AW UNIVERSIDADE ESTADUAL DE CAMPINAS
a¥ FACULDADE DE ENGENHARIA ELETRICA E DE COMPUTAGAO

UNICAMP

SAMMY JOHNATAN CARBAJAL IPENZA

Efficient Pulse-Density Modulated
Microphone Array Processing

Processamento Eficiente de Arranjos de
Microfones Modulados em Densidade de
Pulso

Campinas
2020

SAMMY JOHNATAN CARBAJAL IPENZA

EFFICIENT PULSE-DENSITY MODULATED MICROPHONE ARRAY
PROCESSING

PROCESSAMENTO EFICIENTE DE ARRANJOS DE MICROFONES
MoODULADOS EM DENSIDADE DE PULSO

Orientador: Bruno Sanches Masiero

ESTE EXEMPLAR CORRESPONDE A VER-
SAO FINAL DA DISSERTACAO DEFENDIDA
PELO ALUNO SAMMY JOHNATAN CARBA-
JAL IPENZA, E ORIENTADA PELO PROF.
DR. BRUNO SANCHES MASIERO.

Dissertation presented to the School of
Electrical and Computer Engineering of
the University of Campinas in partial
fulfillment of the requirements for the
degree of Master in Electrical Engineer-
ing, in the area of Telecommunications
and Telematics.

Dissertacao apresentada a Facul-
dade de Engenharia Elétrica e de
Computagao da Universidade Estadual
de Campinas como parte dos requisitos
exigidos para a obtencao do titulo de
Mestre em Engenharia Elétrica, na Area
de Concentracao de Telecomunicagoes e
Telematica.

Campinas

2020

Ficha catalogréfica
Universidade Estadual de Campinas
Biblioteca da Area de Engenharia e Arquitetura
Rose Meire da Silva - CRB 8/5974

Carbajal Ipenza, Sammy Johnatan, 1989-
Cl77e Efficient pulse-density modulated microphone array processing / Sammy
Johnatan Carbajal Ipenza. — Campinas, SP : [s.n.], 2020.

Orientador: Bruno Sanches Masiero.
Dissertagéo (mestrado) — Universidade Estadual de Campinas, Faculdade
de Engenharia Elétrica e de Computacao.

1. Microfones. 2. Modulacéo de pulso (Eletrénica). 3. Impedéancia acustica.
4. Modulcao de duracao de pulso. I. Masiero, Bruno Sanches, 1981-. Il.
Universidade Estadual de Campinas. Faculdade de Engenharia Elétrica e de
Computacao. lll. Titulo.

Informacdes para Biblioteca Digital

Titulo em outro idioma: Processamento eficiente de arranjos de microfones modulados em
densidade de pulso

Palavras-chave em inglés:

Microphone

Pulse modulation (Electronics)

Acoustic impedance

Pulse-width modulation

Area de concentracgo: Telecomunicagdes e Telematica
Titulagcdo: Mestre em Engenharia Elétrica

Banca examinadora:

Bruno Sanches Masiero [Orientador]

Vitor Heloiz Nascimento

Renato da Rocha Lopez

Data de defesa: 30-11-2020

Programa de Pés-Graduacgado: Engenharia Elétrica

Identificagdo e informagdes académicas do(a) aluno(a)
- ORCID do autor: https://orcid.org/0000-0002-4150-9044
- Curriculo Lattes do autor: http://lattes.cnpq.br/9757083414604365

Comissao Julgadora — Dissertacao de Mestrado

Candidato: Sammy Johnatan Carbajal Ipenza RA: 159575
Data da defesa: 30 de Novembro de 2020
Titulo da Tese: “Efficient Pulse-Density Modulated Microphone Array Processing”

Prof. Dr. Bruno Sanches Masiero (Presidente, FEEC/UNICAMP)
Prof. Dr. Vitor Heloiz Nascimento (USP)
Prof. Dr. Renato da Rocha Lopes (FEEC/UNICAMP)

A ata de defesa, com as respectivas assinaturas dos membros da Comissao Julgadora,
encontra-se no SIGA (Sistema de Fluxo de Dissertagao/Tese) e na Secretaria de
Pé6s-Graduacgao da Faculdade de Engenharia Elétrica e de Computacao.

A mis padres, Juan y Celia; cuyos ejemplos
de amor, dedicacion y perseverancia,
como faroles, siempre guian mi camino.

Acknowledgments

First, I would like to thank to the Campinas State University and specially to
my supervisor Bruno Masiero, for believing in me during these two years, for his guidance,
support and, foremost, his patience during the development of this work. I am also grateful
to NXP Semiconductors, specially to my manager Mauricio Brochi, for giving me the
flexibility to setup my schedule according to my academics activities; and to Felipe Ponce
for his assistance in some laboratory testings.

Also, I want to thank foremost to my parents, Juan Carbajal and Celia Ipenza,
and to my brothers, Juan Carlos and Jorge, for the constant support, encouragement and
motivation along the different personal and professional projects of my life. Also I want to
thank to my uncle Wilder, who in my childhood help me to overcome my fear to maths
and settled the roots to me pursue this engineering path.

Finally, but not less important, I want to thank to my girlfriend Jaqueline Torres
for her love, support and patience; and to my little pet Ivar whom, unaware of it, was the
best companion during all my nights without sleep writing this thesis.

Abstract

Nowadays, pulse-density modulated (PDM) digital microphones are widely used
on commercial applications as they have become a popular way to deliver audio to
digital processors on mobile applications. However, as state-of-the-art array processing
algorithms assume that all microphone signals are available in pulse-code modulated
(PCM) representation, these digital microphones require costly high-order decimation
filters to translate PDM bitstreams to baseband multi-bit PCM signals. In that manner,
the implementation of microphone array algorithms in embedded systems, where processing
resources are critical, or in very large-scale integration (VLSI) circuits, where power and
area are critical, may become very expensive because of the use of the tens of decimation
filters required to convert PDM bitstreams into PCM signals. To overcome these limitations,
this dissertation explores and proposes resource-efficient methods to implement microphone
array beamformers using PDM microphones. In this sense, after to thorough review of the
state-of-the-art decimation filter design methods and the state-of-the-art beamforming
implementation methods, it proposes: an algorithm to design decimation filters with
minimum number of additions per second; efficient beamforming implementations that
work on the PDM domain; and a novel beamforming architecture that fuses both delay
and decimation operations based on maximally flat (MAXFLAT) filters. It shows that the
beamformers implemented on the PDM domain have a good resource-efficiency as requires
less additions per second and memory elements than other conventional methods. Finally,
it concludes that the proposed MAXFLAT-based approach has the best trade-off between
storage and computational efficiency in comparison to state-of-the-art and other proposed
PDM domain implementations.

Resumo

Atualmente, os microfones digitais modulados por densidade de pulso (PDM)
sao amplamente utilizados em aplicagoes comerciais, ja que esta é uma maneira eficiente
de transmitir informacao de dudio para processadores digitais em dispositivos moveis.
No entanto, como o estado-da-arte em algoritmos de processamento digital de arranjos
assume que todos os sinais recebidos dos microfones estdo em uma representagdo em
banda-base, estes microfones digitais requerem custosos filtros de decimagao de alta
ordem para converter o fluxo PDM para a modulagao por cédigo de pulso (PCM) em
banda-base. Assim, a implementacao destes algoritmos em sistemas embarcados, onde
os recursos de processamento sao criticos, ou em circuitos integrados (VLSI), onde a
energia consumida e area também sao criticas, pode se tornar muito dispendiosa devido
ao uso de dezenas de filtros de decimacao para converter os sinais de PDM para PCM.
Para superar essas limitagoes, essa dissertacao explora e propoe métodos eficientes em
recursos para a implementagao de arranjo de microfones usando microfones digitais PDM.
Com esse intuito, apos rever os atuais métodos de design de filtros de decimacao e os
atuais métodos de implementacao de arranjos de microfones, propoe-se: um algoritmo
para fazer o design de filtros de decimagdo com o minimo nimero de adi¢es por segundo,
implementagoes eficientes de arranjos de microfones que trabalham no dominio do PDM,
e um método eficiente para implementacao de arranjos de microfones baseado em filtros
maximamente planos (MAXFLAT). Demonstra-se que o filtro espacial implementado no
dominio do PDM ¢é mais eficiente em recursos porque precisa de menos adi¢oes por segundo
e elementos de memoria que as implementacoes convencionais. Finalmente, conclui-se
que a implementacgao baseada em filtros MAXFLAT tem um melhor compromisso entre
requisitos de armazenamento e poder de computagao que o estado-da-arte e os métodos
no dominio do PDM propostos.

List of Figures

1.1
1.2
1.3

2.1
2.2

2.3
2.4
2.5
2.6
2.7
2.8

2.9

3.1
3.2
3.3

3.4

3.5
3.6
3.7
3.8

3.9
3.10
3.11

PDM-mic array DAS beamformer
PDM-mic array DAS beamformer at PDM domain
PDM-mic array DAS beamformer using delayed decimation filters

MEMS microphone block diagram
(a) ¥A modulator and decimator block diagram. (b) ¥A modulator linear

model.o
28d_order YAM (a) input, (b) output and (c) frequency spectrum
Quantization noise probability density function
Single-stage decimation filter o000
LPF design parameters
(a) Direct form and (b) efficient direct form implementations.
(a) Polyphase decimator, (b) polyphase decimator with input commuter

and (c¢) memory-saving polyphase decimator (R =3)
16-points FFT implementation example with butterfly structure.

Dy, for 65 in —100dB to —40dB range.
N for Afin1x107*to 1 x 10~" range and 6, = —80dB..
Lth-band filter (a) normalized frequency spectrum and (b) impulse response
(L=2). .
K-order CIC filter structure, a cascade of K integrators and K differentiators
are required.
CIC filter frequency spectrum (R=8).
Compensation filter proposed by [1].
CIC compensation using method [1] (¢=05,R=16)..
CIC’s passband ripple (d,) versus decimation factor (R) and CIC filter order
(K). (a) Proposed method, whose coefficients are listed in Table 3.2, keeps
the passband ripple 9, > 0.1dB only for values of decimation factor R > 5
and the normalized passband frequency in a CIC compensator in ¢ < 1/4
range. (b) Method [1] keeps 6, > 0.1dB in the ¢ < 1/2 range and R > 10.
(¢) Method [2] keeps 6, > 0.1dB in the ¢ < 1/8 range and R > 2. (d)
Method [3], keeps §, > 0.4dBinc<1/2rangeand R>9.
Multi-stage decimation filter
jth-stage filter prototype
K for various values of R;, assumming a CIC filter located at the first
stage of a multirate filter with specifications as listed in Table 1.1 but &;
VATYINE. .« o v v v v e e e e e e e e e

3.12

3.13

3.14

4.2
4.3
4.4
4.5
4.6

4.7
4.8
4.9

4.11

4.12
4.13
4.14

5.1

5.2

2.3

5.4

2.5

5.6
5.7

Magnitude (a) and phase (b) frequency spectrum of optimum multi-stage

decimation filter found by the optimization algorithm. (c) Passband ripple

frequency spectrum. 67
Magnitude frequency spectrum of the internal stages of the optimum multi-

stage decimation filter found by the optimization algorithm. 68
PDM-mic array processing system 68
Discrete-time interpolation beamformer. 73
Interpolation filter in polyphase filter structure. 74
Efficient discrete-time interpolation beamformer. 75
Discrete-time postdecimation interpolation beamformer. 75

Normalized power (polar) of a uniform linear array of 40 microphones
(M = 40) and specifications as listed in Table 1.1 and Table 1.2. Three
audio sources of 1kHz, 3kHz and 5kHz are located at 20, 60 and 110

degrees respectively, the three ones with equal strength. 76
One-dimensional FFT beamformer implementation method. 79
Two-dimensional FFT beamformer implementation method. 81

Normalized power (polar) of a uniform linear array of 40 microphones
(M = 40) and specifications as listed in Table 1.1 and Table 1.2. Three
audio sources of 1kHz, 3kHz and 5kHz are located at 20, 60 and 110
degrees respectively, the three ones with equal strength. 82
Discrete-time bitstream beamformer method. Normalized power (polar)
of a uniform linear array of 40 microphones (M = 40) and specifications
as listed in Table 1.1 and Table 1.2. Three audio sources of 1kHz, 3kHz
and 5kHz are located at 20, 60 and 110 degrees respectively, the three ones

with equal strength. oo 86
One-dimensional bitstream FFT beamformer implementation method. . . . 87
Two-dimensional bitstream FFT beamformer implementation method. . . . 88
Normalized power (polar) of a uniform linear array of 40 microphones

(M = 40) and specifications as listed in Table 1.1 and Table 1.2. Three
audio sources of 1kHz, 3kHz and 5kHz are located at 20, 60 and 110

degrees respectively, the three ones with equal strength. 89
Linear-phase Samadi’filter magnitude (a), phase (b) and group delay (c)
normalized frequency spectrums for N =9 and N =12 (d=0). 96
Samadi filter magnitude (a), phase (b) and group delay (c¢) normalized
frequency spectrums for N =10 and d € {—5,...,5} 97

Minimum N and K values for linear-phase Samadi filter (d = 0), decimation
factor R = 2, passband frequency w, = 27/R — w, and passband ripple
d, = 0.1dB. (a) In function of J, w, = 0.21 constant. (b) In function of

Wy, 0 = —80dB constant. 100
Minimum N (a) and K (b) values depending on d and required w, for R = 2
and 0, = —80dB. 101
Samadi’s decimation filter binomial representation Type I (a) and Type II
(D). o o e e 103

Samadi’s decimation filter cellular structure example for N =5 and K = 1. 104
(a) Delayed decimation filter, (b) its version as a multi-stage decimation
filter with J — 1 stage being a Samadi filter, (c) and its version with Samadi
filter decomposed in its binomial components. L. 106

5.8 dym for a 3-stages delayed decimation filter with structure ['lthband’, 'maxflat’,
‘equir’], decimation rates [48, 2, 2] and filter requirements specified in Ta-
ble 1.1 but £}, variable; The N and K values correspond to the respective
dim values. ..o

5.10 PDM-mic array DAS beamformer using delayed decimation filters

5.11 Delayed decimation filter for a PDM-mic

5.12 (a) Magnitude frequency spectrum of internal stages of the delayed decima-
tion filter in the whole input range, and (b) the same frequency spectrum
in the 0kHz to 50kHz range. L.

5.13 Magnitude (a) and phase (b) frequency spectrum of the delayed decimation
filter. (c) Passband ripple frequency spectrum.

5.14 Delayed decimation filter group delay.

List of Tables

1.1
1.2

3.1
3.2

3.3

3.4
3.5

3.6

4.1
4.2
4.3
4.4
4.5
4.6

4.7

4.8

0.1

Decimation filter specifications L. 28
Microphone array specifications L. 29
Single-stage decimation filter resource requirement comparison. 50

CIC compensation filter’s coefficients and number of adders. The listed
methods are complementary to each other as the number of adders in-
creases consistently with the passband ripple (9,), the normalized passband
frequency in a CIC compensator (¢) and the CIC filter order (K). So,
any of them should be chosen properly depending on the particular filter
requirements. It is also easy to see that the proposal, [1] and [2] methods
have the same §, range but different passband range; and the methods [1, 3]
have the same passband range but different d,, the latter one requiring more

adders. . . . L 55
Single-stage decimation filter resource requirements implemented as a CIC

filter, without compensation (K=21, B1=0, B2=0). 55
Multi-stage decimation filters found by the optimization algorithm. 65
Comparison of multi-stage decimation filters found by the optimization

algorithm. L 66
Comparison of required resources to implement a PAPS using 40 multi-stage

decimation filters found by the optimization algorithm in parallel. 69
Time domain implementation resources of beamformers at PCM domain . 77
Frequency domain implementation resources of beamformers at PCM domain 83
Time domain implementation resources of beamformer at PDM domain . 86
Frequency domain implementation resources of beamformers at PDM domain 88
Beamformer implementation resources summary 90

Beamformer implementation resources comparison. It is a assumed that
the decimation filter multi 0 is used in all beamformers, interpolation rate
[=10, interpolation filter length N; = 30, FF'T number of points Dg = 64
and N =M =40. e 91
Comparison of required resources to implement a discrete-time beamformer
using decimation filters listed in Tables 3.4 and 3.1 and beamformer specifi-
cations as Table 1.2 (40 microphones). 92
Comparison of required resources to implement a discrete-time bitstream
beamformer using decimation filters listed in Tables 3.4 and 3.1 and beam-
former specifications as Table 1.2 (40 microphones). 92

Comparison of the proposed delayed decimation filter and the multi-stage
decimation filters found in Chapter 3 by optimization algorithm. 112

5.2

2.3

5.4

6.1

Delayed decimation filter resource requirements breakdown. First row
corresponds to the Lth-band filter stage, the second and third ones are to
the By k a(z) and A, (z) parts of the Samadi filter respectively, and the last
one to the equiripple filter. L
Required resources to implement a beamformer using 40 shared delayed
decimation filters. e
Comparison of the proposed beamformer based on delayed decimation filter
and PDM and PCM domain beamformers discussed in Chapter 4.

Comparison of required resources to implement a 40 PDM-mic DAS beam-
former with specifications listed in Table 1.1 and 1.2.

115

14

Symbols

By k.4(z) Samadi filter binomial component.

B,, bandwidth.

¢ sound speed.

¢ normalized passband frequency in a CIC compensator.

N(J;FC number of adders for CIC compensator.

Af transition bandwidth.

Af; jth-stage transition bandwidth.

Af normalized transition bandwidth.

A fJ jth-stage normalized transition bandwidth.
Dy minimum distance between microphones.
5;{ jth-stage passband ripple.

diim physical limit of the d parameter.

A,, delay from the array center to the mth microphone.

dmax maximum allowed delay parameter.
Anax maximum required delay.

A filter delay.

0, passband ripple.

05 stopband ripple.

d Samadi filter delay parameter.

87 jth-stage stopband ripple.

N;®¥ optimal jth-stage minimum required filter length.

p; jth-stage significance coefficient rate.

fepu estimated minimum frequency in a processor.

fi input sampling rate.

f; jth-stage output sampling rate.

fj—1 j — 1th-stage output sampling rate.
jth-stage normalized frequency.

fo output sampling rate.

F,, passband frequency.

Fg jth-stage passband frequency.

F stopband frequency.

FJ jth-stage stopband frequency.

a group delay.

i
H j(ezm fi-1) jth-stage low-pass filter impulse response.

H)(z) sigma-delta modulator feedback impulse response.

H (e%ifii) overall low-pass filter impulse response.
Hy k.4(z) Samadi filter impulse response.

H(e’*) low-pass filter impulse response.

H(z) low-pass filter impulse response.

z
dec

K CIC filter order.

decimation filter’s storage requirement.

Sgpr FFT’s storage requirement.

S, storage requirements.

S H jth-stage storage requirement.

S5 Jth-stage storage requirement.

K; jth-stage CIC filter order.

Sge beamformer’s storage requirement.

K number of zeros at z = —1 in a Samadi filter.

Lace filter accumulator length.
Ltrame frame length (for frequency domain implementations).

L;, filter input length.

L; jth-stage required filter output length.
L;_1 j — 1th-stage required filter output.
Lout filter output length.

(5jband jth-stage design stopband and passband ripples.
N; optimal jth-stage minimum required filter length.

p; jth-stage significance coefficient rate.
M number of microphones.

N minimum required FIR filter length.

Ny interpolation filter length.

N; jth-stage minimum required FIR filter length.

Ny number of nonzero coefficients in the filter impulse response.
N Samadi filter order.

v roll-off factor.

R decimation factor.

S+

dec decimation filter’s number of additions per second.

Sgpr FFT’s number of additions per second.

Tapaa estimated number of adders in an FPGA running at 64 MHz.
S, number of additions per second.

S;-r jth-stage number of additions per second.

St Jth-stage number of additions per second.

Tl;: estimated number of adders in a VLSI circuit running at 10 MHz.
Site beamformer’s number of additions per second.

p significance coefficient rate.

R; jth-stage decimation factor.

*

Jec decimation filter’s number of multiplications per second.

ppr FET’s number of multiplications per second.
S, number of multiplications per second.

S5 jth-stage number of multiplications per second.

S5 Jth-stage number of multiplications per second.

* . beamformer’s number of multiplications per second.
bf

o

Yec decimation filter’s total number of additions per second.

S, total number of additions per second.
S¢ jth-stage total number of additions per second.
S9 Jth-stage total number of additions per second.

Spe beamformer’s total number of additions per second.

stngle__direct single-stage direct form implementation.

single__eff single-stage efficient direct form implementation.
single__memsav single-stage memory-saving polyphase implementation.
U, passband frequency range.

UJ jth-stage passband frequency range.

U stopband frequency range.

UJ jth-stage stopband frequency range.

V, passband angular frequency range.
ij jth-stage passband angular frequency range.
Vs stopband angular frequency range.

V7 jth-stage stopband angular frequency range.

w. cutoff frequency.

w,, mth-filter channel gain.

w, angular passband frequency.

w}; jth-stage angular passband frequency.
ws angular stopband frequency.

w! jth-stage angular stop frequency.

yj[n] jth-stage filter output.

18

Acronyms

YA sigma-delta.
YAM YA modulator.

ADC analog-to-digital converter.

APS additions per second.

CIC Cascade Integrator-Comb.

CSD canonical signed digit.

DAS delay-and-sum.
DFT Discrete Fourier transform.
DoA direction of arrival.

DR dynamic range.

FFT Fast Fourier transform.
FIR Finite Impulse Response.
FPGA Field Programmable Gate Array.

IFFT Inverse Fast Fourier transform.
ITR Infinite Impulse Response.
IoT internet of things.

IVA intelligent virtual assistants.
LPF low-pass filter.

MAXFLAT maximally flat.

MEMS micro-electro-mechanical system.

MPS multiplications per second.

OSR oversampling rate.

PAPS PDM-mic array processing system.
PCM pulse-code modulated.

PDM pulse-density modulated.
PDM-mic PDM microphone.

PSO particle swarm optimization.
SNR signal-to-noise ratio.

THD total harmonic distortion.

THD+N total harmonic distortion plus noise.

VLSI very large-scale integration.

Contents

Symbols
Acronyms

1 Introduction

1.1 Problem Statemento
1.2 Objectives

1.2.1 Objective 1

1.2.2 Objective 2 L

1.2.3 Objective 3
1.3 Contributions
1.4 Metrics L
1.5 Assumptions
1.6 Notation
1.7 Document organization L oo

2 Digital Microphone Technology

2.1 Pulse-density modulated (PDM) microphones
2.2 Sigma-delta (XA) modulators Lo
2.3 Decimation filters oL
2.3.1 Direct form Finite Impulse Response (FIR) implementation
2.3.2 Polyphase FIR implementation
2.4 Fast Fourier transform (FFT) implementation

3 Efficient multirate filter design

3.1 Equiripple (optimal) FIR filters
3.1.1 Lth-band equiripple filters
3.1.2 FIR filter required resources

3.2 Cascade Integrator-Comb (CIC) filters
3.2.1 CIC compensation
3.22 CICfilterdesign L
3.2.3 CIC filter required resources

3.3 Multi-stage filter design oL
3.3.1 Passband and stopband frequency ranges
3.3.2 Passband and stopband ripples
3.3.3 Multirate filter stageso L L

3.4 Proposal: Multirate filter design method based on S§,. optimization
3.5 Results.

21

4 Beamforming at pulse-code modulated (PCM) and PDM domain
4.1 State-of-the-art: Beamforming at PCM domain

4.1.1
4.1.2

Time domain implementations
Frequency domain implementations

4.2 Proposal: Beamforming at PDM domain

4.2.1
4.2.2

Time domain implementations
Frequency domain implementations

4.3 SUMMATY o o v et e

4.4 Results

5 Efficient Beamforming
5.1 Universal maximally flat Samadi filter

5.1.1
5.1.2
5.1.3

Samadi’s filters
Proposal: Samadi filter as multirate filter
Samadi’s decimation filter implementation

5.2 Proposal: Delayed Decimation Filter

5.2.1
5.2.2
5.2.3

Design considerations
Physical limit of the d parameter
Implementation resources Lo

5.3 Proposal: Beamformer based on delayed decimation Filter

5.4 Results

6 Conclusion

70
70
71
7
84
84
86
90
91

94
94
95
98
98
105
106
107
107
109
110

116

22

Chapter 1

Introduction

1.1 Problem Statement

In the last decades, sensor array processing emerged as an active area of research
in the estimation of space-time parameters. Array processing applications are applied to
resolve many real-world problems. In telecommunications, antenna arrays are steered to
one user direction to reduce interference between users. Radar and sonar use antennas and
hydrophones arrays respectively to calculate parameters like direction of arrival (DoA),
velocity and range. In medicine, sensor arrays are used for medical imaging, and planar
biomagnetic sensor arrays are used in electrocardiograms to localize brain activity. In
industry, sensor arrays are used in automatic monitoring and fault detection [4].

Recently, microphone array processing has emerged to resolve problems concerning
internet of things (IoT) applications and hands-free communications, as this kind of
communication becomes a standard option in many consumer devices like mobile phones,
speakerphones and smart speakers, which are broadly used in conference rooms, desktop
devices, and intelligent virtual assistants (IVA) in both consumer and industrial devices.

However, due to the complex characteristics of speech signals (non-static source,
intermittent and broadband) and the usual environmental conditions (reverberation, and
non-stationary additive noise); microphone array implementation is still costly and requires
many microphones. For instance, consider a microphone that has a given signal-to-noise
ratio (SNR) value at 2cm from the talker; to attain the same SNR at 10cm from the
talker will require an array of 5 microphones. In the same way, if the required distance
increases to 1 m or 2m, the array will require 50 or 100 microphones respectively to attain
the same SNR [5]. This large number of microphones increases the aperture size that is
already constrained to: 1cm diameter for hearing aids, 5 cm for automotive and 10 cm for
consumer desktop devices [6]. In addition, each extra microphone in the design would

require new routing, new placement conditions and more processing resources, which will

23

increase the system cost and power consumption, a critical factor for IoT and mobile
applications.

Digital micro-electro-mechanical system (MEMS) microphones introduced in
2006 [7] have emerged as an alternative to overcome the array aperture size and cost
limitations. As these microphones have an analog-to-digital converter (ADC) incorporated
as pre-amplifier, they have a single line pulse-density modulated (PDM) output; because
of that they are also known as PDM microphones (PDM-mics). A decimation filter (also
known as PDM-to-PCM converter) demodulates this PDM bitstream output to a pulse-
code modulated (PCM) signal. Unfortunately, the implementation of this decimation filter
is still not cheap, as its cost (measured in die area and power) increases with the quality
of the desired audio signal. Take for example the case of a microphone array using these
PDM-mics like the delay-and-sum (DAS) beamformer in Figure 1.1. This architecture
requires a decimation filter for each microphone input, so that the implementation cost
and power consumption will increase proportionally with the number of microphones,

being even more expensive for practical applications.

\
r— - - - - - = - A ‘
Zoln ‘ 0 k
mic o C) i | H(z) [IR H wolt] 1 220 fo
| ——=—— —= | !
z1|n P — 1 1k !
mic 1 C) o H(z) | |R v k] : S
| |
Lo, !
z2n \ L lk
mic 2 C) il | H(z) [|R 2lH] 1 B2t
! !
L e e - - - = = = Jd ‘
r—— - - - - - = A ‘
!
ZTom [1] L ym K]
MIC m G f H(z) > lR } Y : Z*Am,'fo
! \
P J ‘
r— - - - - - = - il ‘
TM—1|1 ! Vyar—1[k] !
MIC M-1 ()‘l " ‘ H(z) [[rR [pu-1 i : = Am—1fo
\ \
P J ‘
!

DAS BEAMFORMER

Figure 1.1: PDM-mic array DAS beamformer

1.2 Objectives

As one of the main limitations of the use of PDM-mic arrays and beamformers
with many microphones is still the implementation costs, the main objective of this thesis

is:

24

“Given a decimation filter specification, find resource-efficient

beamformer implementation architectures using PDM-mics.”

To achieve its main objective, this thesis also formulates three secondary objectives.
These objectives are different approaches that try to attain the main objective, each with
its advantages and disadvantages to be used in different designs and implementation

constraints, all based on previous experiences and related works in filter processing.

1.2.1 Objective 1

“Given a decimation filter specification, find an algorithm to

determine the most efficient decimation filter architecture.”

The decimation filter or PCM-to-PDM converter is the basis of any PDM-mic
interface. Many architectures are used in state-of-the-art implementations, most of them
based on Cascade Integrator-Comb (CIC) filters, as they do not require multipliers on their
implementation. However, to the best of the author’s knowledge, there is not any study or
algorithm that allows one to determine the most efficient decimation filter architecture
given a desired filter specification.

In this way, this work proposes an algorithm to design an efficient decimation
filter with minimal resources. The results of this algorithm are meant to be used in any
application concerning PDM, not only with PDM-mics. Nevertheless, as the focus of this
thesis is to apply the algorithm results in beamforming implementations, the algorithm is
analyzed by comparing the implementation costs of PCM domain (Figure 1.1) and PDM

domain beamformers (Figure 1.2).

1.2.2 Objective 2

“Given a decimation filter and a beamformer specification, find an
efficient beamforming implementation that works on the PDM

domain.”

A new beamformer architecture, shown in Figure 1.2, is proposed and we show
that it is possible to perform beamforming on the PDM domain i.e., before the PDM-
to-PCM converter. We also show that a frequency domain implementation does not
provide any gain in resource usage because of the large memory and logic requirements to
implement the Fast Fourier transform (FFT) blocks.

While the same referred work [8] focuses its analysis in frequency domain im-
plementations only, the present work analyzes also time domain implementations, and it

shows that time domain implementations are resource-efficient.

25

! !
\ wo \
zo[n] | \
mic o C) ‘ 2o fi |
! !
| w1 |
z1[n]
! N !
mic 1 C) ‘ AT ‘
‘ ‘ r—— - - - - - = A
xo[n] | I 2 [n]! I z[k]
mic 2 () ; PRCRE i —~ H(z) | |R o
! ! ! !
| | L — — — - = = = = J
| | DECIMATION FILTER
\ \
Tm[n] | |
MIC m G ‘ Z*Anz'fi |
! !
! !
! !
zyv-1[n]! !
mic M-1 C) ; A1 :
! !
! !

DAS BEAMFORMER

Figure 1.2: PDM-mic array DAS beamformer at PDM domain

1.2.3 Objective 3

“Given a decimation filter and a beamformer specification, find an

architecture that fuses both delay and decimation operations.”

As shown in Figure 1.1, a beamformer with PDM-mics is the conjunction of two
fundamental operations: delay and decimation. Both operations are frequently performed
separately in state-of-the-art methods, i.e., without any resource sharing between them,
which results in suboptimal architectures in most of the cases. One architecture that fuses
delay and filtering operations using a maximally flat (MAXFLAT) filter architecture was
proposed by [9], and will be referred here as Samadi filter.

This thesis proposes: (1) a new decimation filter with embedded delay, dubbed
delayed decimation filter, which is based on Samadi’s filter; and (2) a beamformer architec-
ture based on the delayed decimation filter as shown in Figure 1.3. Finally, we show that

the proposed architecture is resource-efficient.

26

mic o C)

mic 1 C)

mic 2 C)

mic m C)

mic m-1 ()

Figure 1.3: PDM-mic array DAS beamformer using delayed decimation filters

1.3 Contributions

The main contributions of this dissertation are the following:

1. It proposes a universal multi-stage filter design method optimized for the decimation
filter’s total number of additions per second (S9..). This method also includes the

following specific contributions:

(a) A new method to compensate CIC filters for angular passband frequency
wp < 75
(b) A generalized method to design CIC filters.

2. It analyzes the resources required to implement DAS beamformers at PCM and
PDM domains.

3. It proposes an efficient DAS beamformer architecture based on delayed decimation

filters. This proposal also includes the following contribution:

(a) Review of Samadi’s filters and proposal of a method to design decimation filters

based on it.

1.4 Metrics

In order to measure the efficiency of the proposed algorithms, methods and

structures of this work, we need to establish some adequate metrics to compare them

27

quantitatively to the state of the art methods. As this work is focused in reducing the
implementation costs, or in other words, in reducing the resource requirements, the usage
of these requirements can be quantified by the number of multiplications per second (S,),
the number of additions per second (S) and the storage requirements (.S,); measured
in multiplications per second (MPS), additions per second (APS) and number of bits
respectively.

Also, assume that a multiplier has two operands opl and op2 of L-bits width, such

that op2 = by, _1br_5...b1bg, where b; is the ith bit in a twos-complement representation.
A multiplication operation can be expanded in a series of additions and binary shifts as

follows
mult = opl X op2,

= 0p1 X bL_lbL_g R b1b(),
=opl x (bp_12871 4+ bp 92572 4 - 4 5128 4 52,
= oplby 12571 + oplby 92572 .o 4 oplby 2t + oplby2°.

(1.1)

As opl x b; x 2 will not require much computation because b; is a binary value and 2°
is a simple shift operation, we could say for practical purposes that this multiplication
operation is equivalent to L — 1 additions, i.e. IMPS ~ (L — 1)APS.

Based on this result we could define the total number of additions per second S,

as
S, = (L —1)S, + 84 (1.2)

to measure computation rate effect of both multiplications and additions, rather than
measure them separately with S, and S, .

Depending on the application, the available resources and the filter parameters,
the design could be implemented to reduce the computation rate (S., Sy or S,), the
storage requirements (.S,) or both. For example, in an embedded system with a dedicated
processor, the designer should prefer to reduce the computation rate than to reduce the
storage space, but in very large-scale integration (VLSI) circuit the computation rate and

storage reduction will be both critical. Because of that, it is also quantified:

« the estimated minimum frequency in a processor (fcp,), assuming a single-core

processor that executes an addition instruction in a clock cycle;
o the estimated number of adders in an FPGA running at 64 MHz (THpqa);
« the estimated number of adders in a VLSI circuit running at 10 MHz (7).

Those metrics will help the reader to have an idea of the required resources to

implement the discussed and proposed methods in different platforms.

28

1.5 Assumptions

Filter specifications and array geometries will change depending on the beam-
former application. Therefore, in order to compare the efficiency between the proposed
and the state-of-the-art beamforming methods we make the following assumptions for the

remainder of this thesis.

Decimation filter specification

The decimation filter specification shown in Table 1.1 is the base of all our
decimation filter designs as it is considered enough for the most PDM-mic types and

speech processing applications.

Parameter Value
input sampling rate (f;) 3072.0kHz
output sampling rate (f,) 16.0kHz
passband frequency (F}) 7.5kHz
stopband frequency (Fj) 8.0kHz
passband ripple (9,) < 0.0116 (< 0.1dB)
stopband ripple (d;) < 0.0001 (< —80.0dB)
decimation factor (R) 192
filter input length (Lj,) 1
filter output length (Lgys) 24
phase response linear or almost linear

Table 1.1: Decimation filter specifications

Beamformer specification

As the delay from the array center to the mth microphone (4A,,) in a symmetric
array is constrained to

’Am’ S |jmax - j:c’
C

form=0,1,....,. M —1, (1.3)
where T,y is the furthest sensor location, z. is the array center reference, M is the number
of microphones and c¢ is the sound speed (typically 343.0m/s); the maximum required
delay (Amax) can be defined as

o |jmax - j'c|

Amaux - -

Cc

such that
Ay < Apax form=0,1,...,M —1. (1.4)

29

Assume that we require a microphone array for hands-free applications that when
placed 80 cm from the voice source would attain the same SNR than the SNR obtained
by a single microphone placed to 2 cm from the same source, then, as the array gain (in
dB) in an isotropic noise field is given by 20log M [5], the desired microphone array will
require 40 microphones.

Also, as the minimum distance between microphones should be D,;, < ﬁ to
avoid spatial aliasing; if the frequency range is limited to £}, = 7.5kHz, then the desired
microphone array will require D,;, < 2cm.

Finally, as M = 40, if a 5 x 8 microphone array is assumed, then the A, can

be calculated using (1.3) with resulting value shown in Table 1.2.

Parameter Value
number of microphones (M) 40 (5 x 8)
minimum distance between microphones (Dpyiy) 22.0 mm
array dimensions 110.0 mm x 176.0 mm
maximum required delay (Apax) 314.47 ns
mth-filter channel gain (w,,) 1
frame length (for frequency domain implementations) (Lame) 4.0ms

Table 1.2: Microphone array specifications

1.6 Notation

In the remainder of the thesis the following notation will be used with block diagrams:

An arrow without any text in between the extremities is a simple connection.

e An arrow with a number or variable in the middle, like hg, represents a multiplication
by that value.

ho

e An arrow with z7! in the middle represents a delay element.

z71
*—>r—20

A node with two or more incoming arrows represents an adder (Z=A+B).

» A node with two or more outgoing arrows represents a distributor(X=A,Y=A).

30

28

A Y

X

1.7 Document organization

Chapter 2 presents a review about MEMS microphone technology, sigma-delta
modulators and decimation filters.

Chapter 3 reviews the state of the art in efficient filter design and proposes a new
algorithm to design efficient decimation filters with focus to application in PDM-mic array
processing system (PAPS).

Chapter 4 reviews the conventional beamforming methods in discrete-time and
frequency domains and proposes new approaches to do beamforming before decimation,
i.e. on the PDM domain.

Chapter 5 reviews state of the art Samadi’s filters and proposes new efficient
beamformer implementation method based on it.

Chapter 6 summarizes the results and contributions and presents possible future

work.

31

Chapter 2

Digital Microphone Technology

2.1 PDM microphones

According to [10], MEMS microphones, also known as PDM-mics, are currently
the leading technology in the microphone market when it comes to number of sold units.

MEMS microphones can be realized exploiting different transduction principles
such as piezoresistive, capacitive or optical detection. However, 80% of the produced
MEMS microphones use the capacitive transduction principle, as this provides better
sensitivity and low power consumption.

A capacitive MEMS microphone translates a variation in the sound pressure
level to a variation of capacitance. As the capacitor is previously charged by a charge
pump, the variation of capacitance causes a proportional variation in voltage level. This
voltage variation is passed by a pre-amplifier to then be converted to digital signal by
an ADC. A ¥A modulator (XAM) is the preferred solution to implement the ADC in
MEMS microphones because of its inherent linearity and low-power consumption [10].
The digital output from the XAM associated with the MEMS microphone will be a PDM
bitstream. It is expected that this PDM bitstream will be converted to a PCM signal
using a decimation filter before further processing, as show in Figure 2.1.

The PDM bitstream is typically delivered at a sampling rate in the range of
1 MHz to 3 MHz, while the audio or baseband signal is supposed to be in the range of
20 Hz to 20 kHz. The ¥AM order depends on the PDM-mic vendor, and they are generally
second or higher order X AM.

32

E
(

PREAMPLIFIER
PS>> - 4 DECIMATION

- v FILTER
1

1

1 | CHARGE

1 PUMP

1

PDM MICROPHONE
Figure 2.1: MEMS microphone block diagram

2.2 Sigma-delta (X>A) modulators

Y. AM were first introduced in 1962 [11], but they only gained importance in the
last decades, with the development of VLSI technologies; as these converters are based 90%
on digital circuitry that can be integrated in the same die with other digital logic. This
advantage alongside the use of digital techniques for audio processing and communications
has contributed to the interest on this kind of cost effective high precision A/D converters.

The name Sigma-Delta modulator comes from putting an integrator (Sigma)
alongside a comparator (Delta) in the analog-to-digital conversion circuit [11]. The
integrator, as shown in the following paragraphs, shapes the quantization error to higher
frequencies in the feedback system formed by the comparator.

In audio applications, the YAM typically works at a sampling rate (f;) of the
order of a few megahertz while audio bandwidth is in the order of B,=20kHz, which

results in a fairly large oversampling rate (OSR), where

fi
B,

OSR = (2.1)

As shown in Figure 2.2a, in a ¥AM, the analog signal s(t) is first sampled at a
rate f; by a sample and hold circuit. The discrete signal s[n| is then filtered and quantized
to B bits by a feedback circuit. The feedback circuit shapes the quantization noise at
higher frequencies while reducing noise in the baseband [12] as shown in Figure 2.3 for a
3 kHz tone applied to a 2"d-order SAM.

If it is assumed that the quantization error e[n] is a wide-sense stationary signal,
uncorrelated to s[n], and it has a uniform distribution; then the B-bits nonlinear quantizer
@p in Figure 2.2a could be modeled as a linear addition as shown in Figure 2.2b. So if the
quantization error has the uniform probability density function as shown in Figure 2.4 for

. 2 _ .
rounding or truncation cases and its variance is 02 = % where A = 277 is the smallest

33

s(t) | s[n] - z[n]! ' yln]
o ‘ S/H H(2) Qn ‘ ; H(z) lOSR; o
ot ‘ | we=7/OSR |
ok = o !
T MODULATOR J DECIMATOR

(a) e[n]
S(t) S[n] kB m[n}
—S/H Hy(z) ‘ °
T 1
fi

Figure 2.2: (a) ¥A modulator and decimator block diagram. (b) XA modulator linear
model.

difference between two consecutive quantization levels; as its autocorrelation is
eeln] = 020[n] +me,
where m, is the error mean, its power density spectrum (defined as the Fourier transform
of the autocorrelation function of stationary or wide-sense stationary signals) will be
2

Poo(w) = F{pe[n]} = 0* = % + 2mm.dln), (2.2)

where F'{-} is the Fourier transform [13].

The XAM output could be expressed as
X(z) =STF(2)S(z) + NTF(z)E(2), (2.3)

where STF(z) = %}% is the signal transfer function and NTF(z) = m is the
noise transfer function.

Therefore, given a YAM order L, if Hy/(z) is designed in such a way that

1 1

M) = e e

then
NTF(z) = (1 -z 1", (2.4)

and as z = ¢/¥ the absolute value of NTF(z) will be

. . L
INTF(e)] = [1 — e~%|F = ‘QSin (g)) .

34

3.0 1

2.5 1

2.01

VOIS

1.5

1.01

0.5 1

0.00 0.05 0.10 0.15 0.20 0.25 0.30

(a)
14
04 ! . ! .
0.10 0.15 0.20 0.25
Time (ms)
(b)

—20

—40

—60

—80 1

Magnitude (dB)

—1201

~140 A

—160 1

—180 - T T T
102 103 104 10° 106
Frequency (Hz)

(c)
Figure 2.3: 2"-order YAM (a) input, (b) output and (c) frequency spectrum

Also, in order to avoid aliasing and keep the signal in the B, range, by (2.1), the

2nBy . 0w
fi — OSR-
assumed that this decimation filter has an ideal low-pass impulse response

decimation filter cutoff frequency is constrained to w, =

Therefore, if it is

: 1 |w| <we,
[H (e™)] =
0 |w|>we

35

~De(e)

1
A
s e

(a) Rounding

w|>
ol

~pele)

1
A
> €
A

(b) Truncation

Figure 2.4: Quantization noise probability density function

by Parseval’s theorem, the noise power in the decimator output y[n| (Figure 2.2a) will be

R P (w)INTF () 2| H(7) 2dw = — A—[2sin ()] 1) Pa
Coom | “ 2r | . 12 2
OSR OSR
(2.5)
but as }2 sin (%) ’L ~ |w|f when w < 1 (or f < f;); the noise power can be approximated
to:
OSE OSK
1 AQ A2 AQ w2L+1
P~ — —wdw = — Pdw = — 2.6
o | 12Y YT 1o / v T \ar T (26)
OSR 0 w:ﬁ
Therefore, simplifying (2.6), the noise power will be:
A2 2L
~ T (2.7)

P~ —
12 (2L + 1)OSR**!

In the same way, if a sine tone is applied at s(¢) such that the amplitude of the
sine tone at x[n| is maximum, as |H (e’*)| = 1, the power output at the output y[n] caused

by the sine tone will be
2B—1A 2

Finally, the ¥AM dynamic range (DR) in the output y[n] would be
_ 22B3(2L 4+ 1)OSR** !

P,
DR = =& = 2.
R P, 2m2L (2.9)

36

which shows how the DR increases exponentially with 2L 4 1 and justifies the usage of
high order YAM in MEMS microphones architectures. Note also that in the PDM-mic
case, as its output x[n] is a bitstream only, the number of bits in the quantizer Qg will be
B=1.

2.3 Decimation filters

A decimation filter is a class of multirate filters [14] that decreases a signal
sampling rate by an integer or fractional factor. Figure 2.5 shows a generic decimation
filter block diagram, the input signal at f; sampling rate passes through a low-pass filter
(LPF) with impulse response H(z) and then it is downsampled by an R factor to an output
sampling rate f, = f;/R. In a PDM-mic case, usually z[n] has 1-bit width only while y[£]

is a multi-bit output. This will be further explained later in this section.

z[n] ! ! y[k]
O——— e IR o f./R

Figure 2.5: Single-stage decimation filter

For a given application, there are many design parameters to be taken into
account for LPF design such as filter passband frequency F),, stopband frequency Fj,
passband ripple d, and stopband ripple ds', as exemplified in Figure 2.6. Those LPF

design parameters are related as follows

U,={f fe€0.F)} (2.108)
5, = max(||H(e*™ %)~ 1|) Vf €U, (2.10¢)
5, = max(|H(™H)|) Vf e U, (2.10d)

where U, and U; are the passband and stopband frequency ranges respectively. Also, the

angular passband and stopband frequencies can be expressed as

21 F,

wy = 2 (2.11a)
fi
orF,

w, = 7; , (2.11b)

155 and 6, sometimes are expressed in dB such that d5(dB) = 201og;,(ds) and 6, (dB) = 201log; (5, +1)

37

and U, and Uj intervals can be scaled to angular frequency domain as

2

v, = 7;Up (2.12a)
2

V, = 7;U (2.12h)

Figure 2.6: LPF design parameters

Baseband signal quality parameters such as linearity, SNR, total harmonic
distortion (THD) and total harmonic distortion plus noise (THD+N) can be worsened
at the filter output if the LPF is not properly designed [15]. Also the LPF structure
should be carefully chosen to get a proper phase response; a Finite Impulse Response
(FIR) structure, for example, can be used if linear phase is required; otherwise Infinite
Impulse Response (ITR) filters are preferred as usually IIR filters are smaller than their
equivalent FIR implementations. Also there are some applications that tolerates some
degree of non-linearity; in this case quasi-linear filters, which are a mixture of FIR and
IIR filters, can be used.

In this sense, for audio applications using PDM-mics, where decimation filters
are required to get PCM audio signal from the oversampled PDM bitstream, the LPF is
commonly implemented as an FIR filter, since in audio applications a linear phase response
is required?.

Also in the PDM-mic case, the input x[n] is a 1-bit length oversampled signal
that requires to be downsampled to standard audio sampling rates like 48 kHz or 16 kHz.
During decimation, this 1-bit signal passes through several multiplications and additions,
each operation increases sequentially the signal amplitude and consequently the number
of bits of the signal. In the end, the filter output y[k] is not a 1-bit length anymore, but a

multi-bit signal.

2Linear phase is often required on audio applications due to the fact that such filters delay all frequencies
by the same amount, thereby maximally preserving waveshape. Test results indicate that the perception
of phase distortion is highly dependent on individual ability, and that it is easier to detect phase distortion
by headphone listening rather than by loudspeaker listening [16].

38

2.3.1 Direct form FIR implementation

An FIR filter like the one discussed in the previous section can be implement in
several ways. Figure 2.7a shows the direct form implementation structure for an FIR filter.
In this implementation, N — 1 delay elements are connected in series after the input, each
delay element is multiplied by a filter coefficient h,,, and the multiplication result is added
together sequentially by N — 1 adders. Finally, the last adder result is downsampled by
R. Figure 2.7b is the same direct form implementation but with multiplication done at
the output rate, which will reduce the number of operations per second and consequently

power consumption.

z[n] o d ° A z
ho h1 ho hn—2 hn-1
R IR o ylk]
(a)
—1 1 1 —1
z z z z
z[n] o R

ho ha ha hNn-—2 hn-1

Figure 2.7: (a) Direct form and (b) efficient direct form implementations.

2.3.2 Polyphase FIR implementation

The polyphase decimation filter structure was first introduced on [17]. Here we

assume that the decimation by a decimation factor R can be expressed as
Z hls]z[kR — s]. (2.13)

Using the substitution s = rR + A, for A € {0,..., R — 1}, the decimated signal can be

expressed as

=

f: hlrR + Mz[(k —r)R — A]. (2.14)

0 r=—o00

>
I

39

To simplify (2.14), we define

ha[r] = hlrR +], 2.15)
zy[r] = z[rR — A, (2.16)
such that
=33 ol —
— - yAlk] = ih,\[k] * 1y [k]. (2.17)

Equation (2.17) is known as the polyphase representation of a decimation filter
and it can be implemented as shown in Figure 2.8a, where all input downsamplers and delay
elements can be replaced with a counterclockwise commutator at the filter input as shown
in Figure 2.8b. Also it is easy to see from (2.16) that as the hy[n] filters are interleaved
versions of h[n] by a factor of R, if hy[n| filters are implemented as a transposed direct
form implementation [18], memory elements are shared and the coefficients are sequenced
at the sampling rate as shown in Figure 2.8c; then the number of delay elements are
reduced by the same factor of R. This structure is known as the efficient memory-saving

structure.

40

ylk]

zo[k] olk]
z[n] o lR ho[k] Y
z1[k] 1[k]
IR ha k] i
z2[k] 2[K]
; IR ha (k] i :
yr—1[K] ‘
yo[k] y[k]
v (K]
y2[k]
2r-1[K] g1k A
hR_l[k} —
(b)
z[n] o pemeaaas
hn-s hn—6 he hs ho
vz s Gre P P
hN—l hN_4 hg h5 h2
1 ">":.1""- _1 1 o y[k]
(c)

Figure 2.8: (a) Polyphase decimator, (b) polyphase decimator with input commuter and

(¢) memory-saving polyphase decimator (R = 3)

2.4 FFT implementation

As further discussed in [13], the FFT is an efficient way to calculate the Discrete

Fourier transform (DFT) of a signal. If the frequency spectrum at all frequencies is

required, the “butterfly” FFT implementation structure is the most efficient. As shown

41

in Figure 2.9, this structure is based in a sequence of repeated and interleaved sums and
multiplications.

As this algorithm requires of an input buffer to save incoming data and a
memory to store intermediary results during calculations, a D-points FFT will require
3DLbit or 4DL bit storage elements (Sgpr) depending if the input is real or complex
respectively. Also, as the complexity of a D-points FFT algorithm in “butterfly” structure is
O(D) = Dlog,(D), it will also require 2D log, (D) f, additions per second and 2D log,(D) f,
multiplications per second. These implementation resources are summarized in the following

equation

SI—:FT(DvLa fO) = QDIOgQ(D)foa (2.183)
;FT(DaLa fo) = 2D10g2(D)f07 (2.18b)

{3DL bit if input is real,

Stpr(D, L, f,) = (2.18c¢)

4DLbit if input is complex.

The number of storage elements is smaller when the input is real because just
DL bit are used in the input, the others 2D L bit are used to store temporary results during
calculation (imaginary and real parts). Also Sgpr and Sipr are multiplied by 2 because

operations are performed in both real and imaginary parts.

42

YN N/ \/ =,

/AR '_A“. .
BN/ 600 i
BN/ mv. .
N ZAN KX N
| mw_‘lmm. .
93 mmm'Av.A. «
/1 NNV <=4 L
/NN 'mm. §
Im\\\-'m' 0 .

-/ /_

—1

8

8
=
°§
/
T
%%%%
ST o]] o
1155
¥y ¢
|
b

-1

Figure 2.9: 16-points FFT implementation example with butterfly structure.

43

Chapter 3

Efficient multirate filter design

“Given a decimation filter specification, find an algorithm to

determine the most efficient decimation filter architecture”.

In order to fulfill the above objective already formulated in Section 1.2.1, this chapter
proposes an algorithm to determine multirate filter architectures with minimal resource

requirements. A bottom-up approach around the diagram below is followed to explain it.

Algorithm to calculate

(LTI efficient decimation ——
I Sec. 3.4 1 o
ol ’ architectures based Eroposal

on 53, optimization

Frequency
ranges
(F3.FY)

jth-stage
filter

specifi-

cation

gm===== .
Sec. 3.1.1 1

Multi-stage
filters

1
Al ’ | S

Maximum
ripples
(67,62)

A Y
1

{ :Sf-c:li- 1: :. Equiripple jtg;t;ge Sec. 3.3.3
ClICcom-\ [/ '\, __.-.-_ .
pensation | Sec. 3.2 1

method

44

So, at first, this chapter reviews the optimal equiripple FIR filter design method
based on Parks-McClellan algorithm and its implementation structures. Three distinct
FIR implementation structures are presented and the general expression to estimate the
implementation resource requirements is derived. Furthermore, the Lth-band filter, a
subclass of equiripple filters, is presented alongside the equations used to calculate them.

Next, CIC filters and CIC compensation filters are reviewed. The state of the
art in CIC compensation filters is discussed and an additional compensation structure is
proposed, as well as an algorithm to determine a CIC filter’s order and its compensation
filter given a filter specification.

It is important to remark that the window-based FIR filter design methods are
not discussed as they are considered suboptimal [19]. Also, IIR filter discussion is avoided
because for audio applications linear or almost linear phase response is considered a de
facto standard. Linear phase filter are preferred because all the components of the input
signal are equally shifted in time and consequently waveshape in the output is maximally
preserved.

Once these relevant and efficient filter design methods are presented, general
equations to determine the individual specifications of each stage in a multirate filter from
a general specification are derived and the individual stage expression are related with the
equiripple, Lth-band and CIC filters in a multirate filter.

Finally, an algorithm to determine multirate filter architectures with minimal

o

9..) is formally proposed using

decimation filter’s total number of additions per second (
previous results as basis and it is applied to obtain a set of efficient decimation filters with
specifications as listed in Table 1.1. To conclude, the quantity of resources required to

implement a beamformer using those efficient decimation filters is estimated.

3.1 Equiripple (optimal) FIR filters

The linear phase FIR filter design problem can be considered as a Chebyshev’s
approximation problem, such that the unique solution of this problem is optimal in the
sense that the peak approximation error over the entire interval of approximation is
minimized, as it is further discussed in [13,20,21]. Several approaches have been presented
in the literature for solving this Chebyshev approximation problem. The solutions are
based on either single-exchange linear programming solution [22], or multiple-exchange
Remez algorithm solution developed by Parks and McClellan [23]. Parks-McClellan
algorithm [24,25] has become the standard method for FIR filter design because it is the
most flexible and most computationally efficient. Parks-McClellan algorithm is already
implemented in many commercial and open-source software as the Python’s scientific

library Scipy [26].

45

Given the LPF design parameters f;, I, F;, d5, 0, and N there are empirical
relationships found between them in [27] such that the minimum required FIR filter length

N can be estimated from the relation

 Du(8.,5,) :

where

Do (65, 6,) =(0.005309(1og,, 6,)* + 0.071141og,, 8, + —0.4761) logy, b

(3.2)
— (0.00266(log, 6,)* 4 0.5941log,, 3, + 0.4278),
0s
f(6:,6,) = 1101217 4051244 logy { 5) (3.3)
p

and for convenience, if transition bandwidth is defined as Af = F; — F},, then normalized
transition bandwidth Af is defined as

F,—F,

Af =
f 7

(3.4)

The above relations are valid to within 1.3 percent relative error [27] in N if
ds < 0.1 and 6, < 0.1. Figure 3.1 shows how D, decreases with d, (at a rate of 0.5 for
every 20dB) and 6, (it decreases by 0.5 as J, increases from 0.05dB to 0.2dB). Also
Figure 3.2, as both its axis are log, shows that N has an almost linear relationship with
Af.

For applications as PDM-mic decimators, where Af < 1, the second and third
terms in (3.1) are insignificant compared to the first term. Therefore, for convenience, this

equation can be simplified to the form

N ~ —Doo(d;,(;p).

A7 (3.5)

The minimum required FIR filter length N for a single-stage decimation filter with the
specifications listed in Table 1.1 and implemented with an equiripple (optimal) FIR LPF

structure, as presented in Figure 2.7a, is estimated to be

DOO((S& 519)

N ~
F,—F,

3.1.1 Lth-band equiripple filters

An Lth-band filter could require fewer multipliers than an equiripple one because,
depending on the filter requirements, it could have many coefficients equal to zero. This

special characteristic makes this filter very suitable for low-power implementations.

46

4.5 - —— 6, =0.001 (0.01dB)

dp = 0.006 (0.05dB)

4.0 i 8, =0.012 (0.10dB)

S~ao 8, = 0.023 (0.20dB)

N 8, = 0.059 (0.50dB)
8 3.0 T

Q

2.5 1
2.0 1
1.5 4

—100 —-90 —80 —70 —60 —-50 —40

5, (dB)
Figure 3.1: D, for d5 in —100dB to —40 dB range.

—— 5, =0.001 (0.01dB)

—== §, =0.006 (0.05dB)

o] semen 0, =0.012 (0.10dB)

] —-= 6, =0.023 (0.20dB)

—— §, = 0.059 (0.50dB)
2, 103':
102 E

104 1073 10~2 1071

Af

Figure 3.2: N for Af in 1 x 107* to 1 x 10~" range and 6, = —80 dB.

Its angular cutoff frequency is located at w, = m/L and its transition band is

approximately symmetric around this frequency [14] such that, given a roll-off factor

47

0 < v < 1, its passband and stopband frequencies are related as

(1—v)m

Wp =7 (3.6)
o, = (1 —1—Lu)7r (3.7)

Also, if the Lth-band filter order is N = 2K + 1 where K is a positive integer,

the impulse response coefficients satisfy the following conditions

h[K] =1/L (3.8)
_ N
h|[K+rLl=0 forrinl2,..., LEJ (3.9)
where |z, as know as the floor function, is defined as the integer part of z, such that the
number of nonzero coefficients in the filter impulse response is
N
Noo = [N - 2]
L

B L(%) NJ_ (3.10)

Also, as shown in [28], the stopband ripple and passband ripple in an Lth-band
filter are related by

5, < (L — 1)3.. (3.11)

Figure 3.3 shows the frequency spectrum and impulse response of an Lth-band
filter with L = 2 (half-band filter), it is shown that the half of the coefficients are zero.

3.1.2 FIR filter required resources

The resource requirements to implement FIR filters with direct form and polyphase

structures are quantified in this subsection using the metrics proposed in Section 1.4.

Direct form implementation

In the direct form implementation of an FIR filter (shown in Figure 2.7a) the
decimation filter’s number of multiplications per second (Sj..) is given by the number of
nonzero multipliers times the input sampling frequency, the decimation filter’s number of

additions per second (S

Jec) 18 given by the number of adders times the input sampling

frequency, and the decimation filter’s storage requirement (S3,.) is given by the number of

delay elements multiplied by the input’s bit width. Therefore, the resource requirements

48

—125 +

—150 A

—175

0.0 0.2 0.4 0.6 0.8 1.0

0.4 1

0.3 1

0.2 1

0.1 1

0.0 1 -

—0.1 1

(b)

Figure 3.3: Lth-band filter (a) normalized frequency spectrum and (b) impulse response

(L =2).
for the direct form can be estimated as following:

N
[%W fi if h[n] is symmetric,

Siee = (3.12a)

pN f; otherwise,
St = (PN = 1) f;, (3.12b)
Siec = (N — 1)Ly, bit. (3.12¢)

49

The significance coefficient rate (p) is defined as

(3.13)

where N, is the number of nonzero coefficients in the filter impulse response and p ~ 1 in

most of the cases.

Efficient direct form implementation

Direct form implementation can be optimized to perform multiplications and
additions at output sampling rate (f, = f;/R) as shown in Figure 2.7b such that the

resource requirements are reduced to

[%-‘ % if h[n] is symmetric,
Sdec = P . (3.14a)
pN = otherwise,
Siec = (PN — 1)%, (3.14b)
Siee = (N — 1)Ly, bit. (3.14¢)

Memory-saving polyphase structure

In practice, the resource requirements to implement a decimation filter with a
polyphase structure (shown in Figure 2.8b) are the same than these required for a direct
form implementation given by (3.14). However, the resources required to implement an

efficient memory-saving structure are given by

fi

Sdec = PN, (3.15a)

Siec = (PN — 1)%, (3.15b)
N

(ziec = LaCC ’VE-‘ blt, (315C)

where L, is the filter accumulator length.
Also, from comparing (3.14) and (3.15), it can be seen that memory-saving
polyphase structure would be more efficient than efficient direct form implementation only

if the LPF is not symmetric and L,.. and L;, meet the following relation

< R. (3.16)

20

Table 3.1 shows the resource requirements to implement a single-stage decimation
filter with specifications as listed in Table 1.1 using a direct form (single direct), efficient
direct form (single_eff) and memory-saving polyphase (single_memsav) implementations.
It is shown that the single eff implementation requires less total additions per second
for the decimation filter but the same storage requirements, and the single memsav
implementation requires less storage requirements but more total additions per second.
So, the single_memsav implementation will be preferred for low-power applications where
only flip-flops are available, but for software implementations with large memory available,

single__eff will be preferred as it requires less operations.

Sz . (bit) Si. (MPS) Si

dec

(APS) Sgc (APS) fopu (MHz) Tipep () Ty ()

single direct 37950 29147136000 58291200000 87438336000 87438.34 1367 8744
single eff 37950 151808000 303600000 455408000 455.41 8 46
single memsav 396 303616000 303600000 607216000 607.22 10 61

Table 3.1: Single-stage decimation filter resource requirement comparison.

3.2 CIC filters

A Cascade Integrator-Comb (CIC) filter is an economical class of LPF introduced
in [29] and widely used as the first stage of a multirate filter design. The main advantage
of this class of filters is its multiplierless architecture and its high attenuation at stopband
frequencies. Its main disadvantage is the non-flat frequency spectrum in the passband
range, which needs to be compensated by other filter stages to ensure flatness in the overall
filter passband range response.

The low-pass filter impulse response of a CIC filter decimated by R is given by
11—z B\"
Hiz)=|=——— 1
&= (31-=) (317

where K is the CIC filter order. The CIC decimation filter can be implemented as shown
in Figure 3.4.

2|=
|-

z[n] o S IR T o ylk]

27! 27! —z! —z7!

INT 1 INT K DIFF 1 DIFF K

Figure 3.4: K-order CIC filter structure, a cascade of K integrators and K differentiators
are required.

o1

Figure 3.5 shows the magnitude of the K-stages CIC filter frequency spectrum

which is given by
K

1 sin(wR/2)

R sin(w/2) (3.18)

) =

—20

—40 1

)

—60 -

—80 1 vemus

—100

Figure 3.5: CIC filter frequency spectrum (R = 8).

3.2.1 CIC compensation

Due to the CIC filter passband droop usually it is required a compensation filter
to keep the overall filter response under specification parameters. Those compensation
filters are frequently designed as equiripple filters in the last stage of the multirate filter
chain as shown in Figure 3.6a. As this approach require extra filter taps and multipliers,
in the last decades there has been an effort in academia to design more efficient and
multiplierless CIC compensation filter structures [1-3,30-41]. In case of sparse FIR-based
compensation filters, [41] proposes a structure that includes the compensation filter in
the CIC structure using a time-varying multiplier that could improve performance and
area. In some cases, proposed compensators are multiplierless implementations [3,36,37]
but require to be redesigned for each value of decimation (R) or to have a maximum
absolute deviation (passband ripple §,) larger than 0.2dB. Other methods have a simple
structure but require multipliers on their implementation [31,34,35]. Furthermore, recently
published works [39,40] propose multiplierless structures based on the particle swarm

optimization (PSO) method to obtain compensator coefficients. These structures have

52

passband absolute deviation smaller than 0.1 dB and present a reconfigurable architecture
for different values of K, but unfortunately they are not so flexible to changes of R and
require complex structures for conversion to canonical signed digit (CSD) representation.
All of these methods are reportedly outperformed by the methods proposed in [1] and [2],
which have multiplierless structures, their filters depend only on the parameter K and
their passband absolute deviation is smaller than 0.1dB in either ¢ < 1/2 (method [1])
or ¢ < 1/8 (method [2]) ranges, where ¢ is the normalized passband frequency in a CIC

compensator and it is defined as
w
p

C:ﬂ_/R.

As shown in Figure 3.6a, the method [1] proposes the use of two cascade filters

(3.19)

after decimation whose frequency spectrums are

|G1(e“®)| = 1+ By sin*(wR/2), (3.20a)
|Go(e™)| = 1+ Bysin®(wR/2), (3.20b)

such that the proposed compensator filter has the following frequency spectrum:
|G(e“")| = (1 + Bysin*(wR/2))(1 4+ Bysin®(wR/2)). (3.21)

The method proposed in [2] can be regarded as a particular case of [1], where |Gy ()| = 1
and By has other values. Figure 3.7 shows how the frequency spectrum of the CIC filter
after compensation for different values of K is kept flat for ¢ < 1/2 such that a decimator
by 2 can be cascaded after the CIC compensation.

Methods [1,2] have good compensation within ¢ < 1/2 and ¢ < 1/8 ranges, but
sometimes it is required compensation at ¢ < 1/4 range, which is between both ranges. In
this case method [1] can be used but resources will be wasted unnecessarily. To overcome
this limitation, based on [2], new By coefficients can be heuristically calculated for a
passband ripple d, > 0.1dB' in the ¢ < 1/4 range, as shown in Table 3.2. In Table 3.2
is also added the coefficients for method [3] that, as method [1], has good compensation
within ¢ < 1/2 but its passband ripple is 6, > 0.4dB. Figure 3.8 shows the passband
ripple versus decimation factor and CIC filter order for proposal and [1-3] methods.

Finally, from (3.18) and (3.21), the overall CIC filter plus compensation impulse

response can be expressed as

1 sin(wR/2)|"

|Hr r,py,5, (€)| = ‘

Tt is important to remark that the expression “6p > 0.1dB” means that the filter’s passband ripple
cannot be less than 0.1dB. So, for instance, a filter that requires §, = 0.05dB cannot be designed with
this method, however any filter that requires §, > 0.1dB is possible.

23

zln] | o | ylk]
o——+— H(z) IR 1 Gi(2) Ga(z) P
| | |
~ QCFELTER COMPENSATOR

(a) CIC filter with compensation
27'By

27t -22

2249

(c) Go(z) filter

Figure 3.6: Compensation filter proposed by [1].

where By and By can be selected from Table 3.2 such that ¢ = “of eet conditions thereof;

™

otherwise B; and B, are zero and compensation should be done using other methods.

3.2.2 CIC filter design

From (3.22), the required CIC filter order (K') can be calculated as

K 10g10(d5) — logyo (1 + By sin*(wsR/2)) — logyy (1 + Basin®(wsR/2))

(3.23)

1 sin(wsR/2)

10810 | % Sn(ws/2)

However, as B; and B, depend on the K value to be calculated, the iterative
procedure shown in Algorithm 1 is required to calculate the optimum value of K given w,,
s, 0p, R parameters and the stopband range V;. In this procedure, first K is calculated for
By and B, equal to zero, and then K is adjusted progressively until it meets the desired

condition.

o4

=1
0.00 s
i =3
—0.25 4
=5
—0.50 A 6
— —0.75 1
3
T -1.00-
—1.25 A
—1.50 A
—1.75 A
_2.00 T T T T T “‘ T
0.0 0.2 0.4 0.6 0.8 1.0
wR/m
Figure 3.7: CIC compensation using method [1] (¢ = 0.5, R = 16).
3.2.3 CIC filter required resources
The resources required to implement a CIC filter are
Siee ™~ 2K Ly bit, (3.24a)
Siee =0, (3.24b)
Siee = K fo(1+ R) + foN (3.24c)

where the number of adders for CIC compensator NGTC is selected from Table 3.2. Also,
L. will be
Lacc = Klogy(Rlmax z[n]|) + 1, (3.25)

where x[n] is the filter input, and if the filter input is a bitstream
L.ec = Klogy R+ 1. (3.26)

Finally, as the passband requirements in Table 1.1 do not meet the required
conditions from Table 3.2, it is not possible to implement a single-stage decimation filter
with such specifications using a CIC filter followed by the multiplierless compensation
architecture described in this section. However, this multiplierless compensator may be

used in multi-stage decimation filter architectures as further discussed in following sections.

25

Method | Conditions K | B B | Adders (N()

110 273 3

2 10 2724273 4

310 2724934944975 6

proposal | 0, > 0.1dB,c <1/4,R > 5 4o 9-1 4 9-2 4
510 20 3

6 |0 20 4 973 4

110 272 _ 9275 4

2 1272 927249 10

3|2t 2719+ 10

[1] 5p > 0.1dB,c < 1/2,R > 10 4191 9198 o 11
5 |1 20 _9-2_9-5 11

6 |1 20 926 10

210 272 3

310 22 3

4 10 21 3

2] 0, > 0.1dB,c < 1/8,R > 2 5 10 20 3
6 |0 20 3

110 272 3

210 21 3

310 271 4272 4

> < >

8 |8 >04dBe<1/2R>9 ||| Lo 5
510 204272 4

Table 3.2: CIC compensation filter’s coefficients and number of adders. The listed methods
are complementary to each other as the number of adders increases consistently with the
passband ripple (,), the normalized passband frequency in a CIC compensator (¢) and
the CIC filter order (K). So, any of them should be chosen properly depending on the
particular filter requirements. It is also easy to see that the proposal, [1] and [2] methods
have the same 9§, range but different passband range; and the methods [1,3] have the same
passband range but different ¢, the latter one requiring more adders.

Value Unit
decimation filter’s storage requirement (S3..) 1344 bit
decimation filter’s number of multiplications per second (S3..) MPS
decimation filter’s number of additions per second (Sj.) 6.4848e+07 APS
decimation filter’s total number of additions per second (59..) 6.4848e4+07 APS
estimated minimum frequency in a processor (fepu) 64.85 MHz

estimated number of adders in an FPGA running at 64 MHz (Tipq,)

estimated number of adders in a VLSI circuit running at 10 MHz (TI;) 7

Table 3.3: Single-stage decimation filter resource requirements implemented as a CIC filter,

without compensation (K=21, B1=0, B2=0).

Table 3.3 shows the required resources to implement the referred filter specifications with

a standalone CIC filter without compensation.

26

— k=1 Lo K=1

0.30 -—- K=2 ——— K2

ramen K:3 1.0 1 samas K:3

0-25 1 —- K=4 —-- K=4

—~ 0904} —— K=5 . 081 —— K=5

S —e- K=6 g —e- K=6
= = 0.6 -

T S

0.1

wt

0.10

0.00 -

(b) Method [1], ¢ =1/2

K=1 — K=l
K=2 -—- K=2
K=3 v K=3
K=4 —= K=t
K=5 o= K=5
K=6
" T s e
0.00 - VC
5 0 15 20 25 30 5 10 15 20 25 30
R R
(c) Method [2], ¢ =1/8 (d) Method [3], ¢ =1/2

Figure 3.8: CIC’s passband ripple (d,) versus decimation factor (R) and CIC filter order
(K). (a) Proposed method, whose coefficients are listed in Table 3.2, keeps the passband
ripple 4, > 0.1dB only for values of decimation factor R > 5 and the normalized passband
frequency in a CIC compensator in ¢ < 1/4 range. (b) Method [1] keeps d, > 0.1dB in
the ¢ < 1/2 range and R > 10. (c¢) Method [2] keeps 6, > 0.1dB in the ¢ < 1/8 range and
R > 2. (d) Method [3], keeps 0, > 0.4dB in ¢ < 1/2 range and R > 9.

57

Algorithm 1 K calculation algorithm
1: procedure CICORDERCALC(ds, 6,, R, wy, V5)

2 B; 0

3 B2 0

4 Calculate K > Equation (3.24a)
5: loop
6.
7
8
9

Calculate By, By for K = K, ¢ = 2;;??, R=R > Table 3.2
0y« max(|Hg rp,.5,(€%)|) Yw eV, > Ripple, Equation (3.22)
if 4,/ <, then

return K

10: else

11: K+ K+1

12: end if

13: end loop

14: end procedure

o8

3.3 Multi-stage filter design

Because of the high computation rate and storage requirements to implement a
single-stage decimation filter, and consequently to implement a PAPS, if the decimation

factor (R) can be factorized in J integer or fractional factors as
J
R=RiRy...R;=]]R,
j=1

then the decimation filter can be divided in a cascade of J decimation filter stages as

shown in Figure 3.9, where the jth-stage output sampling rate is

fin1

fi = i vie{l,...,J}, (3.27)

and the jth-stage required filter output length is
Ly = logy(Imax s [n]]) + 1 (3.28)

where y;[n] is the jth-stage filter output.

Besides the fact that, in general, the multi-stage implementation requires less
implementation resources than its single-stage counterpart, the multi-stage filters are
also more flexible to decimation rate changes and they allow to combine different filter
structures, taking the best of any of them. For example, the high attenuation of a CIC
filter could be combined with the flatness of a equiripple filter at different levels; or, as
shown in Chapter 5, a MAXFLAT filter could be combined with equiripple or Lth-band

filters to allow group delay configuration.

__ STAGEL __ STAGE2 __ STAGEJ
e[n] | Lo | | | ylk]
Oﬁ Hi(z) [IRi [+ Ha(z) [~ [Ro[— I~ Hy(z) IRy
fo=fi Y 2 Jro o=

Figure 3.9: Multi-stage decimation filter

In this section are presented the passband and stopband frequency ranges and
ripples of all internal individual stages of a multirate filter specified with parameters shown

in Figure 2.6.

3.3.1 Passband and stopband frequency ranges

Equation (3.5) says that if the normalized transition bandwidth (A f) is maximized
then the minimum required FIR filter length (V) is minimized proportionally. Therefore,

29

|H;(2)]

1+6)
1-6

&l

Figure 3.10: jth-stage filter prototype

f (Hz)

the constraints presented in the following paragraphs are meant to maximize the allowed

transition and don’t care bands of each individual jth-stage in order to minimize its

respective filter order. The individual jth-stage’s filter order minimization will guarantee

the overall minimization of resources of the combined J-stages decimation filter.

For all j € {1,...,J} the jth-stage passband frequency range UIZ is defined as

jE{L.. .. Ty = Uy ={f:fel0,F]}
and the jth-stage stopband frequency range U? is defined as

j:J—>U§:{f:f€ {FJ%]}

such that

Sh= {7 felth=0f+ R+ 0f— Fake {1 |2 -1y,
Sy ={f:fellk=1)f;+F, (k+1)f;— Fl]Ak= L%J A R; is odd},

S = {7 Fe (k= 1)fy + LR Ak = [22| A Ry is even),

(3.29)

(3.30a)

(3.30D)

(3.30¢)
(3.30d)

(3.30¢)

where Fg is the jth-stage passband frequency and F7 is the jth-stage stopband frequency.

Figure 3.10 shows as the intervals in UJ are separated by f; and they are interleaved by

don’t care bands. As it is further discussed in [42], those don’t care bands reduce the filter

complexity and consequently its length.
Also, if the jth-stage transition bandwidth is defined as

(3.31)

60

it can be normalized as A f]
fi-1

In order to keep the overall multirate filter response at stopband frequency (Fy)

Af; (3.32)

and passband frequency (F,) specifications as shown in Figure 2.6, the jth-stage passband

frequency value should be

if aliasing in transband is allowed: FJ =[F, F,| :je{l,...,J}, (3.33a)
(B, F) je{l,...,J—1},
otherwise: F] = Fyr B 7 J (3.33b)
F, 2] =J,

and the jth-stage stopband frequency value should be

if aliasing in transband is allowed: F! = f; —F, :j€{l,...,J}, (3.34a)
| F, ije{l,..., -1},
otherwise: F! = J; A J (3.34Db)
F g =J.

Finally, the jth-stage angular passband and stopband frequencies can be expressed as

- 2mFY
wy = ——, (3.35a)
f]—l
- 27
W= 08 (3.35b)
fim1
and Ug and U intervals can be scaled to angular frequency domain as
217
) = L 3.36a
- (3:360)
- 2rU?
vi= s (3.36b)
fi-1

3.3.2 Passband and stopband ripples

The equations (3.1) and (3.2) and Figure 3.1 show that the minimum required
FIR filter length (V) decreases monotonically when the stopband ripple (d5) or passband
ripple (6,) increase. So, in this section are derived the equations that maximize the
individual 8, (67) and d, (67) of each jth-stage in order to meet a given d, and d, for the

overall filter.

61

If the jth-stage passband (51{ and stopband ¢/ ripples are defined respectively
Vie{l,...,J} as

67 = max(||H;(e” 7i-1)| — 1)) Vvfe Uy, (3.37a)
. mi—t .
51 = max(|H,; (e T1)|) Vf e U, (3.37b)

and the overall low-pass filter impulse response is

J
H(&™5) = [[H("™ %) vfeUjuU] (3.38)
j=1

i — . .
where H j(e2 i-1) is the jth-stage low-pass filter impulse response, the overall filter §,

(for small 6,) and d, can be expressed as

J
= 0, (3.39a)
7j=1
J
5, =[] 4 (3.39D)
j=1

Even though only multi-stage decimation filters requirements are analyzed on this
section, as further discussed in [20], the same filter requirements are valid for a multi-stage

interpolation filter design, the only difference is the stage order that is inverted.

3.3.3 Multirate filter stages

In order to design a J-stages multirate filter with the same overall LPF specifi-
cations given by (2.10); all stages should meet conditions given by (3.29), (3.30), (3.33),
(3.34), (3.37) and (3.39). So, depending on the application and the available resources;
each stage should be designed, for instance, as an equiripple FIR, Lth-band or CIC filter
to meet those individual stage requirements. This section points out some considerations

to take into account when designing each jth stage with any of the mentioned structures.

Equiripple FIR filter stage

If the jth-stage LPF is designed as an equiripple FIR filter, from (3.5), (3.29)
and (3.37) the jth-stage minimum required FIR filter length IV, can be estimated as

Doo (07, 7)

j A (3.40)

62

As it is desired to minimize INV;, assuming f; and f;_; fixed, Fg should be chosen
to maximize A f] Then, A f] is maximum when Fg = F), if aliasing in transition band
is allowed, otherwise A fj is maximum when Fg = F. Therefore, the optimal jth-stage
minimum required filter length is
Dso(67,67)
Af; ‘Fg =F,
! Do (67, 67)

Afj‘Fg:Fs

cjedl,...,J} if aliasing in transband is allowed,

(3.41)
cjedl,...,J} otherwise.

In most of the cases, the jth-stage minimum required FIR filter length has few zero-valued
coefficients, such that it is reasonable to approximate the jth-stage significance coefficient
rate as p; ~ 1.

Finally, once N; and p; are known, the required resources to implement the
jth-stage using single direct, single_eff or single _memsav structures can be estimated
by (3.12), (3.14) or (3.15) respectively where N = N;, p = p;, fi = fi-1, R = R,
Lin = Lj_y and L. = Lj.

Lth-band FIR filter stage

In a J-stages multirate filter, the jth-stage LPF can be designed as a jth-band

filter of order Rj if the following conditions are met:

o The filter is symmetric around 7/R;, such that if aliasing in transition band is
allowed, the jth-stage passband frequency is FJ = F, for j € {1,...,J}; otherwise,
if aliasing is not allowed, FJ = F, for j € {1,...,J} i.e. the last stage cannot be a
R;th band filter.

o The jth-stage design stopband and passband ripples meet the relation

6,74 < min(&7, 67). (3.42)

prUs

Once both conditions are met, the optimal jth-stage minimum required filter

length can be estimated by

Doo (5jband’ 5jband)

— cje{l,....J} if aliasing in transband is allowed,
Afj‘Fg:Fp
i= band band
Doo (6,724, 4; , _
(I i) cje{l,...,J—1} otherwise.
Afa’|Fg:FS

(3.43)

63

Also from (3.10), the jth-stage significance coefficient rate is

R —1
R;

pj =~ (3.44)

Finally, once N; and p; are known, the required resources to implement the
jth-stage using single direct, single_eff or single_memsav structures can be estimated
by (3.12), (3.14) or (3.15) respectively where N = N;, p = p;, fi = fj-1, R = R;
Lin = Lj—l and Lacc = Lj.

CIC filter stage

Given 07, R;, 67, wl and VJ, the jth-stage CIC filter order (K) can be calculated
using Algorithm 1 as shown in Figure 3.11.

8 — R; =4
. R]— =16
71 — Rj =32
6 -
:gm
5
4 -
3 4
—120 —110 —100 —-90 —80 —70 —60 —50 —40
0s(dB)

Figure 3.11: Kj for various values of R;, assumming a CIC filter located at the first stage
of a multirate filter with specifications as listed in Table 1.1 but §, varying.

Finally, the resources required to implement a jth-stage CIC filter can be esti-
mated by (3.24) for La.c = Lj, K = K, f, = f; and R = R;.

64

3.4 Proposal: Multirate filter desigh method based on
Sqec OPtimization

Given a desired filter specification as shown in Table 1.1, the goal is to find
an efficient multirate filter with J stages which requires the minimum implementation
resources. As it is explained in Section 1.4, the suitable metric parameter that gives us
implementation complexity information is the decimation filter’s total number of additions
per second (S9,.), so in this section is proposed an algorithm whose objective is to find out
a J-stages multirate filter configuration with minimum Sg... For other applications, where
memory is critical for example, the filter design could be optimized around S3,. instead.

Then, the three parameters to be calculated to achieve our goal are:
« number of stages (J).
+ the optimum {R;} combination for all j € {1,...,J}, and
o the jth-stage’s type,

where the stage type could be any of the filter types studied on this thesis: equiripple
(equir), Lth-band (lthband), self-compensated CIC (cicfil), standalone CIC (ciconly) or
compensation filter (comp). The algorithm could be extended to accommodate any other
filter implementation structure. Unfortunately, because of the numerous parameters
and equations that need to be taken into account for each filter stage design, it is not
straighforward to find a closed form to calculate all parameters mentioned above. So,
Algorithm 2 is used to iterate over all possible filter configurations and get the filter with

minimum S,

Algorithm 2 Multirate filter design method based on S§.. optimization

1: procedure OPTIMUMFILTER(f;, fo, Fp, Fs, 0p, 05, fo, R, Lin, Lace, aliasing)

2 RFactorsList < ALLFACTORSLIST(R)

3 Filter List < []

4: for RFactors in RFactorsList do

5: J < length(RF actors)

6 TypeStagesList + ALLCOMBINATIONS([cicfil’, lthband’, 'comp’, equir’, ‘ciconly],J)

7 for TypeStages in TypeStagesList do

8 Filter + CALCMULTIFILTER(J, RF actors, TypeStages, f;, fo, Fp, Fs, 0p, s, fo, Lin, Lace, aliasing)
9 APPEND(Filter List, Filter)

10: 5S4, < CALCSO(Filter)

11 APPEND(SS,. List, S5..)

12: end for

13: end for

14: S Min < min(S3,. List)

15: index < INDEX(SY,.List, SS..Min)
16: return Filter List[index]

17: end procedure

Finally, the methods used in Algorithm 2 are:

65

o ALLFACTORSLIST(x) calculates a list of all possible factors of x, in reverse order, such
that for example ALLFACTORSLIST(64) = [{32,2},{16,4},{8,4,2},{4,2,2},...].

o ALLCOMBINATIONS(List, x) calculates a list of x elements with all the possible com-
binations of List’s elements, such that for example ALLCOMBINATIONS([a, b, ¢], 2) =

{a,a},{a,b},{b,a},{a,c},...]

o CALCMULTIFILTER(J, Rfactors, TypeStages, . ..) calculates a J-stages multirate
filter with R; = Rfactors[j], jth-stage type equal to TypeStages|j], and so on, for
all j € {1,....J}.

o CALCSO(Filter) calculates the S§

dec

from the specified filter Filter.
o APPEND(List,x) appends the element z to the end of the list List.

o INDEX(List, x) returns the index of = in List, provided that x € List.

3.5 Results

Algorithm 2 was used to find the optimum filter structure for Table 1.1 specifi-

cation that minimizes S3,.. The algorithm iterated over all possible filter configuration

dec*

and the 10 best results regarding S9.. optmization parameter are shown in Table 3.4 and

Table 3.5 sorted by the number of S, resources.

R, Stage types
multi 0 96, 2 lthband, equir
multi 1 48, 2, 2 [thband, [thband, equir
multi 2 6,2, 2, 2 2 2 ciconly, cicfil, equir, equir, equir, equir
multi_3 6, 2, 2,2,2, 2 ciconly, ciconly, equir, equir, equir, equir
multi_4 4, 3,2, 2,2, 2 cicfil, cicfil, equir, lthband, [thband, equir
multi 5 24,2, 2,2 [thband, [thband, lthband, equir
multi 6 48, 2, 2 [thband, equir, equir
multi_7 16, 3, 2, 2 lthband, equir, Ithband, equir
multi_ 8 24,2 2 2 lthband, equir, lthband, equir
multi_ 9 24, 4,2 lthband, lthband, equir

Table 3.4: Multi-stage decimation filters found by the optimization algorithm.

The result shows that the filter multi 0 based on Lth-band filter is the most
efficient configuration for this filter specification. The multi 0 filter overall frequency
spectrum is presented in Figure 3.12 and the frequency spectrum of each individual filter
stage is shown in Figure 3.13.

It is also interesting to see that the third and fourth most efficient filters, multi 2

and multi_3 respectively, are novel architectures based on interleaved CIC and equiripple

66

Siec (bit) Siec (MPS) Sg. (APS) Sfe (APS) fepu (MHz) Tipga () Ty ()
multi 0 4963 30320000 30272000 104240000 104.24 2 11
multi 1 5669 19248000 19136000 110496000 110.50 2 12
multi_ 2 7666 3984000 19616000 110912000 110.91 2 12
multi_ 3 7666 3984000 19616000 110912000 110.91 2 12
multi_ 4 7177 3488000 27824000 113584000 113.58 2 12
multi_5 0762 15408000 15168000 117344000 117.34 2 12
multi_ 6 6371 19840000 19728000 126224000 126.22 2 13
multi 7 5794 9712000 14400000 126304000 126.30 2 13
multi 8 6042 15776000 15536000 126960000 126.96 2 13
multi 9 5740 15984000 15808000 128320000 128.32 3 13

Table 3.5: Comparison of multi-stage decimation filters found by the optimization algo-
rithm.

filters. For some application these architectures based on CIC filters could be more
convenient because of its flexibility to change the decimation rate without changing the
filter coefficients or its structure.

Finally, in a PAPS implementation case, as shown in Figure 3.14 , as the filters
architectures found by Algorithm 2 are parallelized, one per microphone input, the required
resources would be multiplied by the number of microphones M. Table 3.6 shows the
resources required to implement a PAPS for 40 microphones.

The S%_ ., ST

Gocr Odecr Vuee and SY.. columns in Table 3.6 are the same than Table 3.5’s

ones multiplied by 40 because of each independent decimation channel. As the imple-
mentantion in a single-core processor does not allow resource sharing, the f.p, is also
proportional by 40 to the respective value in Table 3.5, resulting in prohibitive resource
requirements of more than 4 GHz processor frequency. But as implementation in Field
Programmable Gate Array (FPGA) or VLSI allows some degree of resource sharing Tipga
and Tg parameters are not proportional to the Table 3.5’s ones, but still requiring aprox-
imatelly > 5000 storage elements, a large quantity of resources but not prohibitive for

hardware implementations.

67

0

—925 4

750 .

—75

Magnitude (dB)

—100 A

—50 1

—100 A

Angle (rad)

—150 A

| i [J . WA [1 | | | L [Pl 11 I I | l [|] |
200000 400000 600000 800000 1000000 1200000 1400000 1600000
Frequency (Hz)

(a)

1000 2000 3000 4000 5000 6000 7000 8000
Frequency (Hz)

(b)

1000 2000 3000 4000 5000 6000 7000 8000
Frequency (Hz)

()

Figure 3.12: Magnitude (a) and phase (b) frequency spectrum of optimum multi-stage
decimation filter found by the optimization algorithm. (c) Passband ripple frequency

spectrum.

68

T N A R RN

100000 200000 300000 400000 500000 600000 700000

0

Frequency (Hz)

Figure 3.13: Magnitude frequency spectrum of the internal stages of the optimum multi-

stage decimation filter found by the optimization algorithm.

Array
Processing
Algorithm

Figure 3.14: PDM-mic array processing system

69

MS§,. (bit) MSG,. (MPS) MSj, (APS) MS§, (APS) fepu (MHz) Tipey () Ty ()
single_ direct 1518000 1165885440000 2331648000000 3497533440000 3497533.44 54649 349754
single_ eff 1518000 6072320000 12144000000 18216320000 18216.32 285 1822
single__memsav 15840 12144640000 12144000000 24288640000 24288.64 380 2429
multi_0 198520 1212800000 1210880000 4169600000 4169.60 66 417
multi_ 1 226760 769920000 765440000 4419840000 4419.84 70 442
multi_ 2 306640 159360000 784640000 4436480000 4436.48 70 444
multi_ 3 306640 159360000 784640000 4436480000 4436.48 70 444
multi_ 4 287080 139520000 1112960000 4543360000 4543.36 71 455
multi_5 230480 616320000 606720000 4693760000 4693.76 74 470
multi_ 6 254840 793600000 789120000 5048960000 5048.96 79 505
multi_ 7 231760 388480000 576000000 5052160000 5052.16 79 506
multi_8 241680 631040000 621440000 5078400000 5078.40 80 508
multi_ 9 229600 639360000 632320000 5132800000 5132.80 81 514

Table 3.6: Comparison of required resources to implement a PAPS using 40 multi-stage
decimation filters found by the optimization algorithm in parallel.

70

Chapter 4

Beamforming at PCM and PDM domain

“Given a decimation filter and a beamformer specification, find an
efficient beamforming implementation that works on the PDM

domain.”

In order to meet the aforementioned and previously formulated objective (Sec-
tion 1.2.2), at first, this chapter reviews the mathematical basis and the state-of-the-art
DAS beamformer implementation methods in time and frequency domains.

Then, time domain and frequency domain implementations that work on the
PDM domain are proposed. It is shown that these implementations require only one
decimation filter for all channels and they are more precise than the same implemented in
PCM domain.

Finally, as these algorithms require decimation filters in their structure, the
required implementation resources are estimated and compared to their analogous state-
of-the-art implementations using optimized decimation filters structures calculated in
Chapter 3 for Table 1.1 specification.

4.1 State-of-the-art: Beamforming at PCM domain

The DAS beamformer is the oldest and simplest array signal processing algo-
rithm [4]. The underlying idea is to delay each microphone input by an appropriate time
delay and then add all delayed microphone signals together. In this sense, the audio signal
arriving from a certain direction at the array will be reinforced with respect to other
signals arriving from other directions and incoherent noise.

The DAS algorithm can be implemented in time domain [43,44], using delay blocks
and an adder; or in frequency domain using the FFT. In this section the mathematical

basis of these time and frequency domain implementation methods will be presented.

71

4.1.1 Time domain implementations

Discrete-time beamformer

The traditional or discrete-time DAS beamformer! is the result of
M—1
2k = watmlk — k) | (4.1)
m=0

where v, is the mth microphone’s output in PCM representation so that, in case of PDM-
mics, y,, would be the decimation filter’s output. In this sense, to avoid confusion, the
PDM bitstream incoming from the respective mth digital microphone will be represented

as Tp,. Also, in (4.1), k,, is the integer delay associated to the mth microphone so that
k= ||Am/TH = HAmeH)

where A,, is the required delay in the mth microphone, ||z| means the nearest integer to
x, and f, and T are the sampling rate and period in y,, respectively. Equation 4.1 can be
implemented as shown in the block diagram in Figure 1.1 using PDM-mics.

Also, due to the integer nature of k,,, the discrete-time beamformer does not
allow to form sums that involve non integer multiples of 7. Consequently, beams cannot be
steered in arbitrary directions. Figure 4.6a shows the normalized power of a 40-microphone
uniform linear array implemented with the discrete-time beamformer method. Three audio
sources of 1kHz, 3kHz and 5kHz are located at 20, 60 and 110 degrees respectively, the
three ones with equal strength. The stepped response shown in the normalized power
diagram is due to the integer nature of the delay elements which limits the beamformer
resolution. The equations to estimate the required resources for this kind of beamformer

are discussed in the end of this section.

Discrete-time interpolation beamformer

In order to overcome the limitations of the discrete-time beamformer involving
non-integer multiples of T, each sensor input signal y,,[k] can be interpolated i.e. the
sensor signal y,,[k] can first be upsampled, delayed, and then passed through a low-pass
interpolation filter. The upsampling operation is intended as an interspersing of I — 1

zero-valued samples between sensor samples. This can be represented as

U [K'] =11 {ym (K]},

Tn literature, the traditional DAS does not have the weights w,, in its temporal representation. These
weights only show up if you use a “weighted DAS”, or in the frequency representation. However, in this
work the “weighted DAS” is referred as the traditional DAS.

72

!
r— - - - - - = - A ‘
Xoln ‘ 0 k’
mic o C) o ‘ H(z) | [R H volk] : 8o o
| —=——— =—= !
z1|n P — 1k ‘
mic 1 C) o Hz) P v v k] : A1
! |
L _ ___ _3 |
z2n ! L lk
mic 2 C) o H(z) | |R yelk] 1 Bt
! !
P J ‘
r— - - - - - - = A ‘
!
T [1] U ym K]
MIC m G 1 H(z) [[rR [Y : z=Amfo
! \
P J ‘
r— - - - - - = - il ‘
TM-1[n ‘ L ynr_1[k]
mic M-1 C) & —~ H(z) IR - i : R NYEN
! !
P J ‘
!

DAS BEAMFORMER

Figure 1.1: PDM-mic array DAS beamformer (repeated from page 23)

where 17 {-} represents an upsampling by I operation so that u/,[k’] is a signal at sampling
period 7" = T'/I. Thus, the interpolated signal after the low-pass interpolation filter with
impulse response h;[k'] will yield
YU KT = DK%, [k,
where * represents discrete-time convolution operation. In practice, if h;[k'] is properly
designed, v/ [K'] is just as if y,,[k] would be sampled at a higher sampling rate.
All interpolated signals can be delayed, weighted and summed together as shown

in Figure 4.2 to produce
M-1
K= wayl K — K], (4.2)
m=0
where
K = 18m/T"[| = [TAR o]

is the required integer delay in the interpolated signals. See that, although this delay is
still integer as k,, case, due to the new sampling period 7" rather than 7', it delivers finer
resolution. Also, as the beamformer output still needs to be at sampling period T, 2'[k/]

needs to be downsampled by I at the end. Therefore,

2[k] =L {2 KT}

73

where |; {-} represents a downsampling by I operation. Because the delay and sum are
performed in the interpolated signals, we call this method as discrete-time interpolation
beamformer. Figure 4.6b shows the normalized power of a 40-microphone uniform linear
array implemented with the discrete-time beamformer method. Three audio sources of
1kHz, 3kHz and 5kHz are located at 20, 60 and 110 degrees respectively, the three
ones with equal strength. This figure shows that the interpolated beamformer has a
finer resolution than the discrete-time beamformer because of increased number of delay
elements at a higher sampling rate. The equations to estimate the required resources for

this kind of beamformer are discussed at the end of this section.

DAS BEAMFORMER

\
r— - - - - = A ‘r 777777 A
zo[n] | | yolk] 1 yolk']
MICOO—r H(z) H R ‘ l 1 H Hiz) ‘ 0 2180 fo
C = =— = = = =— 2 F = = = == = 12
z[n] | 1 oylk] AL
mic 1 Ob——= (e H IR F——| 11 H (o) s
C = =— = = = =— 2 L = = = == = 12
z2n] | | yelk] | | yalk']
mic2 Ob———= #(s) H [k LT e - s
S — - r, 777777 J
\
r— - - - - = A r 777777 A .
Tm[n] | | YmlK] | | Yml[K'] N
MICm CH———> H(s) M IR [H T H) oA fo
S — - L 777777 J
\
r- - - - - - al ‘r 777777 A
\
Tp—1[n]| 1yar—1[k] 1Yar—1[K']
MIC M—1O—1‘> H(z) H IR ‘ i 1 H Hi(z) ‘ v S INVER S
L — - — = = — a E e = = = = = 4 — — — — — — — — — — — — — — - = J
DECIMATION FILTER INTERPOLATION
FILTER

Figure 4.2: Discrete-time interpolation beamformer.

In order to reduce calculations by a factor of M, the interpolation filter can
be expressed in its so-called polyphase filter structure [13,14] in a similar way explained
for a decimation filter in Section 2.3.2 as shown in Figure 4.3. In this sense, given the
interpolation filter h;[k'], as k' = kI +r Vr € {0,...,I— 1}, its output can be expressed as

UnalK] = YR 7] =Y ymlslhlk — o], (4.3)

where

ho[k] = hylkI + 1], (4.4)

is the polyphase component.

74

ym k]
o holk]

hilk]

ha[k]

,_’_ o J

Figure 4.3: Interpolation filter in polyphase filter structure.

Replacing (4.3) and (4.4) in (4.2)

2kl + 7] Z Wiy, [Z Ymls|hrl(k —s)I +1 — k;n]] : (4.5)
It is defined
Rk, (k) = okl + 1 = k],

where computing the difference r — k], modulo I means bringing the difference back into
the range [0, — 1] by adding or subtracting multiples of I from k!, and delaying or

advancing h,_; by the appropriate integer number of samples. Equation (4.5) can be

2 kI + 7] Z Wiy [Z Ymls|hir—), [k — s}] : (4.6)

Because the beamformer output needs to be at the same sampling rate than

written as

the input, it is required that z'[kI 4+ r| would be downsampled by I. In this sense, it is

assumed a fixed value of 7 = 0 so that (4.6) could be written finally as

z|k] = 2'[kI] = Z Win [Z Ymls|h(—r), [k — s]] : (4.7)

Equation (4.7) represents an efficient polyphase implementation of the discrete-
time interpolation beamformer. As shown in Figure 4.4, in this implementation, for each
beam, only one of the component polyphase filters needs to be implemented at each

sensor’s output.

75

Wo

w1

POLYPHASE

|

|
xo[n] " wolk]

mic o C) = H(z) [~ |R [. T H(—rp),(2)
i |
z1[n] T T Y [K] |

mic 1 C) ‘ H(z) | |[R ‘ : H—rp), (2)
Lo __ g !
x2[n] ! " yalk]

mic 2 C) —~ H(z) R ‘ ; H (1), (2)
L — — — — — — — — - |
r—— - - - - - = a !
|

T [n)] b ym[K]

mic m C) =~ H() R ‘ : H (), (2)
|
L — — — — — — — — - |
r.- - - - - — — = il ‘
zay-1[n] ! yara[K]

mic M1 C) ‘ H(z) ™[R ‘ ki (2)

|
|

COMPONENT

WM -1

DAS BEAMFORMER

Figure 4.4: Efficient discrete-time interpolation beamformer.

Discrete-time postdecimation interpolation beamformer

Because of linearity, low-pass filter and beamforming operations can be inter-

zo[n]

|
wic o Opb————-=

C
zi[n] |
\

mic 1 Ofb——

C
x2[n] |

wic 2 Of———+

Tm[n]

wic m Op————-~

L

r

(L‘]\j,l[n] |

MIC M-1 O—r

I
G
H(z) B lR M TI _>Z—IA0-fQ
—_ - - - - -1 |
l[k] | w1
1) o IR @ 1 e
- - - -<=-Z=-1 ‘
L | w2
H(z) B lR :Lr»@_» TI _>z71A2-fu
I
,,,,,, . . ‘
777777 . |
| ym[k] | Wm,
H(z) M IR ‘4“->®-> 11 e 1am o
- - — — _— _—_ 4 . |
|
- — 1 [k] ‘ZUMA
H(z) > lR M TI —>Z*IAM—1'fo

DECIMATION FILTER

changed as shown in Figure 4.5. This implementation results in computational savings

when the number of sensors M is significantly larger than the interpolation factor I.

H[(z)

1

DAS BEAMFORMER

Figure 4.5: Discrete-time postdecimation interpolation beamformer.

76

180°

(a) Discrete-time beamformer method.

180°

(b) Discrete-time interpolation beamformer method (interpolation
factor I = 16).

Figure 4.6: Normalized power (polar) of a uniform linear array of 40 microphones (M = 40)
and specifications as listed in Table 1.1 and Table 1.2. Three audio sources of 1 kHz, 3kHz
and 5 kHz are located at 20, 60 and 110 degrees respectively, the three ones with equal
strength.

Implementation resources

The implementation resources for the time domain beamformers presented in
this section can be derived from Figure 1.1, 4.4 and 4.5 as shown in Table 4.1. In this
table, SZ.., St

. 0 . . o
eer Odecr Odee and S§., are the implementation resources of each decimation filter.

77

Also, as delay from the array center to the mth microphone (A,,) will be changing
to steer the beamformer, the delay chains need to be large enough support all possible values
of A,,. Therefore, from (1.4) is derived that the delay chains length for the discrete-time
beamformer will be 2[Aax fo|; and for the efficient and postdecimation ones, 2[I Ayax fo |
as shown in Table 4.1. Note also that all quantities are added by M times S3.., Si.. or S,
respectively, as the decimation filter are dedicated by channel, not sharing any resource.

It is also observed that both interpolated realizations depend on the interpolation
filter length (Ny), the efficient one has the [N;/I] term in its calculations because of the
polyphase structure used.

Finally, comparing S} . from efficient and postdecimation interpolation beam-
formers, it can be verified that the postdecimation one is more resource-efficient only when
M{[&] > N;I or approximately when M > I

Beamformer’s number Beamformer’s number

3 9
Impﬁr:tehrg:datlon rEeE;?jz::zr(zf gofr?gb?t of additions per second of multiplications per
q bf (Sf,) in APS second (S;;) in MPS
Discrete-time beamformer — 2M [Ayax fo | Lout + M S5, (M —1)f,+MS5, Mf,+ MS;.
Efficient discrete-time 2M ([T Amaxfo] + N, o
interpolation beamformer f%l)Lout + M S5, (M—-14+M (%1 Vfot MST. (M + M) fo+ M S,

Discrete-time
postdecimation
interpolation beamformer

CM[IAmaf]+ o
ND) Lo + M5, (M — 1+ Np)fol + MS,

dec

(M + NiI) fo + M S,

Table 4.1: Time domain implementation resources of beamformers at PCM domain

4.1.2 Frequency domain implementations

One-dimensional FFT beamformer

Given an array of M microphones with time domain outputs and denoting the
mth microphone output as y,,(t), we denote the Fourier transform of the mth microphone
output by Y,,(w). In this case the spectrum of the delay-and-sum beamformer output

would be
M—1

Z(w) = Z Wy, Yo (w) exp(—jwA,,) (4.8)

m=0
where A,, is the delay in the mth microphone output y,,(¢). In practice, however, Y,,(w)
can not be computed because it would require integrating over all time. So, in order to
analyze the time domain signal in a limited time frame, it is introduced the concept of

short-time Fourier transform

Y (t w) = /t Ot = Yy (F)e T dr (4.9)

78

where D is the time frame after the ¢ instant. Here, 1(¢) denotes a finite length window
defined over [0, D]. Therefore, (4.9) can be rewritten as

D
Yoo (t, w)el™t = / V(T)ym(t + T)e 7 dr . (4.10)
0

This expression can be interpreted as an approximation of the spectrum at time
t in a frame of length D. Then, the spectrum of the delay-and-sum beamformer output

will be
M—1

Z(t,w) = Z Wi Yy (T, w) 7 exp(—jwA,,) . (4.11)

m=0
Even though (4.11) is limited in time, it is still required to integrate over the time domain
which is not possible for discrete-time signal processing. Provided that y,,[k] is the kth
sample of y,,(t) signal sampled at f, = 1/T rate so that ¢t = kT, (4.9) can be expressed in

the discrete-time domain as

k+Ds—1

Volk,wl =) o[l = klym[lJe 7", (4.12)

1=k
where Y,,[k,w] is the discrete short-time Fourier transform of the y,,(¢) at the instant
t = kT and over the frame time D = D,T provided that Dy is an integer. Here, ¢[k] is
also the discrete-time version of the window function v (t) over [0, D;]. Then the discrete
short-time Fourier transform of the beamformer output equals to
M—1
Zk,w] = Z W Yo [k, w]e?T% exp(—jwA,,) . (4.13)
m=0
If the frequency domain is discretized so that w1 = 2wv/Dy for v =0,..., Ds —

1, (4.12) can be rewritten as

Y, [k, v] exp {ﬂg“k} - Dlsz;lwuym[k + U] exp {—jQWZ} . (4.14)

So the beamformer output will be

Zk,v] = i Wy Yok, v] exp {ng:}(k: — Am/T)} : (4.15)

Then, if it is defined g, [k,] = Y[lJym[k +], the DFT of g,,[k,] will be

Ds—1
- ° 2mv
Yo lk,v| = Um|k, 1] € —7 ls, v=0,...,D,—1. 4.16
L IE_Oy[}Xp{JDS} (4.16)

79

Finally, Equations (4.14) and (4.15) can be rewritten as

9 .
Ym[k,v]exp{j gvk}:Ym[k,v], v=0,...,D,—1, (4.17)
2mv A,
— =0,....,.D,—1. 4.1
Zwm kvexp{ Ds T}’ v=0,...,Dq (4.18)

Equation (4.18) can be implemented in hardware as shown in Figure 4.7. At first,
it is required to transform PDM bitstreams x,,[n] to PCM representation y,,[k]. Then
each PCM audio signal is passed through a windowing function ¢ [k] to yield ¢,,[k]. Each
windowed signal is then passed through a FFT block to obtain ?m[k‘, v]. These frequency

domain signals should be multiplied by a weighting factor

2mv A
Win(v) = wmexp{—' m}—m}

D, T

which depends on the desired direction of arrival. Finally, the weighted outputs are
summed together and transformed to time domain by an Inverse Fast Fourier transform
(IFFT).

Figure 4.9a shows the normalized power of a uniform linear array implemented
with one-dimensional FFT beamformer method using 40 microphones (M = 40). Three
audio sources of 1kHz, 3kHz and 5kHz are located at 20, 60 and 110 degrees respectively,
the three ones with equal strength. The equations to estimate the required resources for

this kind of beamformer are discussed in the end of this section.

woln] | ol Yolk,o] MOl
MIC 0 O—r H(z) IR FFT{-}
|
zi[n] | | yilk]
MIC 1 O—\' H(z) IR FFT{}
P |
z2[n] | yelk] z[k]
MIC 2 O—f H(z) | IR FFT{} IFFT{-}
. o 3 . Dg-points IFFT
Tmln] | Yml[K]
MIC m O—r H(z) ™ R[S FFT{}
zam-1ln] | | ym—1[K]
MIC M-1 O—r H(z) IR FET{-}
Lo a Dgs-points FFT
DECIMATION FILTER (¥ window)

Figure 4.7: One-dimensional FFT beamformer implementation method.

80

Two-dimensional FFT beamformer

In the same way than the one-dimensional FE'T beamformer, if we use a uniform

regular array whose spatial origin occurs at the first microphone such that

omd
c

where d is the space between microphones, a, = cos(6), 6 is the angle of arrival and ¢ is
the sound speed.

If it is also defined a variable u related to v as

_ dMay,

u =

v, v=0,...,D,—1, (4.19)

such that the argument of the exponential of (4.18) can be rewritten as

2mv A, 21w
D, T M

m, m=0,...,M—1,

and the whole equation (4.18), replacing (4.19) and (4.16), can be rewritten as following

M-1Ds—1

2 2
Zlk,u,v] = Z Wi Tm [k, 1] exp {—j gvl} exp {—j%m} : (4.20)

m=0 [=0

And if it is also defined z[k,m,l] = wpGm[k,l] = W (D) ym[k + 1], thus (4.20)

can be written as a two-dimensional DFT
Zk,u,v] = DEFT{DFT {x[k,m,l]}} , m=0,....M—11=0,...,D,—1. (4.21)

Equation (4.21) can be implemented in hardware as shown in Figure 4.8. At first,
it is required to transform PDM bitstreams z,,[n] to PCM representation y,,[k]. Then
each PCM audio signal is passed through a windowing function ¥ [k] to yield g,,[k]. Each
windowed signal is then passed through a FFT block to obtain Y;,[k,v]. The outputs of
those FFT blocks are passed through another FFT block. The output of this second FFT
block is passed through a steerer block S{-} defined as

Zk,v) = S(0, Zk,u,v]) = Z[k,u,] (4.22)

e AM cos(9) ’
— DgTec

which, given a desired angle of arrival 0, filters only the samples meeting the v and v
relation defined by (4.19). Finally, the Steerer’s output is passed through an IFFT block.

Figure 4.9b shows the normalized power of a 40-microphone uniform linear array
implemented with the two-dimensional FFT beamformer method. Three audio sources
of 1kHz, 3kHz and 5kHz are located at 20, 60 and 110 degrees respectively, the three

81

ones with equal strength. The stepped response shown in the normalized power diagram
is due to the small size of the second FFT block (N = 40) which limits the beamformer
resolution. This resolution can be improved increasing N so that it would be always
greater or equal than the number of microphones (N > M).The equations to estimate the

required resources for this kind of beamformer are discussed in the end of this section.

zo[n] | | Yolk] Yolk, v]
MICOO—T H@z) IR, FFT{.}
F— — — — — 4 Desired DoA
zi[n] | yilk] Y1k, v] ©)
MIC 1 O—T H(z) | R, FFT{}
F= = ===+ \
xa[n] | yelk] Ya [k, v] Zk,u,v] Z [k, v] z[k]
Mic 2 OF———| H(s) P IR, FFT{-} FFT{-} S{} IFFT{} o
L — — — — — E) . N-ppyhts FFT STEERER Dg-points IFFT
zTm[n] | | YmlK] Yok, v]
MIC m O—T Hz) PR FFT{-}
zym-1[n] | | ym—1[k] Yar—1[k,v]
MIC M-1 O—T H(z) | R, FFT{.}
L= = = = = - Ds-points FFT
DECIMATION FILTER (¥ window)

Figure 4.8: Two-dimensional FFT beamformer implementation method.

Implementation resources

If the Ds-points FFT blocks in Figures 4.7 and 4.8 are implemented using
“butterfly” structures [13], each FFT block implementations resources can be estimated
using (2.18). So, using this equation, it is found that each D¢-points FFT block will require
3D Loy storage elements, DLy, to store the input elements and 2DL,; to store each
stage results (imaginary and real parts); 2D, log,(D;) f, additions and multiplications per
second. The same implementation metrics can be found for N-points FFT and D,-points
IFFT blocks with the same equation (2.18), assuming that they are also implemented with
“butterfly” structures,

Based on these architectural assumptions, the implementation resources of one-
dimensional and two-dimensional FF'T beamformers can be calculated as shown in Table 4.2

ST and S*

ees Odec Jec are the implementation resources of each decimation filter in the

where 57
beamformer; and N > M is the number of points of the 2" FFT in the two-dimensional
FFT beamformer.

From Table 4.2 can be observed by comparison that the two-dimensional FF'T

beamformer requires less computation (MPS) when

DsM > Nlogy, N,

82

90°

180°

(a) One-dimensional FFT method

90°

180°

(b) Two-dimensional FFT method

Figure 4.9: Normalized power (polar) of a uniform linear array of 40 microphones (M = 40)
and specifications as listed in Table 1.1 and Table 1.2. Three audio sources of 1 kHz, 3kHz
and 5kHz are located at 20, 60 and 110 degrees respectively, the three ones with equal
strength.

but as N > M, then two-dimensional FFT requires less computation when
N < 2Ps

Finally, it is observed also that even with less computation, two-dimensional FFT beam-

former require additional 4N L, storage elements. So, because of this storage and

83

Beamformer’s number Beamformer’s number

Imp;\e/zlr;ii)tgtlon I_Eeigfxg:ér(zzs t)oil;?gb?t of additions per second of multiplications per
q bf (S) in APS second (S;) in MPS
One-dimensional FFT 3M D, Loy +4Dg Loy + 2(M +1)Dslog, Ds f, + 2(M +1)Dslog, Ds f, +
beamformer MS3.. 2Dy(M —1)f, + MSE, 2D M f, + M S},
Two-dimensional FFT SMDgLgyt + 4N Loy + / +
beamformer 4D Loy + M S}, 2(M +1)D; logy Dy fo + 2N logy N fo + MSje.

Table 4.2: Frequency domain implementation resources of beamformers at PCM domain

computation resources trade-off, the implementation should be chosen depending on the

intended application and the available resources.

84

4.2 Proposal: Beamforming at PDM domain

In this section, an alternative time domain implementation and two frequency
domain methods that do not require decimation filters are proposed. This chapter

complements the study already done in [8] about beamforming on the PDM domain.

4.2.1 Time domain implementations

Discrete-time bitstream beamformer

The PCM signal y,, on the mth decimation filter’s output can be written as
Ymlk] =Lr {B[n] * 0]} = hlrlem[RE -], (4.23)

where | g {-} represents a downsampling by R operation (n = Rk), * represents a discrete-
time convolution, h[n] is the impulse response of the low-pass filter so that its cutoff
frequency would be w. = 7/R, and z,,[n| is the PDM bitstream signal incoming from the
mth digital microphone.

The discrete-time DAS beamformer can be expressed in terms of PDM bitstream

signal z,, replacing (4.23) in (4.1)
M-1
2] = ww > A, Rk — Rk, —1].
m=0 r
Since h[r] does not depend on m, this equation can be written as
M-1
k] =Y h[r] > waam Rk — Rk, —1]. (4.24)
r m=0
By defining 2'[n] as
M-1
Z'[n] = Z WinZm[n —n,], (4.25)
m=0

where n!, = Rk, is the delay in the mth PDM bitstream x,,, the beamformer output z[k]
can be expressed in terms of 2'[n] replacing (4.25) in (4.24) so that

2[k] =) h[r]Z[Rk —] =Lg {h[n] * 2/[n]} . (4.26)

Equation (4.26) can be implemented in hardware as shown in Figure 1.2. There-

fore, as the beamforming is performed in the first filtering stage, directly into the bitstreams,

85

this beamformer implementation will be called as discrete-time bitstream beamformer. Also
note that as the delay and weighting are conducted at PDM domain, there will be a finer
resolution for the delay.

Finally, as the delayed inputs z,,[n — n/, | are still bitstreams, the multiplying by
w,, operation will be actually rather a substitution operation. This substitution operation
will increase the number of bits of the adder inputs. Also, as the adder output will be
a multi-bit signal, LPF should be designed to have also a multi-bit input rather than a
bitstream input like the discrete-time beamformer case. This variation in the LPF’s input
will not impact in the final output as it is always a multi-bit (PCM) output. Figure 4.11
shows the normalized power of a 40-microphone uniform linear array implemented with
the discrete-time beamformer method. Three audio sources of 1kHz, 3kHz and 5kHz are
located at 20, 60 and 110 degrees respectively, the three ones with equal strength. It is
shown that this beamformer has a better resolution than the normalized power response
of the beamformers shown in Figure 4.6 because of the higher resolution in the delay
elements running at input sampling rate. The equations to estimate the required resources

for this kind of beamformer are discussed in the end of this section.

—An—1-fi

mic M-1 ()

1z

| |
| |
Wo
zo[n] | \
mic o C) : Do fi |
| |
| w1 |
z1[n]
mic 1 C) : A :
‘ ‘ r— - - - - - - = A
xon] | I 2 [n]! I z[k]
mic 2 C) ; LAz fi ; ‘ H(z) PR+
| | I I
| | L — — — - = = = = J
| | DECIMATION FILTER
| |
Tm[n] | |
Mic m C) ‘ zAm i |
| |
| |
| |
Tm—1[n] : :
| |
| |
| |

DAS BEAMFORMER

Figure 1.2: PDM-mic array DAS beamformer at PDM domain (repeated from page 25)

Implementation resources

The implementation resources for the postdecimation beamformer in Table 4.3 are
derived from Figure 1.2. As the delay elements are in a higher sampling rate (f; = Rf,),

the beamformer’s storage requirement (Sg;) depends on R times Ap.x and Li,. Also, as

86

90°

180°

Figure 4.11: Discrete-time bitstream beamformer method. Normalized power (polar) of a
uniform linear array of 40 microphones (M = 40) and specifications as listed in Table 1.1
and Table 1.2. Three audio sources of 1kHz, 3kHz and 5kHz are located at 20, 60 and
110 degrees respectively, the three ones with equal strength.

there is only a single decimation filter, implementation resources are added by S3,., Si..

and S} respectively.

Beamformer’s number Beamformer’s number

3 9
Imp}\e/:lr;;eilr:)tgtlon rgeiirigz;l:;r(;f goirr?gbeit of additions per second of multiplications per
q bf (Sf,) in APS second (S;;) in MPS
Discrete-time bitstream) . o + N
beamformer 2M[RAmax fo| Lin + S5ee (M —1)Rf,+ Si. MRf,+ Si..

Table 4.3: Time domain implementation resources of beamformer at PDM domain

4.2.2 Frequency domain implementations

One-dimensional bitstream FFT beamformer

Due to the fact that a PDM bitstream has the same information than its converted
PCM signal but with quantization noise shaped at higher frequencies, a PDM bitstream
can be treated as a baseband signal with a higher sampling rate f; = Rf,, where f, is the
required sampling rate in the beamformer output and R is the decimation rate. Therefore,
the one-dimensional FFT beamformer can be modified so that decimation would be
performed in frequency domain at the end of the beamformer, before an IFFT is applied,
as shown in Figure 4.12. This implementation method will be called as one-dimensional

bitstream FFE'T beamformer.

87

Because the input sampling rate is higher than in a conventional DAS beamformer,
it is required a frame length D’ = RD; i.e. R times larger than the required in conventional
implementation methods. Figure 4.14a shows the normalized power of a uniform linear
array implemented with an one-dimensional bitstream FFT beamformer method using
40 microphones (M = 40). Three audio sources of 1kHz, 3kHz and 5kHz are located at
20, 60 and 110 degrees respectively, the three ones with equal strength. The equations to
estimate the required resources for this kind of beamformer are discussed in the end of

this section.

zo[n] Xo[n,v] Wolv]
mic 0 Ob———{ FFT{.}
MIC 1 Qxl—[n]> FFT{}
SR I pewwy B R - U8 NI B s I koo - (4]
wie FET) H(z) [IR [IFFT{-} o
7777777 J Dgs-points IFFT

DECIMATION FILTER

Tm|n]

mic m OF———{ FFT{}

za—1[n]

Mic M-1 OF———{ FFT{}

D/ -points FFT
(¢ window)

Figure 4.12: One-dimensional bitstream FFT beamformer implementation method.

Two-dimensional bitstream FFT beamformer

The two-dimensional bitstream FFT beamformer may be derived in the same
way than the one-dimensional bitstream FF'T beamformer, just performing the decimation
filtering in the frequency domain at the end of the beamformer as shown in Figure 4.13.
As the state-of-the-art beamformer case shown in Figure 4.8, the number of points of the
second FFT block should have also N > M points. See also that as IFFT operation takes
place after the decimator, its number of points (D, = D,/R) is less than the number of
points in the first FFT block (Dy).

Figure 4.14b shows the normalized power of a uniform linear array implemented
with a two-dimensional bitstream FET beamformer method using 40 microphones (M = 40).
Three audio sources of 1kHz, 3kHz and 5kHz are located at 20, 60 and 110 degrees
respectively, the three ones with equal strength. The equations to estimate the required

resources for this kind of beamformer are discussed in the end of this section.

88

wico O— ey
Desired DoA
x1[n] ©
mic 1 C————+{ FFT{}
r—— - - = A
x2[n] Z'n,v) | | Z[k,v] (k]
mic 2 C————>{ FFT{} s{} | H(z) MR IFFT{} [
STEERER L - - = — — - Dg-points IFFT
DECIMATION FILTER
Tm([n]
MIC m OQf———>| FFT{:}
zr-1[n) Xn—1[n,v]
VTYe aliN pe
D’ -points FFT

(¢ window)

Figure 4.13: Two-dimensional bitstream FFT beamformer implementation method.

Implementation resources

If it is assumed that FFT and IFFT blocks from Figures 4.12 and 4.13 are
implemented using “butterfly” structures, the required implementation resources for one-
dimensional and two-dimensional bitstream FFT beamformers can be estimated as shown

in Table 4.4 where the implementation resources of each FFT and IFFT are estimated
using (2.18).

Beamformer’s number Beamformer’s number

3 9
Impﬁt;eﬁﬂ;;tlon rEeiﬁ-ljxglir(zzs t)oir;gb?t of additions per second of multiplications per
a bf (S¢) in APS second (S;;) in MPS
o N 2M(RD,)log, (RD,)Rf, + 2M(RD,)log, (RD,)Rf, +
One‘gﬁrﬁf:;ﬁoﬁzt:eam 3MRD, Lowt + 4D, Low 2RD,(M —)RS, + 9RD,MRS, +
2D, log, Ds f, 2D log, Ds f,
Two-dimensional bitstream — 3M RDy Loy + 4N Lows + 2M(RD;)log, (RDs)Rf, + 2N log, NRf, +
FFT beamformer 4D, Lowt 2D log, D f,

Table 4.4: Frequency domain implementation resources of beamformers at PDM domain

In the same way done for PCM beamformers in Section 4.2.2, by comparing
the beamformer’s number of multiplications per second (S};) and beamformer’s storage
requirement (S¢;) in Table 4.4, it can be observed that the two-dimensional bitstream FFT

beamformer requires less multiplications per second when
N < 2ftbs

but requires additional 4N L. bit than the one-dimensional one.
Finally, from Table 4.4 can be also observed that the decimation filters do not

have impact in the resource utilization of both beamformer implementation, this because

89

90°

180°

(a) One-dimensional bitstream FFT method

90°

180°

(b) Two-dimensional bitstream FFT method

Figure 4.14: Normalized power (polar) of a uniform linear array of 40 microphones
(M = 40) and specifications as listed in Table 1.1 and Table 1.2. Three audio sources of
1kHz, 3kHz and 5kHz are located at 20, 60 and 110 degrees respectively, the three ones
with equal strength.

decimation in frequency domain requires only to discard the higher frequency samples

without any extra calculation.

90

4.3 Summary

Beamformer’s number Beamformer’s number

H b
Domain Impﬁrgtehr;tgtlon rfez;?efz::ir(zzs t)o;:gb?t of additions per second of multiplications per
q bt (S{y) in APS second (S;;) in MPS
Discrete-time beamformer — 2M [Apax fo | Lous + M S5, (M —1)f, + MSE, Mf,+ MSp,,
Efficient discrete-time M ([TAmaxfo] + , CENITY £ L g o
interpolation beamformer [517) Lows + M S, (M=1+M[E) f+ M ST, (M + M[FH]) fo + M Siec
Time Discrete-time @M[IAmaf,] +
postdecimation . maxse (M —1+ Nyp)f,I +MS;, (M + N I)f, + MS,.
. . Np)Low + MS3,. dec e
interpolation beamformer ¢
Discrete-time bitstream , . - n y "
beamformer? 2M [RAmax fo|Lin + Siee (M —=1)Rf, + Siee MRf, + She.
One-dimensional FFT 3MDgLoy + 4D s Loy + 2(M + 1)Dslog, Dy f, + 2(M +1)Dglogy Dy fo +
beamformer MS3,. 2D,(M —1)f, + MS3., 2D M fo + M S
Two-dimensional FFT 3MDgLoy + 4N Loy, + , e
beamformer 4D Lo + MS3,. AM +1)D; log, Dsfo + 2N logy N fo + M.
Frequency
. . N 2M(RDy)log, (RDs)Rf,+ 2M(RD;)log, (RDs)Rf, +
O“;;fﬁ;ﬁ‘;igf:ﬁ; M 3MRD, Loy + 4D, Lou, 2RD,(M — 1)Rf, + 2RD,MRf, +
2D510g2 Dsfo 2Da 10&2 Dsfo
Two-dimensional bitstream — 3M RD Loy + 4N Loy + 2M(RDy)log, (RDs)Rf, + 2N log, NRf, +
FFT beamformer* 4D Loyt 2D;log, Ds fo

Table 4.5: Beamformer implementation resources summary

In Table 4.5 is summarized the required resources to implement the state-of-the-
art and proposal methods studied in this chapter. It is easy to see in this table that the
discrete-time beamformer will require less implementation resources that the interpolation
and postdecimation ones. So if it is assumed that M > 1 and the required resources
for the discrete-time beamformer are compared to the proposed discrete-time bitstream

beamformer one, the latter one will be more efficient that the former one when

Saee > fi = for (4.27a)
:ikec > f’L - fo and (427b)
Sgec > 2AmaXfO<RLin - Lout) . (427(3)

In other words, the discrete-time bitstream beamformer will the most resource-
efficient time domain beamformer when conditions in (4.27) are accomplished.

In frequency domain methods case, it is not possible to derive simple conditions
to select the most resource-efficient time domain beamformer as they depend on the

additional parameter Dy that depends on the frame length (Lgame) as follows:

Ds = IVLframefo—l . (428)

91

Also, depending on the FFT implementation method, it could be required D, to be a
multiple-by-2 number.

4.4 Results

Beamformer’s number Beamformer’s number

H 9
Domain Imp;\(j[r;(ellrgzst ton rfesﬁiz‘:lir (Z ZS goirr?gb? ¢ of additions per second of multiplications per
a bf (Sf) in APS second (S;;) in MPS
Discrete-time beamformer 210040 1211504000 1213440000
 Bfficient discrete-time 302200 1213424000 1215360000
interpolation beamformer
Time Discrete-time
postdecimation 297160 1221920000 1218240000
interpolation beamformer
Discrete-time bitstream 82323 150080000 153200000
beamformer
One-dimensional FFT 388984 1794560000 1798528000
beamformer
Two-dimensional FFT 399894 1791500067
beamformer
Frequency
One-dimensional bitstream
. 35395584 43969626736769 44045124208769
FFT beamformer
Two-dimensional bitstream 35309424 11026533245818

FFT beamformer

Table 4.6: Beamformer implementation resources comparison. It is a assumed that the
decimation filter multi 0 is used in all beamformers, interpolation rate I=10, interpolation
filter length N; = 30, FFT number of points Dg = 64 and N = M = 40.

In Table 4.6 is shown the required resources to implement a beamformer with
specifications as Table 1.1 and Table 1.2, as many decimation filter structures are possible,
it is selected the more efficient one (multi_0) calculated in Chapter 3 and listed in Table 3.4.
As the previous study [8] also has shown, the DAS beamformer implementations in frequency
domain mentioned in this chapter are very expensive because of the large memory and
computation requirements to implement the FFT blocks. So if the implementation
resources are critical, and no additional frequency domain algorithms will be used for
the beamformer, the time domain implementation methods are preferred and, in special,
the discrete-time bitstream beamformer that is the most efficient. If frequency domain
implementation is required, for our specifications, it is shown that the state-of-the-art
one-dimensional and two-dimensional FFT beamformers should be preferred.

In Table 4.7 are also summarized the required implementation resources to
implement the state-of-the-art discrete-time beamformer with specifications as listed in
Table 1.1 and Table 1.2 using decimation filters whose required resources are listed in

Tables 3.5 and 3.1, the prefix pcm__ is used to identify these beamformers. The same

92

S (bit) Spe (MPS) Spe (APS) St (APS) fopu (MHz) Tioga (-) T3 ()
pem_single direct 1529520 1165886080000 2331648624000 3497548784000 3497548.78 54650 349755
pem__single_ eff 1529520 6072960000 12144624000 18231664000 18231.66 285 1824
pcm_single_memsav 27360 12145280000 12144624000 24303984000 24303.98 380 2431
pem__multi 0 210040 1213440000 1211504000 4184944000 4184.94 66 419
pem__multi 1 238280 770560000 766064000 4435184000 4435.18 70 444
pem_multi 2 318160 160000000 785264000 4451824000 4451.82 70 446
pem__multi 3 318160 160000000 785264000 4451824000 4451.82 70 446
pem_multi 4 298600 140160000 1113584000 4558704000 4558.70 72 456
pem_multi 5 242000 616960000 607344000 4709104000 4709.10 74 471
pem_multi 6 266360 794240000 789744000 5064304000 5064.30 80 507
pem_ multi 7 243280 389120000 576624000 5067504000 5067.50 80 507
pem_multi 8 253200 631680000 622064000 5093744000 5093.74 80 510
pcm_multi 9 241120 640000000 632944000 5148144000 5148.14 81 515

Table 4.7: Comparison of required resources to implement a discrete-time beamformer
using decimation filters listed in Tables 3.4 and 3.1 and beamformer specifications as
Table 1.2 (40 microphones).

5 (bit) S5 (MPS) S5 (APS) - S5 (APS) fepu (MHz) Tipgn () Tjp ()

pdm_ single direct 115310 29270016000 58411008000 90384384000 90384.38 1413 9039
pdm_single eff 115310 274688000 423408000 3401456000 3401.46 o4 341
pdm_ single memsav 77756 426496000 423408000 3553264000 3553.26 56 356
pdm_multi 0 82323 153200000 150080000 3050288000 3050.29 48 306
pdm multi 1 83029 142128000 138944000 3056544000 3056.54 48 306
pdm_ multi 2 85026 126864000 139424000 3056960000 3056.96 48 306
pdm_ multi 3 85026 126864000 139424000 3056960000 3056.96 48 306
pdm_multi 4 84537 126368000 147632000 3059632000 3059.63 48 306
pdm_ multi 5 83122 138288000 134976000 3063392000 3063.39 48 307
pdm_ multi 6 83731 142720000 139536000 3072272000 3072.27 49 308
pdm_ multi 7 83154 132592000 134208000 3072352000 3072.35 49 308
pdm_multi_8 83402 138656000 135344000 3073008000 3073.01 49 308
pdm_multi_ 9 83100 138864000 135616000 3074368000 3074.37 49 308

Table 4.8: Comparison of required resources to implement a discrete-time bitstream beam-
former using decimation filters listed in Tables 3.4 and 3.1 and beamformer specifications
as Table 1.2 (40 microphones).

comparison but for proposal discrete-time bitstream beamformer is summarized in Table 4.8,
the prefix pdm__ is used in this case.

It is easy to see that the discrete-time bitstream beamformer is the most efficient
implementation for all cases at our given conditions except for the pcm_single _memsav
where the beamformer’s storage requirement is less for discrete-time beamformer implemen-
tation. This difference in storage resources is caused because of the pcm__single _memsav
decimation filter (Table 3.1) does not meet the (4.27c) condition. In the same way, it
could be verified that all others decimation filters are inside (4.27) conditions evaluated
with the desired beamformer parameters:

St > 3056000,

dec

S2.. > 3056000,

93

and
Sdec > 1690.

Therefore, as these conditions are met, discrete-time bitstream beamformer is the most
efficient for all those cases.

Finally, after evaluating the implementation resources of the state-of-the-art and
proposal methods in time and frequency domains, it is concluded that the proposed discrete-
time bitstream beamformer is the most efficient for the desired beamformer specification.
It is also concluded that, for the same beamformer specification, the frequency domain
methods are expensive and not efficient but, in case a frequency domain implementation
is required, the state-of-the-art one-dimensional or two-dimensional FF'T beamformers

should be prefered.

94

Chapter 5

Efficient Beamforming

“Given a decimation filter and a beamformer specification, find an

architecture that fuses both delay and decimation operations.”

In this chapter, in order to meet the above objective formulated in Section 1.2.3
a delayed decimation filter, based on Samadi filter, which merges both filtering and delay
elements in a single structure is proposed to reduce the resources required in comparison to
the already studied structures. This delayed decimation filter is equivalent to a decimation
filter with low-pass filter impulse response H(z) decimated by R followed by a delay A,,,
such that the PDM-mic array DAS beamformer shown in Figure 1.1 can be expressed as

an array of delayed decimation filters.

5.1 Universal maximally flat Samadi filter

The design of linear-phase FIR filters with flat passband and stopband has
been first studied by Herrmann [45]. These MAXFLAT filters are characterized by the
maximally possible order of tangency at w = 0 and w = 7. Furthermore, their transfer
function can be expressed by equivalent closed-form expressions formulated in [45-48].
While Herrmann proposed a design method based on Hermite polynomial interpolation,
Rajagpoal [48] derived an equivalent expression based on Bernstein polynomials. In the
other hand, nonlinear-phase MAXFLAT FIR filters were introduced by Baher [49]. These
filters resulted in improved transition bandwidth and controllable group delay at w = 0.
Even though Baher proposes a simple method to derive MAXFLAT transfer functions, a
closed-form was not provided by him.

Finally, Samadi [9] unified Baher’s nonsymmetrical filters, linear-phase MAXFLAT
filters and Lagrange interpolators using a compact formula for the transfer function of
Baher’s filters. Samadi’s filters can be realized with cellular array structures, as further
described in [9,50].

95

5.1.1 Samadi’s filters

As derived in [9], the transfer function of Samadi’s filters is defined by

R I NEIS BN IPs R

HN,K,d(Z> = Z C]’(2) (2) (51)

5=0
where ‘
j N N
(5 —d\ (5 +d
N R 2 5.2

=2 (F)G5) o
K is the number of zeros at z = —1, N is the filter order, and the delay parameter d is a
real number defined as N

For a given group delay «, such that 0 < a < N, one easily verifies that

N
2

N
<d< —
- T2

or

N
’d| < dmax = 5: (54)

where dpax is the maximum allowed delay parameter and the binomial coefficients in (5.2)

are defined as)
i—1

rT—7 .
Hj+1’ 121
(?): = (5.5)
i 1, i=0

0. 1 <0

\

This filter becomes a MAXFLAT linear phase FIR when d = 0. As shown

in [45,48], the low-pass cutoff frequency (w.) of these linear phase filters is related with NV
as

L~ [Nw,/m+0.5] (5.6)

where L is defined for convenience as
L=N-K. (5.7)

The cutoff frequency of these linear phase filters increases almost linearly with L as shown
in Figure 5.1 for different N values. Also, as demonstrated in [9], for linear phase filters
(d = 0) the coefficient of (5.1) is

Cj\dzo =0, jodd,

96

then the magnitude frequency spectrum of L = 2j and L = 2j + 1 are the same for
j €40,...,[N/2 — 1]} as shown in Figure 5.1a. Figure 5.1c also shows that the filter
group delay for d = 0 is @ = N /2 as expected by (5.3).

Magnitude

o
\)
1

o
e}
1

0.0 0.2 0.4 0.6 0.8 1.0

0.0 0.2 0.4 0.6 0.8 1.0

oo
|

D
1

W~
1

Group Delay (samples)

[\

0.0 0.2 0.4 0.6 0.8 1.0

Figure 5.1: Linear-phase Samadi’filter magnitude (a), phase (b) and group delay (c)
normalized frequency spectrums for N =9 and N =12 (d = 0).

97

In the other hand, when d # 0 the Samadi filter becomes a MAXFLAT nonlinear
phase filter. The most interesting characteristic of this filter class is the ability to modify
its group delay as given by (5.3) and shown in Figure 5.2.

=5
15 -
% 10 -
()
2 5
A ———=4
T
s 0+ \g }
—5- =
T T T T T T
0.0 0.1 0.2 0.3 0.4 0.5

151

3

£ 104 d==3

] =

N =1

7 51 B

s =4
=2

S 07

o

O _5-
T T T T T T
0.0 0.1 0.2 0.3 0.4 0.5

Figure 5.2: Samadi filter magnitude (a), phase (b) and group delay (c¢) normalized frequency
spectrums for N = 10 and d € {-5,...,5}

98

In Figure 5.2 it is shown how the filter flatness is affected when d increases.
However, it is also shown that the phase is still linear inside the passband region for
w < 0.257. This suggests that this filter can be used as an intermediary stage in a multirate
filter chain to perform group delay adjustment and low-pass filtering as studied in the

next section.

5.1.2 Proposal: Samadi filter as multirate filter

A Samadi filter could be used as the LPF of a multirate filter. Given d constant,
K and N can be adjusted to meet filter requirements already defined in (2.10). Because
Samadi filter frequency spectrum is monotonic, the minimum parameters K and N to
meet requirements given by d, R, V), Vs, 9,, o5 could be calculated with the proposed
Algorithm 3, where R = R;, 4, = 51],', 8y = &7, Vp = V;Jj and V; = V7, such that if aliasing in
transition band is allowed, then FJ = F, for j € {1,...,.J —1}; otherwise, if aliasing is not
allowed, then Fg = F, for j € {1,...,J — 1}, i.e., the last stage cannot be a Samadi filter.

Figure 5.3 shows examples of minimum N and K values for MAXFLAT linear-
phase filters (d = 0) using the proposed procedure with decimation factor R = 2. As
expected, J; decreases discretely with higher N values. Also, as pointed out by [51],
Figure 5.3b shows how NN varies as a quadratic function of w,.

Finally, Figure 5.4 shows minimum N and K values calculated by the proposed
procedure for d € {0,...,26} and common values of w,. It is shown that the minimum
N, required for any d, decreases with w, increments, and it is almost 3 times d when
wy/m = 0.28.

5.1.3 Samadi’s decimation filter implementation

Binomial chain structure

Since the Samadi filter equation (5.1) is a binomial filter sequence (as first

proposed by Haddad in [52]), this filter can be expressed as

1+ -1 NN-K 1 — -1 J
HN,K,d(Z> = (2z) Z Cj(l + j_l) . (58)
7=0

The binomial equation (5.8) can be realized as a cascade of two filters:

HN,K,d<Z) = AN<Z)BN7K7d(Z) (59)
where N ek ’
14271 I R

An(z) = (5) . Bnrialz) = Z Cj(l n Z_l) , (5.10)

99

Algorithm 3 Samadi’s Filter minimum N and K calculation algorithm

1:
2
3
4
5:
6
7
8
9

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:

procedure SAMADIMINN(d, R, 6,, 65, V), V5)
L+ 0
N + 2[d]
loop

oy < max(|Hyy_ra(e”) —1]) Ywel,

6+ max(|Hyn_ra(e™)]) Yw € Vj

if d = 0 then
if 51’) <6, and ¢!, < 6, then
K=N-1L
return N, K

else if L < [Nw,/m + 0.5] then

L+ L+2
else
L<+0
N+ N+1
end if
else
if (51’0 <6, and ¢!, < 6, then
K=N-1L
return N, K
else if 9, > 1 or L > N then
L+ 0
N+ N+1
else
L+~ L+1
end if
end if

end loop

29: end procedure

> Linear-phase filter

> Nonlinear-phase filter

100

--- K

164 = | SR

15 . N s e e e

14 1 ———————

10 A \ e o e e

T T T T
—-100 -95 -90 -85 -80 =75 —70 —65 —60

100 -
904 — N
-—- K
70
60
50 -
40 -
30 -
20 -
10

——

“————-’

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18 0.20 0.22 0.24 0.26 0.28 0.30
wp(rad)
(b)

Figure 5.3: Minimum N and K values for linear-phase Samadi filter (d = 0), decimation
factor R = 2, passband frequency w, = 27/R — ws and passband ripple J, = 0.1dB. (a)
In function of d;, w, = 0.21 constant. (b) In function of w,, d; = —80dB constant.

as depicted in Figure 5.5a and 5.5b.
We will call the block diagram in Figure 5.5a as binomial representation Type I,

which requires the following resources

Siec = (2N — K) L, bit (5.11a)
Shee = (N =K)f, (5.11b)
St.= BN —-4K)f,R, (5.11c)

101

70
65

60 4 wp/m=0.28
55 -
50 1
45

= 40 A
35 1
30 1w, /7 =0.25
25 1
20 4w/ =0.21
15 4 wp/m="0:15

10 4 wp/m="0:10
)

O—.
[N}
S
()
[02¢]
—_
(e}
—
[\
—
S
=
(=)
—_
o
[N}
(e}
[\)
[\
[\
=~
[\)
(=)

d
(a)
45
\
/ -
40 4wy /m=0.28 7N PR /
24 : SN J
1 /
35 7 \ ¢ PR r L
\ 7’ AY 7 e 4
30 1 N T e
\ II / / f/ ,—— ST
< 25 1 \ L s it WA RO Lt IS M L
[o -
\ // /,/ /7~." ,::/d'
920 - So / ——— /s\ / “‘,A_
wy/m = 0.25 AN ST D =
15 4 S~e= ,’/ == i
wp/m=0.21_~ 2T -
10 - wp?w—om' SN Neo-IllTT
P o N~ - ’___f’
; wp/m=010____~--

0 2 4 6 8 10 12 14 16 18 20 22 24 26

Figure 5.4: Minimum N (a) and K (b) values depending on d and required w, for R = 2
and 0, = —80dB.

and we call Figure 5.5b as binomial representation Type II, which requires the following

resources

Siec = SecA T SiecB (5.12a)

*

dec - decA + S;eCB (512b)
Stee = Siecn + Sdee (5.12¢)

dec e

102

where
Sieca = N Ly bit (5.13a)
Sieea =0 (5.13Db)
St.a=Nf,R. (5.13¢)
and
SdzecB ~ (N — K)Lin bit (514&)
SieeB = (N — K) foR (5.14b)
SCECB =4(N - K)f,R. (5.14c¢)

are the required resources to implement Ay (z) and By k q(z), respectively.
It easy to see that the Type I implementation requires less multiplications per
second (S

*..) than Type II implementation, as they are performed after decimation. Even

though Type II requires more resources, as the N blocks at the end do not depend on ¢;
coefficients, its usage could be more convenient in some PAPS applications when sharing
resources is allowed, such that the N blocks are shared between channels. This Type II
implementation sharing resources property will be used in Section 5.3 to reduce required

resources in beamforming implementation.

Celular structure

As further detailed by Samadi in [50], the filter Hx k 4(z) can be implemented
as a cellular structure, like the structure presented in Figure 5.6. Defining P, ; as a node
localized at row ¢ and column j in the cellular structure, one can verify that those nodes

are related to each other according to

cx[n], i=0,
P;= P .. (5.15)
’ D(z) | 7" |, otherwise,
P14
where, recalling that ¢; is defined by (5.2), we have that
L 7 =0,
Cj .
C;: ma 0<j<N-K, (516)
j
0, otherwise,
1
D(z) = 3 [1 +z7 b 1—-2z71, (5.17)

103

BLOCK 1 BLOCK 2 BLOCK N
z[n] co y[k]
o——1+z! 14 g7 peeeees 1+ z¢ lR N o
1—z—1
1421
C1
IR
1—z1
1421
C2
. IR .
' a
i
1—z" 1 ;
1421
CN—K
IR
(a)
BLOCK 1 BLOCK 2 BLOCK N
x[n] Co) N) y[k]
° 1+2z I 1+z IR e
1—z—1
1+z—1
c1
1—z—1
1421
C2
! s
Lt A
1421
CN—-K
(b)

Figure 5.5: Samadi’s decimation filter binomial representation Type I (a) and Type II (b).

and the filter output is given by

ylk] = Pyv_r 10 (5.18)

104

Pro|D(2)| Pui [D(9)| P2 |D(2)| Prs [D(2)| Pra|D(z)

Po |D(z)| 21 |D(2)| P22 [D(2)| P23 |D(2)

Pro |D(z)| Pt |D(z)| Po2 |D(2)

Pao |D(z)| Par |D(2)

P50 |D(z)
IR
ylk] ©

Figure 5.6: Samadi’s decimation filter cellular structure example for N =5 and K = 1.

Finally, the resources required to implement a jth-stage Hy i q(z) filter with this

structure are:

i~ %(N _ K)(N = K + 1) Lace bit (5.190)
Stec = (N = K) [oRR (5.19b)
St o= ;(N _K)N =K+ DR (5.19¢)

Even though this implementation requires more resources than binomial imple-
mentations, it is specially suitable for configurable filter realizations where its parameters
can be varied by adding or deleting extra cells or changing the value of a single ¢; coefficient.

For instance, a filter that requires the cutoff frequency w, be changing dynamically would

105

only need to keep zeroing c;. coefficients according to the respective K value, without any

further change in the filter structure.

5.2 Proposal: Delayed Decimation Filter

As one objective of this chapter is to find a decimation filter that fuses both
delay and decimation to then be used in a beamformer and as the group delay is the
parameter that represents the filter input to output delay, we need to find a decimation
filter architecture with configurable group delay (Figure 5.7a).

As shown in previous sections, Samadi filter is the best candidate for this purpose
as its group delay could be regulated just changing the Samadi filter delay parameter
(d) and, as d is a real number, this group delay is not restricted to discrete values only.
Samadi’s filters have also the advantage to have a flat passband response (MAXFLAT),
but they have the disadvantage that their passband 4, and stopband d, ripples worsen as
their Samadi filter delay parameter (d) increases (see Figure 5.2a).

As the Samadi filter design depends only on three parameters N, K and d, if the
two first ones are kept constant and only d is variable, the J, and 6, parameters will change
along with this parameter. So if it is defined a maximum d (dyax) such that |d| < dyay, it
is necessary that the Samadi filter will be designed to keep its d, and ¢, parameters under
required specification for all d values allowed.

Also, as a Samadi filter does not have the flexibility to be designed for specific
F, and Fj values without changing other filter parameters, its frequency response needs to
be compensated to keep the overall decimation filter’s parameters under specification.

So, due to these mentioned Samadi filter limitations, in order to keep the overall
decimation filter’s parameters under specification, this thesis proposes a J-stages decimation
filter whose penultimate stage (J—1) is a Samadi filter and its last stage (.J) is an equiripple
filter as shown in Figure 5.7b. The Samadi filter will control the whole filter group delay
by setting its respective d parameter and the last equiripple stage will compensates the
magnitude and phase distortion caused by Samadi filter for all |d| < dpax. The Samadi
filter could be implemented either as a cellular structure or as a binomial chain structure
(Figure 5.7¢) already discussed in previous sections. Also, as this is a multi-stage filter,
other filtering stages (1 to J — 2) can be added before the Samadi filter to help in the
decimation.

In the end, the proposed delayed decimation filter will be an “all-in-one” filter
that performs the same filtering and downsampling operations that any state-of-the-art
decimation filter and has the capability of alter its group delays without any change on its

structure or additional delay chain.

106

z[n] ! ! y'[k]
a | Ha(z) [IR ~o
fi | | fo
(a)
STAGE 1 to J-2 STAGE J-1 STAGE J
z[n] | I I L y[K]
C f Hl(z) ™ lRl >~)->HN K d(z)blRJ 1 H HJ(Z) ™ lRJ fo
i I I | o
L e — — = = = = | ‘ ‘L 7777777 |
| . EQUIRIPPLE FILTER
oA l
"SAMADI'S FILTER
(b)
STAGE 1 to J-2 STAGE J-1 STAGE J
z[n] | ! I Ly (K]
fi \ I | fo

b — —m — - — — — il

SAMADI'S FILTER
()

Figure 5.7: (a) Delayed decimation filter, (b) its version as a multi-stage decimation filter
with J — 1 stage being a Samadi filter, (c¢) and its version with Samadi filter decomposed
in its binomial components.

5.2.1 Design considerations

As discussed in previous sections, the three design parameters of a Samadi filter
are the number of zeros at z = —1 in a Samadi filter (K), the Samadi filter order (V) and
the Samadi filter delay parameter (d). In this case, as the d parameter will vary in the
range |d| < dpax, dmax Will be our design parameter instead of d.

The filter delay A depends on the d parameter, R;_; and R; parameters as

follows: y
A= ———— 5.20
RyR;_1f, (5:20)
Therefore, if |d| < dpax then
d d
Al < —Smax g A = —max 5.21
A= RyRy_1f, RyR;1f, ()

This expression says that maximum required delay (Ap.x) is limited by the dpax

parameter. So, for f, and A,.. specifications as in Tables 1.1 and 1.2 respectively, and

107

assuming that Ry = Rj;_1 = 2, by (5.21), dyax = 20.13. Then, the parameters N and K
need to be calculated in order that overall filter specification will be kept for all |d| < 20.13.

Once d,.y is defined, the minimum K and N parameters can be calculated using
Algorithm 3 with the desired filter specification and d,,., instead of d as inputs. It is
important to remark that if the Samadi filter is designed for d,,,x the decimation filter will
continue under the same specification for values |d| < dpax, this effect can be observed in
Figure 5.2a, where 9, decreases for lower values of d, and in Figure 5.4, where for d > 3
given a combination (d, N,w,) if N is kept constant and d is decreased, w, will always

increase, so the flatness will be improved.

5.2.2 Physical limit of the d parameter

Given a decimation filter specification, dy,, is defined as the physical limit of the
d parameter, such that
‘d| S dmax S dlim7

such that if any value of |d| is above this limit, independent of the group delay, it would
cause a violation in the desired decimation filter specification. Figure 5.8 shows the dj,
values for a decimation filter with specifications as listed in Tables 1.1 but with F}, varying
in the range from 0kHz to 7.5kHz range. The d;,,, value in this figure was calculated, for
each F), frequency, designing first the delayed decimation filter with Algorithms 2 and 3,
and then increasing d by 1; this process is repeated until d reaches the limit value d;,
that still keeps the filter under desired specification; N and K are calculated for each dj;y,.

Figure 5.8 shows that the physical limit of the d parameter is approximately
dim =~ 25 around the Nyquist’s frequency and around dj;,, ~ 50 for low frequencies and
that djn, decreases as F), increases. This means that a filter with the same specification but
dmax = 30 and F, = 7.5kHz will not be realizable with the proposed delayed decimation
filter because djiy, ~ 25 at this F}, point.

So, the dj;, value should be taken into account at design time as this will limit
the maximum allowed delay parameter (dyax) and consequently the maximum delay of
the decimation filter (Apax)-

5.2.3 Implementation resources

Assuming that S7, S;’, S%, and S7 are the storage requirements, number of
additions per second, number of multiplications per second and total number of additions
per second respectively of the jth-stage of the delayed decimation filter for j =1,...,J;

it is easy to see from Figure 5.7c that the respective implementation resources for the

108

100 -

90

80

70

60

50 1

40 1

30

20 -

F,(kHz)

Figure 5.8: dyy, for a 3-stages delayed decimation filter with structure [lthband’, 'maxflat’,
‘equir’], decimation rates [48, 2, 2] and filter requirements specified in Table 1.1 but F,
variable; The N and K values correspond to the respective dy,, values.

delayed decimation filter will be

J=2

J
Siec = Z S5 =385+ S + Siecr + 53, (5.222)

jfl

Sit. = Z St = Z ST+ Stea+ Sten+ ST, (5.22b)

Sdec = Z St = Z S+ Sieca + Siecn + S5, (5.22¢)

7j=1
J—2

e = Z S9 =" 8+ Sheen + S + 55, (5.22d)

j=1

where S3..4 and Sj . p are the storage requirements for the Ay (z) and By 4(z) filters

respectively, the same for the other resource variables.

109

5.3 Proposal: Beamformer based on delayed decimation
Filter

The Samadi filter stage in a delayed decimation filter in Figure 5.7c can be
expressed in its binomial representation Type II (Figure 5.5b), in such way that the latter
part of the filter chain does not depend on A. Therefore, if M delayed decimation filters
are placed in parallel, the weightings by w,, are placed just before the Ay(z) filter and
their outputs are added to form a beamformer, as shown in Figure 1.3, the latter part

after By i .4(z) could be shared between all microphone channels as shown in Figure 5.10.

xo[n ! ' yolk iy
wico O) [n] o Yolk]
pL——1
z1[n] e Bl e |
mic 1 C) > Ha, (2) [
pL——1
xr2|n ‘Liiiiiiii Z[k‘]
mic 2 C) i ™ Ha,(2)] °
|
Tm[n] ‘
mic m C) = Ha,, (2)]
l‘]\lfl[n] !
mic m-1 () H A ()
| |

Figure 1.3: PDM-mic array DAS beamformer using delayed decimation filters (repeated
from page 26)

Note also, in the same way that beamformers at PDM domain discussed in
Chapter 4, the beamforming is not performed with the final PCM signals at the output
sampling rate (f,), rather the beamforming is performed in an intermediary stage of the
decimation filter at the R;R;_4 f, rate.

110

MIC 0 ObF———+ Hi(z) }| [Ri [™1Bnx.ic.ao (2)

I
MIC 1 OF———{ Hi(2) H [Ri [Bk ()

|
|
|
|
|
|
|
z2[n) a . 4[k]
mic 2 Ob——— Hi(2) H|R: W‘ BN k.a, (2) MRt ; = Hy(z) f[[Rs o
| | | |
Co N ¢ e _ o _ _ _ .
| As | EQUIRIPPLE FILTER

r.- - - - — - - il ‘ ‘
ZTm[n)]! y \
MIC m OF——— Hi(2) H R [{By.xc.a,. (2) |
I I I
A J ‘ * ‘
r.- - - - — - - il ‘ Am ‘
| |
1']\/[71[7i] ‘ | |
MIC M-1 O Hl(z) 1 lRl ""‘"-BN K,del(Z) |
‘L 7777777 J [[} [
STAGE1TO Jj-2 ! Api—1 !
| |

SAMADI'S FILTER EXPANDED

Figure 5.10: PDM-mic array DAS beamformer using delayed decimation filters

Finally, the required resources to implement this beamformer can be calculated

from (5.23) and Figure 5.10 as following:

J—2

Sie=M>_Si+ MSieen + Sieen + S5, (5.23a)
7j=1
J—2

Sfe=M>_SF+MSj, 5+ Siea+Sf+(M—1)R,Ry_1f,, (5.23b)
j=1

J—-2

Sie =M 85+ MSieen + Sieca + S5+ MRRy 1 [, (5.23¢)
j=1
J—-2

St =MD S+ MSqen + Sqeea + 55+ (M =1+ (Low — VM)R;Ry_1f,, (5.23d)

=1

where the last term summed to S, Sy and S are the respective additional required
resources to implement the adder and the weighting w,, blocks, these calculations being

at the RyR;_1f, sampling rate.

5.4 Results

A delayed decimation filter was designed according to specifications listed in
Table 1.1 using Algorithms 2 and 3, the filter has 3-stage architecture (['lthband’, 'maxflat’,

111

‘equir’]) with decimation rates: [48, 2, 2|, as shown in Figure 5.11. Figure 5.12 shows the
individual frequency spectrum of each internal stage for dp.x = 20.13. Note that even
though the mazxflat stage has a bumpy frequency spectrum above the passband frequency

(F},), this is compensated by the last stage equiripple filter (equir) as shown in Figure 5.13.

LTH-BAND FILTER SAMADI'S FILTER EQUIRIPPLE FILTER
r— - - - - - - - al r— - - - - - = - al r— - - - - - = = il
z[n] ! ! . ! y'[k]
()—Hf Hi(z) ™ |48 — Hy .a(z2)™ |2 > Hs(z) [~ |2 —0—°f
g | | | | | o

Figure 5.11: Delayed decimation filter for a PDM-mic

As mentioned along this chapter, the advantage of using a Samadi filter is that it
allows one to change its group delay just by changing some coefficients, i.e., without any
change in the whole filter structure. Figure 5.14 shows the group delay of this multi-stage
filter for many values of its d parameter. It is easy to see how the group delay is directly
proportional to the d parameter.

Also, the breakdown of the resource requirements by stage is shown in Table 5.2,
where the first row corresponds to the Lth-band filter stage, the second and third rows
correspond to the By k 4(z) and A, (z) parts of the Samadi filter, respectively, and the
last row corresponds to the equiripple filter. The total resource requirements to implement
this filter are shown in Table 5.4 as delayedalong with the resource requirements of
multi-stage filter architetures found in Chapter 3 by optimization algorithm. It is noted
that this standalone decimation filter is not more efficient than the filters found by the
optimization algorithm, it requires in general more storage and computational resources
for its implementation. Even though this proposed delayed decimation filter requires more
implementation resources, it offers the additional capability to regulate its group delay
that could be an advantage in some applications like beamforming.

Finally, Table 5.3 shows the resources required to implement a DAS beamformer
based on this 3-stages delayed decimation filter designed for array specifications listed in
Table 1.2. This result is compared to other beamformer implementations discussed in Chap-
ter 4 in Table 5.4. It is observed that the proposed architecture requires less computational
resources than the other beamformers and that, after the pmc_single_memsav beamformer,
the proposed architecture requires also less storage. However, as the pmc_single _memsav
beamformer is the architecture that also requires a prohibite quantity of computational
resources, it can be concluded that the proposed beamformer based on delayed decimation

filters is the more resource-efficient beamformer architecture for the given specification.

112

50 7
AR AN ANAA RN AR AN AAA AN
o AR AR AR AR RN
B isis i st isipisisiata it s istatslal staish:
=
KR LIRS

0 100000 200000 300000 400000 500000 600000 700000
Frequency (Hz)

50 7

_504 = Stage 1: Ithband \ /
=== Stage 2: maxflat \ /

Magnitude (dB)
Pd
/,,
\\
~

\
===+ Stage 3: equir : . . /
—100 = . ,q : N i’\.i, \Ii_.j"v’\‘.’ N ’./‘I.’ |
0 10000 20000 30000 40000 50000

Frequency (Hz)

(b)

Figure 5.12: (a) Magnitude frequency spectrum of internal stages of the delayed decimation
filter in the whole input range, and (b) the same frequency spectrum in the 0kHz to
50kHz range.

Siec (bit) Siee (MPS) Sg. (APS) Sfe (APS) fepu (MHz) Tiipgp () Ty ()
multi 0 4963 30320000 30272000 104240000 104.24 2 11
multi 1 5669 19248000 19136000 110496000 110.50 2 12
multi_ 2 7666 3984000 19616000 110912000 110.91 2 12
multi_ 3 7666 3984000 19616000 110912000 110.91 2 12
multi_ 4 7177 3488000 27824000 113584000 113.58 2 12
multi_5 D762 15408000 15168000 117344000 117.34 2 12
multi_ 6 6371 19840000 19728000 126224000 126.22 2 13
multi 7 5794 9712000 14400000 126304000 126.30 2 13
multi 8 6042 15776000 15536000 126960000 126.96 2 13
multi 9 5740 15984000 15808000 128320000 128.32 3 13
delayed 12568 22256000 30560000 230672000 230.67 4 24

Table 5.1: Comparison of the proposed delayed decimation filter and the multi-stage
decimation filters found in Chapter 3 by optimization algorithm.

113

O -
o 251
=
g —50
2
& —75
T
=
—100 A
0 200000 400000 600000 800000 1000000 1200000 1400000 1600000
Frequency (Hz)
(a)
0 -
750 .
=
£ —100 -
[
w0 —150
c
<
—200
—250 A
0 1000 2000 3000 4000 5000 6000 7000 8000
Frequency (Hz)
(b)
0.2 7
m 0.1
=
[
2 001
=
Lo
(8]
= —0.17
70.2 T T T T T T T T T
0 1000 2000 3000 4000 5000 6000 7000 8000

Frequency (Hz)

()

Figure 5.13: Magnitude (a) and phase (b) frequency spectrum of the delayed decimation
filter. (c) Passband ripple frequency spectrum.

114

92 A
—— d=-20.13 (A ==314.47 ps)
=== d=-10.06 (A = —157.23 pis)
90 ~ se=es d=-5.03 (A = —78.62s)
___________________________________ —-= d=-2.52 (A = —39.31 ps)
n —e— d=0.00 (A = 0.00ps)
O BB AL m e L =262, (A = 39.31 is)
\3; —— i i s st @ (d=5.03 (A= 78.621715)
& —e-=d=10.06"(A = 157.2311s)
S 86 7 Ceeee sttt st g (2013 (A = 314.4TTs)
g— T I i I I I I I I I I I I I I I O I T RN e,
S
84 4 G = 1 P P =l + P P ==+ = Pl = = o= P ==+ G P ==n + G G =Qn + P P == = @
82 A PP

0 1000 2000 3000 4000 5000 6000

7000 8000

Frequency (Hz)
Figure 5.14: Delayed decimation filter group delay.
S S Sy So fepu (MHz) TI«j—PGA (-) Tf,f (-)
0 138 15680000 15616000 15616000 15.62 1 2
1 552 1536000 6144000 39936000 39.94 1 4
2 2714 0 3776000 3776000 3.78 1 1
3 9164 5040000 5024000 171344000 171.34 3 18

Table 5.2: Delayed decimation filter resource requirements breakdown.

First row corre-

sponds to the Lth-band filter stage, the second and third ones are to the By i 4(z) and
A, (z) parts of the Samadi filter respectively, and the last one to the equiripple filter.

Value Unit
beamformer’s storage requirement (SZ) 39478 bit
beamformer’s number of multiplications per second (Sf) 6.9624e4+-08 MPS
beamformer’s number of additions per second (S} 8.81696e+08 APS
beamformer’s total number of additions per second (Sp;) 2.45858¢4+09 APS
estimated minimum frequency in a processor (fepu) 2458.58 MHz
estimated number of adders in an FPGA running at 64 MHz (Tipqs) 39 -
estimated number of adders in a VLSI circuit running at 10 MHz (Tl;f) 246 -

Table 5.3: Required resources to implement a beamformer using 40 shared delayed deci-

mation filters.

115

Séec (blt) Sécc (I\/IPS) ScTeg (APS) Sgcc (APS) fcpu (kIHZ) T;PGA (_) 711; (_)
delayed_ bf 39478 696240000 881696000 2458576000 2458.58 39 246
pem_single direct 1529520 1165886080000 2331648624000 3497548784000 3497548.78 54650 349755
pem_single_ eff 1529520 6072960000 12144624000 18231664000 18231.66 285 1824
pcm_single_memsav 27360 12145280000 12144624000 24303984000 24303.98 380 2431
pem__multi_ 0 210040 1213440000 1211504000 4184944000 4184.94 66 419
pem_ multi 1 238280 770560000 766064000 4435184000 4435.18 70 444
pem__multi_ 2 318160 160000000 785264000 4451824000 4451.82 70 446
pem__multi_ 3 318160 160000000 785264000 4451824000 4451.82 70 446
pcem_multi_ 4 298600 140160000 1113584000 4558704000 4558.70 72 456
pem__multi_ 5 242000 616960000 607344000 4709104000 4709.10 74 471
pem_multi 6 266360 794240000 789744000 5064304000 5064.30 80 507
pem__multi_ 7 243280 389120000 576624000 5067504000 5067.50 80 507
pem_multi_ 8 253200 631680000 622064000 5093744000 5093.74 80 510
pem__multi_ 9 241120 640000000 632944000 5148144000 5148.14 81 515
pdm_ single_ direct 115310 29270016000 58411008000 90384384000 90384.38 1413 9039
pdm_ single eff 115310 274688000 423408000 3401456000 3401.46 54 341
pdm_ single_memsav 77756 426496000 423408000 3553264000 3553.26 56 356
pdm_multi_0 82323 153200000 150080000 3050288000 3050.29 48 306
pdm_ multi_1 83029 142128000 138944000 3056544000 3056.54 48 306
pdm_ multi_ 2 85026 126864000 139424000 3056960000 3056.96 48 306
pdm_multi 3 85026 126864000 139424000 3056960000 3056.96 48 306
pdm_ multi_4 84537 126368000 147632000 3059632000 3059.63 48 306
pdm_ multi_ 5 83122 138288000 134976000 3063392000 3063.39 48 307
pdm_ multi_6 83731 142720000 139536000 3072272000 3072.27 49 308
pdm_multi_7 83154 132592000 134208000 3072352000 3072.35 49 308
pdm_ multi_ 8 83402 138656000 135344000 3073008000 3073.01 49 308
pdm_multi_9 83100 138864000 135616000 3074368000 3074.37 49 308

Table 5.4: Comparison of the proposed beamformer based on delayed decimation filter
and PDM and PCM domain beamformers discussed in Chapter 4.

116

Chapter 6

Conclusion

The main objective of this work was to find out an efficient way to implement
a beamformer that uses PDM-mics. To achieve this objective, this work explored three
approaches: to determine an optimum decimation filter, to perform the beamforming
at PDM domain and to determine an optimum beamformer architecture that merges

decimation and delay operations.

Determine an optimum decimation filter

This first approach (Chapter 3) required, at first, a review of the state-of-the-art
filter design methods like equiripple, Lth-band and CIC filters. During this review, it was
realized an opportunity to reduce the number of adders of CIC compensators at certain
conditions (d, > 0.1dB,c < 1/4,R > 5) just changing the coefficients of the state-of-the-art
architecture, so a new set of coefficients for this condition was proposed. In the end, due
to the fact that all discussed multiplierless CIC compensator design methods (summarized
in Table 3.2) require less adders at different conditions, it is not concluded that one of
them is the best, but that they are complementary to each other.

Once those filter design methods were reviewed, due to the prohibitive required
resources to implement a beamformer using these single-stage basic structures, it was
realized that a multi-stage approach is required. So, multi-stage multirate filter design
was discussed such that, given a overall filter specification, the individual frequency ranges
and ripples constraints of each stage were derived.

Finally, using the results of this single-stage and multi-stage filter design review,
it was proposed an algorithm to calculate the structure of a multirate filter (Algorithm 2),
and specifically, of a decimation filter minimizing the total number of additions per second
(S,). This algorithm was applied to calculate decimation filter structures with specification
as listed in Table 1.1. From the algorithm results it is concluded that for the given
specification, that considers an PDM input, the most efficient architecture will be a

two-stages decimation filter (multi_0) with a first Lth-band stage and a second equiripple

117

filter stage, decimation 96 and 2 respectively. It can be concluded also that, as it is usually
de facto assumed, a CIC filter-based architecture is not the most efficient alternative if

implementation resources reduction is the objective.

Perform beamforming at PDM domain

At first, this second approach (Chapter 4) required us to discuss the state-of-the-
art beamformer implementation methods. These state-of-the-art implementation methods
assume that the signals incoming from the microphones are already in PCM domain and
perform the beamforming in time or frequency domain. So, those time and frequency
domain methods were further discussed in the context of use PDM-mics as sensors.

Once the state-of-the-art methods were reviewed, methods to do beamforming
directly in PDM signals rather than PCM signals were proposed. As these methods do not
require to convert all signals incoming from PDM-mics to PCM to do the beamforming, it
was shown that they allow us to get rid of many decimation filters and, consequently, they
require less storage and computational resources for their implementation.

Once the state-of-the-art and proposed beamforming implementations were dis-
cussed, the resources to implement a beamformer with specifications as listed in Table 1.2
and using the most efficient decimation filter found in Chapter 3 (multi_0) were calculated
for each beamforming implementation (Table 4.6). The results showed that frequency
domain implementations are not efficient and require a lot of computational resources
because of the FFT blocks, as they require O(N log, N) operations and more memory
to bufferize results. It is also shown that for the given conditions the state-of-the-art
discrete-time beamformer and the proposed discrete-time bitstream beamformer are the
most resource-efficient architectures.

The implementation resources of the state-of-the-art discrete-time beamformer
and the proposed discrete-time bitstream beamformer were calculated using single-stage
and multi-stage decimation filters calculated by optimization algorithm (Algorithm 2) in
Chapter 3 for a beamformer specification as listed in Table 1.2. In Table 6.1 is shown the
two most efficient state-of-the-art beamformer implementations (prefix pem_) and the two
most efficient proposed beamformer implementations (prefix pdm__) found by this analysis.

Finally, it is concluded that for the given beamformer and filtering specifications
the pem__single__memsav implementation will require less storage than any other method,
but it will require also more additions per second than any other one. Discarding the
pem__single _memsav beamformer because of its high computational requirements, it is
reasonable to conclude that from these 4 methods, the beamformers at PDM domain
(pdm__) are the most efficient. Also from the comparison of these two ones, it can be

inferred that the pdm__multi 0 one is more suitable for software implementations, and

118

the pdm__single_memsav one could be more suitable for hardware implementation (FPGA

or VLSI) as it requires less storage.

Determine an optimum beamformer architecture that merges decima-

tion and delay operations

As is required a structure that performs filtering and delaying at the same time,
the best candidate was the Samadi filter because of its capability to regulate its group
delay without adding any delay element, just changing its coefficients. So, at first, we
reviewed the Samadi filter properties and implementation structures (Chapter 5). As
this filter class was not used in the state-of-the-art as a decimation filter, Algorithm 3
was proposed to calculate its parameters N and K based on a given decimation filter
specification and a required group delay (d).

Once the Samadi filter was further analyzed, we proposed a decimation filter
based on it called delayed decimation filter. It is a multi-stage filter with a Samadi
filter stage and a last equiripple stage. Then, the design considerations and resource
implementation expressions of this filter were further discussed. This delayed decimation
filter was decomposed in its binomial components and it was used as the base of a novel
DAS beamformer implementation. This proposed implementation is based on sharing
common parts of the each delayed decimation filter that do not depend on the desired
delay (A,,).

Also, a delayed decimation filter was designed with specification as listed in
Table 1.1. This decimation filter was compared with the optimum decimation filter found
in Chapter 3, but it was found that it is not efficient in comparison to them as it requires
more implementation resources working as a standalone filter. Then this decimation filter
was used to implement a DAS beamformer whose resource requirements are shown in
Table 6.1 as delayed decimation filter-based beamformer. The resource requirements of
most efficient beamformers architectures studied on this thesis are also summarized in this
table.

This table shows that the proposed implementations at PDM domain (pdm_)
and using delayed decimation filters are more efficient that the conventional ones regarding
required area and number of adders/multipliers. This table also shows that the proposed
beamformer based on the Samadi filter is the second most storage efficient option (S¢;), only
after the single-stage implementation using polyphase memory-saving pdm,__single _memsauv.
However, again due to the fact that pdm__ single_memsav is computationally expensive, we
could say that practically the most efficient beamformer is the one based on the proposed
delayed decimation filters. In other words, the delayed bf implementation provides the

best trade-off between storage and computational resources and it would be a best choice

119

Beam’— Estimated Estimated Estimated
former’s .. number of
Beam- total minimum number of adders in a
former’s number of frequency adders in VLSI
storage re- additions in a an FPGA cireuit
quirement q processor running at . ¢
(Sz) inbit PESCORT r Yin 6AMHz ThoATE A
(Spe) in MHs (T) 10 MHz
APS FPGA (Tlg)
Delayed decimation
filter-based
beamformer 39478 2458576000 2458.58 39 246
(delayed__bf)
Discrete-time
beamformer using a
multi-stage 210040 4184.94 66 419
decimation filter 4184944000
(pem_multi_0)
Discrete-time
beamformer using a
single-stage memory
saving decimation 27360 24303984000 24303.98 380 2431
filter
(pcm_single__memsav)
Discrete-time
beamformer using a
multi-stage
decimation filter at 82323 3050288000 3050.29 48 306
PDM domain
(pdm_multi_0)
Discrete-time
beamformer using a
single-stage memory
saving decimation 77756 3553264000 3553.26 o0 350

filter at PDM domain
(pdm__single_memsav)

Table 6.1: Comparison of required resources to implement a 40 PDM-mic DAS beamformer
with specifications listed in Table 1.1 and 1.2.

to be used in low-power consumption applications where storage and computational rate
are both critical.

Finally, it is important to remark that this work focused in exploring and
proposing new methods to implement beamformers efficiently without taking into account

the beamformer detection efficiency, as this is considered transparent to its implementation.

120

Future work

The results of this work show the efficiency of using beamformers based on Samadi
filters applied to broadband audio signals. A future work could explore the efficiency of
the same beamformer structure in narrow band signals, as in this case flatness is usually
not a required, it could be possible to reduce implementation resources even more.

Also, as it has been demonstrated that the binomial structure of Samadi filters
are identical to the wavelet filters proposed by Daubechies [53], and as these structures are
suitable for multi-resolution signal decomposition and coding applications; the proposed
decimation filter based on Samadi filters could be used in efficient implementations of
array processing algorithms in the wavelet domain that uses XAM data as required for

medical applications, for example.

121

Bibliography

1]

[10]

[11]

[12]

G. Jovanovic-Dolecek, R. Baez, G. Salgado, and J. Rosa, “Novel multiplierless
wideband comb compensator with high compensation capability,” Clircuits, Systems,
and Signal Processing, vol. 36, 08 2016.

G. J. Dolecek and S. K. Mitra, “Simple method for compensation of cic decimation
filter,” Electronics Letters, vol. 44, pp. 1162-1163, Sep. 2008.

G. Jovanovic-Dolecek and A. Fernandez-Vazquez, “Trigonometrical approach to design
a simple wideband comb compensator,” AEU - International Journal of Electronics

and Communications, vol. 68, 01 2013.

H. Krim and M. Viberg, “Two decades of array signal processing research: the

parametric approach,” IEEFE Signal Processing Magazine, vol. 13, pp. 67-94, Jul 1996.

G. W. Elko, Future Directions for Microphone Arrays, pp. 383-387. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2001.

D. Van Compernolle, Future Directions in Microphone Array Processing, pp. 389-394.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2001.

R. Lawes, MEMS Cost Analysis: From Laboratory to Industry. Pan Stanford, 2014.

S. Carbajal and B. Masiero, “Microphone array processing of pulse-density modulated
bitstreams,” in XX VIII Encontro da SOBRAC, March 2020.

S. Samadi, A. Nishihara, and H. Iwakura, “Universal maximally flat lowpass fir
systems,” IEEE Transactions on Signal Processing, vol. 48, pp. 1956-1964, July 2000.

P. Malcovati and A. Baschirotto, “The evolution of integrated interfaces for mems

microphones,” Micromachines, vol. 9, p. 323, 06 2018.

S. Park and Motorola, Motorola Digital Signal Processors: Principles of Sigma-delta
Modulation for Analog-to-digital Converters. Motorola, 1993.

J. de la Rosa and R. Rio, CMOS Sigma-Delta Converters: Practical Design Guide.
Wiley - IEEE, Wiley, 2013.

122

[13]

[14]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

A. V. Oppenheim and R. W. Schafer, Discrete-Time Signal Processing. Upper Saddle
River, NJ, USA: Prentice Hall Press, 3rd ed., 2009.

L. Milic, Multirate Filtering for Digital Signal Processing: MATLAB Applications:
MATLAB Applications. Premier reference source, Information Science Reference,
2009.

B. Metzler, Audio Measurement Handbook. Audio Precision, 1993.

H. Suzuki, S. Morita, and T. Shindo, “On the perception of phase distortion,” Journal
of the Audio Engineering Society, vol. 28, pp. 570-574, September 1980.

M. Bellanger, G. Bonnerot, and M. Coudreuse, “Digital filtering by polyphase net-
work:application to sample-rate alteration and filter banks,” IEEE Transactions on

Acoustics, Speech, and Signal Processing, vol. 24, pp. 109-114, April 1976.

N. Fliege, Multirate digital signal processing: multirate systems, filter banks, wavelets.
Wiley, 1994.

R. Crochiere and L. Rabiner, “Optimum fir digital filter implementations for deci-
mation, interpolation, and narrow-band filtering,” IEEE Transactions on Acoustics,
Speech, and Signal Processing, vol. 23, pp. 444-456, October 1975.

R. Crochiere and L. Rabiner, Multirate Digital Signal Processing. Prentice-Hall Signal

Processing Series: Advanced monographs, Prentice-Hall, 1983.

L. Rabiner and B. Gold, Theory and application of digital signal processing. Prentice-

Hall signal processing series, Prentice-Hall, 1975.

E. Hofstetter, A. V. Oppenheim, and J. Siegel, “A new technique for the design of

)

non-recursive digital filters,” in 5th Annual Princeton Conference on Information

Sciences and Systems, March 1971.

T. Parks and J. McClellan, “Chebyshev approximation for nonrecursive digital filters
with linear phase,” IEFE Transactions on Circuit Theory, vol. 19, pp. 189-194, March
1972.

J. McClellan, T. Parks, and L. Rabiner, “A computer program for designing optimum
fir linear phase digital filters,” IFEFE Transactions on Audio and Electroacoustics,
vol. 21, pp. 506526, December 1973.

J. McClellan and T. Parks, “A unified approach to the design of optimum fir linear-
phase digital filters,” IEEFE Transactions on Circuit Theory, vol. 20, pp. 697701,
November 1973.

123

2]

[27]

[28]

32]

[33]

[36]

P. Virtanen, R. Gommers, T. E. Oliphant, M. Haberland, T. Reddy, D. Cournapeau,
E. Burovski, P. Peterson, W. Weckesser, J. Bright, S. J. van der Walt, M. Brett,
J. Wilson, K. Jarrod Millman, N. Mayorov, A. R. J. Nelson, E. Jones, R. Kern,
E. Larson, C. Carey, 1. Polat, Y. Feng, E. W. Moore, J. Vand erPlas, D. Laxalde,
J. Perktold, R. Cimrman, I. Henriksen, E. A. Quintero, C. R. Harris, A. M. Archibald,
A. H. Ribeiro, F. Pedregosa, P. van Mulbregt, and S. . . Contributors, “SciPy
1.0-Fundamental Algorithms for Scientific Computing in Python,” arXiv e-prints,
p. arXiv:1907.10121, Jul 2019.

O. Herrmann, L. R. Rabiner, and D. S. K. Chan, “Practical design rules for optimum
finite impulse response low-pass digital filters,” The Bell System Technical Journal,
vol. 52, pp. 769-799, July 1973.

F. Mintzer, “On half-band, third-band, and nth-band fir filters and their design,”
IEEE Transactions on Acoustics, Speech, and Signal Processing, vol. 30, pp. 734-738,
October 1982.

E. Hogenauer, “An economical class of digital filters for decimation and interpolation,”
vol. 29, pp. 155 — 162, 05 1981.

A. Fernandez-Vazquez and G. Jovanovic Dolecek, “A general method to design gcf
compensation filter,” IEEE Transactions on Circuits and Systems II: Fxpress Briefs,
vol. 56, pp. 409-413, May 2009.

A. Fernandez-Vazquez and G. Jovanovic-Dolecek, “Maximally flat cic compensation
filter: Design and multiplierless implementation,” Circuits and Systems II: Express
Briefs, IEEE Transactions on, vol. 59, pp. 113-117, 02 2012.

G. J. Dolecek, “Simple wideband cic compensator,” FElectronics Letters, vol. 45,
pp. 1270-1272, November 2009.

G. Jovanovic-Dolecek and f. harris, “Design of wideband cic compensator filter for a
digital if receiver,” Digital Signal Processing, vol. 19, pp. 827-837, 09 2009.

S. Kim, W.-C. Lee, S. Ahn, and S. Choi, “Design of cic roll-off compensation filter in
a w-cdma digital if receiver,” Digital Signal Processing, vol. 16, pp. 846-854, 11 2006.

G. Molnar and M. Vucic, “Closed-form design of cic compensators based on maximally
flat error criterion,” IEEE Transactions on Circuits and Systems II: Express Briefs,
vol. 58, pp. 926-930, Dec 2011.

M. G. Pecotic, G. Molnar, and M. Vucic, “Design of cic compensators with spt
coefficients based on interval analysis,” in 2012 Proceedings of the 35th International
Convention MIPRO, pp. 123-128, May 2012.

124

[37]

[38]

[39]

[40]

[42]

[43]

[44]

[45]

[46]

[49]

D. E. T. Romero and G. J. Dolecek, “Application of amplitude transformation for
compensation of comb decimation filters,” FElectronics Letters, vol. 49, pp. 985-987,

Aug 2013.

K. S. Yeung and S. C. Chan, “The design and multiplier-less realization of software
radio receivers with reduced system delay,” IEEE Transactions on Circuits and
Systems I: Regular Papers, vol. 51, pp. 2444-2459, Dec 2004.

D. E. T. Romero and M. G. C. Jimenez, “Efficient wide-band droop compensation
for cic filters: ad hoc and reconfigurable fir architectures,” Flectronics Letters, vol. 53,
no. 4, pp. 228-229, 2017.

L. Xu, W. Yang, and H. Tian, “Design of wideband cic compensator based on particle
swarm optimization,” Circuits, Systems, and Signal Processing, vol. 38, pp. 1833-1846,
Apr 2019.

D. Lamb, Efficient algorithms and hardware structures for fractional delay filtering

and sample rate conversion. PhD thesis, Universidade de Sao Paulo, 2016.

R. W. Schafer and L. R. Rabiner, “A digital signal processing approach to interpola-
tion,” Proceedings of the IEEE, vol. 61, pp. 692-702, June 1973.

J. Tiete, F. Dominguez, B. Silva, L. Segers, K. Steenhaut, and A. Touhafi, “Soundcom-
pass: A distributed mems microphone array-based sensor for sound source localization,”
Sensors, vol. 14, p. 1918-1949, Jan 2014.

K. Youngkey, K. Jungoo, and L. Myunghan, “Developing beam-forming devices to
detect squeak and rattle sources by using fpga,” in Inter-noise, pp. 1-6, 2014.

O. Herrmann, “On the approximation problem in nonrecursive digital filter design,”
IEEFE Transactions on Circuit Theory, vol. 18, pp. 411-413, May 1971.

J. A. Miller, “Maximally flat nonrecursive digital filters,” Flectronics Letters, vol. 8,

pp. 157-158, March 1972.

M. F. Fahmy, “Maximally flat non-recursive digital filters,” International Journal of
Circuit Theory and Applications, vol. 4, no. 3, pp. 311-313, 1976.

L. Rajagpoal and S. D. Roy, “Design of maximally-flat fir filters using the bernstein
polynomial,” IEEE Transactions on Circuits and Systems, vol. 34, pp. 1587-1590,
December 1987.

H. Baher, “Fir digital filters with simultaneous conditions on amplitude and delay,”
Electronics Letters, vol. 18, pp. 296297, April 1982.

125

[50] S. Samadi and A. Nishihara, “Concise representation and cellular structure for
universal maximally flat fir filters,” in Proceedings of the 2003 International Symposium

on Clircuits and Systems, 2003. ISCAS ’03., vol. 4, pp. IV-IV, May 2003.

[51] P. Vaidyanathan, “On maximally-flat linear-phase fir filters,” IEEE Transactions on
Clircuits and Systems, vol. 31, pp. 830-832, Sep. 1984.

[52] R. Haddad, “A class of orthogonal nonrecursive binomial filters,” IEEE Transactions
on Audio and Electroacoustics, vol. 19, pp. 296-304, December 1971.

[53] A. Akansu, R. Haddad, and H. Caglar, “The binomial qmf-wavelet transform for
multiresolution signal decomposition,” Signal Processing, IEEE Transactions on,
vol. 41, pp. 13—, 02 1993.

	Symbols
	Acronyms
	1 Introduction
	1.1 Problem Statement
	1.2 Objectives
	1.2.1 Objective 1
	1.2.2 Objective 2
	1.2.3 Objective 3

	1.3 Contributions
	1.4 Metrics
	1.5 Assumptions
	1.6 Notation
	1.7 Document organization

	2 Digital Microphone Technology
	2.1 PDM microphones
	2.2 SD modulators
	2.3 Decimation filters
	2.3.1 Direct form FIR implementation
	2.3.2 Polyphase FIR implementation

	2.4 FFT implementation

	3 Efficient multirate filter design
	3.1 Equiripple (optimal) FIR filters
	3.1.1 Lth-band equiripple filters
	3.1.2 FIR filter required resources

	3.2 CIC filters
	3.2.1 CIC compensation
	3.2.2 CIC filter design
	3.2.3 CIC filter required resources

	3.3 Multi-stage filter design
	3.3.1 Passband and stopband frequency ranges
	3.3.2 Passband and stopband ripples
	3.3.3 Multirate filter stages

	3.4 Proposal: Multirate filter design method based on Ro optimization
	3.5 Results

	4 Beamforming at PCM and PDM domain
	4.1 State-of-the-art: Beamforming at PCM domain
	4.1.1 Time domain implementations
	4.1.2 Frequency domain implementations

	4.2 Proposal: Beamforming at PDM domain
	4.2.1 Time domain implementations
	4.2.2 Frequency domain implementations

	4.3 Summary
	4.4 Results

	5 Efficient Beamforming
	5.1 Universal maximally flat Samadi filter
	5.1.1 Samadi's filters
	5.1.2 Proposal: Samadi filter as multirate filter
	5.1.3 Samadi's decimation filter implementation

	5.2 Proposal: Delayed Decimation Filter
	5.2.1 Design considerations
	5.2.2 dlim
	5.2.3 Implementation resources

	5.3 Proposal: Beamformer based on delayed decimation Filter
	5.4 Results

	6 Conclusion

