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Abstract

Microarray-based gene expression profiling has been emerged as an efficient technique for

classification, diagnosis, prognosis, and treatment of cancer disease. Frequent changes in the

behavior of this disease, generate a huge volume of data. The data retrieved frommicroarray

cover its veracities, and the changes observed as time changes (velocity). Although, it is a

type of high-dimensional data which has very large number of features rather than number

of samples. Therefore, the analysis of microarray high-dimensional dataset in a short period

is very much essential. It often contains huge number of data, only a fraction of which

comprises significantly expressed genes. The identification of the precise and interesting

genes which are responsible for the cause of cancer is imperative in microarray data analysis.

Most of the existing schemes employ a two phase process such as feature selection/extraction

followed by classification.

Our investigation starts with the analysis of microarray data using kernel based classifiers

followed by feature selection using statistical t-test. In this work, various kernel based

classifiers like Extreme learning machine (ELM), Relevance vector machine (RVM), and

a new proposed method called kernel fuzzy inference system (KFIS) are implemented. The

proposed models are investigated using three microarray datasets like Leukemia, Breast and

Ovarian cancer. Finally, the performance of these classifiers are measured and compared

with Support vector machine (SVM). From the results, it is revealed that the proposedmodels

are able to classify the datasets efficiently and the performance is comparable to the existing

kernel based classifiers.

As the data size increases, to handle and process these datasets becomes very bottleneck.

Hence, a distributed and a scalable cluster like Hadoop is needed for storing (HDFS)

and processing (MapReduce as well as Spark) the datasets in an efficient way. The next

contribution in this thesis deals with the implementation of feature selection methods,

which are able to process the data in a distributed manner. Various statistical tests like

ANOVA, Kruskal-Wallis, and Friedman tests are implemented using MapReduce and Spark

frameworks which are executed on the top of Hadoop cluster. The performance of these

scalable models are measured and compared with the conventional system. From the

results, it is observed that the proposed scalable models are very efficient to process data

of larger dimensions (GBs, TBs, etc.), as it is not possible to process with the traditional

implementation of those algorithms.

After selecting the relevant features, the next contribution of this thesis is the scalable

viii



implementation of the proximal support vector machine classifier, which is an efficient

variant of SVM. The proposed classifier is implemented on the two scalable frameworks

like MapReduce and Spark and executed on the Hadoop cluster. The obtained results

are compared with the results obtained using conventional system. From the results, it is

observed that the scalable cluster is well suited for the Big data. Furthermore, it is concluded

that Spark is more efficient than MapReduce due to its an intelligent way of handling the

datasets through Resilient distributed dataset (RDD) as well as in-memory processing and

conventional system to analyze the Big datasets.

Therefore, the next contribution of the thesis is the implementation of various scalable

classifiers base on Spark. In this work various classifiers like, Logistic regression (LR),

Support vector machine (SVM), Naive Bayes (NB), K-Nearest Neighbor (KNN), Artificial

Neural Network (ANN), and Radial basis function network (RBFN) with two variants

hybrid and gradient descent learning algorithms are proposed and implemented using Spark

framework. The proposed scalable models are executed on Hadoop cluster as well as

conventional system and the results are investigated. From the obtained results, it is observed

that the execution of the scalable algorithms are very efficient than conventional system for

processing the Big datasets.

The efficacy of the proposed scalable algorithms to handle Big datasets are investigated

and compared with the conventional system (where data are not distributed, kept on

standalone machine and processed in a traditional manner). The comparative analysis shows

that the scalable algorithms are very efficient to process Big datasets onHadoop cluster rather

than the conventional system.

Keywords: Big data; Microarray; Machine Learning; Hadoop; MapReduce; Spark;

Statistical test; Classification; Feature Selection; Kernel Function.
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Chapter 1

Introduction

Microarray technology is a new and efficient approach to extract data of biomedical

relevance for a wide range of applications. In cancer research, it provides high-throughput

and valuable insights into differences in an individual's tumor as compared with

constitutional DNA, mRNA expression, and protein expression. The advent of microarray

technology has helped scientists to analyze expression levels of thousands of genes in

a single experiment, as described in Appendix A [1]. One of the key components of

microarray is the volume of quantitative information that it creates, which makes it as a

high-dimensional data where number of features are very large with respect to samples.

As a result, the major challenge in this field is handling, interpreting and utilization

of this data. The high-dimensional data generally brings forth the problem of curse of

dimensionality that hinders the useful information of dataset and brings noise accumulation,

spurious correlations, and incidental homogeneity. It combined with large samples sizes

that create various issues such as heavy computational cost and algorithmic instability [2].

To avoid this problem, feature (gene) selection/extraction methods play an essential role

in high-dimensional (microarray) data analysis, which are characterized as the procedure

of distinguishing and removing irrelevant features from the training data, so that the

learning algorithm (classifiers) concentrates just on those aspects of the training data useful

for analysis and future prediction. There are various machine learning methodologies

explored in the area of bioinformatics (typically, microarray data) to analyze these datasets

[3–7]. These algorithms consume a lot of time to analyze and explore large datasets on

a conventional system with standard computational abilities. To counter this problem, the

concept of distributed computing has been adopted, wherein the data is distributed on various

systems in a cluster, and is processed using various parallel processing paradigm. Recently,

Big data applications are increasingly becoming the focus of attention because of huge

increase in data generation and storage. Extracting information from the Big data becomes

a challenge, because current data mining techniques are not adapted to the new space

and time requirements [8]. To overcome these challenges, many open source frameworks

like MapReduce, Spark, MPI, etc. have been considered to develop scalable algorithms

[9]. The researchers have accomplished a significant relevance of intelligent techniques

to the development of data science for dealing with imprecision, uncertainty, learning, and
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evolution, in posing and solving computational problems [10–18]. This thesis uses the two

distributed frameworks such as MapReduce and Spark for the implementation of machine

learning techniques, which are used to analyze the high-dimensional microarray datasets.

These frameworks are described as follows.

1.1 Distributed Computing

Distributed computing techniques such as grid computing and cluster computing have been

in use to provide better performance for different data centric applications for many years.

Most of these works are based on a message-passing model, while systems that run on

parallel algorithms, such as graphics processing units (GPUs), are based on shared-memory

models. The efficient operation of these machines calls for an interface, that enables them to

access shared file systems as well as maintains proper communication with other machines

in the grid/cluster. Thus, network bandwidth becomes a bottleneck for such machines. The

key intuition in distributed systems is the concept of bringing ``compute to data" rather than

``taking data to the compute" which happens in a traditional system. And it happens that

moving ``compute to data" is far more cheaper than moving ``data to compute" when the

size of the data exceeds a certain size. This is exactly why the buzzword Big data was coined.

1.1.1 Hadoop Framework

Hadoop is an open-source software framework that provides storage and processing of large

datasets in a distributed fashion across clusters of commodity hardwares [19]. It has been

designed to store data across all nodes (servers) in a cluster in a distributed manner by

dividing files into smaller entities called blocks. This enables each node to work according to

the principle of proximity, i.e., process the data, which is available locally, leading to fewer

network transmissions. In addition to this, it provides a low-cost and scalable architecture

designed to scale up from a single server to thousands of servers. Its design enables detection

and handling of failures at the application layer, thus providing service even in error-prone

systems. There are three core components of the Hadoop framework included in the package,

which is managed and maintained by the Apache Software Foundation. They are as follows:

1.1.1.1 Hadoop Distributed File System (HDFS)

This is a Java-based distributed file system that stores different types of data without prior

organization, unlike relational databases. Though similar to existing distributed systems,

there are significant differences. It can be deployed on low-cost hardware commodities,

and its architecture allows for speedy recovery from failure. It consists of a name node and

several data nodes. The name node maintains the directory tree of all files in the file system

and tracks where, across the cluster, files are stored. It does not store these files itself. In

addition, the files stored in a data node are replicated on other data nodes; thereby allowing
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speedy recovery whenever a node fails. When a file is written, the name node updates the

directory tree and then sends the file to a data node. The data node further sends this file to

other data nodes for replication [20]. Figure 1.1 shows the architecture of HDFS.

Master

NameNode ResourceManager

Slave 1

DataNode 1 NodeManager

Replication

Metadata (Name, replicas,...):/home/foo/data,

3,...

Slave n

DataNode n NodeManager

Node

Status

Figure 1.1: HDFS Architecture

1.1.1.2 Yet Another Resource Negotiator (YARN)

This is a resource management framework for scheduling and handling resource requests

from distributed applications. YARN combines a central resource manager that manages

the way applications use Hadoop system resources with node manager agents that monitor

processing operations in individual cluster nodes. In case a node fails, it reschedules the job

to some other node [21].

1.1.1.3 MapReduce

This is a programming model, developed by Google, for processing large datasets in a

distributed manner on clusters of commodity hardware [22]. It consists of 3 steps:

• Map step: Each node applies the ``map( )" function to local data, and writes the output

to temporary storage with a key value associated with the output.

• Shuffle step: the nodes redistribute the data based on the output keys (produced by

the map function) in such a manner that all the data belonging to one key are located

on the same node.

• Reduce step: Each node processes each group of output data, per key, in parallel, and

the output is then written to the HDFS.

Figure 1.2 shows the architecture of MapReduce and its life cycle, and it is taken from http:
//hadooper.blogspot.in/.
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Figure 1.2: Life cycle of MapReduce

1.1.2 Execution on Hadoop using MapReduce

To run algorithms in the Hadoop framework, they are divided into two phases, i.e., map and

reduce. In the map phase, mappers read a line from the file (stored as blocks in the node).

The mappers process the input and calculate the required output (e.g., F-values in ANOVA

or distances in sf-KNN, (section 3.3)). These values, along with their corresponding keys

(`Feature ID' in the case of a feature set), are written to an intermediate file. These are then

sorted, shuffled and sent to the reducers. The reducers process the input and then write the

obtained results into the HDFS. The working principle of MapReduce is explained in Figure

1.2.

For instance, if the input file is 550MB in size and the HDFS has a block size of 128MB,

when the dataset (input file) is uploaded into HDFS, it is divided into five (d550/128e = 5)

blocks. The first four blocks will be of size 128 MB each, and the last block will retain the

remaining size of the file, 38 MB. Further assuming that the split size is equal to the block

size, i.e., corresponding to five splits, five mappers are formed. Mappers are executed on all

data nodes simultaneously and write their output to an intermediary file in the HDFS. The

reducers perform further operations on the obtained results from the mappers, and write the

final result into the HDFS.
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1.2 Spark Architecture and Resilient Distributed Dataset

Apache Spark is a cluster computing framework for large scale data processing which aims

to be fast and general purpose engine. It is the extension of the most popular data flow

model MapReduce, and developed so that interactive and iterative computation can be

efficiently supported which are very hard to implement with HadoopMapReduce. Spark was

specifically designed for use cases that reuse a working set of data across parallel operations.

1.2.1 Spark architecture

Spark is an open source processing engine, which uses directed acyclic graph and its own

data structure i.e., Resilient Distributed Dataset (RDD) to provide speed and analytics [23].

Spark runs on top of existing Hadoop infrastructure to provide enhanced and additional

functionality. Spark architecture consists of one driver program and multiple worker nodes.

The driver system is responsible for creation of RDD and Spark Context object, while the

worker nodes are involved in parallel transformation of RDDs. Transformation and Action

are the two operations supported by RDD. Spark provides the option of using other cluster

managers like YARN andMESOS along with its own standalone cluster manager. Figure 1.3

shows Spark architecture, which includes Cluster manager, Driver node and Worker nodes .

The components of Spark are described as follows:

Worker Node

Worker Node

Cluster Manager

Driver Program

Figure 1.3: Spark architecture in cluster mode

• Spark driver: It is a client side application that creates the Spark Context.

• Spark Context: It talks to Spark driver and cluster manager to launch the Spark

executers.

• Cluster manager: Cluster managers are like YARN, MESOS, etc.

• Executers: Spark worker bees.

Figure 1.4 represents the cycle of RDD Transformation and Action.
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RDD
ValueAction

Transformation

Figure 1.4: RDD Transformations and Actions

1.2.2 Execution on Spark

All jobs in Spark constitute a chain of operators andmanipulate a set of data. These operators

are used to fabricate a Directed Acyclic Graph (DAG). Optimization of this DAG is done by

rearrangement and combination of operators as and when required, and if possible. Spark

has a small code base and the system is divided in various layers (independent of each other).

Each layer has some obligations.

1. The first layer is the interpreter, Spark uses a modified Scala interpreter.

2. When the user enters the code in Spark console (thus leading to creation of RDD's and

application of operators), Spark constructs an operator graph.

3. When the user runs an action (like collect), the DAG Scheduler is invoked and the

Graph is submitted to it. This scheduler splits the operator graph into map and reduce

stages.

4. A stage consists of tasks based on input data's partitions. Pipelining of operators

is done by the DAG scheduler in order to optimize the graph. For example many

map operators can be docketed in one stage. This optimization is key to Spark's

performance. We get a set of stages as the final result of a DAG scheduler.

5. The stages, which are classified as Map or Reduce (discussed in Hadoop ) are then

passed on to the Task Scheduler. The task scheduler launches tasks via cluster

manager ( Spark Standalone/YARN/MESOS). The task scheduler isn't aware about

dependencies among stages.

6. The Worker executes the tasks on the Slave. A new java virtual machine (JVM) is

started per JOB. The worker has knowledge only about the code that gets passed to it.

1.3 Time Complexity Analysis

In this section, the time taken for execution of an algorithm processed with either

`MapReduce' or `Spark' on a Hadoop cluster and a conventional system is discussed.
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As discussed above, the time taken for execution on a Hadoop cluster is equivalent to the

sum of the maximum time consumed by each mapper (tm), each reducer (tr), and the time

taken for communication between the data nodes as well as name node (tc), i.e.,

THadoop = tm + tr + tc (1.1)

Let µ be the total number of data entries (or feature sets) in a file, which are distributed

among n data nodes so that the total number of entries per mapper is µ/n. Let the time taken

to execute one entry be (tfm), so that

tm = (µ/n) ∗ tfm (1.2)

In the reducer, let the time taken per entry be (tfr). Therefore, the total time taken by a

reducer would be (assuming r reducers)

tr = (µ/r) ∗ tfr (1.3)

The data node communicates with the name node only after executing the whole batch of

entries assigned to it. Assuming that it takes tcd for communication between the name node

and the data node, the total time taken for communication is computed using the following

equation:

tc = n ∗ tcd + r ∗ tcd (1.4)

= (n+ r) ∗ tcd

Replacing (1.1) by (1.2), (1.3), and (1.4), the time elapsed on theHadoop cluster (THadoop)

is

THadoop = ((µ/n) ∗ tfm) + ((µ/r) ∗ tfr) + (n+ r) ∗ tcd (1.5)

= (µ/n) ∗ (tfm/n+ tfr/r) + (n+ r) ∗ tcd

In a conventional system (conv), all µ entries are stored as a single entity on one system.

Hence, the time taken for complete execution on a conventional system, i.e., Tconv is

Tconv = tm1 + tr1 (1.6)

where,

tm1 = µ ∗ (tfm) (1.7)

tr1 = µ ∗ (tfr) (1.8)
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Thus,

Tconv = tm1 + tr1 (1.9)

= µ ∗ (tfm + tfr)

For the sake of analysis, it is assumed that the time for communication, which depends

on network quality, is constant. In the case of small datasets, there will be a limited number

of blocks; as a result, they will be distributed over fewer systems, i.e., the value of n and r

will be small (n, r=1 for sizes less than one block size). Thus, Equations 1.5 and 1.9 show

that, in the case of small datasets, the time consumed by a Hadoop cluster is greater than

that of a conventional system. In the case of large datasets, the data are divided into more

blocks. Thus, in the case of large datasets, the time taken by a Hadoop cluster will always be

less than that of a conventional system. To confirm the above inferences, various microarray

datasets of different dimensions are considered for classification, which is discussed in the

subsequent chapters.

1.4 Research Motivation

Big data tend to have high-dimensionality and massive sample size. These two properties

raise three unique disputes: (i) High dimensionality leads to noise aggregation, illegitimate

correlations, and non-essential homogeneity; (ii) High dimensionality united with massive

sample size creates issues such as hefty computational cost and algorithmic imbalance; (iii)

The humongous samples in Big data are typically collected from multiple sources at varied

time points using dissimilar technologies and then aggregated. This leads to heterogeneity

issues, experimental fluctuations, and statistical biases, due to which we need to formulate

adaptive and vigorous procedures.

The microarray is a type of high-dimensional Big data, which has gigantic number of

features with respect to the number of samples. It would help physicians for early diagnosis

and treatment of various diseases. The constraints of microarray analysis are:

• It contains huge amount of data, only a fraction of which comprises of significantly

expressed genes.

• Curse of dimensionality that obstructs the profitable information of dataset and leads

to computational imbalance.

• It is a type of semi-structured data with a high volume. To store and process this type

of data in a finite time is very tedious task.

• The identification of the precise and interesting genes which are responsible for the

cause of cancer is essential.
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1.5 Research Objectives

The two main aims of high-dimensional data analysis are to formulate efficient methods that

can correctly anticipate the future observations and simultaneously perceive the relationship

between the features. Furthermore, due to massive sample size, Big data gives rise to two

additional goals, i.e., to empathize heterogeneousness and commonality across different

sub-populations. Particularly, Big data gives assurances for: (i) Exploring the invisible

structures of every sub-population of the data, which is traditionally impractical (sometimes,

for small samples they are considered as `outliers'); (ii) Eliciting significant common

properties across various sub-populations despite extensive individual variations.

The objectives of this work are to:

• Store and process the high-dimensional (microarray) data (categorized as Big data due

to its volume, velocity, and variety) using Hadoop (HDFS, MapReduce, and Spark)

platform.

• Extract optimal number of significantly expressed features (genes) using feature

selection method based on MapReduce and Spark frameworks.

• Develop an efficient classifier based on MapReduce and Spark, in order to classify the

dataset in a short time.

• Improve the time complexity of the models (i.e., feature selector as well as classifier).

1.6 Thesis Contribution

The contribution of the thesis is explained as follows:

Chapter 2 describes a brief review on the literature available for the analysis of

microarray data using machine learning techniques. The survey includes various criteria

chosen by the authors such as the feature selection and classification methods employed.

Subsequently, the implementation of the existing feature selection methods and classifiers,

which are most frequently applied to classify the microarray datasets are implemented and

the results are compared using three datasets viz., Leukemia, Breast, and Ovarian cancer.

Chapter 3 proposes various kernel based classifiers like Extreme Learning Machine

(ELM), Relevance Vector Machine (RVM), and Kernel Fuzzy Inference System (KFIS)

with linear, polynomial, RBF, and tansig kernel functions and their performances are

compared with the Support Vector Machine (SVM). As the size of datasets increases the

traditional machine learning techniques are not suitable enough to process efficiently within

a definite time. To mitigate these issues, distributed and scalable platform like Hadoop

is considered for storage (HDFS) and processing (MapReduce and Spark) of data in a

distributed manner. To validate the efficacy of the distributed and scalable systems, the
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microarray high-dimensional datasets with various sizes have been considered. Hence, the

existing methodologies as mentioned in the literature have been implemented on scalable

platforms to analyze the microarray datasets.

Chapter 4 deals with the implementation of scalable feature selection methods like

ANOVA, Kruskal-Wallis, and Friedman tests. The proposed methods are implemented

with MapReduce and Spark on Hadoop cluster and their performance is measured. After

selecting the relevant and significant features, various scalable classifiers are proposed in

the subsequent chapters to classify the high-dimensional multi-class datasets.

In Chapter 5 a scalable proximal support vector machine classifier has been proposed,

and implemented using MapReduce and Spark frameworks. The proposed classifier is

executed on Hadoop as well as conventional system and the performance is compared. From

this chapter, it is concluded that Spark is more efficient than MapReduce and conventional

system to analyze the datasets.

Chapter 6 proposes scalable implementation of various classifiers such as Logistic

regression (LR), Support vector machine (SVM), Naive Bayes (NB), K-Nearest Neighbor

(KNN), Artificial Neural Network (ANN), Radial basis function network (RBFN) (with

hybrid learning and gradient descent learning) to classify the microarray high-dimensional

data. The proposed models are implemented using Spark framework on the top of Hadoop

cluster, and their efficiencies are measured with the conventional system and the results

are compared. The processing efficiencies of these models on Spark are much greater than

that on conventional system. From the obtained results, It is concluded that to process the

high-dimensional data with big sizes (GBs, TBs, etc.), the distributed and scalable cluster

like Hadoop (Spark) is better choice for the researchers.

1.7 Thesis Organization

This thesis starts with an introduction to microarray high-dimensional data including the

research challenges and objectives. It is organized into seven chapters where each chapter

portrays the contributions specific to a domain. The layout of this thesis is given below.

Chapter 2: Literature review

The existing literature is explored covering two major domains of microarray data

classification: (a) feature selection, and (b) classification. A tabular comparison of various

approaches are presented along with their corresponding author. After study of literature, the

most frequently used methods are implemented on the same framework with similar steps

of analysis and the results are analyzed.

Chapter 3: Classification of Microarray Data using Kernel based Classifiers

This chapter deals with study of kernel based classifiers. The microarray data are

preprocessed and then t-test is applied to select the relevant features. After feature selection,

10



Chapter 1 Introduction

various kernel based classifiers like ELM, RVM, and KFIS are proposed. The performance

of the same is then evaluated and compared with SVM.

Chapter 4: Feature selection of Microarray Data using Scalable Statistical tests

In this chapter, various statistical tests like ANOVA, Kruskal-Wallis and Friedman tests are

implemented on scalable frameworks like MapReduce and Spark on top of Hadoop cluster

as a feature selection methods. The proposed methods are applied on various microarray

data and select the relevant features from them. Finally, the performance of these methods

are investigated on Hadoop cluster and compared with conventional system.

Chapter 5: Classification of Microarray Data using Scalable Proximal Support Vector

Machine Classifier

In this chapter, Scalable Proximal Support Vector Machine Classifier (sPSVM) is proposed

on various scalable frameworks like MapReduce and Spark and applied on microarray

datasets of various dimensions. The performance of classifier is investigated with various FS

methods, and comparison is made on different platforms like Hadoop cluster (MapReduce

and Spark) and conventional system.

Chapter 6: Classification of Microarray Data using Various Scalable Classifiers on

Spark

This chapter presents an experimental investigation of various scalable classifiers such as

Logistic regression (LR), Support vector machine (SVM), Naive Bayes (NB), K-Nearest

Neighbor (KNN), Artificial Neural Network (ANN), Radial basis function network (RBFN)

with hybrid learning and gradient descent learning based on Spark framework. Various

high-dimensional microarray data are applied to investigate the performance of the proposed

classifiers followed by feature selection (discussed in Chapter 4). The performance of

proposed classifiers are then compared on various frameworks like Spark cluster and

convention system.

Chapter 7: Conclusions and Future Work

This chapter presents the conclusions derived from the proposed methodologies with more

emphasis on achievements and limitations. The scopes for future research are highlighted at

the end.

11



Chapter 2

Literature Review

This chapter emphasizes on the state-of-the-art techniques involved in pattern classification

system such as the feature selection/extraction, dimensionality reduction, and the design of a

classifier. The review has been performed in two broad aspects of data analytics with respect

to objectives of the thesis.

This chapter highlights on the research work carried out by various authors on

classification of microarray datasets. The survey includes various criteria chosen by the

authors such as the feature selection and classification methods employed, and the dataset

used. The results on the survey work done for microarray data classification conclude that

a good number of researchers and practitioners have employed statistical tests as a feature

selection and the various machine learning techniques to classify the dataset.

The later part of the chapter highlights on the implementation of the existing feature

selection methods and classifiers, which are most frequently applied to classify the

microarray datasets.

In this chapter, different feature selection (FS) methods like T-test, F-test, Wilcoxon

test, SNR, χ2-test, Information Gain, Gini Index, and Fisher Score are used to select the

genes having high relevance. The top ranked genes are used to classify the microarray

data using various classifiers like Logistic regression (LR), Naive Bayes (NB), K-Nearest

neighbor (KNN), Artificial neural network (ANN), Radial basis function network (RBFN),

Probabilistic neural network (PNN), and Support vector machine (SVM), and the results are

analyzed.

The rest of the chapter is organized as follows: Section 2.1 highlights on the related work

in the field of microarray data classification. Section 2.2 presents the step wise procedure for

classifying the microarray data using various classifiers. It highlights the empirical analysis,

the results obtained and interpretation drawn from the existing classifiers. This section also

presents a comparative analysis for gene classification of microarray data with classifiers

available in literature. Section 2.3 summarizes the chapter and considers the scope for future

work.

12
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2.1 Literature review

In this section, a brief review on the work done by various authors related to microarray

data is provided, and is tabulated as shown in Table 2.1. The table is subdivided into three

categories such as: name of the author, the feature selection technique used by the respective

author for selecting the most significant features of a sample which are responsible for

causing cancer, and the last column represents the various machine learning classifiers used

for classification of microarray data.

Table 2.1: Related work

Author (Year) Feature selection/optimization

techniques applied

Classifier applied

Osareh et al. (2010) Signal-to Noise Ratio (SNR) Support vector machine

(SVM), K-nearest neighbor

(KNN) and Probabilistic

neural network (PNN) [24]

Dina et al. (2011) Multiple scoring gene selection

technique (MGS-CM)

SVM, KNN, Linear

discriminant analysis

(LDA) [25]

Wang et al. (2007) t-test Fuzzy Neural Network

(FNN), SVM [5]

Zhang and Dend

(2007)

Based Bayes error Filter (BBF) SVM, KNN [26]

Xiyi Hang (2008) ANOVA Sparse Representation-SVM

[27]

Bharathi and

Natarajan (2010)

ANOVA SVM [28]

Tang et al. (2010) ANOVA Discriminant kernel partial

least square (PLS) [29]

Furey et al. (2000) Signal to Noise Ratio SVM [30]

Li et al. (2001) Genetic algorithm KNN [31]

Ben-Dor et al.

(2000)

All genes, TNoM score Nearest neighbor, SVM

with quadratic kernel, and

AdaBoost [32]

Nguyen et al. (2002) Principal component analysis

(PCA)

Logistic discriminant, and

Quadratic discriminant [33]

Guyon et al. (2002) RFE SVM [34]
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Mundra et al. (2010) T-statistic, SVM based t-statistic,

SVM with RFE SVM based

t-statistic with RFE

SVM [35]

Lee et al. (2011) χ2 − test Hybrid with GA + KNN and

SVM [36]

Cho et al. (2004) SVM-RFE Kernel KFDA [37]

Deb and Reddy

(2003)

NSGA-II [6]

Lee et al. (2003) Bayesian model ANN, KNN, SVM [3]

Lee et al. (2003) Multicategory SVM [38]

Paul and Iba (2004) Probabilistic Model Building

Genetic Algorithm (PMBGA)

Naive-Bayes, weighted

voting classifier [39]

Huerta et al. (2006) GA GA/SVM [40]

Ye et al. (2004) Uncorrelated Linear Discriminant

Analysis (ULDA)

KNN [41]

Liu et al. (2005) GA SVM [42]

Alba et al. (2007) GA, PSO SVM [43]

Yu et al. (2004) Redundancy Based Filter (RBF) C4.5 [44]

Ding et al. (2005) Minimum Redundancy- Maximum

Relevance (MRMR) feature

selection

NB, LDA, SVM, LR [45]

Cho and Won (2007) Representative vector Ensemble NN [46]

Yang et al. (2006) PCA LDA [47]

Peng et al. (2006) Fisher ratio NB, Decision tree J4.8,

SVM [4]

Wang et al. (2006) Information Gain (IG) Neuro-fuzzy ensemble [48]

Pang et al. (2007) Bootstrapping consistency gene

selection

KNN [49]

Li et al. (2007) t-test + Partial least square

(PLSDR)

KNN, SVM [50]

Yue et al. (2007) LDA [51]

Hernandez et al.

(2007)

GA SVM [7]

Li et al. (2008) Wilcoxon test, GA-SVM [52]

Huerta (2010) t-test LDA-GA [53]
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Wang et al. (2005) Correlation-based feature selection C4.5 (J4.8), NB, SMO-CFS,

SMO-Wrapper, Emerging

pattern, SVM, Voting

Machine, MAMA [54]

Ruiz et al. (2006) Best incremental ranked subset

(BIRS)-BIRSw, BIRSf

NB, IB, C4.5 [55]

Zhu et al. (2004) Univariate ranking (UR) and

Recursive feature elimination

(RFE)

SVM, PLR [56]

Huynh et al. (2009) SVD-Neural Network [57]

Diaz et al. (2006) Random forest Random forest [58]

Yeh et al. (2013) Orthogonal array (OA)-SVM SVM [59]

Yu et al. (2008) SNR PSO-SVM [60]

Chen et al. (2008) (Fisher-ratio, Pearson Correlation,

Cosine coefficient, Euclidean

Distance and Spearman Correlation

Ensemble with different

classifier [61]

Liu et al. (2010) Ensemble gene selection kNN [62]

Mishra et al. (2011) Kmeans, SNR SVM,KNN (Kmeans + SNR

+ SVM/KNN) [63]

Huerta et al. (2008) Fuzzy Logic with BSS/WSS, t-test,

Wilcoxon test

KNN [64]

Liu et al. (2005) Entropy Greedy, Simulated

Annealing (SA) [65]

Liu et al. (2008) (Mutual Information (MI), t-test,

SNR) ICA, PCA, RP

Rotation forest [66]

Cho et al. (2004) Derivative of kernel function kernel Fisher discriminant

analysis (KFDA) [37]

Sharma et al. (2008) Gradient LDA KNN [67]

Sun et al. (2012) Dynamic relevance gene selection

(DRGS)

SVM, KNN, Predictive

analysis of microarray

(PAM) [68]

Shim et al. (2009) Wilcoxon test SupervisedWeighted Kernel

Clustering (SWKC) SVM

[69]

Hong et al. (2008) Pearson correlation One vs Rest SVM (OVR

SVM with NB) [70]
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Chen et al. (2007) Multiple kernel support vector

machine (MK-SVM-i)

Multiple kernel

support vector machine

(MK-SVM-ii) [71]

M. Akay (2009) F-score SVM [72]

Shen et al. (2009) Suitability score Suitability score [73]

Yu et al. (2009) Ant colony optimization (ACO),

Marker Gene selection using ACO

(MMACO), SNR

SVM [74]

Sun et al. (2012) Dynamic weighted FS (DWFS) KNN, NB [75]

Maji et al. (2011) Maximum relevance-max

significance

SVM, KNN [76]

Zhang et al. (2010) Wavelet packet transforms and

neighborhood rough set (WPT +

NRS)

SVM [77]

Abeel et al. (2010) Ensemble SVM-RFE SVM [78]

Berrar et al. (2002) PNN [79]

P. Guo et al. (2013) RFE, and SVM-RFE ANN [80]

González et al.

(2013)

Multivariate joint entropy guided by

simulated annealing

SVM [81]

González- Navarro

(2011)

Mutual Information (MI) using

bootstrap

SVM, NB, KNN, LR [82]

Cai et al. (2009) Mutual Information (MI) SVM [83]

Wang et al. (2008) Hybrid huberized support vector

machine (HHSVM)

SVM [84]

Bu et al. (2007) PCA, genetic algorithm, and the

floating backward search method

support vector machine [85]

Hong et al. (2008) gene boosting SVM [86]

Hewett et al. (2008) Boosting-based ranking algorithm

(MDR)

SVM [87]

Yu et al. (2013) Enseble technique SVM [88]

Osareh et al. (2013) ReliefF, Correlation-based filter

selection (CFS), Minimum

Redundancy Maximum Relevance

(mRMR), and General Signal

to Noise Ratio (GSNR), Fast

Correlation-based Filter (FCBF)

Decision tree, Root based

ensemble [89]
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Hengpraprohm

(2013)

SNR GA-based classier [90]

Sejja et al. (2011) SNR SVM [91]

Kim et al. (2004) Information Gain GA-ANN [92]

Following are the observations made from the literature survey carried out:

• Numerous feature selection techniques have been employed, as it plays a crucial role

in selecting most significant features before performing classification of the dataset.

• Majority of the authors have used SVM classifier for performing microarray data

classification. However is was observed that hybrid approaches have been more

frequently used.

• Out of numerous datasets available in literature survey, many authors have used dataset

related to Leukemia, Ovarian and Breast cancer [93].

In this chapter, eight feature selection techniques [94] [T-test[95], F-test [96], Wilcoxon

test [52, 97], SNR [24], χ2-test [98], Information Gain [99], Gini Index [100], Fisher Score

[101]] in combination with seven machine learning techniques [Logistic regression (LR)

[102], Naive Bayes (NB) [102], K-Nearest Neighbor (KNN) [103], Artificial neural network

(ANN) [104], Radial basis function network (RBFN) [105], Probabilistic neural network

(PNN) [106], and Support vector machine (SVM) [107]] are used for carrying out the

classification of samples into cancerous or non-cancerous classes for Leukemia, Ovarian,

and Breast cancer datasets.

2.2 Empirical Analysis of Existing Techniques

This section presents the proposed approach for classification of microarray data, which

consists of various phases:

1: Emphasizes on preprocessing the input data using various methods such as missing

data imputation, and normalization.

2: Feature selection is carried out using various methods like T-test, F-test, Wilcoxon

test, SNR, χ2-test, Information Gain, Gini Index, and Fisher Score.

3: Classification is performed using different classifiers like Logistic regression (LR),

Naive Bayes (NB), K-Nearest neighbor (KNN), Artificial neural network (ANN),

Radial basis function network (RBFN), Probabilistic neural network (PNN), and

Support vector machine (SVM) already available in the literature.
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Data
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Data normalization
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Figure 2.1: Step wise procedure for microarray classification.

The graphical representation of the proposed approach is depicted in Fig. 3.1.

The following steps give a brief description of the proposed approach.

1. Data collection

The dataset for classification analysis which acts as requisite input to the models is

obtained from Kent Ridge Bio-medical Dataset Repository [93].

2. Missing data imputation and normalization of dataset

Missing data of a feature (gene) of microarray data are imputed by using the mean

value of the respective feature. Input feature values are normalized over the range

[0, 1] using Min-Max normalization technique [108]. Let Xi be the ith feature of the

datasetX , and x is an element of theXi. The normalization of the x can be calculated

as:

Normalized(x) =
x−min(Xi)

max(Xi)−min(Xi)
(2.1)

where, min(Xi) and max(Xi) are the minimum and maximum values for the dataset

Xi respectively. If max(Xi) is equal to min(Xi), then Normalized(x) is set to 0.5.

3. Division of Dataset

The dataset is divided into two categories such as: training set and testing set.

4. Feature selection of dataset
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Different statistical methods have been applied to select the features having high

relevance value and hence the curse of dimensionality issue has been reduced.

5. Build classifier

Different classifiers have been built to classify the microarray dataset.

6. Test the model

Model is tested using the testing dataset and then the performance of the classifier has

been compared with various performance measuring criterion using cross validation

(CV) technique.

2.2.1 Results and Interpretation

In this section, the obtained results are discussed for the proposed approach (Section 2.2).

Three case studies viz., Leukemia [109], Breast cancer [110], and Ovarian cancer [111]

microarray datasets are considered to find the classification accuracy. The performance

of the classifier is assessed using 10 fold cross validation (CV) technique for the various

datasets. The cross validation technique provides more realistic assessment of classifiers,

which generalizes significantly to unseen data.

Since the dataset contains a very huge number of features with irrelevant information,

feature selection (FS) method are applied to remove irrelevant information. Application of

feature selection methods aim at finding a feature subset that has the most discriminative

information from the original feature set. This helps in selecting the features (genes) which

have high relevance score. The genes with low relevance score are stripped off. The various

statistic methods have been used to choose genes with high relevance score.

To achieve the objectives of FS such as (a) to avoid over-fitting and improve model

(classifier) performance, (b) to provide faster and more cost effective models, and (c) to

gain a deeper insight into the underlying processes that generate the data, forward selection

(incremental approach) method has been employed by selecting the features having high

discriminative information (power) using various FS methods. Then, the top hundred

features are selected in the multiples of two, i.e., 2, 4, ...,100.

After performing feature selection using above mentioned FS methods, the proposed

classifiers like Logistic regression (LR), Naive Bayes (NB), K-Nearest neighbor (KNN),

Artificial neural network (ANN), Radial basis function network (RBFN), Probabilistic neural

network (PNN), and Support vector machine (SVM) have been applied to classify the

reduced dataset.

When the samples are sequentially selected, the model designed may be over-trained

or under-trained. This is because of the samples selected for training may contain either

cancerous or non-cancerous data. To avoid this, every F th (F = 10) sample is selected for
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testing, and the rest of the samples are chosen as training set using Algorithm 1. Similarly,

the training set is further partitioned into learning and validation sets, using Algorithm 1.

Algorithm 1 Division of dataset in F-Fold Cross Validation

Input: The array of dataset (X).

Output: Training (D) and testing (T ) dataset for each fold.

1: for i=1 to F do

2: for j=1 to F do

3: r = (i+ (j − 1)N)mod size(X)
4: T (i, j) = X(r)
5: D(i, j) = X − T (i, j)
6: end for

7: end for

where i represents the partition set for the dataset (X). After partitioning the dataset, the

model is selected by performing 10-fold CV as discussed in the Algorithm 2.

Algorithm 2 F-Fold Cross Validation

1: for i=1 to F do

2: Divide the dataset into training set Di and testing set Ti using Algorithm 1.

3: WRITE THE ``FOR LOOP" FOR THE VARYING PARAMETER (θ) OF
CLASSIFIER.

4: for j=1 to F do

5: Divide the training set (Di) into learning set (Lj) and validation set (Vj) using

Algorithm 1.

6: Train the model using learning set (Lj).

7: Validate the model using validation set (Vj).

8: Calculate accuracy of the model.

9: end for

10: Calculate mean of accuracy of model corresponding to Parameter (θi).
11: END THE ``FOR LOOP" OF VARYING PARAMETER (θ).
12: Select θ, corresponding to model having high accuracy (called θ

′
).

13: Train the model with training set (Di) with θ
′
and calculate accuracy.

14: Test the model with testing set (Ti) with θ
′
and calculate accuracy.

15: end for

The algorithm behaves differently with different classifiers; i.e., for different classifier

the number of varying parameter (θ) is different, for that a `for loop' is inserted in algorithm

at line number 3 and end the for loop at line number 11. For instance, suppose ANN is used

as a classifier, for that the number of hidden nodes are varied. According to that, a for loop

is placed at line number 3 (e.g. for θ = 5 : 5 : 50 do) and ended the for loop at line number

11 (end for). Similarly, for each classifier a for loop is added, as and when required.

After performing ``10-fold CV" on the dataset, the predicted values of test data are

collected in each of the fold and the classification matrix is designed. This analysis has

been carried out on three microarray datasets by considering varying number of feature sets.
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2.2.1.1 Different datasets used

In order to perform the classification of microarray data, three datasets viz., Leukemia,

Breast and Ovarian Cancer dataset from ``Kent ridge biomedical" repository are used [93].

The details of the dataset in terms of two class problem (cancerous and non-cancerous) are

provided in the section 4.2.

The classifiers have been run sequentially on the varying size of feature sets [2, 100]

using these microarray dataset.

2.2.1.2 Logistic regression

The results of logistic regression [102] has been validated using `10-fold CV' for three

dataset and are tabulated in Table 2.2. The table gives the values of statistics such as

the number of features (which obtained better accuracy for the respective feature selection

method), accuracy obtained for training and testing phase. In the detailed analysis Table

2.2a, 2.2b, and 2.2c give the statistics for three datasets viz., Leukemia, Breast cancer and

Ovarian respectively.

From the obtained result, it is observed that LR classifier with t-test as a feature selection

method achieves better accuracy of 98.61% in testing phase for Leukemia dataset for six

number of features. Similarly, t-test obtained better accuracy of 80.14% and 98.81% for

Breast cancer and Ovarian dataset respectively when logistic regression was applied. The

values highlighted in bold font indicate the highest accuracy value obtained for the particular

dataset.

Table 2.2: Result of LR with various feature selection methods.

(a) Leukemia dataset

Feature selection

methods

No. of

features

Train CV

Acc. (%)

Test CV

Acc. (%)

T-test 6 63.95 98.61

F-test 46 81.10 97.22

Wilkixon test 30 83.31 97.22

SNR 84 54.55 97.22

χ2-test 48 77.64 97.22

Information Gain 46 81.10 97.22

Gini Index 2 65.36 72.22

Fisher Score 52 74.40 97.22

(b) Breast cancer dataset

Feature selection

methods

No. of

features

Train CV

Acc. (%)

Test CV

Acc. (%)

T-test 16 78.44 80.41

F-test 10 81.78 79.38

Wilkixon test 8 82.71 77.32

SNR 72 64.71 77.32

χ2-test 82 55.00 76.29

Information Gain 14 80.04 79.38

Gini Index 2 77.07 76.29

Fisher Score 8 82.71 77.32

(c) Ovarian dataset

Feature selection

methods

No. of

features

Train CV

Acc. (%)

Test CV

Acc. (%)

T-test 36 99.52 98.81

F-test 42 99.74 98.81

Wilkixon test 48 100.00 98.81

SNR 90 99.70 97.63

χ2-test 54 99.96 98.81

Information Gain 8 97.64 98.42

Gini Index 28 99.61 97.63

Fisher Score 34 97.56 97.63
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2.2.1.3 Naive Bayes

The classification results obtained using Naive Bayes [102] as a classifier with various FS

methods are tabulated in Table 2.3. The table gives the values of statistics such as the number

of features (which obtained better accuracy for the respective feature selection method),

accuracy obtained for training and testing phase. In the detailed analysis Table 2.3a, 2.3b,

and 2.3c give the statistics for three datasets viz., Leukemia, Breast cancer and Ovarian

respectively.

From the obtained result, it is clear that when t-test is used as a FS method, a set of 6

features are sufficient to achieve 98.71% of training accuracy and 98.61% of testing accuracy

for Leukemia dataset. Similarly, all the results can be analyzed for Breast cancer and Ovarian

dataset. The values highlighted in bold font indicate the high accuracy obtained for the

particular dataset.

Table 2.3: Result of NB with various feature selection methods.

(a) Leukemia dataset

Feature selection

methods

No. of

features

Train CV

Acc. (%)

Test CV

Acc. (%)

T-test 6 98.71 98.61

F-test 46 97.19 97.22

Wilkixon test 30 97.19 97.22

SNR 84 97.19 97.22

χ2-test 48 97.19 97.22

Information Gain 46 97.19 97.22

Gini Index 2 69.74 72.22

Fisher Score 52 97.19 97.22

(b) Breast cancer dataset

Feature selection

methods

No. of

features

Train CV

Acc. (%)

Test CV

Acc. (%)

T-test 16 81.03 80.41

F-test 10 78.18 79.38

Wilkixon test 8 78.56 77.32

SNR 72 78.51 77.32

χ2-test 82 77.40 76.29

Information Gain 14 78.28 79.38

Gini Index 2 76.82 76.29

Fisher Score 8 78.56 77.32

(c) Ovarian cancer dataset

Feature selection

methods

No. of

features

Train CV

Acc. (%)

Test CV

Acc. (%)

T-test 36 98.78 98.81

F-test 42 98.82 98.81

Wilkixon test 48 98.82 98.81

SNR 90 97.65 97.63

χ2-test 54 98.78 98.81

Information Gain 40 98.78 98.81

Gini Index 8 98.43 98.42

Fisher Score 28 97.65 97.63

2.2.1.4 Artificial neural network

ANN is a network of simulated neurons. It is inspired by the examination of central nervous

system of human body. Warren in 1943 created a computational model for neural networks

based on mathematical formulation and algorithms [104]. In this analysis, sigmoid function

is used in hidden as well as output layer with back propagation gradient descent learning

algorithm. In this study, a varying number of input nodes are considered based on the

applied feature selection technique. In hidden layer, selecting the number of hidden nodes is

a challenging task. To overcome this issue, varying number of hidden nodes in multiples

of five in the range 5 to 50 are considered to design a network. Next, 10 fold CV is
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applied to validate the obtained results. After finding the optimal no. of hidden nodes,

their corresponding training and testing accuracies in each of the fold is obtained.

In the final model, the median of all the hidden nodes in each of the fold is considered as

the optimal number of hidden nodes. The average of training and testing accuracy obtained

in each of the fold are considered as the final output (accuracy) of the model.

The classification results obtained using ANN as a classifier with various FS methods

are tabulated in Table 2.4. The table gives the values of statistics such as the number

of features (which obtained better accuracy for the respective feature selection method),

accuracy obtained for training and testing phase. In the detailed analysis, Table 2.4a, 2.4b,

and 2.4c give the statistics for three datasets viz., Leukemia, Breast cancer and Ovarian

respectively.

From the obtained results, it is clear that when t-test is used as a FS method, a set of

40 features with 5 number of hidden nodes are sufficient enough to achieve 100% training

accuracy and 97.22% testing accuracy for Leukemia dataset. Similarly, the results can be

analyzed for the other two datasets. The values highlighted in bold font indicate the high

accuracy obtained for the particular dataset.

Table 2.4: Result of ANN with various feature selection methods.

(a) Leukemia dataset

Feature selection

methods

No. of

features

No. of hidden

nodes

Train CV

Acc. (%)

Test CV

Acc. (%)

T-test 40 5 100.00 97.22

F-test 24 5 97.18 97.22

Wilkixon test 4 5 95.83 94.44

SNR 34 5 98.61 94.44

χ2-test 46 5 100.00 95.83

Information Gain 14 10 99.31 93.06

Gini Index 4 5 95.83 94.44

Fisher Score 46 5 100.00 95.83

(b) Breast cancer dataset

Feature selection

methods

No. of

features

No. of hidden

nodes

Train CV

Acc. (%)

Test CV

Acc. (%)

T-test 40 15 77.97 78.38

F-test 12 15 80.42 74.23

Wilkixon test 16 15 77.83 76.29

SNR 48 25 79.94 75.26

χ2-test 52 15 77.95 75.26

Information Gain 52 15 78.43 74.23

Gini Index 4 10 77.90 77.32

Fisher Score 4 10 77.34 76.29

(c) Ovarian cancer dataset

Feature selection

methods

No. of

features

No. of hidden

nodes

Train CV

Acc. (%)

Test CV

Acc. (%)

T-test 44 5 99.40 100.00

F-test 50 5 100.00 100.00

Wilkixon test 46 5 99.21 99.60

SNR 48 10 100.00 100.00

χ2-test 50 5 99.80 100.00

Information Gain 40 5 98.41 98.82

Gini Index 35 10 96.56 97.87

Fisher Score 42 5 95.84 97.23

2.2.1.5 Radial basis function network

Radial Basis Function Network (RBFN) was first formulated by Broomhead et al. [112] and

was popularized by Moody et al. [113].

There are different training schemes for updating the parameters such as the weights

and center in RBF network [105]. In this analysis, the hybrid approach is applied to train

the parameters of the network. To find the cluster centers, K-means clustering algorithm is

used, and the weight vector is updated using gradient descent learning algorithm.

23



Chapter 2 Literature Review

Varying number of clusters in the range from 2 to 10 are used to find the number of hidden

nodes required to obtain the maximum testing accuracy. 10 fold CV is used to validate the

results. Table 2.5 shows the results of RBF network classifier using various FS methods for

three datasets.

Table 2.5, gives the values of statistics such as the number of features (which obtained

better accuracy for the respective feature selection method), accuracy obtained for training

and testing phase. In the detailed analysis Table 2.5a, 2.5b, and 2.5c give the statistics for

three datasets viz., Leukemia, Breast cancer and Ovarian respectively.

From the obtained results, it is clear that when t-test is used as a FS method, a set of 40

features with 2 number of hidden nodes are sufficient enough to achieve 98.71% training

accuracy and 98.61% testing accuracy for Leukemia dataset. Similarly, the results can be

analyzed for the other two datasets. The values highlighted in bold font indicate the high

accuracy obtained for the particular dataset.

Table 2.5: Result of RBFN with various feature selection methods.

(a) Leukemia dataset

Feature selection

methods

No. of

features

No. of hidden

nodes (Clusters)

Train CV

Acc. (%)

Test CV

Acc. (%)

T-test 40 2 98.71 98.61

F-test 10 5 95.07 93.06

Wilkixon test 42 2 98.71 98.61

SNR 22 2 98.71 94.44

χ2-test 38 2 97.43 97.22

Information Gain 42 2 98.71 98.61

Gini Index 2 2 88.52 90.28

Fisher Score 20 2 96.62 95.83

(b) Breast cancer dataset

Feature selection

methods

No. of

features

No. of hidden

nodes (Clusters)

Train CV

Acc. (%)

Test CV

Acc. (%)

T-test 6 2 83.82 83.51

F-test 42 4 79.10 77.32

Wilkixon test 26 8 78.33 75.26

SNR 76 4 78.68 77.32

χ2-test 2 2 72.89 71.13

Information Gain 42 4 79.10 77.32

Gini Index 2 2 72.89 71.13

Fisher Score 16 2 79.96 81.44

(c) Ovarian cancer dataset

Feature selection

methods

No. of

features

No. of hidden

nodes (Clusters)

Train CV

Acc. (%)

Test CV

Acc. (%)

T-test 14 8 98.30 98.42

F-test 50 7 98.78 98.42

Wilkixon test 38 6 98.82 98.42

SNR 48 6 98.82 98.42

χ2-test 46 6 98.78 98.42

Information Gain 38 6 98.82 98.42

Gini Index 2 2 93.29 93.28

Fisher Score 42 6 98.78 98.02

2.2.1.6 Probabilistic neural network

Probabilistic neural network (PNN) is a four layered network (as shown in Figure 2.2),

consists of input, pattern, summation, and output layer and it maps any input pattern to any

number of classifications [106, 114].

• First, the distance between input vector to training vectors is computed in input layer.

• The second layer transforms the input space into nonlinear space using Gaussian

function, and the center is determined from the training data. The Gaussian function

is determined as using Equation 2.2.

g(x) =
1√
2πσ2

n∑
k=1

exp(
−(x− xk)

2

2σ2
) (2.2)
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where n, σ, x, xk represent the number of samples from a class, smoothing parameter,

testing input and kth sample respectively.

• The contribution of each class of input layer is summed up in the summation layer, to

produce a net output which is vector of probabilities.

• The output layer determines the classification rate.

X1

X2

X3

X11

X12

X21

X22

1

2

Input layer
Pattern layer

(Training set)

Summation
layer

Output class:
Max(g1, g2)

Output layer

...

g1(X)

g2(X)

y11

y12

y21

y22

X

Figure 2.2: Basic structure of PNN

In PNN, 50% of cancerous and non cancerous classes are considered as input for hidden

layers. Gaussian elimination is used as a hidden node function Equation 2.2. The summation

layers sum contribution of each class of input patterns and produce a net output which is a

vector of probabilities. The output pattern having maximum summation value is classified

into respective class.

The results of PNN are evaluated by varying the value of the smoothing parameter `σ'

in the range of (0, 1] using `10-fold CV'. The σ specifies the spread of activation function.

The obtained results using different datasets are evaluated on various FS methods and

are shown in Table 2.6. The table gives the values of statistics such as the number of features

(which obtained better accuracy for the respective feature selection method), accuracy

obtained for training and testing phase. In the detailed analysis Table 2.6a, 2.6b, and 2.6c

give the statistics for three datasets viz., Leukemia, Breast cancer and Ovarian respectively.

From the obtained results, it is clear that when t-test is used as a FS method, a set of

78 features with 0.2 σ value are sufficient enough to achieve 82.48% training accuracy and

84.72% testing accuracy for Leukemia dataset. Similarly, the results can be analyzed for

the other two datasets. The values highlighted in bold font indicate the highest accuracy

obtained for the particular dataset.

From this result it is observed that, among all the FS methods using t-test the classifier

achieves better accuracy.
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Table 2.6: Result of PNN with various feature selection methods.

(a) Leukemia dataset

Feature selection

methods

No. of

features

Best σ Train CV

Acc. (%)

Test CV

Acc. (%)

T-test 78 0.2 82.48 84.72

F-test 80 0.2 82.52 84.72

Wilkixon test 42 0.1 80.98 81.94

SNR 26 0.3 77.59 80.56

χ2-test 46 0.1 78.45 80.56

Information Gain 36 0.1 78.69 79.17

Gini Index 2 0.2 73.45 73.61

Fisher Score 96 0.1 80.40 81.94

(b) Breast cancer dataset

Feature selection

methods

No. of

features

Best σ Train CV

Acc. (%)

Test CV

Acc. (%)

T-test 6 0.3 71.79 73.20

F-test 2 0.1 69.90 72.16

Wilkixon test 22 0.4 66.64 69.07

SNR 82 0.4 66.97 68.04

χ2-test 4 0.1 70.35 72.16

Information Gain 14 0.1 67.96 68.04

Gini Index 2 0.3 69.90 72.16

Fisher Score 4 0.1 70.35 72.16

(c) Ovarian cancer dataset

Feature selection

methods

No. of

features

Best σ Train CV

Acc. (%)

Test CV

Acc. (%)

T-test 34 0.3 98.82 98.81

F-test 28 0.2 95.82 96.20

Wilkixon test 34 0.6 98.82 98.81

SNR 100 0.1 97.08 96.84

χ2-test 64 0.5 98.30 98.42

Information Gain 32 0.1 98.39 98.42

Gini Index 2 0.3 90.22 89.72

Fisher Score 14 0.1 96.20 96.05

2.2.1.7 K-Nearest neighbor

The K-nearest neighbor algorithm [103] is used to classify the microarray dataset to

determine the category of the cell. Here, Euclidean distance is used to measure the distance

between the training and testing samples. Table 2.7 shows the results obtained using KNN

classifier permuted with various FS methods using different microarray dataset. The results

are evaluated by varying the number of nearest neighborK in the range of [1,n] with a step

size of 2, where n is the number of samples in the training set. From the obtained result,

it is inferred that out of 50 subsets of dataset, the model with best accuracy is selected for

choosing the optimal value of K.

The table gives the values of statistics such as the number of features (which obtained

better accuracy for the respective feature selection method), accuracy obtained for training

and testing phase. In the detailed analysis Table 2.7a, 2.7b, and 2.7c give the statistics for

three datasets viz., Leukemia, Breast cancer and Ovarian respectively.

From the obtained results, it is observed that when t-test is used as a FS method, a set of

26 features with K(= 1) value are sufficient enough to achieve 97.19% training accuracy

and 97.22% testing accuracy for Leukemia dataset. Similarly, the results can be analyzed

for the other two datasets. The values highlighted in bold font indicate the highest accuracy

obtained for the particular dataset. The values highlighted in bold font indicate the highest

accuracy obtained for the particular dataset.

2.2.1.8 Support vector machine

In SVM [107] classifier different kernel functions such as: linear, polynomial, RBF

(gaussian), and tangent sigmoid are frequently used. In this analysis, RBF kernel function
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Table 2.7: Result of KNN with various feature selection methods.

(a) Leukemia dataset

Feature selection

methods

No. of

features

Value of

`K'

Train CV

Acc. (%)

Test CV

Acc. (%)

T-test 26 1 97.19 97.22

F-test 8 3 99.12 91.67

Wilkixon test 88 3 98.21 97.22

SNR 18 1 95.95 90.28

χ2-test 98 3 98.52 72.22

Information Gain 48 1 97.19 97.22

Gini Index 2 3 93.36 93.06

Fisher Score 54 3 97.19 97.22

(b) Breast cancer dataset

Feature selection

methods

No. of

features

Value of

`K'

Train CV

Acc. (%)

Test CV

Acc. (%)

T-test 6 7 80.88 82.47

F-test 48 5 82.33 78.35

Wilkixon test 28 9 80.65 77.32

SNR 90 4 82.10 80.41

χ2-test 2 10 74.58 71.13

Information Gain 66 11 81.07 80.41

Gini Index 2 10 74.58 71.13

Fisher Score 82 7 80.44 77.32

(c) Ovarian cancer dataset

Feature selection

methods

No. of

features

Value of

`K'

Train CV

Acc. (%)

Test CV

Acc. (%)

T-test 26 1 99.30 98.81

F-test 50 1 99.39 98.42

Wilkixon test 48 1 99.39 98.42

SNR 48 1 99.39 98.42

χ2-test 100 1 99.17 98.02

Information Gain 36 1 99.35 98.42

Gini Index 26 1 99.30 98.81

Fisher Score 44 1 99.35 98.42

is used to map the input vector into high-dimensional space. The parameters of the kernel

functions like gamma (γ) and the penalty parameter C are selected using the grid search

in the range of [2−5, 25] and [2−5, 25] respectively. The results are evaluated by varying the

value of kernel parameters in the specified range using `10-fold CV'. Then the classifier is

tested with different permutations of FS methods is on three datasets. The obtained accuracy

has been tabulated as shown in Table 2.8 .

Table 2.8: Result of SVM with various feature selection methods.

(a) Leukemia dataset

Feature selection

methods

No. of

features

Best

`log2γ'
Best

`log2C'
Train CV

Acc. (%)

Test CV

Acc. (%)

T-test 14 5 3 99.69 100.00

F-test 32 5 0 97.99 95.83

Wilkixon test 24 5 2 98.77 98.61

SNR 68 5 -1 100.00 100.00

χ2-test 58 5 -1.5 99.69 98.61

Information Gain 62 5 -1.5 100.00 98.61

Gini Index 50 5 0 100.00 100.00

Fisher Score 64 5 -1 100.00 98.61

(b) Breast cancer dataset

Feature selection

methods

No. of

features

Best

`log2γ'
Best

`log2C'
Train CV

Acc. (%)

Test CV

Acc. (%)

T-test 12 3.5 -4.5 83.16 84.54

F-test 82 5 -2 81.67 76.29

Wilkixon test 20 1 0 81.10 75.26

SNR 92 2.5 -2.5 82.81 74.23

χ2-test 14 4 -5 83.40 81.44

Information Gain 56 2.5 -1 81.33 76.29

Gini Index 88 5 -2 81.55 77.32

Fisher Score 12 3.5 -4.5 83.16 84.54

(c) Ovarian cancer dataset

Feature selection

methods

No. of

features

Best

`log2γ'
Best

`log2C'
Train CV

Acc. (%)

Test CV

Acc. (%)

T-test 50 5 0 99.87 100.00

F-test 50 5 0 99.87 100.00

Wilkixon test 58 5 0 99.91 100.00

SNR 44 5 -1 99.69 98.81

χ2-test 68 5 -1 99.91 100.00

Information Gain 40 5 -2 99.74 99.21

Gini Index 2 3.5 2 94.99 95.26

Fisher Score 40 5 -2 99.74 99.21

From Table 2.8, it is inferred that, the number of features required corresponding to the

optimal value of γ andC with their training and testing accuracy. The Table gives the values

of statistics such as the number of features (which obtained better accuracy for the respective
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feature selection method), accuracy obtained for training and testing phase. In the detailed

analysis, Table 2.8a, 2.8b, and 2.8c give the statistics for three datasets viz., Leukemia, Breast

cancer and Ovarian respectively.

From the obtained results, it is clear that when t-test is used as a FS method, a set of

14 features with γ = 25, C = 23 values are sufficient enough to achieve 99.69% training

accuracy and 100.00% testing accuracy for Leukemia dataset. Similarly, the results can be

analyzed for the other two datasets. The values highlighted in bold font indicate the highest

accuracy obtained for the particular dataset.

2.2.1.9 Comparative analysis

In this classification analysis, emphasis was laid on designing classifier models which can

obtain better classification of microarray dataset to categorize the cancer causing genes into

respective classes. A two class classifier was considered, consisting of cancerous and non

cancerous categories. Seven classifiers were designed with different permutation of eight

feature selection methods. So, a comparative analysis was done is order to choose a better

classifier among the set of designed classifiers which involves a suitable feature selection

method. From the obtained results, it can be inferred that among the various classifiers used

in permutation with eight different feature selectionmethods,results from t-test yielded better

accuracy in all the designed classifier models.

2.3 Summary

Any huge dataset for a classification problem has drawbacks such as the curse of

dimensionality, missing values of an attribute, presence of noise etc. To overcome

these pitfalls, various machine learning techniques are successfully applied for feature

selection/extraction of microarray data classification. In this chapter, an attempt was

made to focus on the existing schemes available to select highly significant and relevant

features in the dataset for microarray in a succinct manner. Also the work highlights the

classification task carried out to classify the microarray dataset using numerous machine

learning techniques. The most widely used classifiers in combination with feature selection

techniques are employed for classification. The obtained results are validated by the

application of 10-fold CV. On keen observation, it is revealed that features selection plays a

significant role in the classification of microarray data.

The rapid growth of diseases in the present day has lead to a huge increase in the datasize

with respect to different category of disease, causing enormous loss to human life. To detect

a disease causing factor of a particular class at an early stage within a large space of data is

very much critical. From the above analysis, it is observed that the existing platforms are not

suitable to process the current scenarios of the data analytics. The complexity of classifying

a particular disease into a particular class can be reduced by the use of `Big data' concept.
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This can be achieved through the use of techniques such as High Performance Computing

(HPC), Hadoop, Spark etc. which minimizes the amount of time required for classifying a

disease into particular category of a class.

From the above study, it is observed that, t-test as a feature selection method provides

better results with various classifiers. In the next chapter, t-test is considered for feature

selection and various kernel based classifiers are discussed.

29



Chapter 3

Classification of Microarray Data using

Kernel based Classifiers

In this chapter, kernel based classifiers are applied to classify the microarray

high-dimensional data followed by feature section using t-test. The kernel based classifiers

have capability to classify the datasets which are not linearly separable. The kernel functions

provides the flexibility to the linear classifier so that it can easily classify the datasets. In

this study, t-test is applied to identify the precise and interesting genes which are responsible

for cause of cancer. After precise identification, various classifiers like, Extreme Learning

Machine (ELM), and Relevance Vector Machine (RVM), and Kernel Fuzzy Inference

System (KFIS) are proposed to classify the samples in to their respective classes (i.e.,

cancer or normal). Further, a comparative analysis of the obtained classification accuracy,

and the results of existing Support Vector Machine (SVM) available in the literature are

presented. The behavior of the classifiers are analyzed using variousmocroarray datasets like

Leukemia, Ovarian and Breast cancer. The performance of the classifiers are measured using

performance parameters such as precision, recall, specificity, F-Measure, and accuracy.

3.1 Introduction

In recent years, Deoxyribonucleic acid (DNA) microarray technique has shown great impact

in determining the informative genes that cause cancer [115, 116]. The major pitfall which

is persistent in microarray data is the `curse of dimensionality' problem [117]. This problem

hinders the useful information of data set and leads to computational instability. Therefore,

the selection/extraction of relevant features (genes) remains imperative in the analysis of

microarray data of cancer.

A good number of feature (gene) selection/extraction techniques and classifiers based on

machine learning techniques have been proposed by various researchers and practitioners

[3–7].

The statistical tests which can be categorized as either parametric or non-parametric

can be used for feature selection method by assuming the hypotheses [118]. Based on

the correctness of the hypothesis (Null hypothesis or Alternate hypothesis), the features

are either selected or rejected. Further, classification of data to their respective classes is
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performed.

Extreme Learning Machine (ELM) is a variant of artificial neural network (ANN)

specifically, single-hidden layer feed forward networks, which recently has gained lot of

popularity due to its faster learning rate when compared to conventional machine learning

techniques [119].

Relevance Vector Machines (RVM) is one of the machine learning technique which has

an better edge in comparison to SVM among the research community [120, 121]. RVM

work flow is based on the Bayesian formulation of a linear model with an appropriate

assumption that results in a sparse representation. As a result, it can be well generalized

and can provide inferences at low computation cost. RVM has an identical functionality

in comparison to SVM, but rather it uses a Bayesian probabilistic model for learning and

performing predictions.

Fuzzy logic provides a means to arrive at a definite conclusion based upon vague,

ambiguous, imprecise, noisy, or missing input information. Since the nature of data set

is quite fuzzy i.e., not predictable, which in turn (data) leads to different inference. The

relationship among the data and inference is unknown. The fuzzy concept has been used in

this work, to study the behavior of the data (capturing human way of thinking), and also it

is also possible to represent and describe the data mathematically. Further, fuzzy system has

been considered because of the limited number of learning rules that needs to be learnt in

the present system. The no. of free parameters to be learnt is reduced considerably, leading

to efficient computation. In general, if the number of features are larger than 100, then it is

suitable to use machine learning techniques rather than using statistical approaches.

If ANN is applied for the same method, designing the model would be far more

challenging due to the large no. of cases. Hence coupling ANN with Fuzzy logic, will

be easy to handle by inferring the rule base of the fuzzy system. In the current scenario,

neuro-fuzzy networks have found to be successfully applied in various areas of analytics.

Two typical types of neuro-fuzzy networks are Mamdani-type [122] and TSK-type [123].

For Mamdani-type neuro-fuzzy networks, minimum number of fuzzy implications are used

in fuzzy reasoning. Meanwhile, in TSK-type neuro-fuzzy networks, the consequence of

each rule is a function of various input variables. The generic adopted function for rule

generation, is a linear combination of input variables and constant term. Several researchers

and practitioners have reported that, using TSK-type neuro-fuzzy network achieves superior

performance in network size and learning accuracy than that of Mamdani-type neuron-fuzzy

networks [124]. In classic TSK-type neuro-fuzzy network, which is linear polynomial of the

input variables, the system output is approximated locally by the rule of hyperplanes.

However, a linear subspace cannot describe the non-linear variations of microarray

genes. Alternatively, a kernel feature space can reflect non-linear information of genes.

By using the kernel trick, the data points are mapped into a higher dimensional (possibly

infinite-dimensional) space [125]. Kernel trick is a mathematical technique which can be
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applied to any dot product based algorithms. Whenever a dot product between two vectors

is encountered, it is replaced by kernel function. This maps candidate linear algorithms

into non-linear algorithms (sometimes with little effort or reformulation). Further, the

transformed non-linear algorithms are the equivalent of their linear algorithm in their original

feature space.

In this chapter, the following type of kernels have been used to map the function in

high-dimensional space.

• Linear: K(xi, xj) = γxT
i xj .

• Polynomial: K(xi, xj) = (xT
i xj + b)γ, γ > 0.

• Radial Basis Function (RBF): K(xi, xj) = exp(−γ ‖xi − xj‖2), γ > 0.

• Tansigmoid (Tansig): K(xi, xj) = tanh(γxT
i xj + b), γ > 0.

where, γ and b are kernel parameters.

The choice of a kernel function depends on the problem in hand because it depends on

what we are trying to model. For instance, a polynomial kernel allows feature conjunction

modeling to the order of the polynomial. Radial basis function allows to pick out circles

(or hyper spheres) in contrast with the linear kernel, which allows only to pick out lines

(or hyperplanes). The objective behind using the choice of a particular kernel can be very

intuitive and straightforward depending on what kind of information is to be extracted with

respect to data.

Hence, along with the feature selection using t-statistic, ELM, RVM, and a non-linear

version of FIS called kernel fuzzy inference system (KFIS), which is a kernerlized version

of neuro-fuzzy system with different kernel functions are used as classifiers by applying

10-fold cross validation (CV). We have already shown the state of art simulation of existing

methods in the earlier chapter, where SVM (with RBF Kernel) performed very well with

better accuracy and in less time. Therefore, the motivation of this chapter is:

• To analyze the microarray data using classifier with better accuracy in a minimum

processing time.

• Idea: Various classifiers with different kernels are applied to analyze the microarray

dataset.

The rest of the chapter is organized as follows: Section 3.2 presents the procedure for

classifying the microarray data using various proposed classifiers. Section 3.3 presents the

implementation details of the proposed approach. Section 3.5 highlights on the results

obtained, and the interpretation drawn from it. Section 3.6 summarizes the chapter and

presents the scope for future work.
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3.2 Proposed work

This section presents the proposed approach for classification of microarray data, consisting

of two phases:

1) Pre-process the input data using methods such as missing data imputation,

normalization, and feature selection using t-statistic.

2) Applying ELM, RVM and KFIS with different kernel functions as a classifier.

Figure 3.1 shows the block diagram of the proposed approach, and the brief description

is as follows:

Data

Missing value imputation and

Data normalization

Feature selection using

t-test

Training data Test data

Classify data based on ELM, RVM,

or KFIS

Adjustment

parameters

Classification

result

Evaluation

indexes

Validity of

classifications?

Output classification results

10-Fold CV

Yes

No

Figure 3.1: Proposed work for microarray classification.

1. Data collection: The data set for classification, which is the requisite input to the

models is obtained from Kent Ridge Bio-medical Dataset Repository [109].

2. Missing data imputation and normalization of dataset:

Missing data of a feature (gene) of microarray data is imputed by using themean value

of the respective feature. Input feature values are normalized over the range [0, 1] using

Min-Max normalization technique [126]. Let Xi be the ith feature of the dataset X ,
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and x is an element of the Xi. The normalization of x can be formulated as:

Norm(x) =
x−min(Xi)

max(Xi)−min(Xi)
(3.1)

where, min(Xi) and max(Xi) represent the minimum and maximum value for the

datasetXi respectively. If in case, max(Xi) is equal to min(Xi), thenNorm(x) is set

to 0.5.

3. Feature selection from dataset:

t-test statistic has been applied to select the features having high relevance value and

hence the curse of dimensionality issue has been reduced.

4. Division of dataset: The data set is divided into two categories such as: training set

and testing set using Algorithm 1.

5. Application of a classifier:

ELM, RVM, and KFIS with different kernel functions are applied to classify the

microarray dataset.

6. Testing:

Models are tested using the testing dataset. The performance of the classifier is

measured using precision, recall, specificity, F-Measure, and accuracy parameters

(discussed in Section 4.3). Also ``10-fold cross validation" technique is applied to

validate the model [95].

3.3 Implementation

3.3.1 Feature selection using t-test

Generally, the problem with microarray data are (a) ``curse of dimensionality", where

numbers of features are much larger than the number of samples (b) there are so many

features having very less effect on the classification result, etc. To alleviate these problems,

feature selection approaches are used [94]. In this chapter, t-test filter approach is used to

overcome the problems. Selecting features using t-test is to reduce the dimension of the data

by finding a small set of important features which can give good classification performance,

and is computed using Equation 3.2.

TS(i) =
X̄i1 − X̄i2

sX1X2

√
1
n1

+ 1
n2

(3.2)

s2X1X2
=

(n1 − 1)s2Xi1
+ (n2 − 1)s2Xi2

n1 + n2 − 2
(3.3)
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where sX1X2 is an estimator of the common standard deviation of the two samples X̄ik

represents the mean of feature i of class k ∈ {1, 2} and s is the standard deviation.
A widely-used filter method for microarray data is to apply a univariate criterion

separately on each feature, assuming that there is no interaction between features. A

two-class problem test of the null hypothesis (H0) is that the mean of two populations are

equal; it means that there is no significant difference between their means, and both features

are almost same. It implies that they (features) do not affect much on the classification result.

Hence, these features have been discarded; and the features having significant difference

between their means are accepted. Therefore, it is necessary to reject `null hypothesis' (H0)

and accept the `alternate hypothesis' (H1). In other words, alternate hypothesis is accepted.

Here, t-test on each feature has been applied and compared with their corresponding p-value

(or the absolute values of t-statistics) for each feature as a measure of how effective it is

at separating groups. In order to get a general idea of how well-separated the two groups

(classes) are by each feature, the empirical cumulative distribution function (CDF) of the

p-values has been plotted in Figure 3.2.
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Figure 3.2: Empirical cumulative distribution function (CDF) of the p-values

The features having p-values smaller than 0.05 have strong discrimination power. Sorting

these features according to their p-values (or the absolute values of the t-statistic) helps to

identify some features from the sorted list.

From Figure 3.2, it is observed that

• In case of Leukemia, about 18% of features have p-values close to zero, and over

28.70% of features have p-values smaller than 0.05. Also 71.30% i.e., 5083 out of

7129 features have p-value greater than or equal to 0.05 (95% Confidence interval).

• In case of breast cancer, about 10.44% features have p-values smaller than 0.05; and

89.56% i.e., 21924 out of 24481 features have p-values greater than or equal to 0.05.

• In case of ovarian cancer, about 55.19% (8363) features have p-values smaller than

0.05; and 44.81% i.e., 6791 out of 15154 features have p-values greater than or equal

to 0.05.
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However, it is usually difficult to decide how many features are needed unless one has

some domain knowledge or the maximum number of features that can be considered have

been dictated in advance based on outside constraints. To overcome this problem, forward

feature selection method is considered, in which top ranked features corresponding to their

ascending p-value are identified.

3.3.2 Extreme learning machine (ELM) classifier

ELM is a variant of single-hidden layer feed forward networks (SLFNs), which recently

has gained lot of popularity due to its faster learning rate when compared to conventional

machine learning techniques [119]. In ELM, hidden neurons need not be tuned and these

hidden neurons can be randomly generated; thus, it leads to reduction in training time which

helps to `learn' at an extremely high speed.

In conventional learning method, one must check the training data before generating the

parameters for hidden neurons; whereas in case of ELM, the parameters for hidden neurons

can be generated before checking the training data. Further, in ELM there is no scope to fine

tune parameters such as learning rate, momentum, epochs, etc.

ELM classifier in comparison to back propagation (traditional gradient learning

algorithm) overcomes several issues like local minima, improper learning rate and over

fitting. It tends to reach the solutions in straightforward manner without any such trivial

issues.

The basic architecture of ELM classifier is shown in Figure 3.3, which comprises of

an input layer, hidden layer and an output layer similar to that of single hidden layer feed

forward neural network.

a b xG(         )
11

x

1 L

a b xG(         )
L L

f(x)

Input Layer

Hidden Layer

Output Layer

Figure 3.3: Structure of ELM

The output function fL(x) of ELM for generalized SLFNs is given below as shown in

equation 3.4.

fL(x) =
L∑
i=1

βiG(ai, bi, x) = β.h(x) (3.4)

where L is the number of hidden layer neurons, and βi is the weight vector representing
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the connection between the ith hidden neuron and the output neuron. G(ai, bi, x) is the

output/activation function of the ith hidden neuron, which can be either sigmoid, sine, radial

basis, or any nonlinear piecewise continuous activation function, as ELM works for all

nonlinear piecewise continuous activation function. The hidden layer mapping (h(x)), i.e.,

the output vector of hidden layer with respect to the input x can be represented as h(x)

= [G(ai, bi, x), ..., G(aL, bL, x)].

Let X = {(xi, ti)|xi ∈ Rd, ti ∈ Rc, i = 1, 2, ..., N}, is training sample with L be the

number of hidden neurons andG(a, b, x) be the hidden neuron activation function, the output

function of ELM can be mathematically formulated as shown in equation 3.5.

fL(x) =
L∑
i=1

βiG(ai, bi, xj) = tj (3.5)

where j = 1, ..., N . Equation 3.5 can be expressed as Hβ = T , where,

H =

h(x1)
...

h(xN )

 =

G(a1, b1, x1) · · · G(aL, bL, x1)
...

...
...

G(a1, b1, xN ) · · · G(aL, bL, xN )

 (3.6)

β =


βT
1

...

βT
L

 and T =


tT1
...

tTN

 (3.7)

here, H is the hidden layer output matrix. The output weight vector β can be calculated as:

β = H†T (3.8)

where, H† is the Moore-Penrose generalized inverse of hidden layer output matrix H . In

order to obtain a more stable and generalized solution, the regularization factor C can be set.

This helps in making ELM more stable. After considering the factor C, the output weight

vector β can be calculated using equation 3.9.

β = HT (
1

C
+HHT )−1T (3.9)

and the output function of ELM corresponding to output weight vector β in equation 3.9 is

shown in equation 3.10.

fL(x) = h(x)β = h(x)HT (
1

C
+HHT )−1T (3.10)

similarly, the output function of ELM corresponding to output weight vector β is shown in

Equation 3.11.

fL(x) = h(x)β = h(x)HT (
1

C
+HTH)−1T (3.11)

When hidden layer mapping matrix is known, the basic ELM classifier can be used. The

solution is different when hidden layer mapping matrix is unknown.
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If hidden layer mapping matrix is unknown, one can use kernel based ELM, where kernel

matrix for ELM can be defined as shown below in equation 3.12.

Ωi,j = h(xi).h(xj) = k(xi, xj) (3.12)

The output function fL(x) for kernel based ELM is expressed in equation 3.13.

fL(x) =


k(x, x1)

.

.

.

k(x, xN)

 (
1

C
+ ΩELM)−1T (3.13)

3.3.3 Relevance vector machine (RVM) classifier

This section briefly discusses the formulation of RVM [127]. LetX = {(xi, ti)|xi ∈ Rd, ti ∈
Rc, i = 1, 2, ..., N} be the pair of input data (xi) with scalar valued target label (ti). The

design of RVM follows a Bayesian probabilistic model for learning and the predictions are

based on the function

y = TΦ(x) (3.14)

where = (ω0, ω1, ω2, . . . , ωN)
T is the weight matrix, Φ(x) = [φ(x1), φ(x2), . . . , φ(xN)]

T

is a set of basis functions, for φ(xn) = { 1, K(xn,x1), K(xn,x2), . . . , K(xn,xN) } with
K(∗, ∗) is the kernel function which can be of the form Gaussian, Euclidean, Laplacian, etc.

The output of RVM (y) is a linear combination of weighted basis functions. The weights ()

are computed during training and the training samples corresponding to non-zero weights

are called relevance vectors (RVs). The objective of learning the classifier is to predict

the posterior probability of class membership for the given input x. The linear model in

Equation (3.14) is generalized by applying the logistic sigmoid function σ(y) = 1/(1+e−y)

to y and adopting the Bernoulli distribution to define the likelihood as

P (t|) =
N∏

n=1

σ{y(xn, )}tn [1− σ{y(xn, )}]1−tn (3.15)

To obtain the marginal likelihood analytically, Mackay's iterative procedure [128] is used

which is based on the Laplace's method. Let α be the vector of hyperparameters and each

individual α value is associated with every weight value. For the fixed values of α, the most

probable weights w are found, giving location of the mode of posterior distribution [127].

Since

p(|t, α) ∝ P (t|)p(|α), (3.16)
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this is equivalent to finding the maximum of

log{P (t|)p(|α)} =
N∑

n=1

[tn log yn (3.17)

+(1− tn) log(1− yn)]−
1

2
TA

over , where yn = σ{y(xn, )}. Equation (3.17) is differentiated twice to obtain

∇∇ log p(|t, α)|w = −(ΦTBΦ + A) (3.18)

where A = diag(α0, α1, α2, . . . , αN) and B = diag(β1, β2, . . . , βN) with βn =

σ{y(xn)}[1− σ{y(xn)}]. The covariance matrix Σ and the posterior over weights centered

at (w) are defined as

Σ = (ΦTBΦ + A)−1 (3.19)

w = ΣΦTBt (3.20)

Using Σ and w, the hyper-parameters are updated using

αi =
γi
w2

i

(3.21)

where wi is the i
th posterior weight computed using Equation (3.20), γi ≡ 1−αiΣii and Σii

is the ith diagonal element of Σ. Similarly, β is updated using

β =
N −

∑
i γi

‖t− Φw‖2 (3.22)

The convergence criteria for the above iterative procedure is defined as

δ =
∑
i=1

αn+1
i − αn

i (3.23)

Re-estimation stops when δ < δτ , where δτ is the threshold value for change of α between

iterations. The training samples corresponding to 6= 0 are termed as relevance vectors (R).

The weights and relevance vectors obtained from Algorithm 3 are used to find an estimate

of the target value pertaining to the new input x′

y′ = wTφ(x′) (3.24)

3.3.4 Fuzzy inference system (FIS)

For a given universe set U of objects, a conventional binary logic (crisp) A is defined by

specifying the objects of U that are member of A. In other words, the characteristic function
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Algorithm 3 Training: RVM

Input: Input matrix X = {(xi, ti)|xi ∈ Rd, ti ∈ Rc, i = 1, 2, ..., N}, where N is the number

of samples with dimension d, t: corresponding target values
Output: R: Relevance vectors of model, w: weight matrix, and Generate Φ =
φ(x1), φ(x2), . . . , φ(xN)
Initialize δτ
Initialize α, β . Initialisation of hyper-parameters
repeat

A = diag(α),B = diag(β)
Σ = (ΦTBΦ + A)−1

w = ΣΦTBt
γi ≡ 1− αiΣii

αi =
γi
w2

i

β =
N−

∑
i γi

‖t−Φw‖2

δ =
∑

i=1 α
n+1
i − αn

i

R = x(windex) . Training samples corresponding to non-zero weights
until δ < δτ

Algorithm 4 Testing: RVM

Input: x′: Testing data for classification, R: Relevance vectors, w: Weight matrix

Output: y′: Predicted class membership.
Generate φ(x′) using R
y′ = wTφ(x′)

of A can be written as uA : U → {0, 1} for all x ∈ U .

Fuzzy sets are obtained by generalizing the concept of characteristic function to a

membership function uA : U → [0, 1] for all x ∈ U . It provides the degree of membership

rather than just the binary 'is'/'is not' a member to a set; which ensures the objects that are

not clearly member of one class or another. Using crisp techniques, an ambiguous object will

be assigned to one class only lending an aura of precision and definiteness to the assignment

that are not warranted. On the other hand, fuzzy techniques will specify to what degree the

object belongs to each class.

The TSK fuzzymodel (FIS) is an adaptive rulemodel introduced by T. Takagi, M. Sugeno

and K. T. Kang in 1984 [123]. The main objective of using TSK fuzzy model is to reduce

the number of rules generated by Mamdani model[124]. In this approach, TSK fuzzy model

can also be used for classifying complex and high-dimensional problems. It develops a

systematic approach to generate fuzzy rules from a given input-output data set. TSK model

replaces the fuzzy sets of the Mamdani rule with the function of the input variables.

3.3.5 Kernel fuzzy inference system (KFIS)

In this section, KFIS has been described which is a non-linear version of FIS. The number

of rules (R), the parameters of fuzzy sets i.e., the centers (c) and the width parameters (σ)
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of the corresponding membership function (in this case Gaussian) of KFIS are computed

using kernel subtractive clustering technique (KSC) which is also a non-linear version of

subtractive clustering (SC) and the parameters of rules are computed using least mean square

(LMS) algorithm in non-linear space. The stepwise working procedure of KFIS has been

depicted in Figure 3.4. The working procedure of KFIS is described as follows:

Training Data

Kernel subtractive (KSC)

clustering

group1 group2 ... groupR

LMS

parameter

Setting up simplified

fuzzy rules

Data fuzzification and

mapping the most similar

rule

Testing data

Classification

Figure 3.4: Framework of Kernel fuzzy inference system (K-FIS).

1. Clustering:

To compute the parameters of the membership function i.e., centroids (c) and the width

parameter (σ) and number of rules (centers), Kernel subtractive clustering (KSC) has

been used on training data set (microarray). The algorithm of KSC has been described

in the section 3.3.5.1.

2. Setting up a simplified fuzzy rule base

• Computation of membership function

Gaussian function is used as a membership function (A). The parameters such

as centroid (c) and the width parameter (σ) of A have been computed using KSC

and A is expressed as:

A = exp

(
−1

2

(
x− c

σ

)2
)

(3.25)

• Generation of fuzzy rules

The number of fuzzy rules generated will be equal to the number of clusters

formed.
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3. Estimation of parameters of rules

After generating fuzzy rules, the constant parameters in rules can be estimated using

Least Mean Square (LMS) algorithm.

3.3.5.1 Kernel subtractive clustering (KSC)

The kernel subtractive clustering (KSC) is a non-linear version of subtractive clustering

[129], here input space is mapped into non-linear space. In this algorithm, to obtain the

cluster centroids and sigmas, the same parameters are used which are also used in subtractive

clustering (SC) [130]. The parameters used to calculate the cluster centroid areHypersphere

cluster radius (ra) in data space, Reject ratio (ε̄), Accept ratio (ε). Reject ratio (ε̄) specifies a

threshold for the potential value above which the data point is definitely accepted as a cluster

centroid. Accept ratio (ε) specifies a threshold below which the data point is definitely

rejected. Squash factor (η) defines the neighborhood which will have the measurable

reductions in potential value, and it can be calculated as:

η =
rb
ra

(3.26)

For a given data point xi ⊂ X where (1 ≤ i ≤ n), X ∈ Rp and a non-linear function

φ: Rp → H maps the input to a higher (may be infinite) dimensional feature space H. The
potential value of each data point defines a measure of the data point to serve as a cluster

centroid and can be calculated by using the following Equation:

p(xi) =
n∑

j=1

e−α‖φ(xi)−φ(xj)‖2

=
n∑

j=1

e−α(K(xi,xi)−2K(xi,xj)+K(xj ,xj)) (3.27)

where α = 4/r2a,K is a kernel function, ‖.‖ denotes the Euclidean distance between the
data points, and ra is a positive constant called cluster radius. The data point with highest

potential is selected as the first cluster centroid by computing the potential value of individual

data point. Let x∗
1 be the centroid of the first cluster and p

∗
1 its potential value. The potential

value of each data point x∗
i is revised as follows:

pj(xi) = pj−1(xi)− p∗j−1e
−β

∥∥∥φ(xi)−φ(x∗
j−1)

∥∥∥2
= pj−1(xi)− p∗j−1e

−β(K(xi,xi)−2K(xi,x
∗
j−1)+K(x∗

j−1,x
∗
j−1)) (3.28)

where p∗j = Maxi(p(xi)), β = 4/r2b , rb = η ∗ ra and η is a positive constant over the

range [1, 2]. When the potentials of all data points have been revised by Equation 3.28, the
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data point with the highest remaining potential is selected as the second cluster centroid. In

such a manner, all the cluster centroids are selected using Algorithm 5.

Algorithm 5 Kernel subtractive clustering (KSC)

Input: The dataset X , radius ra, η, ε, ε̄.
Output: Optimal number of clusters, their centroid (c) and the width parameter (σ).
1: Compute the potential for each data point xi using Equation 3.27.

2: Choose the data point xi whose potential value is highest as a cluster centroid.

3: Discard and recompute the potential value for each xi using Equation 3.28.

4: if p∗j > εp∗1 then
5: Accept x∗

j as a cluster center and continue.

6: else if p∗j < ε̄p∗1 then
7: Reject x∗

j and end the clustering process.

8: else

9: dmin = shortest of the distance between x
∗
j and all previously found cluster centers.

10: if dmin

ra
+

p∗j
p∗1
≥ 1 then

11: Accept x∗
j as a cluster center and continue.

12: else

13: Reject x∗
j and set the potential at x

∗
j to 0. Select the data point with the next

highest potential as the new x∗
j and reset.

14: end if

15: end if

16: σ = (ra ∗ (Max(X)−Min(X))/
√
8.0

After computing the number of rules (R), the parameters of fuzzy sets and the parameters

of rules are derived. To derive the rules for the KFIS, the dataset with selected features

(genes) using filter approach (t-test) has been used as the input. The kth rule (Rk) for the

given test point xt can be expressed as:

IF x1 is A
k
1 and x2 is A

k
2,... and xn is A

k
n; where x1, x2,... xn are input variables and Ak

j is

a fuzzy set, Rk is a linear function. The fuzzy set Ak
j uses a Gaussian function and can be

computed as:

Ak
j = exp

(
−1

2

(
φ(xj)− φ(cjk)

σjk

)2
)

= exp

(
− 1

2σ2
jk

(K(xj, xj)− 2K(xi, cjk) +K(cjk, cjk))

)
(3.29)

THEN

Rk = bk0 +
n∑

t=1

pktφ(xt) (3.30)

pkt =
m∑
i=1

αiφ(xi) (3.31)
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Consider m to be the number of training samples, and φ as a non-linear transformation

function. The representer theorem [131, 132] states that the solution of an optimization of

Equation 3.31, can bewritten in the form of an expansion over training pattern, (xi is replaced

by φ(xi)). Therefore, each training vector lies in the span of φ(x1), φ(x2), ...φ(xm) and

Lagrange multiplier αi, where i = 1, 2, ...m [133]. Therefore, Equation 3.30 is expressed

as:

Rk(xt) = bk0 +
n∑

t=1

m∑
i=1

αiφ(xi)φ(xt)

= bk0 +
n∑

t=1

m∑
i=1

αiK(xi, xt) (3.32)

The degree (firing strength) with which the input matches kth rule is typically computed

using `and' operator:

µk =
n∏

j=1

Ak
j (3.33)

In this case, each rule is a crisp output. The overall output is calculated using theweighted

average as shown in Equation 3.34.

Y =

∑R
i µiRi∑R
i µi

(3.34)

where R is the number of rules and Ri is the i
th fuzzy rule where i = 1, 2, ..., R. For KFIS

classification algorithm, the probability ŷ of output Y can be calculated using Equation 3.35

[134].

ŷ = (1 + exp(−Y ))−1 (3.35)

Using the usual kernel trick, the inner product can be substituted by kernel functions

satisfyingMercer's condition. Substituting the expansion of p in equation 3.31, into equation

3.30, this transformation leads to nonlinear generalization of fuzzy inference system in kernel

space which can be called as kernel fuzzy inference system (KFIS).

The parameters used in the KFIS are shown in Table 3.1.

Table 3.1: Parameters of KFIS model

Parameters used Range Value used

Squash factor (η) [1, 2] 1.25

Accept ratio (ε) (0, 1] 0.75

Reject ratio (ε̄) (0, 1] 0.15

Cluster radius (ra) (0, 1] —
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3.4 Performance Measures

This section highlights the performance parameters used for classification. Table 3.2 shows

the confusion matrix which provides the statistics for the number of correct and incorrect

predictions made by a classifier compared to that of the actual classifications of the samples

in the test data [135, 136]. The confusion matrix is a table that shows the output and actual

(target) class classification accomplished by the classifier. The corresponding measures of

performance are represented in Table 3.3.

Table 3.2: Confusion matrix

Output class

Classified as neg Classified as pos

neg tn fp
Target class

pos fn tp

Table 3.3: Performance parameters

Performance parameters Description

Precision = tp
fp+tp

It is the degree to which the repeated measurements under unchanged conditions show the same

results

Recall = tp
fn+tp

It indicates the number of the relevant items are to be identified

F − Measure =
2∗Precision∗Recall
Precision+Recall

It combines the `precision' and `recall' numeric values to give a single score, which is defined

as the harmonic mean of the precision and recall.

Specificity = tn
fp+tn

It focuses on how effectively a classifier identifies negative labels.

Accuracy = tp+tn
fp+fn+tp+tn

It measures the percentage of inputs in the test set that the classifier correctly labeled.

3.5 Results and Interpretation

In this section, the obtained results are discussed for the proposed work. Three case studies

viz., Leukemia [109], Ovarian cancer [137] and Breast cancer [110] microarray datasets are

considered to find the classification accuracy. ``10 fold cross validation (CV)" (discussed

in Algorithm 2) is applied to assess the performance of the classifier, as it provides more

realistic assessment of classifiers. Cross validation generalizes the model significantly to

unseen data.

After performing feature selection using t-test, the classification algorithms ``ELM",

``RVM" and ``KFIS" have been applied to classify the reduced dataset. After performing

``10-fold CV", the predicted values of test data are collected in each of the fold and the

confusion matrix is designed with their respective feature set using the proposed classifiers.

This analysis has been carried out on three different microarray datasets by considering

varying number of feature sets. The feature sets are varied in the multiple of five i.e., 5,

10, 15, 20, ....

The proposed classifiers have been implemented using various kernel functions viz., Linear,

Polynomial, RBF and Tansig. The gamma (γ) and C values are selected by searching in the
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range of 2−5 to 25; and ra ∈ (0, 1] (for KFIS only) in each fold. Finally, the median value of

the best γ, C, and ra from each fold is considered as the value of γ, C, and ra for the final

model. By using these values, the performance of classifiers are evaluated on test data.

3.5.1 Case study: Leukemia cancer dataset

The Leukemia dataset consists of 72 samples and 7129 features (genes). The samples are

categorized into two classes viz., Acute Lymphoblastic Leukemia (ALL) and Acute Myeloid

Leukemia (AML) [109]. Out of 72 samples, the dataset contains 25 AML and 47 ALL

samples. The ELM, RVM, and KFIS classifiers with various kernel functions have been run

sequentially on the varying size of feature sets for Leukemia dataset.
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(b) Classification accuracy of RVM classifier
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Figure 3.5: Accuracy of classifiers using Leukemia dataset by varying the number of features

Figure 3.5a shows the accuracy of ELM classifier with different kernel functions by

varying the number of features for Leukemia dataset. From Figure 3.5a, it is observed that

maximum accuracy (minimumCV error) has been acquired when feature set with 45, 45, 40,

and 45 features are selected using ELM classifier with linear, polynomial, RBF, and tansig

kernel function respectively. After attaining the peak value, the accuracy of ELM classifier

either remains constant or reduces from maximum accuracy. Therefore, to avoid the curse

of dimensionality problem, the feature set with 45, 45, 40, and 45 features are selected using

ELM classifier with linear, polynomial, RBF, and tansig kernel function respectively. The

rest of the performance parameters are tabulated in Table 3.4.
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Table 3.4: Performance analysis of kernel based ELM classifiers using Leukemia dataset.

kernel Accuracy Precision Recall Specificity F-measure

Linear Function 0.9861 1.0000 0.9600 1.0000 0.9795

Polynomial Function 1.0000 1.0000 1.0000 1.0000 1.0000

Tansig Function 0.9583 1.0000 0.8800 1.0000 0.9361

Radial Basis Function 0.9583 0.8928 1.0000 0.9361 0.9433

Similarly, Figure 3.5b shows the accuracy of RVM classifier with different kernel

functions by varying the number of features using Leukemia dataset. From Figure 3.5b,

it is clear that maximum accuracy (minimum CV error) has been acquired when feature set

with 20, 40, 15, and 15 features are selected using RVM classifier with linear, polynomial,

RBF, and tansig kernel function respectively. After attaining the peak, the accuracy of

RVM classifier either remains constant or reduces from maximum accuracy. Therefore, to

avoid the curse of dimensionality problem, the feature set with 20, 40, 15, and 15 features

are selected using RVM classifier with linear, polynomial, RBF, and tansig kernel function

respectively. The rest of the performance parameters are tabulated in Table 3.5.

Table 3.5: Performance analysis of kernel based RVM classifiers using Leukemia dataset.

Kernel Accuracy Precision Recall Specificity F-measure

Linear Function 0.9861 1.0000 0.9600 1.0000 0.9795

Polynomial Function 0.9722 1.0000 0.9200 1.0000 0.9583

Tansig Function 0.9861 1.0000 0.9600 1.0000 0.9796

Radial Basis Function 0.9722 0.9600 0.9600 0.9787 0.9600

Similarly, Figure 3.5c shows the accuracy of KFIS classifier with different kernel

functions by varying the number of features using Leukemia dataset. From Figure 3.5b, it is

clear that maximum accuracy (minimum CV error) has been acquired when feature set with

10, 5, 5, and 5 features are selected using RVM classifier with linear, polynomial, RBF, and

tansig kernel function respectively. After attaining the peak, the accuracy of KFIS classifier

either remains constant or reduces from maximum accuracy. Therefore, to avoid the curse

of dimensionality problem, the feature set with 10, 5, 5, and 5 features are selected using

KFIS classifier with linear, polynomial, RBF, and tansig kernel function respectively. The

rest of the performance parameters are tabulated in Table 3.6.

Table 3.6: Performance analysis of kernel based KFIS classifier using Leukemia dataset.

Kernel/#Features/ra Accuracy Precision Recall Specificity F-measure

Linear/10/0.2 0.9722 0.9600 0.9600 0.9787 0.9600

Polynomial/5/0.2 0.9861 0.9615 1 0.9787 0.9804

Tansig/5/0.2 0.9861 1 0.9600 1 0.9796

RBF/5/0.4 0.9722 0.9600 0.9600 0.9787 0.9600
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3.5.2 Case study: Ovarian cancer

The ovarian cancer dataset consists of 253 samples and 15154 features (genes). The samples

are categorized as `cancer' and `normal' classes. Out of 253 samples, the dataset contains

162 cancer and 91 normal samples [137].
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(c) Classification accuracy of KFIS classifier

Figure 3.6: Accuracy of classifiers with various number of features using Ovarian dataset

Figure 3.6a shows the accuracy of ELM classifier with different kernel functions by

varying the number of features using Ovarian dataset. From Figure 3.6a, it is clear that

maximum accuracy (minimumCV error) has been acquired when feature set with 50, 55, 30,

and 80 features are selected using ELM classifier with linear, polynomial, RBF, and tansig

kernel function respectively. After attaining the peak value, the accuracy of ELM classifier

either remains constant or reduces from maximum accuracy. Therefore, to avoid the curse

of dimensionality problem, the feature set with 50, 55, 30, and 80 features are selected using

ELM classifier with linear, polynomial, RBF, and tansig kernel function respectively. The

rest of the performance parameters are tabulated in Table 3.7.

Table 3.7: Performance analysis of kernel based ELM classifiers using Ovarian dataset.

Kernel Accuracy Precision Recall Specificity F-measure

Linear Function 1.0000 1.0000 1.0000 1.0000 1.0000

Polynomial Function 0.9920 1.0000 0.9780 1.0000 0.9888

Tansig Function 0.9970 1.0000 0.9890 1.0000 0.9944

Radial Basis Function 0.9920 1.0000 0.9780 1.0000 0.9888
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Similarly, Figure 3.6b shows the accuracy of RVM classifier with different kernel

functions by varying the number of features using Ovarian dataset. From this figure, it is

evident that maximum accuracy (minimum CV error) has been acquired when feature set

with 30, 50, 40, and 30 features are selected using RVM classifier with linear, polynomial,

RBF, and tansig kernel function respectively. After attaining the peak, the accuracy of

RVM classifier either remains constant or reduces from maximum accuracy. Therefore, to

avoid the curse of dimensionality problem, the feature set with 30, 50, 40, and 35 features

are selected using RVM classifier with linear, polynomial, RBF, and tansig kernel function

respectively. The rest of the performance parameters are tabulated in Table 3.8

Table 3.8: Performance analysis of kernel based RVM classifier using Ovarian dataset.

kernel Accuracy Precision Recall Specificity F-measure

Linear Function 0.9960 1.0000 0.9890 1.0000 0.9945

Polynomial Function 0.9960 1.0000 0.9890 1.0000 0.9945

Tansig Function 0.9960 1.0000 0.9890 1.0000 0.9944

Radial Basis Function 0.9960 1.0000 0.9890 1.0000 0.9944

Similarly, Figure 3.6c shows the accuracy of KFIS classifier with different kernel

functions by varying the number of features using Ovarian dataset. From this figure, it is

evident that maximum accuracy (minimum CV error) has been acquired when feature set

with 55, 65, 45, and 25 features are selected using RVM classifier with linear, polynomial,

RBF, and tansig kernel function respectively. After attaining the peak, the accuracy of

KFIS classifier either remains constant or reduces from maximum accuracy. Therefore, to

avoid the curse of dimensionality problem, the feature set with 55, 65, 45, and 25 features

are selected using RVM classifier with linear, polynomial, RBF, and tansig kernel function

respectively. The rest of the performance parameters are tabulated in Table 3.8

Table 3.9: Performance analysis of kernel based KFIS classifier using Ovarian dataset.

Kernel/#Features/ra Accuracy Precision Recall Specificity F-measure

Linear/55/0.2 0.9646 0.9556 0.9451 0.9755 0.9503

Polynomial/65/0.3 0.9684 0.9560 0.9560 0.9753 0.9560

Tansig/25/0.3 0.9723 0.9667 0.9560 0.9815 0.9613

RBF/45/0.4 0.9684 0.9663 0.9451 0.9815 0.9556

3.5.3 Case study: Breast cancer

The breast cancer dataset consists of 97 samples and 24481 features (genes). The samples

are categorized as `relapse' and `non-relapse' classes [110]. Out of 97 samples, the dataset

contains 46 relapse and 51 no-relapse samples. Figure 3.7a shows the accuracy of ELM

classifier with different kernel functions by varying the number of features using Breast

cancer dataset. From Figure 3.7a, it is clear that maximum accuracy (minimum CV error)

has been acquired when feature set with 15, 10, 30, and 75 features are selected using
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(c) Classification accuracy of KFIS classifier

Figure 3.7: Accuracy of classifiers with various number of features using Breast cancer

dataset

ELM classifier with linear, polynomial, RBF, and tansig kernel function respectively. After

attaining the peak, the accuracy of ELM classifier either remains constant or reduces from

maximum accuracy. Therefore, to avoid the curse of dimensionality problem, the feature set

with 15, 10, 30, and 75 features are selected using ELM classifier with linear, polynomial,

RBF, and tansig kernel function respectively.

Table 3.10: Performance analysis of kernel based ELM classifiers using Breast cancer

dataset.

kernel Accuracy Precision Recall Specificity F-measure

Linear Function 0.7835 0.7885 0.8039 0.7608 0.7961

Polynomial Function 0.7835 0.7419 0.9019 0.6521 0.8141

Tansig Function 0.7835 0.7777 0.8235 0.7391 0.8000

Radial Basis Function 0.8247 0.8148 0.8627 0.7826 0.8380

Similarly, Figure 3.7b shows the accuracy of RVM classifier with different kernel

functions by varying the number of features using Breast cancer dataset. From this Figure,

it is clear that maximum accuracy (minimum CV error) has been acquired when feature set

with 5, 5, 20, and 40 features are selected using RVM classifier with linear, polynomial,

RBF, and tansig kernel function respectively. After attaining the peak, the accuracy of RVM

classifier either remains constant or reduces from maximum accuracy. Therefore, to avoid

the curse of dimensionality problem, the feature set with 5, 5, 20, and 40 features are selected
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using RVM classifier with linear, polynomial, RBF, and tansig kernel function respectively.

The rest of the performance parameters are tabulated in Table 3.11.

Table 3.11: Performance analysis of kernel based RVMclassifier using Breast cancer dataset.

kernel Accuracy Precision Recall Specificity F-measure

Linear Function 0.8247 0.8695 0.7843 0.8696 0.8247

Polynomial Function 0.8454 0.9091 0.7843 0.9130 0.8421

Tansig Function 0.8267 0.8695 0.8039 0.8478 0.8283

Radial Basis Function 0.8247 0.8542 0.8039 0.8478 0.8283

Similarly, Figure 3.7c shows the accuracy of KFIS classifier with different kernel

functions by varying the number of features using Breast cancer dataset. From this Figure,

it is clear that maximum accuracy (minimum CV error) has been acquired when feature set

with 25, 15, 10, and 35 features are selected using RVM classifier with linear, polynomial,

RBF, and tansig kernel function respectively. After attaining the peak, the accuracy of

KFIS classifier either remains constant or reduces from maximum accuracy. Therefore, to

avoid the curse of dimensionality problem, the feature set with 25, 15, 10, and 35 features

are selected using KFIS classifier with linear, polynomial, RBF, and tansig kernel function

respectively. The rest of the performance parameters are tabulated in Table 3.12

Table 3.12: Performance analysis of kernel basedKFIS classifier using Breast cancer dataset.

Kernel/#Features/ra Accuracy Precision Recall Specificity F-measure

Linear/25/0.4 0.8333 0.8302 0.8627 0.8043 0.8462

Polynomial/15/0.3 0.8247 0.8269 0.8431 0.8043 0.8350

Tansig/35/0.2 0.8247 0.8148 0.8627 0.7826 0.8381

RBF/10/0.3 0.8144 0.8113 0.8431 0.7826 0.8269

3.5.4 Comparative analysis

This section presents the comparative analysis performed for the three datasets using ELM,

RVM and KFIS classifiers. The system configuration used in this analysis are as follows:

• Running time of the classification algorithm depends on number of features (genes)

and number of training data points.

• Running time was recorded using MATLAB'13a on Intel Core(TM) i7 Processor with

3.40GHz speed and RAM of 4GB.

In this analysis, it is found that the performance (accuracy) of the four kernels varied

depending on the type of data set (whether Leukemia, Breast or Ovarian cancer) used by the

three classifiers viz., ELM, RVM, and KFIS. So the interpretation that can be drawn for the

comparative analysis is as follows:
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• From Table 3.4, it is evident that Polynomial kernel obtained better accuracy for

Leukemia dataset when compared to both the used dataset and the kernel. Similarly

fromTable 3.7 and Table 3.10 it is can be inferred that Linear and RBF kernels obtained

better accuracy for Ovarian and Breast cancer data sets respectively in case of ELM

classifier.

• From Table 3.5, it is evident that tansig kernel obtained better accuracy for Leukemia

dataset when compared to both the used dataset and the kernel. Similarly from Table

3.8 and Table 3.11 it is can be inferred that Polynomial kernels obtained better accuracy

for both the Ovarian and Breast cancer data set in case of RVM classifier.

• The KFIS classifier gives the comparable results with the SVM.

• Table 3.13, Table 3.14, and Table 3.15 show the detailed comparison of ELM, RVM,

KFIS, and SVM classifier in terms of average training, average testing accuracy and

CPU time (in seconds). by considering varying numbers of feature sets. The median

value of the best γ, C, and ra from each fold is considered for each of the classifiers

with different kernel functions.

• It can be realized that feature selection as well as the choice of kernels play a significant

role in the classification of microarray data.

Table 3.13: Average training, average testing accuracy and CPU time (in Seconds) of ELM,

RVM, KFIS, and SVM with different kernel functions for Leukemia Dataset.

ELM

Linear kernel Polynomial kernel RBF kernel Tansig kernel

C=0.03125 γ = 3, C=0.03125 γ =2, C=0.03125 γ =0.0625, C=4

Train Acc. Test Acc. Train Acc. Test Acc. Train Acc. Test Acc. Train Acc. Test Acc.

99.69(0.0030) 98.61(0.00063) 100(0.0096) 100(0.0018) 100(0.0055) 95.83(0.0014) 96.44(0.0059) 95.83(0.0013)

RVM

C=1 γ = 4 , C= 16 γ= 2, C= 32 γ = 3, C=32

Train Acc. Test Acc. Train Acc. Test Acc. Train Acc. Test Acc. Train Acc. Test Acc.

99.38 98.61(42.10003) 98.85 97.22(90.52742) 99.41 97.22(88.17989) 98.85 98.61(39.90865)

KFIS

C=1, r=0.2 γ = 3 , C= 0.5, ra = 0.2 γ= 0.5, C= 1, ra = 0.4 γ = 0.5, C=0.1, ra = 0.2

Train Acc. Test Acc. Train Acc. Test Acc. Train Acc. Test Acc. Train Acc. Test Acc.

97.81 97.22 (7.6) 98.55 98.61 (44.3) 99.24 97.22 (5.5) 98.71 98.61 (41.7)

SVM

C=1.5 γ = 3, C=32 γ= 8, C=32 γ =0.125, C=24

Train Acc. Test Acc. Train Acc. Test Acc. Train Acc. Test Acc. Train Acc. Test Acc.

99.69 100(128) 98.30 98.75(218) 99.38 100(114) 100 100(133)

Further, the trade-off between accuracy and time has been shown in Figure 3.8, where the

performance of classifiers have been averaged over the all three datasets. From this figure it

is concluded that,

• There is no significant difference between accuracy of classifiers.

• ELM is very faster than all three classifiers, i.e., the processing time taken by classifier

are in the order like TimeSVM > TimeRVM > TimeKFIS > TimeELM .

• Hence, The performance of ELM is best among all these classifiers to process the

microarray datasets.
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Table 3.14: Average training, average testing accuracy and CPU time (in Seconds) of ELM,

RVM, KFIS, and SVM with different kernel function for Breast cancer Dataset.

ELM

Linear kernel Polynomial kernel RBF kernel Tansig kernel

C=0.03125 γ = 0.75, C=0.51563 γ = 0.3125, C=0.28125 γ = 0.046875 , C=24

Train Acc. Test Acc. Train Acc. Test Acc. Train Acc. Test Acc. Train Acc. Test Acc.

80.18(0.0043) 78.35(0.00058) 82.45(0.0058) 78.35(0.00091) 97.72(0.0081) 82.47(0.0018) 76.99(0.0083) 78.35(0.0020)

RVM

C=2 γ = 0.0625, C= 32 γ = 4, C= 16 γ = 4, C= 16

Train Acc. Test Acc. Train Acc. Test Acc. Train Acc. Test Acc. Train Acc. Test Acc.

81.42 82.47(79.52637) 83.29 84.54(64.57821) 81 82.47(105.4732) 83.29 82.67(95.54732)

KFIS

C=2, ra = .4 γ = 3, C= .5, ra = .3 γ = 4, C= 2, ra = .3 γ = .5, C= 0.5 ra = .0.2

Train Acc. Test Acc. Train Acc. Test Acc. Train Acc. Test Acc. Train Acc. Test Acc.

85.42 83.33(09.11) 86.29 82.25(13.87) 81 81.55(20.45) 84.29 82.30(15.34)

SVM

C=32 γ = 0.125, C=32 γ = 1, C=4 γ = 0.5, C=32

Train Acc. Test Acc. Train Acc. Test Acc. Train Acc. Test Acc. Train Acc. Test Acc.

82.02 83.44(135) 81.11 80.67(938) 82.71 81.56(185) 83.27 84.44(177)

Table 3.15: Average training, average testing accuracy and CPU time (in Seconds) of ELM,

RVM, KFIS, and SVM with different kernel function for Ovarian cancer Dataset.

ELM

Linear kernel Polynomial kernel RBF kernel Tansig kernel

C=0.03125 γ = 0.6, C=0.03125 γ = 0.03125, C=0.03125 γ = 0.03125, C=4.8

Train Acc. Test Acc. Train Acc. Test Acc. Train Acc. Test Acc. Train Acc. Test Acc.

100(0.019) 100(0.0028) 99.03(0.054) 99.20(0.0058) 100(0.039) 99.21(0.0059) 99.61(0.043) 99.60(0.0067)

RVM

C=32 γ = 32, C=32 γ = 1, C=32 γ = 0.06255, C=32

Train Acc. Test Acc. Train Acc. Test Acc. Train Acc. Test Acc. Train Acc. Test Acc.

99.13 99.60(495.7972) 99.61 99.60(305.1218) 99.44 99.60(213.1664) 99.43 99.60(203.2343)

KFIS

C=4, ra = .2 γ = 3, C=0.5 ,ra = .3 γ = 1, C=2, ra = .4 γ = 0.06255, C=4, ra = .3

Train Acc. Test Acc. Train Acc. Test Acc. Train Acc. Test Acc. Train Acc. Test Acc.

98.45 96.64(95.84) 97.61 96.84(105.56) 99.44 96.83(113.45) 99.58 97.21(130.32)

SVM

C=32 γ = 32, C=32 γ = 1, C=32 γ = 0.06255, C=32

Train Acc. Test Acc. Train Acc. Test Acc. Train Acc. Test Acc. Train Acc. Test Acc.

99.52 100(146) 99.43 99.23(171) 99.86 100(720) 99.77 84.44(177)

(a) Linear Kernel (b) Polynomial Kernel

(c) RBF Kernel (d) Tansig Kernel

Figure 3.8: Comparison of performance of classifier with different kernel functions
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3.6 Summary

In this chapter, an attempt has been made to design classification models for classifying the

samples of microarray data into their respective classes. Hence, a classification framework

was designed using ELM, RVM, and KFIS classifier with various kernel functions. Feature

selection was carried out using t-test. 10-fold CV technique was applied to enhance the

performance of the classifiers. The performance of the classifiers for all three datasets

were evaluated using performance parameters. From the computed results, it is observed

that ELM with RBF kernel, RVM with polynomial kernel, and KFIS with RBF kernel as

classifier yields better result when compared with ELM, RVM, and KFIS with remaining

kernel functions and the existing classifier like SVM.

This chapter helps to induce a thought to solve the classification problem, when data

size further increases. The rapid growth of diseases in the present day has lead to a huge

increase in the datasize with respect to different category of disease, causing enormous loss

to human life. To detect a disease causing factor of a particular class at an early stage within

a large space of data is very much critical. The complexity of classifying a particular disease

into a particular class can be reduced by the use of `Big data' concept since the analysis is

based on large pool of data. This can be achieved through the use of techniques such as High

Performance Computing (HPC), Hadoop etc. which intend to minimize the amount of time

required for classifying a disease into a particular category of class.
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Feature selection of Microarray Data

using Scalable Statistical tests

In this chapter, various statistical tests are implemented on scalable cluster. The methods

are able to handle and analyze the high-dimensional Big data in a distributed manner. The

scalable statistical tests are applied on these datasets to select the relevant features, and the

selected features are used for the further analysis.

4.1 Introduction

In recent years, the DNA microarray technique has made a great impact in determining

informative genes that cause cancer [115, 116]. The major drawback that exists in

microarray data analysis is the curse of dimensionality problem, which hinders usefulness

of information from a dataset and leads to computational instability [117]. Therefore, the

selection/extraction of relevant features (genes) remains an imperative task in analyzing

cancer microarray datasets, which is a critical step towards effective classification.

In literature, many feature (gene) selection/extraction techniques have been proposed by

various researchers and practitioners [138]. Meanwhile, recent developments in microarray

chip technology have helped in assaying thousands/millions of genes simultaneously,

generating a huge amount of data. However, it is difficult to process the data on a

conventional system (where, data are stored on a standalone machine) with standard

computational power.

In recent years, Big data applications have increasingly become the focus of attention

because of the enormous increase in data generation and storage that has taken place.

Extracting information from the large sized pool of data becomes a challenge because current

datamining techniques are not adapted to the new space and time requirements. To overcome

these challenges, many paradigms like MapReduce, Spark, etc. have been considered

for developing scalable algorithms. Researchers have accomplished a significant array of

relevant, intelligent techniques in data science development; where these approaches deal

with imprecision, uncertainty, learning, and evolution in posing and solving computational

problems [11].

Qian et al. [18] proposed a parallel and hierarchical attribute reduction method that
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can be applied to Big data to analyze the intended data more efficiently. This model is

able to mine decision rules under different levels of granularity. The proposed algorithms

are implemented in the Hadoop framework using MapReduce, which can distribute the

data and tasks in parallel and efficiently deal with Big data. Li et al. [17] developed

a dominance-based rough sets approach, which is an extension of classical rough sets

theory, for selecting relevant features efficiently. It processes information within the

preference-ordered attribute domain and then uses it for multi-criteria decision analysis.

Ayadi et al. [12] used the concept of biclusters, using DNA gene expression for microarray

data. Initially, they considered a new tree structure, called themodified bicluster enumeration

tree (MBET), in which biclusters are represented by the profile shapes of genes. In the next

phase, they proposed an algorithm called BiMine+, which uses a pruning rule to avoid both

trivial biclusters and the combinatorial explosion of the search tree. The performance of

BiMine+ was assessed on both synthetic and real DNA microarray datasets. Triguero et al.

[16] described theMROSEFW-RF algorithm based on aMapReduce parallelization strategy.

This algorithm ensembles several highly scalable re-processing and mining methods. It

performs the balancing of class distribution, detects cost-relevant features, and builds an

appropriate random forest model. Islam et al. [13] proposed a MapReduce-based parallel

gene selection method, that utilizes sampling techniques to reduce irrelevant genes by using

the ratio of between-group to within-group sums of squares (BW). The BW ratio indicates

the variances among gene expression values. After gene selection, it applies the MRkNN

technique to execute multiple kNN in parallel using the MapReduce programming model.

Finally, the effectiveness of the method was verified through extensive experiments using

several real and synthetic datasets. Wang et al. [14] proposed a new method for calculating

correlation and introduced an efficient algorithm based on MapReduce to optimize storage

and correlation calculations. This algorithm is used as a basis for optimizing high-throughput

molecular data (microarray data) correlation calculations. He et al. [15] described a parallel

implementation of several classification algorithms (e.g., k-nearest neighbor, naive Bayesian

models, and decision trees), which were executed concurrently on various clusters using the

iris dataset.

The statistical tests like t-test, ANOVA, Wilcoxon ranked sum test, Kruskal-Wallis test,

and Friedman test can be considered for features selection, but only three tests viz., ANOVA,

Kruskal-Wallis test, and Friedman test are considered due to following advantages.

• For multiclass problem, t-test and Wilcoxon ranked sum test cannot be applied.

• For binary class problem, t-test is similar to ANOVA and Wilcoxon ranked sum test is

similar to Friedman test, but Wilcoxon ranked sum test is not applicable for multiclass

problem and Friedman test is not applicable for binary class problem.

Hence, only three tests viz., ANOVA, Kruskal-Wallis test, and Friedman test are considered

for feature selection, which covers all the requirements of this research work.
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This chapter emphasizes on the way of handling the Big data in an efficient manner.

Various statistical methods like ANOVA, Kruskal-Wallis, and Friedman tests based on

MapReduce and Spark are proposed and applied to select the features which are most

informative and able to distinguish the diseases. These proposed methods are able to

process the Big data data in distributed manner on various nodes of cluster. By applying

these methods as feature selection methods, the curse of dimensionality issue has been also

resolved.

The rest of the work is organized as follows: Section 4.4 presents the details of the

experimental setup, which is used to for this project work. Section 4.2 described the dataset

description used for the experiment. Section 4.5 presents the implementation details for

the proposed feature selection approach. Section 4.6 discusses on the results obtained,

interpretation drawn from it and also presents the comparative analysis for feature selection

of various microarray datasets. Section 4.7 summarizes the chapter.

4.2 Datasets Used

The proposed algorithms are evaluated on the various benchmarked datasets taken from

the NCBI GEO repository (NCBI GEO, http://www.ncbi.nlm.nih.gov/gds/) and Kent
RidgeBio-medical Dataset Repository [93]. The datasets are divided into training and testing

set using the Algorithm 1. The detailed description of the datasets are presented as follows.

4.2.1 Leukemia cancer

The Leukemia dataset (file size= 6 MB) consists of expression profiles of 72 samples and

7129 features (genes) of each sample, categorized as acute lymphoblastic leukemia (ALL)

and acute myeloid leukemia (AML) classes. It has 47 ALL and 25 AML samples [109].

Table 4.1 represents the number of samples in each class for training set and testing set of

dataset Leukemia.

Table 4.1: Class label, number of training and testing samples in each class of Leukemia

dataset

Leukemia Classes Class Label #Training

Samples

#Testing

Samples

ALL 0 32 16

AML 1 16 8

4.2.2 Breast cancer

The breast cancer (data size = 20.2 MB) dataset consists of 24481 features (genes). It has 97

samples, categorized as `relapse' and `non-relapse' classes. Out of 97 samples, the dataset
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contains 46 relapse and 51 no-relapse samples [139]. Table 4.2 represents the number of

samples in each class for training set and testing set of dataset Breast cancer.

Table 4.2: Class label, number of training and testing samples in each class of Breast cancer

dataset

Breast Classes Class Label #Training Samples #Testing Samples

relapse 0 30 16

non-relapse 1 34 17

4.2.3 Ovarian cancer

The ovarian cancer dataset (file size= 30.2 MB) consists of 253 samples and 15154 features

(genes) of each sample. It is categorized as `cancer' and `normal' classes. Out of 253

samples, the dataset contains 162 cancer and 91 normal samples [111]. Table 4.3 represents

the number of samples in each class for training set and testing set of dataset Ovarian cancer.

Table 4.3: Class label, number of training and testing samples in each class of Ovarian cancer

dataset

Ovarian Classes Class Label #Training Samples #Testing Samples

cancer 0 108 54

normal 1 60 31

4.2.4 Dataset with accession number GSE24080

The dataset MULTMYEL (accession number GSE24080) has 559 samples and 54,675

features. It contains 2 classes (groups) and is of 493 MB in size [140]. Table 4.4 represents

the number of samples in each class for training set and testing set of dataset GSE24080.

Table 4.4: Class label, number of training and testing samples in each class of GSE24080

dataset

GSE24080 Classes Class Label #Training Samples #Testing Samples

cancer 0 124 78

normal 1 148 109

4.2.5 Dataset with accession number GSE13159

This comprises 2,096 samples in which each data sample is further represented by 54,675

feature dimensions. Again, the samples are categorized into 18 different classes. The
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downloaded file is of size 1.93 GB [141]. Table 4.5 represents the number of samples in

each class for training set and testing set of dataset GSE13159.

Table 4.5: Class label, number of training and testing samples in each class of GSE13159

dataset.

GSE13159 Classes Class Label #Training Samples #Testing Samples

ALL with hyperdiploid karyotype 1 26 14

ALL with t(12;21) 2 39 19

ALL with t(1;19) 3 24 12

AML complex aberrant karyotype 4 32 16

AML with inv(16)/t(16;16) 5 19 9

AML with normal karyotype + other abnormalities 6 234 117

AML with t(11q23)/MLL 7 25 13

AML with t(15;17) 8 25 12

AML with t(8;21) 9 26 14

CLL 10 299 149

CML 11 51 25

MDS 12 137 69

Non-leukemia and healthy bone marrow 13 49 25

Pro-B-ALL with t(11q23)/MLL 14 47 23

T-ALL 15 116 58

c-ALL/Pre-B-ALL with t(9;22) 16 81 41

c-ALL/Pre-B-ALL without t(9;22) 17 158 79

mature B-ALL with t(8;14) 18 9 4

4.2.6 Dataset with accession number GSE13204

This is a super-series with a sample size of 1.96 GB that comprises the following two

sub-series. Table 4.6 represents the number of samples in each class for training set and

testing set of dataset GSE13204.

• GSE13159 Microarray Innovations in LEukemia (MILE) study: Stage 1 data

• GSE13164 Microarray Innovations in LEukemia (MILE) study: Stage 2 data

The former sub-series contains 54,675 features whereas the latter has only 1,428 features.

These two are combined with appropriate genes to form the final super-series with 3,248

samples and 1,428 genes per sample. It is also grouped into 18 classes [141–143].

4.2.7 Dataset with accession number GSE15061

This is a subset composed of MILE study stage 1 data of size 650 MB. It has 870 samples

and 54,675 features per sample, which are classified into three different classes [144]. Table

4.7 represents the number of samples in each class for training set and testing set of dataset

GSE15061.

The datasets are summarized in Table 4.8. The next stage extracts suitable features from
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Table 4.6: Class label, number of training and testing samples in each class of GSE13204

dataset.

LEukemia Classes Class Label #Training Samples #Testing Samples

ALL with hyperdiploid karyotype 1 50 25

ALL with t(12;21) 2 81 41

ALL with t(1;19) 3 31 15

AML complex aberrant karyotype 4 48 24

AML with inv(16)/t(16;16) 5 32 16

AML with normal karyotype + other abnormalities 6 340 171

AML with t(11q23)/MLL 7 37 18

AML with t(15;17) 8 38 19

AML with t(8;21) 9 37 19

CLL 10 457 228

CML 11 79 40

MDS 12 218 109

Non-leukemia and healthy bone marrow 13 88 44

Pro-B-ALL with t(11q23)/MLL 14 62 31

T-ALL 15 169 84

c-ALL/Pre-B-ALL with t(9;22) 16 123 61

c-ALL/Pre-B-ALL without t(9;22) 17 263 132

mature B-ALL with t(8;14) 18 12 6

Table 4.7: Class label, number of training and testing samples in each class of GSE15061

dataset

GSE15061 Classes Class Label #Training Samples #Testing Samples

disease state: AML 1 269 135

disease state: MDS 2 219 109

disease state: none-of-the-targets 3 92 46

Table 4.8: Microarray dataset used

Dataset #Samples #Features #Classes Data size #Training samples #Testing samples

Leukemia [109] 72 7129 2 6 MB 48 24

Ovarian Cancer [111] 253 15154 2 30.2 MB 168 85

Breast Cancer [139] 97 24481 2 20.2 MB 64 33

GSE24080 [140] 559 54675 2 493 MB 372 187

GSE13159 [141] 2096 54675 18 1.93 GB 1397 699

GSE13204 [142] 3428 1480 18 1.96 GB 2165 1083

GSE15061 [144] 870 54675 3 650 MB 580 290

both training and test sets using the aforementioned feature selection (FS) methods. The

reduced set, obtained from the training set after feature selection, is then applied to model

a classifier using stratified 3-fold cross validation. The developed model is then applied to

the reduced test dataset to assign their respective labels.

4.3 Performance parameters

The performance of the classifiers/models are measured using the various parameters like:
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• Confusion matrix: It provides the statistics for the number of correct and

incorrect predictions made by a classification model and is compared with the actual

classifications of the samples in the test data [135]. The confusion matrix is a table

that shows the output and actual (target) class classification accomplished by the

classifier. The confusion matrix for two class problem and corresponding measures of

performance are represented in Table 4.9.

Table 4.9: Confusion matrix

Target class

neg pos

Classified as neg tn fn npv = tn
tn+fnOutput class

Classified as pos fp tp Precision = tp
tp+fp

Specificity = tn
tn+fp

Recall = tp
tp+fn

Accuracy = tp+tn
tp+fp+fn+tn

For a multi class confusion matrix M with k classes, the performance parameters of

ith class is the summation of rows/columns of the matrixM , and is given as:

Recalli =
Mii∑k
j Mji

(4.1)

Precisioni =
Mii∑k
j Mij

F −Measurei =
2 ∗Recalli ∗ Precisioni

Recalli + Precisioni

Accuracy =

∑k
i Mii∑k

i

∑k
j Mij

• Processing efficiency: It is defined as the number of features processed per second.

It is calculated by dividing the total number of features by the total time taken for

processing by the system (Hadoop cluster or conventional system).

4.4 Experimental setup

The proposed algorithms in the subsequent chapters are executed using MapReduce and

Spark on the top of Hadoop cluster consisting of one master node and three slave nodes.

Four commodity PCs connected with 10/100M switch are used in the experiment, and the

configuration is as follows:

• Hardware configurations:

– Master node: Name Node 1, CPU Intel core i5, 3.2 GHz x 4, RAM 14 GB, Hard

disk 250 GB.
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– Slave node 1: Data Node 1, CPU Intel core i7, 3.4 GHz x 8, RAM 16 GB, Hard

disk 500 GB

– Slave node 2: Data Node 1, CPU Intel core i7, 3.4 GHz x 8, RAM 16 GB, Hard

disk 500 GB

– Slave node 3: Data Node 1, CPU Intel core i5, 3.2 GHz x 4, RAM 16 GB, Hard

disk 250 GB

• Software used: Ubuntu 14.04, JDK, Hadoop 2.6.0, Python 2.7, Spark 1.5.0

4.5 Implementation

In this section, the implementation details of the proposed scalable statistical tests based on

MapReduce and Spark are discussed. The input to the algorithm is a matrix of the form

N ×M , where N is the total number of features and M is the number of samples in the

dataset. As discussed earlier, the execution of the algorithms on MapReduce are divided

into two parts, the map phase and the reduce phase. In map phase, each mapper running on

a Datanode, reads a line (feature fi) from the block and calculates the required test statistic

(si) and p-value along with the feature ID (i) as a key-value pair (〈i, (si, pi)〉). It emits this
pair into a intermediary file. The reducer, based on the p-value decides on whether to select

or discard a feature. It then emits out the selected feature IDs (〈(fs1, fs2, fs3, ...)〉).
Similarly, the execution of algorithms on Spark are described as follows: The driver

program, which is client side API and creates the Spark context. The Spark context talks to

Spark driver and cluster manager and launch the Spark executers. The executers executes

on the worker nodes. The input dataset is transformed into a RDD with the help of Spark

context, which is resilient, and distributed dataset. The mapper and reducer is applied on the

RDD and the processing is done, i.e., the mapper is applied on the RDD and it returns the

transformed RDD of key-value pair (〈i, (si, pi)〉) by applying map transformation. In this

way, various types of transformation is applied on the RDD to get the desired result, and

finally some feasible action (e.g., collect, saveAsTextFile, first, count, etc.) is performed on

the transformed RDD to evaluate and get the result.

4.5.1 Feature selection using scalable ANOVA (sANOVA)

Analysis of Variance (ANOVA) is applied to compare the `multiple mean' values of the

dataset, and visualize whether there exists any significant difference between multiple

sample means. The statistic for ANOVA is called the F-statistic, which can be calculated

using following steps:
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1. The variation between the groups is calculated as:

Between sum of squares (BSS) = m1

(
X̄1 − X̄

)2
+m2

(
X̄2 − X̄

)2
+ ...

+mk

(
X̄k − X̄

)2
(4.2)

Between mean squares (BMS) = BSS/df (4.3)

2. The variation within the groups is calculated as:

Within sum of squares (WSS) = (m1 − 1)σ2
1 + (m2 − 1)σ2

2 + ...

+ (mk − 1)σ2
k (4.4)

Within mean squares(WMS) = WSS/dfw (4.5)

where, X̄ is the mean of the X , df is degree of freedom ,and equal to M − 1, dfw =

(M − k), σ= standard deviationM = Number of samples, k = Number of groups, and

mk = no. of samples in group k.

3. F-test statistic is calculated as:

F = BMS/WMS (4.6)

Algorithms 6 and 7 describe the implementation of ANOVA based onMapReduce and Spark

frameworks.

4.5.2 Feature selection using scalable Kruskal-Wallis test

(sKruskal-Wallis)

Kruskal-Wallis test is a non-parametric approach, which tests the Null hypothesis. This

implies that the mean ranks of the g different groups (classes) are the same. If the

distributions are different, the Kruskal-Wallis test can reject the null hypothesis even though

the medians are the same. For that, the data vectors are transformed into ranks (r) in

increasing order ranging from r = 1 to r = M . In the presence of sequences of equal

values (i.e., ties), mean ranks are assigned to the corresponding sequences. The test statistic

can be computed according to Equation 4.7.

H =
12

M(M + 1)

(
g∑

k=1

(R2
k)

mk

)
− 3(M + 1) (4.7)
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Algorithm 6MapReduce based ANOVA

Input: Let Fd = {(fi)|fi ∈ RM , i = 1, 2, ..., N} is a set of input data, where N is number

of features andM is number of samples.

Output: Top P features, i.e., SelectedFeatures.

1: procedureMAP_A(fi) . i = 1, 2, ..., N
2: for each feature fi do . runs in parallel
3: Calculate the value of BMS using Equation 4.3.

4: Calculate the value ofWMS using Equation 4.5.

5: Calculate the F-value (Fi = BMS/WMS)
6: Calculate the p-value (pi) corresponding to each F-value using F-distribution

curve

7: Emit 〈i, (Fi, pi)〉 . return
8: end for

9: end procedure

10: procedure REDUCE_A(〈i, (Fi, pi)〉)
11: for each feature fi do . runs in parallel
12: if pi < 0.001 then
13: Select the feature, called fsi
14: else

15: Discard the feature

16: end if

17: end for

18: Emit 〈(fs1, fs2, fs3, ...)〉 . return
19: end procedure

Algorithm 7 Spark based ANOVA

Input: Let Fd = {(fi)|fi ∈ RM , i = 1, 2, ..., N} is a set of input data, where N is number

of features andM is number of samples.

Output: Top P features, i.e., SelectedFeatures.
1: procedure DRIVER_MAIN(Fd)
2: Create RDD of Input data Fd, called featureRDD
3: SelectedFeatures ← featureRDD.map(MAP_A).filter(REDUCE_A).

saveAsTextFile(``〈HDFSPath〉/result")
4: Return SelectedFeatures
5: end procedure

where, Rk = the rank sum of kth group, andM =
g∑

k=1

mk is the total number of sample size.

Algorithms 8 and 9 describe the implementation of Kruskal-Wallis based on MapReduce

and Spark frameworks.

4.5.3 Feature selection using scalable Friedman test (sFriedman)

Friedman test is a non-parametric alternative for this type of g dependent groups with equal

sample sizes. The null hypothesis, H0 : F (1) = F (2) = ... = F (g) is tested against the

alternative hypothesis: at least one group does not belong to the same population. The data
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Algorithm 8MapReduce based Kruskal-Wallis test

Input: Let Fd = {(fi)|fi ∈ RM , i = 1, 2, ..., N} is a set of input data, where N is number

of features andM is number of samples.

Output: Top P features, i.e., SelectedFeatures.

1: procedureMAP_KW(fi) . i = 1, 2, ..., N
2: for each feature fi do . runs in parallel
3: Assign a rank rj to each feature value . i = 1, 2, ..., N and j = 1, 2, ...,M
4: Calculate Rg =

∑
fij∈g rj for each group (class) g

5: Calculate the H-value using Equation 4.7

6: Calculate the p-value (pi) corresponding to each H-value using χ2-distribution

curve

7: Emit 〈i, (Hi, pi)〉 . return
8: end for

9: end procedure

10: procedure REDUCE_KW(〈i, (Fi, pi)〉)
11: for each feature fi do . runs in parallel
12: if pi < 0.001 then
13: Select the feature, called fsi
14: else

15: Discard the feature

16: end if

17: end for

18: Emit 〈(fs1, fs2, fs3, ...)〉 . return
19: end procedure

Algorithm 9 Spark based Kruskal-Wallis test

Input: Let Fd = {(fi)|fi ∈ RM , i = 1, 2, ..., N} is a set of input data, where N is number

of features andM is number of samples.

Output: Top P features, i.e., SelectedFeatures.
1: procedure DRIVER_MAIN(Fd)
2: Create RDD of Input data Fd, called featureRDD
3: SelectedFeatures ← featureRDD.map(MAP_KW).filter(REDUCE_KW).

saveAsTextFile(``〈HDFSPath〉/result")
4: Return SelectedFeatures
5: end procedure

vector is ranked (r) in ascending order ranging from r = 1 to r = m separately for each

group (class), where m is the number of samples in each group. After that, the statistic of

Friedman test is calculated according to Equation

F =
12

Mg(g + 1)

(
g∑

k=1

R2
k

)
− 3M(g + 1) (4.8)

where, Rk = the rank sum of kth group and N =
g∑

k=1

mk is the total number of sample

size, and g is the total number of groups (classes). Algorithms 10 and 11 describe the
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implementation of Friedman based on MapReduce and Spark frameworks.

Algorithm 10MapReduce based Friedman test

Input: Let Fd = {(fi)|fi ∈ RM , i = 1, 2, ..., N} is a set of input data, where N is number

of features andM is number of samples.

Output: Top P features, i.e., SelectedFeatures.

1: procedureMAP_F(fi) . i = 1, 2, ..., N
2: for each feature fi do . runs in parallel
3: Divide the feature value into their various group g (Let the number of samples

in each group bem) . i = 1, 2, ..., N
4: Assign a rank rj to each feature value of each group g separately, where j =

1, 2, ...,m
5: Calculate Rg =

∑
fij∈g rj for each group g

6: Calculate the F-value using Equation 4.8

7: Calculate the p-value (pi)corresponding to each F-value using χ2-distribution

curve

8: Emit 〈(Fi, pi)〉
9: end for

10: end procedure

11: procedure REDUCE_F(〈i, (Fi, pi)〉)
12: for each feature fi do . runs in parallel
13: if pi < 0.001 then
14: Select the feature, called fsi
15: else

16: Discard the feature

17: end if

18: end for

19: Emit 〈(fs1, fs2, fs3, ...)〉 . return
20: end procedure

Algorithm 11 Spark based Friedman test

Input: Let Fd = {(fi)|fi ∈ RM , i = 1, 2, ..., N} is a set of input data, where N is number

of features andM is number of samples.

Output: Top P features, i.e., SelectedFeatures.
1: procedure DRIVER_MAIN(Fd)
2: Create RDD of Input data Fd, called featureRDD
3: SelectedFeatures ← featureRDD.map(MAP_F).filter(REDUCE_F).

saveAsTextFile(``〈HDFSPath〉/result")
4: Return SelectedFeatures
5: end procedure

4.6 Results and Interpretation

In this section, the obtained results are discussed for the proposed algorithms (Section 3.2)

on various microarray datasets.
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4.6.1 Analysis of feature selection methods

Since the dataset contains a large number of features with irrelevant information, it leads

to the ``curse of dimensionality problem". To avoid it, feature selection method based

on statistical tests viz., ANOVA test, Kruskal-Wallis test, and Friedman test are applied.

These methods are applied separately on each feature of the microarray data, assuming that

there is no interaction between the classes (or groups). The statistical tests consider two

hypothesis, i.e., Null hypothesis and alternate hypothesis. The Null hypothesis assumes

that the properties (like mean, median, and variance, etc.) of the classes are same, i.e.,

there is no significant difference between them; and the alternate hypothesis is that, there

exists a significant difference between the groups (or classes). The features confirming Null

hypothesis (H0) implies that they do not affect the classification result and hence, can be

discarded. On the contrary, the alternate hypothesis (H1) implies that the features have

significant difference between their properties. Hence, they are accepted. The statistical

tests have been applied to each feature and the corresponding p-value is a measure of how

effective it is at separating groups.

By considering the 99.9% of the confidence interval (CI), if the p-value is less than 0.001,

the null hypothesis is rejected and alternate hypothesis is accepted. Sorting these features

according to their p-values helps to identify the features with strong representation.

The proposed feature selection techniques have two variants, i.e., MapReduce and Spark.

The implemented algorithms are executed on the top of Hadoop cluster and conventional

system and performance is investigated. The execution details include the block size, number

of mappers, minimum time taken by each mapper (TMap
min ) and reducer (TReducer

min ), and total

maximum time taken by the Hadoop cluster usingMapReduce (MR) (TMR
max), total time taken

by Hadoop cluster using Spark (T Spark
max ), and conventional time (TConv

max ). Conventional time

(TConv
max ) is defined as the time taken by a conventional system where data is not distributed

over differentmachines, i.e., data is stored on a singlemachine, and the dataset is sequentially

processed. The overall execution details of the system are tabulated in Table 4.10.

The comparison between the time taken by the Hadoop cluster (MR as well as Spark)

and a conventional system is given in Figure 4.1. From this figure, it is inferred that when

data size is small, the time taken by the MR is more than the time taken by a conventional

system. But, as the size of data grows, the time taken by the MR is much less than that for

the conventional system. But Spark is more faster than both MR and conventional system.

Hence, we can say that, the execution of algorithms on Spark is faster than MapReduce and

convention system, i.e., (T Spark
max ≤ TMR

max, T
conv
max ).

In this work, three different feature selection techniques such as ANOVA,

Kruskal-Wallis, and Friedman have been considered to select right set of features over

seven datasets such as Leukemia, Ovarian, Breast, GSE24080, GSE13159, GSE13204, and

GSE15061; and their performance are compared using execution time (in sec).
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Table 4.10: Execution details of various feature selection methods on Hadoop cluster (MR

and Spark) and conventional system (Time is measured in seconds (s)).

Dataset Feature selection

method

Block size

(MB)

No. of

mapper/

reducer

TMap
min TReducer

min TConv
max TMR

max T Spark
max Processing

efficiency

Conv (s−1)

Processing

efficiency

MR (s−1)

Processing

efficiency

Spark (s−1)

Leukemia
ANOVA 2 2 2 4 2 11 1.26 117.5 21.34 187.25

Kruskal-Wallis 2 2 5 4 9 14 3.41 30 19.29 79.18

Ovarian
ANOVA 2 2 4 3 5 18 2.02 64.8 18 160.79

Kruskal-Wallis 2 2 12 3 22 22 8.83 14.73 14.73 36.71

Breast
ANOVA 2 2 4 1 6 19 2.75 809.83 255.74 1766.91

Kruskal-Wallis 2 2 13 4 24 24 10.29 191.29 191.29 446.16

GSE24080
ANOVA 2 120 3 4 17 17.5 4.57 1152 1119.09 4285.34

Kruskal-Wallis 2 120 4 4 75 26 15.22 273.36 788.54 1347.13

GSE13159

ANOVA 2 292 2 128.9 165 150 16.28 224.34 246.77 2273.71

Kruskal-Wallis 2 292 3 158 347 185 81.48 106.33 199.44 452.84

Friedman 2 292 10 398.7 2412 651.99 450 7.3 26.98 39.1

GSE13204

ANOVA 2 13 2 3.5 13 11 2.27 109.46 129.37 626.87

Kruskal-Wallis 2 13 3 3.35 41 21.88 13 34.71 109.46 65.04

Friedman 2 13 10 10.5 100 54.53 27 12.25 22.47 45.37

GSE15061

ANOVA 2 122 2 50.5 85 66 5.05 79.84 102.82 1343.76

Kruskal-Wallis 2 122 4 60.324 89 76 38.13 109.4 128.11 255.34

Friedman 2 122 21 276 2190 532.65 330 2.48 10.2 16.46

(a) Leukemia (b) Ovarian cancer
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Figure 4.1: Comparison of execution time on Hadoop cluster (MR and Spark) and

Conventional system (Conv) of various feature selection methods using different microarray

datasets.
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We have also considered three different platforms to execute this experiment. So for each

FS techniques (ANOVA, Kruskal-Wallis), a total number of one set is used, each with 21 (7

dataset * 3 platforms). But, in case of Friedman, each set has 9 (3 dataset * 3 platforms) data

points. The results of comparison analysis for performance parameters are summarized in

Table 4.11.

Table 4.11 contains two sub tables. The first table shows themean difference of execution

time between the FS methods, and second table shows the mean difference of execution time

on various platforms like Conv., MapReduce, and Spark. From Table 4.11a, we observe

that ANOVA takes minimum time compared to other approaches. From Table 4.11b, we

also observed that Spark takes minimum time to process the datasets as compare to other

platforms.

Table 4.11: Performance comparison of various features selection methods

(a) Comaparison of execution timewith various FS

methods

ANOVA Kruskal-Wallis Friedman

ANOVA 0 -25.0733 -720.287

Kruskal-Wallis 25.07333 0 -695.214

Friedman 720.2871 695.2138 0

(b) Comaparison of execution time on various

platforms

Conv MR Spark

Conv 0 217.7324 270.0259

MR -217.732 0 52.29353

Spark -270.026 -52.2935 0

Hence, from the above experiment it is observed that the total execution time (average) of

these proposed methods on Spark is reduced by approximately 81.94% and 46.78% than the

conventional system and MapReduce respectively; and the execution time on MapReduce

is reduced by 66.06% than conventional system.

Table 4.12 shows the number of selected features, which have strong discriminating

capacity to distinguish the samples into different classes, obtained by applying the various

scalable statistical test (or feature selection methods). In GSE13159 dataset, with eighteen

(18) classes and having 54675 features, the number of features selected are 37016, 36897,

and 17593 after applying the feature selection methods like, ANOVA, Kruskal-Wallis, and

Friedman test respectively. Similarly, the selected features for different datasets using

various feature selection methods are shown in the Table 4.12.

4.7 Summary

In this chapter, various types of statistical tests based on MapReduce and Spark frameworks

are implemented to select the relevant features from the microarray high-dimensional data.

The performance of these techniques are investigated on the top of Hadoop cluster and

compared with the conventional system.

The selected features are used to build an efficient model to classify the microarray data,

which are discussed in the subsequent chapters.
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Table 4.12: Number of selected relevant features

Dataset ANOVA Kruskal-Wallis Friedman

Leukemia 235 270 —

Breast 324 324 —

Ovarian 4859 4591 —

GSE24080 83 75 —

GSE13159 37016 36897 17593

GSE13204 1423 1423 1225

GSE15061 6786 9736 5431
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Chapter 5

Classification of Microarray Data using

Scalable Proximal Support Vector

Machine Classifier

In this chapter, a scalable proximal support vector machine (sPSVM) classifier is proposed.

The proposed classifier works in a distributed manner and fit into any scalable cluster.

The scalability of the proposed classifier increases as the number of nodes in the cluster

increases. To test the scalability of the classifier two distributed and scalable frameworks

viz., MapReduce and Spark on the top of Hadoop cluster are used. The performance of

this proposed classifier is investigated using different dimensions of microarray data. The

performance of sPSVM has been measured using the performance parameters like accuracy,

precision, recall, and processing efficiency.

5.1 Introduction

After successful implementation of feature selection methods in Chapter 4, this chapter

emphasizes on a classifier, which is able to classify the microarray dataset in a scalable

manner.

As the size of the data samples increases, the training time increases and also the

computational complexity increases in case of Support Vector Machine (SVM) [145]. In

order to overcome the drawbacks of SVM, proximal support vector machine (PSVM) was

developed. It is based on Least square support vector machine (LS-SVM) [146, 147]. The

training time required by PSVM is less as compared to large training time in case of standard

SVM. PSVM assigns the classes to the data points by measuring its proximity from the two

parallel hyperplanes and the data points are clustered around the two parallel hyperplanes;

whereas SVM divides the space into two half spaces such that datapoints of different classes

are separated. The hyperplanes are designed such that the margin of separation between

the two classes is maximized. The idea behind proposed work is to maximize the margin

between the hyperplanes or the decision surface such that data points lie on the correct side of
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the hyperplanes in order to increase the generalization ability of the classifier or to minimize

the generalization error.

In this chapter, proximal support vector machine (sPSVM) classifier based on

MapReduce as well as Spark has been proposed to classify the microarray high-dimensional

dataset. The proposed algorithm not only helps to process large datasets, but also can be

extended to execute on a cluster. The scalability of the algorithm is tested by varying the

data size of high-dimensional data on a Hadoop cluster. The classifier is implemented on

two frameworks like MapReduce and Spark, and the performance of the algorithm is tested

on Hadoop cluster with three slave (data) nodes and a conventional system.

The rest of the work is organized as follows: Section 5.2 presents the proposed work

for classifying the microarray data proximal support vector machine based on MapReduce

and Spark frameworks. Section 5.3 presents the implementation details for the proposed

approach. Section 5.4 discusses on the results obtained, interpretation drawn from it and also

presents the comparative analysis for classification of various microarray datasets. Section

5.5 summarizes the chapter with scope for future work.

5.2 Proposed work

This section presents an approach for classification of microarray data, which consists of

three phases:

• The input data is preprocessed using methods such as missing data imputation,

normalization and feature selection using statistical tests based on MapReduce and

Spark frameworks.

• After selecting the relevant features, MapReduce as well as Spark based Proximal

support vector machine (sPSVM) has been applied to classify microarray dataset into

their respective classes, i.e., (cancerous/non-cancerous).

Figure 5.1 shows the graphical representation of proposed approach.

The brief note on steps for the proposed approach is given as follows:

a. Data collection

The dataset for classification analysis, which acts as requisite input to the models is

obtained fromKent RidgeBio-medical Data Set Repository [93] andNational center of

Biotechnology Information (NCBI GEO, http://www.ncbi.nlm.nih.gov/gds/).

b. Missing data imputation and normalization of dataset

Missing data of a feature (gene) in microarray dataset are imputed by using the mean

value of the respective feature. Input feature values are normalized over the range

[0, 1] using Min-Max normalization technique [95, 126].
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Yes
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Figure 5.1: Proposed approach for microarray classification.

c. Feature selection

Statistical tests viz., ANOVA-test, Kruskal-Wallis test, and Friedman test based on

MapReduce and Spark have been applied to select the features having high relevance

value and thus the curse of dimensionality issue has been addressed.

d. Division of dataset

The dataset is divided into two categories: training set and testing set as discussed in

Section 5.4.

e. Building classifier

Proximal support vector machine classifier based on MapReduce and Spark has been

built to classify the microarray dataset.

f. Testing the classifier

Classifier is tested using the test dataset and the performance of the classifier is

evaluated.
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5.3 Implementation

In this section, the implementation of the proposed algorithms using MapReduce and Spark

are discussed.

5.3.1 Scalable Implementation of Proximal Support Vector Machine

(sPSVM) classifier

5.3.1.1 MapReduce based Proximal Support Vector Machine (mrPSVM) classifier

LetA be the matrix ofM samples andN features in the space of RN represented byM ×N

matrix, D is the class label, denoted as +1 or −1 for two class problem.
In multiclass problem (SVM or PSVM) the class label D ∈ RM×k is defined in the

following way, whereM is the number of samples and k is the number of classes [148].

Di =



{
1, −1

k−1
, ..., −1

k−1

}
; if sample i belongs to class 1{ −1

k−1
, 1, ..., −1

k−1

}
; if sample i belongs to class 2

...{ −1
k−1

, −1
k−1

, ..., 1
}
; if sample i belongs to class k

To classify the M samples with Support vector machine (SVM) with linear kernel is

given by the following quadratic problem [145].

min
w,γ,ξ

J(w, γ, ξ) = Ce′ξ − 1

2
w′w (5.1)

s.t. D(Aw − eγ) + ξ ≥ e

e ≥ 0

where, C is the regularization factor, ξ is the error term, e is a vector filled with ones, w is

the normal to the bounding planes:

x′w = γ + 1 (5.2)

x′w = γ − 1

that constrained the most of the sets in to A+(+1) or A−(−1) respectively, and γ is the

relative location of planes to the origin. It divides the space into two half spaces such that

data points of different classes are separated. The plane acts as a linear classifier as follows:

sign(x′w − γ)

{
= 1, then x ∈ +1

= −1, then x ∈ −1
(5.3)

In SVM, as the size of the data samples increases, both the training time and the

computational complexity of the algorithm increases. In order to overcome the drawbacks of
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SVM, PSVM has been developed using the constraints of least-square (LS) SVM [146, 147].

The training time required by PSVM is less as compared to large training time in case of

standard SVM. PSVM assigns the classes to the data points by measuring its proximity from

the two parallel hyperplanes [149]. The hyperplanes are designed in such a manner that

the margin of separation between the two classes is maximized [150]. The parameters of

hyperplanes are obtained by optimization of the following quadratic function.

min
w,γ,ξ

J(w, γ, ξ) =
C

2
‖ξ‖2 − 1

2

(
w′w + γ2

)
(5.4)

s.t. D (Aw − eγ) + ξ = e

In PSVM, the inequality constraint of LS-SVM is replaced with the equality constraint,

which makes the computation cheaper. By substituting the value of ξ in Equation 5.4 from

the constraint, we get

min
w,γ

J(w, γ) =
C

2
‖D (Aw − eγ)− e‖2 − 1

2

(
w′w + γ2

)
(5.5)

To minimize the cost function J , the Equation 5.5 is partially differentiated with respect

to

[
w

γ

]
, and we get after differentiation

−CA′D(D(Aw − eγ)− e) + w = 0 (5.6)

−Ce′D(D(Aw − eγ)− e) + γ = 0

This can be written as: [(
AA′ + I

C

)
−A′e

e′A
(
I
C
+ 1
)] [w

γ

]
=

[
A′De

−e′De

]
(5.7)

[
1
C
+

[
A′

−e′

] [
A −e

]][w
γ

]
=

[
A′

−e′

]
De (5.8)

By substituting E =
[
A −e

]
,

[
1
C
+ E ′E

] [w
γ

]
= E ′De (5.9)

By solving this system of equations, the value of w and γ can be evaluated using the

training dataset. After evaluating the value of w ∈ RN×k and γ ∈ R1×k, a new test sample

xt ∈ R1×N can be classified as:

z = xt ∗ w − γ (5.10)
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where, z ∈ Rk is a matrix of dimension 1 × k that provides the weight values of the class

label of the test sample xt ∈ R1×N . The class label is predicted as:

classLabel = argmax
1,2,...,k

{z} (5.11)

The term E ′E and E ′De (E ′eD) from Equation 5.9 can be expressed in the following

forms:

E ′E = E ′
1E1 + E ′

2E2 + ...+ E ′
MEM (5.12)

E ′De = E ′
1D1e+ E ′

2D2e+ ...+ E ′
MDMe (5.13)

using the above expression, the term E ′E and E ′De can be parallelized, and calculated

using MapReduce (or Spark) on Hadoop framework. Each individual term of the RHS (right

hand side) of Equation 5.12 and 5.13 is calculated using the MAP_PSVMTRAIN() function

and the result of each individuals are sent to the REDUCE_PSVMTRAIN() function. The

Reducer function aggregates the results of each individual term and yields the final result.

The respective algorithms 12 and 13 describe the training and testing of MapReduce based

PSVM.

Algorithm 12 Training: MapReduce based Proximal Support Vector Machine (mrPSVM)

classifier
Input: Let X = {(x1, y1)(x2, y2), ..., (xi, yi)} is a set of M training samples with N
attributes, where i = 1, 2, ...,M , i.e., x ∈ RM×N and y ∈ RM×1

Output: Calculation of w and γ

1: procedureMAP_PSVMTRAIN(Xi) . i = 1, 2, ...,M
2: for each sample Xi do . runs in parallel
3: Parse the label y and the value of each attributes.
4: Form matrix Di ∈ R1×k from label yi
5: Form matrix Ai ∈ R1×N from xi consisting of the values of each attribute

6: Form matrix e ∈ 11×1

7: Form matrix Ei =
[
A −e

]
∈ R1×(N+1)

8: Calculate S = E ′
i ∗ Ei and R = E ′

ieDi

9: Emit 〈i, (Si, Ri)〉 . return
10: end for

11: end procedure

12: procedure REDUCE_PSVMTRAIN(〈i, (Si, Ri)〉)
13: Initialize C← 0.1

14: Read a key-value pair from mapper

15: Sum all the S-values and R-values to generate E ′E and E ′eD
16: Calculate w and γ by solving the system of linear equation 5.9

17: Emit 〈w, γ〉 . return
18: end procedure

76



Chapter 5 Classification of Microarray Data using sPSVM Classifier

Algorithm 13 Testing: MapReduce based Proximal Support Vector Machine (mrPSVM)

classifier

Input: Test set xt ∈ Rp×N , w ∈ RN×k, and γ ∈ R1×k

Output: Calculation of classLabel and Accuracy.

1: procedureMAP_PSVMTEST(testsample) . i = 1, 2, ..., p
2: for each test sample do . runs in parallel
3: Calculate z using the Equation 5.10
4: Calculate classLabel using Equation 5.11
5: Emit 〈label, classLabel〉 . return
6: end for

7: end procedure

8: procedure REDUCE_PSVMTEST(〈label, classLabel〉)
9: Read a key − value pair from mapper

10: Initialize counter = 0
11: for each key − value pair do
12: if key == value then
13: counter = counter + 1
14: end if

15: end for

16: Accuracy = counter/p . p= number of instances in test data
17: Emit 〈classLabel, Accuracy〉 . return
18: end procedure

5.3.1.2 Spark based Proximal Support Vector Machine (sf-PSVM) classifier

The above discussed PSVM algorithm is implemented using Spark framework by making

some modification. The training data and testing data are read from HDFS and transformed

into RDDwith the help of Spark context, called trainRDD and testRDD respectively. The

PSVM is trained with trainRDD and tested using testRDD as described in Algorithm 14.

Algorithm 14 sf-PSVM: Spark based PSVM

Input: Let X = {(x1, y1)(x2, y2), ..., (xi, yi)} is a set of M training samples with N
attributes, where i = 1, 2, ...,M , i.e., x ∈ RM×N and y ∈ RM×1

Test set xt ∈ Rp×N , w ∈ RN×k, and γ ∈ R1×k

Output: Calculation of classLabel and Accuracy.
1: procedure DRIVER_MAIN(X, xt)

2: Read train data X and test data xt from HDFS

3: Create RDD of train data and test data i.e., called trainRDD and testRDD
respectively.

4: weight ← trainRDD.map(MAP_PSVMTRAIN).map(REDUCE_PSVMTRAIN).

collect()

5: Broadcast weight to all worker nodes
6: result ← testRDD.map(MAP_PSVMTEST).map(REDUCE_PSVMTEST).

saveAsTextFile("〈HDFSPath〉/result")
7: end procedure
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5.4 Results and interpretation

In this section, the obtained results for the proposed algorithms (Section 5.2) are analyzed

while various microarray datasets, which are being given as input.

After feature selection, the proposed classification algorithm, i.e., MapReduce as well as

Spark based proximal support vectormachine (sPSVM) classifier has been applied to classify

the datasets into the appropriate classes. However, unless one has some prior knowledge

of the dataset, it is difficult to decide on the optimal number of features required for

classification. To overcome this problem, forward feature selection method is considered, in

which top ranked features corresponding to ascending p-values are used. Different subsets of

the top ranked features are used to classify the microarray dataset using MapReduce as well

as Spark based proximal support vector machine (sPSVM) classifier and their corresponding

classification accuracies are computed.

The model is trained using training dataset and performance of model is measured using

testing dataset. Various case studies using different datasets are carried out to explore the

performance of the classifier on various cluster nodes, which have been discussed in the

following subsections.

5.4.1 Result of Leukemia dataset

There are 72 samples in Leukemia dataset, out of which 48 samples are selected as training

and 24 as testing samples. Out of 24 testing samples, 16 are in ALL (0) and 8 are in AML

(1) class. Figure 5.2 shows the accuracy of the sPSVM classifier with various feature sets

obtained from different feature selection methods. From Figure 5.2, it is clear that, when

ANOVA is used as a FSmethod, where top 60 features are sufficient to achieve high accuracy

of 100%; and when Kruskal-Wallis test is used, top 50 features are sufficient to achieve high

accuracy. After attaining the peak accuracy, the accuracy of classifier either remains constant

or decreases from the peak. Therefore, to avoid the curse of dimensionality problem, top

selected features are used to analyze the microarray datasets using sPSVM classifier and the

various performance parameters of the classifier are evaluated.

Figure 5.3 represents the confusion matrix obtained using leukemia dataset by sPSVM

with different feature selection methods; which denotes all the performance parameters like

accuracy, recall, precision, specificity, etc. From Figure 5.3a and Figure 5.3b, it is clear that

accuracy, recall, precision, and specificity are 100%, 100%, 100%, and 100% respectively.

5.4.2 Result of Breast cancer dataset

There are 97 samples in breast cancer dataset, out of which 64 samples are selected as

training and 33 as testing samples. Out of these 33 testing samples, 16 are relapse (0),

and 17 are non-relapse (1). Figure 5.4 shows the accuracy of the sPSVM classifier with
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Figure 5.2: Testing accuracy sPSVM classifier with different set of features using Leukemia

dataset
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(a) ANOVA (f = 60)
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(b) Kruskal-Wallis (f = 50)

Figure 5.3: Confusion matrix of sPSVM classifier using Leukemia cancer dataset with

various feature selection methods.

various feature sets obtained from different feature selection methods. From Figure 5.4, it

is observed that, when ANOVA as feature selection is applied, top 30 features (f = 30)

are sufficient to achieve the peak accuracy value (accuracy=72.72%) for the dataset (Breast

cancer). The corresponding confusion matrix has been shown in Figure 5.5a. Similarly,

Figure 5.5b represent the confusion matrix for dataset reduced by Kruskal-Wallis test. The

obtained values of performance parameters like accuracy, recall, specificity, and precision

using ANOVA, and Kruskal-Wallis, are 72.72%, 76.5%, 68.8% and 72.2% respectively at

the respective optimal number of features f , as shown in Figure 5.5.

5.4.3 Result of Ovarian dataset

There are 253 samples in ovarian dataset, out of which 168 samples are selected as training

and 85 as testing samples. Out of these 85 samples, 54 are cancerous (0), and 31 are normal

(1) samples. Figure 5.6 shows the accuracy of the sPSVM classifier with various feature

sets obtained from different feature selection methods. From Figure 5.6, the peak accuracy
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Figure 5.4: Testing accuracy sPSVM classifier with different set of features using Breast

dataset
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(a) ANOVA (f = 30)
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(b) Kruskal-Wallis (f = 90)

Figure 5.5: Confusion matrix of sPSVM classifier using Breast cancer dataset with various

feature selection methods.

value for dataset reduced through ANOVA (accuracy=100%) has been obtained at f = 600

and the corresponding confusion matrix has been presented in Figure 5.7a. Similarly, Figure

5.7b represents the confusion matrix for dataset reduced by Kruskal-Wallis test and obtained

accuracy is 100% at the optimal number of top selected features f = 500. The value of rest of

the parameters like recall, specificity, and precision are 100%, 100%, and 100% respectively

and as shown in Figure 5.7.

5.4.4 Result of GSE24080 dataset

There are 559 samples in GSE24080 dataset, out of which 372 samples are selected as

training and 187 as testing samples. Out of these 187 samples 57 are labeled as `0' and

130 are labeled as `1'. Figure 5.8 shows the accuracy of the sPSVM classifier with various

feature sets obtained from different feature selection methods. From Figure 5.8, it is evident

that, the peak accuracy value for dataset reduced through ANOVA (accuracy=70.59%) has

been obtained when the top 60 number of features (f ) are used. The corresponding confusion

matrix has been shown in Figure 5.9a.
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Figure 5.6: Testing accuracy sPSVM classifier with different set of features using Ovarian

dataset
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(b) Kruskal-Wallis (f = 500)

Figure 5.7: Confusion matrix of sPSVM classifier using Ovarian dataset with various feature

selection methods.

Figure 5.8: Testing accuracy of sPSVM classifier with different set of features using

GSE24080 dataset

Figure 5.9b, represents the confusion matrix for dataset reduced by Kruskal-Wallis test

and the obtained accuracy is 70.05% at top 75 features. The rest of the performance

parameters like recall, specificity, and precision, etc. have been shown in Figure 5.9. The
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(b) Kruskal-Wallis (f = 75)

Figure 5.9: Confusion matrix of sPSVM classifier using GSE24080 dataset with various

feature selection methods.

respective value of parameters like recall, specificity, and precision are 84.4%, 51.3%,

and 70.8%, when ANOVA is applied as a feature selection method with sPSVM classifier.

Similarly, whenKruskal-Wallis feature selectionmethodwith sPSVM is applied, the value of

performance parameters like recall, specificity, and precision are 81.7%, 53.8%, and 71.2%.

5.4.5 Result of GSE15061 dataset

This dataset is the subset of the MILE Study (Microarray Innovations In high-dimensional)

program, stored in the NCBI repository with accession number GSE15061. There are 870

samples in GSE15061 dataset, out of which, 580 samples are selected as training and 290 as

testing samples. These samples are divided into 3 classes and labeled as shown in Table 4.7.

Figure 5.10 shows the accuracy of the sPSVM classifier with various feature sets

obtained from different feature selection methods. From Figure 5.10, it is inferred that

the peak accuracy value for dataset reduced through ANOVA (accuracy=84.14%) has been

obtained when top 5,000 features (f ) are used and the corresponding confusion matrix has

been tabulated in Figure 5.11a. Similarly, Figure 5.11b, and Figure 5.11c represent the

confusion matrix for dataset reduced by Kruskal-Wallis, and Friedman test respectively. The

obtained accuracies of sPSVM classifier using ANOVA, Kruskal-Wallis, and Friedman test

are 84.14%, 83.45%, and 83.45%, respectively at the top selected features f . The respective

values of precision and recall of each class have been shown in the last column and row of

the confusion matrix.

5.4.6 Result of GSE13159 dataset

There are 2096 samples in GSE13159 dataset, out of which, 1397 samples are selected as

training and 699 as testing samples. These samples are divided into 18 classes and labeled

as shown in Table 4.5.

Figure 5.12 shows the accuracy of the sPSVMclassifier with various feature sets obtained

from different feature selection methods. From Figure 5.12, it is observed the peak accuracy
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Figure 5.10: Testing accuracy sPSVM classifier with different set of features using

GSE15061 dataset
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(a) ANOVA (f = 5000)
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(b) Kruskal-Wallis (f = 6000)
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(c) Friedman (f = 4000)

Figure 5.11: Confusion matrix of sPSVM classifier using GSE15061 dataset with various

feature selection methods.

value for dataset reduced through ANOVA (accuracy=81.11%) has been obtained when top

14,000 features (f ) are used and the corresponding confusion matrix has been tabulated

in Figure 5.13. Similarly, Figure 5.14, and Figure 5.15 represent the confusion matrix for

dataset reduced by Kruskal-Wallis, and Friedman test respectively. The obtained accuracies

of sPSVM classifier using ANOVA, Kruskal-Wallis, and Friedman test are 81.11%, 81%,

and 80.40%, respectively at the top selected features f . The respective values of precision

and recall of each class have been shown in the last column and row of the confusion matrix.

Table 5.1 and Table 5.2 represent the execution details, i.e., number of mappers and

reducers, time taken by each mapper and reducer, and total time taken of the sPSVM

classifier on the Hadoop cluster with three slave nodes in the training and testing phase

respectively in seconds (s).

Table 5.3 shows the total time elapsed by the Hadoop cluster and conventional machine

and their processing efficiency. The processing efficiency describes the capability of the
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Table 5.1: Execution details of sPSVM classifier on Hadoop cluster (MapReduce and Spark)

in Training phase (Time is measured in seconds (s)).

Dataset Feature selection

methods

Block

Size

No. of MR Time (each

mapper)

Time (each

Reducer)

Total MR time

(training)

Spark time

(training)

Leukemia
ANOVA 16 2/1 4.80 5.5 48.37 30

Kruskal-Wallis 16 2/1 5.80 2.2 51.43 33

Breast Cancer
ANOVA 16 2/1 4.30 2.1 43.1 25

Kruskal-Wallis 16 2/1 5.30 3.7 48.76 31

Ovarian
ANOVA 4 2/1 143.20 112.8 193 123

Kruskal-Wallis 4 2/1 41.50 20.4 82.2 64

GSE24080
ANOVA 16 2/1 9.10 6.4 51.69 36

Kruskal-Wallis 16 2/1 6.60 6.8 55.55 37

GSE15061

ANOVA 2 16/1 4.00 22 32 19

Kruskal-Wallis 2 22/1 4.00 28 55 34.5

Friedman 2 12/1 3.00 31 65 40

GSE13159

ANOVA 16 29/1 4.00 6 124 105

Kruskal-Wallis 16 29/1 3.00 113 134 111

Friedman 16 17/1 4.00 6 131 107

Table 5.2: Execution details of sPSVM classifier on Hadoop cluster (MapReduce and Spark)

in Testing phase (Time is measured in seconds (s)).

Dataset Feature selection

methods

Block

Size

No. of MR Time (each

mapper)

Time (each

Reducer)

Total MR time Spark time

Leukemia
ANOVA 16 2/1 5.00 2 16 9

Kruskal-Wallis 16 2/1 4.00 1.9 15.9 11

Breast Cancer
ANOVA 16 2/1 4.20 1.9 15.9 11

Kruskal-Wallis 16 2/1 4.60 2.7 21.21 14.5

Ovarian
ANOVA 4 2/1 6.00 2.4 17.8 12.3

Kruskal-Wallis 4 2/1 8.70 2.1 15.8 10.6

GSE24080
ANOVA 16 2/1 4.20 2 16.9 11.2

Kruskal-Wallis 16 2/1 5.90 2.4 22.12 15

GSE15061

ANOVA 2 8/1 4.00 30 44 30

Kruskal-Wallis 2 11/1 5.00 45 62 45

Friedman 2 7/1 4.00 42 58 41

GSE13159

ANOVA 16 15/1 70.00 53 167 105

Kruskal-Wallis 16 15/1 72.00 74 162 101

Friedman 16 9/1 54.00 53 84 65

84



Chapter 5 Classification of Microarray Data using sPSVM Classifier

Figure 5.12: Testing accuracy sPSVM classifier with different set of features using

GSE13159 dataset

classifier to process the data on the machine.

From the obtained result, it is inferred that, when the data size is small, Hadoop cluster

takes more time than the conventional system to complete the job, but as the size of data

increases, Hadoop takes very less time than a conventional system. The comparison of time

taken by sPSVM classifier on Hadoop cluster and a conventional system has been shown in

Figure 5.16. From Figure 5.16, it is clear that the time taken by sPSVM classifier to analyze

the datasets of Leukemia, Ovarian, Breast cancer, and GSE24080 (data size is small) on

Hadoop cluster is more than conventional system. But, in case of GSE15061 and GSE13159

(data size is large), time taken by sPSVM classifier on Hadoop cluster is very less than a

conventional system (Conv.).

Table 5.3: Timing details (in seconds) and processing efficiency of the sPSVM classifier

(Training + Testing)

Dataset Feature

selection

methods

Total time

(Conv)

Total time

(MR)

Total Time

(Spark)

Processing

Efficiency

(Conv)

Processing

Efficiency (MR)

Processing

Efficiency

(Spark)

Leukemia
ANOVA 0.493 64.37 39 121.70 0.932 1.54

Kruskal-Wallis 0.46 67.33 44 108.70 0.74 1.14

Breast Cancer
ANOVA 13.326 68.59 36 2.25 0.44 0.84

Kruskal-Wallis 14.772 77.67 45.5 6.09 1.16 1.98

Ovarian
ANOVA 109.78 210.8 135.3 5.57 2.85 4.44

Kruskal-Wallis 97.396 98 74.6 5.13 5.1 6.71

GSE24080
ANOVA 1.78 59 47.2 33.71 1.02 1.27

Kruskal-Wallis 2.54 69.97 52 29.53 1.07 1.44

GSE15061

ANOVA 955 76 49 5.24 65.79 102.04

Kruskal-Wallis 1186 97 79.5 5.06 61.86 75.47

Friedman 745 123 81 5.37 32.52 49.38

GSE13159

ANOVA 1265.102 291 210 11.06 48.12 66.67

Kruskal-Wallis 1516.17 296 212 9.89 50.68 70.76

Friedman 669.75 215 172 8.96 27.91 34.88
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Figure 5.13: Confusion matrix for sPSVM classifier with ANOVA using GSE13159 dataset

(f = 14, 000)

5.4.7 Comparative analysis

In this section, emphasis has been laid on designing feature selection models based on

statistical tests and a classifier which can obtain comparative result for classification of

microarray datasets, to categorize the cancer causing genes into their respective classes.

These models are implemented using MapReduce and Spark on Hadoop framework that

analyzes the dataset in distributed manner on various Datanodes.

Therefore, a comparative analysis is carried out in order to choose a feature selection

model with a classifier that provides a better classification accuracy. Figure 5.17 shows

the comparative analysis of classification accuracy of the proposed sPSVM classifier with

different feature selection models using various microarray dataset. From the obtained

results, it can be inferred that among the various feature selectionmodels used in permutation

with sPSVM classifier, ANOVA provides better accuracy in the case of all datasets like

Leukemia, Breast cancer, Ovarian cancer, GSE24080, GSE15061, and GSE13159 dataset.
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Figure 5.14: Confusion matrix for sPSVM classifier with Kruskal-Wallis using GSE13159

dataset (f = 15, 000)

5.5 Summary

In this chapter, an attempt has been made to design the classification model for classifying

the samples of various datasets into their respective class labels. A PSVM classifier

and feature selection using statistical tests (ANOVA, Kruskal-Wallis, and Friedman test)

based on MapReduce and Spark have been developed. The proposed approach works in a

distributedmanner on scalable clusters. The performance of the classifier for various datasets

is evaluated by varying the number of features (f ). There are three major contributions of

this chapter:

i. Harnessing the power of distributed computing for better storage and faster processing

of datasets.

ii. Comparative analysis of various feature selection techniques based on statistical tests

in permutation with sPSVM classifier.
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Figure 5.15: Confusion matrix for sPSVM classifier with Friedman using GSE13159 dataset

(f = 6, 000)

iii. Comparative analysis between the size of datasets and the time taken for processing

using a conventional system vs. Hadoop cluster (MapReduce and Spark).

From the obtained results it is inferred that the proposed algorithm provides better

insights than the traditional PSVM. The sPSVM classifier is able to process the data with any

dimensions (GBs, or TBs) on various nodes of clusters. The algorithm is implemented on two

scalable frameworks, i.e., MapReduce and Spark on the top of Hadoop cluster and compared

with the conventional system. The results shows that the scalable algorithm provides better

performance on scalable frameworks than the conventional machine in terms of time, if

datasize is with reasonable size. Hence, to gain the insights of scalable algorithms, only the

datasets of reasonable size (Big data) are considered for analysis from the next chapter. It is

also observed that, among these two scalable frameworks, i.e., MapReduce and Spark, the

Spark is faster than the MapReduce.

There are various constraints of MapReduce over Spark like
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(a) Leukemia (b) Breast cancer (c) Ovarian cancer

(d) GSE24080 (e) GSE15061 (f) GSE13159

Figure 5.16: Comparison of execution time in sPSVM on Hadoop cluster with MapReduce

(MR), Spark, and Conventional system (Conv.) using various feature selection methods.
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Figure 5.17: Classification accuracy of sPSVM classifier with various feature selection

methods using different microarray datasets.

• Data is stored in memory in Spark, but on disk in Hadoop. Secondly, resilient

distributed datasets (RDD), which is the data storage model of Spark, uses an

intelligent way of ensuring fault tolerance that reduces network I/O.

• RDDs achieve fault tolerance through lineage: if an RDD partition is lost, there is

enough information in the RDD about the way this partition was derived from others

and we are able to reconstruct that partition. This eliminates the need for replication

for fault tolerance. Hadoop, on the contrary, uses replication to achieve fault tolerance.

• Spark uses the concept of RDD which allows us to store data on memory and persist
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it as per the requirements. This increases the performance of batch processing job (up

to ten to hundred times as much as that of traditional Map Reduce).

• Spark grants caching data in memory, which is useful in case of iterative algorithms

such as those used in machine learning.

• Traditional MapReduce and DAG engines are not suitable for these applications as

they are based on acyclic data flow: Applications run as a chain of distinct jobs, each

of which reads data from stable storage (e.g. a distributed file system) and then writes

back to the same. This loading and writing back incurs a significant cost.

• stream processing is possible in Spark, with large input data and so we can deal with

only a chunk of data on the fly. This is also helpful for online machine learning, and

is suitable for use cases with a requirement for real time analysis( highly ubiquitous

industry requirement).

• In particular, MapReduce is inefficient for multi-pass applications that require

low-latency data sharing across multiple parallel operations. These applications are

quite common in analytics, and include:

– Iterative algorithms, like machine learning algorithms and graph algorithms like

PageRank.

– Interactive data mining, where it is necessary to load data into RAM across a

cluster and query it multiple times.

– Streaming applications that store and use aggregate state over time.

Due to applicability and advantages of Spark over MapReduce, in the next chapter,

various classifiers based on Spark is considered for microarray high-dimensional data

classification.
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Chapter 6

Classification of Microarray Data using

Various Scalable Classifiers on Spark

In this chapter, various scalable classifiers are proposed to classify the high-dimensional data.

The proposed classifiers work in a distributed manner and fit into any scalable cluster. The

scalability of the proposed classifiers increase as the number of nodes in the cluster increases.

To test the scalability of the classifiers a distributed and scalable framework Spark on the top

of Hadoop cluster is used. The performance of these proposed classifiers are investigated

using microarray high-dimensional data like GSE13159, GSE13204, and GSE15061, which

are of different data sizes.

6.1 Introduction

Recently, Big data applications are increasingly becoming the focus of attention because

of huge increase in data generation and storage that has taken place in the last few years.

Extracting information from these data becomes a challenging task, as the current data

mining techniques are not well suited for the new space and time requirements [8]. To

overcome these challenges, the new paradigms have been considered to develop scalable

algorithms.

After selecting the relevant features using feature selection methods like ANOVA,

Kruskal-Wallis, and Friedman statistical tests (as discussed in Chapter 4), various scalable

classifiers are considered to classify the microarray datasets. The scalability of the

algorithms are tested by varying the data size of high-dimensional data on a Hadoop cluster.

The performance of the proposed algorithms in terms of execution time and accuracy are

tested on Spark with three slave (worker) nodes and one master (driver) system, which are

then compared with that of conventional system. The main motivation of this chapter is

to build a model which analyzes the microarray data in an efficient way. The efficiency of

the model is measured in terms of performance parameters like, recall, precision, F-Measure,

accuracy and time. In other words, the model should behave with high accuracy in a minimal

time. To achieve this goal, Spark framework is applied which works in a distributed and

scalable manner. It also provides an insight to the classifier to act as a scalable algorithm.

In this chapter, various classifiers like, Logistic regression (LR), Support vector machine
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(SVM), Naive Bayes (NB), K-Nearest Neighbor (KNN), Artificial Neural Network (ANN),

Radial basis function network (RBFN) with hybrid learning, and Radial basis function with

gradient descent learning based on Spark framework are proposed. The proposed classifiers

are investigated with various microarray high-dimensional datasets and their performance is

measured.

The rest of the chapter is organized in the following manner:

Section 6.2 presents the proposed work for classifying the microarray high-dimensional

data using classifiers based on Spark. The implementation details for the proposed approach

are provided in Section 6.3. Results and interpretation details are discussed in Section 6.4,

which also presents the comparative analysis in terms of execution time for feature selection

techniques and classifiers based on Spark with that of conventional system. The summary

of this chapter is mentioned in Section 6.5.

6.2 Proposed work

The presence of a huge number of insignificant features creates bottleneck during the analysis

aspect of diseases like cancer. This issue could be resolved by analyzing the dataset with

proper perspective. This section presents an approach for classification of microarray data,

which consists of three phases:

i. Missing data imputation and normalization methods are used for preprocessing the

input data.

ii. Statistical tests, i.e., ANOVA, Kruskal-Wallis and Friedman based on Spark

framework on top of Hadoop cluster are used for selecting relevant features as

discussed in Chapter 4.

iii. After selecting the relevant features, Spark based Logistic regression (sf-LoR),

Spark based Support vector machine (sf-SVM), Spark based Naive Bayes (sf-NB),

Spark based K-Nearest Neighbor (sf-KNN), Spark based Artificial Neural Network

(sf-ANN), Spark based Radial basis function (sf-RBFN) (both hybrid and gradient

descent learning techniques) are applied to classify microarray dataset into their

respective classes (binary/multi-class).

Figure 6.1 shows the graphical representation of the proposed approach.

6.3 Implementation

In this section, the implementation of the proposed algorithms using RDD abstraction on

Spark framework is discussed.
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Figure 6.1: Proposed approach for microarray classification.

6.3.1 Classification

Classification is a common form of supervised learning, where algorithms attempt to predict

a variable from features of objects using labeled training data. Spark is best suited for

running parallel classification algorithms on a large dataset. The basic classifiers supports

only binary classification, but can be extended to handle multi-class classification by using

either One-versus-all (OVA) or All-versus-all (AVA).

6.3.1.1 Multi-class classificaton using OVA

OVA is used for classifying multi-class problem with the help of binary classifiers. In this

procedure, K binary classifiers are used, where K is equal to the number of classes. The

ith classifier is trained with positive samples belonging to class i and negative samples not

belonging to class i. During testing of an unknown sample, the classifier that gives the

highest probability value, is considered, and its corresponding class label is assigned to that

sample.
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6.3.2 F-Fold cross validation based on Spark

Cross-validation technique is used to generalize the model by reducing the variance and

biasness. Here, F-fold cross validation is implemented using the resilient distributed dataset

(RDD) of Spark, which works in a distributed and scalable manner. Algorithm 15 shows the

implementation of F-fold cross Validation in Spark.

Algorithm 15 F-Fold cross validation based on Spark

Input: M ×N Matrix, where N is number of features andM is number of samples.
Output: Accuracy of model

1: procedure CROSSVALIDATION(Data)
2: ReadM ×N Matrix file from HDFS
3: Create RDD of Input DataM ×N Matrix, called dataRDD .

dataRDD contains (classlabels, featureV ector)
4: for i = 1 to F do
5: Divide the dataRDD into RDD of training set trainRDDi and testing set

testRDDi
6: Initialize Tuning parameter (β) ← λ = [2−10, 25] or HiddenNodes =

[10, 30, 50, 90, 110, 150, 200, 300, 400] . λ for sf-RBFN and HiddenNodes for
sf-ANN

7: for j = 1 to F do
8: Divide the training RDD trainRDDi into RDD of learning set

learnRDDj and validation set validRDDj
9: for k = 1 to length(β) do
10: Train the model using learning set learnRDDj
11: Validate the model using validation set validRDDj
12: Calculate the accuracy of the model
13: end for
14: Calculate the mean accuracy of the model corresponding to each β
15: end for
16: Select β, corresponding to model having high accuracy (called β′)
17: Train the model with training RDD trainRDDi using β′

18: Test the model with testing RDD testRDDi using β′ and calculate its
accuracy

19: end for
20: end procedure

6.3.3 Logistic Regression based on Spark (sf-LoR)

Logistic regression is a parametric form for the distribution P (Y |X) where Y is a discrete

value and X = {x1, ..., xn} is a vector containing discrete or continuous values [102, 151].
The parametric model of logistic regression can be written as:

P (Y = 1|X) =
1

1 + exp(w0 +
∑n

i=1wiXi)
(6.1)

and

P (Y = 0|X) =
exp(w0 +

∑n
i=1wiXi)

1 + exp(w0 +
∑n

i=1wiXi)
(6.2)
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The parameter w of the logistic regression is chosen by maximizing the likelihood of

conditional data. It is the probability of the observed Y values in the training data. The

constraint can be written as:

w ← argmax
w

∑
l

lnP (Y l|X l, w) (6.3)

Algorithm 16 describes the implementation details of Logistic regression based on Spark.

Algorithm 16 sf-LoR: Spark based Logistic Regression Classifier

Let X = {(x1, y1)(x2, y2), ..., (xi, yi)} is a set of M training samples with N attributes,

where i = 1, 2, ...,M , i.e., x ∈ RM×N and y ∈ RM×1

Test set xt ∈ Rp×N Output: Calculation of classLabel and Accuracy.
1: procedure DRIVER_MAIN(X, xt)

2: Read train data X and test data xt from HDFS

3: Create RDD of train data and test data i.e., called trainRDD and testRDD
respectively.

4: Initialize weight vector w and broadcast to all worker nodes.

5: for iter ← 1 to iterations do
6: [gradient] ← trainRDD.map{ p ⇒ p.x ∗

(1/ (1 + exp(−p.y + (w dot p.x)))− 1) ∗ p.y }.reduce((a, b)⇒ a+ b)
7: Update w as, w− = gradient
8: Broadcast updated w to worker nodes

9: end for

10: result← testRDD.map(x⇒ x dot w).filter(x⇒
if(x ≥ 0.5){ var label = 1}
else
var label = 0
return label ). saveAsTextFile("〈HDFSPath〉/result")

11: end procedure

6.3.4 Support Vector Machine based on Spark (sf-SVM)

SVM is a superior data classifier as it is capable in handling non-linear classification

problems by mapping input vectors into a high-dimensional feature space, with a kernel

function [107]. The multi-class classification problem is solved by decomposing it to several

binary problems using OVA for which the standard SVM is used.

Let A be the matrix of M samples and N features in the space of RN represented by

M × N matrix, D is the class label +1 or −1 for two class problem. To classify the M

samples with Support vector machine (SVM) with linear kernel is given by the following
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quadratic problem [145, 151].

min
w,γ,ξ

J(w, γ, ξ) = Ce′ξ − 1

2
w′w (6.4)

s.t. D(Aw − eγ) + ξ ≥ e

e ≥ 0

where, C is the regularization factor, ξ is the error term, e is a unit vector, w is the normal to

the bounding planes:

x′w = γ + 1 (6.5)

x′w = γ − 1

that constrained most of the sets in to A+ or A− respectively, and γ is the relative location

of planes to the origin. It divides the space into two half spaces such that the data points of

different classes are separated. The plane acts as a linear classifier as follows:

sign(x′w − γ)

{
= 1, then x ∈ +1

= −1, then x ∈ −1
(6.6)

In SVM, as the size of the data samples increases, both the training time and the

computational complexity of the algorithm increases. The implementation details of Spark

based SVM is described in [152].

6.3.5 Naive Bayes based on Spark (sf-NB)

Naive Bayesmethod is a supervised learning algorithmwhich applies Bayesian theoremwith

the assumption of independence between every pair of features [102]. The Bayes theorem

states that

P (A/B) = P (B/A) ∗ P (A)/P (B) (6.7)

Thus, for a given sample X with attribute value X = (a1, a2, ..., aN) and class Vj . The

probability value that X belongs to class Vj can be calculated as:

P (Vj/X = (a1, a2, ..., aN)) = P (X/Vj)P (Vj)/P (X) (6.8)

= P (Vj)
∏N

i=1(P (ai/Vj))/P (X) (6.9)

Where P (Vj) is the prior probability for each class and P (ai/Vj) is the likelihood

probability for each attribute, where i = 1, ..., N and j = 1, ..., C.

96



Chapter 6 Classification using Various Scalable Classifiers on Spark

In the testing phase the likelihood for each attribute for a given class is calculated and a

new instance xt having attributes (at1, a
t
2, ..., a

t
N) is classified as:

P̂ (ati/Vj) = (phi
ati
ij ) ∗ (1− phiij)

(1−ati)) (6.10)

where, phi is the weight of each attribute for a given class; which is calculated as follows:

phi = X ′ ∗ Y /M (6.11)

where X is the matrix of training samples (M ×N ), Y is a matrix of dimensionM ×C,

where M is the number of training samples, N is the number of attributes, and C is the

number of classes. Each row of Y consists of zeros except for the position that indicates the

class label.

After calculating the value of P (xt
i/Vj), the new instance xt is labeled as the following

equation

Vnb = argmax
Vj∈V

P (Vj)
N∏
i=1

P̂ (ati/Vj) (6.12)

It is implemented using two procedures, one for training and other for testing. In the

training phase, the prior probabilty P (Vj) and the likelihood factor are calculated, which

are described in the algorithm as shown in Algorithm 17. After calculating the prior and

likelihood probabilities using training set, testing data is classified using the Algorithm 18.

Algorithm 19 describes the driver program which is executed on RDDs of training data and

testing data, and final classification result is obtained.

Algorithm 17 Training: Spark based Naive Bayes classifier

Input: LetX = {(xi, yi)|xi ∈ RN , yi ∈ R1, i = 1, 2, ...,M} is a set of training samples with
attributes (a1, a2, ..., aN).
Output: Calculation of prior (P (Vj)) and likelihood probabilities P (X/Vj)

1: procedureMAP_NBTRAIN(Xi) . i = 1, 2, ...,M
2: for each sample Xi do . runs in parallel
3: Parse the label and the value of each attributes.

4: Form matrix y ∈ R1×C from label and matrix x ∈ R1×N consisting of the values

of each attribute.

5: Calculate S = x′ ∗ y
6: Emit 〈label, S〉 . return
7: end for

8: end procedure

9: procedure REDUCE_NBTRAIN(〈label, S〉)
10: Read a key-value pair from mapper

11: Sum all the S-values to generate phi ∈ RN×C .

12: Calculate the prior probability P (Vj) by adding the label value.
13: Emit 〈P (Vj), phi〉 . return
14: end procedure
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Algorithm 18 Testing: Spark based Naive Bayes classifier

Input: Let X t = {(xt
i, y

t
i)|xt

i ∈ RN , yti ∈ R1, i = 1, 2, ..., p} is a set of testing samples with
attributes (at1, a

t
2, ..., a

t
N), prior (P (Vj)), and phi

Output: Calculation of class label and accuracy.

1: procedureMAP_NBTEST(X t
i ) . i = 1, 2, ..., p

2: for each test sample X t
i do . runs in parallel

3: Calculate the probability of each attribute using the Equation 6.10.

4: Calculate the posterior probability of testing sample with each class label using

``V = P (Vj)
∏N

i=1 P̂ (ati/Vj)".
5: Emit 〈id, label, V 〉 . return
6: end for

7: end procedure

8: procedure REDUCE_NBTEST(〈id, label, V 〉)
9: Read a key-value pair from mapper

10: Calculate maximum a posteriori (MAP) using Equation 6.12, called Vnb and estimate

the class label j. . j = 1, 2, ..., C
11: Emit 〈id, j〉 . return
12: end procedure

Algorithm 19 sf-NB: Spark based Naive Bayes

Input: LetX = {(xi, yi)|xi ∈ RN , yi ∈ R1, i = 1, 2, ...,M} is a set of training samples with
attributes (a1, a2, ..., aN). Test set X

t ∈ Rp×N

Output: Calculation of classLabel and Accuracy.
1: procedure DRIVER_MAIN(X, xt)

2: Read train data X and test data xt from HDFS

3: Create RDDs for train data and test data i.e., called trainRDD and testRDD
respectively.

4: [P (Vj), phi] ← trainRDD.map(MAP_NBTRAIN).map(REDUCE_NBTRAIN).

collect()

5: Broadcast [P (Vj), phi] to all worker nodes
6: result ← testRDD.map(MAP_NBTEST).map(REDUCE_NBTEST).

saveAsTextFile("〈HDFSPath〉/result")
7: end procedure

6.3.6 K-Nearest Neighbor based on Spark (sf-KNN)

The training dataset (X = {(xi, ti)|xi ∈ RN , ti ∈ Rc, i = 1, 2, ...,M}) and testing dataset
(S = {(si)|si ∈ RN , i = 1, 2, ...,M}) are read from the HDFS using spark context and

transformed into RDD, i.e., trainRDD and testRDD for training data and testing data

respectively. The trainRDD is broadcasted to all the worker nodes. The implementation

details of Spark based K-Nearest neighbor is described in Algorithm 20. Finally, the result

obtained is saved in HDFS.
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Algorithm 20 sf-KNN: Spark based KNN

Input: Let X = {(xi, ti)|xi ∈ RN , ti ∈ Rc, i = 1, 2, ...,M} be the training set and
S = {(si)|si ∈ RN , i = 1, 2, ...,M} is a set of testing samples to be classified.
Output: Classification result of testing instance.

1: procedureMAP_KNN(si) . i = 1, 2, ...,M
2: for each testing samples si do . runs in parallel
3: for each training samples xj do

4: Calculate the Euclidean distance (dist) between a test sample and a training
sample.

5: Accumulate distance values for each training sample

6: end for

7: Emit 〈si, (dist1, dist2, ..., distj)〉 . return
8: end for

9: end procedure

10: procedure REDUCE_KNN(〈si, (dist1, dist2, ..., distj)〉)
11: for each testing sample si ∈ S do

12: Sort the distance values in ascending order obtained from key-value pairs.

13: Select the K nearest neighbors (training samples) to the testing sample.

14: Assign the testing sample (si) to the most frequent class (e.g., `c') in the set of
training samples.

15: if (a tie occurs) then
16: The sum of distances of the neighbors in each class is computed.

17: if (no tie occurs) then
18: Move si into the `minimum sum' class

19: else

20: Move si into the last `minimum sum' class.

21: end if

22: else

23: Move si into the majority class.
24: end if

25: end for

26: Return 〈si, ci〉 . return
27: end procedure

28: procedure DRIVER_MAIN(X,S)
29: Read train data X and test data S from HDFS

30: Create RDD of train data and test data i.e., called trainRDD and testRDD
respectively.

31: Broadcast trainRDD to all worker nodes

32: result ← testRDD.map(MAP_KNN).map(REDUCE_KNN).

saveAsTextFile(``〈HDFSPath〉/result")
33: end procedure

6.3.7 Artificial Neural Network classifier based on Spark (sf-ANN)

Artificial Neural Network (ANN) is a network of simulated neurons. It is inspired by the

examination of central nervous system. Warren in 1943 created a computational model

for neural networks based on mathematical formulations and algorithms [104]. ANN is a
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non-linear data modeling tool, which is usually used tomodel complex relationships between

inputs and outputs, and find patterns in data. This section gives a brief description of the

basic structure and working of ANN technique applied for predicting the organizational

performance. In general, a neuron in an ANN is a node having some activation function

(f(.)) which maps the input vector (X) to the output vector (Y ). The neurons (a signaling

element) connectedwith synapses are called as weight vector (W ). ANN architecture utilizes

its computational features that can be well applied for prediction of the outcome involved in

the analysis.

The Back Propagation Neural Network (BPNN) is one of the most widely applied neural

network. It mainly involves the feed forward network and the back propagation learning,

and uses the iterative gradient algorithm to minimize the mean square error (MSE) between

the actual output of a multilayer feed-forward perceptron and the desired output. The

BPNN can obtain the activation value by feed forward step, and adjusts the `weights' and

`biases' according to the difference between the desired and actual network outputs by using

the back propagation step. The execution of these two steps, i.e., feed forward and back

propagation terminate when the convergence criteria of network is satisfied [153, 154]. The

mathematical intuition behind selecting the number of layers in the network is that each layer

in a feed-forward multi-layer perceptron adds its own level of non-linearity that cannot be

contained in a single layer. The inputs in the single layer network are only linearly combined,

and hence cannot produce the non-linearity that can be seen through multiple layers. In

this study, a three layer network is considered, where in the first layer is simply the input

layer, which encodes a set of features learned from the inputs, while second layer encodes

a different (higher-level, more abstracted) set of features learned from the outputs of first

layer, and the third layer i.e., the output layer generates a feasible output. Particularly, this

network is used to classify the microarray datasets which have similar type of features. Each

layer in the network corresponds to each dimension of the data. Hence, a single hidden

layer is sufficient to achieve the desired output. But, as the number of layers increases, the

complexity of the network also increases and the chances of over-fitting of network may also

arise.

In this study, the sigmoid function is used as the activation function (f(.)) in both the

hidden and the output layer. Figure 6.2 shows the typical architecture of BPNN model.

Let X = {({1, xi}, ti)|xi ∈ RN , ti ∈ R1, i = 1, 2, ...,M} be the training set, where M
is the number of training samples and N is the number of features. A scalar value 1, which

acts as a bias is added to each sample vector xi. The class label t ∈ RM×m is defined in the
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Figure 6.2: Architecture of back-propagation neural network (BPNN).

following way, wherem is maximum number of classes.

ti =


{1, 0, ..., 0} ; if sample i belongs to class 1

{0, 1, ..., 0} ; if sample i belongs to class 2
...

{0, 0, ..., 1} ; if sample i belongs to class m

The weight vector wjk between jth node of hidden layer to kth node of output layer is

updated using Equation 6.15. The weight vector vij between ith node of input layer to jth

node of hidden layer is updated using Equation 6.16. δw and δv in Equation 6.13 and 6.14

respectively, are calculated for each sample, which are then accumulated in cluster nodes

with the help of accumulator variables. The accumulator variables, i.e., gradw and gradv,

sums the δw and δv values respectively of all samples in a distributed environment. The final

gradients (Mean(gradw) andMean(gradv)) are equal to the mean of all sample gradients

( 1
M

∑M
i=1 δw and 1

M

∑M
i=1 δv) obtained in each epoch.

δwjk = αδkf(v0j +
n∑

i=1

xivij) (6.13)

δw0k = αδk

δvij = αδjxi (6.14)

δv0j = αδj

wjk(t+ 1) = wjk(t) +Mean(gradw) + η[wjk(t)− wjk(t− 1)] (6.15)

vij(t+ 1) = vij(t) +Mean(gradv) + η[vij(t)− vij(t− 1)] (6.16)
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where f(.) is the activation function, α is the learning rate that affects the convergence of

BPN network and η ∈ [0, 1] is the momentum factor. The back propagation error δk and δj

are calculated using Equations 6.17 and 6.18 respectively.

δk = (tk − yk)f
′(w0k +

p∑
j=1

f(v0j +
n∑

i=1

xivij) ∗ wjk) (6.17)

δj =

(
m∑
k=1

δkwjk

)
f ′(v0j +

n∑
i=1

xivij) (6.18)

where f ′(.) is the derivative of f(.), n is number of input nodes, p is number of hidden nodes

and m is the number of output nodes in (n − p −m) three layered network. The predicted

output yk is calculated using Equation 6.19 and their corresponding class labels are obtained

by using Equation 6.20.

yk = f(w0k +

p∑
j=1

f(v0j +
n∑

i=1

xivij) ∗ wjk) (6.19)

classLabel = argmax
k=1,2,...,m

{ Y = (y1, y2, y3, ..., ym}) (6.20)

The proposed Spark based ANN (sf-ANN) algorithm consists of a driver program and

various RDD transformation procedures like, ANNTRAIN( ) and ANNTEST( ). The driver

program is responsible for creating a SparkContext, RDDs, and performing transformations

and actions. In RDD transformation method, the distributed dataset (RDD) is transformed

by reading a line (single sample) and returning the result as per the Transformation method.

Parallel transformation operations on RDDs are performed by worker nodes and the results

are returned to the driver program. The driver performs RDD action operation by collecting

the results from all worker nodes. Figure 6.3 shows the data flow diagram of sf-ANN.

Algorithm 21 Transformation method for training ANN Model

Input: Training Set X
Output: gradw =

∑
δw and gradv =

∑
δv

1: procedure ANNTRAIN(x)
2: for each sample x in RDD do . Runs in parallel
3: Calculate δw from Equation 6.13

4: Calculate δv from Equation 6.14

5: gradw += δw
6: gradv += δv
7: end for

8: return gradw, gradv
9: end procedure

Algorithm 21 shows the implementation of ANNTRAIN() method. This method is

used for calculating δw and δv for each input sample and finally summing it up using an

accumulator variable. In the driver program, gradw and gradv are initialized as accumulator
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Figure 6.3: Workflow of sf-ANN algorithm

variables, which are common to all worker nodes. The value of these variables can only

be read within the driver program. The worker nodes can only update the accumulator

variables. The average value of gradw and gradv obtained in each iteration are used to

update weights wjk and vij respectively, which are then broadcasted to worker nodes. This

process continues until the given iteration criteria is met. The final weights obtained gives

the decision boundary parameter for multi-class classification problem.

Algorithm 22 shows the implementation of ANNTEST(). This method transforms the

RDD of testing dataset by returning the predicted class label of each sample along with

original class label. The result from all worker nodes are collected by the driver program,

which then calculates the accuracy of sf-ANN. Algorithm 23 shows the implementation of

sf-ANN in driver program using RDD Transformation and Action operation.

6.3.8 Radial Basis Function Network based on Spark (sf-RBFN)

Radial basis function (RBFN) is considered as a variant of artificial neural network [155]. It

was first formulated by Broomhead et al. [156] and popularized subsequently by Moody et

al. [157]. The idea of RBFN is derived from the theory of function approximation. An RBF

network consists of three layers, namely the input layer, the hidden layer, and the output

layer.
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Algorithm 22 Transformation method for testing ANN Model

Input: Testing Set Xtest

Output: 〈Predicted_classLabel, Original_classLabel〉
1: procedure ANNTEST(x)
2: for each sample x in RDD do . Runs in parallel
3: for each class do

4: Calculate yk using Equation 6.19
5: end for

6: Calculate classLabel using Equation 6.20
7: return 〈Predicted_classLabel, Original_classLabel〉
8: end for

9: end procedure

Algorithm 23 ANN based on Spark

Input: Training Set X , Testing Set Xtest

Output: Classification result of Xtest

1: procedure DRIVER_MAIN(X,Xtest)

2: Read X file from HDFS

3: Create RDD of train data X , called trainRDD
4: trainRDD← trainRDD.cache()

5: Initialize and broadcast sf-ANN weights wjk and vij to worker nodes
6: Initialize gradw and gradv as accumulator variables
7: for iter = 1 to iterations do
8: [ gradw, gradv]← trainRDD.map(ANNTRAIN( )).collect( )

9: Update wjk using Equation 6.15

10: Update vij using Equation 6.16
11: Restrict wjk, vij ∈ [−1, 1]
12: Broadcast updated wjk and vij to worker nodes
13: end for

14: Create RDD of test data Xtest, called testRDD
15: Output← testRDD.map(ANNTEST( )).collect( )

16: Calculate accuracy of sf-ANN model

17: end procedure

• Input layer: transmits the input vector to each unit in the hidden layer.

• Hidden layer: maps the input space into nonlinear space using a radial basis function.

The transformation from input space to hidden space is nonlinear.

• Transformation from hidden unit space to output space is linear.

The input layer consists of source nodes. In hidden layer each neuron computes its output

using a radial basis function, which is in general a Gaussian function. The output layer

builds a linear weighted sum of the output of hidden neurons and supplies the response of

the network.
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Figure 6.4: Radial basis function network

The parameters of RBFN viz., centers (used in Gaussian function) and weights (between

the neurons of hidden layer and output layer) are trained using different techniques like

gradient descent, and hybrid learning. Figure 6.4 shows the architecture of RBF network.

6.3.8.1 Hybrid learning

Hybrid learning technique is applied for updating the centers and weights of sf-RBFN

model. The centers are obtained by applying KMEANS clustering algorithm based on Spark

framework, and the weights (W ) are updated using gradient descent learning method.

Let X = {(xi, yi)|xi ∈ RN , yi ∈ R1, i = 1, 2, ...,M} be the training set, where M

is the number of training samples, and N is the number of features. The cluster centers

(C1, C2, ..., Ch) of training set are obtained by applying K-Means clustering algorithm based

on Spark framework. The input vectors are then mapped using the Gaussian function as

mentioned in Equation 6.21 at hidden layer of sf-RBFN. The number of nodes in hidden

layer is equal to the number of centers (h), which are obtained using Spark based K-Means

clustering algorithm. The weight vector W ∈ Rk×(1+h) of sf-RBFN is optimized using the

cost (J) in Equation 6.22 and gradient in Equation 6.23, which are obtained from gradient

descent based on Mean Square Error (MSE).

φj(x) = exp(−‖x− cj‖2

(σj)2
) (6.21)

where ‖.‖ denotes the sum of squared distance between the input vector and centers, x ∈ RN

is the input, φj(x) is the Gaussian radial basis function, cj ∈ RN and σj are the center and

width of jth hidden neuron respectively.

Jk =

[
(Φ ·Wi − Yi)

2

2 ∗M
+

{
λ

2 ∗M

h+1∑
j=2

w2
j

}]
(6.22)
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gk =

[
Φ(Φ ·Wi − Yi)

M
+

{
λ

M
∗Wi[2 : h+ 1]

}]
(6.23)

gradlist = {g1, g2, ..., gk} (6.24)

where λ is the regularization parameter, Φ = {1, φ1, φ2, ..., φh}, wj is the output layer

weights of the RBFN, h denotes the number of clusters, i.e., number of hidden nodes in

hidden layer and k is the number of classes. Jk and gk in Equations 6.22 and 6.23 are

the cost function and gradient of each class k respectively. The gradlist in Equation 6.24

is a list of gradient values obtained for each class. This gradient list (gradlist) is for a

single sample, which is accumulated for each samples in cluster nodes. gradV ector is

the accumulator variable which sums the gradient value of all samples (
∑M

i=1 gradlist) in

a distributed environment. The final gradient (Mean(gradV ector)) is equal to the mean

of all sample gradients ( 1
M

∑M
i=1 gradlist) obtained in each epoch. The weights are updated

using Equation 6.25. Class label Y ∈ RM×k is defined in the following way; where k is

maximum number of classes..

Yi =


{1, 0, ..., 0} ; if sample i belongs to class 1

{0, 1, ..., 0} ; if sample i belongs to class 2
...

{0, 0, ..., 1} ; if sample i belongs to class k

The predicted output of samples are obtained by using Equation 6.26 and their corresponding

class labels are obtained by using Equation 6.27.

Wnew = Wold −Mean(gradV ector) (6.25)

F (x) = W ∗ ΦT (6.26)

classLabel = argmax
i=1,2,...,k

F (x) (6.27)

The proposed sf-RBFN algorithm using Hybrid learning technique consists of driver

program and various RDD Transformation methods like, KMEANS( ), HLRBFNTRAIN( ) and

RBFNTEST( ). The driver program is responsible for creating a SparkContext, RDDs, and

performing transformations and actions. In RDD transformation method, the distributed

dataset (RDD) is transformed by reading a line (single sample) and returning the result as

per the Transformation method. Parallel transformation operation on RDDs are performed

by worker nodes and the results are returned to the driver program. The driver performs

RDD action operation by collecting the results from all worker nodes. Figure 6.5 shows the

workflow of sf-RBFN algorithm using Hybrid learning technique.

Algorithm 24 shows the implementation of KMEANS( ) and FILTERDATA( )

Transformation method. KMEANS( )method is used to transform the RDD of training dataset

by assigning each sample to its closest cluster. The output of KMEANS( ) method is a new
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Figure 6.5: Workflow of sf-RBFN algorithm using Hybrid learning technique

RDD, which is passed to FILTERDATA( ) method. The FILTERDATA( ) method transforms the

RDD by returning the data points of each sample associated with a cluster. The new cluster

centroids are computed with each RDD transformation and action operations are performed

in driver program. This process terminates when the given condition (convergence criteria)

is satisfied. The final cluster centroids obtained are then broadcasted to worker nodes.

Algorithm 25 shows the implementation of HLRBFNTRAIN( ) method. This method is used

for optimizing the weights (W ) of sf-RBFNmodel by calculating the gradient (gradV ector)

in one single iteration. In the driver program, gradV ector is initialized as an accumulator

variable, which is common to all worker nodes. The value of this variable can only be read

within the driver program. The worker nodes can only update an accumulator variable. The

gradV ector value obtained in each iteration is used to updateW , which is then broadcasted

to worker nodes. This process continues until the given iteration criteria is met. The final

weights (W ) obtained gives the decision boundary parameter for multi-class classification

problem.

Algorithm 26 shows the implementation of RBFNTEST(). This method transforms the

RDD of testing dataset by returning the predicted class label of each sample along with

original class label. The result from all worker nodes are collected by the driver program,

which then calculates the accuracy of sf-RBFN using hybrid learning technique. Algorithm

27 shows the implementation of sf-RBFN with hybrid learning technique in driver program,

using RDD transformations and actions.
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Algorithm 24 KMeans Transformation method

Input: Training Set X
Output: clusterPoints

1: procedure KMEANS(X)

2: Create RDD of train data X , called trainRDD
3: for each sample x in trainRDD do . Runs in parallel
4: for each c in cluster centroids do
5: Find c having minimum Euclidean distance with sample x
6: end for

7: Assign sample x to closest cluster c
8: Return 〈sample_id, assigned_cluster〉
9: end for

10: end procedure

11: procedure FILTERDATA(sample_id, assigned_cluster)
12: for each sample x in trainRDD do . Runs in parallel
13: Find datapoints corresponding to sample_id
14: Return 〈datapoints, assigned_cluster〉
15: end for

16: end procedure

Algorithm 25 Transformation method for training RBFN Model using Hybrid learning

technique

Input: Training Set X
Output: gradV ector

1: procedure HLRBFNTRAIN(X)

2: Create RDD of train data X , called trainRDD
3: for each sample x in trainRDD do . Runs in parallel
4: for each c in cluster centroids do
5: Calculate φ using Equation 6.21
6: end for

7: for each class k do
8: Calculate Jk using Equation 6.22
9: Calculate gk using Equation 6.23
10: end for

11: Calculate gradlist using Equation 6.24
12: gradV ector + = gradlist
13: end for

14: Return gradV ector
15: end procedure

6.3.8.2 Gradient descent

In this technique both the centers (C) and weights (W ) of sf-RBFN are optimized using

gradient descent learning method. Let X = {(xi, yi)|xi ∈ RN , yi ∈ R1, i = 1, 2, ...,M} be
the training set, where M is the number of training samples, and N is the number of features.

The optimization of weight vector W ∈ Rk×(1+h) is similiar to sf-RBFN using Hybrid
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Algorithm 26 Transformation method for testing RBFN Model

Input: Testing Set Xtest

Output: 〈Predicted_classLabel, Original_classLabel〉
1: procedure RBFNTEST(Xtest)

2: for each sample x in test data Xtest do . Runs in parallel
3: for each c in cluster centroids do
4: Calculate φ using Equation 6.21
5: end for

6: Calculate F (x) using Equation 6.26
7: Calculate classLabel using Equation 6.27
8: Return 〈Predicted_classLabel, Original_classLabel〉
9: end for

10: end procedure

Algorithm 27 RBFN using hybrid learning technique based on Spark

Input: Training Set X , Testing Set Xtest

Output: Classification result of Xtest

1: procedure DRIVER_MAIN(X,Xtest)

2: Create RDD of train data X , called trainRDD
3: trainRDD← trainRDD.cache( )

4: Initialize and broadcast cluster centroids Centroidold to worker nodes
5: clusterPoints← trainRDD.map(KMEANS( )).FILTERDATA( ).collect( )

6: Centroidnew ← meanvalue(clusterPoints)
7: while ((Centroidold − Centroidnew)

2 ≥ 1) do
8: clusterPoints← trainRDD.map(KMEANS( )).FILTERDATA( ).collect( )

9: Centroidnew ← meanvalue(clusterPoints)
10: end while

11: Broadcast Centroidnew to worker nodes

12: Initialize and broadcast sf-RBFN weights (W ) to worker nodes

13: Initialize gradient (gradV ector) as accumulator variable
14: for i = 1 to iterations do
15: gradV ector← trainRDD.map(HLRBFNTRAIN( )).count( )

16: UpdateW usingMean(gradV ector)
17: RestrictW ∈ [−1, 1]
18: Broadcast updatedW to worker nodes

19: end for

20: Create RDD of test data Xtest, called testRDD
21: Output← testRDD.map(RBFNTEST( )).collect( )

22: Calculate accuracy of sf-RBFN model

23: end procedure

learning technique i.e., Equation 6.25. The centers of training set are optimized using gh in

Equation 6.28. The gh in Equation 6.28 is the center gradient of each class. The gradcenter

in Equation 6.29 is a list of center gradient values obtained for each class. This gradient

list (gradcenter) is for a single sample, which is accumulated for all samples in cluster nodes.

gradV ectorc is the accumulator variable which sums the center gradient value of all samples
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(
∑M

i=1 gradcenter) in a distributed environment. The final gradient (Mean(gradV ectorc))

is equal to the mean of all sample gradients ( 1
M

∑M
i=1 gradV ectorc) obtained in each epoch.

The centers are updated using Equation 6.30.

gh =

[
λ

M
Φi · (Φi ·Wi − Yi) ·Wi ·

{
h∑

j=1

(xj − cij)

}]
(6.28)

gradcenter = {g1, g2, ..., gh} (6.29)

where λ is the regularization parameter, Φi andWi are the basis function and weight vector

for ith class respectively, h denotes the number of centers, i.e., number of hidden nodes

in hidden layer and k is the number of classes. The predicted output of samples and their

corresponding class labels are obtained in a similar manner as in hybrid learning technique

i.e., Equations 6.26 and 6.27 respectively.

Cnew = Cold −Mean(gradV ectorc) (6.30)

The proposed sf-RBFN algorithm using gradient descent learning technique consists

of driver program and various RDD Transformation methods, i.e., GDRBFNTRAIN( ) and

RBFNTEST( ). Figure 6.6 shows the workflow of sf-RBFN algorithm using gradient descent

learning technique.

Figure 6.6: Workflow of sf-RBFN algorithm using gradient descent learning technique

Algorithm 28 shows the implementation of GDRBFNTRAIN( ) method. This method is
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used for optimizing the weights (W ) and centers (C) of sf-RBFN model by calculating

gradV ector and gradV ectorc respectively in one single iteration. In driver program

gradV ector and gradV ectorc are initialized as accumulator variables that are common to all

worker nodes. The value of these variables can only be read within the driver program. The

worker nodes can only update the accumulator variables. The gradV ector and gradV ectorc

values obtained in each iteration are used to update W and C respectively, which are then

broad-casted to worker nodes. This process continues until the given iteration criteria is met.

The final weights (W ) and centers (C) obtained gives the decision boundary parameters for

multi-class classification problem. The transformation method for calculating the accuracy

of sf-RBFN using gradient descent learning technique is same as Algorithm 26. Algorithm

Algorithm 28 Transformation method for training RBFN Model using gradient descent

learning technique

Input: Training Set X
Output: gradV ector, gradV ectorc

1: procedure GDRBFNTRAIN(X)

2: Create RDD of train data X , called trainRDD
3: for each sample x in trainRDD do . Runs in parallel
4: for each c in cluster centroids do
5: Calculate φ using Equation 6.21
6: end for

7: for each class k do
8: Calculate Jk using Equation 6.22
9: Calculate gk using Equation 6.23
10: for each center h do
11: Calculate gh using Equation 6.28
12: end for

13: end for

14: Calculate gradlist using Equation 6.24
15: Calculate gradcenter using Equation 6.29
16: gradV ector += gradlist
17: gradV ectorc += gradcenter
18: end for

19: Return gradV ector, gradV ectorc
20: end procedure

29 shows the implementation of sf-RBFN using gradient descent learning technique in driver

program, along with RDD transformations and actions.

6.4 Results and Interpretation

In this section, the results obtained from the proposed algorithms (Section 6.3) on

various microarray high-dimensional datasets like GSE13159, GSE13204, and GSE15061

(described in Section 4.2) are discussed. The performance of the classifier is measured using
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Algorithm 29 RBFN using gradient descent learning technique based on Spark

Input: Training Set X , Testing Set Xtest

Output: Classification result of Xtest

1: procedure DRIVER_MAIN(X,Xtest)

2: Create RDD of train data X , called trainRDD
3: trainRDD← trainRDD.cache( )

4: Initialize and broadcast sf-RBFN weights (W ) and centers (C) to worker nodes
5: Initialize gradV ector and gradV ectorc as accumulator variable
6: for i = 1 to iterations do
7: [gradV ector, gradV ectorc]← trainRDD.map(GDRBFNTRAIN( )).collect( )

8: UpdateW usingMean(gradV ector)
9: Update C usingMean(gradV ectorc)
10: RestrictW ∈ [−1, 1]
11: Broadcast updatedW and C to worker nodes

12: end for

13: Create RDD of test data Xtest, called testRDD
14: Output← testRDD.map(RBFNTEST( )).collect( )

15: Calculate accuracy of sf-RBFN model

16: end procedure

the various parameters like accuracy, precision, recall, and processing efficiency [158].

6.4.1 Analysis of Spark based classifiers

After selecting relevant features from training dataset set, the proposed Spark based

classifiers are applied to classify the microarray datasets with reduced number of features.

When the samples are sequentially selected for training purpose, the model designed may

be over-trained or under-trained, as the selected samples may belong to similar classes or

groups, i.e., only cancerous or non-cancerous samples. To avoid this, `3-fold cross validation

(CV)' technique has been applied to assess the performance of classifiers, as it provides a

more realistic assessment by generalizing significantly to unseen data. In CV technique, the

parameters of classifiers are initially tuned within a certain range and an optimal value is

selected for each fold. The median value of the best parameter from each fold is considered

for training the final model. The performance of the final model is tested using the testing

dataset. Cross-Validation using the train dataset provides the training accuracy of the model,

and performance evaluation using test dataset gives the testing accuracy of the model.

6.4.1.1 Result of sf-LoR classifier

Logistic Regression based on Spark (sf-LoR) classifier is used with OVA to classify multiple

class problem. 3-fold Cross-Validation is applied on training dataset in order to validate the

classifier. The best regularization parameter for each fold is obtained by varying it within

a certain range. The median value of the best regularization parameter from each fold is

considered for the final model. The performance of the final model is tested using the testing
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dataset. Cross-Validation using the train dataset gives the training accuracy of the model, and

performance evaluation using the test dataset gives the testing accuracy of the model.

The execution time and processing efficiency of sf-LoR (in testing phase) based on Spark

framework and on conventional machine are tabulated in Table 6.1. Processing efficiency

in Table 6.1 is defined as the number of samples processed per second. The amount

of time consumed by Logistic Regression classifier on Spark and conventional system is

shown in Figure 6.7. From Figure 6.7, it is evident that the time taken by the classifiers

based on Spark framework, to analyze the datasets is much less as compared to the same

in conventional system. The performance parameters of Spark based Logistic Regression

classifier, i.e., Recall, Precision, F-Measure andAccuracy for dataset GSE13159, GSE13204

and GSE15061 are mentioned in Table 6.2, 6.3, and 6.4 respectively.

Table 6.1: Execution time and processing efficiency result of Logistic Regression (sf-LoR)

classfier

FS method Dataset Conv.

Timing (sec)

Spark

Timing (sec)

Conv.

Processing

efficiency (s−1)

Spark

Processing

efficiency (s−1)

GSE13159 2851.29 766.74 0.24 0.91

ANOVA GSE13204 80.99 46.84 13.37 23.12

GSE15061 17.47 11.97 16.59 24.22

GSE13159 2920.61 799.89 0.23 0.87

Kruskal-Wallis GSE13204 81.88 49.40 13.22 21.92

GSE15061 24.75 9.54 11.71 30.39

GSE13159 589.22 173.50 1.18 4.02

Friedman GSE13204 73.17 35.06 14.80 30.88

GSE15061 131.21 65.18 2.21 4.44

(a) GSE15061 (b) GSE13204 (c) GSE13159

Figure 6.7: Comparison in terms of execution time, between Spark and conventional system

for Logistic Regression (sf-LoR) classifier (in testing phase)

6.4.1.2 Result of sf-SVM classifier

SVM based on Spark (sf-SVM) classifier with linear kernel is used with OVA to classify

multiple class problem. 3-fold Cross-Validation is applied on training dataset in order to

validate the classifier. The best regularization parameter for each fold is obtained, by varying

it within a certain range of [2−5, 25]. The median value of the best regularization parameter
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Table 6.4: Performance parameter of Logistic Regression (sf-LoR) for GSE15061 dataset

Feature Selection Performance

parameter

1 2 3 Average

Recall 0.9778 0.9541 0.3696 0.7672

ANOVA Precision 0.9565 0.7879 0.8500 0.8648

F-Measure 0.9670 0.8631 0.5152 0.7818

Accuracy 0.6824

Recall 0.9778 0.4495 0.3478 0.5917

Kruskal-Wallis Precision 0.6197 0.8305 0.8889 0.7797

F-Measure 0.7586 0.5833 0.5000 0.6140

Accuracy 0.6793

Recall 0.9778 0.4404 0.3261 0.5814

Friedman Precision 0.6197 0.8276 0.7895 0.7456

F-Measure 0.7586 0.5749 0.4615 0.5983

Accuracy 0.6724

from each fold is considered for the final model. The performance of the final model is tested

using the testing dataset.

The execution time and processing efficiency of SVM classifier (in testing phase) based

on Spark framework and on conventional machine are tabulated in Table 6.5. Processing

efficiency in Table 6.5 is defined as the number of samples processed per second. The amount

of time consumed by SVM classifier on Spark and conventional system is shown in Figure

6.8. From Figure 6.8 it is evident that the time taken by the classifiers based on Spark

framework, to analyze the datasets is much less as compared to the same in conventional

system. The performance parameters of Spark based SVM classifier, i.e., Recall, Precision,

F-Measure and Accuracy for dataset GSE13159, GSE13204 and GSE15061 are mentioned

in Tables 6.6, 6.7, and 6.8 respectively.

Table 6.5: Execution time and processing efficiency result of sf-SVM classfier (in testing

phase)

FS method Dataset Conv. Time

(sec.)

Spark Time

(sec.)

Conv.

Processing

efficiency

(s−1)

Spark

processing

efficiency

(s−1)

GSE13159 1598.72 478.18 0.43 1.46

ANOVA GSE13204 129.96 103.78 8.33 10.43

GSE15061 29.11 19.65 9.96 14.75

GSE13159 1561.38 430.87 0.44 1.62

Kruskal-Wallis GSE13204 129.23 111.18 8.38 9.74

GSE15061 37.87 19.34 7.65 14.99

GSE13159 756.53 203.77 0.92 3.43

Friedman GSE13204 118.36 94.25 9.15 11.49

GSE15061 192.75 84.46 1.50 3.43
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(a) GSE15061 (b) GSE13204 (c) GSE13159

Figure 6.8: Comparison in terms of execution time, between Spark and conventional system

for sf-SVM classifier (in testing phase)

6.4.1.3 Result of sf-NB classifier

Naive Bayes classifer based on Spark (sf-NB) is used to classify multiple class problem.

3-fold Cross-Validation is applied on training dataset in order to validate the classifier. The

performance of the final model is tested using the testing dataset.

The execution time and processing efficiency of Naive Bayes classifier based on Spark

framework and on conventional machine are tabulated in Table 6.9. Processing efficiency

in Table 6.9 is defined as the number of samples processed per second. The amount of time

consumed by Naive Bayes classifier on Spark and conventional system is shown in Figure

6.9. From Figure 6.9, it is observed that the time taken by the classifiers based on Spark

framework, to analyze the datasets is much less as compared to the same in conventional

system. The performance parameters of Spark based Naive Bayes classifier, i.e., Recall,

Precision, F-Measure and Accuracy for dataset GSE13159, GSE13204 and GSE15061 are

mentioned in Table 6.10, 6.11, and 6.12 respectively.

(a) GSE15061 (b) GSE13204 (c) GSE13159

Figure 6.9: Comparison in terms of execution time, between Spark and conventional system

for Naive Bayes (sf-NB) classifier (in testing phase)

6.4.1.4 Results of sf-KNN classifier

The proposed classifier is trained using 3-fold cross validation by varying the parameter

K ∈ [1, 21] with a span of 2 on the training dataset. The optimal values ofK are obtained in

each fold, corresponding to the training accuracy of that fold. Finally, the average accuracy
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Table 6.8: Performance parameter of sf-SVM for GSE15061 dataset

Feature Selection Performance

parameter

1 2 3 Average

Recall 0.9852 0.9633 0.2391 0.7292

ANOVA Precision 0.9708 0.7500 0.8462 0.8557

F-Measure 0.9779 0.8434 0.3729 0.7314

Accuracy 0.8586

Recall 0.9778 0.4587 0.2609 0.5658

Kruskal-Wallis Precision 0.6197 0.7937 0.8571 0.7568

F-Measure 0.7586 0.5814 0.4000 0.5800

Accuracy 0.6690

Recall 0.9926 0.4220 0.3478 0.5875

Friedman Precision 0.6175 0.8679 0.8000 0.7618

F-Measure 0.7614 0.5679 0.4848 0.6047

Accuracy 0.6759

Table 6.9: Execution time and processing efficiency result of Naive Bayes classifier (sf-NB)

(in testing phase)

FS Technique Dataset Conv. Time

(sec)

Spark Time

(sec)

Conv.

Processing

efficiency

(s−1)

Spark

Processing

efficiency

(s−1)

GSE13159 92.99 25.66 7.51 27.24

ANOVA GSE13204 10.41 5.76 104.03 188.02

GSE15061 7.71 4.84 37.61 59.91

GSE13159 93.32 25.33 7.49 27.59

Kruskal-Wallis GSE13204 10.67 6.05 101.49 179.00

GSE15061 10.15 3.50 28.57 82.85

GSE13159 44.21 12.57 15.81 55.60

Friedman GSE13204 9.80 5.09 110.51 212.77

GSE15061 58.35 27.21 4.97 10.65

value is considered for each fold. The average accuracy value is the training accuracy of

the model with the optimal K (median values of K in each fold). Using the optimal K, the

model is tested on the test data and the testing accuracy is obtained.

6.4.1.4.1 Results for the GSE15061 Dataset This dataset is a subset of the Microarray

Innovations In LEukemia (MILE) study program stored in the NCBI repository with

accession number GSE15061. There are 870 samples in the GSE15061 dataset, of which

580 samples are selected as training samples and 290 as testing samples. These samples are

divided into 3 classes and are labeled as shown in Table 4.7.

The model sf-KNN is trained using the training data of various feature selection (FS)

methods by varying the value of K ∈ [1, 21] with a span of 2 and training accuracies are

obtained. The training accuracies obtained using ANOVA, Kruskal-Wallis, and Friedman
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Table 6.12: Performance parameter of Naive Bayes (sf-NB) for GSE15061 dataset

Feature Selection Performance

parameter

1 2 3 Average

Recall 0.9111 0.3670 0.2609 0.5130

ANOVA Precision 0.6029 0.7273 0.3871 0.5724

F-Measure 0.7257 0.4878 0.3117 0.5084

Accuracy 0.6034

Recall 0.9037 0.3761 0.2826 0.5208

Kruskal-Wallis Precision 0.6040 0.7455 0.3939 0.5811

F-Measure 0.7240 0.5000 0.3291 0.5177

Accuracy 0.6069

Recall 0.9111 0.5780 0.2391 0.5761

Friedman Precision 0.6949 0.7500 0.3793 0.6081

F-Measure 0.7885 0.6528 0.2933 0.5782

Accuracy 0.6793

tests as feature selectionmethods are 77.41% (f = 6786, K = 21), 82.24% (f = 9741, K =

17), and 79.83% (f = 5431, K = 21), respectively. Corresponding to these training

accuracies, the model is tested using the optimal value of K and the testing accuracies

obtained using ANOVA, Kruskal-Wallis, and Friedman tests as feature selection methods

are 71.70%, 73.40%, and 73.10%, respectively. The performance parameters of sf-KNN

classifier, i.e., Recall, Precision, F-Measure, Accuracy are mentioned in Table 6.13.

Table 6.13: Performance parameter of sf-KNN with various feature selection methods using

GSE15061 dataset.

FS method Performance parameter 1 2 3 Average

ANOVA

Recall 0.6963 0.8349 0.5000 0.6771

Precision 0.9691 0.6233 0.4894 0.6939

F-Measure 0.8103 0.7137 0.4946 0.6729

Accuracy 0.7172

Kruskal-Wallis

Recall 0.7556 0.9083 0.2609 0.6416

Precision 0.9189 0.6111 0.7059 0.7453

F-Measure 0.8293 0.7306 0.3810 0.6469

Accuracy 0.7345

Friedman

Recall 0.7778 0.8716 0.2609 0.6367

Precision 0.8824 0.6169 0.7059 0.7350

F-Measure 0.8268 0.7224 0.3810 0.6434

Accuracy 0.7310
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6.4.1.4.2 Results for the GSE13159 Dataset There are 2,096 samples in the GSE13159

dataset, of which 1,397 samples are selected as training samples and 699 as testing samples.

These samples are divided into 18 classes and are labeled as shown in Table 4.5.

The model sf-KNN is trained using training data by varying the value ofK ∈ [1, 21]with

a span of 2with various feature selection (FS) methods, and training accuracies are obtained.

The training accuracies obtained using ANOVA, Kruskal-Wallis, and Friedman tests as

feature selectionmethods are 81.60% (f = 37016, K = 19), 80.60% (f = 36897, K = 21),

and 81.60% (f = 17553, K = 19) respectively. Corresponding to these training accuracies,

the model is tested using the optimal values of K and the testing accuracies obtained

using ANOVA, Kruskal-Wallis, and Friedman test as feature selection methods are 81.12%,

80.97%, and 80.40%, respectively. The performance parameters of sf-KNN classifier, i.e.,

Recall, Precision, F-Measure, Accuracy are mentioned in Table 6.14.

6.4.1.4.3 Results for the GSE13204 Dataset There are 3,248 samples in the GSE13204

dataset, of which 2,165 samples are selected as training samples and 1,083 as testing samples.

These samples are divided into 18 classes and are labeled as shown in Table 4.6.

The model sf-KNN is trained using training data from various FSmethods by varying the

value of K ∈ [1, 21] with a span of 2 to obtain training accuracies. The training accuracies

obtained using ANOVA, Kruskal-Wallis, and Friedman tests as feature selection methods

are 87.90% (f = 1423, K = 7), 92.52% (f = 1427, K = 7), and 92.33% (f =

1225, K = 3), respectively. Corresponding to these training accuracies, the model is

tested using the optimal values of K, and the testing accuracies obtained using ANOVA,

Kruskal-Wallis, and Friedman tests as feature selection methods are 83.75%, 83.93%,

and 84.76%, respectively. The performance parameters of sf-KNN classifier, i.e., Recall,

Precision, F-Measure, Accuracy are mentioned in Table 6.15.

Table 6.16 summarizes the training and testing accuracy of sf-KNN with various FS

methods using different microarray datasets like GSE15061, GSE13159, and GSE13204.

From the obtained results, it is inferred that feature selection plays an important role in

the classification process, and results vary by changing the feature selection methods.

The overall execution details i.e., the maximum time taken by Spark (T Spark
max ) , the

maximum time taken by conventional system (TConv
max ) and their corresponding processing

efficiency of the sf-KNN classifier are tabulated in Table 6.17. Conventional time (TConv
max ) is

defined as the time taken by a conventional systemwhere data is not distributed over different

machines, i.e., data is stored on a single machine, and a dataset is sequentially processed.

The amount of time consumed by the sf-KNN classifier on the Hadoop cluster with Spark

and on a conventional system is shown in Figure 6.10. From Figure 6.10, it is evident that

the time taken by the sf-KNN classifier to analyze the datasets GSE13159, GSE13204, and

GSE15061 (where data size is large), and the time taken by sf-KNN on the Spark is much less

than on a conventional system. Hence, Spark provides effective performance in analyzing
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Table 6.16: Summary of training and testing accuracy (%) for various microarray datasets.

Dataset ANOVA Kruskal-Wallis Friedman

Train Acc. Test Acc. Train Acc. Test Acc. Train Acc. Test Acc.

GSE15061 77.41 71.72 82.24 73.45 79.83 73.10

GSE13159 81.60 81.12 80.60 80.97 81.60 80.40

GSE13204 87.90 83.75 92.52 83.93 92.33 84.76

Table 6.17: Execution details of sf-KNN classifier on Hadoop cluster (with three slaves)

using Spark, and conventional system (Time is measured in seconds (s))

Dataset Feature selection

method

TConv
max T Spark

max Processing efficiency

(Conv. (s−1))

Processing efficiency

(Spark (s−1))

GSE13159

ANOVA 24050 2643 1.54 14.01

Kruskal-Wallis 23610 1676 1.56 22.02

Friedman 6554 1500 2.68 11.73

GSE13204

ANOVA 3752 435 0.38 3.27

Kruskal-Wallis 3286 457 0.43 3.123

Friedman 2704 535 0.45 2.29

GSE15061

ANOVA 1151 167 5.9 40.64

Kruskal-Wallis 1929 187 5.05 52.09

Friedman 8918 985 6.09 55.15

large datasets.

(a) GSE13159 (b) GSE13204 (c) GSE15061

Figure 6.10: Comparison of execution time in sf-KNN on Hadoop cluster (with Spark) and

Conventional system (Conv).

6.4.1.5 Results of sf-ANN

In sf-ANN the weights are optimized using gradient descent algorithm. The total number of

hidden nodes in the model act as the tuning parameter, which is varied within the selected

range [10, 30, 50, 90, 110, 150, 200, 300, 400]. The value of learning rate α and momentum

factor η are taken as 0.5 and 0.9 respectively. The model is trained using 3-fold CV by

varying the number of hidden nodes and the overall performance is assessed. The overall

execution details and processing efficiency of sf-ANN classifier is tabulated in Table 6.18.
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Processing efficiency in Table 6.18 signifies the number of samples processed per second.

The amount of time consumed byANN classifier on Spark and conventional system is shown

in Figure 6.11. From this figure, it is evident that the time taken to analyze the datasets

by ANN classifier based on Spark framework (sf-ANN) is much less as compared to the

same in conventional system. The performance parameters of sf-ANN classifier, i.e., Recall,

Precision, F-Measure and Accuracy for dataset GSE15061, GSE13204, and GSE13159 are

mentioned in Table 6.19, 6.20, and 6.21 respectively.

(a) GSE15061 (b) GSE13204 (c) GSE13159

Figure 6.11: Comparison in terms of execution time, between Spark and Conventional

system (Conv.) for sf-ANN classifier (in testing phase)

6.4.1.6 Results of sf-RBFN using hybrid learning technique

In sf-RBFN (hybrid) K-Means clustering algorithm is applied to obtain the cluster centers,

which are also the total number of hidden nodes in the model. The weights are optimized

by using gradient descent algorithm. In this study the number of hidden nodes is taken as

25 and the regularization parameter λ (Section 6.3.8) which also act as the tuning parameter

is varied within the range λ ∈ [2−10, 25] (with step size = 1 for log λ). The model is trained

using 3-fold CV by varying λ and the overall performance is assessed. The overall execution

details and processing efficiency of sf-RBFN classifier using hybrid learning technique is

tabulated in Table 6.22. Processing efficiency in Table 6.22 signifies the number of samples

processed per second. The amount of time consumed by RBFN (hybrid) classifier on Spark

and conventional system is shown in Figure 6.12. From this figure, it is evident that the

time taken to analyze the datasets by RBFN (hybrid) classifier based on Spark framework

(sf-RBFN) is much less as compared to the same in conventional system. The performance

parameters of sf-RBFN classifier using hybrid learning technique, i.e., Recall, Precision,

F-Measure and Accuracy for dataset GSE15061, GSE13204, and GSE13159 are mentioned

in Table 6.23, 6.24, and 6.25 respectively.

6.4.1.7 Results of sf-RBFN using gradient descent learning technique

In sf-RBFN (gradient descent), both the centers and the weights are optimized by using

gradient descent algorithm. In this study the number of hidden nodes is taken as 25 and the

regularization parameter λ (Section 6.3.8) which also act as the tuning parameter is varied
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Table 6.19: Performance parameter of sf-ANN with various feature selection methods using

GSE15061 dataset.

FS method Performance parameter 1 2 3 Average

ANOVA

Recall 0.7185 0.8440 0.5000 0.6875

Precision 0.9700 0.6301 0.5227 0.7076

F-Measure 0.8255 0.7216 0.5111 0.6861

Accuracy 0.7310

Kruskal-Wallis

Recall 0.9185 0.5596 0.6304 0.7029

Precision 0.7168 0.8841 0.6042 0.7350

F-Measure 0.8052 0.6854 0.6170 0.7025

Accuracy 0.7379

Friedman

Recall 0.6889 0.8349 0.4565 0.6601

Precision 0.9688 0.6149 0.4565 0.6800

F-Measure 0.8052 0.7082 0.4565 0.6566

Accuracy 0.7069
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Figure 6.12: Comparison in terms of execution time, between Spark and Conventional

system (Conv.) for RBFN (hybrid) classifier (in testing phase)

within the range λ ∈ [2−10, 25] (with step size = 1 for log λ). The overall execution details

and processing efficiency of sf-RBFN classifier using gradient descent learning technique is

tabulated in Table 6.26. Processing efficiency in Table 6.26 signifies the number of samples

processed per second. The amount of time consumed by RBFN (gradient descent) classifier ,

on Spark and conventional system is shown in Figure 6.13. From this figure, it is evident that

the time taken to analyze the datasets by RBFN (gradient descent) classifier based on Spark

framework (sf-RBFN) is much less as compared to the same in conventional system. The

performance parameters of sf-RBFN classifier using gradient descent learning technique,

i.e., Recall, Precision, F-Measure and Accuracy for dataset GSE15061, GSE13204, and

GSE13159 are mentioned in Table 6.27, 6.28, and 6.29 respectively.

6.4.2 Comparative analysis

In this section, emphasis has been laid on designing classifiers based on Spark framework,

which works in a distributed manner and is used for predictive analysis of large datasets. As

a result, it helps in reducing the overall processing time and increasing the overall processing

efficiency.
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Table 6.23: Performance parameter of sf-RBFN (hybrid) with various feature selection

methods using GSE15061 dataset.

FS method Performance parameter 1 2 3 Average

ANOVA

Recall 0.9481 0.6606 0.6304 0.7464

Precision 0.7711 0.9000 0.6591 0.7767

F-Measure 0.8505 0.7619 0.6444 0.7523

Accuracy 0.7897

Kruskal-Wallis

Recall 0.9185 0.5596 0.6304 0.7029

Precision 0.7168 0.8841 0.6042 0.7350

F-Measure 0.8052 0.6854 0.6170 0.7025

Accuracy 0.7379

Friedman

Recall 0.9037 0.6330 0.5435 0.6934

Precision 0.7349 0.8519 0.5814 0.7227

F-Measure 0.8106 0.7263 0.5618 0.6996

Accuracy 0.7448

(a) GSE15061 (b) GSE13204 (c) GSE13159

Figure 6.13: Comparison in terms of execution time, between Spark and Conventional

system (Conv.) for RBFN (gradient) classifier (in testing phase)

In this work, seven different types of classification techniques such as LoR, SVM,

NB, KNN, ANN, RBFN (hybrid), RBFN (gradient) have been considered to classify

the microarray dataset. Three different feature selection techniques such as ANOVA,

Kruskal-Wallis, and Friedman have been considered to select the right set of features

over three datasets GSE13159, GSE13204, and GSE15061 with two different performance

parameters such as Accuracy and execution time (in sec). We have also considered two

different platforms to execute this experiment. So for classification technique, a total number

of two sets (one for each performance measure) are used, each with 18 (3 dataset * 3 feature

selection techniques * 2 platforms) data points. The results of comparison analysis for

performance parameters are summarized in Table 6.30.

Table 6.30 contains two sub tables. The first table shows the mean difference of accuracy

parameter and second table shows the mean difference of time parameter. From Table

6.30a, we observe that RBFN (hybrid) yields better results as compared to other approaches.

From Table 6.30b, we also observed that NB takes minimum time to process the datasets as

compared to other techniques.

Hence, from the above experiment it is observed that the total execution time (average) of
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Table 6.27: Performance parameter of sf-RBFN (gradient) with various feature selection

methods using GSE15061 dataset.

FS method Performance parameter 1 2 3 Average

ANOVA

Recall 0.7333 0.8991 0.6304 0.7543

Precision 0.9900 0.6759 0.6444 0.7701

F-Measure 0.8426 0.7717 0.6374 0.7505

Accuracy 0.7793

Kruskal-Wallis

Recall 0.7185 0.8624 0.6087 0.7299

Precision 0.9898 0.6620 0.5600 0.7373

F-Measure 0.8326 0.7490 0.5833 0.7217

Accuracy 0.7552

Friedman

Recall 0.7037 0.8532 0.5435 0.7001

Precision 0.9896 0.6370 0.5208 0.7158

F-Measure 0.8225 0.7294 0.5319 0.6946

Accuracy 0.7345

these proposed methods on Spark is reduced by approximately 78.35% than the conventional

system.

6.5 Summary

In this chapter, various classifiers based on Spark framework are designed to classify large

microarray datasets. The proposed approach works in a distributed manner on scalable

clusters, and its performance increases with increase in data size. From the obtained results,

it is inferred that sf-RBFN (hybrid) classifier provides better accuracy with ANOVA test.

The three major contributions of this chapter:

• Harnessing the power of distributed computing for better storage and faster processing

of datasets.

• Design of Spark based classifiers.

• Comparative analysis of processing time between Conventional system and Spark for

selecting features and classifying the datasets.
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Table 6.30: Performance comparison of various classifiers

(a) Comparision of accuracy

sf-LoR sf-SVM sf-NB sf-KNN sf-ANN sf-RBFN (hybrid) sf-RBFN (gradient)

sf-LoR 0.00 -3.31 -2.20 -4.69 -3.63 -5.77 -5.62

sf-SVM 3.31 0.00 1.11 -1.38 -0.32 -2.46 -2.31

sf-NB 2.20 -1.11 0.00 -2.49 -1.43 -3.57 -3.42

sf-KNN 4.69 1.38 2.49 0.00 1.06 -1.08 -0.93

sf-ANN 3.63 0.32 1.43 -1.06 0.00 -2.14 -1.99

sf-RBFN (hybrid) 5.77 2.46 3.57 1.08 2.14 0.00 0.15

sf-RBFN (gradient) 5.62 2.31 3.42 0.93 1.99 -0.15 0.00

(b) Comaparison of execution time

sf-LoR sf-SVM sf-NB sf-KNN sf-ANN sf-RBFN (hybrid) sf-RBFN (gradient)

sf-LoR 0.00 146.07 459.73 -4211.68 -4814.84 -4076.84 -65259.91

sf-SVM -146.07 0.00 313.65 -4357.76 -4960.91 -4222.92 -65405.98

sf-NB -459.73 -313.65 0.00 -4671.41 -5274.56 -4536.57 -65719.64

sf-KNN 4211.68 4357.76 4671.41 0.00 -603.15 134.84 -61048.23

sf-ANN 4814.84 4960.91 5274.56 603.15 0.00 737.99 -60445.07

sf-RBFN (hybrid) 4076.84 4222.92 4536.57 -134.84 -737.99 0.00 -61183.07

sf-RBFN (gradient) 65259.91 65405.98 65719.64 61048.23 60445.07 61183.07 0.00
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Chapter 7

Conclusions and Future Work

Analysis of microarray high-dimensional data is of great concern to physicians/scientists for

early diagnosis of cancer. The microarray contains huge amount of information. To extract

relevant information and analyze the data in a reasonable time is very essential. For the sake

of analysis in an efficient manner, machine learning techniques are applied. As the data

size of microarray becomes huge in nature, various machine learning techniques on scalable

platforms are employed to analyze this data efficiently.

To start with, in this thesis, a brief review on the literature available for the analysis

of microarray data using machine learning techniques has been carried out. The survey

includes various criteria chosen by the authors such as the feature selection and classification

methods employed, and the datasets used. The results on the survey work done for

microarray data classification conclude that a good number of researchers and practitioners

have considered statistical tests as techniques for feature selection and the various machine

learning techniques for classification of the dataset. Subsequently, the implementation of

the existing feature selection methods and classifiers, which are most frequently applied to

classify the microarray datasets are implemented and the results are compared using three

datasets viz., Leukemia, Breast, and Ovarian cancer. From the obtained results, it is revealed

that feature selection methods play a significant role in the classification of microarray

data. In the next chapter, various kernel based classifiers like ELM, RVM, and KFIS with

linear, polynomial, RBF, and Tansig kernel functions are proposed and their performances

are compared with the SVM. As the size of dataset increases the traditional machine learning

techniques are not suitable enough to process efficiently within a definite span of time. To

mitigate these issues, distributed and scalable platform like Hadoop is considered for storage

(HDFS) and processing (MapReduce and Spark) of data in a distributed manner. To validate

the efficacy of the distributed and scalable systems, themicroarray high-dimensional datasets

with various sizes have been considered. Hence, the existing methodologies as mentioned

in the literature have been implemented on scalable platforms to analyze the microarray

datasets.

Chapter 4 deals with the implementation of scalable feature selection methods like

ANOVA, Kruskal-Wallis, and Friedman tests. The proposed methods are implemented

with MapReduce and Spark on Hadoop cluster and their performance is measured. From
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Conclusions and future work

the obtained results, it is concluded that the processing of datasets to select the relevant

and significant features on Spark is faster than MapReduce and conventional system (i.e.,

T Spark
max ≤ TMR

max, T
Conv
max ). Hence, from the above experiment, it is observed that the total

execution time (average) of these proposed methods on Spark is reduced by approximately

81.94% and 46.78% than the conventional system and MapReduce respectively; and the

execution time on MapReduce is reduced by 66.06% than conventional system. After

selecting the relevant and significant features, various scalable classifiers are proposed in

the subsequent chapters to classify the high-dimensional multi-class datasets. In Chapter 5

a scalable proximal support vector machine classifier has been proposed, and implemented

using MapReduce and Spark frameworks. The proposed classifier is executed on Hadoop

as well as conventional system and the performance is compared. From this chapter, it is

concluded that Spark is more efficient than MapReduce and conventional system to analyze

the datasets.

Finally in chapter 6, a scalable implementation of various classifiers has been proposed to

classify the microarray data. The proposed models are implemented using Spark framework

on the top of Hadoop cluster, and their efficiencies are measured with the conventional

system and the results are compared. The processing efficiencies of these models on Spark

are much greater than that on conventional system. It is also observed that the overall

execution time (average) of these proposed methods on Spark is reduced by approximately

78.35% than the conventional system. Therefore, the efficiency to process the datasets using

Spark is increased by approximately 78.35%. From the obtained results, It is concluded that

to process the high-dimensional data with big sizes (GBs, TBs, etc.), the distributed and

scalable cluster like Hadoop is better choice for the researchers.

Scope for Further Research

The analysis of microarray high-dimensional data using distributed and scalable platform

described in this thesis unwraps some interesting research directions. It is known that

the curse of dimensionality is a major issue in analyzing the high-dimensional data.

Hence various feature selection/extraction techniques can be implemented to process

the high-dimensional Big data based on scalable framework like Spark. After feature

selection/extraction, to classify the high-dimensional big data, various machine learning

classifiers based on kernel methods, ensembles of the classifiers, deep learning, neuro-fuzzy

techniques, decision tree, etc. can be implemented on the same framework like Spark and

their performance can be investigated. The work can also be extended in the direction of

real time analytics using Spark streaming or Storm.
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Chapter A

Microarray Data

In the era of twentieth century, scientists came up with several ways to study the genes such

as mapping them, making mutation, cloning, sequencing, and analyzing the protein they

encode. But, it took a lot of times to study the gene one by one. All living organisms have

plenty of genes (e.g., Human ≥ 50, 000 genes). Hence, it would take a huge amount of

time to analyze each human gene one at a time. Microarray is a technology with the size

of a microscope slide, or even smaller where scientists can study many genes at a time or

they can learn about every gene in a single experiment. It contains thousands of spots and

each spot contains the strands of DNA sequence corresponding to a single gene. The cell

types can be differentiated by measuring the gene expression of different cells indicated

on the microarray chip. Figures A.1a, A.1b, A.1c show the Microarray chip, structure of

one spot on Microarray data and the values of each spot after scanning the Microarray chip

respectively.

(a) Microarray chip (b) DNA spot on Microarray

(c) Sample of Microarray data

Figure A.1: Microarray Data
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