28 research outputs found

    Two-Path All-pass Based Half-Band Infinite Impulse Response Decimation Filters and the Effects of Their Non-Linear Phase Response on ECG Signal Acquisition

    Get PDF
    This paper is based on the novel use of a very high fidelity decimation filter chain for Electrocardiogram (ECG) signal acquisition and data conversion. The multiplier-free and multi-stage structure of the proposed filters lower the power dissipation while minimizing the circuit area which are crucial design constraints to the wireless noninvasive wearable health monitoring products due to the scarce operational resources in their electronic implementation. The decimation ratio of the presented filter is 128, working in tandem with a 1-bit 3rd order Sigma Delta (ΣΔ) modulator which achieves 0.04 dB passband ripples and -74 dB stopband attenuation. The work reported here investigates the non-linear phase effects of the proposed decimation filters on the ECG signal by carrying out a comparative study after phase correction. It concludes that the enhanced phase linearity is not crucial for ECG acquisition and data conversion applications since the signal distortion of the acquired signal, due to phase non-linearity, is insignificant for both original and phase compensated filters. To the best of the authors’ knowledge, being free of signal distortion is essential as this might lead to misdiagnosis as stated in the state of the art. This article demonstrates that with their minimal power consumption and minimal signal distortion features, the proposed decimation filters can effectively be employed in biosignal data processing units

    The design and multiplier-less realization of software radio receivers with reduced system delay

    Get PDF
    This paper studies the design and multiplier-less realization of a new software radio receiver (SRR) with reduced system delay. It employs low-delay finite-impulse response (FIR) and digital allpass filters to effectively reduce the system delay of the multistage decimators in SRRs. The optimal least-square and minimax designs of these low-delay FIR and allpass-based filters are formulated as a semidefinite programming (SDP) problem, which allows zero magnitude constraint at ω = π to be incorporated readily as additional linear matrix inequalities (LMIs). By implementing the sampling rate converter (SRC) using a variable digital filter (VDF) immediately after the integer decimators, the needs for an expensive programmable FIR filter in the traditional SRR is avoided. A new method for the optimal minimax design of this VDF-based SRC using SDP is also proposed and compared with traditional weight least squares method. Other implementation issues including the multiplier-less and digital signal processor (DSP) realizations of the SRR and the generation of the clock signal in the SRC are also studied. Design results show that the system delay and implementation complexities (especially in terms of high-speed variable multipliers) of the proposed architecture are considerably reduced as compared with conventional approaches. © 2004 IEEE.published_or_final_versio

    Timing Signals and Radio Frequency Distribution Using Ethernet Networks for High Energy Physics Applications

    Get PDF
    Timing networks are used around the world in various applications from telecommunications systems to industrial processes, and from radio astronomy to high energy physics. Most timing networks are implemented using proprietary technologies at high operation and maintenance costs. This thesis presents a novel timing network capable of distributed timing with subnanosecond accuracy. The network, developed at CERN and codenamed “White- Rabbit”, uses a non-dedicated Ethernet link to distribute timing and data packets without infringing the sub-nanosecond timing accuracy required for high energy physics applications. The first part of this thesis proposes a new digital circuit capable of measuring time differences between two digital clock signals with sub-picosecond time resolution. The proposed digital circuit measures and compensates for the phase variations between the transmitted and received network clocks required to achieve the sub-nanosecond timing accuracy. Circuit design, implementation and performance verification are reported. The second part of this thesis investigates and proposes a new method to distribute radio frequency (RF) signals over Ethernet networks. The main goal of existing distributed RF schemes, such as Radio-Over-Fibre or Digitised Radio-Over-Fibre, is to increase the bandwidth capacity taking advantage of the higher performance of digital optical links. These schemes tend to employ dedicated and costly technologies, deemed unnecessary for applications with lower bandwidth requirements. This work proposes the distribution of RF signals over the “White-Rabbit” network, to convey phase and frequency information from a reference base node to a large numbers of remote nodes, thus achieving high performance and cost reduction of the timing network. Hence, this thesis reports the design and implementation of a new distributed RF system architecture; analysed and tested using a purpose-built simulation environment, with results used to optimise a new bespoke FPGA implementation. The performance is evaluated through phase-noise spectra, the Allan-Variance, and signalto- noise ratio measurements of the distributed signals

    Software-Defined Radio FPGA Cores: Building towards a Domain-Specific Language

    Get PDF
    This paper reports on the design and implementation of an open-source library of parameterizable and reusable Hardware Description Language (HDL) Intellectual Property (IP) cores designed for the development of Software-Defined Radio (SDR) applications that are deployed on FPGA-based reconfigurable computing platforms. The library comprises a set of cores that were chosen, together with their parameters and interfacing schemas, based on recommendations from industry and academic SDR experts. The operation of the SDR cores is first validated and then benchmarked against two other cores libraries of a similar type to show that our cores do not take much more logic elements than existing cores and that they support a comparable maximum clock speed. Finally, we propose our design for a Domain-Specific Language (DSL) and supporting tool-flow, which we are in the process of building using our SDR library and the Delite DSL framework. We intend to take this DSL and supporting framework further to provide a rapid prototyping system for SDR application development to programmers not experienced in HDL coding. We conclude with a summary of the main characteristics of our SDR library and reflect on how our DSL tool-flow could assist other developers working in SDR field

    RHINO software-defined radio processing blocks

    Get PDF
    This MSc project focuses on the design and implementation of a library of parameterizable, modular and reusable Digital IP blocks designed around use in Software-Defined Radio (SDR) applications and compatibility with the RHINO platform. The RHINO platform has commonalities with the better known ROACH platform, but it is a significantly cut-down and lowercost alternative which has similarities in the interfacing and FPGA/Processor interconnects of ROACH. The purpose of the library and design framework presented in this work aims to alleviate some of the commercial, high cost and static structure concerns about IP cores provided by FPGA manufactures and third-party IP vendors. It will also work around the lack of parameters and bus compatibility issues often encountered when using the freely available open resources. The RHINO hardware platform will be used for running practical applications and testing of the blocks. The HDL library that is being constructed is targeted towards both novice and experienced low-level HDL developers who can download and use it for free, and it will provide them experience of using IP Cores that support open bus interfaces in order to exploit SoC design without commercial, parameter and bus compatibility limitations. The provided modules will be of particularly benefit to the novice developers in providing ready-made examples of processing blocks, as well as parameterization settings for the interfacing blocks and associated RF receiver side configuration settings; all together these examples will help new developers establish effective ways to build their own SDR prototypes using RHINO

    Processamento eficiente de arranjos de microfones modulados em densidade de pulso

    Get PDF
    Orientador: Bruno Sanches MasieroDissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia Elétrica e de ComputaçãoResumo: Atualmente, os microfones digitais modulados por densidade de pulso (PDM) são amplamente utilizados em aplicações comerciais, já que esta é uma maneira eficiente de transmitir informação de áudio para processadores digitais em dispositivos móveis. No entanto, como o estado-da-arte em algoritmos de processamento digital de arranjos assume que todos os sinais recebidos dos microfones estão em uma representação em banda-base, estes microfones digitais requerem custosos filtros de decimação de alta ordem para converter o fluxo PDM para a modulação por código de pulso (PCM) em banda base. Assim, a implementação destes algoritmos em sistemas embarcados, onde os recursos de processamento são críticos, ou em circuitos integrados (VLSI), onde a energia consumida e área também são críticas, pode se tornar muito dispendiosa devido ao uso de dezenas de filtros de decimação para converter os sinais de PDM para PCM. Essa dissertação explora e propõe métodos eficientes em recursos para a implementação de arranjo de microfones. Com esse intuito, primeiro explora os atuais métodos de design de filtros de decimação e, baseado neles, propõe um algoritmo para fazer o seu design otimizando área e consumo de potência. Também são discutidas as vantagens e desvantagens de se realizar o processamento de arranjo de microfones diretamente nos sinais PDM ao invés dos sinais em PCM. Finalmente propõe um método eficiente para implementação de arranjos de microfones baseado em filtros maximamente planos (MAXFLAT). Como resultado, um novo método para o design de filtros de decimação que optimiza o número de somas por segundo é proposto, assim como demonstra-se que que um filtro espacial implementado no domínio PDM precisa de menos recursos que outras implementação no domínio do tempo. Conclui-se, portanto, que a implementação baseada em filtros MAXFLAT tem um melhor compromiso entre requisitos de armazenamento e poder de computação que o estado-da-arte e os métodos no domínio do PDMAbstract: Nowadays, pulse-density modulated (PDM) digital microphones are widely used on commercial applications as they have become a popular way to deliver audio to digital processors on mobile applications. However, as state-of-the-art array processing algorithms assume that all microphone signals are available in pulse-code modulated (PCM) representation, these digital microphones require costly high-order decimation filters to translate PDM bitstreams to baseband multi-bit PCM signals. In that manner, the implementation of microphone array algorithms in embedded systems, where processing resources are critical, or in very large-scale integration (VLSI) circuits, where power and area are critical, may become very expensive because of the use of the tens of decimation filters required to convert PDM bitstreams into PCM signals. This thesis explores and proposes resource-efficient methods to implement microphone array beamforming. For this purpose, it first reviews the state-of-the-art decimation filter design methods and proposes an algorithm to design decimation filters optimizing area and power consumption. Then it discusses the trade-offs of doing the beamforming calculations at the PDM bitstreams instead of PCM signals and proposes an architecture to implement beamformers without decimation filters. Finally it proposes an efficient approach to implement beamformers based on maximally flat (MAXFLAT) filters. As a result, a new generalized method to design decimation filters optimizing the number of addition per second is proposed, and it is shown that a beamformer implemented in PDM domain requires less resources for its implementation in time domain than other methods. It is concluded that the proposed MAXFLAT-based approach has better storage versus computation efficiency than state-of-the-art and PDM domain implementation approachesMestradoTelecomunicações e TelemáticaMestre em Engenharia Elétric

    Low Power Digital Filter Implementation in FPGA

    Get PDF
    Digital filters suitable for hearing aid application on low power perspective have been developed and implemented in FPGA in this dissertation. Hearing aids are primarily meant for improving hearing and speech comprehensions. Digital hearing aids score over their analog counterparts. This happens as digital hearing aids provide flexible gain besides facilitating feedback reduction and noise elimination. Recent advances in DSP and Microelectronics have led to the development of superior digital hearing aids. Many researchers have investigated several algorithms suitable for hearing aid application that demands low noise, feedback cancellation, echo cancellation, etc., however the toughest challenge is the implementation. Furthermore, the additional constraints are power and area. The device must consume as minimum power as possible to support extended battery life and should be as small as possible for increased portability. In this thesis we have made an attempt to investigate possible digital filter algorithms those are hardware configurable on low power view point. Suitability of decimation filter for hearing aid application is investigated. In this dissertation decimation filter is implemented using ‘Distributed Arithmetic’ approach.While designing this filter, it is observed that, comb-half band FIR-FIR filter design uses less hardware compared to the comb-FIR-FIR filter design. The power consumption is also less in case of comb-half band FIR-FIR filter design compared to the comb-FIR-FIR filter. This filter is implemented in Virtex-II pro board from Xilinx and the resource estimator from the system generator is used to estimate the resources. However ‘Distributed Arithmetic’ is highly serial in nature and its latency is high; power consumption found is not very low in this type of filter implementation. So we have proceeded for ‘Adaptive Hearing Aid’ using Booth-Wallace tree multiplier. This algorithm is also implemented in FPGA and power calculation of the whole system is done using Xilinx Xpower analyser. It is observed that power consumed by the hearing aid with Booth-Wallace tree multiplier is less than the hearing aid using Booth multiplier (about 25%). So we can conclude that the hearing aid using Booth-Wallace tree multiplier consumes less power comparatively. The above two approached are purely algorithmic approach. Next we proceed to combine circuit level VLSI design and with algorithmic approach for further possible reduction in power. A MAC based FDF-FIR filter (algorithm) that uses dual edge triggered latch (DET) (circuit) is used for hearing aid device. It is observed that DET based MAC FIR filter consumes less power than the traditional (single edge triggered, SET) one (about 41%). The proposed low power latch provides a power saving upto 65% in the FIR filter. This technique consumes less power compared to previous approaches that uses low power technique only at algorithmic abstraction level. The DET based MAC FIR filter is tested for real-time validation and it is observed that it works perfectly for various signals (speech, music, voice with music). The gain of the filter is tested and is found to be 27 dB (maximum) that matches with most of the hearing aid (manufacturer’s) specifications. Hence it can be concluded that FDF FIR digital filter in conjunction with low power latch is a strong candidate for hearing aid application

    The development of building block circuits for high-speed decimation filters

    Get PDF
    Master'sMASTER OF ENGINEERIN

    Design and analysis of short word length DSP systems for mobile communication

    Get PDF
    Recently, many general purpose DSP applications such as Least Mean Squares-Like single-bit adaptive filter algorithms have been developed using the Short Word Length (SWL) technique and have been shown to achieve similar performance as multi-bit systems. A key function in SWL systems is sigma delta modulation (ΣΔM) that operates at an over sampling ratio (OSR), in contrast to the Nyquist rate sampling typically used in conventional multi-bit systems. To date, the analysis of SWL (or single-bit) DSP systems has tended to be performed using high-level tools such as MATLAB, with little work reported relating to their hardware implementation, particularly in Field Programmable Gate Arrays (FPGAs). This thesis explores the hardware implementation of single-bit systems in FPGA using the design and implementation in VHDL of a single-bit ternary FIR-like filter as an illustrative example. The impact of varying OSR and bit-width of the SWL filter has been determined, and a comparison undertaken between the area-performance-power characteristics of the SWL FIR filter compared to its equivalent multi-bit filter. In these experiments, it was found that single-bit FIR-like filter consistently outperforms the multi-bit technique in terms of its area, performance and power except at the highest filter orders analysed in this work. At higher orders, the ΣΔ approach retains its power and performance advantages but exhibits slightly higher chip area. In the second stage of thesis, three encoding techniques called canonical signed digit (CSD), 2’s complement, and Redundant Binary Signed Digit (RBSD) were designed and investigated on the basis of area-performance in FPGA at varying OSR. Simulation results show that CSD encoding technique does not offer any significant improvement as compared to 2’s complement as in multi-bit domain. Whereas, RBSD occupies double the chip area than other two techniques and has poor performance. The stability of the single-bit FIR-like filter mainly depends upon IIR remodulator due to its recursive nature. Thus, we have investigated the stability IIR remodulator and propose a new model using linear analysis and root locus approach that takes into account the widely accepted second order sigma-delta modulator state variable upper bounds. Using proposed model we have found new feedback parameters limits that is a key parameter in single-bit IIR remodulator stability analysis. Further, an analysis of single-bit adaptive channel equalization in MATLAB has been performed, which is intended to support the design and development of efficient algorithm for single-bit channel equalization. A new mathematical model has been derived with all inputs, coefficients and outputs in single-bit domain. The model was simulated using narrowband signals in MATLAB and investigated on the basis of symbol error rate (SER), signal-to-noise ratio (SNR) and minimum mean squared error (MMSE). The results indicate that single-bit adaptive channel equalization is achievable with narrowband signals but that the harsh quantization noise has great impact in the convergence
    corecore