
Research Article
Software-Defined Radio FPGA Cores:
Building towards a Domain-Specific Language

Lekhobola Tsoeunyane,1 SimonWinberg,1 andMichael Inggs2

1Department of Electrical Engineering, University of Cape Town, Software Defined Radio Group, Rondebosch,
Cape Town 7701, South Africa
2Department of Electrical Engineering, University of Cape Town, Radar Remote Sensing Group, Rondebosch,
Cape Town 7701, South Africa

Correspondence should be addressed to Lekhobola Tsoeunyane; lekhobola@gmail.com

Received 9 December 2016; Revised 7 April 2017; Accepted 16 April 2017; Published 17 July 2017

Academic Editor: Michael Hübner

Copyright © 2017 Lekhobola Tsoeunyane et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

This paper reports on the design and implementation of an open-source library of parameterizable and reusable Hardware
Description Language (HDL) Intellectual Property (IP) cores designed for the development of Software-Defined Radio (SDR)
applications that are deployed on FPGA-based reconfigurable computing platforms. The library comprises a set of cores that were
chosen, together with their parameters and interfacing schemas, based on recommendations from industry and academic SDR
experts. The operation of the SDR cores is first validated and then benchmarked against two other cores libraries of a similar type
to show that our cores do not take much more logic elements than existing cores and that they support a comparable maximum
clock speed. Finally, we propose our design for a Domain-Specific Language (DSL) and supporting tool-flow, which we are in the
process of building using our SDR library and the Delite DSL framework. We intend to take this DSL and supporting framework
further to provide a rapid prototyping system for SDR application development to programmers not experienced in HDL coding.
We conclude with a summary of themain characteristics of our SDR library and reflect on how our DSL tool-flow could assist other
developers working in SDR field.

1. Introduction

Software-Defined Radio (SDR) approaches for rapid pro-
totyping of radio systems using reconfigurable hardware
platforms offer significant advantages over traditional analog
and hardware-centered methods. In particular, time and cost
savings can be achieved by reusing tested design artefacts. For
example, a reconfigurable computer coupled to a commercial
off-the-shelf (COTS) Radio Frequency (RF) daughterboard
can reduce development time and lower costs in comparison
to a custom-built PCB approach. A broad variety of SDR
prototyping platforms is available, such as the USRP and
Microsoft Sora [1], and rapid prototyping tools such as
National Instruments LabView andGnuRadio [2].The choice
of SDR platform and components used to develop a complex
SDR system is typically based on a variety of many interre-
lated selection decisions [3]. Important selection decisions

during development are influenced by the developers’ famil-
iarity with processor and platform architectures, coding
languages, design approaches, support for legacy systems,
and familiar design tools, among other factors. Development
tool-chains and programming languages are highly influen-
tial in terms of developer productivity. Similarly, familiarity
with the tools can impact the quality and reusability of the
designs [3]. In this paper we consider a standard VHSIC
Hardware Description Language (VHDL) approach to SDR
prototyping, for which we develop a reusable library of
Intellectual Property (IP) cores for use in Software-Defined
Radio (SDR) application prototyping. We test the system
using a legacy FPGA-based platform and recent add-on
COTS daughterboard as a case study around which we build
and test this library.

The aim of our investigation is to establish an effective
selection of IP cores for baseline SDR applications, which can

Hindawi
International Journal of Reconfigurable Computing
Volume 2017, Article ID 3925961, 28 pages
https://doi.org/10.1155/2017/3925961

https://doi.org/10.1155/2017/3925961

2 International Journal of Reconfigurable Computing

improve developer productivity using cores that can be fur-
ther built upon to realize more specialized application needs.
The Reconfigurable Hardware Interface for computatioN and
radiO (RHINO) platform [4] is used as a case study for
testing the library. In our effort to improve SDR productivity
and reduce design complexity, we also propose a tool-flow
that uses a Domain-Specific Language (DSL) as its entry-
point to describe algorithms and automate the generation of
HDL code. It exploits the parameters of SDR cores in order
to integrate these existing library cores in the compilation
flow hence enabling rapid prototyping of FPGA-based SDR
at high-level of design abstraction.

The SDR IP core library comprises Digital Signal Process-
ing (DSP) cores and input/output (I/O) interface cores. The
library, which we are referring to as “SDR IP cores” library, is
available for free under the General Public License (GPL) on
https://github.com/lekhobola/Rhino-Processing-Blocks. It is
designed around use by both the novice and experienced low-
levelHDLdevelopers, providing novice userswith experience
of using IP cores that support open bus interfaces in order to
exploit System-On-Chip (SoC) design without commercial,
parameter, and bus compatibility limitations. The provided
modules will be of particular benefit to the novice developers
in providing ready-made examples of processing blocks, as
well as parameterization settings for the interfacing cores
and associated RF receiver side configuration settings. DSP
cores can be used in any FPGA platforms whereas porting
the I/O interface cores requires replacing Spartan-6 clock
management and interconnecting libraries with new target-
specific platform libraries.

The DSP cores are realized with fundamental DSP algo-
rithms: Finite Impulse Response (FIR), Infinite Impulse
Response (IIR), Fast Fourier Transform/Inverse Fast Fourier
Transform (FFT/IFFT), and Digital Down Converter (DDC)
algorithms. These DSP cores are accompanied by a descrip-
tion of how they can be integrated into a common Open
Standard Interconnection Bus, namely, Wishbone. Further-
more, the I/O interface cores realize the interface control logic
for Gigabit Ethernet (Gbe) and 4DSP FMC150 Analog-to-
Digital Converter/Digital-to-Analog Converter (ADC/DAC)
daughter board, both being part of RHINO.TheGbe interface
core uses UDP protocol to enable high-speed data trans-
fer between RHINO and external devices while FMC150
ADC/DAC provides an air interface for RHINO at high
sampling rates. A Frequency Modulation (FM) receiver is
then built from the IP cores to demonstrate the importance
and reusability of the library of IP cores in the real world
context of SDR.

The remainder of this paper is organized as follows. In
Section 2, we provide a background to the SDR, FPGAs,
and reconfigurable computing (RC). Next, the existing IP
libraries are reviewed in Section 3. This is followed by the
methodology used in developing and evaluating the library
of SDR IP cores in Section 4. We continue with the design
and implementation of a library of SDR IP cores in Section 5.
In Section 6 we perform validation testing for SDR IP cores
and results are compared to ideal Matlab simulation results.
As a case study for SDR IP cores, we continue the testing
by building an FM receiver in Section 7. This is followed by

benchmarking all the SDR cores including an FM receiver in
Section 8. Finally, we propose a tool-flow that enables high-
level design using SDR IP cores in Section 9 while Section 10
covers conclusion.

2. Background

The ever increasing popularity and evolution of wireless
communication technologies and standards are changing the
manner in which wireless services and applications are used
[6]. The demand and usage of these services by users are
growing rapidly and are constantly pushing designs to their
limits. Wireless devices are becoming more common and
users are demanding the convergence ofmultiple services and
technologies [7] in a single device. These lead to potential
challenges in areas of equipment design, wireless service
provision, security, and regulation [8].

2.1. SDR Systems. Configurable technologies are a solution
to today’s increasing user needs for wireless services and
applications. These types of technologies are upgradable,
reconfigurable, and adaptable to changes in technology stan-
dards and need [9]. One such technology that offers all
these features is SDR. SDR is defined as radio in which
hardware components or physical layer functions of awireless
communications system are all implemented in software [10].

SDR prototyping has opened doors to many possibilities
in the field of radio communications. Owing to its rapid
growth in recent years, it has gained popularity and has
also found wide adoption in the analysis and implementa-
tion of many wireless communications systems. Traditional
systems are now replaced by SDR systems because of their
high reconfigurability and increased capabilities which suit
modern wireless communications technology [9, 10].

SDR relies on a general purpose hardware that is easy
to program and configure in software to enable a radio
platform to adapt to multiple forms of operation such
as multiband, multistandard, multimode, multiservice, and
multicarrier [6, 10]. A typical SDR transceiver is depicted
in Figure 1. The analog RF front-end converts RF signals to
Intermediate Frequency (IF) signals in the receiver chain
while the transmitter converts IF signals to RF signals. This
is also where signal preconditioning and postconditioning
using analog functions such as amplification and heterodyne
mixing prior to ADC and after the DAC take place [6, 8].The
DSP performance largely depends on the digital computing
hardware device used. Furthermore, improved and higher
sampling ADCs andDACs are pushing the tasks traditionally
performed in analog closer towards the antenna, hence
allowing them to be processed digitally using processors
or reconfigurable devices [11]. However, a drawback is that
the ADCs and DACs are usually costly, and achieving high
sampling rates (over millions of samples per second) remains
a limitation in SDR [6]; this is amotivating factor for reusable
SDR platforms for prototyping to share the cost of the same
platform across multiple projects.

2.2. Overview of FPGAs and Reconfigurable Computing. The
emergence of FPGA technology more than two decades ago

https://github.com/lekhobola/Rhino-Processing-Blocks

International Journal of Reconfigurable Computing 3

RF analog front-end in hardware

Re
ce

iv
er

Tr
an

sm
itt

er

Analog
mixer

mixer

Analog
RF
signal

LNA

BPF

BPF

Amp

Amp

ADC

NCO

DUC

DDC

NCO

VCO

PGA

Analog

DAC

Digital
IF
samples

samples

Digital
IF

Digital mixer

Digital mixer

DSP section in so�ware

Lowpass
�lterDigital

baseband
samples

baseband
samples

Digital
baseband
samples

Digital
Interpolation

FIR

IIR

Demod

Decode

FFT/IFFT

Analysis

decisions

DSP

�lter

Figure 1: Radio transceiver architecture.

has revolutionized the field of SDR. FPGAs are made of
highly reconfigurable and multiple logic blocks and cells
together with switch matrix to route signals between them
[12]. Their flexibility and speed have made them popular and
are preferred to lay a general purpose hardware platform
for SDR. The reconfigurable and parallel characteristics of
FPGAs enable computationally intensive and complex tasks
to be processed in real time with better performance and
flexibility. These features have seen them gaining popularity
over traditional general purpose processors (GPPs) and DSP
processors [10]. For these reasons, they are used in RC as their
structure can be reconfigured during start-up or runtime to
perform advanced computations [13].

2.3. Design for Reuse. FPGAs have led to the concept of de-
sign for reuse which is a driving factor in enhancing the
productivity and improving the system-level design in SDR
applications. A library of parameterizable FPGA cores makes
a design for reuse effective [14]. The timing, area, and power
configurations are the key to SoC success as they allow mix-
and-match of different IP cores so that the designer can apply
the trade-offs that best suit the needs of the target application
[15].

3. Review of Existing IP Libraries

The continuous design and implementation of a library of
HDL cores, called IP cores in this paper, is increasingly driven
by the desire to meet shortest possible time-to-market. This
has led to greater demands of minimal development and
debugging time [14, 16]. Many of the IP libraries have one or
more of the characteristics listed below [14, 16–19]:

(i) Modularity
(ii) Parameterizability

(iii) Portability
(iv) Reusability
(v) Upgradability
(vi) Specific Technology Independency
(vii) Ability to consume fewer FPGA resources

Hardware designers are relying on predesigned IP cores
from the IP libraries to increase productivity and reduce
design time. However, many of the FPGA vendors and
third-party IP libraries are static [18]. A static IP does not
allow high performance to be achieved even when hardware
resources or power budget is available nor does it achieve
better performance to save both size and power consumption
[18]. Integrating the third-party IPs can also be a challenge. It
is often time-consuming and error-prone [19].The IP libraries
developed by private vendors are expensive and prohibitive to
low-cost prototyping [20].

All the above shortcomings of private vendor IP libraries
have led to new open-source hardware development models
where reusable IPs are developed andmade freely available to
the public. Two examples of communities supporting open
IP cores are OpenCores and GRLIB. OpenCores has the
considerable number of IPs as well as Wishbone bus and its
cores are accessible for free; however, OpenCores IPs are not
parameterizable [20]. Likewise, GRLIB has many IP cores,
interconnected byAMBA-2.0AHB/APBbus on a SoCdesign.
But a drawback of using GRLIB is that not all the IP cores are
free [19].

4. Methodology

This objective of our investigation concerns making an effec-
tive selection of SDR cores needed to develop essential parts

4 International Journal of Reconfigurable Computing

of an FPGA-based SDRapplication and from this to propose a
DSL and initial selection of programming constructs that can
facilitate the development of FPGA-based SDR applications
without the programmer needing to have experience with
HDL-based coding. The methodology we followed in this
project comprises the following four aspects:

(1) Establish the design for an SDR IP core library
that provides an essential collection of SDR building
blocks that can serve as initial building blocks for
FPGA-based SDR applications. Decide a suitable
design and interfacing scheme for this set of SDR
cores based on input from expert consultants.

(2) Testing the SDR cores independently on the physical
FPGA-based SDR platform to confirm effective func-
tionality of the cores.

(3) Developing a comprehensive SDR application from
the SDR cores and testing this application on hard-
ware to validate the operation of the cores working
together.

(4) Benchmarking the SDR core library to ensure these
cores are of an adequate standard in comparison to
similar IP cores available in other libraries.

(5) Proposing a DSL-based tool-flow as an effective
strategy for rapidly developing SDR applications
for FPGA-based reconfigurable computing platforms
using the SDR IP cores library.

The first step involved consultation with SDR experts. We
interviewed and corresponded with these experts involved in
FPGA-based design and implementation, both from industry
and academia. Members of the engineering team at the
Square Kilometre Array (SKA) were corresponded with in
order to gain suggestions and feedback related to designs,
processing requirements, and interfacing techniques; a total
of three staff members contributed insights. We also met and
corresponded with researchers involved with FPGA work at
the University of Cape Town, including research scientists,
postgraduate researchers, research officers, and academic
staff; insights from four senior researcher staff and three
postgraduate researchers were obtained at the university.
The insights gained from this process were then used to
prepare the design for the SDR core library and to decide the
parameters that the cores should provide.The SDR cores were
then coded using VHDL. Section 5 presents the subsequent
design of the SDR IP cores library, starting by explaining the
generic architecture that the cores fit into, then discussing the
choice of SDR cores and how these were divided into DSP
cores and I/O interface cores, and then explaining structure,
parameters, and interface for each of the cores provided.

During the second step, testing of the individual cores
was done to validate their operation; this was done using
simulation and test vectors and by running the cores on
a hardware platform. As part of this step, a reconfigurable
hardware platform was chosen on which to test the cores.
The chosen platform contained an FPGA that connected
directly to a high-speed sampling card and to an Ethernet
port for sending data. The results of this testing are shown
in Section 6.

In the third step, we developed a representative SDR
application that used the cores to confirm their operation and
adequate performance when integrated as part of a complete
SDR system. This application involved the development of
an FM receiver for which digitally downconverted data was
transferred over Ethernet to a host computer for demodula-
tion and playback.

In the fourth step, our SDR cores were benchmarked
against alternate cores available from other libraries. This
benchmarking was done to confirm that the cores did not
utilize an excessive number of logic elements compared
to alternate solutions and that the operational clock rates
of our cores were at adequate speed. Section 8 reports the
benchmarking results.

In the final step, we propose a DSL to support rapid
integration of the SDR cores for prototyping FPGA-based
SDR applications without the programmer needing to have
experience with the use of HDL coding. The proposed DSL
and supporting tool-chain is presented in Section 9.

5. Design of SDR IP Cores

This section discusses the design of a library of SDR IP
cores which is divided into DSP cores and I/O interface
cores. For the design of DSP cores, we follow a modular
coding approach using technology-independent logic ele-
ments which result in simple and reusable functional blocks.
Likewise, for the design of I/O interface cores, the coding
style is still modular but it comprises both technology-
independent and technology-dependent functional blocks.
Many commercial cores are closed source, licensed modules
provided as monolithic hardware routing implementations
optimized for and compatible with specific FPGA chips. A
benefit of our cores is the availability of the underlying source
code and therefore can be customized and be optimized
further to meet the design requirements.

Although the SDR cores were tested on RHINO platform,
the generic design of DSP cores using modular FPGA ele-
mentsmakes their portability possiblewithout any changes or
optimizations in the design, whereas porting of I/O interface
cores to a wider range of platforms would still need an
additional logic description or replacement of platform-
specific elements in modules composed of such elements.
Novice developers wanting to reuse these processing cores
would consequently be advised to review the theoretical
operation of the cores, possibly trying them in Octave or
Matlab to gain a practical understanding of their behavior or
limits, whereafter they would be familiar with the parameters
concerned and be well prepared for moving to the FPGA,
RHINO-based context of application of making these pro-
cessing operations work in real time.

5.1. Design of DSP Cores. The design of the DSP cores pre-
sented in this paper is influenced by previouswork performed
for the design of hardware architectures to implement DSP
algorithms. Wishbone bus slave interfaces were added to
these designs to accommodate reusability, considering that
the Wishbone standard is commonly used by developers
making use of open-source or open-hardware IP. Some of

International Journal of Reconfigurable Computing 5

Master

W
ish

bo
ne

 b
us

IP core
Wishbone

slave

slave

Wishbone control

RX FIFO

TX FIFO

Core
(FIR, IIR, FFT, IFFT, DDC)

Parallel
interface

Output

Input

signals

signals

Figure 2: An overall architecture of a DSP IP core.

these DSP algorithms have been used by both commercial
and open-source IP designers to implement their IP cores;
however obtaining optimal results depends on the RTL
coding style at a low level of design abstraction; thus the
commercial solutions, in particular, are likely to have sig-
nificant optimization performed for their proprietary imple-
mentations. Commercial IP cores are typically optimized
for deployment on specific platforms whereas the open-
source community hardly follows similar levels of consistency
and standardization needed to implement such high-quality
designs. In this work, we pay much attention to good RTL
design conventions and practices typically obtained from
consultation with experts and our own experience in FPGA
design.The examples of technical recommendations that help
in optimization of the cores during synthesis include (1)
using modular coding style, (2) using a synchronous design
approach, (3) avoiding latches, long combinatorial loops, and
paths, (4) synchronizing resets at each clock domain, (5)
using compatible platform-specific hardware resources such
as memory, clock, and I/O management IP libraries, (6)
isolating clock gating and switching, and (7) using clock PLLs
andmanagement blocks. All these design practices andmany
others not mentioned above make the optimization by low-
level synthesis tools easier and effective.We also parameterize
the cores tomake it possible for future integration in the high-
level synthesis tools.

The general structure of the design of the DSP cores
is shown in Figure 2. These cores are implemented using
fixed-point arithmetic [21] and are designed to operate with
up to 130MHz clock frequency. The configuration of core
parameters such as data width, a number of filter coefficients,
and FFT/IFFT length is performed through VHDL generics,
hence providing a user with a wide range of options during
the design process.

5.2. Selection of the DSP Cores. In this project, only restricted
selection of IP cores was developed due to time constraint.
Thesewere chosen specially in consideration of commonSDR

processing needs and was also based on a thorough literature
review as well as establishing priorities on what was needed
for RHINO platform.The following processing DSP IP cores
were chosen for inclusion into the library: FIR filter, IIR
filter, FFT/IFFT modules, and a parameterized and highly
scalable DDC core. Furthermore, I/O interface cores, namely,
FMC150 core and UDP/IP core, were developed for their
importance in providing high-speed data communication
with external devices.

5.3. Connecting the DSP Cores. As shown in Figure 2, the
DSP cores can be interconnected with other cores using
high-speed parallel interface at operating frequency of up
to 130MHz. The cores are also designed around a common
SoC interface, namely,Wishbone, whose purpose is to further
improve the reusability of these cores on a SoC design. The
Wishbone slave control logic manages read-write operations
of the slave registers while the first in first out (FIFO)memory
stores incoming input data and outgoing processed data.

5.3.1. FIR IP Core. The FIR IP core is designed to enable
modularity and scalability of SDR applications with the
assurance of maximum attainable clock speed. With the
support of five different FIR structures, the user has a wide
range of choices to synthesize efficient FIR filter that meets
the design needs under consideration. The top-level block
diagram of the FIR IP core is depicted in Figure 3.

The proposed FIR core realizes a number of structures
which include transposed parallel FIR structure, averaging
FIR filter, and two optimized realizations, namely, even and
odd symmetric parallel FIR filters [22, 23]. Parallel FIR archi-
tectures are designed around low-order, high-performance
applications while optimized architectures are to be used in
high-order, applications and where resources are limited.

The FIR core operation depends mainly on the structure
chosen by the designer and the diagram that summarizes
the operational flow based on the selected FIR structure is
shown in Figure 4. Except for a moving average FIR filter, all

6 International Journal of Reconfigurable Computing
W

ish
bo

ne
 b

us

FIR IP core

Slave select register

Status register

Control register

Coe�cient register

Input sample register

Output sample register

Wishbone slave
control

RX FIFO

RX FIFO

TX FIFO

Parallel FIR core

All coe�cients FIR core

Even symmetric coe�cients
FIR core

FIR core
Odd symmetric coe�cients

Moving average FIR core

CLK

RST

EN

LOADC

VLD

COEFF

DIN

DOUT

n

n

n

Pa
ra

lle
l b

us
 in

te
rfa

ce

FIR IP core parameters
Name Description Valid range
DIN_WIDTH
DOUT_WIDTH
COEFF_WIDTH
NUM_OF_TAPS
COEFFS

LATENCY

Width of data input
Width of data output
Width of a coe�cient

Number of taps
Filter coe�cients

FIR �lter structure

8
8
8
2

！ＬＬ；Ｓ ＭＣＴ？ = Ｎ；ＪＭ ＭＣＴ？
0 = ＮＬ；ＨＭＪＩＭ？

1 = o＞＞ ＭＳＧＧ？ＮＬＣ＝
2 = eＰ？Ｈ ＭＳＧＧ？ＮＬＣ＝
3 = mＩＰＣＨＡ aＰ？Ｌ；Ａ？

Figure 3: Architecture of FIR IP core.

Stop FIR �ltering

No

No

No

Yes

Yes

YesFilter still
enabled?

Output
the result

FIR core
initializes

Choose FIR
structure type

Is FIR
structure a
moving
average?

Perform FIR
�ltering

Is FIR output
sample
available?

What is
�lter
coe�cients
source?

Internal
ROM

External
source Initialize

coe�cient
iterator: i = 0

Load coe�cient
sample

Increment iterator:
i = i + 1

i?
M = ＨＯＧ＜？Ｌ_Ｉ＠_＝Ｉ？ffＭ

(transpose �lter)
M = ＨＯＧ＜？Ｌ_Ｉ＠_＝Ｉ？ffＭ/2

(odd symmetric �lter)
M = ＝？ＣＦ(ＨＯＧ＜？Ｌ_Ｉ＠_＝Ｉ？ffＭ/2)

(even symmetric �lter)

i = M − 1

i < M− 1

Figure 4: FIR core data flow diagram.

International Journal of Reconfigurable Computing 7

CLK

RST

EN

LOADC

VLD

COEFF

DIN

DOUT

W
ish

bo
ne

 b
us

Slave select register

Status register

Control register

Coe�cient register

Input sample register

Output sample register

Wishbone slave
control

RX FIFO

RX FIFO

TX FIFO

IIR IP core
IIR SOS core

Biquad �lter [0]

Biquad �lter [1]

N− 2]Biquad �lter [

Biquad �lter [N− 1]

n

a

b

n

n

Pa
ra

lle
l b

us
 in

te
rfa

ce

IIR IP core parameters

Width of data input
Width of data output
Width of a coe�cient

Number of biquad stages
Number of recursive coe�cients

Number of recursive noncoe�cients

Name Description Valid range
DIN_WIDTH
DOUT_WIDTH
COEFF_WIDTH
STAGES

8

8

8

1

2

3

Figure 5: An architecture of the IIR IP core.

other filter structures use coefficients stored in the distributed
RAM or rather load coefficients from an external source.The
user decides whether to use distributed RAM coefficients
or to load them from an external memory. The FIR core
does not begin filtering process until the coefficients loading
is finished. If internal coefficients are used, filtering occurs
immediately without waiting for loading to happen.

5.3.2. IIR IP Core. The core is built from a basic structure of a
second-order IIR filter also known as biquad of Direct Form I
[22]. IIR core allows cascading of the biquads to build higher
order IIR filters without experiencing coefficient-sensitivity
problems. This IIR structure with a cascade of biquads is
called Second-Order Sections (SOS). The block diagram of
IIR core designed is shown in Figure 5.The IIR core recursive
and nonrecursive coefficients for each biquad are configured
by the user.

5.3.3. FFT/IFFT IP Core. Radix-22 Single-Path Delay Feed-
back (R-22 SDF) algorithm [24] is exploited to implement a
complex pipelined R-22 SDF architecture of the FFT on an
FPGA. The high-level block diagram of the designed FFT
IP core is shown in Figure 6. The implemented FFT core
is further used to implement an IFFT core. The procedure
is straightforward as the IFFT is computed by conjugating
the twiddle factors of the corresponding forward FFT output
[25]. Some benefits of using R-22 to design the FFT core
are that its FFT architecture has simple pipeline control and
reduced multipliers by a factor of (𝑁 − 1)/2 compared to

Radix-2 and Radix-4 which are used to design an FFT for
Xilinx IP Cores Library [26]. The designed FFT/IFFT core
length can be configured to 4, 8, 16, 32, 64, 128, 256, 512, 1024,
2048, and 4096 by the user. However, larger size FFTs can be
implemented using a Matlab script accompanying a core.

An example of 32-point R-22 SDF FFT is illustrated in
Figure 7. Data arrives at the input in a sequential order and
output data leaves the core in a bit-reversed order. For an FFT
with 𝑁 points, a complete stage consists of two butterflies,
namely, BFI and BFII, delay feedback shift register, and a
twiddle factor complex multiplier. On the other hand, half a
stage only has a single butterfly which is BFI.

5.3.4. DDC IP Core. The developed DDC core is highly
configurable and can be tailored easily to meet many SDR
multirate applications needs. Figure 8 illustrates the top-level
block diagram of the DDC IP core. This can be used in SDR
applications to perform the first processing after ADC. The
DDC performs the tasks such as frequency downconversion,
sample rate reduction, and high-speed filtering [27].

The DDC structure is realized as shown in Figure 9. The
structure is composed of Numerically Controlled Oscillator
(NCO), digital mixer; Cascaded Integrator Comb (CIC) and
FIR filter were all designed to complete the structure of the
DDC.

5.4. Design of I/O Interface Cores. This section presents a
development of FMC150 ADC/DAC interface core and a
UDP/IP core for Gbe which are designed to be operational
on RHINO.

8 International Journal of Reconfigurable Computing

W
ish

bo
ne

 b
us Slave select register

Status register

Control register

Input sample register

Output sample register

Wishbone slave
control

RX FIFO

TX FIFO

Radix-22 SDF FFT core

... n

n

n

n

XSr

XSi

XKr

XKi

N

DOUT_WIDTH
COEFF_WIDTH
TF_WIDTH

Number of FFT points
Width of data output
Width of a coe�cient

Bit width of twiddle factors

FFT/IFFT IP core parameters
Name Description Valid range

8

Pa
ra

lle
l b

us
 in

te
rfa

ce

CLK

RST

EN

VLD

Radix-22 SDF FFT IP core

8–32
8–32

FFT - 23

FFT - 24

FFT – 2N−1

FFT – 2N

= 2N, N = 3

Figure 6: An architecture of the FFT IP core.

Shi� register

Shi� register

Shi� register

Shi� register Shi� register

16 stages

4 stages

8 stages

2 stages 1 stage

BFI

BFIBFI

XSr,
XSi

XKr,
XKi

17
17

1716

16

16

3

5

18

18

18

18

t

ts

s

s

s s

BFII

BFII

19
19

19

c2

c2

c1

c1 c0

c0

20
20

2020

c4

c4

c3

c3

Twiddle ROM
32 entries

Complex
multiplier

Complex
multiplier

Twiddle ROM
8 entries

Control (counter)

21

21
21

[c4 · · · c0]

[c2 · · · c0]

Figure 7: 32-point FFT structure using Radix-22 Single-Path Delay Feedback algorithm.

5.4.1. FMC150 Interface Core. The FMC150 is designed
with TI’s ADS62P49/ADS4249 dual-channel 14-bit 250MSPS
ADC and TI’s DAC3283 dual-channel 16-bit 800MSPS DAC.
The TI’s CDCE72010 PLL is the clock distribution device that
provides a clock to drive the DAC and ADC. The internal
clock source can optionally be locked to onboard 100MHz
or external reference clock [28].

The FMC150 core presented in this section provides Low-
Voltage Differential Signaling (LVDS) interface to a 4DSP

FMC150 daughter card as depicted in Figure 10. A design
example in Figure 10 is configured on ADC sampling rate of
61.44MSPS and sends digital samples to DAC at 61.44MSPS
rate. The maximum sampling rates that FMC150 core were
tested on using RHINOare 163.84MSPS and 245.76MSPS for
ADC and DAC, respectively.

5.4.2. UDP/IP Core. In order to make RHINO Gbe oper-
ational, an FPGA-based Gbe core is needed to configure,

International Journal of Reconfigurable Computing 9

Wishbone slave
control

RX FIFO

TX FIFO

N

Name Description Valid range
8

8

8

8

n

n

n

n

Pa
ra

lle
l b

us
 in

te
rfa

ce

CLK

RST

EN

VLD

W
ish

bo
ne

 b
us

DDC IP core

Input sample register

Slave select register

Status register

Control register

FTW register

Output sample register

DDC core

Mixer

CIC decimator 1

Compensating �lter

CIC decimator

RDY

DIN

FTW

CLKO

IOUT

QOUT

DDC IP core parameters

DOUT_WIDTH
PHASE_WIDTH
PHASE_DITHER_WIDTH
SELECT_CIC1

NUMBER_OF_STAGES1
DIFFERENTIAL_DELAY1

SAMPLE RATE_CHANGE1
SELECT_CFIR
NUMBER_OF_TAPS
FIR_LATENCY
COEFF_WIDTH
COEFFS
SELECT_CIC2

NUMBER_OF_STAGES2
DIFFERENTIAL_DELAY2

SAMPLE RATE_CHANGE2

Number of FFT points
Width of data output

NCO phase width
Phase dither width

Activate CIC1 of a DDC
Number of CIC1 Stages

Di�erential delay of CIC1
Decimation factor of CIC1

Use a compensating FIR �lter of DDC
Number of coe�cients

Type of FIR �lter structure
Coe�cient bit width

Quantized integer �lter coe�cients
Activate CIC2 of a DDC
Number of CIC2 stages

Di�erential delay of CIC2
Decimation factor of CIC2

PHASE_WIDTH

0 or 1

0 or 1

0 or 1

>0

>0

>0

>0

>0

1 or 2

1 or 2

0, 1, 2, 3

！ＬＬ；Ｓ ＭＣＴ？ = Ｎ；ＪＭ ＭＣＴ？

Figure 8: An architecture of the DDC IP core.

monitor, and control the Ethernet interface. This section
presents a design of a UDP/IP core based on the combination
of Internet Protocol version-4 (IPv4) and User Datagram
Protocol (UDP) in order to provide a high-speed and efficient
solution for communication over a Gbe.

FPGA devices require Ethernet Media Access Controller
(EMAC) to interface with the physical layer (PHY) chip on
the board [29]. RHINO uses an integrated Marvell 88E111
PHY chip. The PHY is needed for the FPGA to connect with
external devices. The user logic can be deployed to configure
the EMAC physical interface [29] in a form of wrapper
files. In our case, the wrapper files configure the OpenCores
Trimode MAC [5] which is published under the GNU Lesser
General Public License (LGPL). This is a very cost-effective

and nonrestrictive solution in comparison with proprietary
Media Access Controllers (MACs) such as Xilinx’s Trimode
Ethernet Media Access Controller (TEMAC) [30] which is
costly. Furthermore, the OpenCores Trimode MAC IP core
supports data rates of 10, 100, and 1000Mbps and is compliant
with IEEE 802.3 specification [5]. Our UDP/IP core is only
configured on 1000Mbps speed.

The architecture of the UDP/IP core is illustrated in
Figure 11. Address Resolution Protocol (ARP) is used to
resolve the sender and receiver MAC addresses before packet
data communication. An OpenCores Trimode MAC [5] is
responsible for delivering data over a shared physical channel.
The MAC consists of two user interfaces that simplify
the connection to a PHY. It encodes/decodes packet data

10 International Journal of Reconfigurable Computing

R R

RR

CIC1
decimator

Compensation FIR

DDC core

�lter
CIC2

decimator

CFIR

CFIR

QOUT

VLDRDYENRSTCLKFTW

IOUT

DIN

NCO & digital
mixer

LO

90∘

n n

n n

n

n

n

n

n

n

n

16

16

x1[n] x2[m] x3[m] x4[k]

Figure 9: A structure of the Digital Down Converter.

14 14

14

16

16
8

61.44
MHz

adc_cha_dout

adc_chb_dout

adc_clk

dac_clk

dac_chc_din

dac_chd_din

FMC150 interface core

ADC LVDS interface

SPI control

MMCM PLL

DAC LVDS interface

245.76MHz

ADC_DATA
interleaved
DDR
122.88 Mbps

ADC_CLKOUT
61.44MHz

CLK_TO_FPGA
245.76MHz

DAC_DATCLK
122.88 MHz

DAC_DATA
interleaved
DDR
245.76Mbps

4DSP FMC150 card

ADS62P49

61.44MHz

CDCE72010 PLL

491.52 MHz

245.76 MHz

DAC3283

ADC IN

DAC OUT

Figure 10: Structure of FMC150 core interfacing with the 4DSP FMC150 card.

International Journal of Reconfigurable Computing 11

udp_tx_pkt_data

udp_tx_pkt_vld

udp_tx_rdy

udp_rx_pkt_req
udp_rx_rdy

udp_rx_pkt_data

sys_clk

sys_rst

n

n

udp_src_port udp_dst_port mac_init_done

UDP1GbE core

UDP_TX TX_bridge

UDP_Wrapper ARP

UDP_RX RX_bridge

OpenCores
Trimode Ethernet MAC

own_ip_addr own_mac_addr dst_ip_addr dst_mac_addr

32

32

3232 4848

GIGE_COL
GIGE_CRS
GIGE_MDC
GIGE_MDIO
GIGE_TX_CLK
GIGE_nRESET
GIGE_RXD
GIGE_RX_CLK
GIGE_RX_DV
GIGE_RX_ER
GIGE_TXD
GIGE_GTX_CLK
GIGE_TX_EN
GIGE_TX_ER

PH
Y

(M
ar

ve
ll

88
11

1)
 in

te
rfa

ce

UDP1GbE core parameters
Name Description Valid range
UDP_TX_DATA_BYTE_LENGTH
UDP_RX_DATA_BYTE_LENGTH

Transmitted payload size in bytes
Received payload size in bytes

1–1474
1–1474

16 16

Figure 11: Structure of UDP/IP core for interfacing and control of a Gbe (uses OpenCores Trimode Ethernet MAC [5] to interface with a
PHY).

to/from PHY during transmission and reception of data
using Gigabit Media-Independent Interface (GMII) between
a MAC and a PHY. The second interface is serial and it
is called Management Data Input/Output (MDIO) bus. It
transfers configuration data to a PHY and it is also used to
read PHY status registers. The IPv4 is used by the designed
UDP/IP core to deliver messages between the RHINO and a
destination device. The IP addresses are configured statically
and they must be in the same subnetwork for successful
communication to happen.UDP is chosen as a transport layer
protocol. It is used in this design for its simplicity and the
fact that it supports high-speed and real-time data transfers
[31, 32].

6. Testing and Results

In order to verify the functionality and correctness of these
cores, testing which involved behavioral and functional
simulation was performed. Each DSP core was successfully
synthesized on Spartan-6 of RHINO and tested from input
data generated using Matlab. After the core had processed
the data, the results were stored in an output file as a vector
of samples. Matlab scripts were used to plot graphs and
perform further signal processing of the results for analysis.
The general experimental setup for DSP cores is shown in
Figure 13. The operating frequencies of 100MHz were used
when testing the FIR, IIR, and FFT cores. For a DDC core,
122.88MHz of clock frequency was used.

6.1. Overview of RHINO Platform. Reconfigurable Hard-
ware Interface for ComputatioN and RadiO (RHINO) is a
standalone FPGA processing board and has commonalities
with the better known Reconfigurable Open Architecture
ComputingHardware (ROACH); however, it is a significantly
cutdown and lower-cost alternative which has similarities
in the interfacing and FPGA or processor interconnects of
ROACH. RHINO was designed at the University Of Cape
Town and is largely aimed around a lower-cost, totally open-
source FPGA board which provides a good platform for
the development of software-defined radio applications [4].
The RHINO platform was designed to be a combination
of an education and training platform for learning about
reconfigurable computing and as a research and prototyping
platform for studies related to SDR [4, 33].

The two main processing elements of RHINO include
ARM processor and Spartan-6 FPGA as shown in Figure 12.
The computationally intensive functions are processed by
the FPGA while the ARM processor provides configuration,
control, and interface function with FPGA through Berkeley
Operating System for Reprogrammable Hardware (BORPH)
[4, 34]. BORPH is an extended Linux kernel that allows con-
trol of FPGA resources as if they were native computational
resource [34]. This, as a result, allows users to program the
FPGA with a given design or configuration and run it as
software process within Linux.

Other building blocks of RHINO include FMC connec-
tors which enable interface with ADC, DAC, and mixed

12 International Journal of Reconfigurable Computing

NAND �ash

SD memory
card

SDRAM

USB
256MB
NAND
�ash

TI ARM cortex 8 processor

Serial USB-
UART

100 Mbps
Ethernet

FPGA-processor bus

1Gbps Ethernet

Xilinx Spartan 6 FPGA

2 × 10 Gbps CX4
Ethernet

2 × 256MB
DDR3 SDRAM

2 × ＆－＃
connectors

256MB DDR2

Figure 12: An architecture of RHINO platform building blocks.

Input vector
generated in Matlab DSP core Results are saved as

vector in data �le

Graphs are plotted
from data �le using
Matlab

Figure 13: Process of configuring a DSP core.

signal daughter cards, supporting sample rates over 1GS/s
[35]. The 1/10 Gbe connectors provide a high-speed network
connection between the FPGA and remote devices using
standard TCP or UDP transport layer protocols to convey
packets of data.

6.2. Testing FIR Core. The FIR core was verified by designing
length 𝐿 = 95 FIR bandpass filter to specifications shown
in Figure 14. The resulting Parks-McClellan optimal FIR
coefficients of 16-bit width are illustrated in Figure 14(b) in a
form of filter frequency response. The filter was tested on an
input signal consisting of a sum of sinusoids at frequencies
440, 800, 2200, and 2500Hz as shown in Figure 14(a) and
only a 2200Hz was isolated by a bandpass filter. The results
shown in Figure 14(d) closely match with the results of the
ideal filter in Matlab shown in Figure 14(c); however, the
Signal-to-Noise Ratio (SNR) has slightly decreased due to
quantization and round-off errors.

6.3. Testing IIR Core. Testing the IIR filter was similar to
FIR testing in Section 6.2 except for filter response shown in
Figure 15(b) which was designed with Chebyshev Type I filter
to specifications shown in Figure 15. The results of the IIR
core obtained are shown in Figure 15(d) which closely match
the ideal Matlab results shown in Figure 15(c). In comparison
to the FIR core results, the IIR core is highly selective and uses
fewer coefficients leading to better results.

6.4. Testing FFT/IFFT Core. This testing involved generating
an input vector (length = 1024) of a rectangular pulse as

shown in Figure 16(a) and processing it with a 1024-point
FFT/IFFT core. This was used at the input of the core
operating in FFT mode. The output of the FFT core as
shown in Figure 16(c) was later used as an input data to
the IFFT core. The FFT core yielded the sinc waveform in
Figure 16(c) which was the expected Fourier transform of a
pulse waveform.This alsomatchedwith theMatlab generated
FFT of the pulse wave shown in Figure 16(b). As expected, the
IFFT core produced the original rectangular pulse waveform
which is illustrated in Figure 16(d).

6.5. Testing DDC Core. Using Matlab and 122.88MSPS sam-
ple rate, an FM signal vector was created by modulating
94.5MHz sine wave with 15 kHz baseband signal. This vector
was used as an input to a DDC core. Due to bandpass
sampling used, the FM signal was centered at 28.38MHz
after sampling. Similarly, the carrier was also located at
28.38MHz. In order to convert it to baseband, NCO signals
are multiplied with input FM signal using the mixer. The
product then becomes the desired signal component centered
at DC and a spurious harmonic located at 56.76MHz as
shown in Figure 17(b). This undesired signal component was
removed by a CIC filter which decimated the 122.88MSPS
ADC sample rate by a factor of 1 : 128 resulting in 960 kSPS
sample rate as shown in Figure 17(c). The nonideal response
of the CIC filter was corrected by introducing a compensation
FIR filter in the final stage of the DDC and its output is shown
in Figure 17(d).

After the digital downconversion, the FM demodulator
was used to demodulate the FM signal. The magnitude

International Journal of Reconfigurable Computing 13

5000

4000

3000

2000

1000

0

M
ag

ni
tu

de

−5 −4 −3 −2 −1 0 1 2 3 4 5

Frequency (kHz)

(2.2 kHz, 3592.56)
(800 Hz, 4082.006)

(220 Hz, 2781.657)

(2.5 kHz, 4093.89)

(a)

M
ag

ni
tu

de
 (d

B)

0 1000 2000 3000 4000 5000

Frequency (Hz)

0

−50

−100

−150

(b)

M
ag

ni
tu

de

−5 −4 −3 −2 −1 0 1 2 3 4 5

Frequency (kHz)

(2.1973 kHz, 511.707)
600

500

400

300

200

100

0

(c)

M
ag

ni
tu

de

−5 −4 −3 −2 −1 0 1 2 3 4 5

Frequency (kHz)

(2.19727 Hz, 494.572)

500

400

300

200

100

0

(d)

Figure 14: The results of FIR filter testbench. (a) Magnitude spectrum of input signal. (b) FIR filter frequency response (filter response
parameters: sampling frequency = 10 kHz, lower cutoff frequency = 2.190 kHz, higher cutoff frequency = 22.15 kHz, passband ripple = 3 dB,
stopband attenuation = 80 dB, and number of coefficients = 95). (c) Magnitude spectrum of Matlab FIR filter output. (d) Magnitude spectrum
of FPGA FIR filter output.

spectrum and amplitude versus time graphs of the signal
after demodulation are shown in Figures 18(a) and 18(b).This
output has a transient response which is the effect of the FM
demodulator. When the transient was removed, this resulted
in steady-state responsewhosemagnitude spectrum and time
domain graphs are shown in Figures 18(c) and 18(d), and they
represent the recovered 15 kHz baseband signal.

6.6. Testing FMC150 ADCCore andUDP/IP Core. The exper-
imental setup is shown in Figure 19 and it involved stream-
based processing that incorporated ADC and Gbe cores. The
20MHz input tone to a 49.152MSPS ADC was generated
with a function generator as illustrated in Figure 20(a). The
FMC150 interface core was used to capture the ADC samples
and these samples were sent to a Desktop Personal Computer
(PC) via a Gbe using UDP/IP core. At the PC end, the
received samples were plotted as shown in Figure 20. The

Spurious Frequency Dynamic Range (SFDR) of the ADC
signal was measured as 44 dBc, about 55% of the vendor
specified ADC figure. The pronounced spurious harmonics
are due to the high-level of distortion in the 10 dBm input
signal from a function generator. A better function generator
with a low distortion effect would improve results. The
throughput speed recorded on a Gbe using Wireshark was
98.62MB/s which is 89.65% of the theoretical figure of
110MB/s (as specified by Huang et al. [36]).

6.7. Testing FMC150 DAC Core. The block diagram of the
experimental setup is illustrated in Figure 21.The experiment
used the NCO core designed in Section 5.3.4 to synthesize
two different sine waveforms of frequencies 17.23MHz and
28.38MHz. The digital samples were sent to the DAC at
61.44MSPS sampling rate. The DAC, in turn, converted

14 International Journal of Reconfigurable Computing

5000

4000

3000

2000

1000

0

M
ag

ni
tu

de

−5 −4 −3 −2 −1 0 1 2 3 4 5

Frequency (kHz)

(2.2 kHz, 3592.56)
(800 Hz, 4082.006)
(220 Hz, 2781.657)

(2.5 kHz, 4093.89)

(a)

0

−100

−200

−300

−400

−500

−600

M
ag

ni
tu

de
 (d

B)

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Frequency (Hz)

(b)

M
ag

ni
tu

de

−5 −4 −3 −2 −1 0 1 2 3 4 5

Frequency (kHz)

(2.1973 kHz, 1082.497)

1200

1000

800

600

400

200

0

(c)

M
ag

ni
tu

de

−5 −4 −3 −2 −1 0 1 2 3 4 5

Frequency (kHz)

(2.1973 kHz, 1031.821)

1200

1000

800

600

400

200

0

(d)

Figure 15: The results of IIR filter testbench. (a) Magnitude spectrum of input signal. (b) IIR filter frequency response (filter response
parameters: sampling frequency = 10 kHz, lower cutoff frequency = 2.190 kHz, higher cutoff frequency = 22.10 kHz, passband ripple = 0.1 dB,
stopband attenuation = 200 dB, number of coefficients = 6, and number of sections = 6). (c) Magnitude spectrum of Matlab IIR filter output.
(d) Magnitude spectrum of FPGA IIR filter output.

digital data into analog signals which were measured on a
spectrum analyzer and the results are shown in Figure 22.

7. Validation: Development of FM Receiver

This section reports on the development of a wideband digital
FM receiver. This is used for validation of the proposed SDR
IP cores library. Using the SDR IP cores which incorporate
DSP cores and I/O interface cores, this prototype serves as a
proof of concept that the cores can be used not only in this
FM receiver design but also to prototype other real-time SDR
applications. The complete design of FM receiver comprises
an analog RF front-end circuitry and digital receiver which
forms the largest part of the FM receiver processing.

7.1. Analog Front-End. The block diagram of the analog RF
front-end design is shown in Figure 23 and is sensitive to

−65 dBm FM signal. The indoor FM antenna with a variable
gain of 36 dB receives the FM signal in the frequency range of
88–108MHz.The front-end also provides a bandpass filtering
of FM band and a total gain of 75 dB to make the FM signal
compatible with the input swing of the ADC.The overall gain
is determined as

Total Front-End Gain (dB) = 𝑃fm-signal + 𝑃fmc150-ADC

= 10 + 65 = 75 dB,
(1)

where 𝑃fm-signal is FM signal power in dBm and 𝑃fmc150-ADC is
ADC input signal power in dBm.

7.2. Digital Receiver. The digital receiver processing is imple-
mented with a DDC core and the FMdemodulator.The block
diagram showing the processing blocks is shown in Figure 24.
The 20MHz bandwidth RF signal is digitized with a 14-bit

International Journal of Reconfigurable Computing 15

40

30

20

10

0

A
m

pl
itu

de
 (×

10
3
)

0 5 10 15 20

Time (s)

(a)

2000

1500

1000

500

0

M
ag

ni
tu

de

−20 −10 0 10 20

Frequency (MHz)

(b)

2000

1500

1000

500

0

M
ag

ni
tu

de

Frequency (MHz)
−25 −20 −15 −10 −5 0 5 10 15 20 25

(c)

0 5 10 15 20

Time (s)

1500

1000

500

0

A
m

pl
itu

de

(d)

Figure 16: Matlab and FPGA results of a 1024-point FFT and IFFT core tested with rectangular pulse input waveform. (a) Rectangular pulse
waveform, (b) 1024-point FFT core output using Matlab, (c) 1024-point FFT core output using FPGA, and (d) 1024-point IFFT core output
using FPGA.

precision ADC. The ADC sampling rate 𝑓
𝑠
is determined

by using a bandpass sampling criterion [37] in (2) where 𝑛
falls in a range 1 to 5. We choose 𝑛 = 2 and this results
in a wide frequency range of 108MHz–176MHz valid for
ADC bandpass sampling. We choose 122.88MSPS as the
ADC bandpass sampling speed. The chosen ADC sample
rate results in the digitized FM signal downshifted from
88–108MHz band to 14.88–34.88MHz band.

2𝑓
𝐻

𝑛
≤ 𝑓
𝑠
≤
2𝑓
𝐿

𝑛 − 1
, (2)

where 𝑛 is given by 1 ≤ 𝑛 ≤ (𝑓
𝐻
/(𝑓
𝐻
− 𝑓
𝐿
)), 𝑓
𝐻
is high

frequency, and 𝑓
𝐿
is low frequency.

The 14-bit samples received from the ADC are extended
to 16-bit signed words which are directed into the DDC core
input. To generate a complex baseband I/Q signal, the sine
and cosine waveforms are generated using the NCO core and

then multiplied with the FM signal using digital quadrature
mixer. The frequency of the NCO output is equal to the
frequency of a sampled FM signal and it ranges between
14.88MHz and 34.88MHz.

After mixing down the FM signal using the quadrature
mixer, the image and mixer products are eliminated by the
CIC filter which uses zero multipliers in its implementation.
This CIC filter also decimates the 122.88MSPS ADC rate
to 960 kSPS by decimation ratio of 1 : 128. Despite its low
cost and efficient and simple implementation, the CIC filter
introduces undesirable droop in its filter response passband
[38]. To correct this nonflat response in the passband of the
CIC filter, the compensation FIR (C-FIR) filter is used.

The CIC and C-FIR filter specification parameters and
their respective filter responses are shown in Figure 25. In this
same figure, the total filter response is shown which results
after decimation and compensation.

16 International Journal of Reconfigurable Computing

(28.38 MHz, 12472.969112)

15000

10000

5000

0

M
ag

ni
tu

de

28 28.5 29

Frequency (MHz)

(a)

(56.760000 MHz, 12496.960391)

M
ag

ni
tu

de

Frequency (MHz)

15000

10000

5000

0
0 20 40 60

(b)

(0 MHz, 820270700)

10

5

0

M
ag

ni
tu

de
 (×

10
8
)

−500 0 500

Frequency (kHz)

(c)

(0 MHz, 789955600)

M
ag

ni
tu

de
 (×

10
8
)

−500 0 500

8

6

4

2

0

Frequency (kHz)

(d)

Figure 17: Results of DDC core and FM demodulator. (a) FM-modulated signal generated in Matlab, (b) magnitude spectrum of mixer, (c)
magnitude spectrum of CIC-1, and (d) magnitude spectrum of a C-FIR filter.

7.3. Data Packetization. A data packet that is composed
of 32-bit samples needs to be generated before the actual
construction of a UDP packet. Each 32-bit is decomposed
into 16-bit I/Q data samples. Generation of data packets is
facilitated by a length-N double buffer that lies between a
DDC core and UDP/IP core as shown in Figure 24. In this
example, we choose 𝑁 = 33. As illustrated in Figure 26, a
double buffer accepts samples from a DDC core and writes
them to BUFFER 1 buffer. The UDP/IP core then reads
samples from BUFFER 2 as a unit to generate a data packet
that is padded to a data field of a UDP packet. Furthermore,
double buffering also solves a producer-consumer problem
during concurrent read and write process by DDC core and
UDP/IP core, respectively. Each data packet generated forms
part of the UDP data field where each 32-bit sample in a
packet is represented by 16-bit I/Q samples as shown in
Figure 27.

7.4. Final Test: FM Receiver. The block diagram showing
the experiment setup is shown in Figure 28. The test was

performed by tuning to a local radio station at 94.5MHz (K-
FM). The final output of the FPGA processing was complex
I/Q samples centered at DC as shown in Figure 29(a).
These samples were then demodulated in Matlab using
arctan/differentiation FM demodulator at the PC end. The
output of the FM demodulator is a real-valued signal and
is shown in Figure 29(b). The results clearly show the mono
audio, pilot tone, stereo audio, and RBDS spectral compo-
nents; however, stereo audio and RBDS are not distinguished
due to aweak FM signal received by theADC.TheADC tends
not to be sensitive to signals with power way below 10 dBm.
Increasing the analog RF front-end gain will improve results.

8. Benchmark Results

We benchmark our IP cores using Xilinx ISE v14.7, targeting
the Spartan-6 xc6slx150t FPGA found on RHINO platform.
We do the same with cores found in Xilinx DSP core library
and OpenCores where they both represent commercial
and open-source cores, respectively. The benchmark results

International Journal of Reconfigurable Computing 17

(15.0000 kHz, 249.452606)

300

200

100

−500 0
0

500

M
ag

ni
tu

de

Frequency (kHz)

(a)

A
m

pl
itu

de
 (×

10
4
)

2

0

−2

−4
0 100 200

Time (s)

(b)

−500 0 500

M
ag

ni
tu

de

300

200

100

0

Frequency (kHz)

(14.845361 kHz, 249.452606)

(c)

A
m

pl
itu

de

1000

500

0

−500

−1000
0 50 100 150 200

Time (s)

(d)

Figure 18: FM demodulator output showing the demodulated signal with transients and after removing the transients. (a) Magnitude
spectrum of FM-demodulated signal, (b) FM-demodulated signal; (c) magnitude spectrum of FM-demodulated signal without transients,
(d) FM-demodulated signal without transients.

Function
waveform
generator

ADC
ADC
core

FPGA

1Gbps
Ethernet
interface

UDP
communication

1Gbps NIC PC

Figure 19: Experimental setup for a streaming core using FMC150 ADC core and Gbe core.

shown inTable 1 usemetrics of FPGAresource utilization and
the maximum clock speed that can safely be used to execute
each core.The key parameter values for each of the SDR cores
are as follows:

(1) The number of coefficients for the FIR core is 21 with
data width set to 16 bits.

(2) The IIR core is benchmarked on 16 stages with 16-bit
data.

18 International Journal of Reconfigurable Computing

(a) ADC input of 20MHz tone

A
m

pl
itu

de
 (d

Bc
)

20

0

−20

−40

−60

−80

−100
0 5 10 15 20 25

Frequency (MHz)

(b)

Figure 20: 20MHz tone ADC output streamed using UDP. (a) ADC input of 20MHz tone generated with function generator, (b) FFT for
20MHz ADC signal captured on a PC after streaming.

NCO core FPGA DAC

Oscilloscope

Spectrum
analyzer

Figure 21: A block diagram showing experimental setup for DAC interface core.

(a) DAC output of a 17.23MHz tone (b) DAC output of a 28.38MHz tone

Figure 22: The spectra different sinusoids generated using NCO core and measured at the FMC150 DAC output.

Antenna ampli�er

antenna + ampli�er
Indoor FM/VHF/UHF

Preselect �lter
(88–108 MHz)

Minicircuits
(sxbp-100+)

Bandpass �lter
(88–108 MHz)

Ampli�er
(20 dB)

Ampli�er
(20 dB)

Minicircuits
zfl-1000ln+

Minicircuits
zfl-1000ln+

FMC150, ADC

10 dBm, 14-bit ADC

To FPGA
(variable gain 0–36 dB)

Figure 23: A block diagram of the analog RF front-end.

International Journal of Reconfigurable Computing 19

Analog
front-end

FMC150
interface

RHINO, Xilinx Spartan-6 FPGA

DDC core
Numerically
controlled
oscillator

16

16

16

16

16

16

16 16

32

32NCO

Digital
Mixer

122.88 MHz 122.88 MHz
Clock domain manager

960 kHz 960 kHz
/128

CIC

Decimator
Compensation

�lter

C-FIR Double
bu�er

1 Gbps
Ethernet
interface

32 × 33

PC

1 Gbps NIC

Arctan
demodulator
(Matlab)

UDP packet transfer
with 132-byte
payload

Figure 24: An architecture of the digital FM receiver.

Compensating FIR �lter frequency response
CIC-1 �lter response

C-FIR �lter response

Total response

M
ag

ni
tu

de
 (d

B)

0

−10

−20

−30

−40

−50

−60

−70

−80

−90

−100
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Frequency (MHz)

Figure 25: The total frequency response due to CIC and C-FIR frequency response. CIC parameters: input sample = 122.88MSPS, output
sample rate = 960 kSPS, decimation factor (R) = 128, number of stages (N) = 10, differential delay (M) = 1. C-FIR parameters: input and output
sample rate = 960 kSPS, number of coefficients = 21, cutoff frequency = 90 kHz, stopband attenuation = 10 dB.

(3) The number of FFT core points is set to 1024 with data
width set to 16 bits.

(4) The DDC core is configured to operate on 122.88
MSPS of an RF signal and output 1.28MSPS of a
baseband signal.

The Xilinx library does not have an IIR core while
OpenCores does not have a DDC core needed to perform
benchmarking.

The Xilinx DSP cores exhibit more performance and use
the fewest FPGA resources overall. The static nature of the
Xilinx cores allows easy access to generic parameters through
a core generator wizard which makes it very complex to
evenmodify the generated code. Our cores have performance
that is slightly less than Xilinx cores but with comparable
FPGA resource utilization. They also expose easy interface
for configuration of generic parameters of the cores. The
OpenCores cores have the lowest performance and the largest

resource occupation on the FPGA. Furthermore, they have
other constraints such as limiting the number of FIR core
coefficients to less than 22 and the FFT points are limited to
1024.

The results have shown that our SDR cores achieve
significant performance anduse less resourceswhile exposing
design parameters to the user in the VHDL code. Further
benchmark tests for a Gbe core, FMC150 interface core, and
the FM receiver application are performed and results shown
in Table 1 show a satisfactory performance needed for SDR.

9. Proposed DSL and Tool-Flow for SDR

We briefly introduce a new SDR high-level synthesis, namely,
SdrHls which enables the FPGA design of SDR applica-
tions using a Domain-Specific Language (DSL). Instead of
translating a DSL into new FPGA functionality, SdrHls
maps user design specifications in DSL onto parameterizable

20 International Journal of Reconfigurable Computing

Ta
bl
e
1:
IP

co
re

be
nc
hm

ar
k
re
su
lts

fo
rX

ili
nx

,O
pe
nC

or
es
,a
nd

SD
R
co
re
s.

So
ur
ce

C
or
es

Sl
ic
es

(2
30
38
)

%
LU

Ts
(9
21
52
)

%
Re

gi
ste

rs
(1
84
30
4)

%
RA

M
(2
16
80
)

%
D
SP

48
A
1s
(1
80
)

%
BU

FG
s(
16
)

%
M
ax
im

um
Cl
oc
k
Fr
eq
ue
nc
y
(M

H
z)

Xi
lin

x
lib

ra
ry

FI
R

30
1

50
1

96
1

13
1

1
1

1
1

30
3

FF
T

88
5

3
22
94

2
34
03

1
60
7

2
16

8
1

1
14
1

D
D
C

68
0

2
12
23

1
21
79

1
47
2

2
7

3
1

1
13
4

O
pe
nC

or
es

FI
R

15
56

6
38
72

4
69
1

1
0

0
21

11
1

1
80

II
R

24
7

1
85
7

1
86
4

1
0

0
72

40
1

1
66

FF
T

12
09

5
27
68

3
31
20

1
10
24

4
16

8
1

1
84

SD
R
co
re
s

FI
R

43
1

13
2

1
30
4

1
0

0
30

16
1

1
13
0

II
R

14
4

1
37
6

1
49
2

1
0

0
36

20
1

1
94

FF
T

93
0

4
25
18

2
12
67

1
64

2
2

16
8

1
1

118
D
D
C

14
04

6
40
24

4
51
79

2
0

0
2

1
1

1
12
9

G
be

12
05

5
27
01

1
29
28

1
41
1

1
0

0
7

43
16
5

FM
C1

50
63
1

2
13
35

1
12
72

1
14
2

1
0

0
8

50
18
4

FM
Re

c.
14
04

6
40
24

4
51
79

2
0

0
2

1
1

6
15
4

International Journal of Reconfigurable Computing 21

Bu�er 1

Sw
itc

h bu�er

Sw
itc

h bu�er

FIFO write of
ADC/DSP samples

FIFO write of
ADC/DSP samples

0 1 2 · · · N − 3 N − 2 N − 1

0 1 2 · · · N − 3 N − 2 N − 1

0 1 2 · · · N − 3 N − 2 N − 1

0 1 2 · · · N − 3 N − 2 N − 1

Bu�er 2

(a)

(b)

Bu�er 1

Bu�er 2

Data packet read
for UDP transfer

Data packet read
for UDP transfer

Figure 26: Double buffering used between the ADC or DSP output and Gbe input. (a)Writing DSP samples to BUFFER 1 and creating a data
packet by concurrent reading of BUFFER 2 samples. (b)Writing DSP samples to BUFFER 2 and creating a data packet by concurrent reading
of BUFFER 1 samples.

· · ·

· · ·

Data �eld of UDP packet

Word length in bits

Sample �eld of UDP data �eld

Sample length in bits

Sample Sample Sample Sample Sample Sample
0 1 2

32 32 32

32

32 32 32

30 31

16 16

In-phase data Quadrature data

Figure 27: UDP frame data field format. Data field is composed of 33 samples collected from a DDC core output.

Analog RF
front-end

ADC ADC
core core

ADC 1Gbps
Ethernet
interface

FPGA

UDP
communication 1Gbps

NIC

FM
demodulator
(Matlab)

PC

Figure 28: Experimental setup for a digital wideband FM receiver.

22 International Journal of Reconfigurable Computing

Spectrum of 94.5 MHz FM station (DDC core output)
30

20

10

0

M
ag

ni
tu

de

−500 −400 −300 −200 −100 0 100 200 300 400 500

Frequency (kHz)

(a)

M
ag

ni
tu

de

Frequency (kHz)

0.015

0.01

0.005

0
0 10 20 30 40 50 60 70

(b)

Figure 29: The results of FM receiver when tuning to 94.5MHz radio station. (a) Spectrum of 94.5MHz FM station baseband signal which
is the output of a DDC core, (b) spectrum of FM-demodulated 94.5MHz FM station in Matlab; the signal is real-valued after demodulation.

SDR IP cores and stitches the cores together to yield the
desired FPGA design. It achieves this by adopting a model-
based design approach employing a Synchronous Dataflow
(SDF) [39] while also leveraging the high-level topological
design patterns of a DSL that are based on a functional
language called Scala. There are other dataflow-based HLS
tools for fast prototyping of DSP applications such as Ptolemy
[40], LabView [41], and Simulink [42]. These tools provide
intuitive methodologies to specify, simulate, and/or execute
DSP applications. However, they strive to provide generic
solutions in all areas of DSP field thereby resulting in com-
promised efficiency of produced designs. SdrHls is a domain-
specific tool optimized for producing efficient FPGA-based
SDR designs and uses idioms and notations familiar to
domain users of SDR.

An overview of our design flow for SdrHls is illustrated
in Figure 30 and its description is backed by a typical SDR
design example of the FM receiver discussed in Section 7.

9.1. A DSL and High-Level Compilation. We begin with an
application specification that represents an SDR algorithm to
be translated into an FPGA design in VHDL.This is specified
using a DSL that employs a dataflow-based approach as
shown Listing 1 and the corresponding SDF diagram is
illustrated in Figure 31. The expressiveness and conciseness
of the rich DSL syntax enable the intuitive description
of a system, therefore, raising the low-level FPGA design
abstraction to a higher level of design abstraction.Thismakes
it easy for domain users with limited or no hardware design
skills to generate hardware design and for skilled users to
improve productivity.

Depending upon the system requirements, the user
selects from the existing library of SDR cores the components
needed to construct a complete system. The parameters for
components can optionally be configured using a DSL and

the SdrHls will assign default values for the unset parameters
during high-level synthesis. Furthermore, the parameters
set in a DSL are later mapped to VHDL generics in the
final hardware design. Such parameters can be defined as
static values in a DSL or read from data files stored in a
local memory. Most importantly, a DSL allows parameter
values to be dynamically generated using a DSL itself and
the compiler will assign static values for the parameters. A
typical example is generating the filter coefficients for a FIR
core.

The first six lines in Listing 1 include the SdrHls DSL
compiler library and the Delite library and define an object
for running the main SdrHls main application method. The
fourth line generates a list of coefficients for a compensat-
ing filter of the CIC filter in Figure 24. The compensator
constructor takes in parameters set with values as follows:
sample rate change = 128, a number of stages = 10, and
differential delay = 1. This is followed by the configuration
of the parameters which correspond to VHDL generics
of the IP cores. In this example, the ADC core takes no
parameters as denoted by Nil, and the DDC core parameters
set include data width and filter coefficients with other
parameters not shown to make the code brief. The Gbe is
set with 64 bytes of transmitted payload which is calculated
using (3). The Component object is used to define the IP
core and it takes in the VHDL component name of the
IP core together with its generic parameters. The Chain
object is a topological design pattern that creates a cascade
of component objects connected to each other using FIFO
channels. The square brackets after each of the components
define the consumption and production rates of each com-
ponent or actor in an SDF dataflow. The rate of zero denotes
nonexisting input or output channel while the existence of
a channel is denoted by the rate greater than zero. Lastly,

International Journal of Reconfigurable Computing 23

SDR
application

Domain-speci�c
language
(Scala)

Parallel IR Delite
framework

High-level optimization and
conversion into DIF speci�cation

DIF speci�cation for
SDF semantics

Analysis, scheduling, and
functional veri�cation

Code
generation

Code
generator

vMagic
(HDL Reader)

vMagic
(HDL Writer) IP core library

(HDL)

VHDL

Bitstream generation using third-party
tools and execution on FPGA

①

②

③

Figure 30: A high-level synthesis design flow for SDR.

ADC
1 0 1

DDC
1 0 64

Gbe

Figure 31: An SDF diagram of the FM receiver.

the VHDL code of the system is generated by a synthesize
method.

UDP payload size = Gbe core consumption rate

× baseband channels

× data width = 16 × 2 × 16

= 512 bits = 64 bytes

(3)

The DSL application (Scala code) is input into a Delite
framework compiler framework [43] which runs a scalac
to convert the DSL into Java bytecode. The produced Java
bytecode is then executed (staged) to create Intermediate
Representation (IR) and perform optimizations. The Delite

IR comprises useful artefacts, namely, dependency graph
and a sea of nodes representing DSL operations which are
transformed into a dataflow model for the system. Delite is a
highly extensible compiler framework and runtime environ-
ment developed by Stanford PPL. It provides developers with
reusable components like parallel patterns, optimizations,
and automatic code generators to facilitate construction of
parallel embedded DSLs. The current support of resultant
languages includes C++, CUDA, OpenCL, and Scala. Sup-
port for configuration of FPGAs and deployment of Delite-
generated executables onto FPGA platforms for deployment
onto Altera FPGA chips is being developed.

Recent breakthroughs in this work include defining a new
FPGA intermediate representation language called Dataflow

24 International Journal of Reconfigurable Computing

// import SdrHls DSL compiler

import sdrg.dsl.sdrhls._
import sdrg.dsl.sdrhls.dsp.fir.Compensator

// include lms, delite libraries

object SdrHlsMainRunner extends SdrHlsApplicationRunner with SdrHlsMain

trait SdrHlsMain extends SdrHlsApplication {
def main() {

// generate a list of compensating filter coefficients

val filter = Compensator(128, 10, 1)

// set generic parameters for DDC

valddcParams = ("DIN_WIDTH" -> 16, "DOUT_WIDTH" -> 16,
"COEFFS" -> filter.coefficients,
// other parameters

...

)

// set generic parameters for Gigabit Ethernet

valgbeParams = ("TX_BYTES", 64)

// define FM receiver components

valadc = Component("fmc150", Nil)

valddc = Component("DDC", ddcParams)

valgbe = Component("UDP1GbE", gbeParams)

// the chain of system components

val radio = Chain(adc[0:1], ddc[1:1], gbe[16:0])

// generate VHDL code for the FM Receiver

radio.synthesize("FmReceiver")

}
}

Listing 1: SdrHls source code for the FM ReceiverA.

Hardware Description Language (DHDL) and generating
hardware code for Maxeler platform in MaxJ [44, 45]. How-
ever, DHDL only generatesMaxJ forMaxeler platforms other
than VHDL or Verilog which are used universally. DHDL is
also targeted for applications in domains ofmachine learning,
image processing, financial analytics, and internet search, all
of which are not naturally related to SDR applications. In this
work, we intend to improve productivity and performance
of reconfigurable designs for SDR while also increasing
portability using platform independent synthesizable VHDL.

9.2. System Modeling. The application model is specified
using a Dataflow Interchange Format (DIF) Language [46]
shown in Listing 2. A DIF specification formally captures the
dataflow semantics of various dataflow models and performs
analysis of topological information contained in a dataflow.
We use SDF in our design for its straightforward static
dataflow scheduling and analysability of throughput and
buffer requirements. The DIF performs analysis, scheduling,
and functional verification of the system modeled in SDF.
When all these functions are complete, the application
modeled in SDF is now ready for mapping onto a hardware.

9.3. Code Generation. This process involves generation of the
VHDL code shown in Listing 3 which represents the design
described using a DSL. The SDF dataflow-based design is
converted into hardware description using SDR IP cores and

FIFO buffers.The SDR IP cores become SDF actors and FIFO
buffers act as SDF channels.We use VHDLManipulation and
Generation Interface (vMagic) [47] to read IP core library as
well as writing the VHDL code of FPGA FM receiver system.
Thefinal step is the conversion ofVHDL code into a bitstream
using a third-party tool called Xilinx ISE. The bitstream is
then loaded on the FPGA device for execution.

10. Conclusion

In this paper, we presented the design of a modular, reusable,
and parameterizable library of SDR HDL cores. These cores
provide both wishbone-compatible interfaces and direct
parallel interfaces. DSP cores for processing and I/O cores
for connecting to an ADC sampling daughterboard are
provided together with an Ethernet data streaming core for
sending data from the FPGA to a host computer. Functional
validation testing was done for each core using a reconfig-
urable computing platform, namely, the RHINO platform
(see Section 6.1), and the cores were tested working together
in a representative SDR application, namely, an FM receiver
shown in Section 7.4. In order to link the SDR processing
cores to an input stream of sampled data, the FMC150-ADC
core would need to be customized to be compatible with the
sampling hardware.The test also demonstrated how the cores
and their parameterizability allowed for rapid assembling
of the SDR system. The SDR cores were benchmarked in

International Journal of Reconfigurable Computing 25

sdfFmReceiver{
topology {

nodes = adc, ddc, gbe;

edges = channel1(adc, ddc),

channel2(ddc, gbe);

}
parameter {

gbeParams =[(tx_bytes => 64), . . .];
ddcParams =[(din_width => 16), . . .];

}
production {

channel1 = 1;

channel2 = 1;

}
consumption {

channel1 = 1;

channel2 = 16;

}
delay {

channel1 = 0;

channel2 = 0;

}
actor adc{

computation = "FMC150";

}
actor ddc{

computation = "DDC";

generics = ddcParams;

}
actor gbe{

computation = "UDP1GbE";

generics = gbeParams;

}
}

Listing 2: DIF source code for the FM ReceiverB.

Section 8, confirming that these cores provided adequate
performance that was not greatly less than that exhibited
by the closed source Xilinx IP cores. While the SDR cores
had greater resource utilization than the Xilinx cores, the
utilization of a particular type of resource (be it the number of
slices, LUTs, registers, etc.) was generally below 200%of those
used by the Xilinx cores. The SDR cores provided a better
performance in terms of maximum supported clock rate
and generally used fewer resources than similar OpenCores
cores. The SDR cores thus provide a speed-area trade-off that
makes them an open-source alternative to costly commercial
IP cores. The SDR cores also provide greater code-based
parameterizability than the other cores benchmarked.

In order to facilitate FPGA-based SDR application devel-
opment for programmers not experienced in HDL coding,
and as a possible approach to enhance productivity and
reduce the complexity and amount of low-level coding
needed for SDR application development using our SDR
cores, we have proposed a DSL and accompanying tool-
flow, which we are in the process of building. This tool-flow
builds upon the Delite DSL framework and our SDR core

library. It uses a range of parameters and the automatic code
generation of Delite, to raise the level of design abstraction
and as a potential means to speed up development time. The
proposed DSL aims to capture system specifications easily
and to automate the modeling of design characteristics such
as system throughput andmemory size while also optimizing
the system for reduced area and the increased speed of the
resulting FPGA design.

While our DSL is still at an early stage, we are hoping
that the SDR cores we have provided will be of use to
other researchers and developers working in the area of
FPGA-based SDR application development and that we may
gain feedback from any users of our resources and tools
which we can use to further enhance our cores and our
proposed DSL and supporting tools to assist in reuse of these
cores.

Conflicts of Interest

The authors declare that there are no conflicts of interest
regarding the publication of this paper.

26 International Journal of Reconfigurable Computing

-- FmReceiver library package

use work.SdrHlsPkg.all;

--FmReceiver top level entity

entity FmReceiver is

port(

...

);

end FmReceiver;

architecture rtl of FmReceiver is

-- declare registers

...

begin

-- instantiate adc component

FMC150Inst: FMC150

port map(⋅ ⋅ ⋅);
-- instantiate adc to ddcfifo channel

FMC150Inst_DDCInst_Channel1: sdf_channel
generic map(

DATA_BITS => 32, DEPTH => 2, PRD_RATE => 1, CNS_RATE => 1, INIT_DLY => 0)
port map(⋅ ⋅ ⋅);
-- instantiate ddc component

DDInst: ddc

generic map(

DIN_WIDTH => 16, DOUT_WIDTH => 16,...)
port map(⋅ ⋅ ⋅);
-- instantiate ddc to Gbe fifo channel

DDCInst_UDP1GbEIns_Channel2: sdf_channel
generic map(

DATA_BITS => 32, DEPTH => 18, PRD_RATE => 1, CNS_RATE => 16, INIT_DLY => 0)
port map(⋅ ⋅ ⋅);
-- instantiate Gigabit Ethernet

UDP1GbEIns: UDP1GbE

generic map(TX_BYTES => 64, RX_BYTES => 0)
port map(⋅ ⋅ ⋅);

end rtl;

Listing 3: VHDL source code for the FM ReceiverC.

Acknowledgments

The authors sincerely thank SKA for funding this project and
members of the SDRG and RRSG groups at UCT for their
support and advice.

References

[1] K. Tan, H. Liu, J. Zhang, Y. Zhang, J. Fang, and G. M. Voelker,
“Sora: High-performance software radio using general-purpose
multi-core processors,”Communications of theACM, vol. 54, no.
1, pp. 99–107, 2011.

[2] E. Blossom, “Gnu radio: tools for exploring the radio frequency
spectrum,” Linux journal, vol. 2004, no. 122, 4 pages, 2004.

[3] A. Haghighat, “A review on essentials and technical challenges
of software defined radio,” in Proceedings of MILCOM 2002, vol.
1, pp. 377–382, 2002.

[4] S. Winberg, A. Langman, and S. Scott, “The RHINO platform
- charging towards innovation and skills development in Soft-
ware Defined Radio,” in Proceedings of the Annual Conference of

the South African Institute of Computer Scientists and Informa-
tion Technologists (SAICSIT ’11), pp. 334–337, October 2011.

[5] J. Gao, “10_100_1000 Mbps Tri-mode ethernet MAC specifica-
tion,” OpenCores, 2006.

[6] W. H. W. Tuttlebee, “Software-defined radio: Facets of a devel-
oping technology,” IEEE Personal Communications, vol. 6, no. 2,
pp. 38–44, 1999.

[7] J. Ghetie, “Fixed wireless and cellular mobile convergence:
technologies, solutions, services,” in Proceedings of the 9th
International Conference on Telecommunications (ConTel ’07),
343 pages, 2007.

[8] C. E. Caicedo and P. D. Student, Software defined radio and soft-
ware radio technology: Concepts and application, Department
of Information Science and Telecommunications University of
Pittsburgh, 2007.

[9] A. C. Tribble, “The software defined radio: fact and fiction,” in
Proceedings of the IEEE Radio and Wireless Symposium (RWS
’08), pp. 5–8, January 2008.

[10] T. J. Rouphael, RF and digital signal processing for software-
defined radio: a multi-standard multi-mode approach, Newnes,
2009.

International Journal of Reconfigurable Computing 27

[11] O. Romain and B. Denby, “Prototype of a software-defined
broadcast media indexing engine,” in Proceedings of the IEEE
International Conference on Acoustics, Speech and Signal Pro-
cessing (ICASSP ’07), pp. II813–II816, April 2007.

[12] S. J. Olivieri, J. Aarestad, L. H. Pollard, A. M. Wyglinski, C.
Kief, and R. S. Erwin, “Modular FPGA-based software defined
radio for CubeSats,” in Proceedings of the IEEE International
Conference on Communications (ICC ’12), pp. 3229–3233, June
2012.

[13] A. Azarian and M. Ahmadi, “Reconfigurable computing archi-
tecture: survey and introduction,” inProceedings of the 2nd IEEE
International Conference on Computer Science and Information
Technology (ICCSIT ’09), pp. 269–274, August 2009.

[14] R. Woods, J. McAllister, G. Lightboy, and Y. Yi, FPGA-based
Implementation of Complex Signal Processing Systems, John
Wiley and Sons, 2008.

[15] R. Saleh, S. Wilton, S. Mirabbasi et al., “System-on-chip: Reuse
and integration,”Proceedings of the IEEE, vol. 94, no. 6, pp. 1050–
1068, 2006.

[16] J. C. G. Pimentel and H. Le-Huy, “A vhdl library of ip cores for
power drive and motion control applications,” in Proceedings of
the Electrical and Computer Engineering, Canadian Conference,
vol. 1, pp. 184–188, 2000.

[17] A. Parsons, D. Backer, C. Chang et al., “A new approach to
radio astronomy signal processing: Packet switched, fpga-
based, upgradeable, modular hardware and reusable, platform-
independent signal processing libraries,” in Proceedings of the
30th General Assembly of the International Union of Radio
Science, pp. 4–7, 2006.

[18] F. Fang, J. Hoe, M. Pueschel, S. Misra, C.-M. U. P. P. D. ELEC-
TRICAL, and C. ENGINEERING., Generation of Custom DSP
Transform IP Cores: Case Study Walsh-Hadamard Transform,
Defense Technical Information Center, 2002.

[19] J. Gaisler, “A dual-use open-source vhdl ip library,” in Proceed-
ings of the MAPLD International Conference, pp. 8–10, 2004.

[20] A. López-Parrado and J.-C. Valderrama-Cuervo, “OpenRISC-
based system-on-chip for digital signal processing,” in Proceed-
ings of the 19th Symposium on Image, Signal Processing and
Artificial Vision (STSIVA ’14), pp. 1–5, September 2014.

[21] W. T. Padgett and D. V. Anderson, “Fixed-point signal process-
ing,” Synthesis Lectures on Signal Processing, vol. 9, pp. 1–129,
2009.

[22] U. Meyer-Baese and U. Meyer-Baese, Digital signal processing
with field programmable gate arrays, vol. 65, Springer, 2007.

[23] mikroelectronika, “Chapter 2: Fir filters - digital filter design,”
http://www.mikroe.com/chapters/view/72/chapter-2-fir-filters/.

[24] S. He and M. Torkelson, “A new approach to pipeline fft
processor,” in Proceedings of the 10th International on Parallel
Processing Symposium (IPPS ’96), pp. 766–770, April 1996.

[25] A. Saeed, M. Elbably, G. Abdelfadeel, and M. I. Eladawy, “Effi-
cient fpga implementation offft/ifft processor,” in Proceedings of
the International Journal of Circuits, vol. 3, pp. 103–110, 2009.

[26] I. LogiCORE, fast fourier transform, vol. 8, INTECH, 2012.
[27] S.-M. Tseng, J.-C. Yu, and Z.-H. Lin, “Software digital-down-

converter design and optimization for dvb-t systems,” Research-
Gate, pp. 57–61, 2012.

[28] 4DSP, “FMC150 User Manual,” 2013.
[29] N. Alachiotis, S. A. Berger, and A. Stamatakis, “Efficient PC-

FPGA communication over Gigabit Ethernet,” in Proceedings
of the 10th IEEE International Conference on Computer and

Information Technology, CIT-2010, 7th IEEE International Con-
ference on Embedded Software and Systems, ICESS-2010 and
10th IEEE International Confernce Scalable Computing and
Communications (ScalCom ’10), pp. 1727–1734, July 2010.

[30] I. LogiCORE, Tri-mode ethernet mac v4. 5 user guide, XILINX
Inc, 2011.

[31] M. R. Mahmoodi, S. M. Sayedi, and B. Mahmoodi, “Reconfig-
urable hardware implementation of gigabit UDP/IP stack based
on spartan-6 FPGA,” inProceedings of the 6th International Con-
ference on Information Technology and Electrical Engineering
(ICITEE ’14), October 2014.

[32] N. Alachiotis, S. A. Berger, and A. Stamatakis, “A versatile
udp/ip based pc-fpga communication platform,” in Proceedings
of the International Conference on Reconfigurable Computing
and FPGAs (ReConFig ’12), pp. 1–6, December 2012.

[33] M. Inggs, G. Inggs, A. Langman, and S. Scott, “Growing horns:
applying the Rhino software defined radio system to radar,” in
Proceedings of the 2011 IEEE Radar Conference: In the Eye of the
Storm (RadarCon ’11), pp. 951–955, May 2011.

[34] H. K.-H. So, A. Tkachenko, and R. Brodersen, “A unified hard-
ware/software runtime environment for FPGA-based recon-
figurable computers using BORPH,” in Proceedings of the 4th
International Conference on Hardware Software Codesign and
System Synthesis (CODES+ISSS ’06), pp. 259–264, October
2006.

[35] S. Scott, Rhino: Reconfigurable hardware interface for computa-
tion and radio [M.S. thesis], University Of Cape Town, 2011.

[36] B. K. Huang, R. G. L. Vann, S. Freethy et al., “FPGA-based em-
bedded Linux technology in fusion: The MAST microwave
imaging system,” Fusion Engineering and Design, vol. 87, no. 12,
pp. 2106–2111, 2012.

[37] R. G. Vaughan, N. L. Scott, and D. R. White, “The theory of
bandpass sampling,” IEEETransactions on Signal Processing, vol.
39, no. 9, pp. 1973–1984, 1991.

[38] Altera, “Understanding CIC Compensation Filters,” apn455,
2007.

[39] D. G. Messerschmitt, “Static Scheduling of Synchronous Data
Flow Programs for Digital Signal Processing Edward Ashford
Lee,” IEEE Transactions on Computers, vol. C-36, no. 1, pp. 24–
35, 1987.

[40] J. Eker, J. W. Janneck, E. A. Lee et al., “Taming heterogeneity—
the ptolemy approach,” Proceedings of the IEEE, vol. 91, no. 1, pp.
127–143, 2003.

[41] H.A.Andrade and S. Kovner, “Software synthesis fromdataflow
models for g and labview,” in Proceedings of the IEEE Asilomar
Conference on Signals, Systems, and Computers, pp. 1705–1709,
1998.

[42] T. E. Dwan and T. E. Bechert, “Introducing simulink into a sys-
tems engineering curriculum,” inProceedings of the 23rdAnnual
Conference on Frontiers in Education: Engineering Education:
Renewing America’s Technology, pp. 627–631, November 1993.

[43] K. J. Brown, A. K. Sujeeth, H. J. Lee et al., “A heterogeneous par-
allel framework for domain-specific languages,” in Proceedings
of the 20th International Conference on Parallel Architectures and
Compilation Techniques (PACT ’11), pp. 89–100, October 2011.

[44] D. Koeplinger, R. Prabhakar, Y. Zhang, C. Delimitrou, C.
Kozyrakis, and K. Olukotun, “Automatic generation of efficient
accelerators for reconfigurable hardware,” in Proceedings of the
43rd International Symposium on Computer Architecture (ISCA
’16), pp. 115–127, June 2016.

http://www.mikroe.com/chapters/view/72/chapter-2-fir-filters/

28 International Journal of Reconfigurable Computing

[45] R. Prabhakar, D. Koeplinger, K. J. Brown et al., “Generating
configurable hardware from parallel patterns,” in Proceedings
of the 21st International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS ’16),
pp. 651–665, ACM, New York, NY, USA, April 2016.

[46] C. Hsu, F. Keceli, M. Ko, S. Shahparnia, and S. S. Bhattacharyya,
“DIF: an interchange format for dataflow-based design tools,”
in Computer Systems: Architectures, Modeling, and Simulation,
vol. 3133 of Lecture Notes in Computer Science, pp. 423–432,
Springer, Berlin, Germany, 2004.

[47] C. Pohl, C. Paiz, and M. Porrmann, “vmagic-automatic code
generation for vhdl,” International Journal of Reconfigurable
Computing, vol. 2009, pp. 1–9, 2009.

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Active and Passive
Electronic Components

Control Science
and Engineering

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Rotating
Machinery

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com

 Journal of

Volume 201

Submit your manuscripts at
https://www.hindawi.com

VLSI Design

Hindawi Publishing Corporation
http://www.hindawi.com Volume 201

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Shock and Vibration

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Civil Engineering
Advances in

Acoustics and Vibration
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Advances in
OptoElectronics

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Sensors
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Chemical Engineering
International Journal of Antennas and

Propagation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Navigation and
 Observation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
Sensor Networks

International Journal of

