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Abstract

Nowadays, pulse-density modulated (PDM) digital microphones are widely used
on commercial applications as they have become a popular way to deliver audio to
digital processors on mobile applications. However, as state-of-the-art array processing
algorithms assume that all microphone signals are available in pulse-code modulated
(PCM) representation, these digital microphones require costly high-order decimation
filters to translate PDM bitstreams to baseband multi-bit PCM signals. In that manner,
the implementation of microphone array algorithms in embedded systems, where processing
resources are critical, or in very large-scale integration (VLSI) circuits, where power and
area are critical, may become very expensive because of the use of the tens of decimation
filters required to convert PDM bitstreams into PCM signals. To overcome these limitations,
this dissertation explores and proposes resource-efficient methods to implement microphone
array beamformers using PDM microphones. In this sense, after to thorough review of the
state-of-the-art decimation filter design methods and the state-of-the-art beamforming
implementation methods, it proposes: an algorithm to design decimation filters with
minimum number of additions per second; efficient beamforming implementations that
work on the PDM domain; and a novel beamforming architecture that fuses both delay
and decimation operations based on maximally flat (MAXFLAT) filters. It shows that the
beamformers implemented on the PDM domain have a good resource-efficiency as requires
less additions per second and memory elements than other conventional methods. Finally,
it concludes that the proposed MAXFLAT-based approach has the best trade-off between
storage and computational efficiency in comparison to state-of-the-art and other proposed
PDM domain implementations.



Resumo

Atualmente, os microfones digitais modulados por densidade de pulso (PDM)
são amplamente utilizados em aplicações comerciais, já que esta é uma maneira eficiente
de transmitir informação de áudio para processadores digitais em dispositivos móveis.
No entanto, como o estado-da-arte em algoritmos de processamento digital de arranjos
assume que todos os sinais recebidos dos microfones estão em uma representação em
banda-base, estes microfones digitais requerem custosos filtros de decimação de alta
ordem para converter o fluxo PDM para a modulação por código de pulso (PCM) em
banda-base. Assim, a implementação destes algoritmos em sistemas embarcados, onde
os recursos de processamento são críticos, ou em circuitos integrados (VLSI), onde a
energia consumida e área também são críticas, pode se tornar muito dispendiosa devido
ao uso de dezenas de filtros de decimação para converter os sinais de PDM para PCM.
Para superar essas limitações, essa dissertação explora e propõe métodos eficientes em
recursos para a implementação de arranjo de microfones usando microfones digitais PDM.
Com esse intuito, apos rever os atuais métodos de design de filtros de decimação e os
atuais métodos de implementação de arranjos de microfones, propõe-se: um algoritmo
para fazer o design de filtros de decimação com o mínimo número de adições por segundo,
implementações eficientes de arranjos de microfones que trabalham no domínio do PDM,
e um método eficiente para implementação de arranjos de microfones baseado em filtros
maximamente planos (MAXFLAT). Demonstra-se que o filtro espacial implementado no
domínio do PDM é mais eficiente em recursos porque precisa de menos adições por segundo
e elementos de memoria que as implementações convencionais. Finalmente, conclui-se
que a implementação baseada em filtros MAXFLAT tem um melhor compromisso entre
requisitos de armazenamento e poder de computação que o estado-da-arte e os métodos
no domínio do PDM propostos.
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Symbols

BN,K,d(z) Samadi filter binomial component.

Bw bandwidth.

c sound speed.

c normalized passband frequency in a CIC compensator.

N+
Gc

number of adders for CIC compensator.

∆f transition bandwidth.

∆fj jth-stage transition bandwidth.

∆f̄ normalized transition bandwidth.

∆f̄j jth-stage normalized transition bandwidth.

Dmin minimum distance between microphones.

δjp jth-stage passband ripple.

dlim physical limit of the d parameter.
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∆ filter delay.

δp passband ripple.

δs stopband ripple.

d Samadi filter delay parameter.

δjs jth-stage stopband ripple.

Nj
eqr optimal jth-stage minimum required filter length.

ρj jth-stage significance coefficient rate.

fcpu estimated minimum frequency in a processor.



fi input sampling rate.

fj jth-stage output sampling rate.

fj−1 j − 1th-stage output sampling rate.
f

fj−1
jth-stage normalized frequency.

fo output sampling rate.

Fp passband frequency.

F j
p jth-stage passband frequency.

Fs stopband frequency.

F j
s jth-stage stopband frequency.

α group delay.

Hj(e
2πi f

fj−1 ) jth-stage low-pass filter impulse response.

HM(z) sigma-delta modulator feedback impulse response.

H(e2πi f
fi ) overall low-pass filter impulse response.

HN,K,d(z) Samadi filter impulse response.

H(ejω) low-pass filter impulse response.

H(z) low-pass filter impulse response.

Sz
dec decimation filter’s storage requirement.

K CIC filter order.

Sz
FFT FFT’s storage requirement.

Sz storage requirements.

Sz
j jth-stage storage requirement.

Sz
J Jth-stage storage requirement.

Kj jth-stage CIC filter order.

Sz
bf beamformer’s storage requirement.

K number of zeros at z = −1 in a Samadi filter.

Lacc filter accumulator length.

Lframe frame length (for frequency domain implementations).

Lin filter input length.



Lj jth-stage required filter output length.

Lj−1 j − 1th-stage required filter output.

Lout filter output length.

δj
band jth-stage design stopband and passband ripples.

Nj optimal jth-stage minimum required filter length.

ρj jth-stage significance coefficient rate.

M number of microphones.

N minimum required FIR filter length.

NI interpolation filter length.

Nj jth-stage minimum required FIR filter length.

Nnz number of nonzero coefficients in the filter impulse response.

N Samadi filter order.

ν roll-off factor.

R decimation factor.

S+
dec decimation filter’s number of additions per second.

S+
FFT FFT’s number of additions per second.

T+
FPGA estimated number of adders in an FPGA running at 64MHz.

S+ number of additions per second.

S+
j jth-stage number of additions per second.

S+
J Jth-stage number of additions per second.

T+
lp estimated number of adders in a VLSI circuit running at 10MHz.

S+
bf beamformer’s number of additions per second.

ρ significance coefficient rate.

Rj jth-stage decimation factor.

S∗dec decimation filter’s number of multiplications per second.

S∗FFT FFT’s number of multiplications per second.

S∗ number of multiplications per second.

S∗j jth-stage number of multiplications per second.



S∗J Jth-stage number of multiplications per second.

S∗bf beamformer’s number of multiplications per second.

Sodec decimation filter’s total number of additions per second.

So total number of additions per second.

Soj jth-stage total number of additions per second.

SoJ Jth-stage total number of additions per second.

Sobf beamformer’s total number of additions per second.

single_direct single-stage direct form implementation.

single_eff single-stage efficient direct form implementation.

single_memsav single-stage memory-saving polyphase implementation.

Up passband frequency range.

U j
p jth-stage passband frequency range.

Us stopband frequency range.

U j
s jth-stage stopband frequency range.

Vp passband angular frequency range.

V j
p jth-stage passband angular frequency range.

Vs stopband angular frequency range.

V j
s jth-stage stopband angular frequency range.

ωc cutoff frequency.

wm mth-filter channel gain.

ωp angular passband frequency.

ωjp jth-stage angular passband frequency.

ωs angular stopband frequency.

ωjs jth-stage angular stop frequency.

yj[n] jth-stage filter output.
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Acronyms

Σ∆ sigma-delta.

Σ∆M Σ∆ modulator.

ADC analog-to-digital converter.

APS additions per second.

CIC Cascade Integrator-Comb.

CSD canonical signed digit.

DAS delay-and-sum.

DFT Discrete Fourier transform.

DoA direction of arrival.

DR dynamic range.

FFT Fast Fourier transform.

FIR Finite Impulse Response.

FPGA Field Programmable Gate Array.

IFFT Inverse Fast Fourier transform.

IIR Infinite Impulse Response.

IoT internet of things.

IVA intelligent virtual assistants.

LPF low-pass filter.

MAXFLAT maximally flat.

MEMS micro-electro-mechanical system.

MPS multiplications per second.

OSR oversampling rate.



PAPS PDM-mic array processing system.

PCM pulse-code modulated.

PDM pulse-density modulated.

PDM-mic PDM microphone.

PSO particle swarm optimization.

SNR signal-to-noise ratio.

THD total harmonic distortion.

THD+N total harmonic distortion plus noise.

VLSI very large-scale integration.
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Chapter 1

Introduction

1.1 Problem Statement
In the last decades, sensor array processing emerged as an active area of research

in the estimation of space-time parameters. Array processing applications are applied to
resolve many real-world problems. In telecommunications, antenna arrays are steered to
one user direction to reduce interference between users. Radar and sonar use antennas and
hydrophones arrays respectively to calculate parameters like direction of arrival (DoA),
velocity and range. In medicine, sensor arrays are used for medical imaging, and planar
biomagnetic sensor arrays are used in electrocardiograms to localize brain activity. In
industry, sensor arrays are used in automatic monitoring and fault detection [4].

Recently, microphone array processing has emerged to resolve problems concerning
internet of things (IoT) applications and hands-free communications, as this kind of
communication becomes a standard option in many consumer devices like mobile phones,
speakerphones and smart speakers, which are broadly used in conference rooms, desktop
devices, and intelligent virtual assistants (IVA) in both consumer and industrial devices.

However, due to the complex characteristics of speech signals (non-static source,
intermittent and broadband) and the usual environmental conditions (reverberation, and
non-stationary additive noise); microphone array implementation is still costly and requires
many microphones. For instance, consider a microphone that has a given signal-to-noise
ratio (SNR) value at 2 cm from the talker; to attain the same SNR at 10 cm from the
talker will require an array of 5 microphones. In the same way, if the required distance
increases to 1 m or 2 m, the array will require 50 or 100 microphones respectively to attain
the same SNR [5]. This large number of microphones increases the aperture size that is
already constrained to: 1 cm diameter for hearing aids, 5 cm for automotive and 10 cm for
consumer desktop devices [6]. In addition, each extra microphone in the design would
require new routing, new placement conditions and more processing resources, which will
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increase the system cost and power consumption, a critical factor for IoT and mobile
applications.

Digital micro-electro-mechanical system (MEMS) microphones introduced in
2006 [7] have emerged as an alternative to overcome the array aperture size and cost
limitations. As these microphones have an analog-to-digital converter (ADC) incorporated
as pre-amplifier, they have a single line pulse-density modulated (PDM) output; because
of that they are also known as PDM microphones (PDM-mics). A decimation filter (also
known as PDM-to-PCM converter) demodulates this PDM bitstream output to a pulse-
code modulated (PCM) signal. Unfortunately, the implementation of this decimation filter
is still not cheap, as its cost (measured in die area and power) increases with the quality
of the desired audio signal. Take for example the case of a microphone array using these
PDM-mics like the delay-and-sum (DAS) beamformer in Figure 1.1. This architecture
requires a decimation filter for each microphone input, so that the implementation cost
and power consumption will increase proportionally with the number of microphones,
being even more expensive for practical applications.
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Figure 1.1: PDM-mic array DAS beamformer

1.2 Objectives
As one of the main limitations of the use of PDM-mic arrays and beamformers

with many microphones is still the implementation costs, the main objective of this thesis
is:
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“Given a decimation filter specification, find resource-efficient
beamformer implementation architectures using PDM-mics.”

To achieve its main objective, this thesis also formulates three secondary objectives.
These objectives are different approaches that try to attain the main objective, each with
its advantages and disadvantages to be used in different designs and implementation
constraints, all based on previous experiences and related works in filter processing.

1.2.1 Objective 1

“Given a decimation filter specification, find an algorithm to
determine the most efficient decimation filter architecture.”

The decimation filter or PCM-to-PDM converter is the basis of any PDM-mic
interface. Many architectures are used in state-of-the-art implementations, most of them
based on Cascade Integrator-Comb (CIC) filters, as they do not require multipliers on their
implementation. However, to the best of the author’s knowledge, there is not any study or
algorithm that allows one to determine the most efficient decimation filter architecture
given a desired filter specification.

In this way, this work proposes an algorithm to design an efficient decimation
filter with minimal resources. The results of this algorithm are meant to be used in any
application concerning PDM, not only with PDM-mics. Nevertheless, as the focus of this
thesis is to apply the algorithm results in beamforming implementations, the algorithm is
analyzed by comparing the implementation costs of PCM domain (Figure 1.1) and PDM
domain beamformers (Figure 1.2).

1.2.2 Objective 2

“Given a decimation filter and a beamformer specification, find an
efficient beamforming implementation that works on the PDM

domain.”

A new beamformer architecture, shown in Figure 1.2, is proposed and we show
that it is possible to perform beamforming on the PDM domain i.e., before the PDM-
to-PCM converter. We also show that a frequency domain implementation does not
provide any gain in resource usage because of the large memory and logic requirements to
implement the Fast Fourier transform (FFT) blocks.

While the same referred work [8] focuses its analysis in frequency domain im-
plementations only, the present work analyzes also time domain implementations, and it
shows that time domain implementations are resource-efficient.
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Figure 1.2: PDM-mic array DAS beamformer at PDM domain

1.2.3 Objective 3

“Given a decimation filter and a beamformer specification, find an
architecture that fuses both delay and decimation operations.”

As shown in Figure 1.1, a beamformer with PDM-mics is the conjunction of two
fundamental operations: delay and decimation. Both operations are frequently performed
separately in state-of-the-art methods, i.e., without any resource sharing between them,
which results in suboptimal architectures in most of the cases. One architecture that fuses
delay and filtering operations using a maximally flat (MAXFLAT) filter architecture was
proposed by [9], and will be referred here as Samadi filter.

This thesis proposes: (1) a new decimation filter with embedded delay, dubbed
delayed decimation filter, which is based on Samadi’s filter; and (2) a beamformer architec-
ture based on the delayed decimation filter as shown in Figure 1.3. Finally, we show that
the proposed architecture is resource-efficient.
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Figure 1.3: PDM-mic array DAS beamformer using delayed decimation filters

1.3 Contributions
The main contributions of this dissertation are the following:

1. It proposes a universal multi-stage filter design method optimized for the decimation
filter’s total number of additions per second (Sodec). This method also includes the
following specific contributions:

(a) A new method to compensate CIC filters for angular passband frequency
ωp ≤ π

4R .

(b) A generalized method to design CIC filters.

2. It analyzes the resources required to implement DAS beamformers at PCM and
PDM domains.

3. It proposes an efficient DAS beamformer architecture based on delayed decimation
filters. This proposal also includes the following contribution:

(a) Review of Samadi’s filters and proposal of a method to design decimation filters
based on it.

1.4 Metrics
In order to measure the efficiency of the proposed algorithms, methods and

structures of this work, we need to establish some adequate metrics to compare them
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quantitatively to the state of the art methods. As this work is focused in reducing the
implementation costs, or in other words, in reducing the resource requirements, the usage
of these requirements can be quantified by the number of multiplications per second (S∗),
the number of additions per second (S+) and the storage requirements (Sz); measured
in multiplications per second (MPS), additions per second (APS) and number of bits
respectively.

Also, assume that a multiplier has two operands op1 and op2 of L-bits width, such
that op2 = bL−1bL−2 . . . b1b0, where bi is the ith bit in a twos-complement representation.
A multiplication operation can be expanded in a series of additions and binary shifts as
follows

mult = op1× op2,
= op1× bL−1bL−2 . . . b1b0,

= op1× (bL−12L−1 + bL−22L−2 + · · ·+ b121 + b020),
= op1bL−12L−1 + op1bL−22L−2 + · · ·+ op1b121 + op1b020.

(1.1)

As op1 × bi × 2i will not require much computation because bi is a binary value and 2i

is a simple shift operation, we could say for practical purposes that this multiplication
operation is equivalent to L− 1 additions, i.e. 1MPS ' (L− 1)APS.

Based on this result we could define the total number of additions per second So
as

So = (L− 1)S∗ + S+ (1.2)

to measure computation rate effect of both multiplications and additions, rather than
measure them separately with S∗ and S+.

Depending on the application, the available resources and the filter parameters,
the design could be implemented to reduce the computation rate (S∗, S+ or So), the
storage requirements (Sz) or both. For example, in an embedded system with a dedicated
processor, the designer should prefer to reduce the computation rate than to reduce the
storage space, but in very large-scale integration (VLSI) circuit the computation rate and
storage reduction will be both critical. Because of that, it is also quantified:

• the estimated minimum frequency in a processor (fcpu), assuming a single-core
processor that executes an addition instruction in a clock cycle;

• the estimated number of adders in an FPGA running at 64MHz (T+
FPGA);

• the estimated number of adders in a VLSI circuit running at 10MHz (T+
lp ).

Those metrics will help the reader to have an idea of the required resources to
implement the discussed and proposed methods in different platforms.
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1.5 Assumptions
Filter specifications and array geometries will change depending on the beam-

former application. Therefore, in order to compare the efficiency between the proposed
and the state-of-the-art beamforming methods we make the following assumptions for the
remainder of this thesis.

Decimation filter specification

The decimation filter specification shown in Table 1.1 is the base of all our
decimation filter designs as it is considered enough for the most PDM-mic types and
speech processing applications.

Parameter Value

input sampling rate (fi) 3072.0 kHz
output sampling rate (fo) 16.0 kHz
passband frequency (Fp) 7.5 kHz
stopband frequency (Fs) 8.0 kHz
passband ripple (δp) ≤ 0.0116 (≤ 0.1 dB)
stopband ripple (δs) ≤ 0.0001 (≤ −80.0 dB)
decimation factor (R) 192
filter input length (Lin) 1
filter output length (Lout) 24
phase response linear or almost linear

Table 1.1: Decimation filter specifications

Beamformer specification

As the delay from the array center to the mth microphone (∆m) in a symmetric
array is constrained to

|∆m| ≤
|x̄max − x̄c|

c
for m = 0, 1, . . . ,M − 1 , (1.3)

where x̄max is the furthest sensor location, x̄c is the array center reference, M is the number
of microphones and c is the sound speed (typically 343.0m/s); the maximum required
delay (∆max) can be defined as

∆max = |x̄max − x̄c|
c

,

such that
|∆m| ≤ ∆max for m = 0, 1, . . . ,M − 1 . (1.4)
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Assume that we require a microphone array for hands-free applications that when
placed 80 cm from the voice source would attain the same SNR than the SNR obtained
by a single microphone placed to 2 cm from the same source, then, as the array gain (in
dB) in an isotropic noise field is given by 20 logM [5], the desired microphone array will
require 40 microphones.

Also, as the minimum distance between microphones should be Dmin ≤ c
2Fp to

avoid spatial aliasing; if the frequency range is limited to Fp = 7.5 kHz, then the desired
microphone array will require Dmin ≤ 2 cm.

Finally, as M = 40, if a 5× 8 microphone array is assumed, then the ∆max can
be calculated using (1.3) with resulting value shown in Table 1.2.

Parameter Value

number of microphones (M) 40 (5× 8)
minimum distance between microphones (Dmin) 22.0mm
array dimensions 110.0 mm× 176.0 mm
maximum required delay (∆max) 314.47µs
mth-filter channel gain (wm) 1
frame length (for frequency domain implementations) (Lframe) 4.0ms

Table 1.2: Microphone array specifications

1.6 Notation
In the remainder of the thesis the following notation will be used with block diagrams:

• An arrow without any text in between the extremities is a simple connection.

• An arrow with a number or variable in the middle, like h0, represents a multiplication
by that value.

h0

• An arrow with z−1 in the middle represents a delay element.

z−1

• A node with two or more incoming arrows represents an adder (Z=A+B).

• A node with two or more outgoing arrows represents a distributor(X=A,Y=A).
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A

B

Z
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X

Y

1.7 Document organization
Chapter 2 presents a review about MEMS microphone technology, sigma-delta

modulators and decimation filters.
Chapter 3 reviews the state of the art in efficient filter design and proposes a new

algorithm to design efficient decimation filters with focus to application in PDM-mic array
processing system (PAPS).

Chapter 4 reviews the conventional beamforming methods in discrete-time and
frequency domains and proposes new approaches to do beamforming before decimation,
i.e. on the PDM domain.

Chapter 5 reviews state of the art Samadi’s filters and proposes new efficient
beamformer implementation method based on it.

Chapter 6 summarizes the results and contributions and presents possible future
work.
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Chapter 2

Digital Microphone Technology

2.1 PDM microphones
According to [10], MEMS microphones, also known as PDM-mics, are currently

the leading technology in the microphone market when it comes to number of sold units.
MEMS microphones can be realized exploiting different transduction principles

such as piezoresistive, capacitive or optical detection. However, 80% of the produced
MEMS microphones use the capacitive transduction principle, as this provides better
sensitivity and low power consumption.

A capacitive MEMS microphone translates a variation in the sound pressure
level to a variation of capacitance. As the capacitor is previously charged by a charge
pump, the variation of capacitance causes a proportional variation in voltage level. This
voltage variation is passed by a pre-amplifier to then be converted to digital signal by
an ADC. A Σ∆ modulator (Σ∆M) is the preferred solution to implement the ADC in
MEMS microphones because of its inherent linearity and low-power consumption [10].
The digital output from the Σ∆M associated with the MEMS microphone will be a PDM
bitstream. It is expected that this PDM bitstream will be converted to a PCM signal
using a decimation filter before further processing, as show in Figure 2.1.

The PDM bitstream is typically delivered at a sampling rate in the range of
1 MHz to 3 MHz, while the audio or baseband signal is supposed to be in the range of
20 Hz to 20 kHz. The Σ∆M order depends on the PDM-mic vendor, and they are generally
second or higher order Σ∆M.
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Figure 2.1: MEMS microphone block diagram

2.2 Sigma-delta (Σ∆) modulators
Σ∆M were first introduced in 1962 [11], but they only gained importance in the

last decades, with the development of VLSI technologies; as these converters are based 90%
on digital circuitry that can be integrated in the same die with other digital logic. This
advantage alongside the use of digital techniques for audio processing and communications
has contributed to the interest on this kind of cost effective high precision A/D converters.

The name Sigma-Delta modulator comes from putting an integrator (Sigma)
alongside a comparator (Delta) in the analog-to-digital conversion circuit [11]. The
integrator, as shown in the following paragraphs, shapes the quantization error to higher
frequencies in the feedback system formed by the comparator.

In audio applications, the Σ∆M typically works at a sampling rate (fi) of the
order of a few megahertz while audio bandwidth is in the order of Bw=20 kHz, which
results in a fairly large oversampling rate (OSR), where

OSR = fi
Bw

. (2.1)

As shown in Figure 2.2a, in a Σ∆M, the analog signal s(t) is first sampled at a
rate fi by a sample and hold circuit. The discrete signal s[n] is then filtered and quantized
to B bits by a feedback circuit. The feedback circuit shapes the quantization noise at
higher frequencies while reducing noise in the baseband [12] as shown in Figure 2.3 for a
3 kHz tone applied to a 2nd-order Σ∆M.

If it is assumed that the quantization error e[n] is a wide-sense stationary signal,
uncorrelated to s[n], and it has a uniform distribution; then the B-bits nonlinear quantizer
QB in Figure 2.2a could be modeled as a linear addition as shown in Figure 2.2b. So if the
quantization error has the uniform probability density function as shown in Figure 2.4 for
rounding or truncation cases and its variance is σ2

e = ∆2

12 where ∆ = 2−B is the smallest
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Figure 2.2: (a) Σ∆ modulator and decimator block diagram. (b) Σ∆ modulator linear
model.

difference between two consecutive quantization levels; as its autocorrelation is

φee[n] = σ2
eδ[n] +me ,

where me is the error mean, its power density spectrum (defined as the Fourier transform
of the autocorrelation function of stationary or wide-sense stationary signals) will be

Pee(ω) = F{φee[n]} = σ2
e = ∆2

12 + 2πmeδ[n], (2.2)

where F{·} is the Fourier transform [13].
The Σ∆M output could be expressed as

X(z) = STF(z)S(z) + NTF(z)E(z), (2.3)

where STF(z) = kBHM (z)
1+kBHM (z) is the signal transfer function and NTF(z) = 1

1+kBHM (z) is the
noise transfer function.

Therefore, given a Σ∆M order L, if HM(z) is designed in such a way that

HM(z) = 1
kB(1− z−1)L

− 1
kB

then
NTF(z) = (1− z−1)L, (2.4)

and as z = ejω the absolute value of NTF(z) will be

|NTF(ejω)| = |1− e−jω|L =
∣∣∣2 sin

(ω
2

)∣∣∣L .
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Figure 2.3: 2nd-order Σ∆M (a) input, (b) output and (c) frequency spectrum

Also, in order to avoid aliasing and keep the signal in the Bw range, by (2.1), the
decimation filter cutoff frequency is constrained to ωc = 2πBw

fi
= π

OSR . Therefore, if it is
assumed that this decimation filter has an ideal low-pass impulse response

|H(ejω)| =

1 |ω| ≤ ωc,

0 |ω| > ωc;
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by Parseval’s theorem, the noise power in the decimator output y[n] (Figure 2.2a) will be

Pe = 1
2π

∫ π
OSR

−π
OSR

Pee(ω)|NTF(ejω)|2|H(ejω)|2dω = 1
2π

∫ π
OSR

−π
OSR

∆2

12

[
2 sin

(ω
2

)]2L
|H(ejω)|2dω

(2.5)
but as

∣∣2 sin
(
ω
2

)∣∣L ≈ |ω|L when ω � 1 (or f � fi); the noise power can be approximated
to:

Pe ≈
1

2π

∫ π
OSR

−π
OSR

∆2

12 ω
2Ldω = ∆2

12π

∫ π
OSR

0

ω2Ldω = ∆2

12π

(
ω2L+1

2L+ 1

) ∣∣∣∣∣
ω= π

OSR

. (2.6)

Therefore, simplifying (2.6), the noise power will be:

Pe ≈
∆2

12
π2L

(2L+ 1)OSR2L+1 (2.7)

In the same way, if a sine tone is applied at s(t) such that the amplitude of the
sine tone at x[n] is maximum, as |H(ejω)| = 1, the power output at the output y[n] caused
by the sine tone will be

Ps = (2B−1∆)2

2 . (2.8)

Finally, the Σ∆M dynamic range (DR) in the output y[n] would be

DR = Ps
Pe

= 22B3(2L+ 1)OSR2L+1

2π2L (2.9)
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which shows how the DR increases exponentially with 2L+ 1 and justifies the usage of
high order Σ∆M in MEMS microphones architectures. Note also that in the PDM-mic
case, as its output x[n] is a bitstream only, the number of bits in the quantizer QB will be
B = 1.

2.3 Decimation filters
A decimation filter is a class of multirate filters [14] that decreases a signal

sampling rate by an integer or fractional factor. Figure 2.5 shows a generic decimation
filter block diagram, the input signal at fi sampling rate passes through a low-pass filter
(LPF) with impulse response H(z) and then it is downsampled by an R factor to an output
sampling rate fo = fi/R. In a PDM-mic case, usually x[n] has 1-bit width only while y[k]
is a multi-bit output. This will be further explained later in this section.

H(z)
yR

y[k]

fo = fi/Rfi

x[n]

Figure 2.5: Single-stage decimation filter

For a given application, there are many design parameters to be taken into
account for LPF design such as filter passband frequency Fp, stopband frequency Fs,
passband ripple δp and stopband ripple δs1, as exemplified in Figure 2.6. Those LPF
design parameters are related as follows

Up = {f : f ∈ [0, Fp]} (2.10a)
Us = {f : f ∈ [Fs, fi]} (2.10b)

δp = max(
∣∣|H(e2πi f

fi )| − 1
∣∣) ∀f ∈ Up, (2.10c)

δs = max(|H(e2πi f
fi )|) ∀f ∈ Us, (2.10d)

where Up and Us are the passband and stopband frequency ranges respectively. Also, the
angular passband and stopband frequencies can be expressed as

ωp = 2πFp
fi

, (2.11a)

ωs = 2πFs
fi

, (2.11b)

1δs and δp sometimes are expressed in dB such that δs(dB) = 20 log10(δs) and δp(dB) = 20 log10(δp +1)
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and Up and Us intervals can be scaled to angular frequency domain as

Vp = 2πUp
fi

, (2.12a)

Vs = 2πUs
fi

. (2.12b)

f(Hz)0 Fp Fs fi

|H(z)|

1 + δp

1− δp

δs

Figure 2.6: LPF design parameters

Baseband signal quality parameters such as linearity, SNR, total harmonic
distortion (THD) and total harmonic distortion plus noise (THD+N) can be worsened
at the filter output if the LPF is not properly designed [15]. Also the LPF structure
should be carefully chosen to get a proper phase response; a Finite Impulse Response
(FIR) structure, for example, can be used if linear phase is required; otherwise Infinite
Impulse Response (IIR) filters are preferred as usually IIR filters are smaller than their
equivalent FIR implementations. Also there are some applications that tolerates some
degree of non-linearity; in this case quasi-linear filters, which are a mixture of FIR and
IIR filters, can be used.

In this sense, for audio applications using PDM-mics, where decimation filters
are required to get PCM audio signal from the oversampled PDM bitstream, the LPF is
commonly implemented as an FIR filter, since in audio applications a linear phase response
is required2.

Also in the PDM-mic case, the input x[n] is a 1-bit length oversampled signal
that requires to be downsampled to standard audio sampling rates like 48 kHz or 16 kHz.
During decimation, this 1-bit signal passes through several multiplications and additions,
each operation increases sequentially the signal amplitude and consequently the number
of bits of the signal. In the end, the filter output y[k] is not a 1-bit length anymore, but a
multi-bit signal.

2Linear phase is often required on audio applications due to the fact that such filters delay all frequencies
by the same amount, thereby maximally preserving waveshape. Test results indicate that the perception
of phase distortion is highly dependent on individual ability, and that it is easier to detect phase distortion
by headphone listening rather than by loudspeaker listening [16].
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2.3.1 Direct form FIR implementation

An FIR filter like the one discussed in the previous section can be implement in
several ways. Figure 2.7a shows the direct form implementation structure for an FIR filter.
In this implementation, N − 1 delay elements are connected in series after the input, each
delay element is multiplied by a filter coefficient hn, and the multiplication result is added
together sequentially by N − 1 adders. Finally, the last adder result is downsampled by
R. Figure 2.7b is the same direct form implementation but with multiplication done at
the output rate, which will reduce the number of operations per second and consequently
power consumption.

x[n]

yR y[k]

z−1 z−1 z−1

h0 h1 h2 hN−2 hN−1

z−1

(a)

x[n]

yR
yR

yR
yR

yR

y[k]

z−1 z−1 z−1

h0 h1 h2 hN−2 hN−1

z−1

. . .

(b)

Figure 2.7: (a) Direct form and (b) efficient direct form implementations.

2.3.2 Polyphase FIR implementation

The polyphase decimation filter structure was first introduced on [17]. Here we
assume that the decimation by a decimation factor R can be expressed as

y[k] =
∞∑

s=−∞

h[s]x[kR− s]. (2.13)

Using the substitution s = rR + λ, for λ ∈ {0, . . . , R − 1}, the decimated signal can be
expressed as

y[k] =
R−1∑
λ=0

∞∑
r=−∞

h[rR + λ]x[(k − r)R− λ]. (2.14)
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To simplify (2.14), we define

hλ[r] = h[rR + λ], (2.15)
xλ[r] = x[rR− λ], (2.16)

such that

y[k] =
R−1∑
λ=0

∞∑
r=−∞

hλ[r]xλ[k − r]

=
R−1∑
λ=0

yλ[k] =
R−1∑
λ=0

hλ[k] ∗ xλ[k]. (2.17)

Equation (2.17) is known as the polyphase representation of a decimation filter
and it can be implemented as shown in Figure 2.8a, where all input downsamplers and delay
elements can be replaced with a counterclockwise commutator at the filter input as shown
in Figure 2.8b. Also it is easy to see from (2.16) that as the hλ[n] filters are interleaved
versions of h[n] by a factor of R, if hλ[n] filters are implemented as a transposed direct
form implementation [18], memory elements are shared and the coefficients are sequenced
at the sampling rate as shown in Figure 2.8c; then the number of delay elements are
reduced by the same factor of R. This structure is known as the efficient memory-saving
structure.
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x[n]
yR h0[k]

y[k]

yR h1[k]

yR h2[k]

yR hR−1[k]

z−1

z−1

x0[k] y0[k]

x1[k] y1[k]

x2[k] y2[k]

xR−1[k] yR−1[k]

z−1

...
...

(a)

h0[k]
y[k]

h1[k]

x[n] h2[k]

hR−1[k]

λ = 0

λ = 1

λ = 2

λ = R−1

x0[k] y0[k]

x1[k] y1[k]

x2[k] y2[k]

xR−1[k] yR−1[k]

	
...

...

(b)
x[n]

y[k]

�h1

h2

h0

�h4

h5

h3

�h7
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h6

�hN−2

hN−1

hN−3

�hN−5

hN−4

hN−6

z−1z−1z−1z−1

(c)

Figure 2.8: (a) Polyphase decimator, (b) polyphase decimator with input commuter and
(c) memory-saving polyphase decimator (R = 3)

2.4 FFT implementation
As further discussed in [13], the FFT is an efficient way to calculate the Discrete

Fourier transform (DFT) of a signal. If the frequency spectrum at all frequencies is
required, the “butterfly” FFT implementation structure is the most efficient. As shown
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in Figure 2.9, this structure is based in a sequence of repeated and interleaved sums and
multiplications.

As this algorithm requires of an input buffer to save incoming data and a
memory to store intermediary results during calculations, a D-points FFT will require
3DL bit or 4DL bit storage elements (Sz

FFT) depending if the input is real or complex
respectively. Also, as the complexity of aD-points FFT algorithm in “butterfly” structure is
O(D) = D log2(D), it will also require 2D log2(D)fo additions per second and 2D log2(D)fo
multiplications per second. These implementation resources are summarized in the following
equation

S+
FFT(D,L, fo) = 2D log2(D)fo, (2.18a)
S∗FFT(D,L, fo) = 2D log2(D)fo, (2.18b)

Sz
FFT(D,L, fo) =

{
3DL bit if input is real,
4DL bit if input is complex.

(2.18c)

The number of storage elements is smaller when the input is real because just
DL bit are used in the input, the others 2DL bit are used to store temporary results during
calculation (imaginary and real parts). Also S+

FFT and S∗FFT are multiplied by 2 because
operations are performed in both real and imaginary parts.
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Figure 2.9: 16-points FFT implementation example with butterfly structure.
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Chapter 3

Efficient multirate filter design

“Given a decimation filter specification, find an algorithm to
determine the most efficient decimation filter architecture”.

In order to fulfill the above objective already formulated in Section 1.2.1, this chapter
proposes an algorithm to determine multirate filter architectures with minimal resource
requirements. A bottom-up approach around the diagram below is followed to explain it.

Algorithm to calculate
efficient decimation
architectures based
on So

dec optimization

Multi-stage
filters

jth-stage
typesEquiripple

Lth-band

CIC filters
CIC com-
pensation
method

jth-stage
filter
specifi-
cation

Maximum
ripples
(δj

p,δj
s)

Frequency
ranges
(F j

p ,F j
s )

Thesis
Proposal

Sec. 3.1

Sec. 3.1.1

Sec. 3.2

Sec. 3.2.1

Sec. 3.3

Sec. 3.3.1

Sec. 3.3.2

Sec. 3.3.3

Sec. 3.4
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So, at first, this chapter reviews the optimal equiripple FIR filter design method
based on Parks-McClellan algorithm and its implementation structures. Three distinct
FIR implementation structures are presented and the general expression to estimate the
implementation resource requirements is derived. Furthermore, the Lth-band filter, a
subclass of equiripple filters, is presented alongside the equations used to calculate them.

Next, CIC filters and CIC compensation filters are reviewed. The state of the
art in CIC compensation filters is discussed and an additional compensation structure is
proposed, as well as an algorithm to determine a CIC filter’s order and its compensation
filter given a filter specification.

It is important to remark that the window-based FIR filter design methods are
not discussed as they are considered suboptimal [19]. Also, IIR filter discussion is avoided
because for audio applications linear or almost linear phase response is considered a de
facto standard. Linear phase filter are preferred because all the components of the input
signal are equally shifted in time and consequently waveshape in the output is maximally
preserved.

Once these relevant and efficient filter design methods are presented, general
equations to determine the individual specifications of each stage in a multirate filter from
a general specification are derived and the individual stage expression are related with the
equiripple, Lth-band and CIC filters in a multirate filter.

Finally, an algorithm to determine multirate filter architectures with minimal
decimation filter’s total number of additions per second (Sodec) is formally proposed using
previous results as basis and it is applied to obtain a set of efficient decimation filters with
specifications as listed in Table 1.1. To conclude, the quantity of resources required to
implement a beamformer using those efficient decimation filters is estimated.

3.1 Equiripple (optimal) FIR filters
The linear phase FIR filter design problem can be considered as a Chebyshev’s

approximation problem, such that the unique solution of this problem is optimal in the
sense that the peak approximation error over the entire interval of approximation is
minimized, as it is further discussed in [13,20,21]. Several approaches have been presented
in the literature for solving this Chebyshev approximation problem. The solutions are
based on either single-exchange linear programming solution [22], or multiple-exchange
Remez algorithm solution developed by Parks and McClellan [23]. Parks-McClellan
algorithm [24,25] has become the standard method for FIR filter design because it is the
most flexible and most computationally efficient. Parks-McClellan algorithm is already
implemented in many commercial and open-source software as the Python’s scientific
library Scipy [26].
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Given the LPF design parameters fi, Fp, Fs, δs, δp and N there are empirical
relationships found between them in [27] such that the minimum required FIR filter length
N can be estimated from the relation

N = D∞(δs, δp)
∆f̄

− f(δs, δp)∆f̄ + 1, (3.1)

where

D∞(δs, δp) =(0.005309(log10 δp)
2 + 0.07114 log10 δp +−0.4761) log10 δs

− (0.00266(log10 δp)
2 + 0.5941 log10 δp + 0.4278),

(3.2)

f(δs, δp) = 11.01217 + 0.51244 log10

(
δs
δp

)
, (3.3)

and for convenience, if transition bandwidth is defined as ∆f = Fs − Fp, then normalized
transition bandwidth ∆f̄ is defined as

∆f̄ = Fs − Fp
fi

. (3.4)

The above relations are valid to within 1.3 percent relative error [27] in N if
δs ≤ 0.1 and δp ≤ 0.1. Figure 3.1 shows how D∞ decreases with δs (at a rate of 0.5 for
every 20 dB) and δp (it decreases by 0.5 as δp increases from 0.05 dB to 0.2 dB). Also
Figure 3.2, as both its axis are log, shows that N has an almost linear relationship with
∆f̄ .

For applications as PDM-mic decimators, where ∆f̄ � 1, the second and third
terms in (3.1) are insignificant compared to the first term. Therefore, for convenience, this
equation can be simplified to the form

N ' D∞(δs, δp)
∆f̄

. (3.5)

The minimum required FIR filter length N for a single-stage decimation filter with the
specifications listed in Table 1.1 and implemented with an equiripple (optimal) FIR LPF
structure, as presented in Figure 2.7a, is estimated to be

N ' D∞(δs, δp)
Fs − Fp

fi ' 18976.

3.1.1 Lth-band equiripple filters

An Lth-band filter could require fewer multipliers than an equiripple one because,
depending on the filter requirements, it could have many coefficients equal to zero. This
special characteristic makes this filter very suitable for low-power implementations.
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Figure 3.1: D∞ for δs in −100 dB to −40 dB range.
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Figure 3.2: N for ∆f̄ in 1× 10−4 to 1× 10−1 range and δs = −80 dB.

Its angular cutoff frequency is located at ωc = π/L and its transition band is
approximately symmetric around this frequency [14] such that, given a roll-off factor
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0 < ν < 1, its passband and stopband frequencies are related as

ωp = (1− ν)π
L

(3.6)

ωs = (1 + ν)π
L

(3.7)

Also, if the Lth-band filter order is N = 2K + 1 where K is a positive integer,
the impulse response coefficients satisfy the following conditions

h[K] = 1/L (3.8)

h[K + rL] = 0 for r in 1,2,. . . ,
⌊N
L

⌋
(3.9)

where bxc, as know as the floor function, is defined as the integer part of x, such that the
number of nonzero coefficients in the filter impulse response is

Nnz =
⌊
N − N

L

⌋
=
⌊(L− 1

L

)
N
⌋
.

(3.10)

Also, as shown in [28], the stopband ripple and passband ripple in an Lth-band
filter are related by

δp ≤ (L− 1)δs. (3.11)

Figure 3.3 shows the frequency spectrum and impulse response of an Lth-band
filter with L = 2 (half-band filter), it is shown that the half of the coefficients are zero.

3.1.2 FIR filter required resources

The resource requirements to implement FIR filters with direct form and polyphase
structures are quantified in this subsection using the metrics proposed in Section 1.4.

Direct form implementation

In the direct form implementation of an FIR filter (shown in Figure 2.7a) the
decimation filter’s number of multiplications per second (S∗dec) is given by the number of
nonzero multipliers times the input sampling frequency, the decimation filter’s number of
additions per second (S+

dec) is given by the number of adders times the input sampling
frequency, and the decimation filter’s storage requirement (Sz

dec) is given by the number of
delay elements multiplied by the input’s bit width. Therefore, the resource requirements
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Figure 3.3: Lth-band filter (a) normalized frequency spectrum and (b) impulse response
(L = 2).

for the direct form can be estimated as following:

S∗dec =


⌈ρN

2

⌉
fi if h[n] is symmetric,

ρNfi otherwise,
(3.12a)

S+
dec = (ρN − 1)fi, (3.12b)
Sz

dec = (N − 1)Lin bit. (3.12c)
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The significance coefficient rate (ρ) is defined as

ρ = Nnz

N
, (3.13)

where Nnz is the number of nonzero coefficients in the filter impulse response and ρ ' 1 in
most of the cases.

Efficient direct form implementation

Direct form implementation can be optimized to perform multiplications and
additions at output sampling rate (fo = fi/R) as shown in Figure 2.7b such that the
resource requirements are reduced to

S∗dec =


⌈ρN

2

⌉fi
R

if h[n] is symmetric,

ρN
fi
R

otherwise,
(3.14a)

S+
dec = (ρN − 1)fi

R
, (3.14b)

Sz
dec = (N − 1)Lin bit. (3.14c)

Memory-saving polyphase structure

In practice, the resource requirements to implement a decimation filter with a
polyphase structure (shown in Figure 2.8b) are the same than these required for a direct
form implementation given by (3.14). However, the resources required to implement an
efficient memory-saving structure are given by

S∗dec = ρN
fi
R
, (3.15a)

S+
dec = (ρN − 1)fi

R
, (3.15b)

Sz
dec = Lacc

⌈N
R

⌉
bit, (3.15c)

where Lacc is the filter accumulator length.
Also, from comparing (3.14) and (3.15), it can be seen that memory-saving

polyphase structure would be more efficient than efficient direct form implementation only
if the LPF is not symmetric and Lacc and Lin meet the following relation

Lacc

Lin
< R. (3.16)
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Table 3.1 shows the resource requirements to implement a single-stage decimation
filter with specifications as listed in Table 1.1 using a direct form (single_direct), efficient
direct form (single_eff ) and memory-saving polyphase (single_memsav) implementations.
It is shown that the single_eff implementation requires less total additions per second
for the decimation filter but the same storage requirements, and the single_memsav
implementation requires less storage requirements but more total additions per second.
So, the single_memsav implementation will be preferred for low-power applications where
only flip-flops are available, but for software implementations with large memory available,
single_eff will be preferred as it requires less operations.

Sz
dec (bit) S∗dec (MPS) S+

dec (APS) Sodec (APS) fcpu (MHz) T+
FPGA (-) T+

lp (-)
single_direct 37950 29147136000 58291200000 87438336000 87438.34 1367 8744
single_eff 37950 151808000 303600000 455408000 455.41 8 46
single_memsav 396 303616000 303600000 607216000 607.22 10 61

Table 3.1: Single-stage decimation filter resource requirement comparison.

3.2 CIC filters
A Cascade Integrator-Comb (CIC) filter is an economical class of LPF introduced

in [29] and widely used as the first stage of a multirate filter design. The main advantage
of this class of filters is its multiplierless architecture and its high attenuation at stopband
frequencies. Its main disadvantage is the non-flat frequency spectrum in the passband
range, which needs to be compensated by other filter stages to ensure flatness in the overall
filter passband range response.

The low-pass filter impulse response of a CIC filter decimated by R is given by

H(z) =
(

1
R

1− z−R

1− z−1

)K
(3.17)

where K is the CIC filter order. The CIC decimation filter can be implemented as shown
in Figure 3.4.

x[n]
yR y[k]

1
R

1
R

z−1 z−1 −z−1 −z−1

INT 1 INT K DIFF 1 DIFF K

Figure 3.4: K-order CIC filter structure, a cascade of K integrators and K differentiators
are required.
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Figure 3.5 shows the magnitude of the K-stages CIC filter frequency spectrum
which is given by

|H(eiω)| =
∣∣∣∣ 1
R

sin(ωR/2)
sin(ω/2)

∣∣∣∣K . (3.18)
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Figure 3.5: CIC filter frequency spectrum (R = 8).

3.2.1 CIC compensation

Due to the CIC filter passband droop usually it is required a compensation filter
to keep the overall filter response under specification parameters. Those compensation
filters are frequently designed as equiripple filters in the last stage of the multirate filter
chain as shown in Figure 3.6a. As this approach require extra filter taps and multipliers,
in the last decades there has been an effort in academia to design more efficient and
multiplierless CIC compensation filter structures [1–3,30–41]. In case of sparse FIR-based
compensation filters, [41] proposes a structure that includes the compensation filter in
the CIC structure using a time-varying multiplier that could improve performance and
area. In some cases, proposed compensators are multiplierless implementations [3, 36,37]
but require to be redesigned for each value of decimation (R) or to have a maximum
absolute deviation (passband ripple δp) larger than 0.2 dB. Other methods have a simple
structure but require multipliers on their implementation [31,34,35]. Furthermore, recently
published works [39, 40] propose multiplierless structures based on the particle swarm
optimization (PSO) method to obtain compensator coefficients. These structures have
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passband absolute deviation smaller than 0.1 dB and present a reconfigurable architecture
for different values of K, but unfortunately they are not so flexible to changes of R and
require complex structures for conversion to canonical signed digit (CSD) representation.
All of these methods are reportedly outperformed by the methods proposed in [1] and [2],
which have multiplierless structures, their filters depend only on the parameter K and
their passband absolute deviation is smaller than 0.1 dB in either c ≤ 1/2 (method [1])
or c ≤ 1/8 (method [2]) ranges, where c is the normalized passband frequency in a CIC
compensator and it is defined as

c = ωp
π/R

. (3.19)

As shown in Figure 3.6a, the method [1] proposes the use of two cascade filters
after decimation whose frequency spectrums are

|G1(eiωR)| = 1 +B1 sin4(ωR/2), (3.20a)
|G2(eiωR)| = 1 +B2 sin2(ωR/2), (3.20b)

such that the proposed compensator filter has the following frequency spectrum:

|Gc(eiωR)| = (1 +B1 sin4(ωR/2))(1 +B2 sin2(ωR/2)). (3.21)

The method proposed in [2] can be regarded as a particular case of [1], where |G1(eiωR)| = 1
and B2 has other values. Figure 3.7 shows how the frequency spectrum of the CIC filter
after compensation for different values of K is kept flat for c ≤ 1/2 such that a decimator
by 2 can be cascaded after the CIC compensation.

Methods [1, 2] have good compensation within c ≤ 1/2 and c ≤ 1/8 ranges, but
sometimes it is required compensation at c ≤ 1/4 range, which is between both ranges. In
this case method [1] can be used but resources will be wasted unnecessarily. To overcome
this limitation, based on [2], new B2 coefficients can be heuristically calculated for a
passband ripple δp ≥ 0.1 dB1 in the c ≤ 1/4 range, as shown in Table 3.2. In Table 3.2
is also added the coefficients for method [3] that, as method [1], has good compensation
within c ≤ 1/2 but its passband ripple is δp ≥ 0.4 dB. Figure 3.8 shows the passband
ripple versus decimation factor and CIC filter order for proposal and [1–3] methods.

Finally, from (3.18) and (3.21), the overall CIC filter plus compensation impulse
response can be expressed as

|HK,R,B1,B2(eiω)| =
∣∣∣∣ 1
R

sin(ωR/2)
sin(ω/2)

∣∣∣∣K∣∣∣∣(1 +B1 sin4(ωR/2))(1 +B2 sin2(ωR/2))
∣∣∣∣. (3.22)

1It is important to remark that the expression “δp ≥ 0.1 dB” means that the filter’s passband ripple
cannot be less than 0.1 dB. So, for instance, a filter that requires δp = 0.05 dB cannot be designed with
this method, however any filter that requires δp ≥ 0.1 dB is possible.
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Figure 3.6: Compensation filter proposed by [1].

where B1 and B2 can be selected from Table 3.2 such that c = ωpR

π
meet conditions thereof;

otherwise B1 and B2 are zero and compensation should be done using other methods.

3.2.2 CIC filter design

From (3.22), the required CIC filter order (K) can be calculated as

K =
⌈

log10(δs)− log10
(
1 +B1 sin4(ωsR/2)

)
− log10

(
1 +B2 sin2(ωsR/2)

)
log10

∣∣∣∣ 1
R

sin(ωsR/2)
sin(ωs/2)

∣∣∣∣
⌉
. (3.23)

However, as B1 and B2 depend on the K value to be calculated, the iterative
procedure shown in Algorithm 1 is required to calculate the optimum value of K given ωp,
δs, δp, R parameters and the stopband range Vs. In this procedure, first K is calculated for
B1 and B2 equal to zero, and then K is adjusted progressively until it meets the desired
condition.
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Figure 3.7: CIC compensation using method [1] (c = 0.5, R = 16).

3.2.3 CIC filter required resources

The resources required to implement a CIC filter are

Sz
dec ' 2KLacc bit, (3.24a)
S∗dec = 0, (3.24b)
S+

dec = Kfo(1 +R) + foN
+
Gc
, (3.24c)

where the number of adders for CIC compensator N+
Gc

is selected from Table 3.2. Also,
Lacc will be

Lacc = K log2(R|max x[n]|) + 1, (3.25)

where x[n] is the filter input, and if the filter input is a bitstream

Lacc = K log2R + 1. (3.26)

Finally, as the passband requirements in Table 1.1 do not meet the required
conditions from Table 3.2, it is not possible to implement a single-stage decimation filter
with such specifications using a CIC filter followed by the multiplierless compensation
architecture described in this section. However, this multiplierless compensator may be
used in multi-stage decimation filter architectures as further discussed in following sections.
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Method Conditions K B1 B2 Adders (N+
Gc
)

proposal δp ≥ 0.1 dB,c ≤ 1/4,R > 5

1 0 2−3 3
2 0 2−2 + 2−3 4
3 0 2−2 + 2−3 + 2−4 + 2−5 6
4 0 2−1 + 2−2 4
5 0 20 3
6 0 20 + 2−3 4

[1] δp ≥ 0.1 dB,c ≤ 1/2,R > 10

1 0 2−2 − 2−5 4
2 2−2 2−2 + 2−4 10
3 2−1 2−1 − 2−4 10
4 2−1 2−1 + 2−3 + 2−4 11
5 1 20 − 2−2 − 2−5 11
6 1 20 − 2−6 10

[2] δp ≥ 0.1 dB,c ≤ 1/8,R > 2

2 0 2−2 3
3 0 2−2 3
4 0 2−1 3
5 0 20 3
6 0 20 3

[3] δp ≥ 0.4 dB,c ≤ 1/2,R ≥ 9

1 0 2−2 3
2 0 2−1 3
3 0 2−1 + 2−2 4
4 0 20 3
5 0 20 + 2−2 4

Table 3.2: CIC compensation filter’s coefficients and number of adders. The listed methods
are complementary to each other as the number of adders increases consistently with the
passband ripple (δp), the normalized passband frequency in a CIC compensator (c) and
the CIC filter order (K). So, any of them should be chosen properly depending on the
particular filter requirements. It is also easy to see that the proposal, [1] and [2] methods
have the same δp range but different passband range; and the methods [1,3] have the same
passband range but different δp, the latter one requiring more adders.

Value Unit
decimation filter’s storage requirement (Sz

dec) 1344 bit
decimation filter’s number of multiplications per second (S∗dec) 0 MPS
decimation filter’s number of additions per second (S+

dec) 6.4848e+07 APS
decimation filter’s total number of additions per second (Sodec) 6.4848e+07 APS
estimated minimum frequency in a processor (fcpu) 64.85 MHz
estimated number of adders in an FPGA running at 64MHz (T+

FPGA) 2 -
estimated number of adders in a VLSI circuit running at 10MHz (T+

lp ) 7 -

Table 3.3: Single-stage decimation filter resource requirements implemented as a CIC filter,
without compensation (K=21, B1=0, B2=0).

Table 3.3 shows the required resources to implement the referred filter specifications with
a standalone CIC filter without compensation.
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Figure 3.8: CIC’s passband ripple (δp) versus decimation factor (R) and CIC filter order
(K). (a) Proposed method, whose coefficients are listed in Table 3.2, keeps the passband
ripple δp ≥ 0.1 dB only for values of decimation factor R > 5 and the normalized passband
frequency in a CIC compensator in c < 1/4 range. (b) Method [1] keeps δp ≥ 0.1 dB in
the c < 1/2 range and R > 10. (c) Method [2] keeps δp ≥ 0.1 dB in the c < 1/8 range and
R > 2. (d) Method [3], keeps δp ≥ 0.4 dB in c < 1/2 range and R ≥ 9.
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Algorithm 1 K calculation algorithm
1: procedure CicOrderCalc(δs, δp, R, ωp, Vs)
2: B1 ← 0
3: B2 ← 0
4: Calculate K . Equation (3.24a)
5: loop
6: Calculate B1, B2 for K = K, c = 2FpR

fj−1
, R = R . Table 3.2

7: δs
′ ← max(|HK,R,B1,B2(eiω)|) ∀ω ∈ Vs . Ripple, Equation (3.22)

8: if δs′ ≤ δs then
9: return K

10: else
11: K ← K + 1
12: end if
13: end loop
14: end procedure
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3.3 Multi-stage filter design
Because of the high computation rate and storage requirements to implement a

single-stage decimation filter, and consequently to implement a PAPS, if the decimation
factor (R) can be factorized in J integer or fractional factors as

R = R1R2 . . . RJ =
J∏
j=1

Rj

then the decimation filter can be divided in a cascade of J decimation filter stages as
shown in Figure 3.9, where the jth-stage output sampling rate is

fj = fj−1

Rj

∀j ∈ {1, . . . , J}, (3.27)

and the jth-stage required filter output length is

Lj ≥ log2(|max yj[n]|) + 1 (3.28)

where yj[n] is the jth-stage filter output.
Besides the fact that, in general, the multi-stage implementation requires less

implementation resources than its single-stage counterpart, the multi-stage filters are
also more flexible to decimation rate changes and they allow to combine different filter
structures, taking the best of any of them. For example, the high attenuation of a CIC
filter could be combined with the flatness of a equiripple filter at different levels; or, as
shown in Chapter 5, a MAXFLAT filter could be combined with equiripple or Lth-band
filters to allow group delay configuration.

x[n]
H1(z)

yR1 H2(z)
yR2 HJ(z)

yRJ

y[k]

STAGE 1 STAGE 2 STAGE J

f1 f2 fJ fo = fJf0 = fi
. . .

Figure 3.9: Multi-stage decimation filter

In this section are presented the passband and stopband frequency ranges and
ripples of all internal individual stages of a multirate filter specified with parameters shown
in Figure 2.6.

3.3.1 Passband and stopband frequency ranges

Equation (3.5) says that if the normalized transition bandwidth (∆f̄) is maximized
then the minimum required FIR filter length (N) is minimized proportionally. Therefore,
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f (Hz)0 F jp F js fj 2fj − F js fj + F js 2fj 3fj − F js

|Hj(z)|

1 + δjp

1− δjp

δjs

don’t care band

Figure 3.10: jth-stage filter prototype

the constraints presented in the following paragraphs are meant to maximize the allowed
transition and don’t care bands of each individual jth-stage in order to minimize its
respective filter order. The individual jth-stage’s filter order minimization will guarantee
the overall minimization of resources of the combined J-stages decimation filter.

For all j ∈ {1, . . . , J} the jth-stage passband frequency range U j
p is defined as

j ∈ {1, . . . , J} → U j
p = {f : f ∈ [0, F j

p ]} (3.29)

and the jth-stage stopband frequency range U j
s is defined as

j ∈ {1, . . . , J − 1} → U j
s = Sjs1 ∪ S

j
s2 ∪ S

j
s3 (3.30a)

j = J → U j
s =

{
f : f ∈

[
F j
s ,
fj−1

2

]}
(3.30b)

such that

Sjs1 = {f : f ∈ [(k − 1)fj + F j
s , (k + 1)fj − F j

s ] ∧ k ∈ {1, . . . ,
⌊Rj

2 − 1
⌋
}}, (3.30c)

Sjs2 = {f : f ∈ [(k − 1)fj + F j
s , (k + 1)fj − F j

s ] ∧ k =
⌊Rj

2

⌋
∧ Rj is odd}, (3.30d)

Sjs3 = {f : f ∈ [(k − 1)fj + F j
s , kF

j
s ] ∧ k =

⌊Rj

2

⌋
∧ Rj is even}, (3.30e)

where F j
p is the jth-stage passband frequency and F j

s is the jth-stage stopband frequency.
Figure 3.10 shows as the intervals in U j

s are separated by fj and they are interleaved by
don’t care bands. As it is further discussed in [42], those don’t care bands reduce the filter
complexity and consequently its length.

Also, if the jth-stage transition bandwidth is defined as

∆fj = F j
s − F j

p , (3.31)
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it can be normalized as ∆f̄j:
∆f̄j = ∆fj

fj−1
. (3.32)

In order to keep the overall multirate filter response at stopband frequency (Fs)
and passband frequency (Fp) specifications as shown in Figure 2.6, the jth-stage passband
frequency value should be

if aliasing in transband is allowed: F j
p = [Fp, Fs] : j ∈ {1, . . . , J}, (3.33a)

otherwise: F j
p =

{
[Fp, Fs] : j ∈ {1, . . . , J − 1},
Fp : j = J,

(3.33b)

and the jth-stage stopband frequency value should be

if aliasing in transband is allowed: F j
s = fj − Fp : j ∈ {1, . . . , J}, (3.34a)

otherwise: F j
s =

{
fj − Fs : j ∈ {1, . . . , J − 1},
Fs : j = J.

(3.34b)

Finally, the jth-stage angular passband and stopband frequencies can be expressed as

ωjp =
2πF j

p

fj−1
, (3.35a)

ωjs = 2πF j
s

fj−1
, (3.35b)

and U j
p and U j

s intervals can be scaled to angular frequency domain as

V j
p =

2πU j
p

fj−1
, (3.36a)

V j
s = 2πU j

s

fj−1
. (3.36b)

3.3.2 Passband and stopband ripples

The equations (3.1) and (3.2) and Figure 3.1 show that the minimum required
FIR filter length (N) decreases monotonically when the stopband ripple (δs) or passband
ripple (δp) increase. So, in this section are derived the equations that maximize the
individual δp (δjp) and δs (δjs) of each jth-stage in order to meet a given δp and δs for the
overall filter.
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If the jth-stage passband δjp and stopband δjs ripples are defined respectively
∀j ∈ {1, . . . , J} as

δjp = max(
∣∣|Hj(e

2πi f
fj−1 )| − 1

∣∣) ∀f ∈ U j
p , (3.37a)

δjs = max(|Hj(e
2πi f

fj−1 )|) ∀f ∈ U j
s , (3.37b)

and the overall low-pass filter impulse response is

H(e2πi f
fi ) =

J∏
j=1

Hj(e
2πi f

fj−1 ) ∀f ∈ U j
p ∪ U j

s (3.38)

where Hj(e
2πi f

fj−1 ) is the jth-stage low-pass filter impulse response, the overall filter δp
(for small δp) and δs can be expressed as

δp =
J∑
j=1

δjp, (3.39a)

δs =
J∏
j=1

δjs. (3.39b)

Even though only multi-stage decimation filters requirements are analyzed on this
section, as further discussed in [20], the same filter requirements are valid for a multi-stage
interpolation filter design, the only difference is the stage order that is inverted.

3.3.3 Multirate filter stages

In order to design a J-stages multirate filter with the same overall LPF specifi-
cations given by (2.10); all stages should meet conditions given by (3.29), (3.30), (3.33),
(3.34), (3.37) and (3.39). So, depending on the application and the available resources;
each stage should be designed, for instance, as an equiripple FIR, Lth-band or CIC filter
to meet those individual stage requirements. This section points out some considerations
to take into account when designing each jth stage with any of the mentioned structures.

Equiripple FIR filter stage

If the jth-stage LPF is designed as an equiripple FIR filter, from (3.5), (3.29)
and (3.37) the jth-stage minimum required FIR filter length Nj can be estimated as

Nj '
D∞(δjs, δjp)

∆f̄j
. (3.40)
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As it is desired to minimize Nj , assuming fj and fj−1 fixed, F j
p should be chosen

to maximize ∆f̄j. Then, ∆f̄j is maximum when F j
p = Fp if aliasing in transition band

is allowed, otherwise ∆f̄j is maximum when F j
p = Fs. Therefore, the optimal jth-stage

minimum required filter length is

Nj '


D∞(δjs, δjp)
∆f̄j

∣∣
F jp=Fp

: j ∈ {1, . . . , J} if aliasing in transband is allowed,

D∞(δjs, δjp)
∆f̄j

∣∣
F jp=Fs

: j ∈ {1, . . . , J} otherwise.
(3.41)

In most of the cases, the jth-stage minimum required FIR filter length has few zero-valued
coefficients, such that it is reasonable to approximate the jth-stage significance coefficient
rate as ρj ' 1.

Finally, once Nj and ρj are known, the required resources to implement the
jth-stage using single_direct, single_eff or single_memsav structures can be estimated
by (3.12), (3.14) or (3.15) respectively where N = Nj, ρ = ρj, fi = fj−1, R = Rj ,
Lin = Lj−1 and Lacc = Lj.

Lth-band FIR filter stage

In a J-stages multirate filter, the jth-stage LPF can be designed as a jth-band
filter of order Rj if the following conditions are met:

• The filter is symmetric around π/Rj, such that if aliasing in transition band is
allowed, the jth-stage passband frequency is F j

p = Fp for j ∈ {1, . . . , J}; otherwise,
if aliasing is not allowed, F j

p = Fp for j ∈ {1, . . . , J} i.e. the last stage cannot be a
RJth band filter.

• The jth-stage design stopband and passband ripples meet the relation

δj
band ≤ min(δjp, δjs). (3.42)

Once both conditions are met, the optimal jth-stage minimum required filter
length can be estimated by

Nj '


D∞(δjband, δj

band)
∆f̄j

∣∣
F jp=Fp

: j ∈ {1, . . . , J} if aliasing in transband is allowed,

D∞(δjband, δj
band)

∆f̄j
∣∣
F jp=Fs

: j ∈ {1, . . . , J − 1} otherwise.

(3.43)
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Also from (3.10), the jth-stage significance coefficient rate is

ρj '
Rj − 1
Rj

(3.44)

Finally, once Nj and ρj are known, the required resources to implement the
jth-stage using single_direct, single_eff or single_memsav structures can be estimated
by (3.12), (3.14) or (3.15) respectively where N = Nj, ρ = ρj, fi = fj−1, R = Rj ,
Lin = Lj−1 and Lacc = Lj.

CIC filter stage

Given δjs, Rj , δjp, ωjp and V j
s , the jth-stage CIC filter order (Kj) can be calculated

using Algorithm 1 as shown in Figure 3.11.
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Figure 3.11: Kj for various values of Rj, assumming a CIC filter located at the first stage
of a multirate filter with specifications as listed in Table 1.1 but δs varying.

Finally, the resources required to implement a jth-stage CIC filter can be esti-
mated by (3.24) for Lacc = Lj, K = Kj, fo = fj and R = Rj.
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3.4 Proposal: Multirate filter design method based on
Sodec optimization
Given a desired filter specification as shown in Table 1.1, the goal is to find

an efficient multirate filter with J stages which requires the minimum implementation
resources. As it is explained in Section 1.4, the suitable metric parameter that gives us
implementation complexity information is the decimation filter’s total number of additions
per second (Sodec), so in this section is proposed an algorithm whose objective is to find out
a J-stages multirate filter configuration with minimum Sodec. For other applications, where
memory is critical for example, the filter design could be optimized around Sz

dec instead.
Then, the three parameters to be calculated to achieve our goal are:

• number of stages (J).

• the optimum {Rj} combination for all j ∈ {1, . . . , J}, and

• the jth-stage’s type,

where the stage type could be any of the filter types studied on this thesis: equiripple
(equir), Lth-band (lthband), self-compensated CIC (cicfil), standalone CIC (ciconly) or
compensation filter (comp). The algorithm could be extended to accommodate any other
filter implementation structure. Unfortunately, because of the numerous parameters
and equations that need to be taken into account for each filter stage design, it is not
straighforward to find a closed form to calculate all parameters mentioned above. So,
Algorithm 2 is used to iterate over all possible filter configurations and get the filter with
minimum Sodec.

Algorithm 2 Multirate filter design method based on Sodec optimization
1: procedure OptimumFilter(fi, fo, Fp, Fs, δp, δs, fo, R, Lin, Lacc, aliasing)
2: RFactorsList← AllFactorsList(R)
3: FilterList← [ ]
4: for RFactors in RFactorsList do
5: J ← length(RFactors)
6: TypeStagesList←AllCombinations([’cicfil’,’lthband’,’comp’,’equir’,’ciconly’],J)
7: for TypeStages in TypeStagesList do
8: Filter ← CalcMultiFilter(J,RFactors, TypeStages, fi, fo, Fp, Fs, δp, δs, fo, Lin, Lacc, aliasing)
9: Append(FilterList, F ilter)

10: Sodec ← CalcSo(Filter)
11: Append(SodecList, S

o
dec)

12: end for
13: end for
14: SodecMin← min(SodecList)
15: index← Index(SodecList, S

o
decMin)

16: return FilterList[index]
17: end procedure

Finally, the methods used in Algorithm 2 are:
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• AllFactorsList(x) calculates a list of all possible factors of x, in reverse order, such
that for example AllFactorsList(64) = [{32, 2}, {16, 4}, {8, 4, 2}, {4, 2, 2}, . . . ].

• AllCombinations(List, x) calculates a list of x elements with all the possible com-
binations of List’s elements, such that for example AllCombinations([a, b, c], 2) =
[{a, a}, {a, b}, {b, a}, {a, c}, . . . ]

• CalcMultiFilter(J,Rfactors, TypeStages, . . . ) calculates a J-stages multirate
filter with Rj = Rfactors[j], jth-stage type equal to TypeStages[j], and so on, for
all j ∈ {1, . . . , J}.

• CalcSo(Filter) calculates the Sodec from the specified filter Filter.

• Append(List, x) appends the element x to the end of the list List.

• Index(List, x) returns the index of x in List, provided that x ∈ List.

3.5 Results
Algorithm 2 was used to find the optimum filter structure for Table 1.1 specifi-

cation that minimizes Sodec. The algorithm iterated over all possible filter configuration
and the 10 best results regarding Sodec optmization parameter are shown in Table 3.4 and
Table 3.5 sorted by the number of Sodec resources.

Rj Stage types
multi_0 96, 2 lthband, equir
multi_1 48, 2, 2 lthband, lthband, equir
multi_2 6, 2, 2, 2, 2, 2 ciconly, cicfil, equir, equir, equir, equir
multi_3 6, 2, 2, 2, 2, 2 ciconly, ciconly, equir, equir, equir, equir
multi_4 4, 3, 2, 2, 2, 2 cicfil, cicfil, equir, lthband, lthband, equir
multi_5 24, 2, 2, 2 lthband, lthband, lthband, equir
multi_6 48, 2, 2 lthband, equir, equir
multi_7 16, 3, 2, 2 lthband, equir, lthband, equir
multi_8 24, 2, 2, 2 lthband, equir, lthband, equir
multi_9 24, 4, 2 lthband, lthband, equir

Table 3.4: Multi-stage decimation filters found by the optimization algorithm.

The result shows that the filter multi_0 based on Lth-band filter is the most
efficient configuration for this filter specification. The multi_0 filter overall frequency
spectrum is presented in Figure 3.12 and the frequency spectrum of each individual filter
stage is shown in Figure 3.13.

It is also interesting to see that the third and fourth most efficient filters, multi_2
and multi_3 respectively, are novel architectures based on interleaved CIC and equiripple
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Sz
dec (bit) S∗dec (MPS) S+

dec (APS) Sodec (APS) fcpu (MHz) T+
FPGA (-) T+

lp (-)
multi_0 4963 30320000 30272000 104240000 104.24 2 11
multi_1 5669 19248000 19136000 110496000 110.50 2 12
multi_2 7666 3984000 19616000 110912000 110.91 2 12
multi_3 7666 3984000 19616000 110912000 110.91 2 12
multi_4 7177 3488000 27824000 113584000 113.58 2 12
multi_5 5762 15408000 15168000 117344000 117.34 2 12
multi_6 6371 19840000 19728000 126224000 126.22 2 13
multi_7 5794 9712000 14400000 126304000 126.30 2 13
multi_8 6042 15776000 15536000 126960000 126.96 2 13
multi_9 5740 15984000 15808000 128320000 128.32 3 13

Table 3.5: Comparison of multi-stage decimation filters found by the optimization algo-
rithm.

filters. For some application these architectures based on CIC filters could be more
convenient because of its flexibility to change the decimation rate without changing the
filter coefficients or its structure.

Finally, in a PAPS implementation case, as shown in Figure 3.14 , as the filters
architectures found by Algorithm 2 are parallelized, one per microphone input, the required
resources would be multiplied by the number of microphones M . Table 3.6 shows the
resources required to implement a PAPS for 40 microphones.

The Sz
dec, S+

dec, S∗dec and Sodec columns in Table 3.6 are the same than Table 3.5’s
ones multiplied by 40 because of each independent decimation channel. As the imple-
mentantion in a single-core processor does not allow resource sharing, the fcpu is also
proportional by 40 to the respective value in Table 3.5, resulting in prohibitive resource
requirements of more than 4 GHz processor frequency. But as implementation in Field
Programmable Gate Array (FPGA) or VLSI allows some degree of resource sharing T+

FPGA

and T+
lp parameters are not proportional to the Table 3.5’s ones, but still requiring aprox-

imatelly > 5000 storage elements, a large quantity of resources but not prohibitive for
hardware implementations.
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Figure 3.12: Magnitude (a) and phase (b) frequency spectrum of optimum multi-stage
decimation filter found by the optimization algorithm. (c) Passband ripple frequency
spectrum.
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Figure 3.13: Magnitude frequency spectrum of the internal stages of the optimum multi-
stage decimation filter found by the optimization algorithm.
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Figure 3.14: PDM-mic array processing system
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MSz
dec (bit) MS∗dec (MPS) MS+

dec (APS) MSodec (APS) fcpu (MHz) T+
FPGA (-) T+

lp (-)
single_direct 1518000 1165885440000 2331648000000 3497533440000 3497533.44 54649 349754
single_eff 1518000 6072320000 12144000000 18216320000 18216.32 285 1822
single_memsav 15840 12144640000 12144000000 24288640000 24288.64 380 2429
multi_0 198520 1212800000 1210880000 4169600000 4169.60 66 417
multi_1 226760 769920000 765440000 4419840000 4419.84 70 442
multi_2 306640 159360000 784640000 4436480000 4436.48 70 444
multi_3 306640 159360000 784640000 4436480000 4436.48 70 444
multi_4 287080 139520000 1112960000 4543360000 4543.36 71 455
multi_5 230480 616320000 606720000 4693760000 4693.76 74 470
multi_6 254840 793600000 789120000 5048960000 5048.96 79 505
multi_7 231760 388480000 576000000 5052160000 5052.16 79 506
multi_8 241680 631040000 621440000 5078400000 5078.40 80 508
multi_9 229600 639360000 632320000 5132800000 5132.80 81 514

Table 3.6: Comparison of required resources to implement a PAPS using 40 multi-stage
decimation filters found by the optimization algorithm in parallel.
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Chapter 4

Beamforming at PCM and PDM domain

“Given a decimation filter and a beamformer specification, find an
efficient beamforming implementation that works on the PDM

domain.”

In order to meet the aforementioned and previously formulated objective (Sec-
tion 1.2.2), at first, this chapter reviews the mathematical basis and the state-of-the-art
DAS beamformer implementation methods in time and frequency domains.

Then, time domain and frequency domain implementations that work on the
PDM domain are proposed. It is shown that these implementations require only one
decimation filter for all channels and they are more precise than the same implemented in
PCM domain.

Finally, as these algorithms require decimation filters in their structure, the
required implementation resources are estimated and compared to their analogous state-
of-the-art implementations using optimized decimation filters structures calculated in
Chapter 3 for Table 1.1 specification.

4.1 State-of-the-art: Beamforming at PCM domain
The DAS beamformer is the oldest and simplest array signal processing algo-

rithm [4]. The underlying idea is to delay each microphone input by an appropriate time
delay and then add all delayed microphone signals together. In this sense, the audio signal
arriving from a certain direction at the array will be reinforced with respect to other
signals arriving from other directions and incoherent noise.

The DAS algorithm can be implemented in time domain [43,44], using delay blocks
and an adder; or in frequency domain using the FFT. In this section the mathematical
basis of these time and frequency domain implementation methods will be presented.
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4.1.1 Time domain implementations

Discrete-time beamformer

The traditional or discrete-time DAS beamformer1 is the result of

z[k] =
M−1∑
m=0

wmym[k − km] , (4.1)

where ym is the mth microphone’s output in PCM representation so that, in case of PDM-
mics, ym would be the decimation filter’s output. In this sense, to avoid confusion, the
PDM bitstream incoming from the respective mth digital microphone will be represented
as xm. Also, in (4.1), km is the integer delay associated to the mth microphone so that

km = ‖∆m/T‖ = ‖∆mfo‖ ,

where ∆m is the required delay in the mth microphone, ‖x‖ means the nearest integer to
x, and fo and T are the sampling rate and period in ym respectively. Equation 4.1 can be
implemented as shown in the block diagram in Figure 1.1 using PDM-mics.

Also, due to the integer nature of km, the discrete-time beamformer does not
allow to form sums that involve non integer multiples of T . Consequently, beams cannot be
steered in arbitrary directions. Figure 4.6a shows the normalized power of a 40-microphone
uniform linear array implemented with the discrete-time beamformer method. Three audio
sources of 1 kHz, 3 kHz and 5 kHz are located at 20, 60 and 110 degrees respectively, the
three ones with equal strength. The stepped response shown in the normalized power
diagram is due to the integer nature of the delay elements which limits the beamformer
resolution. The equations to estimate the required resources for this kind of beamformer
are discussed in the end of this section.

Discrete-time interpolation beamformer

In order to overcome the limitations of the discrete-time beamformer involving
non-integer multiples of T, each sensor input signal ym[k] can be interpolated i.e. the
sensor signal ym[k] can first be upsampled, delayed, and then passed through a low-pass
interpolation filter. The upsampling operation is intended as an interspersing of I − 1
zero-valued samples between sensor samples. This can be represented as

u′m[k′] =↑I {ym[k]} ,
1In literature, the traditional DAS does not have the weights wm in its temporal representation. These

weights only show up if you use a “weighted DAS”, or in the frequency representation. However, in this
work the “weighted DAS” is referred as the traditional DAS.
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Figure 1.1: PDM-mic array DAS beamformer (repeated from page 23)

where ↑I {·} represents an upsampling by I operation so that u′m[k′] is a signal at sampling
period T ′ = T/I. Thus, the interpolated signal after the low-pass interpolation filter with
impulse response hI [k′] will yield

y′m[k′] = hI [k′] ∗ u′m[k′] ,

where ∗ represents discrete-time convolution operation. In practice, if hI [k′] is properly
designed, y′m[k′] is just as if ym[k] would be sampled at a higher sampling rate.

All interpolated signals can be delayed, weighted and summed together as shown
in Figure 4.2 to produce

z′[k′] =
M−1∑
m=0

wmy
′
m[k′ − k′m] , (4.2)

where
k′m = ‖∆m/T

′‖ = ‖I∆mfo‖

is the required integer delay in the interpolated signals. See that, although this delay is
still integer as km case, due to the new sampling period T ′ rather than T , it delivers finer
resolution. Also, as the beamformer output still needs to be at sampling period T , z′[k′]
needs to be downsampled by I at the end. Therefore,

z[k] =↓I {z′[k′]} ,
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where ↓I {·} represents a downsampling by I operation. Because the delay and sum are
performed in the interpolated signals, we call this method as discrete-time interpolation
beamformer. Figure 4.6b shows the normalized power of a 40-microphone uniform linear
array implemented with the discrete-time beamformer method. Three audio sources of
1 kHz, 3 kHz and 5 kHz are located at 20, 60 and 110 degrees respectively, the three
ones with equal strength. This figure shows that the interpolated beamformer has a
finer resolution than the discrete-time beamformer because of increased number of delay
elements at a higher sampling rate. The equations to estimate the required resources for
this kind of beamformer are discussed at the end of this section.
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Figure 4.2: Discrete-time interpolation beamformer.

In order to reduce calculations by a factor of M , the interpolation filter can
be expressed in its so-called polyphase filter structure [13,14] in a similar way explained
for a decimation filter in Section 2.3.2 as shown in Figure 4.3. In this sense, given the
interpolation filter hI [k′], as k′ = kI+ r ∀r ∈ {0, . . . , I− 1}, its output can be expressed as

y′m[k′] = y′m[kI + r] =
∑
s

ym[s]hr[k − s] , (4.3)

where
hr[k] = hI [kI + r] , (4.4)

is the polyphase component.
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Figure 4.3: Interpolation filter in polyphase filter structure.

Replacing (4.3) and (4.4) in (4.2)

z′[kI + r] =
M−1∑
m=0

wm

[∑
s

ym[s]hI [(k − s)I + r − k′m]
]
. (4.5)

It is defined
h(r−k′m)I [k] = hI [kI + r − k′m] ,

where computing the difference r − k′m modulo I means bringing the difference back into
the range [0, I − 1] by adding or subtracting multiples of I from k′m and delaying or
advancing hr−k′m by the appropriate integer number of samples. Equation (4.5) can be
written as

z′[kI + r] =
M−1∑
m=0

wm

[∑
s

ym[s]h(r−k′m)I [k − s]
]
. (4.6)

Because the beamformer output needs to be at the same sampling rate than
the input, it is required that z′[kI + r] would be downsampled by I. In this sense, it is
assumed a fixed value of r = 0 so that (4.6) could be written finally as

z[k] = z′[kI] =
M−1∑
m=0

wm

[∑
s

ym[s]h(−k′m)I [k − s]
]
. (4.7)

Equation (4.7) represents an efficient polyphase implementation of the discrete-
time interpolation beamformer. As shown in Figure 4.4, in this implementation, for each
beam, only one of the component polyphase filters needs to be implemented at each
sensor’s output.
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Figure 4.4: Efficient discrete-time interpolation beamformer.

Discrete-time postdecimation interpolation beamformer

Because of linearity, low-pass filter and beamforming operations can be inter-
changed as shown in Figure 4.5. This implementation results in computational savings
when the number of sensors M is significantly larger than the interpolation factor I.
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Figure 4.5: Discrete-time postdecimation interpolation beamformer.
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(b) Discrete-time interpolation beamformer method (interpolation
factor I = 16).

Figure 4.6: Normalized power (polar) of a uniform linear array of 40 microphones (M = 40)
and specifications as listed in Table 1.1 and Table 1.2. Three audio sources of 1 kHz, 3 kHz
and 5 kHz are located at 20, 60 and 110 degrees respectively, the three ones with equal
strength.

Implementation resources

The implementation resources for the time domain beamformers presented in
this section can be derived from Figure 1.1, 4.4 and 4.5 as shown in Table 4.1. In this
table, Sz

dec, S+
dec, S∗dec and Sodec are the implementation resources of each decimation filter.
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Also, as delay from the array center to the mth microphone (∆m) will be changing
to steer the beamformer, the delay chains need to be large enough support all possible values
of ∆m. Therefore, from (1.4) is derived that the delay chains length for the discrete-time
beamformer will be 2d∆maxfoe; and for the efficient and postdecimation ones, 2dI∆maxfoe
as shown in Table 4.1. Note also that all quantities are added by M times Sz

dec, S+
dec or S∗dec

respectively, as the decimation filter are dedicated by channel, not sharing any resource.
It is also observed that both interpolated realizations depend on the interpolation

filter length (NI), the efficient one has the dNI/Ie term in its calculations because of the
polyphase structure used.

Finally, comparing S∗dec from efficient and postdecimation interpolation beam-
formers, it can be verified that the postdecimation one is more resource-efficient only when
MdNI

I
e ≥ NII or approximately when M > I2.

Implementation
Method

Beamformer’s storage
requirement (Sz

bf) in bit

Beamformer’s number
of additions per second

(S+
bf) in APS

Beamformer’s number
of multiplications per
second (S∗bf) in MPS

Discrete-time beamformer 2Md∆maxfoeLout +MSz
dec (M − 1)fo +MS+

dec Mfo +MS∗dec

Efficient discrete-time
interpolation beamformer

2M(dI∆maxfoe+
dNI
I
e)Lout +MSz

dec (M−1+MdNI
I
e)fo+MS+

dec
(M +MdNI

I
e)fo +MS∗dec

Discrete-time
postdecimation

interpolation beamformer

(2MdI∆maxfoe+
NI)Lout +MSz

dec
(M − 1 +NI)foI +MS+

dec (M +NII)fo +MS∗dec

Table 4.1: Time domain implementation resources of beamformers at PCM domain

4.1.2 Frequency domain implementations

One-dimensional FFT beamformer

Given an array of M microphones with time domain outputs and denoting the
mth microphone output as ym(t), we denote the Fourier transform of the mth microphone
output by Ym(ω). In this case the spectrum of the delay-and-sum beamformer output
would be

Z(ω) =
M−1∑
m=0

wmYm(ω) exp(−jω∆m) , (4.8)

where ∆m is the delay in the mth microphone output ym(t). In practice, however, Ym(ω)
can not be computed because it would require integrating over all time. So, in order to
analyze the time domain signal in a limited time frame, it is introduced the concept of
short-time Fourier transform

Ym(t, ω) =
∫ t+D

t

ψ(t− τ)ym(τ)e−jωτdτ , (4.9)
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where D is the time frame after the t instant. Here, ψ(t) denotes a finite length window
defined over [0, D]. Therefore, (4.9) can be rewritten as

Ym(t, ω)ejωt =
∫ D

0
ψ(τ)ym(t+ τ)e−jωτdτ . (4.10)

This expression can be interpreted as an approximation of the spectrum at time
t in a frame of length D. Then, the spectrum of the delay-and-sum beamformer output
will be

Z(t, ω) =
M−1∑
m=0

wmYm(t, ω)ejωt exp(−jω∆m) . (4.11)

Even though (4.11) is limited in time, it is still required to integrate over the time domain
which is not possible for discrete-time signal processing. Provided that ym[k] is the kth
sample of ym(t) signal sampled at fo = 1/T rate so that t = kT , (4.9) can be expressed in
the discrete-time domain as

Ym[k, ω] =
k+Ds−1∑
l=k

ψ[l − k]ym[l]e−jωT l , (4.12)

where Ym[k, ω] is the discrete short-time Fourier transform of the ym(t) at the instant
t = kT and over the frame time D = DsT provided that Ds is an integer. Here, ψ[k] is
also the discrete-time version of the window function ψ(t) over [0, Ds]. Then the discrete
short-time Fourier transform of the beamformer output equals to

Z[k, ω] =
M−1∑
m=0

wmYm[k, ω]ejωTk exp(−jω∆m) . (4.13)

If the frequency domain is discretized so that ωT = 2πv/Ds for v = 0, . . . , Ds −
1, (4.12) can be rewritten as

Ym[k, v] exp
{
j

2πv
Ds

k

}
=

Ds−1∑
l=0

ψ[l]ym[k + l] exp
{
−j 2πv

Ds

l

}
. (4.14)

So the beamformer output will be

Z[k, v] =
M−1∑
m=0

wmYm[k, v] exp
{
j

2πv
Ds

(k −∆m/T )
}
. (4.15)

Then, if it is defined ỹm[k, l] = ψ[l]ym[k + l], the DFT of ỹm[k, l] will be

Ỹm[k, v] =
Ds−1∑
l=0

ỹm[k, l] exp
{
−j 2πv

Ds

l

}
, v = 0, . . . , Ds − 1 . (4.16)
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Finally, Equations (4.14) and (4.15) can be rewritten as

Ym[k, v] exp
{
j

2πv
Ds

k

}
= Ỹm[k, v] , v = 0, . . . , Ds − 1 , (4.17)

Z[k, v] =
M−1∑
m=0

wmỸm[k, v] exp
{
−j 2πv

Ds

∆m

T

}
, v = 0, . . . , Ds − 1 . (4.18)

Equation (4.18) can be implemented in hardware as shown in Figure 4.7. At first,
it is required to transform PDM bitstreams xm[n] to PCM representation ym[k]. Then
each PCM audio signal is passed through a windowing function ψ[k] to yield ỹm[k]. Each
windowed signal is then passed through a FFT block to obtain Ỹm[k, v]. These frequency
domain signals should be multiplied by a weighting factor

Wm(v) = wm exp
{
−j 2πv

Ds

∆m

T

}
which depends on the desired direction of arrival. Finally, the weighted outputs are
summed together and transformed to time domain by an Inverse Fast Fourier transform
(IFFT).

Figure 4.9a shows the normalized power of a uniform linear array implemented
with one-dimensional FFT beamformer method using 40 microphones (M = 40). Three
audio sources of 1 kHz, 3 kHz and 5 kHz are located at 20, 60 and 110 degrees respectively,
the three ones with equal strength. The equations to estimate the required resources for
this kind of beamformer are discussed in the end of this section.
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Figure 4.7: One-dimensional FFT beamformer implementation method.
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Two-dimensional FFT beamformer

In the same way than the one-dimensional FFT beamformer, if we use a uniform
regular array whose spatial origin occurs at the first microphone such that

∆m = αxmd

c
;

where d is the space between microphones, αx = cos(θ), θ is the angle of arrival and c is
the sound speed.

If it is also defined a variable u related to v as

u = dMαx
DsTc

v , v = 0, . . . , Ds − 1 , (4.19)

such that the argument of the exponential of (4.18) can be rewritten as

2πv
Ds

∆m

T
= 2πu

M
m , m = 0, . . . ,M − 1 ,

and the whole equation (4.18), replacing (4.19) and (4.16), can be rewritten as following

Z[k, u, v] =
M−1∑
m=0

Ds−1∑
l=0

wmỹm[k, l] exp
{
−j 2πv

Ds

l

}
exp

{
−j 2πu

M
m

}
. (4.20)

And if it is also defined x[k,m, l] = wmỹm[k, l] = wmψ(l)ym[k + l] , thus (4.20)
can be written as a two-dimensional DFT

Z[k, u, v] = DFT {DFT {x[k,m, l]}} , m = 0, . . . ,M − 1 l = 0, . . . , Ds − 1 . (4.21)

Equation (4.21) can be implemented in hardware as shown in Figure 4.8. At first,
it is required to transform PDM bitstreams xm[n] to PCM representation ym[k]. Then
each PCM audio signal is passed through a windowing function ψ[k] to yield ỹm[k]. Each
windowed signal is then passed through a FFT block to obtain Ỹm[k, v]. The outputs of
those FFT blocks are passed through another FFT block. The output of this second FFT
block is passed through a steerer block S{·} defined as

Z[k, v] = S(θ, Z[k, u, v]) = Z[k, u, v]
∣∣∣
u= dM cos(θ)

DsTc
v

; (4.22)

which, given a desired angle of arrival θ, filters only the samples meeting the u and v

relation defined by (4.19). Finally, the Steerer’s output is passed through an IFFT block.
Figure 4.9b shows the normalized power of a 40-microphone uniform linear array

implemented with the two-dimensional FFT beamformer method. Three audio sources
of 1 kHz, 3 kHz and 5 kHz are located at 20, 60 and 110 degrees respectively, the three



81

ones with equal strength. The stepped response shown in the normalized power diagram
is due to the small size of the second FFT block (N = 40) which limits the beamformer
resolution. This resolution can be improved increasing N so that it would be always
greater or equal than the number of microphones (N ≥M).The equations to estimate the
required resources for this kind of beamformer are discussed in the end of this section.
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Figure 4.8: Two-dimensional FFT beamformer implementation method.

Implementation resources

If the Ds-points FFT blocks in Figures 4.7 and 4.8 are implemented using
“butterfly” structures [13], each FFT block implementations resources can be estimated
using (2.18). So, using this equation, it is found that each Ds-points FFT block will require
3DsLout storage elements, DsLout to store the input elements and 2DsLout to store each
stage results (imaginary and real parts); 2Ds log2(Ds)fo additions and multiplications per
second. The same implementation metrics can be found for N -points FFT and Ds-points
IFFT blocks with the same equation (2.18), assuming that they are also implemented with
“butterfly” structures,

Based on these architectural assumptions, the implementation resources of one-
dimensional and two-dimensional FFT beamformers can be calculated as shown in Table 4.2
where Sz

dec, S+
dec and S∗dec are the implementation resources of each decimation filter in the

beamformer; and N ≥M is the number of points of the 2nd FFT in the two-dimensional
FFT beamformer.

From Table 4.2 can be observed by comparison that the two-dimensional FFT
beamformer requires less computation (MPS) when

DsM ≥ N log2N ,
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(a) One-dimensional FFT method
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(b) Two-dimensional FFT method

Figure 4.9: Normalized power (polar) of a uniform linear array of 40 microphones (M = 40)
and specifications as listed in Table 1.1 and Table 1.2. Three audio sources of 1 kHz, 3 kHz
and 5 kHz are located at 20, 60 and 110 degrees respectively, the three ones with equal
strength.

but as N ≥M , then two-dimensional FFT requires less computation when

N ≤ 2Ds .

Finally, it is observed also that even with less computation, two-dimensional FFT beam-
former require additional 4NLout storage elements. So, because of this storage and
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Implementation
Method

Beamformer’s storage
requirement (Sz

bf) in bit

Beamformer’s number
of additions per second

(S+
bf) in APS

Beamformer’s number
of multiplications per
second (S∗bf) in MPS

One-dimensional FFT
beamformer

3MDsLout + 4DsLout +
MSz

dec

2(M + 1)Ds log2Dsfo +
2Ds(M − 1)fo +MS+

dec

2(M + 1)Ds log2Dsfo +
2DsMfo +MS∗dec

Two-dimensional FFT
beamformer

3MDsLout + 4NLout +
4DsLout +MSz

dec
2(M + 1)Ds log2Dsfo + 2N log2Nfo +MS+

dec

Table 4.2: Frequency domain implementation resources of beamformers at PCM domain

computation resources trade-off, the implementation should be chosen depending on the
intended application and the available resources.
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4.2 Proposal: Beamforming at PDM domain
In this section, an alternative time domain implementation and two frequency

domain methods that do not require decimation filters are proposed. This chapter
complements the study already done in [8] about beamforming on the PDM domain.

4.2.1 Time domain implementations

Discrete-time bitstream beamformer

The PCM signal ym on the mth decimation filter’s output can be written as

ym[k] =↓R {h[n] ∗ xm[n]} =
∑
r

h[r]xm[Rk − r] , (4.23)

where ↓R {·} represents a downsampling by R operation (n = Rk), ∗ represents a discrete-
time convolution, h[n] is the impulse response of the low-pass filter so that its cutoff
frequency would be ωc = π/R, and xm[n] is the PDM bitstream signal incoming from the
mth digital microphone.

The discrete-time DAS beamformer can be expressed in terms of PDM bitstream
signal xm replacing (4.23) in (4.1)

z[k] =
M−1∑
m=0

wm
∑
r

h[r]xm[Rk −Rkm − r] .

Since h[r] does not depend on m, this equation can be written as

z[k] =
∑
r

h[r]
M−1∑
m=0

wmxm[Rk −Rkm − r] . (4.24)

By defining z′[n] as

z′[n] =
M−1∑
m=0

wmxm[n− n′m] , (4.25)

where n′m = Rkm is the delay in the mth PDM bitstream xm, the beamformer output z[k]
can be expressed in terms of z′[n] replacing (4.25) in (4.24) so that

z[k] =
∑
r

h[r]z′[Rk − r] =↓R {h[n] ∗ z′[n]} . (4.26)

Equation (4.26) can be implemented in hardware as shown in Figure 1.2. There-
fore, as the beamforming is performed in the first filtering stage, directly into the bitstreams,
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this beamformer implementation will be called as discrete-time bitstream beamformer. Also
note that as the delay and weighting are conducted at PDM domain, there will be a finer
resolution for the delay.

Finally, as the delayed inputs xm[n− n′m] are still bitstreams, the multiplying by
wm operation will be actually rather a substitution operation. This substitution operation
will increase the number of bits of the adder inputs. Also, as the adder output will be
a multi-bit signal, LPF should be designed to have also a multi-bit input rather than a
bitstream input like the discrete-time beamformer case. This variation in the LPF’s input
will not impact in the final output as it is always a multi-bit (PCM) output. Figure 4.11
shows the normalized power of a 40-microphone uniform linear array implemented with
the discrete-time beamformer method. Three audio sources of 1 kHz, 3 kHz and 5 kHz are
located at 20, 60 and 110 degrees respectively, the three ones with equal strength. It is
shown that this beamformer has a better resolution than the normalized power response
of the beamformers shown in Figure 4.6 because of the higher resolution in the delay
elements running at input sampling rate. The equations to estimate the required resources
for this kind of beamformer are discussed in the end of this section.

x0[n]
z−∆0·fi

w0

x1[n]
z−∆1·fi

w1

x2[n]
z−∆2·fi

w2 z′[n]
H(z)

yR
z[k]

xm[n]
z−∆m·fi

wm

xM−1[n]
z−∆M−1·fi

wM−1

MIC 0

MIC 1

MIC 2

MIC m

MIC M-1

DECIMATION FILTER

DAS BEAMFORMER

...

...

...

...

Figure 1.2: PDM-mic array DAS beamformer at PDM domain (repeated from page 25)

Implementation resources

The implementation resources for the postdecimation beamformer in Table 4.3 are
derived from Figure 1.2. As the delay elements are in a higher sampling rate (fi = Rfo),
the beamformer’s storage requirement (Sz

bf) depends on R times ∆max and Lin. Also, as



86

0°

45°

90°

135°

180°

225°

270°

315°

0.0
0.2

0.4
0.6

0.8
1.0

Figure 4.11: Discrete-time bitstream beamformer method. Normalized power (polar) of a
uniform linear array of 40 microphones (M = 40) and specifications as listed in Table 1.1
and Table 1.2. Three audio sources of 1 kHz, 3 kHz and 5 kHz are located at 20, 60 and
110 degrees respectively, the three ones with equal strength.

there is only a single decimation filter, implementation resources are added by Sz
dec, S+

dec

and S∗dec respectively.

Implementation
Method

Beamformer’s storage
requirement (Sz

bf) in bit

Beamformer’s number
of additions per second

(S+
bf) in APS

Beamformer’s number
of multiplications per
second (S∗bf) in MPS

Discrete-time bitstream
beamformer 2MdR∆maxfoeLin + Sz

dec (M − 1)Rfo + S+
dec MRfo + S∗dec

Table 4.3: Time domain implementation resources of beamformer at PDM domain

4.2.2 Frequency domain implementations

One-dimensional bitstream FFT beamformer

Due to the fact that a PDM bitstream has the same information than its converted
PCM signal but with quantization noise shaped at higher frequencies, a PDM bitstream
can be treated as a baseband signal with a higher sampling rate fi = Rfo, where fo is the
required sampling rate in the beamformer output and R is the decimation rate. Therefore,
the one-dimensional FFT beamformer can be modified so that decimation would be
performed in frequency domain at the end of the beamformer, before an IFFT is applied,
as shown in Figure 4.12. This implementation method will be called as one-dimensional
bitstream FFT beamformer.
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Because the input sampling rate is higher than in a conventional DAS beamformer,
it is required a frame length D′s = RDs i.e. R times larger than the required in conventional
implementation methods. Figure 4.14a shows the normalized power of a uniform linear
array implemented with an one-dimensional bitstream FFT beamformer method using
40 microphones (M = 40). Three audio sources of 1 kHz, 3 kHz and 5 kHz are located at
20, 60 and 110 degrees respectively, the three ones with equal strength. The equations to
estimate the required resources for this kind of beamformer are discussed in the end of
this section.

x0[n]
FFT{·}

X0[n, v] W0[v]

x1[n]
FFT{·}

X1[n, v] W1[v]

x2[n]
FFT{·}

X2[n, v] W2[v]
Z′[n, v]

H(z)
yR

Z[k, v]
IFFT{·}

z[k]

xm[n]
FFT{·}

Xm[n, v] Wm[v]

xM−1[n]
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Figure 4.12: One-dimensional bitstream FFT beamformer implementation method.

Two-dimensional bitstream FFT beamformer

The two-dimensional bitstream FFT beamformer may be derived in the same
way than the one-dimensional bitstream FFT beamformer, just performing the decimation
filtering in the frequency domain at the end of the beamformer as shown in Figure 4.13.
As the state-of-the-art beamformer case shown in Figure 4.8, the number of points of the
second FFT block should have also N ≥M points. See also that as IFFT operation takes
place after the decimator, its number of points (D′s = Ds/R) is less than the number of
points in the first FFT block (Ds).

Figure 4.14b shows the normalized power of a uniform linear array implemented
with a two-dimensional bitstream FFT beamformer method using 40 microphones (M = 40).
Three audio sources of 1 kHz, 3 kHz and 5 kHz are located at 20, 60 and 110 degrees
respectively, the three ones with equal strength. The equations to estimate the required
resources for this kind of beamformer are discussed in the end of this section.
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Figure 4.13: Two-dimensional bitstream FFT beamformer implementation method.

Implementation resources

If it is assumed that FFT and IFFT blocks from Figures 4.12 and 4.13 are
implemented using “butterfly” structures, the required implementation resources for one-
dimensional and two-dimensional bitstream FFT beamformers can be estimated as shown
in Table 4.4 where the implementation resources of each FFT and IFFT are estimated
using (2.18).

Implementation
Method

Beamformer’s storage
requirement (Sz

bf) in bit

Beamformer’s number
of additions per second

(S+
bf) in APS

Beamformer’s number
of multiplications per
second (S∗bf) in MPS

One-dimensional bitstream
FFT beamformer 3MRDsLout + 4DsLout

2M(RDs) log2 (RDs)Rfo +
2RDs(M − 1)Rfo +

2Ds log2Dsfo

2M(RDs) log2 (RDs)Rfo +
2RDsMRfo +
2Ds log2Dsfo

Two-dimensional bitstream
FFT beamformer

3MRDsLout + 4NLout +
4DsLout

2M(RDs) log2 (RDs)Rfo + 2N log2NRfo +
2Ds log2Dsfo

Table 4.4: Frequency domain implementation resources of beamformers at PDM domain

In the same way done for PCM beamformers in Section 4.2.2, by comparing
the beamformer’s number of multiplications per second (S∗bf) and beamformer’s storage
requirement (Sz

bf) in Table 4.4, it can be observed that the two-dimensional bitstream FFT
beamformer requires less multiplications per second when

N ≤ 2RDs

but requires additional 4NLout bit than the one-dimensional one.
Finally, from Table 4.4 can be also observed that the decimation filters do not

have impact in the resource utilization of both beamformer implementation, this because
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(a) One-dimensional bitstream FFT method

0°

45°

90°

135°

180°

225°

270°

315°

0.0
0.2

0.4
0.6

0.8
1.0

(b) Two-dimensional bitstream FFT method

Figure 4.14: Normalized power (polar) of a uniform linear array of 40 microphones
(M = 40) and specifications as listed in Table 1.1 and Table 1.2. Three audio sources of
1 kHz, 3 kHz and 5 kHz are located at 20, 60 and 110 degrees respectively, the three ones
with equal strength.

decimation in frequency domain requires only to discard the higher frequency samples
without any extra calculation.
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4.3 Summary

Domain Implementation
Method

Beamformer’s storage
requirement (Sz

bf) in bit

Beamformer’s number
of additions per second

(S+
bf) in APS

Beamformer’s number
of multiplications per
second (S∗bf) in MPS

Time

Discrete-time beamformer 2Md∆maxfoeLout +MSz
dec (M − 1)fo +MS+

dec Mfo +MS∗dec

Efficient discrete-time
interpolation beamformer

2M(dI∆maxfoe+
dNI
I
e)Lout +MSz

dec (M−1+MdNI
I
e)fo+MS+

dec
(M +MdNI

I
e)fo +MS∗dec

Discrete-time
postdecimation

interpolation beamformer

(2MdI∆maxfoe+
NI)Lout +MSz

dec
(M − 1 +NI)foI +MS+

dec (M +NII)fo +MS∗dec

Discrete-time bitstream
beamformer2 2MdR∆maxfoeLin + Sz

dec (M − 1)Rfo + S+
dec MRfo + S∗dec

Frequency

One-dimensional FFT
beamformer

3MDsLout + 4DsLout +
MSz

dec

2(M + 1)Ds log2Dsfo +
2Ds(M − 1)fo +MS+

dec

2(M + 1)Ds log2Dsfo +
2DsMfo +MS∗dec

Two-dimensional FFT
beamformer

3MDsLout + 4NLout +
4DsLout +MSz

dec
2(M + 1)Ds log2Dsfo + 2N log2Nfo +MS+

dec

One-dimensional bitstream
FFT beamformer3 3MRDsLout + 4DsLout

2M(RDs) log2 (RDs)Rfo +
2RDs(M − 1)Rfo +

2Ds log2Dsfo

2M(RDs) log2 (RDs)Rfo +
2RDsMRfo +
2Ds log2Dsfo

Two-dimensional bitstream
FFT beamformer4

3MRDsLout + 4NLout +
4DsLout

2M(RDs) log2 (RDs)Rfo + 2N log2NRfo +
2Ds log2Dsfo

Table 4.5: Beamformer implementation resources summary

In Table 4.5 is summarized the required resources to implement the state-of-the-
art and proposal methods studied in this chapter. It is easy to see in this table that the
discrete-time beamformer will require less implementation resources that the interpolation
and postdecimation ones. So if it is assumed that M � 1 and the required resources
for the discrete-time beamformer are compared to the proposed discrete-time bitstream
beamformer one, the latter one will be more efficient that the former one when

S+
dec > fi − fo, (4.27a)
S∗dec > fi − fo and (4.27b)
Sz

dec > 2∆maxfo(RLin − Lout) . (4.27c)

In other words, the discrete-time bitstream beamformer will the most resource-
efficient time domain beamformer when conditions in (4.27) are accomplished.

In frequency domain methods case, it is not possible to derive simple conditions
to select the most resource-efficient time domain beamformer as they depend on the
additional parameter Ds that depends on the frame length (Lframe) as follows:

Ds = dLframefoe . (4.28)



91

Also, depending on the FFT implementation method, it could be required Ds to be a
multiple-by-2 number.

4.4 Results

Domain Implementation
Method

Beamformer’s storage
requirement (Sz

bf) in bit

Beamformer’s number
of additions per second

(S+
bf) in APS

Beamformer’s number
of multiplications per
second (S∗bf) in MPS

Time

Discrete-time beamformer 210040 1211504000 1213440000

Efficient discrete-time
interpolation beamformer 302200 1213424000 1215360000

Discrete-time
postdecimation

interpolation beamformer
297160 1221920000 1218240000

Discrete-time bitstream
beamformer 82323 150080000 153200000

Frequency

One-dimensional FFT
beamformer 388984 1794560000 1798528000

Two-dimensional FFT
beamformer 392824 1721500067

One-dimensional bitstream
FFT beamformer 35395584 43969626736769 44045124208769

Two-dimensional bitstream
FFT beamformer 35399424 41026533245818

Table 4.6: Beamformer implementation resources comparison. It is a assumed that the
decimation filter multi_0 is used in all beamformers, interpolation rate I=10, interpolation
filter length NI = 30, FFT number of points DS = 64 and N = M = 40.

In Table 4.6 is shown the required resources to implement a beamformer with
specifications as Table 1.1 and Table 1.2, as many decimation filter structures are possible,
it is selected the more efficient one (multi_0 ) calculated in Chapter 3 and listed in Table 3.4.
As the previous study [8] also has shown, the DAS beamformer implementations in frequency
domain mentioned in this chapter are very expensive because of the large memory and
computation requirements to implement the FFT blocks. So if the implementation
resources are critical, and no additional frequency domain algorithms will be used for
the beamformer, the time domain implementation methods are preferred and, in special,
the discrete-time bitstream beamformer that is the most efficient. If frequency domain
implementation is required, for our specifications, it is shown that the state-of-the-art
one-dimensional and two-dimensional FFT beamformers should be preferred.

In Table 4.7 are also summarized the required implementation resources to
implement the state-of-the-art discrete-time beamformer with specifications as listed in
Table 1.1 and Table 1.2 using decimation filters whose required resources are listed in
Tables 3.5 and 3.1, the prefix pcm_ is used to identify these beamformers. The same
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Sz
bf (bit) S∗bf (MPS) S+

bf (APS) Sobf (APS) fcpu (MHz) T+
FPGA (-) T+

lp (-)
pcm_single_direct 1529520 1165886080000 2331648624000 3497548784000 3497548.78 54650 349755
pcm_single_eff 1529520 6072960000 12144624000 18231664000 18231.66 285 1824
pcm_single_memsav 27360 12145280000 12144624000 24303984000 24303.98 380 2431
pcm_multi_0 210040 1213440000 1211504000 4184944000 4184.94 66 419
pcm_multi_1 238280 770560000 766064000 4435184000 4435.18 70 444
pcm_multi_2 318160 160000000 785264000 4451824000 4451.82 70 446
pcm_multi_3 318160 160000000 785264000 4451824000 4451.82 70 446
pcm_multi_4 298600 140160000 1113584000 4558704000 4558.70 72 456
pcm_multi_5 242000 616960000 607344000 4709104000 4709.10 74 471
pcm_multi_6 266360 794240000 789744000 5064304000 5064.30 80 507
pcm_multi_7 243280 389120000 576624000 5067504000 5067.50 80 507
pcm_multi_8 253200 631680000 622064000 5093744000 5093.74 80 510
pcm_multi_9 241120 640000000 632944000 5148144000 5148.14 81 515

Table 4.7: Comparison of required resources to implement a discrete-time beamformer
using decimation filters listed in Tables 3.4 and 3.1 and beamformer specifications as
Table 1.2 (40 microphones).

Sz
bf (bit) S∗bf (MPS) S+

bf (APS) Sobf (APS) fcpu (MHz) T+
FPGA (-) T+

lp (-)
pdm_single_direct 115310 29270016000 58411008000 90384384000 90384.38 1413 9039
pdm_single_eff 115310 274688000 423408000 3401456000 3401.46 54 341
pdm_single_memsav 77756 426496000 423408000 3553264000 3553.26 56 356
pdm_multi_0 82323 153200000 150080000 3050288000 3050.29 48 306
pdm_multi_1 83029 142128000 138944000 3056544000 3056.54 48 306
pdm_multi_2 85026 126864000 139424000 3056960000 3056.96 48 306
pdm_multi_3 85026 126864000 139424000 3056960000 3056.96 48 306
pdm_multi_4 84537 126368000 147632000 3059632000 3059.63 48 306
pdm_multi_5 83122 138288000 134976000 3063392000 3063.39 48 307
pdm_multi_6 83731 142720000 139536000 3072272000 3072.27 49 308
pdm_multi_7 83154 132592000 134208000 3072352000 3072.35 49 308
pdm_multi_8 83402 138656000 135344000 3073008000 3073.01 49 308
pdm_multi_9 83100 138864000 135616000 3074368000 3074.37 49 308

Table 4.8: Comparison of required resources to implement a discrete-time bitstream beam-
former using decimation filters listed in Tables 3.4 and 3.1 and beamformer specifications
as Table 1.2 (40 microphones).

comparison but for proposal discrete-time bitstream beamformer is summarized in Table 4.8,
the prefix pdm_ is used in this case.

It is easy to see that the discrete-time bitstream beamformer is the most efficient
implementation for all cases at our given conditions except for the pcm_single_memsav
where the beamformer’s storage requirement is less for discrete-time beamformer implemen-
tation. This difference in storage resources is caused because of the pcm_single_memsav
decimation filter (Table 3.1) does not meet the (4.27c) condition. In the same way, it
could be verified that all others decimation filters are inside (4.27) conditions evaluated
with the desired beamformer parameters:

S+
dec > 3056000 ,

S∗dec > 3056000 ,



93

and
Sz

dec > 1690 .

Therefore, as these conditions are met, discrete-time bitstream beamformer is the most
efficient for all those cases.

Finally, after evaluating the implementation resources of the state-of-the-art and
proposal methods in time and frequency domains, it is concluded that the proposed discrete-
time bitstream beamformer is the most efficient for the desired beamformer specification.
It is also concluded that, for the same beamformer specification, the frequency domain
methods are expensive and not efficient but, in case a frequency domain implementation
is required, the state-of-the-art one-dimensional or two-dimensional FFT beamformers
should be prefered.
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Chapter 5

Efficient Beamforming

“Given a decimation filter and a beamformer specification, find an
architecture that fuses both delay and decimation operations.”

In this chapter, in order to meet the above objective formulated in Section 1.2.3
a delayed decimation filter, based on Samadi filter, which merges both filtering and delay
elements in a single structure is proposed to reduce the resources required in comparison to
the already studied structures. This delayed decimation filter is equivalent to a decimation
filter with low-pass filter impulse response H(z) decimated by R followed by a delay ∆m,
such that the PDM-mic array DAS beamformer shown in Figure 1.1 can be expressed as
an array of delayed decimation filters.

5.1 Universal maximally flat Samadi filter
The design of linear-phase FIR filters with flat passband and stopband has

been first studied by Herrmann [45]. These MAXFLAT filters are characterized by the
maximally possible order of tangency at ω = 0 and ω = π. Furthermore, their transfer
function can be expressed by equivalent closed-form expressions formulated in [45–48].
While Herrmann proposed a design method based on Hermite polynomial interpolation,
Rajagpoal [48] derived an equivalent expression based on Bernstein polynomials. In the
other hand, nonlinear-phase MAXFLAT FIR filters were introduced by Baher [49]. These
filters resulted in improved transition bandwidth and controllable group delay at ω = 0.
Even though Baher proposes a simple method to derive MAXFLAT transfer functions, a
closed-form was not provided by him.

Finally, Samadi [9] unified Baher’s nonsymmetrical filters, linear-phase MAXFLAT
filters and Lagrange interpolators using a compact formula for the transfer function of
Baher’s filters. Samadi’s filters can be realized with cellular array structures, as further
described in [9, 50].
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5.1.1 Samadi’s filters

As derived in [9], the transfer function of Samadi’s filters is defined by

HN,K,d(z) =
N−K∑
j=0

cj
(1− z−1

2
)j(1 + z−1

2
)N−j

(5.1)

where

cj =
j∑
i=0

(−1)j−i
(
N
2 − d
i

)(
N
2 + d

j − i

)
, (5.2)

K is the number of zeros at z = −1, N is the filter order, and the delay parameter d is a
real number defined as

d = α− N

2 . (5.3)

For a given group delay α, such that 0 ≤ α ≤ N , one easily verifies that

−N2 ≤ d ≤ N

2

or
|d| ≤ dmax = N

2 , (5.4)

where dmax is the maximum allowed delay parameter and the binomial coefficients in (5.2)
are defined as

(
x

i

)
=



i−1∏
j=0

x− j
j + 1 , i ≥ 1

1, i = 0
0. i < 0

(5.5)

This filter becomes a MAXFLAT linear phase FIR when d = 0. As shown
in [45,48], the low-pass cutoff frequency (ωc) of these linear phase filters is related with N
as

L '
⌈
Nωc/π + 0.5

⌉
(5.6)

where L is defined for convenience as

L = N −K. (5.7)

The cutoff frequency of these linear phase filters increases almost linearly with L as shown
in Figure 5.1 for different N values. Also, as demonstrated in [9], for linear phase filters
(d = 0) the coefficient of (5.1) is

cj|d=0 = 0, j odd ,
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then the magnitude frequency spectrum of L = 2j and L = 2j + 1 are the same for
j ∈ {0, . . . , bN/2 − 1c} as shown in Figure 5.1a. Figure 5.1c also shows that the filter
group delay for d = 0 is α = N/2 as expected by (5.3).
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Figure 5.1: Linear-phase Samadi’filter magnitude (a), phase (b) and group delay (c)
normalized frequency spectrums for N = 9 and N = 12 (d = 0).



97

In the other hand, when d 6= 0 the Samadi filter becomes a MAXFLAT nonlinear
phase filter. The most interesting characteristic of this filter class is the ability to modify
its group delay as given by (5.3) and shown in Figure 5.2.
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Figure 5.2: Samadi filter magnitude (a), phase (b) and group delay (c) normalized frequency
spectrums for N = 10 and d ∈ {−5, . . . , 5}
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In Figure 5.2 it is shown how the filter flatness is affected when d increases.
However, it is also shown that the phase is still linear inside the passband region for
ω < 0.25π. This suggests that this filter can be used as an intermediary stage in a multirate
filter chain to perform group delay adjustment and low-pass filtering as studied in the
next section.

5.1.2 Proposal: Samadi filter as multirate filter

A Samadi filter could be used as the LPF of a multirate filter. Given d constant,
K and N can be adjusted to meet filter requirements already defined in (2.10). Because
Samadi filter frequency spectrum is monotonic, the minimum parameters K and N to
meet requirements given by d, R, Vp, Vs, δp, δs could be calculated with the proposed
Algorithm 3, where R = Rj, δp = δjp, δs = δjs, Vp = V j

p and Vs = V j
s , such that if aliasing in

transition band is allowed, then F j
p = Fp for j ∈ {1, . . . , J − 1}; otherwise, if aliasing is not

allowed, then F j
p = Fs for j ∈ {1, . . . , J − 1}, i.e., the last stage cannot be a Samadi filter.

Figure 5.3 shows examples of minimum N and K values for MAXFLAT linear-
phase filters (d = 0) using the proposed procedure with decimation factor R = 2. As
expected, δs decreases discretely with higher N values. Also, as pointed out by [51],
Figure 5.3b shows how N varies as a quadratic function of ωp.

Finally, Figure 5.4 shows minimum N and K values calculated by the proposed
procedure for d ∈ {0, . . . , 26} and common values of ωp. It is shown that the minimum
N , required for any d, decreases with ωp increments, and it is almost 3 times d when
ωp/π = 0.28.

5.1.3 Samadi’s decimation filter implementation

Binomial chain structure

Since the Samadi filter equation (5.1) is a binomial filter sequence (as first
proposed by Haddad in [52]), this filter can be expressed as

HN,K,d(z) =
(1 + z−1

2
)N N−K∑

j=0

cj
(1− z−1

1 + z−1

)j
. (5.8)

The binomial equation (5.8) can be realized as a cascade of two filters:

HN,K,d(z) = AN(z)BN,K,d(z) (5.9)

where

AN(z) =
(1 + z−1

2
)N
, BN,K,d(z) =

N−K∑
j=0

cj
(1− z−1

1 + z−1

)j
, (5.10)
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Algorithm 3 Samadi’s Filter minimum N and K calculation algorithm
1: procedure SamadiMinN(d,R, δp, δs, Vp, Vs)
2: L← 0
3: N ← 2dde
4: loop
5: δ′p ← max(|HN,N−L,d(eiω)− 1|) ∀ω ∈ Vp
6: δ′s ← max(|HN,N−L,d(eiω)|) ∀ω ∈ Vs
7: if d = 0 then . Linear-phase filter
8: if δ′p ≤ δp and δ′s ≤ δs then
9: K = N − L

10: return N,K
11: else if L ≤ dNωp/π + 0.5e then
12: L← L+ 2
13: else
14: L← 0
15: N ← N + 1
16: end if
17: else . Nonlinear-phase filter
18: if δ′p ≤ δp and δ′s ≤ δs then
19: K = N − L
20: return N,K
21: else if δ′s ≥ 1 or L ≥ N then
22: L← 0
23: N ← N + 1
24: else
25: L← L+ 1
26: end if
27: end if
28: end loop
29: end procedure
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Figure 5.3: Minimum N and K values for linear-phase Samadi filter (d = 0), decimation
factor R = 2, passband frequency ωp = 2π/R− ωs and passband ripple δp = 0.1 dB. (a)
In function of δs, ωp = 0.21 constant. (b) In function of ωp, δs = −80 dB constant.

as depicted in Figure 5.5a and 5.5b.
We will call the block diagram in Figure 5.5a as binomial representation Type I,

which requires the following resources

Sz
dec ' (2N −K)Lacc bit (5.11a)
S∗dec = (N −K)fo (5.11b)
S+

dec = (5N − 4K)foR, (5.11c)
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Figure 5.4: Minimum N (a) and K (b) values depending on d and required ωp for R = 2
and δs = −80 dB.

and we call Figure 5.5b as binomial representation Type II, which requires the following
resources

Sz
dec = Sz

decA + Sz
decB (5.12a)

S∗dec = S∗decA + S∗decB (5.12b)
S+

dec = S+
decA + S+

decB, (5.12c)
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where

Sz
decA ' NLacc bit (5.13a)
S∗decA = 0 (5.13b)
S+

decA = NfoR. (5.13c)

and

Sz
decB ' (N −K)Lin bit (5.14a)
S∗decB = (N −K)foR (5.14b)
S+

decB = 4(N −K)foR. (5.14c)

are the required resources to implement AN(z) and BN,K,d(z), respectively.
It easy to see that the Type I implementation requires less multiplications per

second (S∗dec) than Type II implementation, as they are performed after decimation. Even
though Type II requires more resources, as the N blocks at the end do not depend on cj
coefficients, its usage could be more convenient in some PAPS applications when sharing
resources is allowed, such that the N blocks are shared between channels. This Type II
implementation sharing resources property will be used in Section 5.3 to reduce required
resources in beamforming implementation.

Celular structure

As further detailed by Samadi in [50], the filter HN,K,d(z) can be implemented
as a cellular structure, like the structure presented in Figure 5.6. Defining Pi,j as a node
localized at row i and column j in the cellular structure, one can verify that those nodes
are related to each other according to

Pi,j =


c′jx[n], i = 0,

D(z)
[
Pi−1,j

Pi−1,j+1

]
, otherwise,

(5.15)

where, recalling that cj is defined by (5.2), we have that

c′j =


1, j = 0,
cj(
N
j

) , 0 < j ≤ N −K,

0, otherwise,

(5.16)

D(z) = 1
2

[
1 + z−1 1− z−1

]
, (5.17)
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Figure 5.5: Samadi’s decimation filter binomial representation Type I (a) and Type II (b).

and the filter output is given by

y[k] = PN−K+1,0. (5.18)
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Figure 5.6: Samadi’s decimation filter cellular structure example for N = 5 and K = 1.

Finally, the resources required to implement a jth-stage HN,K,d(z) filter with this
structure are:

Sz
dec '

1
2(N −K)(N −K + 1)Lacc bit (5.19a)

S∗dec = (N −K)foR (5.19b)

S+
dec = 3

2(N −K)(N −K + 1)foR (5.19c)

Even though this implementation requires more resources than binomial imple-
mentations, it is specially suitable for configurable filter realizations where its parameters
can be varied by adding or deleting extra cells or changing the value of a single cj coefficient.
For instance, a filter that requires the cutoff frequency ωp be changing dynamically would
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only need to keep zeroing c′j coefficients according to the respective K value, without any
further change in the filter structure.

5.2 Proposal: Delayed Decimation Filter
As one objective of this chapter is to find a decimation filter that fuses both

delay and decimation to then be used in a beamformer and as the group delay is the
parameter that represents the filter input to output delay, we need to find a decimation
filter architecture with configurable group delay (Figure 5.7a).

As shown in previous sections, Samadi filter is the best candidate for this purpose
as its group delay could be regulated just changing the Samadi filter delay parameter
(d) and, as d is a real number, this group delay is not restricted to discrete values only.
Samadi’s filters have also the advantage to have a flat passband response (MAXFLAT),
but they have the disadvantage that their passband δp and stopband δs ripples worsen as
their Samadi filter delay parameter (d) increases (see Figure 5.2a).

As the Samadi filter design depends only on three parameters N , K and d, if the
two first ones are kept constant and only d is variable, the δs and δp parameters will change
along with this parameter. So if it is defined a maximum d (dmax) such that |d| ≤ dmax, it
is necessary that the Samadi filter will be designed to keep its δs and δp parameters under
required specification for all d values allowed.

Also, as a Samadi filter does not have the flexibility to be designed for specific
Fp and Fs values without changing other filter parameters, its frequency response needs to
be compensated to keep the overall decimation filter’s parameters under specification.

So, due to these mentioned Samadi filter limitations, in order to keep the overall
decimation filter’s parameters under specification, this thesis proposes a J-stages decimation
filter whose penultimate stage (J−1) is a Samadi filter and its last stage (J) is an equiripple
filter as shown in Figure 5.7b. The Samadi filter will control the whole filter group delay
by setting its respective d parameter and the last equiripple stage will compensates the
magnitude and phase distortion caused by Samadi filter for all |d| ≤ dmax. The Samadi
filter could be implemented either as a cellular structure or as a binomial chain structure
(Figure 5.7c) already discussed in previous sections. Also, as this is a multi-stage filter,
other filtering stages (1 to J − 2) can be added before the Samadi filter to help in the
decimation.

In the end, the proposed delayed decimation filter will be an “all-in-one” filter
that performs the same filtering and downsampling operations that any state-of-the-art
decimation filter and has the capability of alter its group delays without any change on its
structure or additional delay chain.
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Figure 5.7: (a) Delayed decimation filter, (b) its version as a multi-stage decimation filter
with J − 1 stage being a Samadi filter, (c) and its version with Samadi filter decomposed
in its binomial components.

5.2.1 Design considerations

As discussed in previous sections, the three design parameters of a Samadi filter
are the number of zeros at z = −1 in a Samadi filter (K), the Samadi filter order (N) and
the Samadi filter delay parameter (d). In this case, as the d parameter will vary in the
range |d| ≤ dmax, dmax will be our design parameter instead of d.

The filter delay ∆ depends on the d parameter, RJ−1 and RJ parameters as
follows:

∆ = d

RJRJ−1fo
. (5.20)

Therefore, if |d| ≤ dmax then

|∆| ≤ dmax

RJRJ−1fo
or ∆max = dmax

RJRJ−1fo
. (5.21)

This expression says that maximum required delay (∆max) is limited by the dmax

parameter. So, for fo and ∆max specifications as in Tables 1.1 and 1.2 respectively, and
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assuming that RJ = RJ−1 = 2, by (5.21), dmax = 20.13. Then, the parameters N and K
need to be calculated in order that overall filter specification will be kept for all |d| ≤ 20.13.

Once dmax is defined, the minimum K and N parameters can be calculated using
Algorithm 3 with the desired filter specification and dmax instead of d as inputs. It is
important to remark that if the Samadi filter is designed for dmax the decimation filter will
continue under the same specification for values |d| ≤ dmax, this effect can be observed in
Figure 5.2a, where δp decreases for lower values of d, and in Figure 5.4, where for d ≥ 3
given a combination (d,N, ωp) if N is kept constant and d is decreased, ωp will always
increase, so the flatness will be improved.

5.2.2 Physical limit of the d parameter

Given a decimation filter specification, dlim is defined as the physical limit of the
d parameter, such that

|d| ≤ dmax ≤ dlim ,

such that if any value of |d| is above this limit, independent of the group delay, it would
cause a violation in the desired decimation filter specification. Figure 5.8 shows the dlim

values for a decimation filter with specifications as listed in Tables 1.1 but with Fp varying
in the range from 0 kHz to 7.5kHz range. The dlim value in this figure was calculated, for
each Fp frequency, designing first the delayed decimation filter with Algorithms 2 and 3,
and then increasing d by 1; this process is repeated until d reaches the limit value dlim

that still keeps the filter under desired specification; N and K are calculated for each dlim.
Figure 5.8 shows that the physical limit of the d parameter is approximately

dlim ≈ 25 around the Nyquist’s frequency and around dlim ≈ 50 for low frequencies and
that dlim decreases as Fp increases. This means that a filter with the same specification but
dmax = 30 and Fp = 7.5kHz will not be realizable with the proposed delayed decimation
filter because dlim ≈ 25 at this Fp point.

So, the dlim value should be taken into account at design time as this will limit
the maximum allowed delay parameter (dmax) and consequently the maximum delay of
the decimation filter (∆max).

5.2.3 Implementation resources

Assuming that Sz
j , S+

j , S∗j , and Soj are the storage requirements, number of
additions per second, number of multiplications per second and total number of additions
per second respectively of the jth-stage of the delayed decimation filter for j = 1, . . . , J ;
it is easy to see from Figure 5.7c that the respective implementation resources for the



108

0 1 2 3 4 5 6 7 8

Fp(kHz)

20

30

40

50

60

70

80

90

100 N

K
dlim

Figure 5.8: dlim for a 3-stages delayed decimation filter with structure [’lthband’, ’maxflat’,
’equir’], decimation rates [48, 2, 2] and filter requirements specified in Table 1.1 but Fp
variable; The N and K values correspond to the respective dlim values.

delayed decimation filter will be

Sz
dec =

J∑
j=1

Sz
j =

J−2∑
j=1

Sz
j + Sz

decA + Sz
decB + Sz

J , (5.22a)

S+
dec =

J∑
j=1

S+
j =

J−2∑
j=1

S+
j + S+

decA + S+
decB + S+

J , (5.22b)

S∗dec =
J∑
j=1

S∗j =
J−2∑
j=1

S∗j + S∗decA + S∗decB + S∗J , (5.22c)

Sodec =
J∑
j=1

Soj =
J−2∑
j=1

Soj + SodecA + SodecB + SoJ , (5.22d)

where Sz
decA and Sz

decB are the storage requirements for the AN(z) and BN,K,d(z) filters
respectively, the same for the other resource variables.
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5.3 Proposal: Beamformer based on delayed decimation
Filter
The Samadi filter stage in a delayed decimation filter in Figure 5.7c can be

expressed in its binomial representation Type II (Figure 5.5b), in such way that the latter
part of the filter chain does not depend on ∆. Therefore, if M delayed decimation filters
are placed in parallel, the weightings by wm are placed just before the AN(z) filter and
their outputs are added to form a beamformer, as shown in Figure 1.3, the latter part
after BN,K,d(z) could be shared between all microphone channels as shown in Figure 5.10.
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y′M−1[k] wM−1
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MIC m

MIC M-1

DELAYED DECIMATION FILTER

...

...

Figure 1.3: PDM-mic array DAS beamformer using delayed decimation filters (repeated
from page 26)

Note also, in the same way that beamformers at PDM domain discussed in
Chapter 4, the beamforming is not performed with the final PCM signals at the output
sampling rate (fo), rather the beamforming is performed in an intermediary stage of the
decimation filter at the RJRJ−1fo rate.
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Figure 5.10: PDM-mic array DAS beamformer using delayed decimation filters

Finally, the required resources to implement this beamformer can be calculated
from (5.23) and Figure 5.10 as following:

Sz
bf = M

J−2∑
j=1

Sz
j +MSz

decB + Sz
decA + Sz

J , (5.23a)

S+
bf = M

J−2∑
j=1

S+
j +MS+

decB + S+
decA + S+

J + (M − 1)RJRJ−1fo , (5.23b)

S∗bf = M
J−2∑
j=1

S∗j +MS∗decB + S∗decA + S∗J +MRJRJ−1fo, (5.23c)

Sobf = M

J−2∑
j=1

Soj +MSodecB + SodecA + SoJ + (M − 1 + (Lout − 1)M)RJRJ−1fo , (5.23d)

where the last term summed to S+
bf, S∗bf and Sobf are the respective additional required

resources to implement the adder and the weighting wm blocks, these calculations being
at the RJRJ−1fo sampling rate.

5.4 Results
A delayed decimation filter was designed according to specifications listed in

Table 1.1 using Algorithms 2 and 3, the filter has 3-stage architecture ([’lthband’, ’maxflat’,
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’equir’]) with decimation rates: [48, 2, 2], as shown in Figure 5.11. Figure 5.12 shows the
individual frequency spectrum of each internal stage for dmax = 20.13. Note that even
though the maxflat stage has a bumpy frequency spectrum above the passband frequency
(Fp), this is compensated by the last stage equiripple filter (equir) as shown in Figure 5.13.

x[n]
H1(z)

y48 HN,K,d(z)
y2 H3(z)

y2
y′[k]

LTH-BAND FILTER SAMADI’S FILTER EQUIRIPPLE FILTER

∆

fofi

Figure 5.11: Delayed decimation filter for a PDM-mic

As mentioned along this chapter, the advantage of using a Samadi filter is that it
allows one to change its group delay just by changing some coefficients, i.e., without any
change in the whole filter structure. Figure 5.14 shows the group delay of this multi-stage
filter for many values of its d parameter. It is easy to see how the group delay is directly
proportional to the d parameter.

Also, the breakdown of the resource requirements by stage is shown in Table 5.2,
where the first row corresponds to the Lth-band filter stage, the second and third rows
correspond to the BN,K,d(z) and An(z) parts of the Samadi filter, respectively, and the
last row corresponds to the equiripple filter. The total resource requirements to implement
this filter are shown in Table 5.4 as delayedalong with the resource requirements of
multi-stage filter architetures found in Chapter 3 by optimization algorithm. It is noted
that this standalone decimation filter is not more efficient than the filters found by the
optimization algorithm, it requires in general more storage and computational resources
for its implementation. Even though this proposed delayed decimation filter requires more
implementation resources, it offers the additional capability to regulate its group delay
that could be an advantage in some applications like beamforming.

Finally, Table 5.3 shows the resources required to implement a DAS beamformer
based on this 3-stages delayed decimation filter designed for array specifications listed in
Table 1.2. This result is compared to other beamformer implementations discussed in Chap-
ter 4 in Table 5.4. It is observed that the proposed architecture requires less computational
resources than the other beamformers and that, after the pmc_single_memsav beamformer,
the proposed architecture requires also less storage. However, as the pmc_single_memsav
beamformer is the architecture that also requires a prohibite quantity of computational
resources, it can be concluded that the proposed beamformer based on delayed decimation
filters is the more resource-efficient beamformer architecture for the given specification.
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Figure 5.12: (a) Magnitude frequency spectrum of internal stages of the delayed decimation
filter in the whole input range, and (b) the same frequency spectrum in the 0 kHz to
50 kHz range.

Sz
dec (bit) S∗dec (MPS) S+

dec (APS) Sodec (APS) fcpu (MHz) T+
FPGA (-) T+

lp (-)
multi_0 4963 30320000 30272000 104240000 104.24 2 11
multi_1 5669 19248000 19136000 110496000 110.50 2 12
multi_2 7666 3984000 19616000 110912000 110.91 2 12
multi_3 7666 3984000 19616000 110912000 110.91 2 12
multi_4 7177 3488000 27824000 113584000 113.58 2 12
multi_5 5762 15408000 15168000 117344000 117.34 2 12
multi_6 6371 19840000 19728000 126224000 126.22 2 13
multi_7 5794 9712000 14400000 126304000 126.30 2 13
multi_8 6042 15776000 15536000 126960000 126.96 2 13
multi_9 5740 15984000 15808000 128320000 128.32 3 13
delayed 12568 22256000 30560000 230672000 230.67 4 24

Table 5.1: Comparison of the proposed delayed decimation filter and the multi-stage
decimation filters found in Chapter 3 by optimization algorithm.
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Figure 5.13: Magnitude (a) and phase (b) frequency spectrum of the delayed decimation
filter. (c) Passband ripple frequency spectrum.
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Figure 5.14: Delayed decimation filter group delay.

Sz S∗ S+ So fcpu (MHz) T+
FPGA (-) T+

lp (-)
0 138 15680000 15616000 15616000 15.62 1 2
1 552 1536000 6144000 39936000 39.94 1 4
2 2714 0 3776000 3776000 3.78 1 1
3 9164 5040000 5024000 171344000 171.34 3 18

Table 5.2: Delayed decimation filter resource requirements breakdown. First row corre-
sponds to the Lth-band filter stage, the second and third ones are to the BN,K,d(z) and
An(z) parts of the Samadi filter respectively, and the last one to the equiripple filter.

Value Unit
beamformer’s storage requirement (Sz

bf) 39478 bit
beamformer’s number of multiplications per second (S∗bf) 6.9624e+08 MPS
beamformer’s number of additions per second (S+

bf) 8.81696e+08 APS
beamformer’s total number of additions per second (Sobf) 2.45858e+09 APS
estimated minimum frequency in a processor (fcpu) 2458.58 MHz
estimated number of adders in an FPGA running at 64MHz (T+

FPGA) 39 -
estimated number of adders in a VLSI circuit running at 10MHz (T+

lp ) 246 -

Table 5.3: Required resources to implement a beamformer using 40 shared delayed deci-
mation filters.
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Sz
dec (bit) S∗dec (MPS) S+

dec (APS) Sodec (APS) fcpu (MHz) T+
FPGA (-) T+

lp (-)
delayed_bf 39478 696240000 881696000 2458576000 2458.58 39 246
pcm_single_direct 1529520 1165886080000 2331648624000 3497548784000 3497548.78 54650 349755
pcm_single_eff 1529520 6072960000 12144624000 18231664000 18231.66 285 1824
pcm_single_memsav 27360 12145280000 12144624000 24303984000 24303.98 380 2431
pcm_multi_0 210040 1213440000 1211504000 4184944000 4184.94 66 419
pcm_multi_1 238280 770560000 766064000 4435184000 4435.18 70 444
pcm_multi_2 318160 160000000 785264000 4451824000 4451.82 70 446
pcm_multi_3 318160 160000000 785264000 4451824000 4451.82 70 446
pcm_multi_4 298600 140160000 1113584000 4558704000 4558.70 72 456
pcm_multi_5 242000 616960000 607344000 4709104000 4709.10 74 471
pcm_multi_6 266360 794240000 789744000 5064304000 5064.30 80 507
pcm_multi_7 243280 389120000 576624000 5067504000 5067.50 80 507
pcm_multi_8 253200 631680000 622064000 5093744000 5093.74 80 510
pcm_multi_9 241120 640000000 632944000 5148144000 5148.14 81 515
pdm_single_direct 115310 29270016000 58411008000 90384384000 90384.38 1413 9039
pdm_single_eff 115310 274688000 423408000 3401456000 3401.46 54 341
pdm_single_memsav 77756 426496000 423408000 3553264000 3553.26 56 356
pdm_multi_0 82323 153200000 150080000 3050288000 3050.29 48 306
pdm_multi_1 83029 142128000 138944000 3056544000 3056.54 48 306
pdm_multi_2 85026 126864000 139424000 3056960000 3056.96 48 306
pdm_multi_3 85026 126864000 139424000 3056960000 3056.96 48 306
pdm_multi_4 84537 126368000 147632000 3059632000 3059.63 48 306
pdm_multi_5 83122 138288000 134976000 3063392000 3063.39 48 307
pdm_multi_6 83731 142720000 139536000 3072272000 3072.27 49 308
pdm_multi_7 83154 132592000 134208000 3072352000 3072.35 49 308
pdm_multi_8 83402 138656000 135344000 3073008000 3073.01 49 308
pdm_multi_9 83100 138864000 135616000 3074368000 3074.37 49 308

Table 5.4: Comparison of the proposed beamformer based on delayed decimation filter
and PDM and PCM domain beamformers discussed in Chapter 4.
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Chapter 6

Conclusion

The main objective of this work was to find out an efficient way to implement
a beamformer that uses PDM-mics. To achieve this objective, this work explored three
approaches: to determine an optimum decimation filter, to perform the beamforming
at PDM domain and to determine an optimum beamformer architecture that merges
decimation and delay operations.

Determine an optimum decimation filter

This first approach (Chapter 3) required, at first, a review of the state-of-the-art
filter design methods like equiripple, Lth-band and CIC filters. During this review, it was
realized an opportunity to reduce the number of adders of CIC compensators at certain
conditions (δp ≥ 0.1 dB,c ≤ 1/4,R > 5) just changing the coefficients of the state-of-the-art
architecture, so a new set of coefficients for this condition was proposed. In the end, due
to the fact that all discussed multiplierless CIC compensator design methods (summarized
in Table 3.2) require less adders at different conditions, it is not concluded that one of
them is the best, but that they are complementary to each other.

Once those filter design methods were reviewed, due to the prohibitive required
resources to implement a beamformer using these single-stage basic structures, it was
realized that a multi-stage approach is required. So, multi-stage multirate filter design
was discussed such that, given a overall filter specification, the individual frequency ranges
and ripples constraints of each stage were derived.

Finally, using the results of this single-stage and multi-stage filter design review,
it was proposed an algorithm to calculate the structure of a multirate filter (Algorithm 2),
and specifically, of a decimation filter minimizing the total number of additions per second
(So). This algorithm was applied to calculate decimation filter structures with specification
as listed in Table 1.1. From the algorithm results it is concluded that for the given
specification, that considers an PDM input, the most efficient architecture will be a
two-stages decimation filter (multi_0 ) with a first Lth-band stage and a second equiripple
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filter stage, decimation 96 and 2 respectively. It can be concluded also that, as it is usually
de facto assumed, a CIC filter-based architecture is not the most efficient alternative if
implementation resources reduction is the objective.

Perform beamforming at PDM domain

At first, this second approach (Chapter 4) required us to discuss the state-of-the-
art beamformer implementation methods. These state-of-the-art implementation methods
assume that the signals incoming from the microphones are already in PCM domain and
perform the beamforming in time or frequency domain. So, those time and frequency
domain methods were further discussed in the context of use PDM-mics as sensors.

Once the state-of-the-art methods were reviewed, methods to do beamforming
directly in PDM signals rather than PCM signals were proposed. As these methods do not
require to convert all signals incoming from PDM-mics to PCM to do the beamforming, it
was shown that they allow us to get rid of many decimation filters and, consequently, they
require less storage and computational resources for their implementation.

Once the state-of-the-art and proposed beamforming implementations were dis-
cussed, the resources to implement a beamformer with specifications as listed in Table 1.2
and using the most efficient decimation filter found in Chapter 3 (multi_0 ) were calculated
for each beamforming implementation (Table 4.6). The results showed that frequency
domain implementations are not efficient and require a lot of computational resources
because of the FFT blocks, as they require O(N log2N) operations and more memory
to bufferize results. It is also shown that for the given conditions the state-of-the-art
discrete-time beamformer and the proposed discrete-time bitstream beamformer are the
most resource-efficient architectures.

The implementation resources of the state-of-the-art discrete-time beamformer
and the proposed discrete-time bitstream beamformer were calculated using single-stage
and multi-stage decimation filters calculated by optimization algorithm (Algorithm 2) in
Chapter 3 for a beamformer specification as listed in Table 1.2. In Table 6.1 is shown the
two most efficient state-of-the-art beamformer implementations (prefix pcm_) and the two
most efficient proposed beamformer implementations (prefix pdm_) found by this analysis.

Finally, it is concluded that for the given beamformer and filtering specifications
the pcm_single_memsav implementation will require less storage than any other method,
but it will require also more additions per second than any other one. Discarding the
pcm_single_memsav beamformer because of its high computational requirements, it is
reasonable to conclude that from these 4 methods, the beamformers at PDM domain
(pdm_) are the most efficient. Also from the comparison of these two ones, it can be
inferred that the pdm_multi_0 one is more suitable for software implementations, and
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the pdm_single_memsav one could be more suitable for hardware implementation (FPGA
or VLSI) as it requires less storage.

Determine an optimum beamformer architecture that merges decima-
tion and delay operations

As is required a structure that performs filtering and delaying at the same time,
the best candidate was the Samadi filter because of its capability to regulate its group
delay without adding any delay element, just changing its coefficients. So, at first, we
reviewed the Samadi filter properties and implementation structures (Chapter 5). As
this filter class was not used in the state-of-the-art as a decimation filter, Algorithm 3
was proposed to calculate its parameters N and K based on a given decimation filter
specification and a required group delay (d).

Once the Samadi filter was further analyzed, we proposed a decimation filter
based on it called delayed decimation filter. It is a multi-stage filter with a Samadi
filter stage and a last equiripple stage. Then, the design considerations and resource
implementation expressions of this filter were further discussed. This delayed decimation
filter was decomposed in its binomial components and it was used as the base of a novel
DAS beamformer implementation. This proposed implementation is based on sharing
common parts of the each delayed decimation filter that do not depend on the desired
delay (∆m).

Also, a delayed decimation filter was designed with specification as listed in
Table 1.1. This decimation filter was compared with the optimum decimation filter found
in Chapter 3, but it was found that it is not efficient in comparison to them as it requires
more implementation resources working as a standalone filter. Then this decimation filter
was used to implement a DAS beamformer whose resource requirements are shown in
Table 6.1 as delayed decimation filter-based beamformer. The resource requirements of
most efficient beamformers architectures studied on this thesis are also summarized in this
table.

This table shows that the proposed implementations at PDM domain (pdm_)
and using delayed decimation filters are more efficient that the conventional ones regarding
required area and number of adders/multipliers. This table also shows that the proposed
beamformer based on the Samadi filter is the second most storage efficient option (Sz

bf), only
after the single-stage implementation using polyphase memory-saving pdm_single_memsav.
However, again due to the fact that pdm_single_memsav is computationally expensive, we
could say that practically the most efficient beamformer is the one based on the proposed
delayed decimation filters. In other words, the delayed_bf implementation provides the
best trade-off between storage and computational resources and it would be a best choice
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Beam-
former’s
storage re-
quirement
(Sz

bf) in bit

Beam-
former’s
total

number of
additions
per second
(Sobf) in

APS

Estimated
minimum
frequency

in a
processor
(fcpu) in

MHz

Estimated
number of
adders in
an FPGA
running at
64MHz
(T+

FPGA)

Estimated
number of
adders in a

VLSI
circuit

running at
10MHz
(T+

lp )
Delayed decimation

filter-based
beamformer
(delayed_bf )

39478 2458576000 2458.58 39 246

Discrete-time
beamformer using a

multi-stage
decimation filter
(pcm_multi_0 )

210040 4184944000 4184.94 66 419

Discrete-time
beamformer using a
single-stage memory
saving decimation

filter
(pcm_single_memsav)

27360 24303984000 24303.98 380 2431

Discrete-time
beamformer using a

multi-stage
decimation filter at

PDM domain
(pdm_multi_0 )

82323 3050288000 3050.29 48 306

Discrete-time
beamformer using a
single-stage memory
saving decimation

filter at PDM domain
(pdm_single_memsav)

77756 3553264000 3553.26 56 356

Table 6.1: Comparison of required resources to implement a 40 PDM-mic DAS beamformer
with specifications listed in Table 1.1 and 1.2.

to be used in low-power consumption applications where storage and computational rate
are both critical.

Finally, it is important to remark that this work focused in exploring and
proposing new methods to implement beamformers efficiently without taking into account
the beamformer detection efficiency, as this is considered transparent to its implementation.
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Future work

The results of this work show the efficiency of using beamformers based on Samadi
filters applied to broadband audio signals. A future work could explore the efficiency of
the same beamformer structure in narrow band signals, as in this case flatness is usually
not a required, it could be possible to reduce implementation resources even more.

Also, as it has been demonstrated that the binomial structure of Samadi filters
are identical to the wavelet filters proposed by Daubechies [53], and as these structures are
suitable for multi-resolution signal decomposition and coding applications; the proposed
decimation filter based on Samadi filters could be used in efficient implementations of
array processing algorithms in the wavelet domain that uses Σ∆M data as required for
medical applications, for example.
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