing deep learning for cancer diagnosis, one of the major challenges becomes
a lack of availability of datasets. Every learning algorithm requires a large amount of training for
performance measure. However, efforts have been made to make medical images archives containing
confidential information of many patients by picture archiving and communication society (PACS).
Researchers also use data images from cancer research organizations and hospitals for executing their
algorithms. One of the major breakthroughs for data collection was made by Esteva et al. [86]. They
collectively made an effort and formed a dataset with 127,463 training images and 1942 test images.
Many researchers use a small dataset for their algorithms. In addition, most of the datasets available
online with open access have raw images and so researchers are required to obtain the ground truth
themselves.

To deal with the issue of limited dataset, a scheme of data augmentation was proposed. Many
researchers use data augmentation, which includes techniques such as rotation, cropping and filtering
to increase the number of available data. Another way to avoid over-fitting is transfer learning, which
has been used by many of the researchers discussed above in this review.

Low contrast and SNR of medical images are responsible for the poor performance of deep
learning algorithms. Thus, another issue is how to improve the performance of the proposed model if
the data have low contrast and poor SNR. Furthermore, studies based on brain tumor segmentation
raised a question: How can we maintain the performance of algorithms on multiple resource data
When the algorithms were made to train on multi-institutional data, their performance decreases
gradually. Some of the online available datasets along with their access links are given in Table 8.

Table 8. Datasets and their online access links.

Dataset Name Link to Data Access

ISIC https://challenge.kitware.com/#challenge/5aab46f156357d5e82b00fe5

DermIS http://biogps.org/dataset/tag/dermis/

BRATS https://www.med.upenn.edu/sbia/brats2018/data.html

PROMISE-12 https://promise12.grand-challenge.org/Details/

DerQuest https://www.derm101.com/dermquest/

DLCST https://clinicaltrials.gov/ct2/show/NCT00496977

MED-NODE http://www.cs.rug.nl/imaging/databases/melanoma_naevi/

JSRT http://db.jsrt.or.jp/eng.php

LIDC https://wiki.cancerimagingarchive.net/display/Public/LIDC-IDRI#940027f1a8a845d0a61a1b5b5083567e

DDSM http://www.eng.usf.edu/cvprg/

BreakHis https://web.inf.ufpr.br/vri/databases/breast-cancer-histopathological-database-breakhis/

INBreast http://medicalresearch.inescporto.pt/breastresearch/index.php/Get_INbreast_Database

MITOSTAPIA https://mitos-atypia-14.grand-challenge.org/dataset/

Warwick-QU https://warwick.ac.uk/fac/sci/dcs/research/tia/glascontest/about/

mini-MIAS http://peipa.essex.ac.uk/info/mias.html

Proeng http://visual.ic.uff.br/en/proeng/thiagoelias/

AMD-Retina https://www.dropbox.com/s/mdx13ya26ut2msx/iChallenge-AMD-Training400.zip?dl=0

PAIP-2019 https://paip2019.grand-challenge.org/Dataset/

KITS https://kits19.grand-challenge.org/data/
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https://clinicaltrials.gov/ct2/show/NCT00496977
http://www.cs.rug.nl/ imaging/databases/melanoma_naevi/
http://db.jsrt.or.jp/eng.php
https://wiki.cancerimagingarchive.net/display/Public/LIDC-IDRI#940027f1a8a845d0a61a1b5b5083567e
http://www.eng.usf.edu/cvprg/
https://web.inf.ufpr.br/vri/databases/breast-cancer-histopathological-database-breakhis/
http://medicalresearch.inescporto.pt/breastresearch/index.php/Get_INbreast_Database
https://mitos-atypia-14.grand-challenge.org/dataset/
https://warwick.ac.uk/fac/sci/dcs/research/tia/glascontest/about/
http://peipa.essex.ac.uk/info/mias.html
http://visual.ic.uff.br/en/proeng/thiagoelias/
https://www.dropbox.com/s/mdx13ya26ut2msx/iChallenge-AMD-Training400.zip?dl=0
https://paip2019.grand-challenge.org/Dataset/
https://kits19.grand-challenge.org/data/
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Table 8. Cont.

Dataset Name Link to Data Access

CHAOS https://chaos.grand-challenge.org/Data/

EAD-2019 https://ead2019.grand-challenge.org/Data//

ANHIR https://anhir.grand-challenge.org/Data/

ABCD https://nda.nih.gov/edit_collection.html?id=3104

segTHOR https://competitions.codalab.org/competitions/21012#learn_the_details-dataset

segTHOR https://competitions.codalab.org/competitions/21012#learn_the_details-dataset

Kaggle https://www.kaggle.com/c/histopathologic-cancer-detection/data

CTC19 http://celltrackingchallenge.net/datasets/

cuRIOUS https://curious2018.grand-challenge.org/Data/

LUMIC https://lumic.grand-challenge.org/Dataset/

IDRID https://idrid.grand-challenge.org/Data/

BACH https://iciar2018-challenge.grand-challenge.org/Dataset/

RSNA https://www.kaggle.com/c/rsna-pneumonia-detection-challenge/data

MUSHAC https://projects.iq.harvard.edu/cdmri2018/data

IVDM3Seg https://ivdm3seg.weebly.com/data.html

MRBrainS18 https://mrbrains18.isi.uu.nl/data/

18F-FDG PET https://www.kaggle.com/c/pet-radiomics-challenges/data

BRATS https://www.med.upenn.edu/sbia/brats2018/data.html

SICAS https://www.smir.ch/

Bowl https://www.kaggle.com/c/data-science-bowl-2018/data

TADPOLE https://tadpole.grand-challenge.org/Data/

CATARACTS https://cataracts.grand-challenge.org/Data/

RETOUCH https://retouch.grand-challenge.org/Download/

CAMELYON17 https://camelyon17.grand-challenge.org/Data/

BOWL17 https://www.kaggle.com/c/data-science-bowl-2017/data

ISEG17 http://iseg2017.web.unc.edu/download/

ACDC17 https://www.creatis.insa-lyon.fr/Challenge/acdc/databases.html

ISLES http://www.isles-challenge.org/ISLES2017/

CCSD https://www.kaggle.com/c/intel-mobileodt-cervical-cancer-screening/data

LUNA https://luna16.grand-challenge.org/Data/

AIDA-E https://isbi-aida.grand-challenge.org/

CAMELYON16 https://camelyon16.grand-challenge.org/Data/

STACOM-SLAWT http://www.doc.ic.ac.uk/rkarim/la_lv_framework/wall/datasets.html

SMLM http://bigwww.epfl.ch/smlm/datasets/index.html

MTOP https://tbichallenge.wordpress.com/data/

CREMI https://cremi.org/data/

BOWL!5 https://www.kaggle.com/c/second-annual-data-science-bowl/data

DREAM https://www.synapse.org/#!Synapse:syn4224222/files/

ISBI15 http://www-o.ntust.edu.tw/cweiwang/ISBI2015/challenge2/index.html

TRACTOMETER http://www.tractometer.org/ismrm_2015_challenge/data

CANCER https://www.cancerimagingarchive.net/#collections-list

BRATS15 https://www.cancerimagingarchive.net/

CLUST https://clust.ethz.ch/data.html

PDDCA http://www.imagenglab.com/newsite/pddca/

CETUS https://www.creatis.insa-lyon.fr/Challenge/CETUS/databases.html

OCCISC-14 https://cs.adelaide.edu.au/carneiro/isbi14_challenge/dataset.html

CAD-PE http://www.cad-pe.org/?page_id=12

SMLM-SB http://bigwww.epfl.ch/smlm/datasets/index.html

HARDI http://hardi.epfl.ch/static/events/2013_ISBI/
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Another issue that was observed is the inequality of training data distribution. If the positive data
are made larger than the negative data, then the system will be automatically biased and will majorly
give positive results while the same happens if the data have more negative than positive cases. Thus,
equality of training data is very important, which was ignored by few researchers.

One of the problems faced when implementing a convolutional neural network is the size of the
target object inside the image. As the target object varies in size, studies proposed to train the model
with images of various scales to make the model learn this size variation. To capture the multi-scale
features directly from image, Shen et al. replaced a standard pooling operation with multi-crop
pooling [57].

7. Summary and Conclusions

This review focuses on providing all the necessary information to the beginners of this field,
starting from the main concepts of cancer diagnosis, evaluation criterion and medical methods. As this
manuscript mainly focuses on the deep learning for cancer diagnosis, the most important things to
introduce to our readers are all the possible techniques of deep learning that can be used for diagnostic
purposes in this document. Furthermore, to facilitate the audience, the respective practice codes for
each technique, which are easily available online, are put together in a table. One of the major issues
that one can encounter in implementing any algorithm is the dataset availability, therefore all possible
access links to the datasets are presented in this work.

Different architectures of CNN are also described in this manuscript. The implementation of the
deep learning algorithms for brain cancer, lung cancer, breast cancer, and skin cancer is the focus of
this manuscript. The performance measures for different studies are provided. In this review, different
deep learning algorithms for classifying different types of cancers are presented. In this review, fifteen
studies used Histopath model with CNN for classification and detection of different types of cancers as
provided in Table 9. Six of these studies provided the source of data [49,50,52,54,85] while nine studies
did not publish the source of data [90–93,95,101,102,104]. Two research studies used mammographs for
detection along with CNN and published data source [51,53]. Eight studies [12,59,77,87,96,98,103,105]
used CT Slices, three of which used data from PROMISE [75], and LIDC [166]. Five studies used
volumetric computed tomography [56–58,60,61]. Seven studies were for brain cancer classification
[76,79,79–81,89,94].

Table 9. Summary of references for different cancers.

Application Name References No. of Papers

Breast Cancer [49,50,52–54,85,88,114,136–138] 12
Lung Cancer [12,56,57,59–61,87,93] 12

Prostate Cancer [76,77,90–92] 5
Brain Cancer [79–81,89,94] 5
Skin Cancer [42,65,67,68,70,74,86,141–145,147–159,161,167] 27

In the field of dermatology, Esteva et al. used pre-trained CNN for skin lesion classification with
accuracy of 93.62% [86]. Sabbaghi et al. mapped images to bag-of-feature to increase classification
accuracy [167]. Globule patterns on the skin were detected by Demyanov et al. using a stochastic
gradient descent model [68]. Yu et al. formed FRCN by replacing the FCN’s Conv. layer with the
residual layer [142]. Melanoma detection was performed by Nasr et al. by feeding preprocessed
images to CNN network model [70].

Two of the methods reviewed in this study by Chandrahasa et al. and M.Garbaj et al. used the
ABCDE method for skin cancer detection; they made use of image segmentation, histogram analysis
and contour tracing [42,143]. Sujaya et al. used a graphical user interface to classify skin lesion [144].
whereas fuzzy C Mean was used by Palak et al. for skin cancer analysis [145]. Sumithra et al. used
support vector machine for skin lesion classification [147].
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In total, 27 different algorithms provided by 27 different researchers [42,65,67,68,70,74,86,141–
145,147–153,155–159,161,167] are reviewed for skin cancer diagnosis. As discussed above, there are
different methods with different algorithm schemes and different training datasets, which adds
difficulty when comparing them. No particular standard can be defined to compare their results.
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Abbreviations

The following abbreviations are used in this manuscript:

ABCD Asymmetry, Border, Color Variation and Diameter
ABCDE Asymmetry, Border, Color Variation, Diameter and Expansion
AD Adenocarcinoma
ANN Artificial neural networks
AI-ANN Artificial intelligence-artificial neural networks
AK Actinic Keratosis
AUC Area under the characteristic curve
BoF Bag-of-features
BCC Basal cell carcinoma
BK Benign Keratosis
CAD Computer aided diagnosis
CAE Convolutional autoencoders
CNNs Convolutional neural networks
cCCNs Combined convolutional networks
CT Computed tomography
DANs Deep auto encoders
DF Dermatofibroma
FCNs Fully convolutional networks
FCRN Fully convolutional Residual networks
FCM Fuzzy-c Mean
FPS Fourier power spectrum
FP False positives
FN False negatives
GVF Gradient Vector Flow
GAN Generative adversarial models
GPU Graphics processing units
GLCM Grey level co-occurrence matrix
GM Generalization mean
histo.path Histopathology
IC Intraepithelial carcinoma
ILSVRC ImageNet large scale visual recognition competition
K-NN K-Nearest neighbor
LBPS Local binary patterns
LABS Laboratory retrospective study
LTSM Long short-term memory
M-CNN Multi-scale convolutional neural network
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MIL-CNN Multiinstance convolutional neural network
MRI Magnetic resonance image
mAP multi class accuracy and mean average prediction
Neg.F Negative features
OBS Observational study
PACS Picture archiving and communication society
Pos.F Positive features
PCA Principal component analysis
RBF Radial basis function
RBM Restricted Boltzmann’s machine
ReLU Rectified linear unit
ROC Receiver operating characteristic curve
ROI Region of interest
Rsurf Rotated speeded-up robust features
RNN Recurrent neural networks
SAE Stacked autoencoders
SA-SVM Self-advised support vector machine
SCC Squamous cell carcinoma
SNR Signal too noise ratio
SVM Support Vector Machine
TP True positives
TN True negatives
WPT Wavepacket transform

References

1. Torre, L.A.; Bray, F.; Siegel, R.L.; Ferlay, J.; Lortet-Tieulent, J.; Jemal, A. Global cancer statistics, 2012.
CA Cancer J. Clin. 2015, 65, 87–108. [CrossRef] [PubMed]

2. Siegel, R.L.; Miler, K.D.; Jemal, A. Cancer Statistics, 2016. CA Cancer J. Clin. 2016, 66, 7–30. [CrossRef]
[PubMed]

3. Cancer Facts and Figures 2019, American Cancer Society, 2019. Available online: https:
//www.cancer.org/content/dam/cancer-org/research/cancer-facts-and-statistics/annual-cancer-
facts-and-figures/2019/cancer-facts-and-figures-2019.pdf (accessed on 8 January 2019).

4. Doi, K. Computer-aided diagnosis in medical imaging: Historical review, current status and future potential.
Comput. Med. Imaging Graph. 2007, 31, 198–211. [CrossRef] [PubMed]

5. Te Brake, G.M.; Karssemeijer, N.; Hendriks, J.H. An automatic method to discriminate malignant masses
from normal tissue in digital mammograms1. Phys. Meds. Biol. 2000, 45, 2843. [CrossRef] [PubMed]

6. Beller, M.; Stotzka, R.; Muller, T.; Gemmeke, H. An example-based system to support the segmentation
of stellate lesions. In Bildverarbeitung fÃr die Medizin 2005; Springer: Berlin/Heidelberg, Germany, 2005;
pp. 475–479.

7. Yin, F.F.; Giger, M.L.; Vyborny, C.J.; Schmidt, R.A. Computerized detection of masses in digital mammograms:
automated alignment of breast images and its effects on bilateral-substraction technique. Phys. Med. 1994, 3,
445–452. [CrossRef] [PubMed]

8. Aerts, H.J.; Velazquez, E.R.; Leijenaar, R.T.; Parmar, C.; Grossmann, P.; Cavalho, S.; Bussink, J.;
Monshouwer, R.; Haibe-Kains, B.; Rietveld, D. Decoding tumour phenotype by noninvasive imaging
using a quantitative radiomics approach. Nat. Commun. 2014, 5, 4006. [CrossRef] [PubMed]

9. Eltonsy, N.H.; Tourassi, G.D.; Elmaghraby, A.S. A concentric morphology for the detection of masses in
mammograph. IEEE Trans. Med. Imaging 2007, 26, 880–889. [CrossRef] [PubMed]

10. Wei, J.; Sahiner, B.; Hadjiiski, L.M.; Chan, H.P.; Petrick, N.; Helvie, M.A.; Roubidoux, M.A.; Ge, J.; Zhou, C.
Computer-aided detection of breast masses on full field digital mammograms. Med. Phys. 2005, 32, 2827–2838.
[CrossRef]

11. Hawkins, S.H.; Korecki, J.N.; Balagurunthan, Y.; Gu, Y.; Kumar, V.; Basu, S.; Hall, L.O.; Goldgof, D.B.;
Gatenby, R.A.; Gillies, R.J. Predicting outcomes of nonsmall cell lung cancer using CT image features.
IEEE Access 2005, 2, 1418–1426. [CrossRef]

http://dx.doi.org/10.3322/caac.21262
http://www.ncbi.nlm.nih.gov/pubmed/25651787
http://dx.doi.org/10.3322/caac.21332
http://www.ncbi.nlm.nih.gov/pubmed/26742998
https://www.cancer.org/content/dam/cancer-org/research/cancer-facts-and-statistics/annual-cancer-facts-and-figures/2019/cancer-facts-and-figures-2019.pdf
https://www.cancer.org/content/dam/cancer-org/research/cancer-facts-and-statistics/annual-cancer-facts-and-figures/2019/cancer-facts-and-figures-2019.pdf
https://www.cancer.org/content/dam/cancer-org/research/cancer-facts-and-statistics/annual-cancer-facts-and-figures/2019/cancer-facts-and-figures-2019.pdf
http://dx.doi.org/10.1016/j.compmedimag.2007.02.002
http://www.ncbi.nlm.nih.gov/pubmed/17349778
http://dx.doi.org/10.1088/0031-9155/45/10/308
http://www.ncbi.nlm.nih.gov/pubmed/11049175
http://dx.doi.org/10.1118/1.597307
http://www.ncbi.nlm.nih.gov/pubmed/8208220
http://dx.doi.org/10.1038/ncomms5006
http://www.ncbi.nlm.nih.gov/pubmed/24892406
http://dx.doi.org/10.1109/TMI.2007.895460
http://www.ncbi.nlm.nih.gov/pubmed/17679338
http://dx.doi.org/10.1118/1.1997327
http://dx.doi.org/10.1109/ACCESS.2014.2373335


Cancers 2019, 11, 1235 29 of 36

12. Balagurunthan, Y.; Gu, Y.; Wang, H.; Kumar, V.; Grove, O.; Hawkins, S.H.; Kim, J.; Goldgof, D.B.; Hall, L.O.;
Gatenby, R.A. Reproducibility and prognosis of quantitative features extracted from CT images. Transl.
Oncol. 2005, 7, 72–87. [CrossRef]

13. Han, F.; Wang, H.; Zhang, G.; Han, H.; Song, B.; Li, L.; Moore, W.; Lu, H.; Zhao, H.; Liang, Z. Texture feature
analysis for computer-aided diagnosis on pulmonary nodules. J. Digit. Imaging 2015, 28, 99–115. [CrossRef]
[PubMed]

14. Barata, C.; Marquees, J.S.; Rozeira, J. A system for the detection of pigment network in dermoscopy images
using directional filters. IEEE Trans. Biomed. Eng. 2012, 59, 2744–2754. [CrossRef] [PubMed]

15. Barata, C.; Marquees, J.S.; Celebi, M.E. Improving dermoscopy image analysis using color constancy.
In Proceedings of the 2014 IEEE International Conference on Image Processing (ICIP), Paris, France, 27–30
October 2014; pp. 3527–3531.

16. Barata, C.; Ruela, M.; Mendonca, T.; Marquees, J.S. A bag-of-features approach for the classification of
melanomas in dermoscopy images: The role of color and texture descriptors. In Computer Vision Techniques
for the Diagnosis of Skin Cancer; Springer: Berlin/Heidelberg, Germany, 2014; pp. 49–69.

17. Sadeghi, M.; Lee, T.K.; McLean, D.; Lui, H.; Atkins, M.S. Detection and analysis of irregular streaks in
dermoscopic images of skin lesions. IEEE Trans. Med. Imaging 2013, 32, 849–861. [CrossRef] [PubMed]

18. Zickic, D.; Glocker, B.; Konukoglu, E.; Criminsi, A.; Demiralp, C.; Shotton, J.; Thomas, O.M.; Das, T.;
Jena, R.; Price, S.J. Decision forest foe tissue-specific segmentation of high-grade gliomas in multi-channel
MR. In International Conference on Medical Image Computing and Computer-Assisted Intervention; Springer:
Berlin/Heidelberg, Germany, 2012; pp. 369–376.

19. Meier, R.; Bauer, S.; Slotnoom, J.; Wiest, R.; Reyes, M. A hybrid model for multi-modal brain tumor
segmentation. In Proceedings of the MICCAI Challenge on MultimodalBrain Tumor Image Segmentation,
NCI-MICCAI BRATS, Nagoya, Japan, 22 September 2013; pp. 31–37.

20. Pinto, A.; Pereira, S.; Correia, H.; Oliveira, J.; Rasteito, D.M.; Silva, C.A. Brain tumour segmentation based
on extremely randomized forest with high-level features. In Proceedings of the 37th Annual International
Conference on IEEE Engineering in Medicine and Biology Society (EMBC), Milan, Italy, 25–29 August 2015;
pp. 3037–3040.

21. Tustison, N.J.; Shrinidhi, K.; Wintermark, M.; Durst, C.R.; Kandel, B.M.; Gee, J.C.; Grossman, M.C.;
Avants, B.B. Optimal symmetric multimodal templates and concatenated random forests for supervised
brain tumor segmentation(simplified) with ANTsR. Neuroinformatics 2015, 13, 209–225. [CrossRef] [PubMed]

22. Bengio, Y.; Courville, A.; Vinvent, P. Representation learning: A review and new prespectives. IEEE Trans.
Pattern Anal. Mach. Intell. 2013, 35, 1798–1828. [CrossRef] [PubMed]

23. LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [CrossRef] [PubMed]
24. Xu, B.; Wang, N.; Chen, T.; Li, M. Empirical evaluation of rectified activations in convolutional network.

arXiv 2015, arXiv:1505.00853.
25. Messadi, M.; Bessaid, A.; Taleb-Ahmed, A. Extraction of specific parameters for skin tumour classification.

J. Med. Eng. Technol. 2009, 33, 288–295. [CrossRef] [PubMed]
26. Reddy, B.V. ; Reddy, P.B.; Kumar, P.S.; Reddy, S.S. Developing an approach to brain MRI image preprocessing

for tumor detection. Int. J. Res. 2014, 1, 2348–6848.
27. Zacharaki, E.I.; Wang, S.; Chawla, S.; Soo Yoo, D.; Wolf, R.; Melhem, E.R.; Davatzikos, C. Classification of

brain tumor type and grade using MRI texture and shape in a machine learning scheme. Magn. Reson. Med.
2009, 2, 1609–1618.

28. Miah, M.B.A.; Yousuf, M.A. Detection of lung cancer from CT image using image processing and neural
network. In Proceedings of the 2015 International Conference on Electrical Engineering and Information
Communication Technology (ICEEICT), Jahangirnagar University, Dhaka, Bangladesh, 21–23 May 2015.

29. Ponraj, D.N.; Jenifer, M.E.; Poongodi, P.; Manoharan, J.S. A survey on the preprocessing techniques of
mammogram for the detection of breast cancer. J. Emerg. Trends Comput. Inf. Sci. 2011, 2, 656–664.

30. Zhang, Y.; Sankar, R.; Qian, W. Boundary delineation in transrectal ultrasound image for prostate cancer.
Comput. Biol. Med. 2007, 37, 1591–1599. [CrossRef] [PubMed]

31. Emre Celebi, M.; Kingravi, H.A.; Iyatomi, H.; Alp Aslandogan, Y.; Stoecker, W.V.; Moss, R.H.; Malters,
J.M.; Grichnik, J.M.; Marghoob, A.A.; Rabinovitz, H.S.; et al. Border detection in dermoscopy images using
statistical region merging. Skin Res. Technol. 2008, 14, 347–353. [CrossRef] [PubMed]

http://dx.doi.org/10.1593/tlo.13844
http://dx.doi.org/10.1007/s10278-014-9718-8
http://www.ncbi.nlm.nih.gov/pubmed/25117512
http://dx.doi.org/10.1109/TBME.2012.2209423
http://www.ncbi.nlm.nih.gov/pubmed/22829364
http://dx.doi.org/10.1109/TMI.2013.2239307
http://www.ncbi.nlm.nih.gov/pubmed/23335664
http://dx.doi.org/10.1007/s12021-014-9245-2
http://www.ncbi.nlm.nih.gov/pubmed/25433513
http://dx.doi.org/10.1109/TPAMI.2013.50
http://www.ncbi.nlm.nih.gov/pubmed/23787338
http://dx.doi.org/10.1038/nature14539
http://www.ncbi.nlm.nih.gov/pubmed/26017442
http://dx.doi.org/10.1080/03091900802451315
http://www.ncbi.nlm.nih.gov/pubmed/19384704
http://dx.doi.org/10.1016/j.compbiomed.2007.02.008
http://www.ncbi.nlm.nih.gov/pubmed/17466966
http://dx.doi.org/10.1111/j.1600-0846.2008.00301.x
http://www.ncbi.nlm.nih.gov/pubmed/19159382


Cancers 2019, 11, 1235 30 of 36

32. Tong, N.; Lu, H.; Ruan, X.; Yang, M.H. Salient object detection via bootstrap learning. In Proceedings of the
IEEE Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, 7–12 June 2015; pp. 1884–1892.

33. Bozorgtabar, B.; Abedini, M.; Garnavi, R. Sparse coding based skin lesion segmentation using dynamic
rule-based refinement. In International Workshop on Machine Learning in Medical Imaging; Springer: Cham,
Switzerland, 2016; pp. 254–261.

34. Li, X.; Li, Y.; Shen, C.; Dick, A.; Van Den Hengel, A. Contextual hypergraph modeling for salient object
detection. In Proceedings of the 2013 IEEE International Conference on the Computer Vision (ICCV), Sydney,
Australia, 1–8 December 2013; pp. 3328–3335.

35. Yuan, X.; Situ, N.; Zouridakis, G. A narrow band graph partitioning method for skin lesion segmentation.
Pattern Recogn. 2009, 42, 1017–1028. [CrossRef]

36. Sikorski, J. Identification of malignant melanoma by wavelet analysis. In Proceedings of the Student/Faculty
Research Day, New York, NY, USA, 7 May 2004.

37. Chiem, A.; Al-Jumaily, A.; Khushaba, N.R. A novel hybrid system for skin lesion detection. In Proceedings
of the 3rd International Conference on Intelligent Sensors, Sensor Networks and Information Processing
(ISSNIPâTM07), Melbourne, Australia, 3–6 December 2007; pp. 567–572.

38. Maglogiannis, I.; Zafiropoulos, E.; Kyranoudis, C. Intelligent segmentation and classification of pigmented
skin lesions in dermatological images. In Advances in Artificial Intelligence; Springer: Berlin/Heidelberg,
Germany, 2006; pp. 214–223.

39. Tanaka, T.; Torii, S.; Kabuta, I.; Shimizu, K.; Tanaka, M.; Oka, H. Pattern classification of nevus with texture
analysis. In Proceedings of the 26th Annual International Conference of the IEEE Engineering in Medicine
and Biology Society (EMBCâTM04), San Francisco, CA, USA, 1–5 September 2004; pp. 1459–1462.

40. Zhou, H.; Chen, M.; Rehg, J.M. Dermoscopic interest point detector and descriptor. In Proceedings of the
6th IEEE International Symposium on Biomedical Imaging: From Nano to Macro (ISBIâTM09), Boston, MA,
USA, 28 June–1 July 2009; pp. 1318–1321.

41. Lee, C.; Landgrebe, D.A. Feature extraction based on decision boundaries. IEEE Trans. Pattern Anal. Mach.
Intell. 1993, 15, 388–400. [CrossRef]

42. Garbaj, M.; Deshpande, A.S. Detection and Analysis of Skin Cancer in Skin Lesions by
using Segmentation. IJARCCE 2015. Available online: https://pdfs.semanticscholar.org/2e8c/
07298deb9c578077b5d0ae069fe26bd16b58.pdf (accessed on 1 August 2019).

43. Johr, R.H. Dermoscopy: Alternative Melanocytic Algorithms—The ABCD Rule of Dermatoscopy, Menzies Scoring
Method, and 7-Point Checklist; Elsevier: Amsterdam, The Netherlands, 2002.

44. Lee, C.Y.; Gallagher, P.W.; Tu, Z. Generalizing pooling functions in convolutional neural networks: Mixed,
gated, and tree. In Proceedings of the 19th International Conference on Artificial Intelligence and Statistics
(AISTATS), Cadiz, Spain, 9–11 May 2016.

45. Nwankpa, C.; Ijomah, W.; Gachagan, A.; Marshall, S. Activation functions: Comparison of trends in practice
and research for deep learning. arXiv 2018, arXiv:1811.03378.

46. Nair, V.; Hinton, G.E. Rectified linear units improve restricted boltzmann machines. In Proceedings of the
27th International Conference on Machine Learning (ICLM), Haifa, Israel, 21–24 June 2010; pp. 807–814.

47. Kingma, D.; Ba, J. Adam: A method of stochastic optimmization. arXiv 2014, arXiv:1412.6980.
48. Albarqouni, S.; Baur, C.; Achilles, F.; Belagiannis, V.; Demirci, S.; Navab, N. AggNet: Deep learning from

crowds for mitosis detection in breast cancer histology images. IEEE Trans. Med. Imaging 2016, 35, 1313–1321.
[CrossRef]

49. Spanhol, F.A.; Oliveira, L.S.; Petitjean, C.; Heutte, L. Breast cancer histopathological image classification
using convolutional neural networks. In Proceedings of the 2016 International Joint Conference on Neural
Networks (IJCNN), Vancouver, BC, Canada, 24–29 July 2016; pp. 2560–2567.

50. Wichakam, I.; Vateekul, P. Combining deep convolutional networks and SVMs for mass detection on digital
mammograms. In Proceedings of the 8th International Conference on Knowledge and Smart Technology
(KST), Bangkok, Thailand 2016; pp. 239–244.

51. Ertosun, M.G.; Rubin, D.L. Probabilistic visual search for masses within mammography images using deep
learning. In Proceedings of the 2015 IEEE International Conference on Bioinformatics and Biomedicine
(BIBM), Washington, DC, USA, 9–12 November 2015; pp. 1310–1315.

http://dx.doi.org/10.1016/j.patcog.2008.09.006
http://dx.doi.org/10.1109/34.206958
https://pdfs.semanticscholar.org/2e8c/07298deb9c578077b5d0ae069fe26bd16b58.pdf
https://pdfs.semanticscholar.org/2e8c/07298deb9c578077b5d0ae069fe26bd16b58.pdf
http://dx.doi.org/10.1109/TMI.2016.2528120


Cancers 2019, 11, 1235 31 of 36

52. Albayark, A.; Bilgin, G. Mitosis detection using convolutional neural network based features. In Proceedings
of the IEEE Seventeenth International Symposium on Computational Intelligence and Informatics (CINTI),
Budapest, Hungary, 17–19 November 2016; pp. 335–340.

53. Swiderski, B.; Kurek, J.; Osowski, S.; Kruk, M.; Barhoumi, W. Deep learning and non-negative matrix
factorization in recognition of mammograms. In Proceedings of the Eighth International Conference on
Graphic and Image Processing, International Society of Optics and Photonics, Tokyo, Japan, 8 February 2017;
Volume 10225, p. 102250B.

54. Suzuki, S.; Zhang, X.; Homma, N.; Ichiji, K.; Sugita, N.; Kawasumi, Y.; Ishibashi, T.; Yoshizawa, M.
Mass detection using deep convolutional neural networks for mammoghraphic computer-aided diagnosis.
In Proceedings of the 55th Annual Conference of the Society of Intruments and Control Engineers of Japan
(SICE), Tsukuba, Japan, 20–23 September 2016; pp. 1382–1386.

55. Wang, C.; Elazab, A.; Wu, J.; Hu, Q. Lung nodule classification using deep feature fusion in chest radiography.
Comput. Med. Imaging Graph. 2017, 57, 10–18. [CrossRef]

56. Dou, Q.; Chen, H.; Yu, L.; Qin, J.; Heng, P.-A. Multilevel contextual 3-D CNNs for false positive reduction in
pulmonary nodule detection. IEEE Trans. Biomed. Eng. 2017, 64, 1558–1567. [CrossRef] [PubMed]

57. Shen, W.; Zhou, M.; Yang, F.; Yu, D.; Dong, D.; Yang, C.; Tian, J. Multicrop convolutional neural networks for
lung nodule malignancy suspiciousness classification. Pattern Recognit. 2017, 61, 663–673. [CrossRef]

58. Hua, K.L.; Hsu, C.H.; Hidayati, S.C.; Cheng, W.H.; Chen, Y.J. Computer-aided classification of lung nodules
on computed tomography images via deep learning technique. Onco Targets Ther. 2015, 57, 2015–2022.
[CrossRef]

59. Hiryama, K.; Tan, J.K.; Kim, H. Extraction of GGO candidate regions from the LIDC database using deep
learning. In Proceedings of the Sixteenth International Conference on Control, Automation and Systems
(ICCAS), Gyeongju, Korea, 16–19 October 2016; pp. 724–727.

60. Setio, A.A.A.; Ciompi, F.; Litjens, G.; Gerke, P.; Jacobs, C.; Van Riel, S.J.; Wille, M.M.W.; Naqibullah, M.;
Sanchez, C.I.; van Ginneken, B. Pulmonary nodule detection in CT images: False positive reduction using
multi-view convolutional networks. IEEE Trans. Med. Imaging 2016, 35, 1160–1169. [CrossRef] [PubMed]

61. Hussein, S.; Gillies, R.; Cao, K.; Song, Q.; Bagci, U. TumorNet: Lung Nodule Characterization
Using Multi-View Convolution Neural Network with Gaussian Process. In Proceedings of the IEEE
14th International Symposium on Biomedical Imaging (ISBI), Melbourne, Australia, 18–21 April 2017;
pp. 1007–1010.

62. Mahbod, A.; Ecker, R.; Ellinger, I. Skin lesion classification using hybrid deep neural networks. arXiv 2017,
arXiv:1702.08434.

63. DermQuest. Online Medical Resource. Available online: http://www.dermquest.com (accessed on
10 December 2018).

64. Dey, T.K. Curve and Surface Reconstruction: Algoritms with Mathematical Analysis; Cambridge Monographs on
Applied and Computational Mathematics: Cambridge, UK, 2006.

65. Pomponiu, V.; Nejati, H.; Cheung, N.-M. Deepmole: Deep neural networks for skin mole lesion classification.
In Proceedings of the IEEE International Conference on Image Processing (ICIP), Phoenix, AZ, USA,
25–28 September 2016; pp. 2623–2627.

66. Gutman, D.; Codella, N.C.; Celebi, E.; Helba, B.; Marchetti, M.; Mishra, N.; Halpern, A. Skin lesion analysis
toward melanoma detection: A challenge at the international symposium on biomedical imaging (ISIC).
arXiv 2016, arXiv:1605.01397.

67. Majtner, T.; Yildirim-Yayilgan, S.; Hardeberg, J.Y. Combining deep learning and hand-crafted features for the
skin lesion classification. In Proceedings of the Sixth International Conference on Image Processing Theory
Tools and Applications (IPTA), Oulu, Finland, 12–15 December 2016; pp. 1–6.

68. Demyanov, S.; Chakravorty, R.; Abedini, M.; Halpern, A.; Garnavi, R. Classification of dermoscopy
patterns using deep convolutional neural networks. In Proceedings of the 13th International Symposium on
Biomedical Imaging (ISBI), Prague, Czech Republic, 13–16 April 2016; pp. 364–368.

69. Giotis, I.; Molders, N.; Land, S.; Biehl, M.; Jonkman, M.F.; Petkov, N. MED-NODE: A computer-assisted
melanoma diagnosis system using non-dermoscopic images. Expert Syst. Appl. 2015, 42, 6578–6585.
[CrossRef]

http://dx.doi.org/10.1016/j.compmedimag.2016.11.004
http://dx.doi.org/10.1109/TBME.2016.2613502
http://www.ncbi.nlm.nih.gov/pubmed/28113302
http://dx.doi.org/10.1016/j.patcog.2016.05.029
http://dx.doi.org/10.2147/OTT.S80733
http://dx.doi.org/10.1109/TMI.2016.2536809
http://www.ncbi.nlm.nih.gov/pubmed/26955024
http://www.dermquest.com
http://dx.doi.org/10.1016/j.eswa.2015.04.034


Cancers 2019, 11, 1235 32 of 36

70. Nasr-Esfahani, E.; Samavi, S.; Karimi, N.; Soroushmehr, S.M.R.; Jafari, M.H.; Ward, K.; Najarian, K. Melanoma
detection by analysis of clinical images using convolutional neural network. In Proceedings of the IEEE 38th
Annual International Conferenced of Engineering in Medincine and Biology Society (EMBC), Orlando, FL,
USA, 16–20 August 2016; pp. 1373–1376.

71. An Atlas of Clinical Dermatology. 2014. Available online: http://www.danderm.dk/atlas/ (accessed on
14 September 2018).

72. Online Medical Resources. 2014. Available online: http://www.dermnetnz.org (accessed on 20 November
2018) .

73. Interactive Dermatology Atlas. 2014. Available online: http://www.dermatlas.net/atlas/index. (accessed
on 22 December 2018).

74. Sabouri, P.; GholamHosseini, H. Lesion border detection using deep learning. In Proceedings of the 2016
IEEE Congress on Evolutionary Computation (CEC), Vancouver, BC, Canada, 24–29 July 2016; pp. 1416–1421.

75. Litjens, G.; Toth, R.; van de Ven, W.; Hoeks, C.; Kerkstra, S.; van Ginneken, B.; Vincent, G.; Guillard, G.;
Birbeck, N.; Zhang, J. Evaluation of prostate segmentation algorithms for MRI: The PROMISE12 challenge.
Med. Imaging Anal. 2014, 18, 359–373. [CrossRef]

76. Yan, K.; Li, C.; Wang, X.; Li, A.; Yuan, Y.; Feng, D.; Khadra, M.; Kim, J. Automatic prostate segmentation
on MR images with deep network and graph model. In Proceedings of the 38th Annual International
Conference of the Engineering in Medicine and Biology Society (EMBC), Orlando, FL, USA, 16–18 August
2016; pp. 635–638.

77. Maa, I.; Guoa, R.; Zhanga, G.; Tadea, F.; Schustera, D.M.; Niehc, P.; Masterc, V.; Fei, B. Automatic
segmentation of the prostate on CT images using deep convolutional neural network. In Proceeding
of the SPIE MEdical Imaging, International Society for Optics and Photonics, Orlando, FL, USA, 11–16
February 2017; Volume 10133, p. 101332O.

78. Kistler, M.; Bonaretti, S.; Pfahrer, M.; Niklaus, R.; Buchler, P. The virutal skeleton database: An open access
repository for biomedical research and collaboration. J. Med. Internet Res. 2013, 15, e245. [CrossRef]

79. Zhao, L.; Jia, K. Deep feature learning with discrimination mechanism for brain tumor segmentation and
diagnosis. In Proceedings of the International Conference on Intelligent Information Hiding and Multimedia
Signal Processing (IIH-MSP), Adelaide, SA, Australia, 23–25 September 2015; pp. 306–309.

80. Pereira, S.; Pinto, A.; Alves, V.; Silva, C.A. Brain tumor segmentation using convolutional neural networks in
MRI images. IEEE Trans. Med. Imaging 2016, 35, 1240–1251. [CrossRef]

81. Kamnitsas, K.; Ledig, C.; Newcombe, V.F.; Simpson, J.P.; Kane, A.D.; Menon, D.K.; Rueckert, D.; Glocker, B.
Efficient multi-scale 3D CNN with fully connected CRF for accurate brain lesion segmentation. Med. Image
Anal. 2017, 36, 61–78. [CrossRef] [PubMed]

82. Zhao, X.; Wu, Y.; Song, G.; Li, Z.; Zhang, Y.; Fan, Y. A deep learning model integrating FCNNs and CRFs for
brain tumor segmentation. Med. Image Anal. 2018, 43, 98–111. [CrossRef] [PubMed]

83. Sitinukunwattana, K.; Snead, D.R.; Rajpoot, N.M. A stochastic polygons model for glandular structures in
colon histology images. IEEE Trans. Med. Imaging 2015, 34, 2366–2378. [CrossRef] [PubMed]

84. Sitinukunwattana, K.; Pluim, J.P.; Chen, H.; Qj, X.; Heng, P.-A.; Guo, Y.B.; Wang, L.Y.; Matuszewski, B.J.;
Bruni, E.; Sanchez, U. Gland segmentation in colon histology images: The glas challenge contest. Med. Image
Anal 2017, 35, 489–502. [CrossRef] [PubMed]

85. Chen, H.; Qj, X.; Yu, L.; Heng, P.-A. DCAN: Deep contour-aware networks for accurate gland segmentation.
In Proceedings of the IEEE conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA,
26 June–1 July 2016; pp. 2487–2496.

86. Esteva, A.; Kuprel, B.; Novoa, R.A.; Ko, J.; Swetter, S.M.; Blau, H.M.; Thrun, S. Dermatologist-level
classification of skin cancer with deep neural networks. Nature 2017, 542, 115–118. [CrossRef] [PubMed]

87. Paul, R.; Hawkins, S.H.; Hall, L.O.; Goldgof, D.B.; Gillies, R.J. Combining deep neural network and
traditional image features to improve survival prediction accuracy for lung cancer patients from diagnostic
CT. In Proceedings of the IEEE International Conference on Systems, Man, and Cybernetics (SMC), Budapest,
Hungary, 9–12 October 2016; pp. 2570–2575.

88. Kim, D.H.; Kim, S.T.; Ro, Y.M. Latent feature representation with 3-D multi-view deep convolutional neural
network for bilateral analysis in digital breast tomosynthesis. In Proceedings of the IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), Shanghai, China, 20–25 March 2016;
pp. 927–931.

http://www.danderm.dk/atlas/
http://www.dermnetnz.org
http://www.dermatlas.net/atlas/index.
http://dx.doi.org/10.1016/j.media.2013.12.002
http://dx.doi.org/10.2196/jmir.2930
http://dx.doi.org/10.1109/TMI.2016.2538465
http://dx.doi.org/10.1016/j.media.2016.10.004
http://www.ncbi.nlm.nih.gov/pubmed/27865153
http://dx.doi.org/10.1016/j.media.2017.10.002
http://www.ncbi.nlm.nih.gov/pubmed/29040911
http://dx.doi.org/10.1109/TMI.2015.2433900
http://www.ncbi.nlm.nih.gov/pubmed/25993703
http://dx.doi.org/10.1016/j.media.2016.08.008
http://www.ncbi.nlm.nih.gov/pubmed/27614792
http://dx.doi.org/10.1038/nature21056
http://www.ncbi.nlm.nih.gov/pubmed/28117445


Cancers 2019, 11, 1235 33 of 36

89. Liu, R.; Hall, L.O.; Goldgof, D.B.; Zhou, M.; Gatenby, R.A.; Ahmed, K.B. Exploring deep features from brain
tumor magnetic resonance images via transfer learning. In Proceedings of the International Joint Conference
on Neural Networks (IJCNN), Vancouver, BC, Canada, 24–29 July 2016; pp. 235–242.

90. Kallen, H.; Molin, J.; Heyden, A.; Lundstrom, C.; Astrom, K. Towards grading gleason score using generically
trained deep convolutional neural networks. In Proceedings of the 2016 IEEE 13th International Symposium
on Biomedical Imaging (ISBI), Prague, Czech Republic, 13–16 April 2016; pp. 1163–1167.

91. Gummeson, A.; Arvdsson, I.; Ohlsson, M.; Overgaard, N.C.; Krzyzanowska, A.; Heyden, A.; Bjartell, A.;
Astrom, K. Automatic Gleason grading of H&E stained microscopic prostate images using deep
convolutional neural networks. In Proceedings of the SPIE Medical Imaging, International Society of
Optics and Photonics, Orlando, FL, USA, 11–16 February 2017; Volume 10140, p. 101400S.

92. Kwak, J.T.; Hewitt, S.M. Lumen-based detection pf prostate cancer via convolutional neural networks.
In Proceedings of the SPIE Medical Imaging, International Society of Optics and Photonics, Orlando, FL,
USA, 11–16 February 2017; Volume 10140, p. 1014008.

93. Zhu, X.; Yao, J.; Huang, J. Deep convolutional neural network for survival analysis with pathological images.
In Proceedings of the 2016 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), 15–18
December 2016; pp. 544–547.

94. Ahmed, K.B.; Hall, L.O.; Goldgof, D.B.; Liub, R.; Gatenby, R.A. Fine-tuning convolutional deep features for
MRI based brain tumor classification. In SPIE Proceedings: Medical Imaging 2017: Computer-Aided Diagnosis;
International Society for Optics and Photonics: Bellingham, WA, USA, 2017; Volume 10134, p. 101342E.

95. Song, Y.; Zhang, L.; Chen, S.; Ni, D.; Lei, B.; Wang, T. Accurate segmentation of cervical cytoplasm and
nuclei based on multi-scale convolutional network and graph partitioning. IEEE Trans. Biomed. Eng. 2015,
62, 2421–2433. [CrossRef] [PubMed]

96. Cha, K.H.; Hadjiiski, L.; Samala, R.K.; Chan, H.P.; Caoili, E.M.; Cohan, R.H. Urinary bladder segmentation
in CT urography using deep-learning convolutional neural network and level sets. Med. Phys. 2016, 43,
1882–1896. [CrossRef] [PubMed]

97. Gibson, E.; Robu, M.R.; Thompson, S.; Edwards, P.E.; Schneider, C.; Schneider, C.; Gurusamy, K.;
Davidson, B.; Hawkes, D.J.; Barratt, D.C.; et al. Deep residual networks for automatic segmentation
of laparoscopic videos of the liver. In Medical Imaging 2017: Image-Guided Procedures, Robotic Interventions,
and Modeling; International Society for Optics and Photonics: Bellingham, WA, USA, 2017; Volume 10135,
p. 101351M.

98. Gordon, M.; Hadjiiski, L.; Cha, K.; Chan, H.-P.; Samala, R.; Cohan, R.H.; Caoili, E.M. Segmentation of inner
and outer bladder wall using deep-learning convolutional neural networks in CT urography. In Medical
Imaging 2017: Computer-Aided Diagnosis; International Society for Optics and Photonics: Bellingham, WA,
USA, 2017; Volume 10134, p. 1013402.

99. Xu, T.; Zhang, H.; Huang, X.; Zhang, S.; Metaxas, D.N. Multimodal deep learning for cervical dysplasia
diagnosis. In International Conference on Medical Image Computing and Computer-Assisted Intervention; Springer:
Cham, Switzerland, 2016; pp. 115–123.

100. BenTaieb, A.; Kawahara, J.; Hamarneh, G. Multi-loss convolutional networks for gland analysis in microscopy.
In Proceedings of the IEEE Thirteenth International Symposium on Biomedical Imaging (ISBI), Prague,
Czech Republic, 13–16 April 2016 ; pp. 642–645.

101. Xing, F.; Xie, Y.; Yang, L. An automaticl learning-based framework or robust nucleus segmentation. IEEE
Trans. Med. Imaging 2016, 35, 550–566. [CrossRef] [PubMed]

102. Mao, Y.; Yin, Z.; Schober, J. A deep convolutional neural network trained on representative samples for
circualting tumor cell detection. In Proceedings of the IEEE Winter Conference on Applications of Computer
Vision (WACV), Lake Placid, NY, USA, 7–10 March 2016; pp. 1–6.

103. Li, W.; Jia, F.; Hu, Q. Automatic segmentation of liver tumor in CT images with deep convolutional neural
networks. J. Comput. Commun. 2015, 3, 146. [CrossRef]

104. Song, Y.; Cheng, J.-Z.; Ni, D.; Chen, S.; Lei, B.; Wang, T. Segmenting overlapping cervical cell in pap smear
images. In Proceedings of the IEEE Thirteenth International Symposium on Biomedical Imaging (ISBI),
Prague, Czech Republic, 13–16 April 2016; pp. 1159–1162.

http://dx.doi.org/10.1109/TBME.2015.2430895
http://www.ncbi.nlm.nih.gov/pubmed/25966470
http://dx.doi.org/10.1118/1.4944498
http://www.ncbi.nlm.nih.gov/pubmed/27036584
http://dx.doi.org/10.1109/TMI.2015.2481436
http://www.ncbi.nlm.nih.gov/pubmed/26415167
http://dx.doi.org/10.4236/jcc.2015.311023


Cancers 2019, 11, 1235 34 of 36

105. Cha, K.H.; Hafjiski, L.M.; Chan, H.-P.; Samala, R.K.; Cohan, R.H.; Caoili, E.M.; Paramagul, C.; Alva, A.;
Weizer, A.Z. Bladder cancer treantment response assessment using deep learning in CT with transfer
learning. In Medical Imaging 2017: Computer-Aided Diagnosis; International Society for Optics and Photonics:
Bellingham, WA, USA, 2017; Volume 10134; p. 1013404.

106. Long, J.; Shelhamer, E.; Darrell, T. Fully convolutional network for semantic segmentation. arXiv 2015,
arXiv:1411.4038v2.

107. Jain, V.; Seung, S. Natural image denoising with convolutional networks. Adv. Neural Inf. Process. Syst. 2009,
21, 769–776.

108. Dong, C.; Loy, C.C.; He, K.; Tang, X. Learning a deep convolutional network for image super-resolution. In
Proceedings of the European Conference on Computer Vision, Zurich, Switzerland, 6–12 September 2014;
pp. 769–776.

109. Noh, H.; Hong, S.; Han, B. Learning deconvolution network for semantic segmentation. In Proceedings of the
IEEE International Conference on Computer Vision, Santiago, Chile, 13–16 December 2015; pp. 1520–1528.

110. Mahmood, F.; Borders, D.; Chen, R.; McKay, G.N.; Salimian, K.J.; Baras, A.; Durr, N.J. Deep adversarial
training for multi-organ nuclei segmentation in histopathology images. IEEE Trans. Med. Imaging 2019.
[CrossRef] [PubMed]

111. Baur, C.; Albarqouni, S.; Navab, N. MelanoGANs: High resolution skin lesion synthesis with GANs. arXiv
2018, arXiv:1804.04338.

112. Zhu, J.-Y.; Park, T.; Isola, P.; Efros, A.A. Unpaired image-to-image translation using cycle-consistent
adversarial networks. arXiv 2017, arXiv:1703.10593.

113. Wang, T.C.; Liu, M.Y.; Zhu, J.Y.; Tao, A.; Kautz, J.; Catanzaro, B. High-resolution image synthesis and
semantic manipulation with conditional gans. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), Salt Lake City, UT, USA, 19–21 June 2018; Volume 1; p. 5.

114. Quan, T.M.; Nguyen-Duc, T.; Jeong, W.K. Compressed sensing mri reconstruction with cyclic loss in
generative adversarial networks. arXiv 2017, arXiv:1709.00753.

115. Wang, Y.; Yu, B.; Wang, L.; Zu, C.; Lalush, D.S.; Lin, W.; Wu, X.; Zhou, J.; Shen, D.; Zhou, L. 3D conditional
generative adversarial networks for high-quality pet image estimation at low dose. NeuroImage 2018 174,
550–562. [CrossRef]

116. Mardani, M.; Gong, E.; Cheng, J.Y.; Vasanawala, S.; Zaharchuk, G.; Alley, M.; Thakur, N.; Han, S.; Dally, W.;
Pauly, J.M.; et al. Deep generative adversarial networks for compressed sensing automates mri. arXiv 2017,
arXiv:1706.00051.

117. Dou, Q.; Ouyang, C.; Chen, C.; Chen, H.; Heng, P.-A. Unsupervised cross-modality domain adaptation of
convnets for biomedical image segmentations with adversarial loss. arXiv 2018, arXiv:1804.10916.

118. Li, Z.; Wang, Y.; Yu, J. Brain tumor segmentation using an adversarial network. In International MICCAI
Brainlesion Workshop; Springer: Cham, Switzerland, 2017; pp. 123–132.

119. Rezaei, M.; Yang, H.; Meinel, C. Whole heart and great vessel segmentation with context-aware of generative
adversarial networks. In Bildverarbeitung fur die Medizin; Springer Vieweg: Berlin/Heidelberg, Germany,
2018; pp. 353–358.

120. Zhang, Y.; Miao, S.; Mansi, T.; Liao, R. Task driven generative modeling for unsupervised domain adaptation:
Application to X-ray image segmentation. arXiv 2018, arXiv:1806.07201.

121. Chen, C.; Dou, Q.; Chen, H.; Heng, P.-A. Semantic-aware generative adversarial nets for unsupervised
domain adaptation in chest X-ray segmentation. arXiv 2018, arXiv:1806.00600.

122. Alex, V.; Mohammed Safwan, K.P.; Chennamsetty, S.S.; Krishnamurthi, G. Generative adversarial networks
for brain lesion detection. In Medical Imaging 2017: Image Processing; International Society for Optics and
Photonics: Bellingham, WA, USA, 2017; Volume 10133, p. 101330G.

123. Schlegl, T.; Seebock, P.; Waldstein, S.M.; Schmidt-Erfurth, U.; Langs, G. Unsupervised anomaly detection
with generative adversarial networks to guide marker discovery. In International Conference on Information
Processing in Medical Imaging; Springer: Cham, Switzerland, 2017; pp. 146–157.

124. Mondal, A.K.; Dolz, J.; Desrosiers, C. Few-shot 3D multi-modal medical image segmentation using generative
adversarial learning. arXiv 2018, arXiv:1810.12241.

125. Singh, V.K.; Romani, S.; Rashwan, H.A.; Akram, F.; Pandey, N.; Sarker, M.M.K.; Abdulwahab, S.;
Torrents-Barrena, J.; Saleh, A.; Arquez, M.; et al. Conditional generative adversarial and convolutional
networks for X-ray breast mass segmentation and shape classification. arXiv 2018, arXiv:1805.10207v2.

http://dx.doi.org/10.1109/TMI.2019.2927182
http://www.ncbi.nlm.nih.gov/pubmed/31283474
http://dx.doi.org/10.1016/j.neuroimage.2018.03.045


Cancers 2019, 11, 1235 35 of 36

126. Graves, A.; Mohamed, A.R.; Hinton, G. Speech recognition with deep recurrent neural networks. In
Proceedings of the 2013 IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP,
Vancouver, BC, Canada, 26–31 May 2013. doi:10.1109/ICASSP.2013.6638947.

127. Zaremba, W.; Sutskever, I.; Vinyals, O. Recurrent neural network regularization. arXiv 2014, arXiv:1409.2329.
128. Bishop, C.M. Neural Networks of Pattern Recognition; Oxford University Press: Oxford, UK, 1995.
129. Ng, A. Sparse autoencoder. CS294A Lect. Notes 2011, 72, 1–19.
130. Liu, G.; Bao, H.; Han, B. A stacked autoencoder-based deep neural network for achieving gearbox fault

diagnosis. Math. Probl. Eng. 2018. [CrossRef]
131. Hou, L.; Nguyen, V.; Kanevsky, A.B.; Samaras, D.; Kurc, T.M.; Zhao, T.; Gupta, R.R.; Gao, Y.; Chen, W.;

Foran, D.; et al. Sparse autoencoder for unsupervised nucleus detection and representation in histopathology
images. Pattern Recognit. 2019, 86, 188–200. [CrossRef]

132. Guo, X.; Liu, X.; Zhu, E.; Yin, J. Deep clustering with convolutional autoencoders. In International Conference
on Neural Information Processing; Springer: Cham, Switzerland, 2017; pp. 373–382.

133. Zhang, Y. A Better Autoencoder for Image: Convolutional Autoencoder. ICONIP17-DCEC. Available online:
http://users.cecs.anu.edu.au/Tom.Gedeon/conf/ABCs2018/paper/ABCs2018_paper_58.pdf (accessed on
23 March 2017).

134. Hinton, G.E. Deep belief networks. Scholarpedia 2009, 4, 5947. [CrossRef]
135. Hinton, G.E.; Osindero, S.; Teh, T.-W. A fast learning algorithm for deep belief nets. Neural Comput. 2006, 18,

1527–1554. [CrossRef]
136. Kallenberg, M.; Petersen, K.; Nielsen, M.; Ng, A.Y.; Diao, P.; Igel, C.; Vachon, C.M.; Holland, K.;

Winkel, R.R.; Karssemeijer, N.; et al. Unsupervised deep learning applied to breast density segmentation
and mammographic risk scoring. IEEE Trans. Med. Imaging 2016, 35, 1322–1331. [CrossRef]

137. Dhungel, N.; Carneiro, G.; Bradley, A.P. Deep structured learning for mass segmentation from mammograms.
In Proceedings of the 2015 IEEE International Conference on Image Processing (ICIP), Quebec City, QC,
Canada, 2015; pp. 2950–2954. [CrossRef]

138. Dhungel, N.; Carneiro, G.; Bradley, A.P. Automated Mass Detection in Mammograms Using Cascaded
Deep Learning and Random Forests. In Proceedings of the 2015 International Conference on Digital Image
Computing: Techniques and Applications (DICTA), Adelaide, Australia, 23–25 November 2015.

139. Taqdir, B. Cancer detection techniques—A review. Int. Res. J. Eng. Technol. (IRJET) 2018, 4, 1824–1840.
140. Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv

2014, arXiv:1409.1556.
141. Masood, A.; Al-Jumaily, A.; Anam, K. Self-supervised learning model for skin cancer diagnosis. In

Proceedings of the Seventh International IEEE/EMBS Conference on Neural Engineering (NER), Montpellier,
France, 22–24 April 2015; pp. 1012–1015.

142. Yu, L.; Chen, H.; Dou, Q.; Qin, J.; Heng, P.-A. Automated melanoma recognition in dermoscopy images via
very deep residual networks. IEEE Trans. Med. Imaging 2016, 36, 994–1004. [CrossRef] [PubMed]

143. Chandrahasa, M.; Vadigeri, V.; Salecha, D. Detection of skin cancer using image processing techniques. Int. J.
Mod. Trends Eng. Res. (IJMTER) 2016, 5, 111–114.

144. Saha, S. and Gupta, R. An automated skin lesion diagnosis by using image processing techniques. Int. J.
Recent Innov. Trends Comput. Commun. 2015, 5, 1081–1085.

145. Mehta, P.; Shah, B. Review on techniques and steps of computer aided skin cancer diagnosis. Procedia Comput.
Sci. 2016, 85, 309–316.

146. Bhuiyan, M.A.H.; Azad, I.; Uddin, M.K. Image processing for skin cancer features extraction. Int. J. Sci. Eng.
Res. 2013, 4, 1–6.

147. Sumithra, R.; Suhil, M.; Guru, D.S. Segmentation and classification of skin lesions for disease diagnosis.
Procedia Comput. Sci. 2015, 45, 76–85. [CrossRef]

148. He, J.; Dong, Q.; Yi, S. Prediction of skin cancer based on convolutional neural network. In Recent
Developments in Mechatronics and Intelligent Robotics; Springer: Cham, Switzerland, 2018; pp. 1223–1229.

149. Rehman, M.; Khan, S.H.; Rizvi, S.D.; Abbas, Z.; Zafar, A. Classification of skin lesion by interference of
segmentation and convolotion neural network. In Proceedings of the 2nd International Conference on
Engineering Innovation (ICEI), Bangkok, Thailand, 5–6 July 2018; pp. 81–85.

http://dx.doi.org/10.1155/2018/5105709
http://dx.doi.org/10.1016/j.patcog.2018.09.007
 http://users.cecs.anu.edu.au/ Tom.Gedeon/conf/ABCs2018/paper/ABCs2018_paper_58.pdf
http://dx.doi.org/10.4249/scholarpedia.5947
http://dx.doi.org/10.1162/neco.2006.18.7.1527
http://dx.doi.org/10.1109/TMI.2016.2532122
http://dx.doi.org/10.1109/ICIP.2015.7351343
http://dx.doi.org/10.1109/TMI.2016.2642839
http://www.ncbi.nlm.nih.gov/pubmed/28026754
http://dx.doi.org/10.1016/j.procs.2015.03.090


Cancers 2019, 11, 1235 36 of 36

150. Pham, T.C.; Luong, C.M.; Visani, M.; Hoang, V.D. Deep CNN and data augmentation for skin lesion
classification: Intelligent information and database systems. In Intelligent Information and Database Systems;
Springer: Cham, Switzerland, 2018; pp. 573–582.

151. Zhang, X.; Wang, S.; Liu, J.; Tao, C. Towards improving diagnosis of skin diseases by combining deep neural
network and human knowledge. BMC Med. Inform. Decis. Mak. 2018, 18, 59. [CrossRef]

152. Vesal, S.; Ravikumar, N.; Maier, A. SkinNet: A deep learning framework for skin lesion segmentation. arXiv
2018, arXiv:1806.09522v1.

153. Haenssle, H.A.; Fink, C.; Schneiderbauer, R.; Toberer, F.; Buhl, T.; Blum, A.; Kalloo, A.; Hassen, A.B.H.;
Thomas, L.; Enk, A.; et al. Man against machine: Diagnostic performance of a deep learning convolutional
neural network for dermoscopic melanoma recognition in comparison to 58 dermatologists. Ann. Oncol.
2018, 29, 1836–1842. [CrossRef]

154. Wang, Y.; Sun, S.; Yu, J.; Yu, D. Skin lesion segmentation using atrous convolution via DeepLab v3. arXiv
2018, arXiv:1807.08891.

155. Maia, L.B.; Lima, A.; Pereira, R.M.P.; Junior, G.B.; de Almeida, J.D.S.; de Paiva, A.C. Evaluation of melanoma
diagnosis using deep deatures. In Proceedings of the 25th International Conference on Systems, Signals and
Image Processing (IWSSIP), Maribor, Slovenia, 20–22 June 2018; ISSN 2157-8702.

156. Vesal, S.; Patil, S.M.; Ravikumar, N.; Maier, A.K. A multi-task framework for skin lesion detection and
segmentation. arXiv 2018, arXiv:1808.01676.

157. Rezvantalab, A.; Safigholi, H.; Karimijeshni, S. Dermatologist level dermoscopy skin cancer classification
using different deep learning convolutional neural networks algorithms. arXiv 2018, arXiv:1810.10348.

158. Walker, B.N.; Rehg, J.M.; Kalra, A.; Winters, R.M.; Drews, P.; Dascalu, J.; David, E.O.; Dascalu, A.
Dermoscopy diagnosis of cancerous lesions utilizing dual deep learning algorithms via visual and audio
(sonification) outputs: Laboratory and prospective observational studies. EBio Med. 2019, 40, 176–183,
doi:10.1016/j.ebiom.2019.01.028. [CrossRef] [PubMed]

159. Horie, Y.; Yoshio, T.; Aoyama, K.; Yoshimizu, S.; Horiuchi, Y.; Ishiyama, A.; Hirasawa, T.; Tsuchida, T.;
Ozawa, T.; Ishihara, S.; et al. Diagnostic outcomes of esophageal cancer by artificial intelligence using
convolutional neural networks. Gastrointest. Endosc. 2019, 89, 25–32. [CrossRef] [PubMed]

160. GÃmez-MartÃn, I.; Moreno, S.; Duran, X.; Pujol, R.M.; Segura, S. Diagnostic accuracy of non-melanocytic
pink flat skin lesions on the legs: Dermoscopic and reflectance confocal microscopy evaluation. Acta
Dermato-Venereologica 2019, 99, 33–40. [CrossRef] [PubMed]

161. Pandey, P.; Saurabh, P.; Verma, B.; Tiwari, B. A multi-scale retinex with color restoration (MSR-CR) technique
for skin cancer detection. In Soft Computing for Problem Solving; Springer: Singapore, 2018; pp. 465–473.

162. Guo, Y.; Gao, Y.; Shen, D. Deformable MR prostate segmentation via deep feature learning and sparse patch
matching. IEEE Trans. Med. Imaging 2016, 35, 1077–1089. [CrossRef] [PubMed]

163. Milletari, F.; Navab, N.; Ahamdi, S.-A. V-net: Fully convolutional neural networks for volumetric medical
image segmentation. In Proceedings of the Fourth International Conference on 3D-Vision (3DV), Stanford,
CA, USA, 25–28 October 2016; pp. 565–571.

164. Yu, L.; Chen, H.; Dou, Q.; Qin, J.; Heng, P.A. Integrating online and offline three-dimensional deep learning
for automanted plopy detection in colonscopy videos. IEEE J. Biomed. Health Inform. 2017, 21, 65–75.
[CrossRef]

165. Tian, Z.; Liu, L.; Zhang, Z.; Fei, B. PSNet: Prostate segmentation on MRI based on a convolutional neural
network. J. Med. Imaging 2018, 5, 021208. [CrossRef]

166. Armato, S.G.; McLennan, G.; Bidaut, L.; McNitt-Gray, M.F.; Meyer, C.R.; Reeves, A.P.; Zhao, B.; Aberle, D.R.;
Henschke, C.I.; Hoffman, E.A. The lung image database consortium (LIDC) and image database resource
initiative(IDRI): A compelete reference database of lung nodules on CT scans. Med. Phys. 2011, 38, 915–931.
[CrossRef]

167. Sabbaghi, S.; Aldeen, M.; Garnavi, R. A deep bag-of-featrues model for the classification of melanomas in
dermoscopy images. In Proceedings of the IEEE 38th Annual International Conference of the Engineering in
Medicine and Biology Society (EMBC), Orlando, FL, USA, 16–20 August 2016; pp. 1369–1372.

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1186/s12911-018-0631-9
http://dx.doi.org/10.1093/annonc/mdy166
http://dx.doi.org/10.1016/j.ebiom.2019.01.028
http://www.ncbi.nlm.nih.gov/pubmed/30674442
http://dx.doi.org/10.1016/j.gie.2018.07.037
http://www.ncbi.nlm.nih.gov/pubmed/30120958
http://dx.doi.org/10.2340/00015555-3029
http://www.ncbi.nlm.nih.gov/pubmed/30176037
http://dx.doi.org/10.1109/TMI.2015.2508280
http://www.ncbi.nlm.nih.gov/pubmed/26685226
http://dx.doi.org/10.1109/JBHI.2016.2637004
http://dx.doi.org/10.1117/1.JMI.5.2.021208
http://dx.doi.org/10.1118/1.3528204
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Steps of Cancer Diagnosis
	Pre-Processing
	Image Segmentation
	Post-Processing
	ABCD-Rule
	Seven-Point Checklist Method
	Major Criteria
	Minor Criteria

	Menzies Method
	Pattern Analysis

	Artificial Neural Networks
	Convolutional Neural Networks
	Multi-Scale Convolutional Neural Network (M-CNN)
	Multi-Instance Learning Convolutional Neural Network (MIL-CNN)
	CNN Architectures

	Fully Convolutional Networks (FCNs)
	U-Net Fully Convolutional Neural Network
	Generative Adversarial Networks (GANs)

	Recurrent Neural Networks (RNNs)
	Long Short-Term Memory (LTSM)
	Restricted Boltzmann Machine (RBM)
	Autoencoders (AEs)
	Stacked Autoencoders 
	Sparse Autoencoders SAE
	Convolutional Autoencoders CAE
	Deep Belief Networks (DBN)
	Adaptive Fuzzy Inference Neural Network (AFINN) 

	Evaluation Metrics
	Receiver Operating Characteristic Curve (ROC-Curve)
	Area under the ROC Curve (AUC)
	F1-Score
	Accuracy
	Specificity
	Sensitivity
	Precision
	Jaccard Index
	Dice-Coefficient
	Average Accuracy

	Models and Algorithms
	Breast Cancer
	Lung Cancer
	Brain Cancer
	Skin Cancer
	Prostate Cancer

	Discussion
	Summary and Conclusions
	References

