48 research outputs found

    Adaptation of parameters in fuzzy systems

    Get PDF
    DiplomovĂĄ prĂĄce se zabĂœvĂĄ problematikou adaptace parametrĆŻ fuzzy systĂ©mĆŻ a to pƙedevĆĄĂ­m umělĂœmi neuronovĂœmi sĂ­tě. V reĆĄerĆĄnĂ­ části je proveden rozbor dosavadnĂ­ch metod spojujĂ­cĂ­ch fuzzy systĂ©my a umělĂ© neuronovĂ© sĂ­tě včetně uvedenĂ­ zdrojĆŻ mezi studentskĂœmi pracemi. V kapitole aplikace metod je věnovĂĄn prostor ověƙenĂ­ klasifikačnĂ­ schopnosti zvolenĂ© metody fuzzy-neuronovĂ© sĂ­tě v KohonenovĂœm učenĂ­m a nĂĄsledně nĂĄvrhu modelu fuzzy systĂ©mu na bĂĄzi tĂ©to metody.This Master’s thesis deals with adaptation of fuzzy system parameters with main aim on artificial neural network. Current knowledge of methods connecting fuzzy systems and artificial neural networks is discussed in the search part of this work. The search in Student’s works is discussed either. Chapter focused on methods application deals with classifying ability verification of the chosen fuzzy-neural network with Kohonen learning algorithm. Later the model of fuzzy system with parameters adaptation based on fuzzyneural network with Kohonen learning algorithm is shown.

    Mobile Robots Navigation

    Get PDF
    Mobile robots navigation includes different interrelated activities: (i) perception, as obtaining and interpreting sensory information; (ii) exploration, as the strategy that guides the robot to select the next direction to go; (iii) mapping, involving the construction of a spatial representation by using the sensory information perceived; (iv) localization, as the strategy to estimate the robot position within the spatial map; (v) path planning, as the strategy to find a path towards a goal location being optimal or not; and (vi) path execution, where motor actions are determined and adapted to environmental changes. The book addresses those activities by integrating results from the research work of several authors all over the world. Research cases are documented in 32 chapters organized within 7 categories next described

    A non-holonomic, highly human-in-the-loop compatible, assistive mobile robotic platform guidance navigation and control strategy

    Get PDF
    The provision of assistive mobile robotics for empowering and providing independence to the infirm, disabled and elderly in society has been the subject of much research. The issue of providing navigation and control assistance to users, enabling them to drive their powered wheelchairs effectively, can be complex and wide-ranging; some users fatigue quickly and can find that they are unable to operate the controls safely, others may have brain injury re-sulting in periodic hand tremors, quadriplegics may use a straw-like switch in their mouth to provide a digital control signal. Advances in autonomous robotics have led to the development of smart wheelchair systems which have attempted to address these issues; however the autonomous approach has, ac-cording to research, not been successful; users reporting that they want to be active drivers and not passengers. Recent methodologies have been to use collaborative or shared control which aims to predict or anticipate the need for the system to take over control when some pre-decided threshold has been met, yet these approaches still take away control from the us-er. This removal of human supervision and control by an autonomous system makes the re-sponsibility for accidents seriously problematic. This thesis introduces a new human-in-the-loop control structure with real-time assistive lev-els. One of these levels offers improved dynamic modelling and three of these levels offer unique and novel real-time solutions for: collision avoidance, localisation and waypoint iden-tification, and assistive trajectory generation. This architecture and these assistive functions always allow the user to remain fully in control of any motion of the powered wheelchair, shown in a series of experiments

    Advances in Reinforcement Learning

    Get PDF
    Reinforcement Learning (RL) is a very dynamic area in terms of theory and application. This book brings together many different aspects of the current research on several fields associated to RL which has been growing rapidly, producing a wide variety of learning algorithms for different applications. Based on 24 Chapters, it covers a very broad variety of topics in RL and their application in autonomous systems. A set of chapters in this book provide a general overview of RL while other chapters focus mostly on the applications of RL paradigms: Game Theory, Multi-Agent Theory, Robotic, Networking Technologies, Vehicular Navigation, Medicine and Industrial Logistic

    Improving nonlinear search with Self-Organizing Maps - Application to Magnetic Resonance Relaxometry

    Get PDF
    Quantification of myelin in vivo is crucial for the understanding of neurological diseases, like multiple sclerosis (MS). Multi-Component Driven Equilibrium Single Pulse Observation T1 and T2 (mcDESPOT) is a rapid and precise method for determination of the longitudinal and transverse relaxation times in a voxel wise fashion. Briefly, mcDESPOT couples sets of SPGR (spoiled gradient-recalled echo) and bSSFP (fully balance steady-state free precession) data acquired over a range of flip angles (α) with constant interpulse spacing (TR) to derive 6 parameters (free-water T1 and T2, myelin-associated water T1 and T2, relative myelin-associated water volume fraction, and the myelin-associated water proton residence time) based on water exchange models. However, this procedure is computationally expensive and extremely difficult due to the need to find the best fit to the 24 MRI signals volumes in a search of nonlinear 6 dimensional space of model parameters. In this context, the aim of this work is to improve mcDESPOT efficiency and accuracy using tissue information contained in the sets of signals (SPGR and bSSFP) acquired. The basic hypothesis is that similar acquired signals are referred to tissue portions with close features, which translate in similar parameters. This similarity could be used to drive the nonlinear mcDESPOT fitting, leading the optimization algorithm (that is based on a stochastic region contraction approach) to look for a solution (i.e. the 6 parameters vector) also in regions defined by previously computed solutions of others voxels with similar signals. For this reason, we clustered the sets of SPGR and bSSFP using the neural network called Self Organizing Map (SOM), which uses a competitive learning technique to train itself in an unsupervised manner. The similarity information obtained from the SOM was then used to accordingly suggest solutions to the optimization algorithm. A first validation phase with in silico data was performed to evaluate the performances of the SOM and of the modified method, SOM+mcDESPOT. The latter was further validated using real magnetic resonance images. The last step consisted of applying the SOM+mcDESPOT to a group of healthy subjects ( ) and a group of MS patients ( ) to look for differences in myelin-associated water fractions values between the two groups. The validation phases with in silico data verified the initial hypothesis: in more the 74% of the times, the correct solution of a certain voxel is in the space dictated by the cluster which that voxel is mapped to. Adding the information of similar solutions extracted from that cluster helps to improve the signals fitting and the accuracy in the determination of the 7 parameters. This result is still present even if the data are corrupted by a high level of noise (SNR=50). Using real images allowed to confirm the power of SOM+mcDESPOT underlined through the in silico data. The application of SOM+mcDESPOT to the controls and to the MS patients allowed firstly obtaining more feasible results than the traditional mcDESPOT. Moreover, a statistically significant difference of the myelin-associated water fraction values in the normal appearing white matter was found between the two groups: the MS patients, in fact, show lower fraction values compared to the normal subjects, indicating an abnormal presence of myelin in the normal appearing white matter of MS patients. In conclusion, we proposed the novel method SOM+mcDESPOT that is able to extract and exploit the information contained in the MRI signals to drive appropriately the optimization algorithm implemented in mcDESPOT. In so doing, the overall accuracy of the method in both the signals fitting and in the determination of the 7 parameters improves. Thus, the outstanding potentiality of SOM+mcDESPOT could assume a crucial role in improving the indirect quantification of myelin in both healthy subjects and patient

    Early detection of health changes in the elderly using in-home multi-sensor data streams

    Get PDF
    The rapid aging of the population worldwide requires increased attention from health care providers and the entire society. For the elderly to live independently, many health issues related to old age, such as frailty and risk of falling, need increased attention and monitoring. When monitoring daily routines for older adults, it is desirable to detect the early signs of health changes before serious health events, such as hospitalizations, happen, so that timely and adequate preventive care may be provided. By deploying multi-sensor systems in homes of the elderly, we can track trajectories of daily behaviors in a feature space defined using the sensor data. In this work, we investigate a methodology for learning data distribution from streaming data and tracking the evolution of the behavior trajectories over long periods (years) using high dimensional streaming clustering and provide very early indicators of changes in health. If we assume that habitual behaviors correspond to clusters in feature space and diseases produce a change in behavior, albeit not highly specific, tracking trajectory deviations can provide hints of early illness. Retrospectively, we visualize the streaming clustering results and track how the behavior clusters evolve in feature space with the help of two dimension-reduction algorithms, Principal Component Analysis (PCA) and t-distributed Stochastic Neighbor Embedding (t-SNE). Moreover, our tracking algorithm in the original high dimensional feature space generates early health warning alerts if a negative trend is detected in the behavior trajectory. We validated our algorithm on synthetic data, real-world data and tested it on a pilot dataset of four TigerPlace residents monitored with a collection of motion, bed, and depth sensors over ten years. We used the TigerPlace electronic health records (EHR) to understand the residents' behavior patterns and to evaluate and explain the health warnings generated by our algorithm. The results obtained on the TigerPlace dataset show that most of the warnings produced by our algorithm can be linked to health events documented in the EHR, providing strong support for a prospective deployment of the approach.Includes bibliographical references

    Advances in Robotics, Automation and Control

    Get PDF
    The book presents an excellent overview of the recent developments in the different areas of Robotics, Automation and Control. Through its 24 chapters, this book presents topics related to control and robot design; it also introduces new mathematical tools and techniques devoted to improve the system modeling and control. An important point is the use of rational agents and heuristic techniques to cope with the computational complexity required for controlling complex systems. Through this book, we also find navigation and vision algorithms, automatic handwritten comprehension and speech recognition systems that will be included in the next generation of productive systems developed by man

    Computational intelligence approaches to robotics, automation, and control [Volume guest editors]

    Get PDF
    No abstract available

    Intelligent strategies for mobile robotics in laboratory automation

    Get PDF
    In this thesis a new intelligent framework is presented for the mobile robots in laboratory automation, which includes: a new multi-floor indoor navigation method is presented and an intelligent multi-floor path planning is proposed; a new signal filtering method is presented for the robots to forecast their indoor coordinates; a new human feature based strategy is proposed for the robot-human smart collision avoidance; a new robot power forecasting method is proposed to decide a distributed transportation task; a new blind approach is presented for the arm manipulations for the robots

    Gesture-Based Robot Path Shaping

    Get PDF
    For many individuals, aging is frequently associated with diminished mobility and dexterity. Such decreases may be accompanied by a loss of independence, increased burden to caregivers, or institutionalization. It is foreseen that the ability to retain independence and quality of life as one ages will increasingly depend on environmental sensing and robotics which facilitate aging in place. The development of ubiquitous sensing strategies in the home underpins the promise of adaptive services, assistive robotics, and architectural design which would support a person\u27s ability to live independently as they age. Instrumentation (sensors and processing) which is capable of recognizing the actions and behavioral patterns of an individual is key to the effective component design in these areas. Recognition of user activity and the inference of user intention may be used to inform the action plans of support systems and service robotics within the environment. Automated activity recognition involves detection of events in a sensor data stream, conversion to a compact format, and classification as one of a known set of actions. Once classified, an action may be used to elicit a specific response from those systems designed to provide support to the user. It is this response that is the ultimate use of recognized activity. Hence, the activity may be considered as a command to the system. Extending this concept, a set of distinct activities in the form of hand and arm gestures may form the basis of a command interface for human-robot interaction. A gesture-based interface of this type promises an intuitive method for accessing computing and other assistive resources so as to promote rapid adoption by elderly, impaired, or otherwise unskilled users. This thesis includes a thorough survey of relevant work in the area of machine learning for activity and gesture recognition. Previous approaches are compared for their relative benefits and limitations. A novel approach is presented which utilizes user-generated feedback to rate the desirability of a robotic response to gesture. Poorly rated responses are altered so as to elicit improved ratings on subsequent observations. In this way, responses are honed toward increasing effectiveness. A clustering method based on the Growing Neural Gas (GNG) algorithm is used to create a topological map of reference nodes representing input gesture types. It is shown that learning of desired responses to gesture may be accelerated by exploiting well-rewarded actions associated with reference nodes in a local neighborhood of the growing neural gas topology. Significant variation in the user\u27s performance of gestures is interpreted as a new gesture for which the system must learn a desired response. A method for allowing the system to learn new gestures while retaining past training is also proposed and shown to be effective
    corecore