60 research outputs found

    Machine Learning and Integrative Analysis of Biomedical Big Data.

    Get PDF
    Recent developments in high-throughput technologies have accelerated the accumulation of massive amounts of omics data from multiple sources: genome, epigenome, transcriptome, proteome, metabolome, etc. Traditionally, data from each source (e.g., genome) is analyzed in isolation using statistical and machine learning (ML) methods. Integrative analysis of multi-omics and clinical data is key to new biomedical discoveries and advancements in precision medicine. However, data integration poses new computational challenges as well as exacerbates the ones associated with single-omics studies. Specialized computational approaches are required to effectively and efficiently perform integrative analysis of biomedical data acquired from diverse modalities. In this review, we discuss state-of-the-art ML-based approaches for tackling five specific computational challenges associated with integrative analysis: curse of dimensionality, data heterogeneity, missing data, class imbalance and scalability issues

    An insight into imbalanced Big Data classification: outcomes and challenges

    Get PDF
    Big Data applications are emerging during the last years, and researchers from many disciplines are aware of the high advantages related to the knowledge extraction from this type of problem. However, traditional learning approaches cannot be directly applied due to scalability issues. To overcome this issue, the MapReduce framework has arisen as a “de facto” solution. Basically, it carries out a “divide-and-conquer” distributed procedure in a fault-tolerant way to adapt for commodity hardware. Being still a recent discipline, few research has been conducted on imbalanced classification for Big Data. The reasons behind this are mainly the difficulties in adapting standard techniques to the MapReduce programming style. Additionally, inner problems of imbalanced data, namely lack of data and small disjuncts, are accentuated during the data partitioning to fit the MapReduce programming style. This paper is designed under three main pillars. First, to present the first outcomes for imbalanced classification in Big Data problems, introducing the current research state of this area. Second, to analyze the behavior of standard pre-processing techniques in this particular framework. Finally, taking into account the experimental results obtained throughout this work, we will carry out a discussion on the challenges and future directions for the topic.This work has been partially supported by the Spanish Ministry of Science and Technology under Projects TIN2014-57251-P and TIN2015-68454-R, the Andalusian Research Plan P11-TIC-7765, the Foundation BBVA Project 75/2016 BigDaPTOOLS, and the National Science Foundation (NSF) Grant IIS-1447795

    Towards a more efficient and cost-sensitive extreme learning machine: A state-of-the-art review of recent trend

    Get PDF
    In spite of the prominence of extreme learning machine model, as well as its excellent features such as insignificant intervention for learning and model tuning, the simplicity of implementation, and high learning speed, which makes it a fascinating alternative method for Artificial Intelligence, including Big Data Analytics, it is still limited in certain aspects. These aspects must be treated to achieve an effective and cost-sensitive model. This review discussed the major drawbacks of ELM, which include difficulty in determination of hidden layer structure, prediction instability and Imbalanced data distributions, the poor capability of sample structure preserving (SSP), and difficulty in accommodating lateral inhibition by direct random feature mapping. Other drawbacks include multi-graph complexity, global memory size, one-by-one or chuck-by-chuck (a block of data), global memory size limitation, and challenges with big data. The recent trend proposed by experts for each drawback is discussed in detail towards achieving an effective and cost-sensitive mode

    SMOTE for Learning from Imbalanced Data: Progress and Challenges, Marking the 15-year Anniversary

    Get PDF
    The Synthetic Minority Oversampling Technique (SMOTE) preprocessing algorithm is considered \de facto" standard in the framework of learning from imbalanced data. This is due to its simplicity in the design of the procedure, as well as its robustness when applied to di erent type of problems. Since its publication in 2002, SMOTE has proven successful in a variety of applications from several di erent domains. SMOTE has also inspired several approaches to counter the issue of class imbalance, and has also signi cantly contributed to new supervised learning paradigms, including multilabel classi cation, incremental learning, semi-supervised learning, multi-instance learning, among others. It is standard benchmark for learning from imbalanced data. It is also featured in a number of di erent software packages | from open source to commercial. In this paper, marking the fteen year anniversary of SMOTE, we re ect on the SMOTE journey, discuss the current state of a airs with SMOTE, its applications, and also identify the next set of challenges to extend SMOTE for Big Data problems.This work have been partially supported by the Spanish Ministry of Science and Technology under projects TIN2014-57251-P, TIN2015-68454-R and TIN2017-89517-P; the Project 887 BigDaP-TOOLS - Ayudas Fundaci on BBVA a Equipos de Investigaci on Cient ca 2016; and the National Science Foundation (NSF) Grant IIS-1447795

    Self-Organizing Fuzzy Inference Ensemble System for Big Streaming Data Classification

    Get PDF
    An evolving intelligent system (EIS) is able to self-update its system structure and meta-parameters from streaming data. However, since the majority of EISs are implemented on a single-model architecture, their performances on large-scale, complex data streams are often limited. To address this deficiency, a novel self-organizing fuzzy inference ensemble framework is proposed in this paper. As the base learner of the proposed ensemble system, the self-organizing fuzzy inference system is capable of self-learning a highly transparent predictive model from streaming data on a chunk-by-chunk basis through a human-interpretable process. Very importantly, the base learner can continuously self-adjust its decision boundaries based on the inter-class and intra-class distances between prototypes identified from successive data chunks for higher classification precision. Thanks to its parallel distributed computing architecture, the proposed ensemble framework can achieve great classification precision while maintain high computational efficiency on large-scale problems. Numerical examples based on popular benchmark big data problems demonstrate the superior performance of the proposed approach over the state-of-the-art alternatives in terms of both classification accuracy and computational efficiency

    Analysis of Microarray Data using Machine Learning Techniques on Scalable Platforms

    Get PDF
    Microarray-based gene expression profiling has been emerged as an efficient technique for classification, diagnosis, prognosis, and treatment of cancer disease. Frequent changes in the behavior of this disease, generate a huge volume of data. The data retrieved from microarray cover its veracities, and the changes observed as time changes (velocity). Although, it is a type of high-dimensional data which has very large number of features rather than number of samples. Therefore, the analysis of microarray high-dimensional dataset in a short period is very much essential. It often contains huge number of data, only a fraction of which comprises significantly expressed genes. The identification of the precise and interesting genes which are responsible for the cause of cancer is imperative in microarray data analysis. Most of the existing schemes employ a two phase process such as feature selection/extraction followed by classification. Our investigation starts with the analysis of microarray data using kernel based classifiers followed by feature selection using statistical t-test. In this work, various kernel based classifiers like Extreme learning machine (ELM), Relevance vector machine (RVM), and a new proposed method called kernel fuzzy inference system (KFIS) are implemented. The proposed models are investigated using three microarray datasets like Leukemia, Breast and Ovarian cancer. Finally, the performance of these classifiers are measured and compared with Support vector machine (SVM). From the results, it is revealed that the proposed models are able to classify the datasets efficiently and the performance is comparable to the existing kernel based classifiers. As the data size increases, to handle and process these datasets becomes very bottleneck. Hence, a distributed and a scalable cluster like Hadoop is needed for storing (HDFS) and processing (MapReduce as well as Spark) the datasets in an efficient way. The next contribution in this thesis deals with the implementation of feature selection methods, which are able to process the data in a distributed manner. Various statistical tests like ANOVA, Kruskal-Wallis, and Friedman tests are implemented using MapReduce and Spark frameworks which are executed on the top of Hadoop cluster. The performance of these scalable models are measured and compared with the conventional system. From the results, it is observed that the proposed scalable models are very efficient to process data of larger dimensions (GBs, TBs, etc.), as it is not possible to process with the traditional implementation of those algorithms. After selecting the relevant features, the next contribution of this thesis is the scalable viii implementation of the proximal support vector machine classifier, which is an efficient variant of SVM. The proposed classifier is implemented on the two scalable frameworks like MapReduce and Spark and executed on the Hadoop cluster. The obtained results are compared with the results obtained using conventional system. From the results, it is observed that the scalable cluster is well suited for the Big data. Furthermore, it is concluded that Spark is more efficient than MapReduce due to its an intelligent way of handling the datasets through Resilient distributed dataset (RDD) as well as in-memory processing and conventional system to analyze the Big datasets. Therefore, the next contribution of the thesis is the implementation of various scalable classifiers base on Spark. In this work various classifiers like, Logistic regression (LR), Support vector machine (SVM), Naive Bayes (NB), K-Nearest Neighbor (KNN), Artificial Neural Network (ANN), and Radial basis function network (RBFN) with two variants hybrid and gradient descent learning algorithms are proposed and implemented using Spark framework. The proposed scalable models are executed on Hadoop cluster as well as conventional system and the results are investigated. From the obtained results, it is observed that the execution of the scalable algorithms are very efficient than conventional system for processing the Big datasets. The efficacy of the proposed scalable algorithms to handle Big datasets are investigated and compared with the conventional system (where data are not distributed, kept on standalone machine and processed in a traditional manner). The comparative analysis shows that the scalable algorithms are very efficient to process Big datasets on Hadoop cluster rather than the conventional system

    A Novel Meta-Cognitive Extreme Learning Machine to Learning from Data Streams

    Full text link
    © 2015 IEEE. Extreme Learning Machine (ELM) is an answer to an increasing demand for a low-cost learning algorithm to handle big data applications. Nevertheless, existing ELMs leave four uncharted problems: complexity, uncertainty, concept drifts, curse of dimensionality. To correct these issues, a novel incremental meta-cognitive ELM, namely Evolving Type-2 Extreme Learning Machine (eT2ELM), is proposed. Et2Elm is built upon the three pillars of meta-cognitive learning, namely what-To-learn, how-To-learn, when-To-learn, where the notion of ELM is implemented in the how-To-learn component. On the other hand, eT2ELM is driven by a generalized interval type-2 Fuzzy Neural Network (FNN) as the cognitive constituent, where the interval type-2 multivariate Gaussian function is used in the hidden layer, whereas the nonlinear Chebyshev function is embedded in the output layer. The efficacy of eT2ELM is proven with four data streams possessing various concept drifts, comparisons with prominent classifiers, and statistical tests, where eT2ELM demonstrates the most encouraging learning performances in terms of accuracy and complexity

    Machine learning-driven credit risk: a systemic review

    Get PDF
    Credit risk assessment is at the core of modern economies. Traditionally, it is measured by statistical methods and manual auditing. Recent advances in financial artificial intelligence stemmed from a new wave of machine learning (ML)-driven credit risk models that gained tremendous attention from both industry and academia. In this paper, we systematically review a series of major research contributions (76 papers) over the past eight years using statistical, machine learning and deep learning techniques to address the problems of credit risk. Specifically, we propose a novel classification methodology for ML-driven credit risk algorithms and their performance ranking using public datasets. We further discuss the challenges including data imbalance, dataset inconsistency, model transparency, and inadequate utilization of deep learning models. The results of our review show that: 1) most deep learning models outperform classic machine learning and statistical algorithms in credit risk estimation, and 2) ensemble methods provide higher accuracy compared with single models. Finally, we present summary tables in terms of datasets and proposed models

    Evolutionary deep belief networks with bootstrap sampling for imbalanced class datasets

    Get PDF
    Imbalanced class data is a common issue faced in classification tasks. Deep Belief Networks (DBN) is a promising deep learning algorithm when learning from complex feature input. However, when handling imbalanced class data, DBN encounters low performance as other machine learning algorithms. In this paper, the genetic algorithm (GA) and bootstrap sampling are incorporated into DBN to lessen the drawbacks occurs when imbalanced class datasets are used. The performance of the proposed algorithm is compared with DBN and is evaluated using performance metrics. The results showed that there is an improvement in performance when Evolutionary DBN with bootstrap sampling is used to handle imbalanced class datasets
    corecore