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Abstract

For many individuals, aging is frequently associated with diminished mobility

and dexterity. Such decreases may be accompanied by a loss of independence, in-

creased burden to caregivers, or institutionalization. It is foreseen that the ability to

retain independence and quality of life as one ages will increasingly depend on envi-

ronmental sensing and robotics which facilitate aging in place. The development of

ubiquitous sensing strategies in the home underpins the promise of adaptive services,

assistive robotics, and architectural design which would support a person’s ability to

live independently as they age. Instrumentation (sensors and processing) which is

capable of recognizing the actions and behavioral patterns of an individual is key to

the effective component design in these areas.

Recognition of user activity and the inference of user intention may be used

to inform the action plans of support systems and service robotics within the en-

vironment. Automated activity recognition involves detection of events in a sensor

data stream, conversion to a compact format, and classification as one of a known set

of actions. Once classified, an action may be used to elicit a specific response from

those systems designed to provide support to the user. It is this response that is the

ultimate use of recognized activity. Hence, the activity may be considered as a com-

mand to the system. Extending this concept, a set of distinct activities in the form of

hand and arm gestures may form the basis of a command interface for human-robot
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interaction. A gesture-based interface of this type promises an intuitive method for

accessing computing and other assistive resources so as to promote rapid adoption by

elderly, impaired, or otherwise unskilled users.

This thesis includes a thorough survey of relevant work in the area of machine

learning for activity and gesture recognition. Previous approaches are compared for

their relative benefits and limitations. A novel approach is presented which uti-

lizes user-generated feedback to rate the desirability of a robotic response to gesture.

Poorly rated responses are altered so as to elicit improved ratings on subsequent

observations. In this way, responses are honed toward increasing effectiveness. A

clustering method based on the Growing Neural Gas (GNG) algorithm is used to

create a topological map of reference nodes representing input gesture types. It is

shown that learning of desired responses to gesture may be accelerated by exploit-

ing well-rewarded actions associated with reference nodes in a local neighborhood of

the growing neural gas topology. Significant variation in the user’s performance of

gestures is interpreted as a new gesture for which the system must learn a desired

response. A method for allowing the system to learn new gestures while retaining

past training is also proposed and shown to be effective.
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Chapter 1

Introduction

Mobility decreases as we age. Such reduction, whether gradual or sudden, may

ultimately impair one’s ability to perform essential Activities of Daily Living (ADLs).

A reduced capacity to conduct ADLs may be associated with diminished quality of life,

decreased independence, a higher burden to caregivers, or even institutionalization

[25]. Thus, for older adults with the goal of aging in place, it is vital to ensure that

they have the ability to perform ADLs independently [109].

As the population of the United States ages, their desire to retain a level of

independence in the face of diminished mobility and health will increasingly draw

upon assistive technologies to facilitate essential ADLs. The work described in this

thesis is motivated by a dearth of technologies that might provide adequate support of

these important functions. Effective design, deployment, and use of such technologies

are seen as critical to promoting an improved quality of life and prolonged indepen-

dence for the user. The Assistive Robotic Table (ART) project begun at Clemson

University seeks to develop an intelligent class of assistive devices and services which

are highly integrated into the built environment. In so doing, the environment be-

comes an adaptive partner to facilitate aging in place for users whose ability levels

1



are changing.

1.1 Research Contributions

In this thesis, a contribution is made in the area of Human-Robot Interaction

(HRI) which aims to address common limitations of interface designs in this space,

particularly as applied to assistive devices for aging in place. To this end, the HRI

problem is dissected into its constituent parts and a thorough literature review is con-

ducted which examines the relative strengths and weaknesses of current approaches

in the major problem areas. Extending the state of the art, experimentation to de-

velop a novel and effective end-to-end interface framework for HRI is presented and

discussed.

Toward the creation of such an interface, gesture at the scale of hand/arm

gesticulation is explored as a candidate mode of interaction. Given the importance

of gesture at this scale as a means of human communication (section 1.3), research in

this area promises an intuitive user experience that caters to impaired or otherwise

unskilled individuals, a target population for technologies designed to facilitate aging

in place. With this overarching goal in mind, key features of the interface include the

following.

• Sensing must be ambient and non-intrusive. Sensor types which encumber the

user to carry or wear specialized sensing devices or apparel are avoided. Vision-

based sensors (i.e. cameras) which expose the user to potential loss of privacy

are also avoided.

• Gestures are freely formed according to the user’s own movement style and ca-

pability. Recognition of gesture should not require the user to match a specified

2



gesture choreography. Thus, the system will make use of human instruction

on line to acquire gesture within a manageable number of observations and to

learn the desired response.

• The gesture-based vocabulary of the interface shall be extensible on line. The

user may teach new gestured commands at any time.

Successful application of the work described in this thesis is envisioned to

form the basis of a comprehensive system of adaptive robotic and architectural com-

ponents to support independent living for individuals whose capabilities and needs

are changing over potentially long periods of time.

1.2 Thesis Layout

The remainder of this chapter contains a review of relevant literature. The re-

view can be roughly divided into two main categories. First, background information

is given on the broader areas of architectural robotics (section 1.3.1) and HRI (section

1.3.2) which motivate the ART project and which provide the vision underpinning

the work presented in this thesis. Second, the problems of gesture recognition and the

mapping of gesture to a robotic response are examined. In considering these prob-

lems, related work on the topics of sensor device types, data representation, pattern

recognition, and machine learning is discussed.

The remainder of this section contains a brief synopsis of experiments under-

taken in pursuit of the research goals stated above. Chapters 2 through 4 contain

detailed descriptions of these experiments and their results. Chapter 5 contains final

conclusions and prospects for future work in this area.
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1.2.1 Activity Recognition

Chapter 2 describes a study which is focused on classification of representative

motions related to manual dexterity. Specifically, the work seeks to determine whether

a non-vision based sensor paradigm could be used to construct a useful classifier

of human motion based on a holistic (pixel-based) representation. A comparison

is made between the efficacy of non-vision based and vision based (i.e. cameras)

sensors. A data representation based on self similarity of raw sensor readings (or

image pixels) is used. Results of this study informed the selection of sensor platform,

data representation, and comparison method used in subsequent work.

1.2.2 Gesture Recognition

In chapter 3, the broader problem of generalized human activity recognition

is narrowed to that of gesture recognition and mapping of gesture to actuated robot

response. Specific methods for arm-scale gesture sensing, representation, pattern

recognition are selected for their respective strengths in the common facets of the

gesture recognition problem. Further, the use of Q-Learning is explored as a means

of avoiding strict classification of gesture in favor of gesture learning as defined by

expected rewards from human user. The chapter lays out an end-to-end framework

for on line definition of a gesture based command vocabulary with the user as teacher

in an HRI context.

1.2.3 Gesture Vocabulary Augmentation

Chapter 4 considers the problem of adding new gestures on line. It is assumed

that, in practice, the ART appliance will come equipped with a baseline level of learn-

ing which includes a knowledge of common essential gesture commands. However,
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building on this will require the user to train ART in real time. In this case, concerns

emerge regarding the number of iterations which the user is required to execute, and

the stability of past learning as new gestures are encountered (the Stability-Plasticity

Dilemma [22]). These concerns are central to the practical deployment of ART. The

chapter presents findings that support the design decisions of chapter 3 and which

show promise for the eventual incorporation of ART in a real world setting.

1.3 Related Work

This section contains a review of related literature in two major categories.

Sections 1.3.1 and 1.3.2 contain background information on the broader areas of archi-

tectural robotics and HRI. Concepts in these areas form the basis for the broader ART

application and motivate the work described in this thesis. Section 1.3.3 discusses

past work directly related to recognition of human which informs the experimentation

of chapters 2 and later.

1.3.1 Architectural Robotics

Heretofore, architects and environmental designers have attempted to accom-

modate those with reduced mobility or physical impairment through the use of Univer-

sal Design Principles (UDPs) and smart home technologies. UDPs help to ensure that

the environment does not confound an individual’s efforts to complete tasks by mak-

ing the environment safe, clean, legible and barrier-free for all occupants regardless

of ability [38, 52, 82]. These strategies facilitate resident mobility and independence.

However, the majority of current implementations are static and of low fidelity. Most

often, user accommodation is delivered solely in the form of systems associated with

the built environment such as the placement of furniture and fixtures.
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Smart homes aim to extend awareness, increase control over systems, and en-

hance the security, healthfulness and safety of the environment through sensing, infer-

ence, communication technologies, decision-making algorithms and appliance control

[24, 31, 51, 61]. However, the real-time processing of occupant activity via high

fidelity implementations has historically been costly in terms of computing and mem-

ory requirements and has often relied on technologies considered intrusive of people’s

privacy (e.g. cameras) or which represent an encumbrance to the user such as with

wearable devices. As a result, smart homes have frequently utilized low fidelity im-

plementations. Practical occupant sensing in smart homes is typically event-based,

consisting of on/off sensor activations such as room changes, door openings/closings,

appliance actuations, etc.

Advances in computing speed and storage make possible implementations of

increasing capability. A logical progression for the use of high fidelity sensing and pro-

cessing of user activity may be seen in their central importance to assistive robotics.

As Green and Walker describe [105], the notion of assistive robotics frequently con-

jures images of a self-contained humanoid servant in which all robotic and intelligence

challenges have been addressed. Finding this to be an unlikely possibility in the near

term while seeking to move beyond the conventional static smart home, this research

envisions an environment containing robotic components that take advantage of the

capabilities and higher level thinking of the user to operate in a collaborative manner,

working with rather than for the user.

With the support of clinicians and staff of the Roger C. Peace Rehabilitation

Hospital of the Greenville Hospital System University Medical Center (GHS), previous

investigations underpinning the ART project have been performed [18, 19, 97, 96, 104]

at the hospital’s home+ lab (Figure 1.1a). This work has examined possible forms and

use models for assistive robotics in home and hospital settings. The vision sketched
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from these investigations is shown in Figure 1.1b and includes intelligent appliances

such as an enhanced over-the-bed table, and an automated assistant/storage and

retrieval system for personal items, and continuum robotic morphing surfaces [57, 74]

capable of providing therapy and comfort to the user.

ART and the larger home+ architectural robotic ecosystem aim to improve

recovery outcomes and quality of life for elders aging in place through development

of collaborative interaction with the home environment. Current work focuses on

ART’s ability to facilitate a natural, companionable and social relationship between

human and robot [70, 95] through a system of user-defined behavioral rewards to

the machine. To this end, the use of high fidelity sensing to create a non-verbal

communication loop (Figure 1.2) between a patient and ART is under way. One

aspect of this communication loop, the use of gestured command, is a primary focus

of this thesis.

The high fidelity sensing employed in efforts such as these is expected to al-

low for learned inference of user action and intention through persistent monitoring.

Further, degradation in the abilities of the user may be tracked over time so as to

adaptively inform the robot’s assistive action plans. With knowledge of typical user

activity patterns the environment could respond to gestured commands or detect in-

frequent needs such as assistance with reach, weight transference, or ambulation [118].

Effectively implemented, assistive robotic components would facilitate the afore men-

tioned aims of smart home technologies.

1.3.2 Human-Robot Interaction

As ART seeks to improve the quality of living for its human users, the conven-

tional view of service robotics as merely labor saving devices must be reconsidered.
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A Vision of the Patient Room as an Architectural-Robotic Ecosystem

Anthony L. Threatt1, Jessica Merino2, Keith Evan Green1, Ian D. Walker2, Johnell O. Brooks3, Sean Ficht2,
Robert Kriener2, Mary Mossey3, Alper Mutlu2, Darshana Salvi2, George Schafer1, Pallavi Srikanth2,

Peng Xu2, Joe Manganelli1, Paul Yanik2

Abstract— Healthcare is becoming more digital and techno-
logical, but healthcare environments have not yet become em-
bedded with digital technologies to support the most productive
(physical) interaction between medical patients, clinical staff
and the physical artifacts that surround and envelop them. This
shortcoming is an opportunity for the architecture and robotics
communities to interface with each other and the everyday users
of healthcare environments. Our extended lab focused ten weeks
on sketching in hardware a robotic, patient-room ecosystem
we call home+ with the help of clinicians at the Roger C.
Peace Rehabilitation Hospital of the Greenville Hospital System
University Medical Center [GHS]. This early prototyping effort
represents our vision for the larger robotic patient room, and
identifies opportunities for more focused work on an Assistive
Robotic Table (ART).

I. INTRODUCTION

One of the current challenges in the healthcare industry
is the cost of care. Insurance companies want accurate
billings that meet the requirements for treatment at the lowest
cost, requiring providers to spend limited time with multiple
patients each day. Meanwhile, technologies in the room
are numerous, some beeping and many with unrecogniz-
able displays, causing patients unease. Researchers must be
cognizant of the factors related to a patient’s willingness to
accept new technologies [1] because their quick adaptation
is important in a healthcare setting where cost is a prime
consideration, while still ensuring a careful balance between
independence and engagement [2].

The Assistive Robotic Table (ART) is one component of
“home+,” the robotic, patient-room ecosystem which aims to
augment the interior to become a more inviting, responsive
and accommodating environment. ART and the larger home+
is aimed at increasing the quality of life for people aging
in place by intelligently supporting their interaction with
their home environment. We are currently developing ART’s
capacity to foster a companionable, social relationship with
users as stated by [3] and [4], using a reward-based system
to cultivate the machine-patient relationship. The hope is
that this co-adaption process will provide patients, healthcare
providers, and the robot a higher degree of interaction,
increasing the rate of recovery and providing all parties with
a higher-rated user experience.

1School of Architecture, Clemson University, Clemson, SC 29632 USA
anthont, kegreen@clemson.edu

2Department of Electrical and Computer Engineering,
Clemson University, Clemson, SC 29632 USA jmerino,
iwalker@clemson.edu

3Department of Psychology, Clemson University, Clemson, SC 29632
USA

Our approach to aging in place [6], [7], [8] represents
a significant departure for robotics in healthcare. Given the
complexity of our ambition at room-scale, our research team
of architects, electrical and computer engineers, and human
factor psychologists elected to focus ten weeks on developing
the home+ vision for the entirety of the patient room as an
architectural-robotic ecosystem, rather than immediately fo-
cusing our efforts intensively on the single, ART component
in isloation. Because we focused on a small set of design
parameters and, similar to the ideas of [9], quickly prototyped
our architectural-robotic interventions, we quickly developed
a vision for an integrated solution. These efforts were aided
by the help of clinicians and the use of the home+ lab within
GHS. Under recently awarded funding, fundamental ART
research involving hardware, sensing and usability is being
conducted by the Clemson University investigators.

Intelligent Headboard

Built in Guest Bed

Continuum Table

Personal Assistant

Intelligent Storage

Fig. 1. A Vision of the Patient Room as an Architectural-Robotic
Ecosystem

II. DEFINITION AND ENVISIONED PATIENT ROOM
ECOSYSTEM

In our 10-week focused effort, we envisioned the
architectural-robotic ecosystem, home+, having four key
components (Figure 1):

1. A Continuum Table gently folds, extends, and recon-
figures to support therapy, work, and leisure activities.

2. A Personal Assistant retrieves objects that are stored
around the room and away from the bed. The robot uses a
vision-based recognition system via wireless communication
to ensure the robot retrieves the correct item.

3. Intelligent Storage manages, stores and delivers per-
sonal effects, including medical supplies, and communicates
to caretakers when eyeglasses and other belongings are not

(b)

Figure 1.1: (a) The home+ lab. (b) The envisioned robotic ecosystem.
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(a)

(b)

Figure 1.2: (a) The non-verbal communication loop of the Assistive Robotic Table
being developed at Clemson University. The focus of this work is on the emergent
(learned) response of this device to the user. (b) A recent project artifact.
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In the vision which motivates this thesis, architecural robotics engages the resident as

a fellow agent; a part of the complete environment in which the overall healthfulness,

productivity, security, and enjoyment of the living space are the results of a novel col-

laborative and adaptive partnership between the robotic components and users. To

this end, the underlying intelligence of ART may seek to optimize the Human-Robot

Interaction (HRI) partnership by not only assessing typical measures of success (e.g.

task completion), but also through learned accommodation of the needs, preferences,

and constraints of the user.

Research suggests that when considering the possibility of an in-home service

robot, most people do not expect nor desire that such devices will fulfill human

capacities [29, 93]. That is, robots need not physically resemble humans nor possess

virtues best ascribed to humans such as creative thinking, judgment, or friendship.

Moreover, what is desired is for robots to assume an assistive role, particularly where

there may be gaps in human ability such as with memory intensive or perceptual

tasks.

1.3.2.1 Baseline Capabilities

To accomplish such tasks and to facilitate higher level functions, ART will

possess a framework of baseline intelligent faculties. Navigation, perception, man-

agement of system resources, object manipulation, and social considerations [90] are

capabilities which must be present prior to any attempts at learned adaptation to a

user.

Navigation encompasses collision free movement as well as social aspects of

motion planning. Trajectories must be smooth, understandable, natural [4], and

adaptive [11] to the human resident. Movements must not occur too quickly so as to

induce surprise nor may they pass uncomfortably close to the user. The robot may
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not violate conventional human expectations for timing and sensibility [1, 36]. Per-

ception may utilize conventional pervasive sensing techniques to localize both humans

and robotic components. Advanced implementations should utilize collected sensor

data to interpret the context of human activities and of the environment [46, 49].

Robotic components should also manage resources (both internally and within the

environment) through real time situational awareness. The respective capabilities of

all agents can thus be brought to bear in collaborative tasks. Object manipulation is a

conventional task asked of robotic agents. Taxomonies of manipulation include tasks

typically associated with the hand such as grasping, pushing, and fetching/carrying

[90]. Initially, this is expected to occur in the form of intelligent storage as described

described in section 1.3.1 and shown in Figure 1.1.

Implementation of these baseline capabilities will utilize conventional approaches

for low level sensing of room fixture usage (appliances, cabinetry), localization of the

human user, robotic components and selected objects, and gathering of performance

data. Upon them, higher level inference and context awareness will be built as briefly

described in section 1.3.2.2 below.

1.3.2.2 Higher Level Functions

Once implemented the capabilities described above may be used to execute

higher level functions involving the estimation of human intentions so that human and

robotic agents may collaborate [8] to complete tasks at hand. Through the course of

such interactions, the environment might learn the activity patterns, preferences and

limitations of the human resident. This will determine when behavioral anomalies

represent rare occurrences or long term behavioral changes and adapt accordingly.

In order for the proposed adaptive capabilities of ART to best achieve the

objective of creating an optimal living environment, performance metrics would be
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developed on which to base a paradigm of reinforcement learning [92]. Typically, the

evaluation of human-robot collaboration is reduced to task-oriented effectiveness met-

rics such as time per task, error/damage/collision counts, task completion coverage,

or situational completion quality [26, 80].

Generalized assessment of the efficacy of the human-robot relationship may be

determined through the common metrics of neglect tolerance and interface efficiency.

Neglect tolerance is a measure of the robot’s ability to remain on task over time

despite a lack of human intervention. Indirectly, this is a measure of both user trust,

and the inherent intelligence of the robot. Interface efficiency is a measure of the effort

required for the human to gain situational awareness, decide on a course of action,

and command the robot. Indeed, since users will be primarily untrained, elderly,

and possibly disabled, the need for a clean and easily understood interface will be

key to efficient human-robot performance [98]. Although not a primary focus of our

research, neglect tolerance will serve as a fundamental bellwether of our progress in

improving system intelligence. Interface efficiency is a primary consideration of this

thesis. Indeed, the development of an intuitive user experience with a small number

of training episodes (in a machine learning context) is the focus of experimentation

described in chapters 3 and 4.

1.3.2.3 Broader Impacts

Ultimately, the goals of ART and of architectural robotics as described in

section 1.3.1 will require a new class of innovative performance metrics to characterize

the overall quality of the environment in areas such as healthfulness, conduciveness to

creativity, and support of social interaction. These metrics, along with conventional

environmental sensor data, may inform a higher level of the reinforcement learning

infrastructure. Use of such metrics may appear on the surface to be counter to
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conventional success criteria. For example, a robot which engages and assists the

human agent to undertake partial performance of tasks for themselves during a period

of impaired mobility might reduce the healing time of the user although it may also

slow the average execution time per task. Hence, the ultimate goal of such a system

can be viewed as the improvement of human performance rather than simply that of

increased usability of the robotic components [20].

1.3.3 Human Gesture Recognition

Automated recognition of human gesture is an active area of research. Work

in this space finds application in areas such as entertainment, healthcare, security,

and comfort. Gesture may occur in various forms. These may include hand and

arm gesticulation, pantomime, sign language, static poses of the hand and body, or

language-like gestures which may replace words during speech. Of these, hand and

arm gesticulation account for 90% of gestured communication [76]. With the goal of

creating an intuitive interaction paradigm between humans and robotic or computing

agents, exploration of gesture at the scale of hand/arm gesticulation is warranted.

Efforts at automated gesture recognition generally involve a common set of

considerations and problems to be addressed. These include some combination of

sensor platform, data representation, pattern recognition and machine learning. This

section discusses previous approaches to these problems and their relative benefits

and drawbacks compared to the methods applied in the experimentation of chapters

2 through 4.
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1.3.3.1 Sensing

In order for gestures to be detected and classified, the motion or pose of the

actor must be sensed. Typical sensor strategies include wearable devices such as data

gloves or body suits which are instrumented with magnetic field tracking devices or

accelerometers, or vision-based techniques involving one or more cameras [76]. Still

other approaches involve Infra Red (IR) motion or proximity sensors. In this section,

examples of prevalent sensor types and applications of each are described along their

relative strengths and drawbacks.

Wearable devices provide almost immediate detection of gesture motion with-

out the need for image preprocessing. Further, such devices are not susceptible to

visual occulusion as are cameras or other line of sight platforms [12]. Jin et al. [54]

use a glove-based orientation sensor to extract static hand positions to be used as

commands. Lementec and Bajcsy [69] use wearable (arm) orientation sensors for

sensing arm gesture models composed of Euler angles. These are intended for use

in an Unmanned Aerial Vehicle (UAV) and implemented as a lab simulation. Zhou

et al. [121] use Micro-Electro-Mechanical System (MEMS) accelerometer data to

characterize hand motions including up, down, left, right, tick, circle and cross. Yan,

et al. [114] uses a shape tape system consisting of bend sensing optical fibers and

orientation sensors to extract the 3D orientation of various points on an actor’s arms

and torso. Wearable sensors are also used in [113, 121, 122], and others. Typically,

however, the usefulness of wearable devices for measuring gestured motion is accom-

panied by the acknowledgment that such devices may limit user motion and often

require a wired connection to a computer. Thus, they present inherent impediments

to practical application [76].

IR proximity sensors are used by Cheng et al. [23] to create a reliable gesture
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recognition system for a touchless mobile device interface. The method uses the pair-

wise time delay between a passing user’s hand and two IR proximity sensors. This

system detects gestures of swipe right, swipe left, push and pull. Rhy et al. [32]

propose a computer control interface design using a proximity sensor to extract hand

commands to a GUI. The mechanism is scaled as a mouse replacement. Such coarse

assessment of motion is not sufficiently descriptive to support an extensive vocabulary

of gestures. However, as shown in [117, 118] and discussed in chapter 2, an array of

IR motion sensors can provide sufficiently rich data to allow for accurate classification

of gross motions.

Much of the work in gesture recognition is performed using video image se-

quences due to the richness of information and cost effectiveness available with cam-

eras. A recent thorough discussion of vision-based and other sensor types for the

purpose of gesture recognition is given by [12]. Vision based approaches may suffer

from disadvantages associated with latency, occlusion, or lighting. Further, since most

video sequences represent a 3D to 2D projection, a loss of information is inherent in

the processing of data [76]. And, although the presence of cameras in an individual’s

personal environment is becoming more common, they are often considered intrusive

of privacy in certain scenarios [9, 30].

With the limitations of these various sensor types in mind, the experimentation

described in chapter 3 utilizes an RGB-D depth sensing system. The Microsoft Kinect

[75, 83] is a current model RGB-D sensor (Figure 3.2a) which uses near-IR technology

to project an IR light pattern on to the subject. The projection produces a dense point

cloud of sensor readings which is used to construct a depth image [12]. In this way,

the Kinect provides a rich, real-time, 3D data stream that preserves user anonymity.

Although the Kinect does provides a conventional RGB camera output, it is not used

in this research. As Figure 3.2a shows, this output is physically covered during data
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collection to ensure that the data stream does not contain information that identifies

the user. The Kinect also functions well in across varied lighting conditions (including

total darkness) where conventional cameras would be ineffective. For these qualities,

the Kinect RGB-D sensor platform is selected for the experimentation described in

chapter 3 and later.

1.3.3.2 Data Representation

Given a sensor input data stream, a compact data representation must be

computed. Representations may be roughly divided into feature-based (parametric)

versus holistic (nonparametric) forms. Parametric representations extract features

related to the physical geometry and kinematics of the actor such as limb lengths

and joint angles. Spatial information about the actor’s performance of the gesture is

preserved.

Holistic representations utilize statistics of the motion performed that are

drawn from the sensor signal (typically in (x, y, t) space). Hence, with regard to

the frequently employed visual images of motion, these can also be characterized as

pixel-based representations [10]. Whether parametric or holistic, however, the prob-

lem of data representation can, in general, be defined as one of feature selection. That

is, some vector of characterizing numerical features is extracted from sensor data and

applied to a classifier.

Motion History Images (MHI) have been used to form a visual template of

motion that preserves directional information [15, 16, 59]. Histograms of Oriented

Gradients (HOGs) are used in [28] to generate regional descriptors of single frame

images for human detection. Periodic motions such as walking or running may be

recognizable solely from the movement of lighted feature points placed on the actor’s

body [55]. This phenomenon is exploited by Benabdelkader et al. [10] and Cutler
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and Davis [27] through the concept of self-similarity. In this approach, the locations

of features (e.g. edges) in an image sequence are seen to generate a repeating pattern

from which a motion descriptor may be generated. The set of features is tracked

through the course of an image sequence. The summed distances of features between

image pairs is computed. Performing this summation exhaustively across all image

pairs forms a Self-Similarity Matrix (SSM).

SSMs and HOGs are combined to produce view-invariant representations for

non-periodic motions in [56] and [118]. A detailed description of this approach is

given in chapter 2. Experimental results show that recurrences in both IR spatial

sensor data and in video data can produce robust discriminants. Although these rep-

resentations possess strong discriminative qualities, they tend to be of high dimension

and require either compression or excessive computation.

In the experimentation described in chapters 3 and 4, the concept of Dynamic

Instants (DIs) advanced by Rao et al. [84] is extended to three dimensions. DIs are

defined as the extrema (or discontinuities) of acceleration in an actor’s motion. They

include motion starts, stops, and rapid changes in speed or direction. Rao shows this

representation to be view-invariant, with DI features being visible (unless occluded)

regardless of the vantage point of the sensor. The Kinect (section 1.3.3.1) allows

direct extraction of a third dimension without the need for 2D image processing.

The representation used for gesture recognition in this research combines the five

most significant DIs in (x, y, z) space along with their frame number over a 5 second

interval at 30 Hz sampling. This is described further in section 3.2.

1.3.3.3 Pattern Recognition

In order to classify gestures, the feature vector is typically sorted into one

of a known gallery of types. Numerous classification methods have been introduced

17



including Hidden Markov Models (HMM), Finite State Machines (FSM), clustering

techniques such as Nearest Neighbor (kNN) and C-means, and various types of arti-

ficial neural networks including Multilayer Perceptron (MLP) networks, Time Delay

Neural Networks (TDNN) [76], neural networks based on Adaptive Resonance Theory

(ART) [44], Neural Gas (NG) [71], and Growing Neural Gas (GNG) [39].

Hidden Markov models have well established success in the classification of

gestures and of generalized motion and are used in numerous research efforts. Notably,

these include [110] and [112]. A survey of such approaches can be found in [77].

The authors note that HMM approaches may inaccurately assume that observation

parameters may be approximated by a mixture of Gaussian densities. Further, HMMs

often have poorer discriminative outcomes than neural networks.

Bobick and Wilson [17] use finite state machines to classify gestures collected

from video images. Lee et al. [68] seek to classify video motion sequences as whole-

body gestures by mapping sequences of estimated poses to gestures. PCA is used

for visualization; an EM-based (Expected Maximum) Gaussian Mixture Model is

used for clustering of poses. Frolova et al. [41] classify planar decimal digits traced

in free air with high accuracy by storing hand trajectories. The Most Probable

Longest Common Subsequence (MPLCS) algorithm is used to classify trajectories

by comparison with a probabilistic template based on variations within a Gaussian

Mixture Model. Prasad and Nandi [81] explore the effectiveness of several methods

for vectorizing and clustering gesture motion data including: hierarchical, mean shift,

k-means, fuzzy c-means and Gaussian mixture. Schlömer et al. [89] use k-means to

determine clusters in basic hand/arm gestures generated using a wiimote controller

including square, circle, roll, Z, and tennis swing. Wachs et al. [103] use fuzzy C-

means clustering to achieve highly accurate recognition of twelve static hand gestures

as the basis for a telerobotic command interface. And, although the focus of Knox’s
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work in [63] is user-guided machine learning (see section 1.3.3.4) the author uses

kNN to determine the probable state of a robot from sensor data in order to conduct

state-action selection as the basis for a user reward function. The experimentation

described in this research is compared with a kNN approach. Unlike Knox, however,

we assume that the sensed gesture is the state, rather than the sensed position of the

robot.

Zhu and Sheng [122] use wearable sensors to detect both hand gestures and

simple ADLs. Neural networks are used for gesture spotting. HMMs are used for

classification. Varkonyi-Koczy and Tusor [102] use Circular Fuzzy Neural Networks

(CFNN) to classify static hand postures for their iSpace intelligent environment.

CFNNs are seen to have reduced training time. Sequences of hand postures are com-

posed into hand gestures. Yang and Ahuja [115] use Time Delay Neural Networks

(TDNN) to classify sequences of motion trajectories in hand motion for American

Sign Language (ASL). Conventional neural networks are used in [78] and [86] for

their ability to generate responses in real time while also being robust in the presence

of temporally inconsistent input patterns. Alexander et al. [2] use a neural network

based on Adaptive Resonance Theory to recognize static hand gestures. Networks

employing Adaptive Resonance Theory are seen to possess the ability to learn incre-

mentally, thus making them effective in online learning.

Stergiopoulou and Papamarkos [91] use GNG to model the topology of the

hand itself (rather than more abstract features of the scene) in various finger-extended

postures. Skin color is used as the dominant feature. From this, finger directions are

extracted based on the centroid of the palm. Classification is accomplished using

Gaussian probability of finger angles. Angelopoulou et al. [5] present a probabilistic

growing neural gas (A-GNG) method for tracking the topology of the human hand

as it progresses through various gestures. A-GNG offers improved topology mapping
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to the basic GNG algorithm. However, the approach is chiefly video based and forms

the GNG codebook vectors based on the appearance of the hand rather than on any

of the movement characteristics of the action. In this way, the method is mainly that

of a static analysis of hand shape.

The GNG algorithm [39] is a variant of the self-organizing feature map. Be-

cause it is capable of tracking a moving distribution [53], adding new reference nodes,

and operating from static input parameters, it is well suited to the task of gesture

recognition where no labelled data is available. Indeed, since the acquisition of gesture

data is often expensive in terms of the effort and time required of both the user and

the researcher, such a technique which learns online is particularly desirable. Further,

its ability to grow and alter its topology over time suggests that it may be effective in

learning new gestures as they are observed. For these reasons, GNG is the clustering

method explored in this paper.

1.3.3.4 Machine Learning

Although techniques described in subsection 1.3.3.3 may be broadly catego-

rized as machine learning methods, the term as it is used in this thesis refers to a

mechanism by which some manner of feedback is used to improve future outcomes

of a robot’s assistive behavior. Typically, such a mechanism implies the use of train-

ing data to refine a classifier of choice off line as with conventional neural networks.

However, a goal of this research is to create an online learning modality that utilizes

direct interaction with the user so that a robot agent converges upon a desirable con-

figuration. Hence, our goal is to iteratively create a direct mapping between sensed

gestures and inferred goals.

Such sensorimotor mappings of sensor input to robot motor commands have

been successfully used in several applications. Ritter et al. [85] and Martinetz et
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al. [72] showed that Self-Organizing Feature Maps (SOFM) [66] could be used to

discretize input space into receptive fields associated with individual neurons. Each

node in the network then uses an error correction rule to learn an output composed

of a vector of joint angles and a Jacobian to effect a desired robot configuration. In

this way, the SOFM is capable of a nonlinear mapping between input and output

spaces. The topology preserving nature of the SOFM allows for faster learning than

conventional neural networks by taking advantage of the idea that similar inputs

should yield similar outputs. Hence, topological neighbors will encode similar sensor

inputs and thus, they can be made to learn desired outputs as a group. Walter and

Schulten [106] use a Neural Gas (NG) mapping [71] and apply a Gaussian neigh-

borhood function to soften learning across the discretized input space of nodes to

produce smoother output control. Gross et al. [43] use NG to map neighborhoods of

sensory input (locations in a maze) to motor outputs of forward, backward, left and

right commands to a mobile robot. The authors use Q-Learning (described below) to

develop an optimal command policy for moving straight and forward for the longest

intervals possible. A good survey of these and related applications can be found in

[7].

Reinforcement Learning approaches (RL) are frequently applied to the control

of robots. Unlike supervised learning approaches which require a set of training

data with desired output values, an agent (robot) in an RL framework senses its

environment and operates under some policy so as to maximize the expected future

returns (evaluations) it will receive though a scalar reward signal. RL techniques use

Markov Decision Processes (MDPs) to refine a mapping between an agent’s state and

its future actions. Over successive iterations of input, action, and evaluation, a policy

for maximizing the sum of future (discounted) reward is learned which, in the limit,

can be seen to approach optimality [92]. Arguably, the most popular RL technique
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is that of Q-Learning [107] for its simplicity and for its lack of need to model the

environment. We apply Q-Learning in this work as described in section 3.4.1.

Within an RL framework, an agent in a particular state s of the environ-

ment, an action a is selected based on the highest available expected return (or Q

value). The policy may be periodically modified to allow for exploration of the action

space. Following each episode of state-action sequences toward a known goal, the

policy is evaluated and a table of state-action pairs is updated to reflect the actual

realized returns (which may be expected in future episodes under a given policy).

Typically, convergence to an optimal policy requires a large number of iterations dur-

ing a training phase. In the field of robotics, this is generally impractical to achieve

given the potentially large number of state-action pairs coupled with the mechanical

limitations of execution speed, reliability and energy consumption of a robotic agent.

Hence, generalization of actions across similar states is critical [99].

Touzet [100] presents a method for generalization among state-action pairs in

a Q-Learning framework using Kohonen’s self-organizing map (Q-Kohon). As previ-

ously mentioned, the SOFM’s topology preserving structure allows for neighborhood

learning. Hence it applies well to the Q-Learning approach which underlies Touzet’s

method. Q-Kohon uses the SOFM as an associative memory. Each node stores a

tuple consisting of its state label (or situation in Touzet’s terminology), an action,

and a Q value. The input situation probes the map for the nearest state label having

a positive Q value. The neighborhood actions are updated according to the reward

received from taking the action associated with that node.

The approach used in the experiment of chapter 3 is an adaption of Q-Kohon.

As previously stated, the GNG algorithm is employed so as to avoid extensive param-

eter tuning. Also, the capability of the GNG topology to add nodes in the presence

of new gesture forms or significant distribution error is seen as key. However, the
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strengths of the SOFM paradigm remain available.

Usually, reinforcement learning utilizes an automated, internally generated

reward function. As previously mentioned, the number of trials required to learn

an optimal policy in this case is typically large. Further, the reward function is

typically sparse in nature. For example, Tesauro’s implementation of an automated

backgammon player taught by reinforcement learning assigned a reward of 1 (one) for

a winning game and a reward of 0 (zero) otherwise. Given the huge state space of the

backgammon game, the player required hundreds of thousands of games to become

proficient [92].

For the application of RL to assistive robotics, and in particular, to robotic

agents which learn gestured human commands, such lengthy training phases are not

feasible. As such, several variants of knowledge transfer between human teachers

and robots have been devised. A summary of these approaches is described by Knox

and Stone [65] which covers advice-taking agents, learning by example, and human-

generated reward signals. The authors note that the advising of agents in a meaningful

way may involve expertise beyond that of a typical user. Learning by example in which

the user demonstrates a desired response may place a burden on the user to observe

the outcome, or require that they possess expertise to generate an adequate example

(as with simulated aircraft operation).

One straightforward way for a human teacher to influence the learning of a

robotic agent is by allowing them to control a simple good/bad reward indicator.

Kaplan et al. [58] proposed the use of the animal training technique known as clicker

training to teach an AIBO dog robot to learn complex actions. Blumberg et al. [14]

extend this idea to use reinforcement learning to instruct virtual characters. Breazeal

and Thomaz [94] use RL in a simple virtual kitchen environment called Sophie’s

Kitchen. The environment uses a relatively small state-action space to show that a
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task (baking a cake) within this space can be learned through clicker-like guidance

from a human teacher.

Fiebrink et al. [34, 35] attempt to improve machine learning through user

feedback and thereby, to generate a model of human gesture recognition that learns

from the user. The goal of the research is to take user feedback on the correctness

of a gesture recognition model to improve the model. In general, the user exercises

direct interaction to alter a training data set. That is, user advice is used to essen-

tially relabel newer and more correct training data. In a similar way, Förster et al.

[37] utilize a teacher signal to train an activity recognition system where no ground

truth training data is available. The user provides correct/error feedback which is

used to judge the system’s recognition of an activity according to the correctness of

classification (essentially a relabeling of classifier output). The authors show that the

teacher signal allows the system’s modified kNN classifier to learn more quickly and

with equal accuracy than when in the presence of ground truth data.

Kartoun et al. [60] create an extension to Q(λ) (Q-Learning with mulitple

step eligibility tracing) to switch between fully autonomous and semi-autonomous

operation (in which human guidance is accepted) in a bag emptying task. This

approach, called CQ(λ) allows for levels of collaboration with a human observer. It

is shown that the influence of human guidance speeds the learning process.

Similarly, Kuno et al. [67] use face identification and hand gesture recognition

to control an intelligent wheelchair. The system makes an initial assumption of an

appropriate direction and speed response for the wheelchair based on a best guess at

the user’s gesture. If the user approves of the response, it is assumed that they will

repeat the gesture. In this way, the chair’s response is reinforced and the gesture is

deemed registered for future use.

Since this research assumes an unskilled human user who is attempting to
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train an assistive robot, the clicker training style is chosen as a viable means for

the user to express approval or disapproval of a robotic response. And, as noted by

Knox et al. [64], a human trainer has a broader view of the benefit of a specific

individual action than is considered by MDPs. Rather, the trainer may give reward

based on a qualitative view of how a task should be performed by an agent. These

authors suggest that this observation indicates that using a human teacher is more

akin to a supervised learning approach. However, for simplicity and to facilitate the

incorporation of other reward modalities in the future, this work makes use of the

Q-Learning method.

It is assumed that a goal configuration is known by the user and that through

gesture and a simple reward/punishment evaluation of the robot’s response, the robot

will eventually achieve this configuration. Certainly, higher dimensional configura-

tions will be more challenging to attain with this simple binary feedback mechanism.

Further, some trajectories toward the final configuration may allow the robot to pass

through undesirable configurations. The assessment of trajectory is left to future

work. Thus, our learning algorithm essentially undertakes the problem of developing

the user’s goal rather than modelling the environment to obtain ever higher rewards.

The shortest path to the goal is understood to yield the greatest benefit.

1.4 Summary

A significant body of work exists in the area of automated recognition of human

activity and gesture. The diversity and persistence of efforts to sense, classify and

respond to human motion is evidence of the importance of this research especially as

it relates to assistive robotics. This review of the applicable literature presented here

has attempted to clarify major problem segments associated with such recognition and
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to identify specific aspects of the existing solution set which inform the experimental

approaches described in the following chapters.

In particular, this review has allowed us to focus on possible strategies which

best cater to the goals of aging in place. Thus, the use of ambient, non-vision based

sensing is indicated. In contrast to an abundance of approaches using wearable devices

and conventional video cameras, the use of ambient, privacy preserving depth sensing

in this work presents a key innovation. The sensor platform becomes more a part of

the DNA of the environment as opposed to an unwelcome agent with which the user

must contend. Recognition of gesture according to the acceleration features frequently

used by humans to characterize motion (e.g. Dynamic Instants [84]) presents the

opportunity for a robust classifier. Machine learning of gestured commands on line

with the human user as teacher facilitates come as you are operation [12] that may

accommodate unskilled or impaired users.
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Chapter 2

Activity Recognition

A significant body of work exists in the area of automated recognition of human

activity. Detection of user activity and inference of user context and intention are

central to action planning by system software in order to control assistive robotic

components. Despite the development of many promising techniques, the goal of

robust generalized recognition of human activity remains elusive. Due to such factors

as changes in lighting and camera position, and variations in anthropometry and

speed of execution, the problem remains largely unsolved [10, 56, 84].

The loss of dexterity in the hands is a key factor affecting performance of

certain ADLs including precision and grip tasks. Further, decreased manual dexterity

is often coupled with pathological conditions such as osteoporosis and Parkinson’s

disease. Hence work to characterize a user’s manual dexterity is of interest and

importance to the broader field of research that considers how impaired users perform

ADLs [21].

In this chapter, an experiment is presented which focuses on the automated

classification of representative motions related to manual dexterity. In keeping with

the research goals stated in section 1.2, the use of ambient, non-intrusive sensing
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techniques is explored. It is shown that the comparatively sparse sensor data stream

available from such devices can be used to construct a robust classifier for simple

actions.

2.1 Method

This section describes the laboratory fixture used to collect both video and IR

motion sensor data sets as well as the analysis technique used to generate descriptors

and to classify motions. Motion samples were collected for three activities which were

chosen for their fundamental importance to a person lying in bed as in a healthcare

setting. These activities included:

1. (Reach) Bringing a cup to the mouth.

2. (Press) Pressing a nurse call button.

3. (Grab) Grabbing the bed rail.

These candidate motions are all functions involving the hand which have been used

in studies [47, 79] exploring hand and finger mobility in aging adults.

2.1.1 Data Collection

Motion data samples were collected at 17 Hz over seven second intervals using

both a Logitech video web camera and a Panasonic AMN23112 analog IR motion

sensor. For repeatability, the motions were performed by a PUMA robot serving as a

proxy for the human arm. Samples recorded from an array of points over the surface

of a virtual sphere surrounding the workspace of the robot. To provide a visual

context to the reader, a mock up of the scenario as it might exist a hospital patient
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room is shown in Figure 2.1. At the time of this experiment, the sensor platform

was envisioned to be of the form shown. A continuum surface [57, 74] would be used

to position its embedded IR sensors at an optimal vantage point for characterization

of the user’s activity. The more recent work described in chapters 3 and 4 moved

beyond this vision to a more versatile sensor paradigm.

Figure 2.1: Hospital room scenario with continuum sensor surface.

The rotating arc fixture shown in Figure 2.2 was constructed to sweep the

surface of the virtual sphere excluding that portion of the surface through which the

PUMA was inserted. Sensors were placed on the interior of the arc and were trained

toward the center of the sphere. This arrangement facilitated precise positioning of

sensors at uniform vantage points.

Sensor vantage points (r, θ, φ) were selected uniformly over the surface of the

sphere with r = 30”, θ ∈ {0◦, 30◦, 60◦, . . . , 180◦} and φ ∈ {0◦, 30◦, 60◦, . . . , 240◦}. For

this study, the angle θ was measured downward from 0◦ at the vertical axis. This

arrangement comprised an array of 63 sensor positions as depicted in Figure 2.3. For
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(a)

(b)

Figure 2.2: (a) The rotating arc positioning fixture for spherical sensor placement.
(b) The IR sensor board attached to the interior of the fixture.
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the remainder of section 2.1 descriptions of the method employed in this experiment

are the same for video as for IR sensor data. Individual video images are analogous

to individual motion sensor readings. The ease of comparison, the sampling rate for

the IR motion sensor was set equal to the frame rate of the camera.

Figure 2.3: Sensor vantage points at 30◦ increments.

2.1.2 Descriptor Calculation

The formation of an image sequence descriptor for classification consisted of a

two part process. First a Self-Similarity Matrix (SSM) was computed. A Histogram

of Gradients (HOG) generated from the SSM then served as the descriptor. The Self

Similarity Matrix S(I) for each image sequence I = {I1, I2, . . . , IN} was calculated
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using (2.1).

S(I) =



0 d12 d13 . . . d1N

d21 0 d23 . . . d2N
...

...
...

...

dN1 dN2 dN3 . . . 0


(2.1)

where elements of S(I) represent the Euclidean distance measure dij between image

pairs {Ii, Ij} ∈ I such that

dij = ||Ii − Ij||2. (2.2)

Assumptions implicit in the distance calculation of (2.2) are that, for a given sequence,

the sensor does not move and that the background does not change. Hence, any

change in the intensity of a given image pixel denotes movement of a feature point.

In this way, the total movement of all features can be represented as the summed

differences between the pixel intensities of an image pair.

A local (overlapping) HOG descriptor is calculated for each point i = 1 . . . N

on the main diagonal of S(I) where N = 116 for both video and motion data. The

descriptor consists of a histogram of m = 8 gradient direction bins for each of j = 11

log-polar cells as shown in Figure 2.4 [56]. Gradients are computed using the Prewitt

operator as suggested in [28]. Bin entries are weighted by the associated gradient

magnitudes. Since S(I) is symmetric, only the entries above the diagonal are included

in the descriptor computation. Descriptors for all points are concatenated to form

a composite descriptor H for the action sequence. Hence, for our data set, H is an

(8× 11)× 116 = 8× 1276 matrix.
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Fig. 5. Local descriptors for SSM are centered at every diagonal point i = 1...n and
have log-polar block structure. Histograms of m gradient directions are computed sep-
arately for each of 11 blocks j and are concatenated into a descriptor vector hi.

3.1 Temporal multi-view sequence alignment

Before addressing action recognition, we validate our representation on the prob-
lem of multi-view sequence alignment. We consider two videos recorded simulta-
neously for the side and the top views of a person in action as shown in Fig. 6(a).
To further challenge the alignment estimation, we apply a nonlinear time trans-
formation to one of the sequences. To solve alignment, we (i) compute SSM-of
for both image sequences, (ii) represent videos by the sequences of local SSM
descriptors H1, H2 as described above, (iii) and finally align sequences H1 and
H2 by Dynamic Programming. The estimated time transformation is illustrated
by the red curve in Fig. 6(b) and does almost perfectly recover the ground truth
transformation (blue curve) despite the drastic view variation between image
sequences.

50 100 150 200 250

50

100

150

200

250

(a) (b)

Fig. 6. Temporal sequence alignment. (a): Two sequences with the side and the top
views of the same action are represented by corresponding key-frames. The lower se-
quence has been time warped according to t′ = a cos(bt) transformation. (b): Alignment
of two sequences in (a) using SSM-based action descriptions and Dynamic Program-
ming (red curve) recovers the original warping (blue curve) almost perfectly despite
substantial view variations.

Figure 2.4: HOG descriptor format [56].

2.1.3 Action Classification

Class exemplars for each of the three candidate actions were calculated as

the mean HOGs for a specified percentage of the available data. These HOGs were

selected randomly and constituted the training data. The remainder of the data

points were used as test data. Each test data HOG was compared with each of the

exemplars and classified by the exemplar to which it was nearest according to (2.3)

i = arg min
j
DE(Htest, H

j
train) (2.3)

where Htest is a test data point, Hj
train is one of j = 3 candidate action classes, DE

is the distance to the exemplar using the Frobenius norm, and i is the classification.

The percentages of data points used as training data were varied from a single vantage

point up to 50%, at 10% increments. In this way, it was possible to determine whether

a descriptor from any given vantage point resembled that of its class exemplars so

as to validate/invalidate the claim that the stability of the SSM across the range of

sensor vantage points allowed for robust view invariance.
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2.2 Results

Figure 2.5 shows SSM plots for the three candidate motions taken from or-

thogonal vantage points. Rows of the figure correspond to specific motion classes.

Columns correspond to the vantage points from which the samples were taken. The

relative similarity between subfigures in each row is indicative of the stability of the

SSM as the basis for a view-invariant classifier. Use of orthogonal vantage points for

this comparison provides support for the assertion of view-invariance. Visual com-

parison of all 63 collected samples further bears this out. Quantitative results are

given in section 2.2.1.

2.2.1 Video Data Classification

Classification results for the video sequences are given by Table 2.1. Because

exemplars were calculated using a percentage of the available data points selected

at random, any individual execution of the classifier could be expected to yield wide

ranging results. To mitigate this effect, all statistics shown in the table have been

averaged over 20 classification runs. Results were favorable (> 90% accuracy) when

multiple data points (10% and higher) were used to calculate the exemplars. Further,

they show continued improvement as more data points are used to compute exem-

plars. It is notable that, when a single data point was used as a class exemplar, over

77% classification accuracy was still achieved. This result lends further credibility

to the assertion by [56] that SSMs provide a stable representation across the range

of sensor vantage points and that the method does support view invariant activity

recognition. Also, since the grab motion is kinematically distinct from either reach

or press, classification accuracy is generally highest for this class.
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(g) (h) (i)

Figure 2.5: SSMs for video sequences taken from orthogonal views. Rows represent
specific motion classes: (a,b,c) reach, (d,e,f) press, and (g,h,i) grab. Columns repre-
sent specific sampling vantage points (r, θ, φ): (a,d,g) sensor placed at (30”, 90◦, 0◦),
(b,e,h) sensor placed at (30”, 90◦, 90◦), (c,f,i) sensor placed at (30”, 180◦, 0◦).
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Table 2.1: Video classification results.

Classification Accuracy (%)
Training Reach Press Grab
Points

1 84.11 77.82 90.24
10% 95.70 90.96 100.00
20% 96.18 93.43 99.90
30% 96.00 93.11 100.00
40% 96.05 94.21 100.00
50% 96.41 92.50 100.00

2.2.2 Motion Sensor Data Classification

SSMs for IR motion sensor data readings taken from the same vantage points

used above (see Figure 2.3) are given in Figure 2.6. It can be seen that, although there

is a nominal resemblance between SSMs for a given class, the similarity is clearly less

than that for video SSMs.

Classification results for the motion sensor readings are given by Table 2.2. Results

are poor when only a single view is used to generate exemplars - no better than

random guess. Again, the grab motion shows greatest accuracy, owing to its inherent

dissimilarity from the other motion classes. Results improve as the percentage of data

used to train the classifier is increased (reaching 65% - 70%), though, not to a level

that could be considered reliable.

Clearly, motion sensor data does not carry the richness of information found in

video data. Single video frames consist of large number of pixels versus only a single

numerical reading for motion sensor data points. However, results with motion sensor

data are promising nonetheless. To increase the amount of information available

for activity classification through motion sensing, the following two approaches were

attempted.

36



(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 2.6: SSMs for motion sensor data taken from orthogonal views. Rows represent
specific motion classes: (a,b,c) reach, (d,e,f) press, and (g,h,i) grab. Columns repre-
sent specific sampling vantage points (r, θ, φ): (a,d,g) sensor placed at (30”, 90◦, 0◦),
(b,e,h) sensor placed at (30”, 90◦, 90◦), (c,f,i) sensor placed at (30”, 180◦, 0◦).
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Table 2.2: Motion sensor classification results for sensors at 30◦ increments.

Classification Accuracy (%)
Training Reach Press Grab
Points

1 25.08 24.68 86.45
10% 50.79 56.32 88.60
20% 56.27 63.04 93.73
30% 61.89 61.78 94.78
40% 60.39 73.68 96.97
50% 65.63 70.16 96.56

Table 2.3: Motion sensor classification results for sensors at 15◦ increments.

Classification Accuracy (%)
Training Reach Press Grab
Points

1 37.50 35.82 88.60
10% 65.73 65.90 97.16
20% 72.39 73.30 98.99
30% 75.00 75.40 98.84
40% 75.04 74.18 99.08
50% 74.87 76.37 98.93

First, as suggested in [111] increasing the number of sensors offers an intuitive

method for increasing available information. To this end, the density of vantage points

for motion sensing was increased to 15◦ increments over the sphere such that points

(r, θ, φ) were r = 30”, θ ∈ {0◦, 15◦, 30◦, . . . , 180◦} and φ ∈ {0◦, 15◦, 30◦, . . . , 255◦}.

This constellation of sensors effectively quadruples the original number of motion

sensor vantage points to 234. Classification accuracy for this scenario improved by,

typically, 5%-15% as can be seen in Table 2.3. Still, however, such results do not

practically approach the results available through video sensing.

Second, a surface contour encompassing an array of sensor vantage points
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Table 2.4: Motion sensor array classification results.

Classification Accuracy (%)
Array Reach Press Grab
Size

1×1 56.27 63.04 93.73
1×2 76.18 75.78 98.63
2×2 86.76 86.18 100.00
3×3 94.90 95.39 100.00

was envisioned. Such a contour was emulated by fusing sensor inputs by averaging

readings over regional subsets of the virtual sphere. Table 2.4 shows several scenarios

for such arrays. The table assumes 20% of data points were used to calculate class

exemplars. Using this scheme, motion sensor data approaches the accuracy found

using video data for arrays of 2× 2 and larger.

2.3 Summary

In this chapter, the use of Self-Similarity Matrices (SSM) to generate His-

togram Of Gradient (HOG) classifiers for activity recognition has been explored. It

has been shown that video recordings of basic motions can be classified by this method

with a high degree of accuracy.

Further, and most interestingly, we have used non-video motion data to eval-

uate whether a holistic activity representation might be useful in privacy sensitive

applications. It has been shown that motion sensor readings of basic actions can

be classified by this method with a promising accuracy. Where single sensor inputs

are used as class exemplars, classification accuracy is sensitive to vantage point and

thus performs poorly. Where multiple descriptors are averaged to produce exemplars,
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classification improves though it is still subject to the choice of vantage point for best

outcomes. Coupled with our robust classification for video, we interpret these find-

ings as supportive of sensor view invariance in that the appearance of SSMs for a

given class is stable enough over the range of vantage points to collectively form a

useful discriminant. It is noted, however, the large 8× 1276 HOG descriptor presents

a potentially prohibitive burden in terms of computation and storage.

Experimentation with single motion sensor inputs also yielded poor results.

However, when multiple sensor views are combined into a single average reading for

a small contour surrounding a vantage point, results improve significantly. Hence,

the use of motion sensor data for the purpose of activity recognition appears to be a

viable area for continued exploration.

Given this finding, it is intuitive that the fusing of larger numbers of sensors

might enable further improvements in classification accuracy. At the logical extreme

of this idea, one can easily envision a dense array or point cloud of sensor readings

which effectively map the topography of the participant to produce a moving depth

image. Such an array is produced by the near-IR technology that is the basis for

the Microsoft Kinect RGB-D sensor as discussed in section 1.3.3.1. The experiments

described in chapters 3 and 4 utilize the Kinect platform.

The detection and characterization of generalized human activity is a decidedly

immense prospect. Paraphrasing Bobick [15], recognition of basic actions will never

be generally applicable to identification of higher level activities such as shop-lifting

unless some portion of the act can be ascribed to a specific movement. Indeed, no

collection of atomic movements can identify higher level activities without benefit

of the experiential knowledge which allows inference. As such, the key findings of

this chapter are of less impact to the problem of activity recognition than to the

sub-problems of sensor selection and motion representation. However, these results
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are seen as integral to the more focused problem of gesture recognition, and thus, to

the goal of improved modalities for HRI. Chapter 3 applies these findings to the use

of gesture as the basis for an human-robot command interface. The use of human

guidance is employed so that the machine learning component of our approach makes

use of experiential knowledge during the training phase.
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Chapter 3

Gesture Recognition

In chapter 2, the problem of activity recognition considered utilizes a formula-

tion that is common in much current research. Regardless of the method employed,

the success of activity recognition (and thus, of gesture recognition) is measured

according to classification accuracy. However, framing the problem in these terms

implies that the researcher has specified an appropriate choreography of the motion

and that the actor will perform according the the researcher’s expectation.

Given that the target population of the ART project includes potentially un-

skilled or impaired users, the common approach of matching a performed gesture to

some element in a stored gallery of templates is inappropriate. Rather, the problem

of gesture recognition is formulated here as the mapping of gestures to a user’s desired

environmental configuration. Strict classification is bypassed in service of the user’s

goal which may be initially unknown. An analogy of this formulation may be drawn

to animal training. The animal has little purpose for labeling (classifying) its trainer’s

actions. Moreover, it associates its own actions in response to the trainer’s command

with some type of reinforcement (reward or punishment) from the trainer. A reward

indicates that a particular action is to be repeated in a given context; punishments
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indicate actions to be avoided. By affording the user some mechanism (such as a

push button) of indicating their relative satisfaction with a robotic agent’s response

to gesture, the gestures themselves become part of a command vocabulary to the

agent. As noted by Kaplan et al. [58], this form of training, termed shaping, has

been used successfully by animal trainers to break down complex tasks into manage-

able segments in which simple reinforcement signals may be effective. Unlike Kaplan’s

application to the Sony AIBO robotic dog, research work presumes no working action

primitives such as AIBO’s ability to walk, kick a ball or dance. Rather, static final

configurations of the robot agent are the defined goals.

In this chapter, an approach is introduced which explores a method for generat-

ing such a mapping between gesture and robotic configuration when the preferences of

the user are considered. Two experiments are presented in sections 3.3 and 3.4 which

examine the effectiveness of simulated human feedback in 1D and 3D configuration

spaces, respectively. The 1D case (originally described in [116]) demonstrates the

general efficacy of the sensor platform, data representation (DIs), and the Growing

Neural Gas (GNG) clustering algorithm. The 3D case (introduced in [119]) shows

the applicability of GNG in tandem with Q-Learning to provide a superior learn-

ing platform for the mapping of sensed gesture to the k-Nearest Neighbor algorithm

commonly used in this problem space. Leveraging the topology of the GNG cloud,

alternative distance metrics are also considered as introduced in [120].

3.1 Institutional Review Board Approval

The experimentation described in this chapter makes use of data collected

from human participants. For the purposes of this research, only fellow researchers

who were well-acquainted with the experiment’s goals and procedures were consid-
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ered for participation. Research using these data involved development of a software

platform and machine learning algorithm for gesture recognition. Clemson University

IRB-approved protocol 2011-266 was used in the collection of these data. Supporting

documents for this protocol including the approved consent forms are shown in Ap-

pendix B. This development was termed phase 1 of the protocol and is the subject of

the experimentation described in this chapter. An envisioned phase 2 of this research

would involve work with unacquainted participants using the apparatus developed

during phase 1. This is left to future work.

3.2 Method

This section describes the method and laboratory fixture used to collect gesture

data. Included in this fixture are the sensor platform and software modules which

generate data representation, perform clustering, generate robotic response action

and issue user feedback (reward). Source code in C++ and Matlab [73] as well as

data processing and control scripts are given in Appendix A.

An operational flow diagram of the system is shown in Figure 3.1. In the

figure, the gestures performed by the user were drawn from samples collected from

fellow researchers. The data collection fixture is described in section 3.2.1. Because

this experimentation is intended as proof of concept work, the generation of user

feedback was implemented as a simulated user to expedite training as described in

section 3.2.6.

Data samples were collected for three arm-scale gestures which were deemed

an essential baseline command set for the eventual operation of an assistive robotic

agent. Although the overall approach implemented in the system places no expecta-

tion on the user to perform gestures in a particular manner, motion models for these
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Figure 3.1: System block diagram. User feedback is automated for the experiments
described here. The human user would generate the reward in the eventual imple-
mentation.

gestures were taken from the American Sign Language Dictionary (as demonstrated

at [6]) to facilitate repeatability across the participant pool during the data collection

phase of this experiment. The candidate gestures included come closer, go away and

stop. Although the gesture command vocabulary was increased in later experiments,

these were considered sufficient to show the viability of the approach at this stage

of development. The stop gesture requires special treatment since it intuitively sug-

gests that the robot is presently executing an earlier command. In order to properly

handle such a scenario, segmentation of gestures from continuous free motion of the

arm would be required. However, since segmentation is not the focus of the research,

gestures are captured in isolated time intervals as described in section 3.2.1. The
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problem of segmentation of free motion is left to future work. Instead, stop will not

be interpreted in its literal sense, but rather as having a specific goal configuration

similar to that of come closer and go away.

3.2.1 Data Collection Fixture

Data samples were collected using the depth sensing feature of the Microsoft

Kinect RGB-D system [75] shown in Figure 3.2. The Kinect produces depth maps

of the user at approximately thirty frames per second. Samples were collected over

five second intervals for a total of 150 data points per motion sample. Although

RGB samples are also generated by the Kinect, these were not stored in order to

preserve user anonymity. The RGB camera was covered (Figure 3.2a) in accordance

with the IRB protocol and to assure participants that no identifying images were

being collected. The Kinect was set at desk height (75 cm) with the participant

standing at a distance of 1.3 m. The Kinect was angled so that the eleven upper-

body joints (Figure 3.2c) were visible in the depth image. Participants were invited to

occasionally shift their weight or angle of approach slightly so as to introduce nominal

variation in the collected data. Five participants each performed fifty repetitions for

each of the three candidate gestures. This yielded 250 samples of each gesture type

for a total of 750 samples.

The data collection program was developed using the Robot Operating System

(ROS) [88]. ROS was selected for its open source and for its active community of

research-oriented users. Further, it supports a variety of simulated and real world

robotic platforms through a message based publisher/subscriber environment. Thus,

direct migration of this research to the proposed hardware platform (Figure 1.2b) is

expected to be a viable path. Within ROS, the Kinect data stream was accessed
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(a) (b)

(c)

Figure 3.2: Kinect sensor data collection setup: (a) The Kinect sensor with RGB
camera covered. (b) A participant performing the come closer gesture. (c) The
PrimeSense OpenNI depth image showing skeletal tracking during the come closer
gesture. Note that the PrimeSense OpenNI viewer displays the participant’s mirror
image.
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using the PrimeSense OpenNI Kinect package [87] to track the skeletal joints of the

participant by ROS messages. An example of the Kinect depth image showing skeletal

tracking is shown in Figure 3.2c. Depth data for eleven joints were available over the

sampling interval. However only a participant’s left hand is considered for gesture

characterization in these experiments. Data points consist of (x, y, z) coordinates of

the location of the left hand.

3.2.2 Feature Extraction

Using an approach similar to [84], Dynamic Instants (DI) were extracted from

each 150-point data sample for motion of the left hand joint. Position data for each of

the three dimensions were first smoothed by convolution with the discrete Gaussian

kernel given by (3.1) with σ2 = 1.0 [50].

G = [1, 4, 6, 4, 1]/16 (3.1)

As a further smoothing step, a moving average of seven time steps was applied to the

position data so that short term jitter of the actor could be filtered and longer term

trends could be captured.

Velocity and acceleration data were then computed from position data for

each dimension. The five highest occurrences of peak acceleration were selected as the

dynamic instants. As discussed in [84], such peaks occur at sharp changes of direction

or speed, and starts/stops. For the DIs used in this work, the (x, y, z) coordinates

and the frame number were recorded. Given the Kinect’s capability to represent

the positions of these peaks in 3D space and with the frame number accounting for

discrete time, the spatial trajectory of gesture execution is grossly replicated. Hence,

DIs did not require the extra dimensions of velocity and acceleration to be stored for
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effective discrimination between gesture types.

Feature vectors for each sample were constructed by the concatenation of the

five DIs to yield a 20× 1 descriptor as shown in Figure 3.3. Both frame numbers and

coordinate values were scaled to [0, 1] based on the range of values of their respective

types so as to prevent any given field from dominating the feature vector. Feature

vectors were then clustered using the Growing Neural Gas algorithm (Algorithm 1,

details in the next section).
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Figure 3.3: Feature vector format for a depth-sampled gesture. DIs are concatentated
in chronological order by frame number.

3.2.3 The Growing Neural Gas Algorithm

The Growing Neural Gas (GNG) algorithm proposed by Fritzke [39] is a vector

quantization technique in which neurons (nodes) represent codebook vectors that each

encode a submanifold of input data space. In this regard, GNG is similar to the Neural

Gas (NG) algorithm proposed by Martinetz and Schulten [71]. GNG differs from NG

in its ability to form connections between nodes and thus preserves a topological

representation of input space in a manner functionally similar to the Self Organizing
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Feature Map (SOFM) [66]. Further, GNG is capable of adding new nodes over time

so as to effectively map the topology of a non-stationary input data distribution.

The basic GNG algorithm is given by Algorithm 1 [39]. For the implementation of

GNG used in this work, operating parameters were: εb = 0.05, εn = 0.0006, λ = 100,

α = 0.5, β = 0.0005 and amax = 88. Also, a maximum limit of 100 nodes was imposed

on the network. Data structures associated with the implementation of GNG and of

the larger system are discussed in section 3.2.4.

Algorithm 1 The Growing Neural Gas (GNG) algorithm

1: Begin with a set A of two nodes at positions wa and wb in Rn: A = {a, b}.
2: Initialize a set of connections to the empty set: C = ∅.
3: repeat
4: Apply an input signal ξ according to P (ξ).
5: Find nodes s1 and s2 in A closest to ξ.
6: Establish a connection between s1 and s2 if one does not exist: C = C ∪

{(s1, s2)}.
7: Set the age of the connection (s1, s2) to zero.
8: Increment the ages of all edges connected to s1.
9: Adjust the local error of s1 by the square of its distance to the input: ∆Es1 =

||ξ − ws1||2.
10: Move s1 toward ξ by fraction εb: ∆ws1 = εb(ξ − ws1).
11: Move the topological neighbors of s1 toward ξ by fraction εn: ∆wn = εn(ξ−wn).

12: Remove all edges having an age greater than amax. If this leaves any nodes
with no connecting edges, remove them also.

13: if (numInputs mod λ = 0) then
14: Determine the node q with maximum error.
15: Insert a new node r halfway between q and its neighbor f with the largest

error: A = A ∪ {r} such that wr = 0.5(wq + wf ).
16: Decrease the error of q and f by fraction α: ∆Eq = −αEq and ∆Ef = −αEf .

17: Initialize the error of the new node to the interpolated error of its neighbors:
Er = (Eq + Ef )/2.

18: Decrease all node error variables by fraction β: ∆Ec = −βEc (∀c ∈ A).
19: end if
20: until Stopping criteria is met.
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3.2.4 Data Structures

3.2.4.1 The A Data Structure

The A data structure contains the list of reference nodes (codebook vectors)

generated during execution of the GNG algorithm (Algorithm 1). Each node Ai

carries the associated fields which support mapping of input gestures to 3D robotic

response configurations. These fields include the node’s feature vector, node label,

and of key importance, the response configuration (x, y, θ)i (or action vector) for a 3-

DOF robot, and its most recent user-generated reward. Table 3.1 includes a complete

listing and descriptions of the fields for the A data structure.

As the GNG algorithm updates the cloud of reference nodes with each input

vector, the nearest reference node in the cloud already holds a learned robotic response

based on the history of the system. In this way, the system avoids the task of correctly

labelling the input in favor of generating a desirable response to it. Rather, the action

vector associated with the node serves as its label. Using a reward signal from the user

to gauge the quality of response, the algorithm attempts to improve the desirability

of the action as it quantizes the input space.

3.2.4.2 The C Data Structure

The C data structure consists of a list of undirected connections (or edges)

between reference nodes in the GNG cloud. This structure also includes the age of

the connection. The fields of C are described in Table 3.2.

3.2.5 Simulation Environment

As a simulated proxy for a 3-DOF mobile robot, the ROS Turtlesim environ-

ment was used. Turtlesim is a basic ROS tutorial construct capable of accepting and
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Table 3.1: Fields for nodes in the A data structure (node list).

Field Name Description

numObs
Number of observations. The total number of input ges-
ture patterns which have been previously observed.

nodeLabel
Node label. Each node carries a unique integer label.
Initially, these will be consecutive but may become non-
consecutive as nodes expire due to lack of use.

numConx
The number of connections to other nodes within the
GNG cloud.

featureVec

The feature vector (or weight vector) of the node. This
is the node’s mapping in input space. Each gesture in-
put is compared to the feature vector in order to locate
its nearest neighbor among the GNG cloud of reference
nodes.

action
The current action vector. This is the node’s mapping to
output configuration space.

last

The action vector from the last time step during which
this node was activated. A node may revert to this as
their action vector when negative reward is issued for the
current action vector.

reward

The most recent user-generated reward ∈ {−1, 1, 0}. A
reward of −1 indicates that the action vector moved the
robot agent away from the user’s desired goal configu-
ration. A reward of 1 indicates that the action vector
moved the agent toward the goal. A reward of 0 indi-
cates that the desired configuration has been reached. In
this case, the node is fully trained and the learning policy
is henceforth frozen for this node.

ancestor
The node label of the neighboring node (or itself) from
whom the current action was learned.

Q
Accumulated past reward. This is equivalent to the
length of the action vector from a global origin at
(x, y, θ) = (0, 0, 0)

E Accumulated local error of the node.

52



Table 3.2: Fields of the C data structure (connection list).

Field Name Description

v1
Vertex 1. The node (label) at which a connection is
joined at one end.

v2
Vertex 2. The node (label) at which a connection is
joined at the end opposite vertex 1.

age The age of the connection.

length The length of the connection.

attaining successive (x, y, θ) configuration goals. Movement with higher degrees of

freedom is untested, though it is expected to be feasible using this approach.

3.2.6 Automated Reward Generation

A key aspect of this approach is the use of a user-generated reward which

indicates the relative success of a robotic response to gesture. Reward is utilized to

effectively guide online system learning in real time and with no initial training data

that reflects any specific desired response. However, as previously stated, obtaining

gesture data and the associated rewards may be expensive in terms of the burden

placed on the participant. For this work, generation of a reward signal was automated

in software according to predefined goal configurations. The manner in which rewards

are generated and the configurations to be attained are specific to the individual

experiment scenarios described in sections 3.3 and 3.4.
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3.3 Gesture Learning in 1D

This section describes initial experimentation using the GNG recognition paradigm

described above to generate learned robotic responses in one dimension. In this ex-

periment, robot configurations were limited to points along the diagonal line y = x

by simulated agents in the ROS Turtlesim environment. Although both the x and y

dimensions are changing for the agent, they are doing so in unison and with equal

magnitude so as to simplify the response to generated rewards. Positive rewards indi-

cate that the agent should continue forward in its current direction; negative rewards

indicate that the agent should move in the opposite direction.

3.3.1 Reward Generation

For this early work, user-generated reward was automated programmatically

according to predefined goals. These goals represent relative translations (x, y, θ)

from the starting position of the simulated robotic agent (0, 0, 0) and were selected

to be easily distinguishable. The goal configurations are given by Table 3.3.

Table 3.3: 1D goal configurations for a simulated mobile robot.

Gesture Type (x, y, θ)

Come closer (3.95, 3.95, 315o)

Go away (−3.95, −3.95, 315o)

Stop (−2.00, −2.00, 315o)

Rewards were generated as an integer value in {0, . . . , 10} as shown in Figure

3.4. Reward values less than 5 indicate a response that moved farther away from the

desired configuration than where it began. Values greater than 5 indicate movement
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toward a desired goal. For example, a response which caused the robot to move 20%

closer to the goal would cause a reward of 6 to be generated.
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Figure 3.4: User-generated reward scale for 1D goal configurations.

3.3.2 Response Refinement

The system receives a reward value from simulated user and uses it to refine

and update the generated response. The portion of the system responsible for the

update is isolated from that which generates the reward. This is to emulate a future

scenario in which an actual human user is providing the reward signal. In this exper-

iment, the update is performed according to a simple rule-based approach given by

Algorithm 2.
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Algorithm 2 1D Response Update Rule

1: if reward < 5 then
2: Move in the opposite direction by a fraction of the distance indicated by the

feedback.
3: else if reward > 5 then
4: Move in the current direction by a fraction of the distance indicated by the

feedback.
5: else
6: Move in the direction indicated by signs of (x, y) in the present response (i.e.

make a guess).
7: end if

3.3.3 Experimentation

The 750 collected samples (see section 3.2.1) were randomized and presented

to the system as input. One application of all 750 samples constituted an input

epoch. For each sample, feature vectors (Figure 3.3) were computed and passed to

the GNG algorithm, a response was issued, reward was automatically generated and

the response was updated accordingly. The per-sample error was calculated between

the updated goal configuration and the known goal for that sample’s gesture type.

Following each epoch, the average error per gesture type was also computed. In this

manner, sixty epochs were executed. Results are shown in Figure 3.5a. Average error

can be seen to trend downward with typical error less than 1 m within approximately

15 epochs. Goal seeking results (in Turtlesim) using the mature GNG cloud can be

seen in Figure 3.6.

Dissimilarity among computed DIs for a given gesture was seen to effect the

smoothness of convergence: some samples of a given gesture differed significantly

from the majority. For comparison with the original dataset, a subset of samples

was also generated by filtering out samples with a significant number of outlying data

points. Those samples having fewer than twenty data points farther than 1.5 standard

deviations from the mean for the gesture type were retained. Those samples not
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retained were deemed to be poorly separable from other gesture types. This filtering

process reduced the data set to an average 191 samples per gesture type for a total of

573 samples. These results are shown in Figure 3.5b. Although the downward trend

is smoother for the subset, the rate of convergence is similar. In a real world setting,

users would be expected to exhibit natural variation in the performance of gestures.

These results suggest that this system would be robust to such variation.

Perturbations within the GNG cloud can also be seen as the error curves do not

descend smoothly. This may be explained again by samples within the data set which

remain poorly separable despite filtering. Samples implicitly mistaken for the wrong

gesture type would find their generated response to be far from desirable. However,

despite such cases, the algorithm reliably re-converges toward goal configurations and

average error continues to trend downward.

3.3.4 Summary

In this section, early work toward development of a gesture based human-

machine interface has been presented. It has been shown that 3D data from the Kinect

depth camera can be used to generate a useful descriptor of gesture in the form of

prominent dynamic instants. Further, the GNG algorithm is capable of differentiating

between these descriptors. Most interestingly, the goal of gauging the success of our

learning algorithm based on the desirability of response rather than on a classifier

label is shown to be practical. Clearly, the policy based update method we employ

in this initial experiment is a simplistic approach to reinforcement learning. Further,

the use of an integer-based reward signal provides unrealistically rich information to

the response update process that allows it to converge relatively quickly. It is foreseen

the generation of such information-rich rewards will place an undue burden on the
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(a)

(b)

Figure 3.5: Average 1D gesture response error per epoch using (a) the full 750-sample
data set, and (b) the 573-sample filtered data set. The response for the stop gesture
can be seen to converge most rapidly since the desired configuration is nearest the
origin as shown in Figure 3.6c.

participant to provide it. Development of a longer term value function to maximize

user satisfaction while minimizing reward complexity will be of central focus of section

3.4 which follows.

It is noted that due to the need for improved separability in the data set, DIs

present concerns regarding both spatial scale and speed of execution of the performed

gesture. Future progress in this area could be expected to increase the speed of
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(a) Come closer. (b) Go away.

(c) Stop.

Figure 3.6: Motion paths for Turtlesim agent in 1D with a mature GNG cloud. The
goal seeking turtle begins at the center of the frame and traces its trajectory (white
line) as it moves along the diagonal line y = x toward its 1D goal configuration.
Markers are shown at the goal positions for each candidate gesture. Trajectories for
each response are given in their respective subfigure as noted. The turtle agent can
be seen to align with the appropriate marker for each gesture type. In all cases, the
error is less than 0.1 m

convergence by the GNG algorithm, thereby reducing the expense of data collection.

3.4 Gesture Learning in 3D

This section presents experimentation which proceeds from the 1D scenario of

section 3.3 to a more practical 3D scenario. Here, user-generated reward is reduced
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from an integer to a binary signal so as to cater to the cognitive loading limitations of

an impaired or unskilled user population. Instead of the richer integer-based rewards

used in the experiment of the previous section, a good/bad indication which could

be provided by a simple button push is used. The confluence of this more sparse

reward signal and the higher-dimensioned configuration space in which the robotic

agent operates will inevitably slow the rate at which the system is able to converge

on a set of desired outcomes.

Toward overcoming this limitation, this experimentation demonstrates the

available benefits which result from using the topology of the GNG cloud to con-

duct neighborhood learning wherein connected nodes may emulate one another’s past

success. A comparison is presented between the efficacy of the commonly used k -

Nearest Neighbors (kNN) classifier and the proposed GNG/Q-Learning combination.

The impact of data separability on neighborhood learning is also shown.

3.4.1 Q-Learning

In order to place this work within established terminology, the reinforcement

learning paradigm of Q-Learning is adopted. This section describes the implemen-

tation of Q-Learning as it is used in these experiments in tandem with the GNG

state-action data structure.

Within a reinforcement learning framework, an agent attempts to learn an

optimal policy for mapping its set of possible states to future actions that are likely

to be encouraged (or reinforced) through a reward signal from the environment. In

this way, the total reward received throughout a sequence of state-action pairs may

be maximized. Typically, a table of the state-action values (Q values) is maintained.

As the agent encounters a state, the highest-valued action for that state is selected
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and performed. The reward signal is observed and the table is updated according to

(3.2):

Qt+1(s, a)← Qt(s, a) + α[r + γ(max
a

Qt(s
′, a))−Qt(s, a)] (3.2)

where (s, a) is a state-action pair, (s′, a) is a particular next state-action pair which

may be chosen from the current state, α is a positive learning rate, γ is the discount

factor which allows near term rewards to be valued more highly than future rewards,

and r ∈ [−1, 0, 1] is the reward value. Reward values of −1 and 1 reflect user feedback

of bad and good respectively. A reward of 0 reflects an outcome that requires no future

adjustment (i.e. the human user is satisfied and training has been completed for a

given gesture) and the policy is frozen for that state. For this implementation, each

gesture sample is followed by a training episode of a single time step. Discounting is

unnecessary since each reward from the human user is equally important as evidence

of movement toward or away from the goal configuration. Hence, γ = 1. With α = 1

and multiplying the reward by a step length (stepLen) of linear forward progress, the

update rule is reduced to the form of (3.3). By viewing only the next action as a

complete episode, the relation of (3.3) constitutes a degenerate case of Q-Learning.

Nonetheless, the prevalence of this in machine learning research [43, 60, 63, 94, 99]

warrants its adoption as a paradigm for future work.

Qt+1(s, a)← r(stepLen) + max
a

Qt(s
′, a)) (3.3)

For this research, stepLen = 0.1. This quantity is the same as the final error tolerance

for the robot to achieve the goal configuration.

As previously mentioned, topological neighbors in the network may be ex-

pected to represent similar vectors in input space (sensed gestures) and should, there-
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fore, produce similar output actions. Thus, the topology of the GNG cloud is utilized

to accelerate learning by taking into account the rewards obtained by neighboring

nodes (Figure 3.7). A network-structural interpretation of (3.3) can be stated as se-

lection of the highest-valued action vector from the neighborhood of a reference node

since that vector has the richest history of positive reward. The selection and update

process is given by Algorithm 3 (adapted from Touzet [100]).
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Figure 3.7: An example (2D) GNG neighborhood with associated action vectors
and most recent rewards. Gestures which fall closest to node 1 will solicit action
possibilities from nodes 1− 6 and then select the highest-valued of these action. The
GNG cloud created in this research has a dimension of 20 using features vectors of
the form shown in Figure 3.3.

Each node in the GNG network represents a state-action tuple consisting of an

input (gesture) feature vector (which is the state label), an output action vector, and a

Q value. As each gesture is sensed, the GNG network is scanned for the node with the

closest input vector by Euclidean distance. The set of available actions is taken from
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Algorithm 3 Q-Learning

1: Initialize Q values of all states (nodes): Q(s, a) = 0.
2: Initialize action vectors for all nodes: {x, y, θ} = {0, 0, 0}.
3: repeat
4: Apply an input signal gesture vector ξ.
5: Find node s closest to ξ.
6: Find the set of nodes N which includes s and it’s neighbors.
7: if (r = 0) then
8: The node is fully trained. Select the associated action.
9: else
10: Examine past rewards r ∀s ∈ N .
11: if (r = 1) for any a ∈ N then
12: Select and extend an action a to be performed according to (3.3).
13: else
14: (r = −1)
15: Select the action (with angular correction).
16: end if
17: end if
18: Perform the action.
19: Observe and record the reward.
20: until Training complete: r = 0 ∀s ∈ S

those of its topological neighbors. For this implementation, the Q value is the length

of the action vector. Since action vectors pointing to locations in configuration space

farthest from the origin must have experienced the greatest number of positively

rewarded episodes, they represent actions which promise the greatest likelihood of

future reward. Given this intuition, (3.2) becomes a simple search for the longest

vector in a node’s immediate neighborhood. For positive reinforcements (r = 1), the

node’s action vector is updated with that of its highest Q-valued neighbor and is

increased by a uniform step length (stepLen) along its current trajectory.

An action vector whose reinforcement value is negative (r = −1) indicates an

action which would move the agent farther from the user’s goal. If no neighboring

node possesses a higher-valued, positively-rewarded action, exploration is required

and the node’s action vector is updated with a small randomized angular correction.
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Repeated application of randomized correction will eventually yield an action that

will be positively rewarded. This scenario is depicted in Figure 3.8.

1

(0,0,0)

5432 6

6'

Goal

Figure 3.8: Q-Learning exploration for successive approximation of actions toward
a goal. Steps 1 − 5 receive positive reward and proceed in a consistent direction
moving closer to the goal. Continuing this policy at step 6 would cause the robot to
move farther from the goal than it had been at step 5 and would receive a negative
reward. Random angular adjustments are attempted until the accumulated action
vector comes closer to the goal as in step 6′.

If the reinforcement is 0 (zero), the action vector is deemed trained and the

policy for the associated node is frozen. In this implementation, such a node’s action

vector is removed from consideration by its neighbors in subsequent queries. This is

to avoid the possibility of assigning action vectors repeatedly which may be incorrect

for similar, but different gestures. In this way, the fully trained network will form an

associative memory mapping between gestures and actions as shown in Figure 3.9.

3.4.2 k-Nearest Neighbors

The k -Nearest Neighbors algorithm (kNN) [13] seeks to classify an unlabeled

data point using the known classes of neighboring data points. Typically, the nearest

k points by Euclidean distance constitutes this neighborhood. The classification of

the unlabeled point is determined as the majority class among its neighbors.

This algorithm is frequently used in reinforcement learning as a means of deter-

mining the state of an agent from sensor data. Knox recently employed this technique
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Figure 3.9: Mapping of input gesture to robot action. Input gestures are clustered by
GNG and mapped through successive reinforcement to desired robot action vectors.

[63] to conduct user-guided training of machine agents in Q-Learning environments

(see section 1.3.3.3). However, determination of state in the cases presented is typi-

cally a straight forward matter. In training a mobile robot to simple behaviors, the

author uses the placement of a white card on the floor as a visual benchmark for the

robot’s sensor system. Depending on the behavior being learned by the robot, the

relative position of the card in its perceptual field could be correlated with positive or

negative rewards being issued by the trainer. This results in a relatively small state

space for classification and action selection. Further, the actions themselves are fairly

discrete in nature, including such options as go forward, go backward, turn right and

turn left. In such a scenario, a kNN framework for state/action determination proved

effective.

However, in the context of the experimentation described in this section, the

ultimate preference of the user is initially unknown and may require a potentially

large number of learning steps in order to be attained. Further, the sensor inputs are
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complex gestures rather than a simple orientation with respect to a visual benchmark.

Thus, a small set of discrete state labels for sensor input patterns is insufficient. In

order to show the effectiveness of the GNG algorithm when combined with a Q-

Learning framework in this thesis, a comparison is drawn between the performance

of kNN-based action selection and the proposed experimental system. The GNG

algorithm provides an efficient method for encoding manifolds of the input data space

into single reference nodes. This feature of the approach is shown to allow more rapid

learning of complex gesture representations and does so using only sparse rewards.

The ability of GNG to perform in this manner makes it a good candidate for learning

under the physical and cognitive loading constraints of potentially impaired human

users.

In the kNN paradigm, a classification system must first have a set of train-

ing data for comparison. Such training data are typically labeled according to class.

However, data sets used in this research are, pursuant to our system learning objec-

tives, unlabeled. That is, no gesture inputs are accompanied by any sort of guidance

for the preferred response by the robot agent. Working around this limitation, two

implementations for kNN were defined and constructed as described below.

1. kNN Type 1. A set of 300 input samples (selected at random) are designated

as training data. Test data patterns are then compared with the entire training

set by Euclidean distance between their respective feature vectors. Actions from

the k nearest neighbors among the training set are considered for execution (and

extension) in the next time step. The training data pattern whose action was

selected is updated with the reward received from the simulated user and the

performed action for future consideration. In general, this is not a realistic

implementation since unlabeled data cannot be characterized for uniformity
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across classes. The sample data, although meaningful in this case, would not

be relevant in any way to a real world learning scenario. The system would have

no reason to base future outcomes to gesture on past data that is not correlated

with the user’s present actions.

2. kNN Type 2. As each test pattern is applied as input, it is added to a 100-entry

history buffer. This emulates the method employed by Knox [63]. The entire

contents of the history buffer is made to serve as training data and compared

with new input patterns by Euclidean distance between feature vectors. Actions

from among the k nearest neighbors are considered for execution (and extension)

in the next time step. The current input pattern is updated with the reward

received from the simulated user and the action performed. It is then placed at

the top of the history buffer. After the history buffer is filled, the oldest entry is

discarded. In this way, the history buffer is expected to contain the latest and

greatest set of neighbors from which to select future actions.

It is shown in the experimentation which follows that, both kNN implementations are

significantly outperformed in all analogous cases which utilize GNG. These outcomes

are discussed in detail in section 3.4.9.

3.4.3 Floyd’s Shortest Distance Algorithm

The topology of the GNG network affords the opportunity to employ network

distance metrics in the formation of local network neighborhoods. Floyd’s algorithm

[101] determines the shortest path distances between node pairs in an undirected

graph using edge lengths between individual nodes (see Algorithm 4). Following

execution, the algorithm returns a matrix Dn×n for a network with n nodes in which

all entries dij represent the length of the shortest path between nodes xi and xj.
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Algorithm 4 Floyd’s shortest distance algorithm

1: Initialize Dn×n with all dij =∞.
2: for k = 1 to n do
3: for i = 1 to n do
4: for j = 1 to n do
5: dij ← min{dik + dkj, dij}
6: end for
7: end for
8: end for

The Matlab source code implementation of Floyd’s algorithm is given in Appendix

A.2.3.5. Here, the age field of the C (connection list) data structure is used to

represent edge length. In this research, the distances between node pairs are set

to ∞ (following execution of Floyd’s algorithm in each time step) in cases where

the action vector has yielded negative reward. This situation is indicative that the

ancestor node for the current action vector should not have been emulated. Setting

the distance to ∞ excludes that ancestor from consideration during the next time

step.

3.4.4 Network Clumpiness

Although the method employed in learning a gesture-based command vocab-

ulary described in this thesis makes no effort to label or otherwise classify input

patterns, the use of the GNG network topology allows the learning process to benefit

from the reward history of nodes within a neighborhood region. This is based on

the intuition that gestures performed in a similar manner (and are thus close to one

another in the GNG network) might be expected to elicit the same robotic response.

Frequently in classification problems, data of a given class may cluster nearer

to the mean for that class than to the mean of an different class. Within a GNG

topology, such clustering may be reflected in the degree (number of connections) of
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a reference node. Given the unlabeled nature of the data used in this approach, the

number of gesture commands represented in a network is unknown. Hence, a metric

involving the degree of nodes and their relative distances from each other might be

expected to serve as a measure of cluster centrality within nodes of a given gesture

type. With this motivation, Estrada’s clumpiness metric [33] is considered as a metric

for use in the formation of node neighborhoods. A node’s clumpiness characteristic

relates the respective degrees of a pair of nodes within a network to their distance

from one another. A clumpiness coefficient Ξij for a given pair of nodes xi and xj

may be computed according to (3.4):

Ξij =


kikj

(dij)2
for i 6= j

0 for i = j

(3.4)

where ki is the degree of node xi and dij is the network distance between nodes xi and

xj as computed using Floyd’s algorithm (section 3.4.3). It is shown in section 3.4.9.4,

that although computationally intensive, clumpiness is highly effective as a means of

selecting neighborhood nodes with action vectors likely to yield positive rewards.

3.4.5 Network Resistance Distance

The GNG algorithm provides an aging function for connections between nodes.

If the age value (or other length metric) of a connection is interpreted as the electrical

resistance of a conducting path between the pair of connected nodes, the resistance

distance [62] between any pair of nodes may be determined. Total resistance between

two points in a resistor network is a function of both the values of resistors involved

and of the number of paths between the two points. The resistance between two

points in such a network is always less than the shortest path distance if more than
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one path between the two points exists.

Since the topology of the GNG network and the relative ages of connections

is reflective of the frequency with which input gesture patterns fall into the receptive

fields of a given reference node, the resistance distance between a pair of nodes may,

similarly, be shorter than the shortest path length. The shortest path by resistance

distance may follow a different route than Floyd’s algorithm (section 3.4.3) would

select. This metric is also considered in the formation of neighborhoods when selecting

action vectors likely to yield positive rewards. The resistance distance Ωij between

two nodes xi and xj in a connected network of n nodes is:

Ωij =


L+
ii + L+

jj − 2L+
ij for i 6= j

∞ for i = j

(3.5)

where L+ is the Moore-Penrose generalized inverse of the graph Laplacian L. Nor-

mally, Ωii = 0. However, since the goal in using the resistance distance matrix in this

research is to determine potential neighbors, a node’s distance to itself is set to ∞.

The graph Laplacian is computed as:

L = K − Av (3.6)

where Av is the admittance matrix of the network:

Avij =


1/rij for i 6= j

0 for i = j

(3.7)
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and K is the degree matrix:

K = diag

(
n∑

z=1

1

rxz

)
. (3.8)

The age field of the C data structure is interpreted as the edge resistance rij between

nodes xi and xj for this research. The source code implementation of the resistance

distance calculation is given in Appendix A.2.3.9. Also, because computation of

resistance distance requires that the GNG network remain connected, the maximum

age of connections in the network must be set to a large value when this computation

is used to prevent components of the network from becoming disconnected as older

connections expire.

3.4.6 Simulation Environment

As with the experimentation in section 3.3, ROS Turtlesim is once again em-

ployed as a simulated proxy for a mobile robot to fully close the loop between a

gestured command from a human user and a final, learned robotic actuation. Fur-

ther, the dimensionality of the Turtlesim utility matches that of the envisioned ART

environment of an assistive robot in a hospital patient room or home setting (see

Figures 1.1 and 1.2). Hence, the scale and accuracy of the generated actions might

aid the reader in visualizing the effectiveness of this approach.

3.4.7 Reward Generation

Generation of a reward signal may be expensive in terms of effort by the

human participant. For this experiment, reward generation is automated in software

according to the predefined goal configurations shown in Table 3.4. Once again, these

configurations represent relative translations (x, y, θ) from the starting position of the
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robotic agent (0, 0, 0) and were chosen to be easily distinguishable.

Table 3.4: 3D goal configurations for a simulated mobile robot.

Gesture Type (x, y, θ)

Come closer (3.95, 3.95, 45o)

Go away (3.95, −3.95, 315o)

Stop (−3.95, −3.95, 225o)

3.4.8 Experimentation

Using the collected data samples described in section 3.2.1, Dynamic Instants

(DI) were computed for each gesture type. These are shown in Figure 3.10. Feature

vectors based on these DIs will be termed the real data set so as to distinguish them

from an artificial, idealized data set discussed below. It can be seen that the real

data are not well separated and may not be expected to yield GNG neighborhoods

which can be readily clustered by gesture type. The implications of the separability

are discussed in section 3.4.9.

For the purposes of comparison and other experimentation, a second ideal

data set was created based on a single exemplar gesture of each type. A collection of

750 samples was generated by the application of uniformly distributed noise within

a margin of 5% of each of the DIs in each exemplar. DIs for the ideal data set are

shown in Figure 3.11.
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Figure 3.10: Dynamic Instants for real data samples (a) come closer, (b) go away,
and (c) stop. Each color represents a specific DI (one of five) for the gesture type.
Five DIs constitute a feature vector representation of a gesture motion as shown in
Figure 3.3.
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Figure 3.11: Dynamic Instants for ideal data samples (a) come closer, (b) go away,
and (c) stop. Five DIs constitute a feature vector representation of a gesture motion
as shown in Figure 3.3. Note: apparent differences in data spread for ideal data are
due to scaling within the plots.
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3.4.8.1 Neighborhood Formation

Six neighborhood scenarios were defined in order to explore various possibil-

ities for exploiting the topology of the GNG cloud and to demonstrate the possible

benefits to a neighborhood learning strategy afforded by GNG. Each scenario reflects

a different manner for selecting neighborhood reference nodes whose actions vectors

are candidates for the agent’s next actions based on past rewards. Three additional

scenarios were defined to demonstrate the effectiveness of GNG over kNN. These nine

neighborhood formations are described in Table 3.5 below. In the table, the winner

refers the GNG reference node closest to the input feature vector by Euclidean dis-

tance.

3.4.8.2 Data Processing

For each data set, (real and ideal), the 750 samples were randomly divided

into two groups. One group consisted of 300 samples (100 of each gesture type) and

was applied one sample at a time in order to train the GNG network to the topology

of the input space with a low degree of error. A full application of all 300 samples

was termed an epoch. Action vectors were not updated during this training phase and

retained their initial values: (x, y, θ) = (0, 0, 0). Application of this first group was

not a necessary step, though it facilitated smoother convergence during the learning

of actions in the subsequent phase described next.

A second group of 450 samples (150 of each gesture type) was then applied in

epochs and the learning of actions was allowed to proceed. For each of the 450 samples

passed to the GNG algorithm, an action was selected and performed from among a

neighborhood of nodes, reward was automatically generated and the reference node

was updated accordingly. In this manner, 250 epochs were executed for each of the
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Table 3.5: Neighborhood formation scenarios

Scenario Name Description

Lone Only the winner is considered.

Mean
Adjacent nodes within a mean connected distance of the winner are
considered.

Large All adjacent nodes are considered.

Floyd
The node with minimum network distance and Q value greater than
the winner is considered.

Clumpiness
The node with the maximum clumpiness coefficient and Q value greater
than winner is considered.

Resistance
The node with the minimum resistance distance and Q value greater
than the winner is considered.

k = 1
The nearest feature vector (from a training set) to the input vector is
considered. This scenario is analogous to the Lone scenario above.

k = 3
The three nearest feature vectors (from a training set) to the input
vector are considered. This scenario is analogous to the Mean scenario
above.

k = 5
The five nearest feature vectors (from a training set) to the input vector
are considered. This is analogous to the Large scenario above.

neighborhood formation scenarios described in Table 3.5. For each applied gesture

sample, the per sample error was calculated between the updated goal configuration

and the known goal for that sample’s gesture type. Following each epoch, the average

error per gesture type was computed. This process was repeated for each of the nine

neighborhood formation scenarios.

3.4.9 Results and Discussion

This section presents results in which the system was asked to learn desired

outcomes for each of three candidate gestures: come, go and stop. Convergence
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plots for each 250-epoch learning session are shown for each of the nine neighborhood

formation scenarios (Table 3.5). Comparisons between results categories and their

implications are discussed.

3.4.9.1 Results with Real vs. Ideal Data Using GNG

Plots of Dynamic Instants in Figures 3.10 and 3.11 show that the performance

of gesture varies widely across the pool of participants. As in any pattern recognition

problem, such variation decreases the separability of data and with it, the ease of

classification. Hence, the need to generalize outcomes in the presence of such variation

becomes vital to the construction of a robust recognition system. Figures 3.13 and

3.12 show average error plots using real and ideal data respectively for neighborhood

scenarios Lone, Mean, and Large.

As may be expected, results for the ideal data set are shown to be more

favorable in general, converging more quickly in all cases. Further, it is noted that

increasing neighborhood size improves the speed of convergence when data are more

separable, confirming the usefulness of neighborhood learning in a GNG context.

This is indicative of well-defined clusters in the ideal data set and implies that the

uniformity of performance of the actors will the strongly influence learning rate of

the system.

However, given that the target user community may consist of unskilled or

impaired users, such variation in performance is inherent. Given this quality of the

real data set, larger neighborhoods scenarios are seen to cause slower convergence as

neighborhood size increases (Figure 3.13). Note that this is the inverse relationship

than was observed with ideal data. The boundary between gesture classes is not

smoothly defined and the class regions overlap. Nevertheless, GNG performs robustly,

converging in approximately similar timescales to as it did with unrealistic ideal data.
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The capability of the GNG cloud to construct a topology which minimizes global error

in the presence of noisy input is central to this outcome. This fact becomes especially

apparent when comparing outcomes for GNG with those of kNN using real data in

section 3.4.9.2.

3.4.9.2 Results with GNG vs. kNN

This section compares outcomes obtained using GNG with those obtained us-

ing kNN for three neighborhood scenarios using real data: Lone, Mean and Large.

These neighborhood sizes are analogous to kNN neighborhoods of 1, 3, and 5 respec-

tively. Also, among simulation results for kNN are those for two separate implemen-

tations of the kNN paradigm (Types 1 and 2 as described in section 3.4.2). It can

be seen from the plots of Figure 3.14 that GNG outperforms kNN for all cases and

implementations.

For Type 1 kNN, 300 training gesture samples were selected at random. As

previously mentioned in section 3.4.2, this is not a practical scenario since randomly

selected input can have no particular correlation with a human user’s present actions.

It is included here strictly for reasons of performance comparison only. Smaller num-

bers of training samples (e.g. 100 to emulate the maximum node count in GNG)

were seen to converge very poorly or not at all. This is due to competition caused

by neighboring nodes representing gestures of different classes. This problem is mit-

igated in GNG as reference nodes move in order to reduce global input error. Since

this is not the case with kNN, global error remains high even as individual sample

actions sometimes attempt (in futility) to learn multiple action responses simultane-

ously. Again, even for larger numbers of training data points, the performance falls

far short of GNG. These results can be seen in Figures 3.14a-(c).

Type 2 kNN employs a history buffer of past inputs in order to influence
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Figure 3.12: Average error curves for GNG with ideal data for neighborhood scenarios:
(a) Lone, (b) Mean, and (c) Large.
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Figure 3.13: Average error curves for GNG with real data for neighborhood scenarios:
(a) Lone, (b) Mean, and (c) Large.
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future actions. This emulates the method used by Knox [63]. Neighbors are selected

from this buffer. The size of the buffer influences the learning rate of the system.

Larger buffers allow a finer-grained comparison for the purposes of neighbor selection.

However, excessively large buffer sizes were seen to slow processing time prohibitively.

A 100-element buffer was used in this experimentation to emulate the maximum node

count imposed on the GNG algorithm. Although the contents of the buffer as a whole

may steadily improve as new entries extend the positively rewarded actions of older

elements, any isolated case or new gesture type is ultimately lost. Thus, kNN may be

expected to learn single gestures well, but the prospect of augmenting its command

vocabulary is impractical unless only a small discrete input state space is defined and

which may be stored entirely. It can be seen in Figures 3.14d-(f) that the performance

of kNN degrades severely as neighborhood size increases.

For reference, and to provide visual contrast between GNG and kNN, the pre-

viously discussed results for GNG across comparable neighborhood scenarios (Lone,

Mean, and Large are shown in Figures 3.14g-(i).

3.4.9.3 Results with Floyd’s Algorithm

Typical results obtained using Floyd’s shortest distance algorithm yielded the

results shown in Figure 3.15. These results qualitatively resemble those obtained

using a neighborhood of Mean size. These results suggest that there is sufficient

motivation to use the graph topology of the GNG network to seek action vectors

from non-adjacent nodes. Also, as mentioned in section 3.4.4, Floyd’s algorithm

underpins the calculation of clumpiness discussed below.
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(c) k = 5
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(f) k = 5
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(h) Mean
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Figure 3.14: Average error curves for kNN with real data: (a)-(c) Type 1, 300 training
samples, (d)-(f) Type 2, 100-element history buffer, (g)-(i) results for GNG shown for
comparison to kNN.
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Figure 3.15: Average error curves for Floyd’s shortest distance algorithm.
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Figure 3.16: Average error curves for the clumpiness metric.

3.4.9.4 Results with Clumpiness

Typical results obtained using the clumpiness matrix yielded the results shown

in Figure 3.16. These results qualitatively resemble those obtained using a neighbor-

hood of Lone size. In general, the clumpiness metric yielded the best results for all

neighborhood strategies tested. This is interpreted as evidence of the assertion that

the clumpiness metric is successful in locating cluster centers in unlabeled data. Use

of clumpiness in this manner is novel in the fields of pattern recognition and machine

learning and particularly for the purpose of gesture learning as employed here.

83



0 50 100 150 200 250
0

1

2

3

4

5

6

7

8

Epoch

A
ve

ra
ge

 d
is

ta
nc

e 
to

 g
oa

l (
m

)

Gesture Response Error (resistance distance)

 

 
Come
Go
Stop

Student Version of MATLAB

Figure 3.17: Average error curves for resistance distance.

3.4.9.5 Results with Resistance Distance

Typical results obtained using resistance distance yielded the results shown in

Figure 3.17. These results qualitatively resemble those obtained using a neighborhood

of Large size. As implemented here, the resistance distance metric is not an effective

method for locating non-adjacent neighbors with positively rewarding action vectors.

An improved future implementation would include a means of assigning connection

reistances based on the success of neighbor-to-neighbor interactions. The requirement

for the GNG topology to remain connected is seen as both computationally and

functionally inefficient in that excessively old and essentially meaningless connections

must be maintained. A means of moving connections while allowing the network to

remain connected would be of benefit to this approach.

3.5 Summary

In this chapter, an innovative approach toward development of a gesture based

human-machine interface has been presented. It has been shown that the Growing

Neural Gas (GNG) algorithm is capable of differentiating between gesture descriptors
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far more effectively than a conventional kNN approach. The GNG network topology

coupled with Q-Learning supports neighborhood learning which effectively reduces

the number of observations (and may thus, reduce the size of the data set) required

for convergence. This finding is of key importance to the implementation of ART

given the cognitive loading and physical limitations of the target user population.

Various strategies have been investigated for determining reference nodes from

adjacent and non-adjacent neighbors. As a simple quantitative metric for the relative

success of these strategies, the total accumulated error (for all gesture types combined)

in each training session is shown in Table 3.6. These data were calcululated using

(3.9).

ESession =
∑
epochs

∑
gesture
types

Eavg (3.9)

Because the exploratory aspect of Q-Learning utilizes randomization to choose

possible future outcomes, the specific quantities shown may vary from run to run,

though the general relationships are expected to hold. The clumpiness metric is

shown to outperform all other methods. Use of clumpiness as a neighborhood search

metric is novel in this problem space. Both Floyd’s shortest path algorithm and the

resistance distance approach yielded promissing reults. However, future work would

be required to strategically weight connections in order to take advantage of these

metrics.

Again, the TurtleSim environment is used to fully close the loop between a

gestured command from a human user and a final learned robotic actuation. The

dimensionality of the TurtleSim utility closely matches that of the envisioned ART

environment. Hence, the scale and accuracy of the generated actions may help the

reader to better visualize the effectiveness of our approach. Typical learned action
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Table 3.6: Total accumulated error summary.

Scenario Name Total Accumulated Error

Lone 864.24

Mean 934.64

Large 1444.73

Floyd 1423.32

Clumpiness 797.03

Resistance 1253.63

k = 1 1467.39 (Type 1), 1717.93 (Type 2)

k = 3 1456.47 (Type 1), 1935.56 (Type 2)

k = 5 1844.12 (Type 1), 2524.86 (Type 2)

trajectories can be seen in Figure 3.18.

An eventual use model for the gesture-base interface described here is envi-

sioned in which the user performs a single gesture and provides repeated reward input

so as to allow a GNG reference node to train fully. Investigations in chapter 4 will

examine the possibility of using this approach to further reduce the number of ges-

ture motion samples that are required. Also, online learning of new gestures will

be explored. Certainly, for the envisioned system to effectively assist the user, the

vocabulary of known commands must be open to amendment as needed.

86



(a) (b)

(c)

Figure 3.18: Learned action trajectories in TurtleSim for gestures: (a) Come closer,
(b) Go away, and (c) Stop. Markers placed in upper right and bottom corners repre-
sent goal positions as shown. With a mature GNG-to-action mapping data structure,
learned trajectories and final angles of approach accurately attain goal configurations.
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Chapter 4

Gesture Vocabulary Augmentation

In order for the Assistive Robotic Table (ART) to be adaptive to the needs of

its user, it must be capable of acquiring and learning new gestures during operation

with the user acting as trainer, providing guidance as to their otherwise unknown

goals and preferences. In chapter 3, refinement of the Growing Neural Gas (GNG)

network’s response output is achieved by applying input gesture samples randomly

across the range of available gesture types and assigning rewards to the generated

responses for each one. Although this procedure is useful as a means of demonstrating

the efficacy of GNG to the gesture learning task, it is acknowledged that a human

user would not likely undertake to train ART in this manner. Requiring the user to

perform an assortment of gestures while also assigning reward to robotic responses at

each time step would represent an undue physical and cognitive burden.

In this chapter, an alternative use/training model for ART is proposed which

aims at reducing both the number of observations of a new gesture required to train

ART to desired responses and the effort borne by the user in doing so. Experimen-

tation is described which investigates the applicability of the GNG-based system to

the learning of new gestures and to the retention of past learning.
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4.1 Method

This section describes the gesture set used for experimentation and their re-

lationship to the ART device. Toward the goals of reducing user effort and size

requirements of the input data set, a new use model and training paradigm is de-

tailed. Also, a new method for node insertion which preserves network stability while

promoting the rapid learning of new gestures is proposed.

4.1.1 User-Centered Gestures

For the experimentation discussed in this chapter, six new gesture types are

considered. These are selected with the user’s intention in mind. While the gestures

used in chapter 3 are direct commands to a robot agent (come closer, go away, stop),

these new gestures are reflective of a more user-centered mindset and are broadly

indicative of activities in which the user wishes to engage or to have the robot support.

These include eat, read, rest, take (take an item away), give (bring an item closer)

and therapy. Envisioned goal configurations for these these gestures are understood to

exercise the three Degrees of Freedom (DOF) within ART shown in Figure 4.1. Their

numerical values are mappings to points (x, y, θ) within the Turtlesim environment

(see chapter 3) for simulation purposes. The qualitative labels and their respective

mappings are given in table 4.1. Figure 4.2 depicts each configuration in a clinical

setting.

4.1.2 A Use Model

In this section, a use model is proposed which aims at reducing the physical

burden to the user in terms of the number of training iterations required for the

system to fully develop the desired actuation. In this model, the user demonstrates a
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(a) (b)

(c)

Figure 4.1: The three DOFs of ART: (a) the vertical lifting column, (b) the horizontal
sliding table top and (c) the tilting work surface.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.2: 3D Configurations for ART in a clinical setting: (a) eat - the table surface
is lowered to a comfortable dining height (b) read - the work surface is inclined, (c)
rest - the table surface is raised (and moved aside), (d) take - the sliding surface is
extended and away from the user, (e) give - the sliding surface is extended toward the
user, (f) therapy - the table surface is at medium height to accommodate a therapy
session.
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Table 4.1: 3D goal configurations for ART.

Gesture
Type

Lift Slide Tilt Mapping in (x, y, θ)

Eat Low Center Down (−3.95, 3.95, 135o)

Read High Center Up (3.95, 0, 0o)

Rest High Center Down (0, 3.95, 90o)

Take High Away from user Down (−3.95, 0, 180o)

Give High Toward user Down (0, 3.95, 270o)

Therapy Middle Center Down (3.95, 1.98, 22.5o)

single sample of a new gesture to a system already trained to respond to some number

of other gestures. The user then provides a series of consecutive rewards until the

system is fully trained for that sample.

As in chapter 3, training (or, path shaping) consists of simple good/bad rewards

assigned to incremental movements of the robot agent in response to the gesture.

Movements toward a user-defined goal are assigned positive rewards. Movements

away from the goal are assigned negative rewards. Gestures which, through training,

elicit the full and complete action toward the user’s goal are deemed trained. Upon

completion of training for a given gesture, the Q-Learning policy for the state-action

pair (the associated GNG node and its action vector) is frozen. Thus, any subsequent

similar gestures whose feature vector fall into the receptive field for the same node

require no further training. Across a given data set, this approach is shown to require

a relatively small average number of training iterations.

4.1.3 Life-long Learning

Often, the operational life of a learning system is divided into the distinct

phases of learning versus recognition. This paradigm neglects the possibility that the
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system may need to acquire new recognition capabilities in the face of a changing

input distribution from its environment. Conventionally, systems forced to consider

new forms of input must reiterate the training phase. In so doing, they may suffer

degradation in their ability to preserve knowledge acquired in the past. Thus, by ex-

tending their recognition capability, the stability of the system is compromised. This

problem is termed the Stability-Plasticity Dilemma [45]. Toward the development of

a system which can acquire new gestures as the user requires, the need for life-long

learning is considered [48].

The plasticity of the GNG network lies in its ability to add and delete nodes

during normal operation. The feature vectors of new nodes represent input patterns

which differ from those seen in the past and the topology of the network is altered

accordingly. Indeed, this feature of GNG is one of the primary motivations for its

selection in this research. Fritzke [39] proposed the incremental augmentation of GNG

based on the periodic assessment of local error at each node. The node with the

largest accumulated local error is the node whose receptive field (or cell) is too large

to adequately represent the distribution of inputs within the region and most in need

of a new node to reduce the global error of the network. However, in this simple form,

incremental learning may be overcome by the addition of a large number of nodes

over time. This may result in both overfitting at overlapping cluster boundaries and

excessive computing time. Alternatively, a maximum node count may be set which

potentially limits network plasticity [48].

Fritzke [40] also proposed a utility-based approach (GNG-U) for the resource-

conserving deletion of nodes in order to allow GNG to track non-stationary input

distributions. However, in terms of life-long learning, this approach may remove

nodes which represent past learning thus leading to instability. Hamker [48] proposed

a method for stategic insertion of nodes using local error thresholds developed from
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quality measures based on both long-term and short-term local error. The method

was effective but focussed on supervised learning scenarios. Furao and Hasegawa [42]

extend this work to focus on the insertion of nodes in unsupervised tasks. Their

method attempts to assign unlabeled data to clusters autonomously before applying

an adaptive similarity threshold based on cluster size. Input to an existing node is

compared to the threshold to determine if it represents a new pattern class and is

thus a candidate site for node insertion. The method also performs assessment to

determine whether a particular insertion effectively reduced the network error in the

long-term. Nodes which do not reduce the error are deemed ineffective and removed.

This method, however, presupposes separable input distributions in order to place

nodes in distinct clusters.

4.1.4 Learning with a Human Trainer

The presence of a human trainer poses a key difference between the methods

in section 4.1.3 and that presented in this research. Here, input gesture samples are

unlabeled and may not be well separated. However, using the proposed use model, the

user-generated reward may be considered a binary in-cluster/out-of-cluster indicator.

In the case of fully trained nodes, an input pattern which receives negative rewards

when executing the action vector defined by that node must be of a different class.

The location indicated by the input feature vector is interpreted as a likely good

candidate site for node insertion. In the proposed approach, the local accumulated

error of the winner in this case (the node nearest the input feature vector) is artificially

inflated to the network maximum. At the same time, any nodes in the network whose

most recent reward is negative (cold nodes) are considered for deletion. The age field

for connections within the network may loosely be thought of as being indicative of a
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node’s nearness to a cluster center. A node with older-aged connections has previously

been matched with fewer incoming patterns in those regions where its connections

are oldest. When the network has reached a defined maximum number of nodes, the

node with the highest sum of connection ages is targeted for deletion by the artificial

aging of its connections to the maximum age limit. If the network is not at the

maximum node count, then a new node may be added without deletion elsewhere in

the network. In cases where all nodes in the network are either fully trained or are

receiving positive rewards, new nodes may be added above the predefined maximum.

This effectively relaxes the predefined maximum to afford plasticity when needed.

This scheme for node insertion/deletion is summarized in Algorithm 5.

Algorithm 5 Node insertion/deletion algorithm

1: Apply a gesture input sample.
2: Determine winner reference node.
3: Observe reward.
4: if winner is trained and reward is cold or warm then
5: Inflate local error: winner.E = max(refNodei.E) + 1.
6: if numNodes < maxNodeCnt then
7: A node will be inserted near winner.
8: else
9: Locate a cold node for deletion.
10: if A cold node exists then
11: Inflate connection ages at the targeted node: Ci.age = ageMax+ 1.
12: else
13: numNodes is allowed to increase beyond maxNodeCnt.
14: end if
15: A node will be inserted near winner.
16: end if
17: end if
18: GNG will perform node insertion and deletion in the next time step.
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4.2 Experimentation

This section describes the experimental data sets and the neighborhood sce-

narios in which they were tested. The experimental procedure sequence and key

outcome metrics are also given.

4.2.1 Data Collection

Using the Kinect data collection fixture shown in Figure 3.2, five fellow-

researcher participants each performed 50 repetitions for the six candidate gestures.

This yielded 250 samples of each gesture for a total of 1500 samples. For repeatabil-

ity, as in chapter 3, the gestures were performed according to their choreography in

American Sign Language [6]. In consideration of the importance of data separability

to the convergence of the GNG/Q-Learning algorithm, participants were encouraged

to perform gestures as consistently as possible. Dynamic instants (DIs) were com-

puted for each sample. Feature vectors were constructed from the DIs and presented

to the system as described in section 4.1.2.

4.2.2 Data Sets

The 1500 gesture samples for the six candidate gestures were divided into two

data sets. The training data set consisted of the gestures eat, read and rest. From

these, a set of 450 samples (150 samples of each type) were selected and randomized.

The second test data set consisted of the 750 samples of the gestures take, give and

therapy sequenced randomly.
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4.2.3 Procedure

The system was initially pre-trained using the training data set. The network

was constrained to include 100 nodes. This was done in the manner presented in

section 3.4.8 using the Lone neighborhood formation scheme (although, the choice of

neighborhood formation method is not material to this experiment). This step yields

A and C data structures. Once trained, these fully define a mature GNG network for

the eat, read and rest gestures contained in the training set.

With the system pretrained, a single epoch either the test or training data sets

(depending on which phase of the procedure was being conducted) was applied one

sample at a time according to the use model described in section 4.1.2. Upon each

presentation of a sample to the system, a simulation sequence was performed which

included execution of GNG, generation of robot action, and assignment of reward.

This sequence was repeated for the sample until one of three terminating conditions

was reached:

1. The reference node closest to the input gesture sample became fully trained.

2. The input gesture sample received a negative reward in the receptive field of a

fully trained node. In this case, the sample was immediately ignored and an

additional node was inserted near the trained node according to Algorithm 5.

3. The number of training iterations exceeds 1000 (the confusion threshold). This

indicates that the formed neighborhood is issuing conflicting action advice and

the input sample is near a cluster boundary. In this case also, the sample

was also ignored. However, the number of attempted learning iterations was

considered in calculation of outcome metrics.

In this way, a 3-epoch sequence was conducted as described below. Following each
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epoch, performance metrics were recorded. These included the total number of nodes

in the GNG network, the number of fully trained nodes, the percentage of samples

ignored, and the average number of training iterations per sample. These are chosen

for their relationship to level of effort required by the user in training the system.

The sequence was conducted for five of the six neighborhood formation meth-

ods described in Table 3.5. The resistance distance metric, however, was not consid-

ered in this experiment. Computation of this metric requires that the GNG network

remain connected. In instances where the insertion/deletion procedure of Algorithm

5 renders the network disconnected, the calculation would become unreliable. A

method for artificially reconnecting network fragments during the node deletion step

so as to preserve the usefulness of the resistance computation is left to future research.

4.2.3.1 Demonstration of Plasticity

With the system initially trained using the training data set, a single epoch

of the test data set was applied. Execution of this epoch is intended to demonstrate

the plasticity of the GNG network to learn the take, give and therapy gestures.

4.2.3.2 Demonstration of Stability of Past Learning

The training data set was reapplied in a single epoch. Execution of this epoch

is intended to demonstrate the stability of the system learning implementation. If

the implementation is indeed stable, the outcome would be expected to reflect an

already-trained network. That is, the performance metrics would be expected to

show iteration counts which remain tolerable to a human trainer.
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4.2.3.3 Demonstration of Stability of New Learning

A final epoch of the test data was also executed. This step effectively rein-

spects the network for the stability of the additional take, give and therapy gestures

introduced by the test data set in the first epoch. Results for this procedure are given

in section 4.3. The source code implementation which executes each phase of this

procedure is Appendix A.2.1.9.

4.3 Results and Discussion

Typical results for execution of the first epoch in which test data was applied

is given in Table 4.2. Given that the GNG network was initially trained to the eat,

read and rest gestures, application of the test data shows the plasticity of the network

in learning new gesture types under the proposed use model.

Two metrics in particular are seen as key to evaluation of the proposed use

model: (1) the percentage of samples ignored and (2) the average number of training

iterations. As previously stated, samples may be ignored by either falling into the

receptive field of a node that is already trained, or by simply taking too long to train

(exceeding the confusion threshold of 1000 iterations). The rationale to ignore such

problem samples is based on the assertion that non-action on the part of the robot is

preferred to persisting with training and ultimately performing an undesirable action.

Further, alteration of a previously trained action would negatively affect the stability

of the system. Of course, this assertion is predicated on the user making a fairly

accurate first attempt at performing the gesture. Thus, the priority for alteration of

the network is set in favor of stability over attempting to adapt to a rapidly changing

input distribution. Excluding the Floyd case, it can be seen from Table 4.2 that the

percentage of samples ignored is small, averaging 10.0%.
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The Clumpiness scenario ignores the fewest samples. This is interpreted as

being coupled to the improved separability of the data set as participants were guided

to perform gestures in a uniform manner. With well-defined clusters in the GNG

network, the proximity of any given gesture input to the cluster center for its class is

likely to have improved, while the distance between cluster centers will have increased.

Thus, the clumpiness computation would be more apt to form its neighborhood from

with its own class.

The average numbers of iterations is manageable in general, if still somewhat

burdensome to the user. Also, those gesture samples which are ignored for having

exceeded the confusion threshold will negatively impact this metric. The attempted

iterations are not deducted from the total iteration count over the epoch and thus

contribute to the average. Presently, no mechanism has been considered for detecting

these situations before simulation proceeds to the threshold. Such a method is likely

the subject of future work. After several gesture exemplar nodes of each class are

fully trained within the network, the overwhelming majority of subsequent samples

requires no training at all. Further, the average number of training iterations is seen

to decrease further in subsequent epochs. In summary, these results demonstrate that

the fully trained network which existed before the test data was first applied is capable

of learning new gestures in a human-tolerable number of time steps. A method for

detecting and abandoning training efforts which are not converging would contribute

significantly to lowering the average number of iterations in a typical training cycle.

Table 4.3 shows results from an epoch in which training data was reapplied

to the network having been newly trained with the test data gesture set. These

results reflect the stability of the GNG implementation. Results which show less than

tolerable average numbers of iterations or a large percentage of samples ignored are

indicative of a network which has lost previous learning. The table shows, however,
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Table 4.2: Results for application of new gesture types to a trained network.

Neighborhood
Formation

# Nodes
# Trained

Nodes

Samples
Ignored

(%)

Average
Iterations

Lone 100 89 10.3 9.74

Mean 100 85 9.1 7.32

Large 101 85 12.4 31.07

Floyd 118 96 21.9 78.77

Clumpiness 100 93 7.3 8.89

that both the average number of iterations and the percentage of samples ignored

from the training set are small for all neighborhood formation schemes. Also, the

increase in the number of trained nodes reflects the ability of GNG to continuously

adapt to changing input. Having learned many of the gestures in the test data set,

the topology of the network has been altered. Still, some samples for which learning

may have failed to converge during the initial training phase have now been learned.

Table 4.3: Results for re-application of training data following new gestures.

Neighborhood
Formation

# Nodes
# Trained

Nodes

Samples
Ignored

(%)

Average
Iterations

Lone 100 91 6.8 4.20

Mean 99 91 4.9 5.62

Large 105 96 6.0 19.67

Floyd 111 102 9.3 2.46

Clumpiness 100 98 5.6 2.89

The final epoch underscores the stability of the system to remain stable through

the reapplication of test data. Table 4.4 shows results from this scenario. Both the

average numbers of iterations and the number of samples ignored have decreased
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from the first application of this data set under all neighborhood formation schemes.

However, multiple executions of this experimental procedure do not show a clear

best strategy for selecting nodes under the applied learning paradigm and use model.

Although, the Clumpiness method is frequently seen to ignore the fewest samples.

Although not reported quantitatively here, subsequent epochs for either the training

data or the test data frequently resulted in convergence at zero iterations per sample:

the entire network had become fully trained.

The fact that the network may become, effectively, an associative memory with

perfect recall of all input samples is problematic. The node insertion/deletion scheme

of Algorithm 5 may insert nodes between clusters in regions where class decision

boundaries overlap. The method, in its present form, will ultimately be guilty of

overfitting the problem. It will have placed too fine-grained a generalization on the

input space, causing it to behave poorly in situations where gesture choreographies

closely resemble one another between classes. A more discriminating method for

node insertion would need to be considered in order to better temper the system

when handling poorly separated data.

Table 4.4: Results for re-application of new gestures.

Neighborhood
Formation

# Nodes
# Trained

Nodes

Samples
Ignored

(%)

Average
Iterations

Lone 100 92 0.7 0.73

Mean 100 93 3.1 0.79

Large 105 99 1.9 1.36

Floyd 108 102 2.7 2.90

Clumpiness 101 100 1.2 0.97
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4.4 Summary

In this chapter a use model has been proposed which considers the effort

required by a human user to train ART to a desired behavior. The model aims at

reducing the number of training iterations which must be performed by the user in

order for ART to robustly learn a collection of gestured commands. As such, the

effectiveness of learning is judged over single epochs which expose the system to

single observations of each gesture samples. The primary metrics used to evaluate

the learning process under the proposed model are the average number of reward

iterations per sample and the number of samples ignored as unrecognizable by the

existing GNG network topology.

For learning to proceed, the network topology must remain mutable in the

presence of new input patterns. At the same time, however, experience gained from

past learning must not be discarded. Hence, the Stability-Plasticity Dilemma is also

addressed as part of this effort. An algorithm for altering the GNG network topology

(by node insertion/deletion) in service of these learning and retention requirements is

proposed. The algorithm exploits the fact that reward from the human trainer may

be interpreted as indicator to the presence of a new gesture class.

Both the proposed use model and the node insertion/deletion algorithm are

exercised in a simulated learning sequence which attempts to evaluate their respective

efficacy. A collection of user-centered gesture types is employed to test the use model

across multiple neighborhood formation schemes of the GNG network. The system

is shown to learn well and to afford a tolerably small number of training/reward

iterations per sample. Further, the percentage of samples ignored is small - reflecting

an effective recognition rate by the network. With the exception of the Floyd method,

all neighborhood formation strategies are shown to be feasibly applied to the learning
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problem. The Clumpiness method exhibits a superior initial learning capability. This

is attributed to the insertion of nodes for the newest gesture classes forming small

clusters which are removed from existing clusters. Hence the relative clumpiness of

the included nodes is greatest with respect to themselves. As these clusters expand,

their nearness to other clusters may diminish the effectiveness of the metric. In these

cases, best results will be seen for the Mean and Lone strategies.
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Chapter 5

Conclusions and Future Work

In this thesis, the broad goal of creating assistive environmental components

for individuals seeking to maintain independence as they age has been advanced.

In pursuit of this goal, contributions in the area of Human-Robot Interaction have

been made which seek to surmount common weaknesses in many existing interface

design forms. Targeting its implementation as the command interface to the Assistive

Robotic Table (ART), a novel method for learning arm-scale gesture with simple

supervisory feedback from the user has been proposed.

The problem space which exists between the detection of physical gesture mo-

tions as input and the actuation of robotics which meet a specific user preference is

quite large and is composed of several major areas of continued inquiry. This work

has dissected the problem space into its constituent subproblems and presents a thor-

ough consideration of each one: sensing, data representation, pattern recognition,

and machine learning. The rationale behind the selections made in these areas for

the proposed interface have been discussed and compared with other prevailing tech-

niques. In the aggregate, this set of candidate solutions and the innovations by which

the current states of the art have been extended herein present significant contribu-
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tions to the development of assistive devices capable of learning from human teachers.

This chapter discusses the implications and strengths of the approach and identifies

opportunities for future work which would bring the interface design to fruition and

further advance specific areas of underlying research.

5.1 Conclusions

In chapter 2, the issue of sensing gross motion patterns while preserving user

privacy is addressed. Common camera-based or wearable sensing strategies present

drawbacks in the areas of privacy and usability which preclude wide adoption by

the target user population. It was shown that sparse signals available from simple

privacy-preserving proximity or IR sensors are capable of providing a useful motion

descriptor in the form of a Histogram of Gradients (HOG) computed over the Self-

Similarity Matrix of the motion data stream. Visible commonalities of descriptor

plots taken from multiple vantage points were shown to support Junejo’s assertion

[56] that prominent features of motion are view-invariant. This finding is further

exploited in the experimentation of chapter 3. The findings of chapter 2 also reveal

that recognition of activity approaches a practical level of accuracy when inputs from

multiple vantage points are fused over a local region. This realization initiated the

incorporation of the Kinect depth sensing camera into this research. The depth

point cloud produced by the Kinect proved sufficiently rich to afford high recognition

accuracy while adding a third image dimension without extra processing.

Using the joint tracking capability of the OpenNI package and the PrimeSense

viewer in the experimentation of chapter 3, the task of capturing a sufficiently rich

feature set from an anonymity-preserving sensor was readily achieved. With the

available data, the concept of Dynamic Instants (DI) [84] of motion (extrema of
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acceleration) were applied using 3D data for what is believed to be the first time. This

technique is intuitively appealing since, as past research suggests [55], such extrema

are the features by which human beings visually discern the activities of one another.

The DI-based representation would be expected to allow arbitrary placement of the

Kinect sensor. Results showed that the use of DI-based feature vectors as formulated

cluster well for well-separated data. For poorly-separated data, the performance of

the proposed system remains robust.

Also within chapter 3, the realms of pattern recognition and machine learning

are unified to the direct (progressive) mapping of input (gesture) space to output

(action) space. Typically, these are treated as separate problems. In the method-

ology used, however, unchoreographed gesture can have no label on which to base

its classification. Rather, a positive or negative reward indication from the user as

they observe the robotic response to gesture constitutes the only metric by which the

mapping accuracy may be judged. Thus, accuracy (and speed) of mapping is key to

the success of the system implementation. With this requirement in mind, the use of

Growing Neural Gas in a Q-Learning framework is introduced.

Use of the Growing Neural Gas (GNG) clustering technique allows an efficient

method for generalizing across the input space with a relatively small number of

samples. Rather than requiring an extensive training phase, the unsupervised nature

of GNG topologically maps the input space to discrete receptive fields surrounding a

predefined number of reference nodes. Simultaneous application of simulated reward

from the user permits the refinement of output weights directly applicable to the

3-DOF actions of the ART device. Further, the ability of GNG to quantize input

space in a manner superior to the commonly used kNN algorithm is demonstrated.

The use of a Q-Learning framework places the selection of action in the context of

a state-action value function, Q(s, a). Selection of state-action pairs by exploiting
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the GNG network topology is shown to be effective as a means of foreshortening the

learning process as described below.

Given that the paths taken by the envisioned robotic agent are shaped through

human guidance, the number of learning iterations (gesture/reward cycles) must be

sufficiently small as to be tolerated by the human trainer. Hence, opportunities to

accelerate learning using the GNG network topology are exploited. Neighborhoods

of nodes are formed in the region of a winner reference node. Action vectors of nodes

within the neighborhood are considered so as to maximize future rewards. Nodes

whose action vectors have the richest history of reward are considered. It is shown

that the choice of neighborhood formation strategy can have a significant effect on

the speed of learning convergence.

Various methods for composing node neighborhoods are investigated. These

include groupings of adjacent nodes at varying connection lengths from the winner

reference node. Other methods considered include the novel application of graph

distance metrics found using Floyd’s Shortest Path algorithm, the network clumpiness

metric, and resistance distance. This work is the first application of these metrics to

the task of machine learning for gesture recognition of which we are aware. It was

shown that the clumpiness metric outperforms other methods investigated for poorly-

separated data, although it is more computationally intensive. The age characteristic

of GNG connections was used to emulate length for each of these metrics on the

assertion that it is directly analogous to the frequency of node activation.

Although the resistance distance metric was seen as comparable to other tested

metrics, its computation requires the GNG network to remain connected. Since the

GNG network does not naturally remain connected for well-separated input distribu-

tions, maximum age limits on connections were disabled. Hence, rather than removing

connections between clusters, the metric simply treated them as being connected by
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a high-resistance connection. This measure introduced excess computation and po-

tentially compromised results. Further, the edge weights used to represent resistance

were assigned in a simplistic manner based on age. It is suspected that a more strate-

gic assignment of connection weights based on past rewards could allow the resistance

distance metric perform to strongly in this problem space.

In chapter 4 the problem of learning new gestures on line is examined. A use

model which envisions the training process that an actual user might find tolerable

in terms of physical demands and duration is presented. The ability of the GNG

network to learn new gestures while retaining past knowledge (the Stability-Plasticity

Dilemma) is addressed. A novel algorithm which exploits the availability of human-

generated reward to strategically insert and delete nodes in the GNG network is

proposed. The algorithm is shown to facilitate the learning of new gestures given a

previously trained network (plasticity). It was also shown to continually reduce its

rate of non-recognition on subsequent presentations of familiar gestures (stability).

Further, the number of trained nodes in the network is increased such that the gesture

set is recognized (as evidenced by positively rewarded action) with very low average

numbers of iterations on the part of the human trainer. Typically, the algorithm can

be seen to fully train so that it represents an associative memory of all gesture types to

which it has been trained. This outcome may be desirable for an individual user who

is content with a small, uniformly executed gesture command set. Indeed, it is seen as

likely to be effective for most applications. It is noted, however, that the learning of

erratically performed or larger numbers of gestures may be compromised by a network

topology that is overfitted to a particular command set. The proposed algorithm may

insert nodes where clusters overlap, thus creating a ragged decision boundary where

learning may be slow or unable to converge. Extended use of clustering-oriented

recognition techniques, especially where plasticity of learning is desired, will require
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future work toward strategic node insertion.

5.2 Future Work

Although the overarching goal of creating a command interface for an assistive

robot is rather clear cut as a concept, the depth of the problem as it was considered

in this thesis proved a great deal more formidable than initially perceived. When

the work described in this thesis was first undertaken, the sheer volume of challenges

which would be encountered was unforeseen. Thus, this thesis has attempted to

draw clear boundaries around the major facets of the problem which will allow for

continued innovation with a more compartmentalized view of the problem. This

section discusses several areas of inquiry which were inspired by the work of this

thesis and which are integral to the advancement of the ART vision.

• Baseline Capabilities. As mentioned in section 1.3.2, creation of a system in

which the user plays a role in forming an agent’s behavior would benefit from

a set of baseline capabilites on which new learning could be based. The system

proposed here makes no assumption of existing knowledge prior to instruction.

However, in the process of learning the robotic responses as they have been

defined, various social aspects of trajectory assessment (speed of movement,

angle of approach, path selection and proximity with respect to the user, etc.)

and consideration of the user’s personal sensibilities would certainly be required

for any practical implementation of ART.

• Evaluation with Human Participants. The use model presented in chapter

4 represents a supposition of how the user might prefer to conduct a gesture-

based training session. This is also true of the larger gesture-based interface
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concept. Presently, details of how the user perceives and interprets the action

of a machine which reacts to gesture is unknown. Extensive interviews and

testing with human participants are called for to judge the efficacy of the ART

implementation. Of course, the approach described in this research may effec-

tively learn from a simulated user. However, if the human user is somehow

unwilling to use the device based on visceral reaction, illegibility of the im-

plementation, complexity, or undue physical burden, the interface may not be

considered successful. The human factors involved must be considered.

• Gesture Segmentation. Detection of gestures in continuous time (gesture

spotting) is seen as essential to a practical implementation of a gesture-base

command language. Various methods have been advanced [3, 41, 108], chiefly

focused on 2D motion video of gestures performed under highly controlled cir-

cumstances. Spotting of gestures in unconstrained free motion is largely an

unsolved problem requiring further research.

• Variable Autonomy. One aspect of the approach described in this thesis

which presents a notable drawback is the need for the user to assign reward to

small uniform increments of motion by the robot agent. Clearly, this process

would require extreme patience from the user to complete a training session.

Enabling the agent to make intermediate decisions on its own for extended

periods during training (variable autonomy, e.g. [60]) would reduce the required

vigilance of the user. Moreover, the agent’s motion trajectories could proceed

without interuption until it received a corrective action (negative reward) from

user. This possibility represents a direct extrapolation from the approach set

forth in this thesis.
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• Qualitative gestures. Gestures considered in this research have been essen-

tially absolute in nature, having been defined as a combination of translation

and rotation with respect to a global origin. For a gesture-based system to

acquire a feel that is comfortable to a human user, qualitative gestures must

be defined. Examples might include: more, less, stop, faster, slower, etc. It

has been shown that when humans are asked to teach robots, they are suscep-

tible to treating the agent as though it would benefit from encouragement or

motivation [95] such as might be inferred from application of these examples.

Mastery of such a class of gestures could thus be considered a type of reward

in a reinforcement learning context which supplements or replaces the binary

reward structure used here. Handling of such relative gestures would represent

an interesting departure from the proposed action mapping paradigm.

• Training of Response Sequences. In this thesis, user goals have been defined

as static final configurations of ART. However, such responses could, by the

extension of the learning paradigm discussed here, develop a library of response

primitives. Such primitives could be connected sequentially to perform higher

level tasks.

• Detection of User Performance Variation. A primary element of the

ART vision is the ability to assistively support individuals whose needs are

changing (and possibly degrading) over time. In terms of the gesture interface

implementation, this ability implies periodic analysis of the shapes of GNG

network clusters. Slow moving changes in the distribution of network nodes

may be indicative of declining health of the user. An ability to spot gradual

changes of this nature would help to elevate ART from assistant to companion

and potentially prevent catastrophic outcomes for the user.
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• Multimodal Interaction. Introducing and integrating other modes of inter-

action (voice, gaze, affect, etc.) with gesture is an obvious long term direction

for HRI. These, in their own right, represent distinct areas of research. However,

the framework presented in this thesis is expected to provide a mechanism for

their inclusion as additional sensed environmental events which can be clustered

according to their relative salience with the user.

• Dealing with Imperfect Rewards. Simulations in this thesis have assumed

the presence of a perfect human trainer. All rewards have been issued with a

distinct goal in mind and were always faithful to that goal. In simulation, the

determination of whether an agent’s action resulted in motion toward or away

from the goal is a simple matter. In practice, however, the human trainer will

most likely not be able to visualize the present state of ART’s configuration

as a Cartesian space. Even if one were capable of such a leap, simple human

error would eventually enter in. Higher degrees of freedom would certainly

exacerbate the problem. Research which brings statistical or fuzzy methods to

bear in predicting the veracity of rewards would likely increase the speed of

learning convergence in practice.

5.3 Summary

The key contributions of this research include both a broad formulation of a

gesture learning framework as well as necessary advances in specific problem areas.

This thesis has examined the essential functional areas of the ART interface concept in

depth. The definition of the problem space in the areas of sensing, data representation,

pattern recognition and machine learning has addressed the salient concerns and

limitations in each one. Robust candidate solutions in each area have been chosen
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which advance the goals of an intuitive interface based on gesture, and of the broader

ART vision. Innovations in the areas of accelerated learning through network topology

analysis and plasticity have facilitated an approach capable of learning from a human

trainer while minimizing physical and cognitive burden. It is foreseen that the research

presented in this thesis will constitute a foundation on which future work in assistive

robotics and the design of adaptive interfaces may be based.
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Appendix A

Source Code

A.1 C++ Code

This appendix includes a C++ implementation of the system described in
chapter 3. Readers wishing to execute this code must first install ROS [88]. The
Electric release of ROS was used for this research. This code does not implement the
node insertion/deletion algorithm, policy freezing for trained nodes or resistance dis-
tance (see the Matlab implementation in Appendix A.2 for these). Top level programs
include:

• gestureLrnList.cpp: This is the main program used in the experimentation
of chapter 3. It trains the GNG network based on gesture samples randomly
applied in epochs.

• gngTrain.cpp: This program is used to learn the topology of the input space
without training action vectors for each node.

• getSkelData.cpp: This program is used to collect data using the Kinect sensor.

• genDI.cpp: This program generates dynamic instants (DI) from ROS .bag files.

• turtleControl server.cpp: This program executes commands to Turtlesim.
It is not necessary to use this program unless Turtlesim is specifically de-
sired for visualization. The moveTurtle function must be uncommented in
gestureLrnList.cpp in order to use it.

• turtleControl client.cpp: This program is used to generate commands to
Turtlesim. It is not necessary to use this program unless Turtlesim is specifically
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desired for visualization. The moveTurtle function must be uncommented in
gestureLrnList.cpp in order to use it.

A.1.1 gestureLrnList.h

1 #include "kinect_includes.h"

2
3 // This file contains functions which support the top level

4 // calling routine for the gestureLrn(List) program.

5
6 // -----------------------------------------------------------------

7 // Function name: findNearHood

8 // Description: This function computes a near neibhorhood of

9 // reference nodes based on the goal vectors of the nodes. Nodes

10 // outside a given distance are removed from consideration since

11 // they might be part of a differenct cluster in the GNG cloud.

12 //

13 // 6/30/2012 - The distance threshold is 2 standard deviations.

14 // Consider adding a distance function later.

15 // -----------------------------------------------------------------

16 std::vector <refNode > findNearHood(std::vector <refNode > &N, refNode &NN)

17 {

18 std::vector <double > distances (0);

19 std::vector <refNode > nearHood (0);

20 int numNodes = N.size();

21 double dist = 0;

22 // double sigma = 0;

23 double mean_distance = 0;

24
25
26 // Estimate Q values

27 // Consider adjusting theta values on [0,2pi] here.

28 NN.Q = calc_Q(NN);

29
30 // Compute a vector of distances from the NN.

31 for (int i=0; i<numNodes; i++)

32 {

33
34 // Estimate Q values.

35 N[i].Q = calc_Q(N[i]);

36 dist = vecNorm2(NN.featureVec , N[i]. featureVec);

37 distances.push_back(dist);

38 }

39
40 mean_distance = calc_mean(distances);

41 // sigma = calc_stdDev(distances);

42
43
44 // Build the near neighborhood.

45 for(int i=0; i<numNodes; i++)

46 {

47 // if (distances[i] < mean_distance)

48 if (distances[i] <= mean_distance)

49 {

50 nearHood.push_back(N[i]);

51 }

52 }

53
54
55 // Everything below is for debug purposes.

56
57 /*

58 printf ("\n");

59 printf (" numNodes = %d, NN = %d, mean = %8.5f.\n",

60 numNodes , NN.nodeLabel , mean_distance);

61 for (int i=0; i<numNodes; i++)

62 {

63 printf ("Node %d, distance = %6.3f\n",

64 N[i].nodeLabel , distances[i]);

65 }

66 // printf ("\n");

67 printf (" Pushing to nearN: \n");

68 for (int i=0; i<numNodes; i++)

69 {

70 if (distances[i] <= mean_distance)

71 {

72 printf ("%d, ", N[i]. nodeLabel);

73 }

74 }

75 printf ("\n");

76 */
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77
78 return(nearHood);

79
80 }

81
82 // -------------------------------------------------------------------

83 // Function name: findClosestAngle

84 // Description: This function selects an action from the nearest

85 // neighbors of a node which has higher Q and smallest angle w.r.t.

86 // the current action angle. The node is returned.

87 // -------------------------------------------------------------------

88 refNode findClosestAngle(std::vector <refNode > &N, refNode &NN)

89 {

90 int numNodes = N.size();

91 double a_dot_b;

92 std::vector <double > angles (0);

93 double angle;

94 refNode bestN;

95 double mag_product;

96
97 // Calculate angles between NN and all elements of N.

98 NN.Q = calc_Q(NN);

99 for (int i=0; i<numNodes; i++)

100 {

101 a_dot_b = (NN.action.x * N[i]. action.x) +

102 (NN.action.y * N[i]. action.y) +

103 (NN.action.theta * N[i]. action.theta);

104
105 N[i].Q = calc_Q(N[i]);

106 mag_product = NN.Q * N[i].Q;

107 angle = (mag_product == 0) ? 0 : acos( a_dot_b / mag_product );

108
109 angles.push_back(angle);

110 // printf ("Angle between nodes %3d and %3d is %6.3f\n",

111 // NN.nodeLabel , N[i].nodeLabel , angle);

112 }

113
114 // Find min angle

115 double minAngle = 9999;

116 int minAngleLabel = 9999;

117 bool foundOne = false;

118 for (int i=0; i<numNodes; i++)

119 {

120 if ( (N[i]. reward ==1) && (N[i].Q > NN.Q) )

121 {

122 if (angles[i] < minAngle)

123 {

124 minAngle = angles[i];

125 minAngleLabel = i;

126 foundOne = true;

127 // printf ("FOUND ONE: node %d\n", N[i]. nodeLabel);

128 }

129 }

130 }

131
132 if (foundOne == false)

133 {

134 bestN = NN;

135 }

136 else

137 {

138 bestN = N[minAngleLabel ];

139 // printf (" Choosing %d\n", bestN.nodeLabel);

140 }

141
142 return(bestN);

143
144 }

145
146 // -------------------------------------------------------------------

147 // Function name: printN

148 // Description: This function prints the set of neighbors (N) of the

149 // nearest neighbor (NN) for debug purposes.

150 // -------------------------------------------------------------------

151 // Print out N and NN if needed.

152 void printN(std::vector <refNode > &N, refNode &NN)

153 {

154 int numNbrs = N.size();

155
156 // printf (" Printing the %d Neighbor(s) of NN (node %d):\n", numNbrs , NN.nodeLabel);

157 printf("Node %3d: x = %6.3f, y = %6.3f, t = %6.3f, rwd = %2d, lastx = %6.3f, lasty = %6.3f, lastt = %6.3f (NN)\

n",

158 NN.nodeLabel , NN.action.x, NN.action.y, NN.action.theta , NN.reward , NN.last.x, NN.last.y, NN.last.theta);

159
160 for (int i=0; i<numNbrs; i++)

161 {

162 printf("Node %3d: x = %6.3f, y = %6.3f, t = %6.3f, rwd = %2d, lastx = %6.3f, lasty = %6.3f, lastt = %6.3f\n",
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163 N[i].nodeLabel , N[i]. action.x, N[i]. action.y, N[i]. action.theta , N[i].reward , N[i].last.x, N[i].last.y, N[i

].last.theta);

164 }

165
166 } // printN

167
168
169
170 // -------------------------------------------------------------------

171 // Function name: genNeighborhoodResponse_xyt

172 // Description: This function uses the set of neighbors (N) of the

173 // nearest neighbor (NN) to produce a response vector. The generated

174 // response assumes a feedback vector with only a single dimension in

175 // {-1, 0, 1}. The neighbor is selected based on a feedback value of 1

176 // and the longest length (Q value) of any such neighbor.

177 // -------------------------------------------------------------------

178 void genNeighborhoodAction_xyt(refNode &NN , std::vector <refNode > &N,

179 std::vector <refNode > &A, std::vector <connection > &C,

180 const double error_tol , int hoodRadius)

181 {

182
183 std::vector <refNode > nearN (0); // the nearer neighborhood of NN.

184
185 // Increase movement in direction of neighborhood response.

186 double step_size = 0.1;

187
188 // Reward values:

189 int hot = 0; // on target (terminal state)

190 int warm = 1; // closer than before.

191 int cold = -1; // farther than before.

192 double angle_delta = M_PI /18; // 10 degrees

193 double huge_distance = 9999999; // inf

194
195 // double r = 0, p = 0; t = 0; // Sherical coordinates (r,phi ,theta)

196 double x=0, y=0, theta =0; // Cartesian coordinates (x, y, z)

197
198 // Print out NN and N for a sanity check.

199 // printN(N, NN);

200
201 // Choose neighborhood radius:

202 N.push_back(NN);

203 if (hoodRadius == 7)

204 {

205 // kNN - not populated yet.

206 printf("kNN is not a valid hood radius\n");

207 }

208 else if (hoodRadius == 6)

209 {

210 printf("Resistance distance is not populated in C++.\n");

211 /*

212 // Resistance distance - may not work in C++

213 // Use the MATLAB implementation for now.

214 std::vector <std::vector <double > > Omega (0);

215 printf (" hoodRadius6 1\n");

216
217 // Compute the resDist matrix.

218 Omega = resDist(C);

219 printf (" hoodRadius6 2\n");

220
221 int thisNode = NN.nodeLabel;

222 int maxNodeLabel = getMaxNodeLabelC(C);

223
224 // Find the lowest resistance.

225 double minVal = 99999999;

226 int minLabel = -1;

227 for(int i=0; i<= maxNodeLabel; i++){

228 if (Omega[thisNode ][i] < minVal){

229 minVal = Omega[thisNode ][i];

230 minLabel = i;

231 }

232 }

233
234 // Assign nearN to be the node with lowest resistance.

235 for (int z=0; z<= maxNodeLabel; z++){

236 if (A[z]. nodeLabel == minLabel){

237 nearN.push_back(A[z]);

238 }

239 }

240
241 // Add NN to the neighborhood if it is not already there.

242 int nearN_size = nearN.size();

243 if (nearN_size == 0) {

244 nearN.push_back(NN);

245 }

246 else if (NN.nodeLabel != nearN [0]. nodeLabel) {

247 nearN.push_back(NN);

248 }
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249 */

250
251 }

252 else if (hoodRadius == 5) // Clumpiness

253 {

254 std::vector <std::vector <double > > ClumpMat (0);

255 ClumpMat = clumpiness(A,C);

256
257 int thisNode = NN.nodeLabel;

258 int numNodes = A.size();

259
260 // Find the node with max clumpiness for NN.

261 double maxVal = -99.9;

262 int maxNodeLabel = -99;

263 int thisLabel = -99;

264 for(int i=0; i<numNodes; i++) {

265 thisLabel = A[i]. nodeLabel;

266 if (ClumpMat[thisNode ][ thisLabel] > maxVal) {

267 maxVal = ClumpMat[thisNode ][ thisLabel ];

268 maxNodeLabel = thisLabel;

269 }

270 }

271
272 // Add the node with max clumpiness to nearN

273 for(int i=0; i<numNodes; i++) {

274 if (A[i]. nodeLabel == maxNodeLabel) {

275 nearN.push_back(A[i]);

276 }

277 }

278
279 // Add NN to the neighborhood if it’s not already there.

280 int nearN_size = nearN.size();

281 if (nearN_size == 0) {

282 nearN.push_back(NN);

283 }

284 else if (NN.nodeLabel != nearN [0]. nodeLabel) {

285 nearN.push_back(NN);

286 }

287
288
289 } // end Clumpiness

290 else if (hoodRadius == 4) // Floyd

291 {

292 int thisNode = NN.nodeLabel;

293 std::vector <std::vector <double > >DistMat;

294 DistMat = floyd(A,C);

295
296 // Search all nodes with reward = 1.

297 // Choose the nearest one that is longer than

298 // the current Q.

299
300 int Arows = A.size();

301 int D_index = -1;

302 for (int z=0; z<Arows; z++) {

303 // Rule out nodes with reward = -1 by making their

304 // distance in D equal to infinity.

305 if (A[z]. reward == -1) {

306 D_index = A[z]. nodeLabel;

307
308 DistMat[D_index ][ thisNode] = huge_distance;

309 DistMat[thisNode ][ D_index] = huge_distance;

310 }

311 }

312
313 // Rule out nodes with shorter Q value than NN.

314 for (int z=0; z<Arows; z++) {

315 // Recalculate Q

316 A[z].Q = calc_Q(A[z]);

317
318 if (A[z].Q <= NN.Q) {

319 D_index = A[z]. nodeLabel;

320 DistMat[D_index ][ thisNode] = huge_distance;

321 DistMat[thisNode ][ D_index] = huge_distance;

322 }

323 }

324
325 // Find the nearest remaining node.

326 double minDist = huge_distance +1;

327 int D_size = DistMat.size();

328 int minNodeLabel = -1;

329 for (int z=0; z<D_size; z++) {

330 if (DistMat[thisNode ][z] < minDist) {

331 minDist = DistMat[thisNode ][z];

332 minNodeLabel = z;

333 }

334 }

335
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336 // Assign the minNode to nearN.

337 for (int i=0; i<Arows; i++) {

338 if (A[i]. nodeLabel == minNodeLabel) {

339 nearN.push_back(A[i]);

340 }

341 }

342
343 // Add NN to nearN if not already there.

344 int nearN_size = nearN.size();

345 if (nearN_size == 0) {

346 nearN.push_back(NN);

347 } else if (nearN [1]. nodeLabel != NN.nodeLabel) {

348 nearN.push_back(NN);

349 }

350
351 }

352 else if (hoodRadius == 3)

353 { // Use all neighbors

354 nearN = N;

355 }

356 else if (hoodRadius == 2)

357 { // Use neighbors within a radius.

358 nearN = findNearHood(N,NN);

359 }

360 else if (hoodRadius == 1)

361 { // Only use the node itself.

362 // printf ("Got Here.\n");

363 nearN.push_back(NN);

364 }

365 else

366 {

367 printf("Bad Scenario .\n");

368 }

369
370 int numNeighbors = nearN.size();

371
372 if (NN.reward == hot)

373 {

374 // printf ("HOT=%3d ", NN.nodeLabel);

375 // Do nothing.

376 }

377 else

378 {

379
380 // Find the near -neighborhood member with

381 // max Q and reward = 1 (if it exists).

382 int maxQ = -99;

383 int maxQnode = -99;

384 pt3sph spt;

385 pt3 cpt;

386 int this_reward = -99;

387 config2D action;

388 double thisQ = 0;

389
390 for (int i=0; i<numNeighbors; i++)

391 {

392 if (nearN[i]. reward == cold){

393 action = nearN[i].last;

394 } else {

395 action = nearN[i]. action;

396 }

397
398 thisQ = sqrt( pow(action.x,2)+pow(action.y,2)+pow(action.theta ,2) );

399
400 if (thisQ > maxQ) {

401 maxQ = thisQ;

402 x = action.x;

403 y = action.y;

404 theta = action.theta;

405 this_reward = nearN[i]. reward;

406 maxQnode = i;

407 }

408 }

409
410 // Convert to spherical coordinates to make adjustments.

411 spt = cart2sph(x,y,theta);

412
413 // Lengthen the action vector if needed.

414 // if (( this_reward == warm) || (spt.r == 0)) {

415 if (this_reward == warm) {

416 spt.r = spt.r + step_size;

417 }

418
419 if (this_reward == cold) {

420 if (spt.r == 0) {

421 spt.p = spt.p + rand_in_range(-M_PI ,M_PI);

422 spt.t = spt.t + rand_in_range(-M_PI ,M_PI);
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423 spt.r = spt.r + step_size;

424 }

425 else

426 {

427 // To get off of the origin at t=1, give priority to angles below.

428 spt.p = spt.p + rand_in_range(-angle_delta/spt.r, angle_delta/spt.r);

429 spt.t = spt.t + rand_in_range(-angle_delta/spt.r, angle_delta/spt.r);

430 }

431 }

432
433 // Convert back to cartesian coordinates.

434 cpt = sph2cart(spt.r,spt.p,spt.t);

435
436 switch(this_reward)

437 {

438 case 0: // hot

439 NN.last = nearN[maxQnode ]. action;

440 NN.action = nearN[maxQnode ]. action;

441 NN.ancestor = nearN[maxQnode ]. nodeLabel;

442 // NN.reward = hot;

443 break;

444
445 case 1: // warm

446 // Set last to be the current action.

447 NN.last = nearN[maxQnode ]. action;

448 NN.action.x = cpt.x;

449 NN.action.y = cpt.y;

450 NN.action.theta = cpt.z;

451 NN.ancestor = nearN[maxQnode ]. nodeLabel;

452 break;

453
454 case -1: // cold

455 // No change to .last

456 NN.action.x = cpt.x;

457 NN.action.y = cpt.y;

458 NN.action.theta = cpt.z;

459 NN.ancestor = nearN[maxQnode ]. nodeLabel;

460 break;

461
462 default:

463 printf("Bad reward designation: reward = %d\n",this_reward);

464 break;

465 } // switch

466
467 }

468
469 // This sets up NN.Q for the next iteration.

470 NN.Q = calc_Q(NN);

471
472 } // genNeighborhoodAction_xyt

473
474
475 // -------------------------------------------------------------------

476 // Function name: getResponseFeedback_warmerColder

477 // Description: This function gets the user feedback on the robot’s

478 // response. If autogen is enabled , the response will be autmatically

479 // generated. Otherwise , the function will prompt the user for an

480 // integer response in {-1, 0, 1, 2}

481 // -------------------------------------------------------------------

482 void getResponseFeedback_warmerColder(std::vector <refNode > &A, refNode &NN,

483 int &autoGen , int &gestureType , double err_tol , int epoch)

484 {

485
486 int fb = -1;

487
488 // Indices into known actions data structure.

489 // static int origin = 0;

490 // static int come = 1;

491 // static int go = 2;

492 // static int stop = 3;

493
494 // Get response associated with the NN (it’s current action).

495 double x = NN.action.x;

496 double y = NN.action.y;

497 double t = NN.action.theta;

498 // double v = NN.action.vel;

499 // int rwd = NN.reward;

500
501 double last_x = NN.last.x;

502 double last_y = NN.last.y;

503 double last_t = NN.last.theta;

504
505 double goal_x , goal_y , goal_t;

506 double dis2goal_x , dis2goal_y , dis2goal_t;

507 double last2goal_x , last2goal_y , last2goal_t;

508
509
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510 // Initialize known goals if autoGen is selected.

511 knownGoals2 autoGoals;

512 autoGoals.init();

513
514 if (autoGen == 1)

515 {

516 goal_x = autoGoals.goalVec[gestureType ].x;

517 goal_y = autoGoals.goalVec[gestureType ].y;

518 goal_t = autoGoals.goalVec[gestureType ]. theta;

519
520 // goal_v = autoGoals.goalVec[gestureType ].vel;

521
522 // Compute the distance to goal from the most recent move.

523 dis2goal_x = goal_x - x;

524 dis2goal_y = goal_y - y;

525 dis2goal_t = goal_t - t;

526
527 last2goal_x = goal_x - last_x;

528 last2goal_y = goal_y - last_y;

529 last2goal_t = goal_t - last_t;

530
531 // Compute magnitudes of distance to goal and last distance to goal.

532 // If the distance to goal has decreased , then we’re getting warmer.

533 double mag_dis2goal = sqrt( pow(dis2goal_x ,2) +

534 pow(dis2goal_y ,2) + pow(dis2goal_t ,2) );

535 double mag_last2goal = sqrt( pow(last2goal_x ,2) +

536 pow(last2goal_y ,2) + pow(last2goal_t ,2) );

537
538
539 if (mag_dis2goal < err_tol) {fb = 0;} // on target

540 else if (mag_dis2goal < mag_last2goal) {fb = 1;} // warmer

541 else if (mag_dis2goal >= mag_last2goal) {fb = -1;} // colder

542 else {

543 fb = -99;

544 printf("---------- FEEDBACK ERROR ---------- \n");

545 printf("goal = [%6.2f, %6.2f, %6.2f]\n", goal_x , goal_y , goal_t);

546 printf("act = [%6.2f, %6.2f, %6.2f]\n", x, y, t);

547 printf("last = [%6.2f, %6.2f, %6.2f]\n", last_x , last_y , last_t);

548 printf("------------------------------------ \n");

549 } // error

550
551 // Compute average error per node (E), and report along with numNodes.

552 double avg_E;

553 avg_E = calc_avgE(A);

554
555 // Results reporting

556 printf("%d %d %.3f\n", gestureType , epoch , mag_dis2goal);

557
558
559 /*

560 printf ("Obs#= %5d, NN= %3d, GstType= %d, r= %2d, ERR= %6.2f (Avg = %6.2f), Q = %6.2f, l2gXYT = %6.2f, fb=%2d, ",

561 NN.numObservations , NN.nodeLabel , gestureType , rwd , mag_dis2goal , avg_E , NN.Q, mag_last2goal , fb

562 );

563 */

564
565
566
567 }

568 else // augoGen =0 -> collect user reward

569 {

570 printf("Enter the X response quality: \n");

571 printf(" -1 = colder \n");

572 printf(" 0 = no change \n");

573 printf(" 1 = warmer \n");

574 printf(" 2 = on target \n");

575 printf("> ");

576 fb = getchar (); // << Fix this; may not read two chars in "-1".

577
578 printf("Response: reward = %d \n", fb);

579 }

580
581 NN.reward = fb;

582
583 // Put the updated refNode back into the A matrix.

584 int numNodes = A.size();

585 for (int i=0; i<numNodes; i++)

586 {

587 if (A[i]. nodeLabel == NN.nodeLabel)

588 {

589 A[i] = NN;

590 }

591 }

592
593
594 } // getResponseFeedback_warmerCooler

595
596 // -------------------------------------------------------------------
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597 // Function name: genRep_HOGs

598 // Description: This function reads a ROS bag file of skeleton

599 // messages and generates a gesture representation using Histograms

600 // of Gradients (HOGs) in 3D. Bins are octants where each octant

601 // has an address consisting of 3 bits (000 through 111). Each

602 // Bit represents either an increas (0) or decrease (1) in x, y, and z

603 // respectively.

604 // -------------------------------------------------------------------

605 std::vector <double > genRep_HOGs(const char* baseFileName)

606 {

607
608 static char bagFileName [40]; // ROS bag file previously collected

609 sprintf(bagFileName , "%s.bag", baseFileName);

610
611 // Initialize HOG to eight empty octants.

612 std::vector <double > HOG(8,0);

613
614 // Initilize position vector (x,y,z) for the Left Hand motion.

615 std::vector <pt3 > posVec_LH (0);

616 pt3 posPt;

617
618 // Read in bag file data.

619 rosbag ::Bag read_bag;

620 read_bag.open(bagFileName , rosbag :: bagmode ::Read);

621
622 rosbag ::View view(read_bag , rosbag :: TopicQuery("Skeletons"));

623 BOOST_FOREACH(rosbag :: MessageInstance const m, view) {

624 body_msgs :: Skeletons :: ConstPtr s = m.instantiate <body_msgs ::Skeletons >();

625 if (s != NULL) {

626 posPt.x = s->skeletons [0]. left_hand.position.x;

627 posPt.y = s->skeletons [0]. left_hand.position.y;

628 posPt.z = s->skeletons [0]. left_hand.position.z;

629 posVec_LH.push_back(posPt);

630 }

631 } // BOOST_FOREACH

632 read_bag.close();

633
634 // Smooth position vectors (Gaussian).

635 smooth3Dpoints(posVec_LH);

636
637 int message_margin = 5;

638 int message_size = posVec_LH.size();

639 for (int i=message_margin; i<( message_size - message_margin); i++)

640 {

641 int index = 0;

642
643 // Find the HOG entry to increment.

644 if (posVec_LH[i+3].x <= posVec_LH[i-3].x) {index += 1.0;}

645 if (posVec_LH[i+3].y <= posVec_LH[i-3].y) {index += 2.0;}

646 if (posVec_LH[i+3].z <= posVec_LH[i-3].z) {index += 4.0;}

647
648 HOG[index] += 1;

649 }

650
651 return(HOG);

652
653 } // genRep_HOGs

654
655
656 // -------------------------------------------------------------------

657 // Function name: genRep_dynamicInstants

658 // Description: This function reads a ROS bag file of skeleton

659 // messages and generates a gesture representation using Rao’s

660 // concept of dynamic instants.

661 // -------------------------------------------------------------------

662 std::vector <double > genRep_dynamicInstants(const char* baseFileName)

663 {

664
665 static char bagFileName [40]; // ROS bag file previously collected

666 static char DI_fname [40]; // dynamic instants file

667 static char PVA_fname [40]; // pos/vel/acc data file

668 sprintf(bagFileName , "%s.bag", baseFileName);

669 sprintf(DI_fname , "%s_DI.txt", baseFileName);

670 sprintf(PVA_fname , "%s_PVA.txt", baseFileName);

671
672 printf("Generating Dynamic Instants (DI) representation from %s. \n",

673 bagFileName);

674
675 int msgCnt = 0;

676 int numDIs = 5;

677 pt3 posPt , velPt , accPt;

678
679 // Left Hand (LH) osition/velocity/acceleration readings

680 std::vector <pt3 > posVec_LH (0);

681 std::vector <pt3 > velVec_LH (0);

682 std::vector <pt3 > accVec_LH (0);

683 std::vector <pt3 > tempVec (0);
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684
685 // Dynamic Instants list

686 std::vector <dynamic_instant > DI_list (0);

687
688 // Vector form of DI list formatted for GNG algorithm.

689 std::vector <double > vec_in (0);

690
691 // Read in bag file data.

692 rosbag ::Bag read_bag;

693 read_bag.open(bagFileName , rosbag :: bagmode ::Read);

694
695 rosbag ::View view(read_bag , rosbag :: TopicQuery("Skeletons"));

696 BOOST_FOREACH(rosbag :: MessageInstance const m, view) {

697 body_msgs :: Skeletons :: ConstPtr s = m.instantiate <body_msgs ::Skeletons >();

698 if (s != NULL) {

699 posPt.x = s->skeletons [0]. left_hand.position.x;

700 posPt.y = s->skeletons [0]. left_hand.position.y;

701 posPt.z = s->skeletons [0]. left_hand.position.z;

702 posVec_LH.push_back(posPt);

703 }

704 } // BOOST_FOREACH

705 read_bag.close();

706 msgCnt = posVec_LH.size();

707
708 // Cut off ends of POS data.

709 posVec_LH.erase(posVec_LH.begin(), posVec_LH.begin()+10);

710 posVec_LH.erase(posVec_LH.end() -10, posVec_LH.end());

711
712 // Smooth position vectors (Gaussian).

713 smooth3Dpoints(posVec_LH);

714
715 // Scale the position vectors on [0,1]

716 scale01(posVec_LH);

717
718 // Calculate velocity vectors.

719 velVec_LH = deriv3D(posVec_LH , 7);

720
721 // Calculate acceleration vectors.

722 accVec_LH = deriv3D(velVec_LH , 7);

723
724 // Write out pos/vel/acc data (optional).

725 // write_PVA_data(PVA_fname , posVec_LH , velVec_LH , accVec_LH);

726
727 // Generate Dynamic Instants (DI) list.

728 vec_in = find_DIs(DI_fname , posVec_LH , velVec_LH , accVec_LH , numDIs);

729
730 return(vec_in);

731
732 } // genRep_dynamicInstants

733
734 // -------------------------------------------------------------------

735 // Function name: genRep_dynamicInstants

736 // Description: This function reads a ROS bag file of skeleton

737 // messages and generates a gesture representation using Rao’s

738 // concept of dynamic instants.

739 // -------------------------------------------------------------------

740 std::vector <pt3 > read_POS_data(const char* baseFileName)

741 {

742
743 static char bagFileName [40]; // ROS bag file previously collected

744 sprintf(bagFileName , "%s.bag", baseFileName);

745
746 // int msgCnt = 0;

747 pt3 posPt;

748
749 // Left Hand (LH) osition/velocity/acceleration readings

750 std::vector <pt3 > posVec_LH (0);

751 // std::vector <pt3 > velVec_LH (0);

752 // std::vector <pt3 > accVec_LH (0);

753
754 // Read in bag file data.

755 rosbag ::Bag read_bag;

756 read_bag.open(bagFileName , rosbag :: bagmode ::Read);

757
758 rosbag ::View view(read_bag , rosbag :: TopicQuery("Skeletons"));

759 BOOST_FOREACH(rosbag :: MessageInstance const m, view) {

760 body_msgs :: Skeletons :: ConstPtr s = m.instantiate <body_msgs ::Skeletons >();

761 if (s != NULL) {

762 posPt.x = s->skeletons [0]. left_hand.position.x;

763 posPt.y = s->skeletons [0]. left_hand.position.y;

764 posPt.z = s->skeletons [0]. left_hand.position.z;

765 posVec_LH.push_back(posPt);

766 }

767 } // BOOST_FOREACH

768 read_bag.close();

769 // printf ("Pos vector has %d elements\n", posVec_LH.size() );

770
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771 // Cut off ends of POS data.

772 posVec_LH.erase(posVec_LH.begin(), posVec_LH.begin()+10);

773 posVec_LH.erase(posVec_LH.end() -10, posVec_LH.end());

774
775 // Smooth position vectors (Gaussian).

776 smooth3Dpoints(posVec_LH);

777
778 // Scale the position vectors on [0,1]

779 scale01(posVec_LH);

780
781
782 return(posVec_LH);

783
784
785 } // read_POS_data

786
787 // -------------------------------------------------------------------

788 // Function name: moveTurtle

789 // Description: This function uses the goalConfig fields of a refNode

790 // to generate a robotic response (x, y, theta , velocity). This function

791 // assumes that the robot (TurtleSim) is always beginning its trajectory from

792 // (x,y,theta) = (5.5, 5.5, 0).

793 //

794 // Motion of the turtle is composed of:

795 // 1. an initial rotation toward (x,y) (" angle1 "),

796 // 2. foward motion to (x,y) (" distance "),

797 // 3. a final rotation to the desired angle of approach (" angle2 ").

798 //

799 // 01/03/2012: Current thinking is that a non -zero velocity represents

800 // constant speed. A zero velocity represents a stopped robot. This

801 // is to allow for the stop gesture.

802 // -------------------------------------------------------------------

803 void moveTurtle(refNode &NN)

804 {

805
806 // Create the action client. "true" causes the client to spin it’s own thread.

807 actionlib :: SimpleActionClient <turtleControl :: moveTurtleAction > ac("turtle_motion", true);

808
809 // ros::Rate poll_rate (20);

810
811 ROS_INFO("Waiting for action server to start.");

812 // wait for the action server to start

813 ac.waitForServer (); //will wait for infinite time

814
815 ROS_INFO("Action server started , sending goal.");

816 // send a goal to the action

817 turtleControl :: moveTurtleGoal goal;

818
819 goal.x = NN.action.x;

820 goal.y = NN.action.y;

821 goal.theta = NN.action.theta; // or 14* M_PI /8;

822
823 printf("Goal: x = %8.5f, y = %8.5f, theta = %8.5f. \n", goal.x, goal.y, goal.theta);

824
825 ac.sendGoal(goal);

826
827 //wait for the action to return

828 bool finished_before_timeout = ac.waitForResult(ros:: Duration (40.0));

829
830 if (finished_before_timeout)

831 {

832 actionlib :: SimpleClientGoalState state = ac.getState ();

833 ROS_INFO("Action finished: %s",state.toString ().c_str());

834 }

835 else

836 {

837 ROS_INFO("Action did not finish before the time out.");

838 }

839
840 } // moveTurtle

841
842 // -------------------------------------------------------------------

843 // Function name: getFileType

844 // Description: This function reads the last few characters of

845 // the baseFileName and decomposes it to see what type of gesture it

846 // contains.

847 // -------------------------------------------------------------------

848 int getBagType (char* baseFileName)

849 {

850 int gestureType = 99;

851 int come = 1;

852 int go = 2;

853 int stop = 3;

854 int eat = 4;

855 int read = 5;

856 int sleep = 6;

857 int get = 7;
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858 int give = 8;

859 int therapy = 9;

860 int nameLen = strlen(baseFileName);

861
862 // Cast baseFileName to string type.

863 std:: string fileString = std:: string(baseFileName);

864
865 std:: string last4 = fileString.substr(nameLen -4,nameLen -1);

866 std:: string last2 = fileString.substr(nameLen -2,nameLen -1);

867
868 if (last4 == "come")

869 {

870 gestureType = come;

871 }

872 else if (last4 == "stop")

873 {

874 gestureType = stop;

875 }

876 else if (last4 == "read")

877 {

878 gestureType = read;

879 }

880 else if (last4 == "leep")

881 {

882 gestureType = sleep;

883 }

884 else if (last4 == "give")

885 {

886 gestureType = give;

887 }

888 else if (last4 == "rapy")

889 {

890 gestureType = therapy;

891 }

892 else if (last2 == "go")

893 {

894 gestureType = go;

895 }

896 else if (last2 == "at")

897 {

898 gestureType = eat;

899 }

900 else if (last2 == "et")

901 {

902 gestureType = get;

903 }

904 else

905 {

906 std::cout << "Unrecognized gesture type: " << last4 << "\n";

907 // printf (" Unrecognized gesture type: %c\n",last4);

908 // Do nothing , gestureType = 99;

909 }

910
911 // std::cout << last4 << "\n";

912
913 return(gestureType);

914 }

A.1.2 gestureLrnList.cpp

1 #include "kinect_includes.h"

2 #include "points.h"

3 #include "utilities.h"

4 #include "gng.h"

5 // #include "matrixOps.h"

6 #include "graphs.h"

7 #include "assertions.h"

8 #include "gestureLrn.h"

9 #include "lists.h"

10
11 // #include "cmatrix"

12
13 using namespace sensor_msgs;

14 using namespace ros;

15 using namespace std;

16
17 char A_fname [40] = "A.txt";

18 char C_fname [40] = "C.txt";

19 char* baseFileName;

20 int autoGen = 1;

21 std::vector <refNode > A(0);

22 std::vector <refNode > N(0);

23 std::vector <connection > C(0);

24 knownGoals autoGoals;
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25 refNode NN;

26 int observationNum = 0;

27 int gestureClass = 99;

28 double err_tol = 0.2;

29 V_string args;

30
31 // Data representation parameters

32 std::vector <descriptor > descriptor_list (0);

33 // char descriptor_fname [40] = "DIs.txt";

34 int featureVecSize = 20;

35 // char descriptor_fname [40] = "HOGs.txt";

36 // int featureVecSize = 8;

37 std::vector <double > vec_in;

38
39 // Graph parametersm

40 // std::vector <std::vector <double > > DistMat (0);

41 // std::vector <std::vector <double > > ResDistMat (0);

42 // std::vector <std::vector <double > > AdjMat (0);

43 // std::vector <std::vector <double > > AdmMat (0); // Admittance (Kirchhoff)

44 // std::vector <std::vector <double > > LapMat (0); // Laplacian

45 // std::vector <double > k_vector (0);

46
47
48 // GNG parameters

49 int lambda = 100;

50 int maxNodeCnt = 100; // Change to 100 for randomized vectors

51
52 // Parameters for list of gestures:

53 int numEpochs;

54 int hoodRadius;

55
56
57 int main(int argc , char **argv)

58 {

59
60 srand(time (0));

61
62 /*

63 printf("+------------------------------------------+\n");

64 printf ("| Running: gestureLrnList |\n");

65 printf("+------------------------------------------+\n");

66 */

67
68 // Parse the command line for number of epochs to run.

69 if (argc != 4)

70 {

71 printf("Usage: gestureLrnList <DI_fileName > <numEpochs > <hoodRadius >\n");

72 return (0);

73 }

74 else

75 {

76
77 // Read in DIs from file.

78
79 char* descriptor_fname = argv [1];

80 descriptor_list = read_descriptor_list(descriptor_fname , featureVecSize);

81 int numSamples = descriptor_list.size();

82 // printf ("Read %d DIs from file %s.\n", numSamples , descriptor_fname);

83
84 numEpochs = atoi(argv [2]);

85 hoodRadius = atoi(argv [3]);

86 // printf (" Running %d epochs .\n", numEpochs);

87
88
89
90 for(int p=1; p<= numEpochs; p++)

91 {

92
93 for(int v=0; v<numSamples; v++)

94 {

95 vec_in = descriptor_list[v]. featureVec;

96 gestureClass = descriptor_list[v]. classNum;

97
98 // Apply the representation to the GNG algorithm.

99 NN = gng(A_fname , C_fname , A, C, vec_in , N, lambda , maxNodeCnt);

100 ASSN_duplicateConx(C);

101
102 // Generate a response based on neighbors (for Warmer/Cooler feedback scheme).

103 // Put the response into NN.goal.

104 genNeighborhoodAction_xyt(NN, N, A, C, err_tol , hoodRadius);

105
106 // Generate a response by turtleSim.

107 // moveTurtle(NN);

108
109 // Collect feedback on the generated response.

110 // Only use gestureClass if the response is autogenerated.

111 getResponseFeedback_warmerColder(A, NN , autoGen , gestureClass , err_tol , p);
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112
113 // int nodes = A.size();

114 // printf ("nodes = %3d \n",nodes);

115
116 }

117
118 // Write once per epoch.

119 // write_A(A_fname , A);

120 // write_C(C_fname , C);

121
122 } // for p = numEpochs

123
124 write_A(A_fname , A);

125 write_C(C_fname , C);

126
127 } // num args

128
129
130 return (1);

131
132 } // end main

A.1.3 gng.h

1 // This file contains classes/functions and prototypes for use with the

2 // Growing Neural Gas (GNG) algorithm.

3
4 // -------------------------------------------------------------------

5 // Class name: goalConfig

6 // Description: This class describes the robotic goal configuration in 2D

7 // associated with a gng reference node. Currently (12/27/2011) ,

8 // this is just the goal configuration (x,y,theta). Trajectory needs

9 // to be added in the future for sociability.

10 // -------------------------------------------------------------------

11 class config2D

12 {

13 public:

14 double x, y; // in meters

15 double theta; // in radians

16 double vel; // in cm/s

17
18 // Constructor

19 config2D(double x_in = 0.0, double y_in = 0.0,

20 double theta_in = 0.0, double vel_in = 0.0)

21 {

22 x = x_in;

23 y = y_in;

24 theta = theta_in;

25 vel = vel_in;

26 }

27
28 }; // goalConfig

29
30 // -------------------------------------------------------------------

31 // Class name: knownGoals2

32 // Description: This class stores the goals of known gestures when

33 // the gestureLrn algorithm is run in automatic mode. These are the

34 // goals for Come , Go, Stop , Eat , Read , Sleep , Get , Give and Therapy

35 // gestures. This class is similar to "knownGoals" except that

36 // config2D members are stored in a single vector.

37 // -------------------------------------------------------------------

38
39 class knownGoals2

40 {

41 public:

42 std::vector <config2D > goalVec;

43 config2D come;

44 config2D go;

45 config2D stop;

46 config2D eat;

47 config2D read;

48 config2D sleep;

49 config2D get;

50 config2D give;

51 config2D therapy;

52 config2D origin;

53 // config2D gest4;

54
55
56 // Constructor

57 knownGoals2 () {}

58
59 void init()

60 {
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61
62 // These values are RELATIVE to the turtleSim origin (5.55 , 5.55, 0)

63 come.x = 3.95; come.y = 3.95; come.theta =1* M_PI /4; come.vel =1.0; // 1

64 go.x = 3.95; go.y = -3.95; go.theta =7* M_PI /4; go.vel =1.0; // 2

65 stop.x = -3.95; stop.y = -3.95; stop.theta =5* M_PI /4; stop.vel =0.0; // 3

66
67 eat.x = -3.95; eat.y = 3.95; eat.theta =3* M_PI /4; eat.vel =1.0; // 4

68 read.x = 3.95; read.y = 0.0 ; read.theta =0* M_PI /4; read.vel =1.0; // 5

69 sleep.x = 0.0 ; sleep.y = 3.95; sleep.theta =2* M_PI /4; sleep.vel =1.0; // 6

70
71 get.x = -3.95; get.y = 0.0 ; get.theta =4* M_PI /4; get.vel =1.0; // 7

72 give.x = 0.0 ; give.y = -3.95; give.theta =6* M_PI /4; give.vel =1.0; // 8

73 therapy.x= 3.95; therapy.y= 1.98; therapy.theta =1* M_PI /8; therapy.vel =1.0; // 9

74
75
76 // Describe the turtle ’s origin for comparison to generated responses.

77 // origin.x = 5.55; origin.y = 5.55; origin.theta = 0.0; origin.vel = 0.0;

78 origin.x = 0.0; origin.y = 0.0; origin.theta = 0.0; origin.vel = 0.0;

79
80 // Store the 2D configurations in a vector where the entry subscript

81 // corresponds to the gestureType encoding.

82 goalVec.push_back(origin);

83 goalVec.push_back(come);

84 goalVec.push_back(go);

85 goalVec.push_back(stop);

86 goalVec.push_back(eat);

87 goalVec.push_back(read);

88 goalVec.push_back(sleep);

89 goalVec.push_back(get);

90 goalVec.push_back(give);

91 goalVec.push_back(therapy);

92 // Add more to the known goals as we consider them.

93 }

94
95
96 }; // autoGoals

97
98
99 // -------------------------------------------------------------------

100 // Class name: knownGoals

101 // Description: This class stores the goals of known gestures when

102 // the gestureLrn algorithm is run in automatic mode. These are the

103 // goals for Come , Go, and Stop gestures.

104 //

105 // OBSOLETE - 5/24/2013.

106 // -------------------------------------------------------------------

107 class knownGoals

108 {

109 public:

110 config2D come;

111 config2D go;

112 config2D stop;

113 config2D origin;

114 config2D gest4;

115
116 // Constructor

117 knownGoals () {}

118
119 void init()

120 {

121
122 // These values are RELATIVE to the turtleSim origin (5.55 , 5.55, 0)

123 come.x = 3.95; come.y = 3.95; come.theta = M_PI /4; come.vel = 1.0;

124 go.x = 3.95; go.y = -3.95; go.theta = 7*M_PI /8; go.vel = 1.0;

125 stop.x = -3.95; stop.y = 3.95; stop.theta = 5*M_PI /4; stop.vel = 0.0;

126 gest4.x = -3.95; gest4.y = -3.95; gest4.theta = 3*M_PI /4; gest4.vel = 1.0;

127
128 // Describe the turtle ’s origin for comparison to generated responses.

129 // origin.x = 5.55; origin.y = 5.55; origin.theta = 0.0; origin.vel = 0.0;

130 origin.x = 0.0; origin.y = 0.0; origin.theta = 0.0; origin.vel = 0.0;

131 }

132
133
134 }; // autoGoals

135
136 // -------------------------------------------------------------------

137 // Class name: refNode

138 // Description: This class describes a node in a GNG cloud. A node

139 // consists of a featureVec , a label number , the nodes number of

140 // connections , and a local error variable.

141 // -------------------------------------------------------------------

142 class refNode

143 {

144 public:

145 std::vector <double > featureVec;

146 int nodeLabel;

147 int numConnections;
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148 double E;

149 config2D action; // current action x,y,t,v configuration

150 config2D last; // last action x,y,t,v configuration

151 int numObservations;

152 int reward; // most recent user feedback (reward)

153 double Q;

154 int ancestor; // the nodeLabel from which the current response was taken

155
156
157 // Constructor

158 refNode (): featureVec (0) {};

159 }; // refNode;

160
161
162 // -------------------------------------------------------------------

163 // Class name: connection

164 // Description: This class describes a connection between refNodes

165 // in a GNG cloud.

166 // -------------------------------------------------------------------

167 class connection

168 {

169 public:

170 // Connection endpoints (refNode vertices) and age.

171 int v1, v2, age;

172
173 // Length of the connection (a cost value).

174 double length;

175
176 // Constructor

177 connection(int v1_in = -1, int v2_in = -1, int age_in = -1,

178 double length_in = -1.0)

179 {

180 v1 = v1_in;

181 v2 = v2_in;

182 age = age_in;

183 length = length_in;

184 }

185 }; // connection

186
187 // -------------------------------------------------------------------

188 // Class name: distPt

189 // Description: A distPt is the distance from a current input vector

190 // to a reference node along with the reference node’s label.

191 // -------------------------------------------------------------------

192 class distPt

193 {

194 public:

195 double distance;

196 int nodeLabel;

197
198 // Constructor

199 distPt(double distance_in = -1.0, int nodeLabel_in = -1) {

200 distance = distance_in;

201 nodeLabel = nodeLabel_in;

202 }

203 }; // distPt

204
205 // -------------------------------------------------------------------

206 // Prototypes

207 // -------------------------------------------------------------------

208
209 refNode genNode(std::vector <refNode > &A, const int numFeatures ,

210 int &numObservations);

211
212 double calc_Q(refNode NN);

213
214 double calc_avgE(std::vector <refNode > &A);

215
216 double vecNorm2(std::vector <double > &v1, std::vector <double > &v2);

217
218 bool compareDistances(distPt d1, distPt d2);

219
220 void get2ClosestNodes (std::vector <refNode > &A, std::vector <double > &vec_in ,

221 std::vector <distPt > &Dv);

222
223 void read_A(const char* fname , std::vector <refNode > &A,

224 const int &numFeatures);

225
226 void read_C(const char* fname , std::vector <connection > &C);

227
228 void write_A(const char* fname , std::vector <refNode > &A);

229 void write_C(const char* fname , std::vector <connection > &C);

230
231 void check4Connection(std::vector <refNode > &A, std::vector <connection > &C,

232 std::vector <distPt > &Dv);

233
234 void adjustWinner(std::vector <refNode > &A, std::vector <distPt > &Dv,
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235 std::vector <double > v_in , const double &ep_w);

236
237 void adjustNeighbors(std::vector <refNode > &A, std::vector <connection > &C,

238 std::vector <distPt > &Dv , std::vector <double > &v_in , const double &ep_n);

239
240 void removeOldConnections(std::vector <refNode > &A,

241 std::vector <connection > &C, const int ageMax);

242
243 void printC(std::vector <connection > &C);

244 void print_refNodes(std::vector <refNode > &A, const char* nodeListName);

245
246 void interpolateNodes(refNode &q, refNode &f, refNode &r,

247 const int &feedback_dim);

248
249 void insertNewNode(std::vector <refNode > &A, std::vector <connection > &C,

250 const int &lambda , const double &alpha);

251
252 void decreaseNodeError(std::vector <refNode > &A, const double &beta);

253
254 refNode getNN(std::vector <distPt > &Dv , std::vector <refNode > &A);

255
256 void getNeighbors(refNode &NN, std::vector <refNode > &N, std::vector <refNode >

257 &A, std::vector <connection > &C);

258
259 refNode gng(const char* A_fname , const char* C_fname ,

260 std::vector <refNode > &A, std::vector <connection > &C,

261 std::vector <double > &vec_in , std::vector <refNode > &N,

262 const int &lambda , const int maxNodeCnt);

A.1.4 gng.cpp

1 #include "kinect_includes.h"

2 #include "points.h"

3 #include "utilities.h"

4 #include "gng.h"

5
6 // -------------------------------------------------------------------

7 // Function name: genNode

8 // Description: This function generates a random nx1 reference

9 // vector to seed the GNG function. It also generates a randomized

10 // set of goalConfig parameters.

11 // -------------------------------------------------------------------

12 refNode genNode(std::vector <refNode > &A, const int numFeatures , int &numObservations)

13 {

14 refNode newNode;

15 std::vector <double > featureVec (0);

16 int reward;

17 int numNodes = A.size();

18 int maxNodeLabel = -1;

19
20
21
22 // Generate the feature vector.

23 for (int i=0; i<numFeatures; i++) {

24 double r = rand_in_range (0.0 ,0.5);

25 // printf ("r = %8.5f\n",r);

26 featureVec.push_back(r);

27 }

28
29 // Initialize reward - pessimistic (will cause a random initial guess at configuration).

30 reward = -1;

31
32
33 // Generate the goalConfig.

34 // Use the x,y,theta constraints of the turtlesim arena

35 // at this writing (01/03/2012). Constrain new nodes to stay

36 // close to the center (x,y) = (5.5, 5.5). Note that (x,y,t)

37 // values below are _RELATIVE_ and not absolute values (this is

38 // how the turtueControl_server works).

39 double x = 0; // rand_in_range (-0.5, 0.5); // x can be on [0.5, 10.5]

40 double y = 0; // rand_in_range (-0.5, 0.5); // y can be on [0.5, 10.5]

41 double t = 0; // rand_in_range (0, 2*M_PI -0.00001); // theta can be on [0, 2*PI]

42
43 // Consider assigning velocity to either 0 or 1. <<<<<<<<<<<

44 double v = 0; // rand01 ();

45
46 // Generate the nodeLabel.

47 if (numNodes == 0)

48 {

49 maxNodeLabel = 0;

50 }

51 else

52 {

53 for(int i=0; i<numNodes; i++) {
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54 if (A[i]. nodeLabel > maxNodeLabel) {

55 maxNodeLabel = A[i]. nodeLabel;

56 }

57 }

58 }

59
60 // Generate the new node.

61 newNode.featureVec = featureVec;

62 newNode.nodeLabel = maxNodeLabel + 1;

63 newNode.numConnections = 0;

64 newNode.E = 0;

65 newNode.action.x = x;

66 newNode.action.y = y;

67 newNode.action.theta = t;

68 newNode.action.vel = v;

69
70 // Let the intitial ’last’ config be the origin.

71 newNode.last.x = 0;

72 newNode.last.y = 0;

73 newNode.last.theta = 0;

74 newNode.last.vel = 0;

75
76 newNode.numObservations = numObservations;

77 newNode.reward = reward;

78 newNode.Q = 0;

79 newNode.ancestor = newNode.nodeLabel; // newNode is its own ancestor

80
81 return(newNode);

82 }

83
84 // -------------------------------------------------------------------

85 // Function name: calc_Q

86 // Description: This function calculates the Q-Learning Q value

87 // for a configuration vector (6/30/2012). May change in the future.

88 // -------------------------------------------------------------------

89 double calc_Q(refNode NN)

90 {

91 double Q;

92
93 Q = sqrt( pow(NN.action.x,2) + pow(NN.action.y,2) + pow(NN.action.theta ,2) );

94
95 return(Q);

96 }

97
98 // -------------------------------------------------------------------

99 // Function name: calc_avgE

100 // Description: This function calculates the average error for

101 // the GNG cloud [A] matrix.

102 // -------------------------------------------------------------------

103 double calc_avgE(std::vector <refNode > &A)

104 {

105 int numNodes = A.size();

106 double total_E = 0;

107 double avg_E = 0;

108 for (int i=0; i<numNodes; i++)

109 {

110 total_E += A[i].E;

111 }

112 avg_E = (double) total_E/numNodes;

113
114 return(avg_E);

115 }

116
117
118 // -------------------------------------------------------------------

119 // Function name: vecNorm2

120 // Description: This function finds the Euclidean distance between

121 // two nx1 vectors. Vectors are assumed to have the same number of

122 // elements.

123 // -------------------------------------------------------------------

124 double vecNorm2(std::vector <double > &v1, std::vector <double > &v2)

125 {

126 int numElements = v1.size();

127 double sum = 0.0;

128 // std::vector <double > diffVec = v1;

129
130 for(int i=0; i<numElements; i++) {

131 sum = sum + pow(v1[i]-v2[i], 2);

132 }

133 return(sqrt(sum));

134 }

135
136 // -------------------------------------------------------------------

137 // Function name: get2ClosestNodes

138 // Description: This function gets the two closest nodes from the

139 // list of existing reference nodes in a GNG cloud.

140 // -------------------------------------------------------------------
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141 bool compareDistances(distPt d1, distPt d2)

142 {

143 return(d1.distance < d2.distance);

144 }

145
146 void get2ClosestNodes (std::vector <refNode > &A, std::vector <double > &vec_in ,

147 std::vector <distPt > &Dv)

148 {

149 Dv.clear ();

150 distPt q, s1, s2;

151 double dist;

152 int numNodes = A.size();

153
154 // Calculate the distances from vec_in to all nodes in [A].

155 for(int i=0; i<numNodes; i++) {

156 dist = vecNorm2(vec_in , A[i]. featureVec);

157 q.distance = dist;

158 q.nodeLabel = A[i]. nodeLabel;

159 Dv.push_back(q);

160 }

161
162 // DEBUG

163 /*

164 int u = Dv.size();

165 printf ("Dv unsorted: \n");

166 for (int i=0; i<u; i++) {

167 printf ("Dv[%d].dist = %5.3f, nodeLabel = %d\n", i, Dv[i].distance , Dv[i]. nodeLabel);

168 }

169 */

170
171 /* DEBUG

172 int v = A[0]. featureVec.size();

173 printf ("fvec= ");

174 for(int i=0; i<v; i++) {

175 printf ("%5.3f ",vec_in[i]);

176 }

177 printf ("\n");

178
179 for(int h=0; h<numNodes; h++){

180 printf ("A[%d]= ",h);

181 for(int i=0; i<v; i++) {

182 printf ("%5.3f ",A[h]. featureVec[i]);

183 }

184 printf (": D=%5.3f\n", Dv[h]. distance);

185 }

186 */

187
188 // Sort the distances

189 sort(Dv.begin (), Dv.end(), compareDistances);

190 s1 = Dv[0];

191 s2 = Dv[1];

192 Dv.clear ();

193 Dv.push_back(s1);

194 Dv.push_back(s2);

195
196 // DEBUG

197 /*

198 u = Dv.size();

199 printf ("Dv sorted: \n");

200 for (int i=0; i<u; i++) {

201 printf ("Dv[%d].dist = %5.3f, nodeLabel = %d\n", i, Dv[i].distance , Dv[i]. nodeLabel);

202 }

203 */

204
205 /*

206 printf ("Dis0 = %6.3f [node %d], Dis1 = %6.3f [node %d] \n", Dv[0]. distance , Dv[0]. nodeLabel ,

207 Dv[1]. distance , Dv[1]. nodeLabel);

208 */

209
210 }

211
212 // -------------------------------------------------------------------

213 // Function name: read_A

214 // Description: This function reads in the A matrix for the GNG

215 // algorithm. If the file does not exist , the function creates an

216 // initialized A matrix.

217 //

218 // An input file of specific format is assumed. At this writing (12/21/2011) ,

219 // each line of the file includes a reference node descriptor consisting

220 // of [nodeLabel , numConnections , E, featureVec(numFeatures), goal]. Each featureVec

221 // consists of five dynamic instants of [frameNum , x, y, z].

222 // -------------------------------------------------------------------

223 void read_A(const char* fname , std::vector <refNode > &A, const int &numFeatures)

224 {

225 refNode newNode;

226 std::vector <double > featureVec (0);

227 int nodeLabel , numConnections , numObservations , reward , ancestor;
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228 double feature , E, x, y, theta , Q;

229 int numNodes = A.size();

230 int initial_numNodes = 2;

231
232 // Do not read this from file currently (01 Sep2012)

233 double vel = 0;

234
235 // At startup or restart , [A] may be empty (numNodes may be zero).

236 // Otherwise , use an existing [A] matrix.

237 if (numNodes == 0) // Try to read in or generate [A].

238 {

239 // printf ("\n");

240 FILE *pFile;

241 pFile = fopen(fname ,"r");

242 A.clear();

243 numObservations = 0;

244
245 if (pFile == NULL) {

246 // Initialize [A]

247 // printf ("File %s does not exist. Initializing [A] with 2 nodes. \n", fname);

248 for (int i=0; i<initial_numNodes; i++) {

249 newNode = genNode(A, numFeatures , numObservations);

250 A.push_back(newNode);

251 // printf ("New node number = %d. A has %d nodes. \n", newNode.nodeLabel , A.size());

252 }

253 }

254 else // Read in [A]

255 {

256 // printf (" Reading [A] from existing %s file.\n", fname);

257
258 while(fscanf(pFile , "%d %d %d %d %d", &numObservations , &nodeLabel , &numConnections , &reward , &ancestor) !=

EOF)

259 {

260 newNode.numObservations = numObservations;

261 newNode.nodeLabel = nodeLabel;

262 newNode.numConnections = numConnections;

263 newNode.reward = reward;

264 newNode.ancestor = ancestor;

265
266 /*

267 newNode.reward.clear();

268 for(int i=0; i<reward_dim; i++) {

269 if(fscanf(pFile , "%d", &fb) != EOF) {

270 newNode.reward.push_back(fb);

271 // Wprintf (" Reading from A.txt --- reward = %2d\n", fb);

272 }

273 }

274 */

275
276 if(fscanf(pFile , "%lf", &Q) != EOF) {

277 newNode.Q = Q;

278 }

279
280 if (fscanf(pFile , "%lf", &E) != EOF) {

281 newNode.E = E;

282 }

283 if (fscanf(pFile , "%lf %lf %lf", &x, &y, &theta) != EOF) {

284 newNode.action.x = x;

285 newNode.action.y = y;

286 newNode.action.theta = theta;

287 newNode.action.vel = vel;

288 }

289
290 if (fscanf(pFile , "%lf %lf %lf", &x, &y, &theta) != EOF) {

291 newNode.last.x = x;

292 newNode.last.y = y;

293 newNode.last.theta = theta;

294 newNode.last.vel = vel;

295 }

296
297 newNode.featureVec.clear();

298 for(int i=0; i<numFeatures; i++) {

299 if(fscanf(pFile , "%lf", &feature) != EOF) {

300 newNode.featureVec.push_back(feature);

301 // printf (" Reading from A.txt --- fvec [%2d] = %8.3f\n", i, feature);

302 }

303 }

304
305 A.push_back(newNode);

306
307 } // while

308 } // else read in [A]

309 }

310 else

311 {

312 // Use existing [A] matrix.

313 }
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314
315
316 // print_refNodes(A, "A");

317
318 } // read_A

319
320 // -------------------------------------------------------------------

321 // Function name: read_C

322 // Description: This function reads in the C matrix for the GNG

323 // algorithm. If the file does not exist , the function creates an

324 // initialized C matrix.

325 //

326 // An input file of specific format is assumed. At this writing (12/21/2011) ,

327 // each line of the file includes a connection descriptor consisting of

328 // [vertex1 , vertex2 , age].

329 // -------------------------------------------------------------------

330 void read_C(const char* fname , std::vector <connection > &C)

331 {

332 int vertex1 , vertex2 , age;

333 double length;

334 connection cnxIn;

335 int numConx = C.size();

336
337 // At startup or restart , [C] may be empty (numConx may be zero).

338 // Otherwise , use an existing [C] matrix.

339 if (numConx == 0)

340 {

341 FILE *pFile;

342 pFile = fopen(fname ,"r");

343
344 // printf ("\n");

345 // Try to read in an existing [C] from a file.

346 if (pFile == NULL) {

347 // printf ("File %s does not exist. Initializing [C] with 0 connections. \n", fname);

348 C.clear();

349 }

350 else

351 {

352 // printf (" Reading [C] from existing %s file.\n", fname);

353 C.clear();

354 while(fscanf(pFile ,"%d %d %d %lf", &vertex1 , &vertex2 , &age , &length) != EOF)

355 {

356 cnxIn.v1 = vertex1;

357 cnxIn.v2 = vertex2;

358 cnxIn.age = age;

359 cnxIn.length = length;

360 C.push_back(cnxIn);

361 }

362 }

363
364 // Print [C] to screen as a sanity check.

365 numConx = C.size();

366 // printf ("[C] contains %d connections: \n", numConx);

367 for(int i=0; i<numConx; i++) {

368 /*

369 printf (" Connection %3d: vertex 1 = %3d, vertex 2 = %3d, age = %3d \n",

370 i+1, C[i].v1, C[i].v2, C[i].age);

371 */

372 }

373 }

374 else

375 {

376 // Use existing [C] matrix.

377 }

378
379 } // read_C

380
381 // -------------------------------------------------------------------

382 // Function name: write_A , write_C

383 // Description: This function writes out the [A], [C] matrices as needed.

384 // (Not sure what ’as needed ’ means yet. 12/26/2011)

385 // -------------------------------------------------------------------

386 void write_A(const char* fname , std::vector <refNode > &A)

387 {

388 int numFeatures = A[0]. featureVec.size();

389 int numNodes = A.size();

390
391 // Increment numObservations on each write , since writes only occur

392 // after a gesture observation vector has been received.

393 // int numObservations = A[0]. numObservations + 1;

394
395 // Incrementing numObservations now occurs in the GNG algorithm.

396
397 FILE *pFile;

398 pFile = fopen(fname ,"w");

399
400 // Print [A]. numObservations , nodeLabel , .numConnections , .featureVec , .E,
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401 // .action.x, .action.y, .action.theta , .action.vel

402 // .last.x, .last.y, .last.theta , .last.vel

403 // reward <>

404
405 /*

406 // This version worked on 01 Sep2012. It was revised to the versio below

407 // to place the feature vector last.

408
409 for (int i=0; i<numNodes; i++) {

410 fprintf(pFile , "%d %d %d %d ",A[i]. numObservations , A[i].nodeLabel , A[i]. numConnections , A[i]. reward);

411
412 fprintf(pFile , "%lf ", A[i].Q);

413
414 for (int j=0; j<numFeatures; j++){

415 fprintf(pFile ,"%f ", A[i]. featureVec[j]);

416 }

417
418 fprintf(pFile , "%lf ", A[i].E);

419 fprintf(pFile , "%lf %lf %lf %lf ", A[i]. action.x, A[i]. action.y, A[i]. action.theta , A[i]. action.vel);

420 fprintf(pFile , "%lf %lf %lf %lf\n", A[i].last.x, A[i].last.y, A[i].last.theta , A[i].last.vel);

421 }

422 */

423
424 for (int i=0; i<numNodes; i++) {

425 fprintf(pFile , "%d %d %d %d %d ",A[i]. numObservations , A[i].nodeLabel , A[i]. numConnections , A[i].reward , A[i

]. ancestor);

426
427 fprintf(pFile , "%lf ", A[i].Q);

428
429 fprintf(pFile , "%lf ", A[i].E);

430 fprintf(pFile , "%lf %lf %lf ", A[i]. action.x, A[i]. action.y, A[i]. action.theta);

431 fprintf(pFile , "%lf %lf %lf ", A[i].last.x, A[i].last.y, A[i].last.theta);

432
433 for (int j=0; j<numFeatures; j++){

434 fprintf(pFile ,"%f ", A[i]. featureVec[j]);

435 }

436
437
438 fprintf(pFile , "\n");

439 }

440
441
442
443 fclose(pFile);

444
445 } // writeA

446
447 void write_C(const char* fname , std::vector <connection > &C)

448 {

449 int numConx = C.size();

450 FILE *pFile;

451 pFile = fopen(fname ,"w");

452
453 for (int i=0; i<numConx; i++) {

454 fprintf(pFile , "%d %d %d %f\n", C[i].v1, C[i].v2, C[i].age , C[i]. length);

455 }

456 fclose(pFile);

457
458 } // writeC

459
460
461
462 // -------------------------------------------------------------------

463 // Function name: check4Connection

464 // Description: This function checks a connection between two nodes (in [C]).

465 // If none exists , it establishes one. If one exists , it refreshes

466 // the its age (set age = 0). The function then updates the number of

467 // connections (in [A]) for each of the vertex nodes of the new

468 // connections.

469 // -------------------------------------------------------------------

470 void check4Connection(std::vector <refNode > &A,

471 std::vector <connection > &C, std::vector <distPt > &Dv)

472 {

473 int s1_label = Dv[0]. nodeLabel;

474 int s2_label = Dv[1]. nodeLabel;

475
476 // printf ("D[0]. nodeLabel = %d, D[1]. nodeLabel = %d \n", s1_label , s2_label);

477
478 int numConx = C.size();

479 int numNodes = A.size();

480 bool connectionExists = false;

481 connection newConx;

482
483 // Check for / refresh an existing connection.

484 for(int i=0; i<numConx; i++) {

485 if (( (C[i].v1== s1_label) && (C[i].v2== s2_label) ) ||

486 ( (C[i].v1== s2_label) && (C[i].v2== s1_label) ))
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487 {

488 connectionExists = true;

489 C[i].age = 0;

490 }

491 }

492 // Establish a connection if none exists.

493 if (connectionExists == false)

494 {

495 newConx.v1 = s1_label;

496 newConx.v2 = s2_label;

497 newConx.age = 0;

498 newConx.length = 1.0;

499 C.push_back(newConx);

500
501 // Update connection counts in [A].

502 for(int i=0; i<numNodes; i++) {

503 if(A[i]. nodeLabel == s1_label) {A[i]. numConnections ++;}

504 if(A[i]. nodeLabel == s2_label) {A[i]. numConnections ++;}

505 }

506 }

507
508 } // check4Connection

509
510 // -------------------------------------------------------------------

511 // Function Name: adjustWinner

512 // Description: This function adds to the error of the node closest

513 // to the input data vector.

514 // -------------------------------------------------------------------

515 void adjustWinner(std::vector <refNode > &A, std::vector <distPt > &Dv,

516 std::vector <double > v_in , const double &ep_w)

517 {

518 int numNodes = A.size();

519 int s1_label = Dv[0]. nodeLabel;

520 double s1_distance = Dv[0]. distance;

521 int numFeatures = v_in.size();

522
523 for(int i=0; i<numNodes; i++) {

524 if (A[i]. nodeLabel == s1_label)

525 {

526 // Step 6: Adjust the winner ’s local error.

527 A[i].E += pow(s1_distance , 2);

528
529 // Step 7: Move the winner toward the input vector

530 // by a fraction of its current distance (if reward is not HOT).

531 if (A[i]. reward != 0) {

532 for(int j=0; j<numFeatures; j++) {

533 A[i]. featureVec[j] += ep_w * (v_in[j] - A[i]. featureVec[j]);

534 } // for j

535 }

536
537
538 } // if

539 } // for i

540 } // adjustWinner

541
542
543 // -------------------------------------------------------------------

544 // Function name: adjustNeighbors

545 // Description: This function moves the winner ’s topological

546 // neighbors toward the input by a fraction (ep_n) of their distance

547 // to the input vector. The ages of all connections emanating from

548 // the winner are incremented.

549 // -------------------------------------------------------------------

550 void adjustNeighbors(std::vector <refNode > &A, std::vector <connection > &C,

551 std::vector <distPt > &Dv , std::vector <double > &v_in , const double &ep_n)

552 {

553 int neighbor = -99;

554 int numCnx = C.size();

555 int numNodes = A.size();

556 int numFeatures = v_in.size();

557 int s1_label = Dv[0]. nodeLabel;

558
559
560 // The found_nbr variable fixes a bug discovered on 9/3/2012.

561 // The [A] matrix neighbors were being updated for every entry

562 // in [C] regardless of whether the elements in [C] were neighbors.

563 // The bug’ed soruce code can be found in Archive/src_03Sep12 ...

564 // This code appears to work better for hoodRadius < mean but

565 // worse for hoodRadius = all neighbors. (9/3/2012).

566 bool found_nbr;

567
568 for (int i=0; i<numCnx; i++) {

569
570 found_nbr = false;

571 neighbor = -99;

572
573 // Check one end. Increment connection age.
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574 if (C[i].v1 == s1_label) {

575
576 found_nbr = true;

577 neighbor = C[i].v2;

578 C[i].age += 1;

579 }

580 // Check the other end. Increment connection age.

581 if (C[i].v2 == s1_label) {

582
583 found_nbr = true;

584 neighbor = C[i].v1;

585 C[i].age += 1;

586 }

587
588 // Move (adapt) the neighbor.

589 if (found_nbr == true)

590 {

591 for (int j=0; j<numNodes; j++) {

592 if (A[j]. nodeLabel == neighbor) {

593 for(int k=0; k<numFeatures; k++) {

594 A[j]. featureVec[k] += ep_n * (v_in[k] - A[j]. featureVec[k]);

595 }

596 }

597 }

598 }

599
600
601 } // for i

602
603 } // adjustNeighbors

604
605 // -------------------------------------------------------------------

606 // Function name: removeOldConnections

607 // Description: This function removes connections which have aged

608 // beyond a prescribed maximum (ageMax). If this leaves any nodes

609 // with no connections , those nodes are deleted also.

610 // -------------------------------------------------------------------

611 void removeOldConnections(std::vector <refNode > &A,

612 std::vector <connection > &C, const int ageMax)

613 {

614 int numNodes = A.size();

615 int numConx = C.size();

616 int vertex1 = -99;

617 int vertex2 = -99;

618 std::vector <refNode > newA (0);

619 std::vector <connection > newC (0);

620
621
622 for(int i=0; i<numConx; i++) {

623 if (C[i].age <= ageMax) {

624 // Build a new [C] of young connections.

625 newC.push_back(C[i]);

626 }

627 else {

628
629 // Find vertices of old connections

630 vertex1 = C[i].v1;

631 vertex2 = C[i].v2;

632
633 // Decrement the connection counts for vertex nodes.

634 for(int j=0; j<numNodes; j++) {

635 if (A[j]. nodeLabel == vertex1) {

636 A[j]. numConnections -= 1;

637 }

638 if (A[j]. nodeLabel == vertex2) {

639 A[j]. numConnections -= 1;

640 }

641 }

642 }

643 }

644
645 C.clear();

646 C = newC;

647
648 // Build a new [A] of nodes with >0 connections.

649 for(int j=0; j<numNodes; j++) {

650 if (A[j]. numConnections > 0) {

651 newA.push_back(A[j]);

652 }

653 }

654
655 // Put new [A] into old [A].

656 A.clear();

657 A = newA;

658
659 } // removeOldConnections

660
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661
662 // -------------------------------------------------------------------

663 // Functions: print_refNodes , printC

664 // Description: Print out the [A] (or other vector of reference nodes)

665 // and [C] matrix for diagnostics.

666 // -------------------------------------------------------------------

667 void printC(std::vector <connection > &C)

668 {

669 int numConx = C.size();

670 for(int i=0; i<numConx; i++) {

671 printf("C[%d]: v1 = %d, v2 = %d \n", i, C[i].v1, C[i].v2);

672 }

673 } // printC

674
675 void print_refNodes(std::vector <refNode > &A, const char* nodeListName)

676 {

677 int numNodes = A.size();

678 int numFeatures = A[0]. featureVec.size();

679
680
681 printf("----------------------------------------------\n");

682 printf(" Printing vector of refNodes: %s \n", nodeListName);

683 printf("----------------------------------------------\n");

684
685 for(int i=0; i<numNodes; i++) {

686 printf("Node number %d: \n", i);

687 printf("rwd = %d\n", A[i]. reward);

688 printf("Q = %6.3f\n", A[i].Q);

689 printf("nodeLabel = %d\n", A[i]. nodeLabel);

690 printf("numCnx = %d\n", A[i]. numConnections);

691 printf("E = %8.5f\n", A[i].E);

692 printf("fvec [0] = %8.5f, ", A[i]. featureVec [0]);

693 printf("fvec [%2d] = %8.5f\n", numFeatures -1, A[i]. featureVec[numFeatures -1]);

694 printf("action: x = %5.3f, y = %5.3f, theta = %5.3f\n", A[i]. action.x, A[i]. action.y, A[i]. action.theta);

695 printf("last: x = %5.3f, y = %5.3f, theta = %5.3f\n", A[i].last.x, A[i].last.y, A[i].last.theta);

696 printf("\n");

697 }

698 } // print_refNodes

699
700 // -------------------------------------------------------------------

701 // Function name: interpolateNodes

702 // Description: This function sets parameters for a new node to be

703 // inserted between the nearest refNode and its nearest neighbor. It

704 // accepts 2 input refNodes and produces an interpolated output refNode.

705 // -------------------------------------------------------------------

706 void interpolateNodes(refNode &q, refNode &f, refNode &r)

707 {

708
709 int numFeatures = q.featureVec.size();

710 r.featureVec.clear ();

711
712 // Interpolate featureVecs between f and q

713 for(int i=0; i<numFeatures; i++) {

714 r.featureVec.push_back( (q.featureVec[i] + f.featureVec[i])/2.0 );

715 }

716
717
718
719 // Interpolate actionConfig between f and q.

720 r.action.x = 0; // (q.action.x + f.action.x )/2.0;

721 r.action.y = 0; // (q.action.y + f.action.y )/2.0;

722 r.action.theta = 0; // (q.action.theta + f.action.theta)/2.0;

723 r.action.vel = 0; // (q.action.vel + f.action.vel )/2.0;

724
725 r.Q = calc_Q(r);

726
727 r.last.x = 0; // q.last.x;

728 r.last.y = 0; // q.last.y;

729 r.last.theta = 0; // q.last.theta;

730 r.last.vel = 0; // q.last.vel;

731
732 // Interpolate last actions between f and q

733 // r.last.x = (q.last.x + f.last.x )/2.0;

734 // r.last.y = (q.last.y + f.last.y )/2.0;

735 // r.last.theta = (q.last.theta + f.last.theta)/2.0;

736 // r.last.vel = (q.last.vel + f.last.vel )/2.0;

737
738 // Initialize reward pessimistically.

739 // May not be the right thing to do.

740 r.reward = -1;

741
742
743 r.numObservations = q.numObservations;

744
745 } // interpolateNodes

746
747 // -------------------------------------------------------------------

140



748 // Function name: calcAvgError

749 // Description: This function calculates the average node error

750 // across all nodes in [A].

751 // -------------------------------------------------------------------

752 double calcAvgError(std::vector <refNode > &A)

753 {

754 int numNodes = A.size();

755 double avgE = 0.0;

756
757 for(int i=0; i<numNodes; i++)

758 {

759 avgE += A[i].E;

760 }

761
762 avgE = (double) avgE/numNodes;

763
764 return(avgE);

765 }

766
767 // -------------------------------------------------------------------

768 // Function name: insertNewNode

769 // Description: This function inserts a new node into [A]. [C] is

770 // updated accordingly. Insertion occurs ever lamda input signals.

771 // -------------------------------------------------------------------

772 void insertNewNode(std::vector <refNode > &A, std::vector <connection > &C,

773 const int &lambda , const double &alpha , const int maxNodeCnt)

774 {

775
776 int numNodes = A.size();

777 int numCnx = C.size();

778 std::vector <int > Nbrs (0); // Set of neighbors of q.

779 refNode q, f, r;

780 connection C_rf , C_rq;

781 // double avgE;

782 int numObservations = A[0]. numObservations + 1;

783
784 // Calculate average Node Error

785 // avgE = calcAvgError(A);

786
787
788 if(( numObservations % lambda == 0) && (numNodes < maxNodeCnt)) {

789 // if(numObservations % lambda == 0) {

790
791 // printA(1,A);

792
793 // Find the node with maximum accumulated error.

794 double maxError = -99.0;

795 for(int i=0; i<numNodes; i++) {

796 if (A[i].E > maxError) {

797 maxError = A[i].E;

798 q = A[i];

799 }

800 }

801
802
803 // Find the neighbors of q.

804 for (int i=0; i<numCnx; i++) {

805 if (C[i].v1 == q.nodeLabel) {Nbrs.push_back(C[i].v2);}

806 if (C[i].v2 == q.nodeLabel) {Nbrs.push_back(C[i].v1);}

807 }

808
809 // Find the neighbor f of q with max error.

810 int numNeighbors = Nbrs.size();

811 maxError = -99.0;

812 for(int i=0; i<numNeighbors; i++) {

813 for(int j=0; j<numNodes; j++) {

814 if ((A[j]. nodeLabel == Nbrs[i]) && (A[j].E > maxError)) {

815 maxError = A[j].E;

816 f = A[j];

817 }

818 }

819 }

820
821 // printA(2,A);

822
823 // Generate a new node r.

824 // Interpolate the feature vector and goalConfig between f and q.

825 interpolateNodes(q, f, r);

826
827 // printA(1,A);

828
829 // Get the next node label.

830 int maxNodeLabel = -1;

831 for(int i=0; i<numNodes; i++){

832 if (A[i]. nodeLabel > maxNodeLabel) {maxNodeLabel = A[i]. nodeLabel ;}

833 }

834 int newLabel = maxNodeLabel + 1;
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835 r.nodeLabel = newLabel;

836 r.ancestor = newLabel;

837 r.numConnections = 2; // Connect to q and f (done below).

838 // The node r is added below after its error is calculated.

839
840 // Remove the original connection between q and f.

841 // printC(1,C);

842 int cnx2delete = -1;

843 for (int i=0; i<numCnx; i++) {

844 if ( ((C[i].v1==q.nodeLabel) && (C[i].v2==f.nodeLabel)) ||

845 ((C[i].v1==f.nodeLabel) && (C[i].v2==q.nodeLabel)) )

846 {

847 cnx2delete = i;

848 }

849 }

850 C.erase(C.begin() + cnx2delete);

851 // printC(2,C);

852
853 // Add new connections: {r,q} and {r,f}.

854 // printf ("q=%d, f=%d, maxNodeLabel =%d \n",q, f, maxNodeLabel);

855 C_rf.v1 = newLabel; C_rf.v2 = f.nodeLabel; C_rf.age = 0; C_rf.length = 1.0;

856 C_rq.v1 = newLabel; C_rq.v2 = q.nodeLabel; C_rq.age = 0; C_rq.length = 1.0;

857 C.push_back(C_rf);

858 C.push_back(C_rq);

859
860 // printC(3,C);

861
862 // Decrease the error of q and f by a fraction (alpha).

863 // Interpolate the error of r from q and f.

864 double Er = 0.0;

865 for(int i=0; i<numNodes; i++) {

866 if (A[i]. nodeLabel == f.nodeLabel) {

867 A[i].E -= alpha*(A[i].E);

868 Er += A[i].E/2.0;

869 }

870 if (A[i]. nodeLabel == q.nodeLabel) {

871 A[i].E -= alpha*(A[i].E);

872 Er += A[i].E/2.0;

873 }

874 }

875 r.E = Er;

876 A.push_back(r);

877
878
879 } // if [new node needed]

880
881 } // insertNewNode

882
883
884 // -------------------------------------------------------------------

885 // Function name: decreaseNodeError

886 // Description: This function decreases the error variables on all

887 // nodes by a factor (beta). This function also increments the number

888 // of observations (stored in [A]).

889 // -------------------------------------------------------------------

890 void decreaseNodeError(std::vector <refNode > &A, const double &beta)

891 {

892 int numNodes = A.size();

893
894 for(int i=0; i<numNodes; i++)

895 {

896 A[i].E -= (beta*A[i].E);

897 A[i]. numObservations += 1;

898 }

899
900 }

901
902
903
904 // -------------------------------------------------------------------

905 // Function name: getNN

906 // Description: This function returns the reference node closest

907 // to the input vector (i.e. it’s Nearest Neighbor (NN) ). This node’s

908 // attached goalConfig comprises the best guess at the robotic goalConfig

909 // for the input gesture.

910 //

911 // 6/30/2012 - the Q-Learning Q value is also calculated as the length

912 // of the goal configuration vector from the origin. This is based on the

913 // assertion that longer config vectors reflect the most positive past

914 // rewards.

915 // -------------------------------------------------------------------

916 refNode getNN(std::vector <distPt > &Dv , std::vector <refNode > &A)

917 {

918 refNode NN;

919 int numNodes = A.size();

920
921 int nearestNodeLabel = Dv[0]. nodeLabel;
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922
923 for(int i=0; i<numNodes; i++) {

924 if (A[i]. nodeLabel == nearestNodeLabel) {

925 NN = A[i];

926 }

927 }

928
929 // Estimate Q value -> length of NN.action as an (x, y, theta) vector.

930 // NN.Q = calc_Q(NN);

931
932
933 return(NN);

934 }

935
936 // -------------------------------------------------------------------

937 // Function name: getNeighbors

938 // Description: This function returns the set of reference nodes N

939 // connected to the NN of the input vector.

940 // -------------------------------------------------------------------

941 void getNeighbors(refNode &NN, std::vector <refNode > &N, std::vector <refNode > &A, std::vector <connection > &C)

942 {

943 N.clear();

944 int nodeLabel = NN.nodeLabel;

945
946 int numConx = C.size();

947 int numNodes = A.size();

948 std::vector <int > nodeList (0);

949
950 // Build the list of neighbor nodeLabels.

951 for(int i=0; i<numConx; i++)

952 {

953 if (C[i].v1 == nodeLabel) {nodeList.push_back(C[i].v2);}

954 if (C[i].v2 == nodeLabel) {nodeList.push_back(C[i].v1);}

955 }

956
957 int numNeighbors = nodeList.size();

958
959 /*

960 printf ("Node %d has %d neighbors: these include nodes: ", nodeLabel , numNeighbors);

961 for (int i=0; i<numNeighbors; i++)

962 {

963 printf ("%d ", nodeList[i]);

964 }

965 printf ("\n");

966
967 printf ("Initially , N.size = %d, ", N.size());

968 */

969
970
971 // Build the vector of neighbors

972 for (int i=0; i<numNeighbors; i++)

973 {

974 for (int j=0; j<numNodes; j++)

975 {

976 if (nodeList[i] == A[j]. nodeLabel)

977 {

978 N.push_back(A[j]);

979 }

980 }

981 }

982
983 // printf ("after buiding , N.size = %d.\n", N.size());

984
985 }

986
987 // -------------------------------------------------------------------

988 // Function name: gng

989 // Description: This function performs the GNG algorithm.

990 // A: the set of reference nodes.

991 // C: the set of all connections.

992 // -------------------------------------------------------------------

993 refNode gng(const char* A_fname , const char* C_fname ,

994 std::vector <refNode > &A, std::vector <connection > &C,

995 std::vector <double > &vec_in , std::vector <refNode > &N,

996 const int &lambda , const int maxNodeCnt)

997 {

998 std::vector <distPt > Dv(0);

999 double ep_w = 0.05;

1000 double ep_n = 0.0006; // Fritzke uses 0.0006

1001 int ageMax = 88; // Fritzke uses 88; use a large number for resistance distance

1002 double alpha = 0.5;

1003 double beta = 0.0005; // Fritzke uses 0.0005

1004 int numFeatures = vec_in.size();

1005
1006 // Return the nearest neighbor (NN) of vec_in.

1007 refNode NN;

1008
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1009 // Step 1: Read in [A] and [C] matrices or use existing ones.

1010 // These functions default to using existing [A] and [C] matrices having

1011 // non -zero sizes. Otherwise fnames are read in.

1012 read_A(A_fname , A, numFeatures);

1013 read_C(C_fname , C);

1014
1015 // Step 2: Select a vector (use the vector passed in).

1016
1017 // Step 3: Find the input vector ’s two closest neighbors

1018 // from among the collection of refNodes [A].

1019 get2ClosestNodes(A, vec_in , Dv);

1020
1021 // Step 4: Establish or refresh connections (set age=0)

1022 // between the two nearest nodes.

1023 check4Connection(A, C, Dv);

1024
1025 // Step 5: Add to the nearest node (Dv[0]) local error.

1026 // Step 6: Move the winner a fraction (ep_w) of its current distance

1027 // toward the input vector.

1028 adjustWinner(A, Dv, vec_in , ep_w);

1029
1030 // Step 7: Move the winner ’s topolgical neighbors toward

1031 // the input by a fraction (ep_n) of their distance to it.

1032 // Increment the ages of all connections emmanating from the winner.

1033 adjustNeighbors(A, C, Dv, vec_in , ep_n);

1034
1035 // Step 8: Remove edges with age greater than ageMax. If this

1036 // leaves any nodes with no connections , remove the nodes.

1037 removeOldConnections(A, C, ageMax);

1038
1039 // Step 9: Insert a new node (if necessary based on lambda).

1040 insertNewNode(A, C, lambda , alpha , maxNodeCnt);

1041
1042 // Step 10: Decrease error of all nodes.

1043 // Also , increment numObservations for all nodes in [A] here.

1044 decreaseNodeError(A, beta);

1045
1046 // Return the nearest neighbor from just prior to node movement.

1047 NN = getNN(Dv , A);

1048 getNeighbors(NN, N, A, C);

1049 return(NN);

1050
1051
1052
1053
1054 } // gng

A.1.5 kinect includes.h

1 #include <stdio.h>

2 #include <iostream >

3 #include <string >

4 #include <istream >

5 #include <cstring >

6 #include <time.h>

7 #include <ros/ros.h>

8 #include <gtest/gtest.h>

9 #include <ros/init.h>

10 #include <std_msgs/String.h>

11 #include <std_msgs/Float64.h>

12 #include <sensor_msgs/PointCloud.h>

13 #include <sensor_msgs/PointCloud2.h>

14 #include <sensor_msgs/point_cloud_conversion.h>

15 #include <opencv/highgui.h>

16 #include <sensor_msgs/Image.h>

17 #include <cv_bridge/cv_bridge.h>

18 #include <opencv/cv.h>

19 #include <opencv/cvaux.h>

20 #include <sstream >

21 #include <boost/foreach.hpp >

22 #include <rosbag/bag.h>

23 #include <rosbag/view.h>

24 #include <rosbag/query.h>

25 #include <turtlesim/Pose.h>

26 #include <turtlesim/Velocity.h>

27 #include <cmath >

28 #include <math.h>

29 #include <angles/angles.h>

30 #include <body_msgs/Skeletons.h>

31 #include <actionlib/client/simple_action_client.h>

32 #include <actionlib/client/terminal_state.h>

33 #include <turtleControl/moveTurtleAction.h>
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A.1.6 points.h

1 // -------------------------------------------------------------------

2 // Class name: pt3

3 // Descriptin: This class defines a 3-d point.

4 // -------------------------------------------------------------------

5 class pt3

6 {

7
8 public:

9 double x,y,z; // 3d point coordinates.

10
11 // Constructor

12 pt3(double x_in = -999.99, double y_in = -999.99, double z_in = -999.99) {

13 x = x_in;

14 y = y_in;

15 z = z_in;

16 }

17
18 }; // pt3

19 // -------------------------------------------------------------------

20 // Class name: pt3sph

21 // Descriptin: This class defines a 3-d point in spherical

22 // (r, theta , phi) coordinates.

23 // -------------------------------------------------------------------

24 class pt3sph

25 {

26
27 public:

28 double r,t,p; // 3d shperical point coordinates.

29
30 // Constructor

31 pt3sph(double r_in = -999.99, double t_in = -999.99, double p_in = -999.99) {

32 r = r_in;

33 t = t_in;

34 p = p_in;

35 }

36
37 }; // pt3sph

38
39 // -------------------------------------------------------------------

40 // Class name: pt_curvature

41 // Description: This class defines a 2-d point containing a curvature

42 // value and its frame number in a time sequence.

43 // -------------------------------------------------------------------

44 class pt_curvature

45 {

46
47 public:

48 // 2d point of curvature containing curvature value (k) and frame number.

49 double k;

50 double frameNum;

51
52 // Constructor

53 pt_curvature(double k_in = -999.99, int frameNum_in = -1) {

54 k = k_in;

55 frameNum = frameNum_in;

56 }

57
58 }; // pt_curvature

59
60 // -------------------------------------------------------------------

61 // Functions for comparing curvature fields.

62 // -------------------------------------------------------------------

63 bool CompareCurvature(pt_curvature A, pt_curvature B);

64 bool CompareFrameNum(pt_curvature A, pt_curvature B);

65 // -------------------------------------------------------------------

66 // Class name: dynamic_instant

67 // Descriptin: This class defines a dynamic_instant (See Rao et al.)

68 // consisting of various fields including curvature , frame number , and

69 // [sign of?] velocity (x,y,z components) for a point in 3-space.

70 // -------------------------------------------------------------------

71 class dynamic_instant

72 {

73
74 public:

75 double frameNum; // k, frameNum

76 double totalFrames; // Use this to normalize frameNum

77 pt3 pos; // position vector

78 pt3 vel; // velocity vector

79
80 // Constructor

81 dynamic_instant () {}

82 };

83
84 // -------------------------------------------------------------------
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85 // Prototypes

86 // -------------------------------------------------------------------

87 void write_PVA_data(const char *PVA_fname ,

88 std::vector <pt3 > &posVec_LH , std::vector <pt3 > &velVec_LH ,

89 std::vector <pt3 > &accVec_LH);

90
91 void write_POS_data(const char *POS_fname , int &sampleNum ,

92 int &dataType , std::vector <pt3 > &posVec);

93
94 void write_DI_data(const char *DI_fname , std::vector <dynamic_instant > &DI_list);

95
96 void write_to_descriptor_list(const char *descriptor_list_fname ,

97 std::vector <double > &vec_in , int &gestureClass);

98
99 std::vector <double > find_DIs(const char* DI_fname ,

100 std::vector <pt3 > &posVec , std::vector <pt3 > &velVec ,

101 std::vector <pt3 > &accVec , int numInstants);

A.1.7 points.cpp

1 #include "kinect_includes.h"

2 #include "points.h"

3
4 // -------------------------------------------------------------------

5 // Functions for comparing curvature fields.

6 // -------------------------------------------------------------------

7 bool CompareCurvature(pt_curvature A, pt_curvature B) {

8 return(fabs(A.k) > fabs(B.k));

9 }

10
11 bool CompareFrameNum(pt_curvature A, pt_curvature B) {

12 return(A.frameNum < B.frameNum);

13 }

14
15 // -------------------------------------------------------------------

16 // Function name: write_PVA_data

17 // Description: This function writes a text file containing (P)osition ,

18 // (V)elocity and (A)cceleration data collected from kinect.

19 // As of 12/28/2011 , this includes only left hand (LH) data.

20 // -------------------------------------------------------------------

21 void write_PVA_data(const char *PVA_fname ,

22 std::vector <pt3 > &posVec_LH , std::vector <pt3 > &velVec_LH , std::vector <pt3 > &accVec_LH)

23 {

24 int msgCnt = posVec_LH.size();

25
26 FILE * pFile;

27 pFile = fopen(PVA_fname , "w");

28 for (int i=0; i<msgCnt; i++) {

29 fprintf(pFile ,"%d %12.8f %12.8f %12.8f %12.8f %12.8f %12.8f %12.8f %12.8f %12.8f \n", i,

30 posVec_LH[i].x, posVec_LH[i].y, posVec_LH[i].z,

31 velVec_LH[i].x, velVec_LH[i].y, velVec_LH[i].z,

32 accVec_LH[i].x, accVec_LH[i].y, accVec_LH[i].z);

33 }

34 fclose(pFile);

35
36 } // write_PVA_data

37
38
39 // -------------------------------------------------------------------

40 // Function name: write_POS_data

41 // Description: This function writes a text file containing all

42 // x,y,z points for a connect data stream.

43 //

44 // 07/08/2012 - "dataType" = "gestureClass"

45 // -------------------------------------------------------------------

46 void write_POS_data(const char *POS_fname , int &sampleNum , int &dataType , std::vector <pt3 > &posVec)

47 {

48 int msgCnt = posVec.size();

49
50 FILE * pFile;

51 pFile = fopen(POS_fname , "a");

52 for (int i=0; i<msgCnt; i++)

53 {

54 fprintf(pFile , "%d %d %d %12.8f %12.8f %12.8f \n", sampleNum , dataType , i+1, posVec[i].x, posVec[i].y, posVec

[i].z);

55 }

56 }

57
58
59 // -------------------------------------------------------------------

60 // Function name: write_DI_data

61 // Description: This function writes a text file containing dynamic

62 // Instants (DI) generated during a single gesture motion.

63 // -------------------------------------------------------------------
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64 void write_DI_data(const char *DI_fname , std::vector <dynamic_instant > &DI_list)

65 {

66
67 int numDIs = DI_list.size();

68
69 FILE * pFile;

70 pFile = fopen(DI_fname , "w");

71 for (int i=0; i<numDIs; i++) {

72
73 /* Includes velocities

74 fprintf(pFile ,"%12.8f %12.8f %12.8f %12.8f %12.8f %12.8f %12.8f %12.8f\n",

75 DI_list[i].frameNum , DI_list[i]. totalFrames ,

76 DI_list[i].pos.x, DI_list[i].pos.y, DI_list[i].pos.z,

77 DI_list[i].vel.x, DI_list[i].vel.y, DI_list[i].vel.z);

78 */

79
80 fprintf(pFile ,"%12.8f %12.8f %12.8f %12.8f\n",

81 DI_list[i].frameNum , DI_list[i].pos.x,

82 DI_list[i].pos.y, DI_list[i].pos.z);

83
84 }

85 fclose(pFile);

86
87 } // write_DI_data

88
89 // -------------------------------------------------------------------

90 // Function name: write_to_descriptor_list

91 // Description: This function appends a new descriptor to an existing file containing

92 // of nx1 descriptors.

93 // -------------------------------------------------------------------

94 void write_to_descriptor_list(const char *descriptor_list_fname , std::vector <double > &vec_in , int &gestureClass)

95 {

96 int numFeatures = vec_in.size();

97
98 FILE * pFile;

99 pFile = fopen(descriptor_list_fname , "a");

100
101 fprintf(pFile ,"%d ", gestureClass);

102 for (int i=0; i<numFeatures; i++)

103 {

104 fprintf(pFile ,"%12.8f ", vec_in[i]);

105 }

106 fprintf(pFile ,"\n");

107
108 fclose(pFile);

109 }

110
111 // -------------------------------------------------------------------

112 // Function name: find_DIs

113 // Description: This function finds Dynamic Instants (DI) for

114 // motion signatures collected using a 3d depth image. The function

115 // returns a vector of the top N frame numbers from an input vector

116 // of curvatures. The index of curvature value is the frame number.

117 // A single vector consists of five concatenated instances of

118 // (frameNum , x, y, z). A DI file is also written containing individual

119 // DIs along with velocity at the instants.

120 // -------------------------------------------------------------------

121 std::vector <double > find_DIs(const char* DI_fname ,

122 std::vector <pt3 > &posVec , std::vector <pt3 > &velVec ,

123 std::vector <pt3 > &accVec , int numInstants)

124 {

125
126 std::vector <pt3 > k; // curvatures (abs of acceleration).

127 std::vector <pt_curvature > maxima;

128 pt_curvature local_max;

129 k = accVec;

130 int numPts = accVec.size();

131 std::vector <pt_curvature > max_curvatures (0);

132 std::vector <dynamic_instant > DI_list (0);

133 dynamic_instant my_inst;

134 std::vector <double > vec_in (0);

135
136 // Generate 1D curvature (= abs(acceleration)).

137 for(int i=0; i<numPts; i++) {

138 k[i].x = fabs(accVec[i].x);

139 k[i].y = fabs(accVec[i].y);

140 k[i].z = fabs(accVec[i].z);

141 }

142
143 // Find candidates for local maxima of acceleration.

144 int count = -1;

145 for(int i=1; i<numPts -1; i++) {

146 if ((k[i-1].x < k[i].x) && (k[i+1].x < k[i].x)) {

147 count += 1;

148 local_max.k = k[i].x;

149 local_max.frameNum = (double) i;

150 maxima.push_back(local_max);
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151 }

152 if ((k[i-1].y < k[i].y) && (k[i+1].y < k[i].y)) {

153 count += 1;

154 local_max.k = k[i].y;

155 local_max.frameNum = (double) i;

156 maxima.push_back(local_max);

157 }

158 if ((k[i-1].z < k[i].z) && (k[i+1].z < k[i].z)) {

159 count += 1;

160 local_max.k = k[i].z;

161 local_max.frameNum = (double) i;

162 maxima.push_back(local_max);

163 }

164 }

165
166 // Sort by curvature

167 sort(maxima.begin(), maxima.end(), CompareCurvature);

168
169 // Create a vector of the top numInstants curvatures.

170 for(int i=0; i<numInstants; i++) {

171 max_curvatures.push_back(maxima[i]);

172 }

173
174 // Sort max_curvatures by frameNum (put in time order).

175 sort(max_curvatures.begin(), max_curvatures.end(), CompareFrameNum);

176
177 // Generate a list of dynamic_instants.

178 for (int i=0; i<numInstants; i++)

179 {

180 my_inst.frameNum = max_curvatures[i]. frameNum;

181 my_inst.totalFrames = posVec.size();

182 my_inst.pos = posVec[max_curvatures[i]. frameNum ];

183 my_inst.vel = velVec[max_curvatures[i]. frameNum ];

184 DI_list.push_back(my_inst);

185
186 vec_in.push_back(my_inst.frameNum/numPts);

187 vec_in.push_back(my_inst.pos.x);

188 vec_in.push_back(my_inst.pos.y);

189 vec_in.push_back(my_inst.pos.z);

190
191 /*

192 printf (" Compare: vec_in [%3d](%6.3f, %6.3f, %6.3f), pos [%3d](%6.3f, %6.3f, %6.3f)\n",

193 (int)my_inst.frameNum , my_inst.pos.x, my_inst.pos.y, my_inst.pos.z,

194 (int)my_inst.frameNum , posVec[my_inst.frameNum ].x, posVec[my_inst.frameNum ].y, posVec[my_inst.frameNum ].z

);

195 */

196
197 }

198
199 // Experiment:

200 // Artificially set the first and last DIs to be

201 // the start and end points of the motion.

202 /*

203 vec_in [0] = 1/ numPts;

204 vec_in [1] = posVec [0].x;

205 vec_in [2] = posVec [0].y;

206 vec_in [3] = posVec [0].z;

207 vec_in [16] = numPts/numPts;

208 vec_in [17] = posVec[numPts - 1].x;

209 vec_in [18] = posVec[numPts - 1].y;

210 vec_in [19] = posVec[numPts - 1].z;

211 */

212
213 // Write out the DI list to a file (OPTIONAL).

214 // write_DI_data(DI_fname , DI_list);

215
216 // Convert the DI list to a vector suitable for the GNG algorithm.

217
218
219 return(vec_in);

220
221 } // find_DIs

A.1.8 utilities.h

1 // -----------------------------------------------------------------

2 // Prototypes

3 // -----------------------------------------------------------------

4 double rand01 ();

5
6 double rand_in_range(double a, double b);

7
8 void scale01(std::vector <pt3 > &din);

9
10 void smoothGauss5x1(std::vector <double > &p);
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11
12 void smoothEvolutionTime(std::vector <double > &a, int winSize);

13
14 void smoothMovingAvg(std::vector <double > &a, int winSize);

15
16 void smooth3Dpoints(std::vector <pt3 > &q);

17
18 std::vector <double > derivative(std::vector <double > &x, int winSize);

19
20 std::vector <pt3 > deriv3D(std::vector <pt3 > &d3D , int winSize);

21
22 double round(double d);

23
24 double calc_stdDev(std::vector <double > a);

25
26 double calc_mean(std::vector <double > a);

27
28 double vecLen(std::vector <double > v);

29
30 pt3sph cart2sph(double x, double y, double z);

31
32 pt3 sph2cart(double r, double p, double t);

33
34 void arrayInit(std::vector <std::vector <double > > &a,

35 int rows , int cols , double initVal);

A.1.9 utilities.cpp

1 #include "kinect_includes.h"

2 #include "points.h"

3
4 // This file contains general utility functions which support

5 // gesture recogntion and the GNG algorithm.

6
7 // -----------------------------------------------------------------

8 // Function name: rand01

9 // Description: This function generates a random number on [0 ,1].

10 // -----------------------------------------------------------------

11 double rand01 ()

12 {

13 // Make sure to issue the command below in main(), not here.

14 // srand(time(NULL));

15
16 double x = (double)rand()/( double)RAND_MAX;

17
18 return(x);

19 }

20
21 // -----------------------------------------------------------------

22 // Function name: rand_in_range

23 // Description: This function generates a random number (double) within

24 // a specified range (between a and b parameters).

25 // -----------------------------------------------------------------

26 double rand_in_range(double a, double b)

27 {

28 double max = 0.0;

29 double min = 0.0;

30 double range = 0.0;

31 double x = 0.0;

32
33 if (a == b) {

34 printf ("ERROR (rand_in_range): Input parameters must not be equal.\n");

35 x = rand01 ();

36 }

37 else

38 {

39 if (a > b) {max = a; min = b;}

40 else {max = b, min = a;

41 }

42 range = max - min;

43
44 x = rand01 ();

45
46 x = (x * range) + min;

47 }

48
49 return(x);

50
51 }

52 // -----------------------------------------------------------------

53 // Function name: scale01

54 // Description: This function scales position data on [0,1].

55 // It uses the largest value in x, y, and z data vectors to generate

56 // a relative scale of all values against the largest changing
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57 // variable.

58 // -----------------------------------------------------------------

59 void scale01(std::vector <pt3 > &din)

60 {

61 int numPts = din.size();

62 double max_x , max_y , max_z;

63 double min_x , min_y , min_z;

64 double dif_x , dif_y , dif_z , maxDiff;

65
66 max_x = din [0].x;

67 max_y = din [0].y;

68 max_z = din [0].z;

69
70 min_x = din [0].x;

71 min_y = din [0].y;

72 min_z = din [0].z;

73
74 // Find the variable with the maximum swing.

75 for(int i=1; i<numPts; i++) {

76 if (din[i].x > max_x) {max_x = din[i].x;}

77 if (din[i].y > max_y) {max_y = din[i].y;}

78 if (din[i].z > max_z) {max_z = din[i].z;}

79
80
81 if (din[i].x < min_x) {min_x = din[i].x;}

82 if (din[i].y < min_y) {min_y = din[i].y;}

83 if (din[i].z < min_z) {min_z = din[i].z;}

84 }

85 dif_x = max_x - min_x;

86 dif_y = max_y - min_y;

87 dif_z = max_z - min_z;

88
89 maxDiff = dif_x;

90 if (dif_y > maxDiff) {maxDiff = dif_y ;}

91 if (dif_z > maxDiff) {maxDiff = dif_z ;}

92
93 // Bring all data vectors to bottom at zero.

94 for(int i=0; i<numPts; i++) {

95 din[i].x = din[i].x - min_x;

96 din[i].y = din[i].y - min_y;

97 din[i].z = din[i].z - min_z;

98 }

99 // Scale all values based on the maximum difference in all variables.

100 for(int i=0; i<numPts; i++) {

101 din[i].x = (din[i].x)/maxDiff;

102 din[i].y = (din[i].y)/maxDiff;

103 din[i].z = (din[i].z)/maxDiff;

104 }

105
106 }

107
108 // -----------------------------------------------------------------

109 // Function name: smoothGauss5x1

110 // Description: This functin performs covolution with a 5x1 fixed

111 // Gaussian kernel.

112 // -----------------------------------------------------------------

113 void smoothGauss5x1(std::vector <double > &p)

114 {

115 int numPts = p.size();

116 std::vector <double > pnew (0);

117
118 // Replicate the ends in the original vector - don’t worry about borders.

119 p[0] = p[2];

120 p[1] = p[2];

121 p[numPts -1] = p[numPts -3];

122 p[numPts -2] = p[numPts -3];

123
124 // Operate on a new copy of the vector.

125 pnew = p;

126
127 // Kernel = {1 4 6 4 1}/16

128 for(int i=2; i<(numPts -2); i++) {

129 pnew[i] = (p[i-2] + 4*p[i-1] + 6*p[i] + 4*p[i+1] + p[i+1]) /16;

130 }

131 // Replicate the ends in the smoothed signal - don’t worry about borders.

132 pnew [0] = pnew [2];

133 pnew [1] = pnew [2];

134 pnew[numPts -1] = pnew[numPts -3];

135 pnew[numPts -2] = pnew[numPts -3];

136
137 // The original vector is now smoothed.

138 p = pnew;

139 }

140
141
142 // -----------------------------------------------------------------

143 // Function name: smoothEvolutionTime
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144 // Description: This function applies an evolution time window

145 // to each point in a vector. An eveN -sized window is input.

146 // Odd window sizes are rounded down. The function calculates

147 // the average between the data point value at the beginning and

148 // the end of the evolution time window.

149 //

150 // Question: Could a moving average be better?

151 // -----------------------------------------------------------------

152 void smoothEvolutionTime(std::vector <double > &a, int winSize)

153 {

154 int numPts = a.size();

155 int halfWin = (int) round(winSize /2);

156 std::vector <double > new_a (0);

157 double avg;

158
159 for(int i=0; i<numPts; i++)

160 {

161 if (i < halfWin)

162 {

163 new_a.push_back(a[i]);

164 }

165 else if (i + halfWin > numPts -1)

166 {

167 new_a.push_back(a[i]);

168 }

169 else

170 {

171 avg = (a[i-halfWin] + a[i+halfWin ]) /2.0;

172 new_a.push_back(avg);

173 }

174 }

175
176 a = new_a;

177
178
179 } // smoothEvolutionTime

180
181 // -----------------------------------------------------------------

182 // Function name: smoothMovingAvg

183 // Description: This function calculates the moving average over

184 // a window of points. Use only odd window sizes.

185 // -----------------------------------------------------------------

186 void smoothMovingAvg(std::vector <double > &a, int winSize)

187 {

188 int numPts = a.size();

189 int halfWin = (int) floor(winSize /2);

190 std::vector <double > new_a (0);

191 double avg;

192 double sum;

193
194
195
196 for(int i=0; i<numPts -1; i++)

197 {

198 sum = 0;

199 for (int j=(i-halfWin); j<=(i+halfWin); j++)

200 {

201 if ((j<0) || (j>= numPts))

202 {

203 // Replicate end points when window falls outside vector dimensions.

204 sum = sum + a[i];

205 }

206 else

207 {

208 sum = sum + a[j];

209 }

210 }

211 avg = sum/winSize;

212 new_a.push_back(avg);

213 }

214
215 a = new_a;

216
217 } // smoothMovingAvg

218
219 // -----------------------------------------------------------------

220 // Function name: smooth3Dpoints

221 // Description: This function breaks a vector of 3d points into its

222 // constituent x,y,z signals and smooths each one with a fixed

223 // Gaussian kernel.

224 // -----------------------------------------------------------------

225 void smooth3Dpoints(std::vector <pt3 > &q)

226 {

227 int numPts = q.size();

228 std::vector <double > q_x(0);

229 std::vector <double > q_y(0);

230 std::vector <double > q_z(0);
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231
232 for(int i=0; i<numPts; i++) {

233 q_x.push_back(q[i].x);

234 q_y.push_back(q[i].y);

235 q_z.push_back(q[i].z);

236 }

237
238 // Smooth each component signal.

239 smoothGauss5x1(q_x);

240 smoothGauss5x1(q_y);

241 smoothGauss5x1(q_z);

242
243 /*

244 // Smooth again using evolution time.

245 smoothEvolutionTime(q_x ,7);

246 smoothEvolutionTime(q_y ,7);

247 smoothEvolutionTime(q_z ,7);

248 */

249
250 // Smooth again using moving average time.

251 smoothMovingAvg(q_x ,7);

252 smoothMovingAvg(q_y ,7);

253 smoothMovingAvg(q_z ,7);

254
255 for(int i=0; i<numPts; i++) {

256 q[i].x = q_x[i];

257 q[i].y = q_y[i];

258 q[i].z = q_z[i];

259 }

260 }

261
262 // -----------------------------------------------------------------

263 // Function name: derivative

264 // Description: This function takes the derivative of a vector

265 // using an evolution window. This is a qualitative slope of a

266 // function by subtracting values of <time >-sequence data over a

267 // window of evolution. The initial application for this function

268 // is to take velocity and acceleration of position data from a

269 // Kinect depth image.

270 // -----------------------------------------------------------------

271 std::vector <double > derivative(std::vector <double > &x, int winSize)

272 {

273 int numPts = x.size();

274 std::vector <double > xDot (0);

275 double halfWin = floor(winSize /2.0);

276 double slope = 0.0;

277
278 for(int i=0; i<numPts -1; i++) {

279 if (( winSize == 0) || (winSize == 1)) {

280 slope = x[i+1] - x[i];

281 }

282 else if (i<halfWin) {

283 slope = x[2* halfWin] - x[0];

284 }

285 else if (i>numPts -halfWin -1) {

286 slope = slope; // hold last value

287 }

288 else {

289 slope = x[i+halfWin] - x[i-halfWin ];

290 }

291 xDot.push_back(slope);

292 } // for i

293
294 return(xDot);

295 }

296
297
298 // -----------------------------------------------------------------

299 // Function name: deriv3D

300 // Description: This function takes the derivatives of the x, y and z

301 // components of a pt3 vector. It explodes the pt3 into its components

302 // and calls the derivative function 3 times.

303 // -----------------------------------------------------------------

304 std::vector <pt3 > deriv3D(std::vector <pt3 > &d3D , int winSize)

305 {

306 int numPts = d3D.size();

307 std::vector <double > d1D_x (0);

308 std::vector <double > d1D_y (0);

309 std::vector <double > d1D_z (0);

310 std::vector <pt3 > d3D_dot (0);

311 pt3 newPt;

312
313 // Extract x, y and z components of 3D data.

314 for(int i=0; i<numPts; i++) {

315 d1D_x.push_back(d3D[i].x);

316 d1D_y.push_back(d3D[i].y);

317 d1D_z.push_back(d3D[i].z);
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318 }

319
320 // Take the derivatives of each component.

321 std::vector <double > xDot = derivative(d1D_x , winSize);

322 std::vector <double > yDot = derivative(d1D_y , winSize);

323 std::vector <double > zDot = derivative(d1D_z , winSize);

324
325 for(int i=0; i<numPts; i++) {

326 newPt.x = xDot[i];

327 newPt.y = yDot[i];

328 newPt.z = zDot[i];

329 d3D_dot.push_back(newPt);

330 }

331
332 return(d3D_dot);

333 }

334
335
336 // -----------------------------------------------------------------

337 // Function name: round

338 // Description: This function rounds a double to the nearest

339 // integer.

340 // -----------------------------------------------------------------

341 double round(double d)

342 {

343 return( (double)floor(d + 0.5) );

344 }

345
346 // -----------------------------------------------------------------

347 // Function name: calc_mean

348 // Description: This function computes the mean for

349 // a vector of doubles.

350 // -----------------------------------------------------------------

351 double calc_mean(std::vector <double > a)

352 {

353 int numVals = a.size();

354 double mean;

355 double sum = 0;

356
357 for (int i=0; i<numVals; i++)

358 {

359 sum += a[i];

360 }

361 mean = sum/numVals;

362
363 return(mean);

364 }

365
366 // -----------------------------------------------------------------

367 // Function name: calc_stdDev

368 // Description: This function computes the standard deviation for

369 // a vector of doubles.

370 //

371 // Formula found at wikipedia/Standard_Deviation.

372 // -----------------------------------------------------------------

373 double calc_stdDev(std::vector <double > a)

374 {

375 int numVals = a.size();

376 double sigma;

377 // double meanOfSquares = 0;

378 // double squareOfMean = 0;

379 double sum = 0;

380 double bias = 1/( numVals - 1);

381
382 // Sample Standard Deviation (Bessel ’s Correction):

383 double mean = calc_mean(a);

384 printf("mean = %f\n", mean);

385 for (int i=0; i<numVals; i++)

386 {

387 sum += pow(a[i]-mean ,2);

388 }

389 sigma = sqrt(bias * sum);

390
391 /*

392 // Maximum likelihood method.

393 for (int i=0; i<numVals; i++)

394 {

395 meanOfSquares = meanOfSquares + pow(a[i],2);

396 squareOfMean = squareOfMean + a[i];

397 }

398 meanOfSquares = meanOfSquares/numVals;

399 squareOfMean = pow(squareOfMean/numVals ,2);

400
401 sigma = sqrt( meanOfSquares - squareOfMean );

402 */

403
404 return(sigma);
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405 }

406
407 // -----------------------------------------------------------------

408 // Function Name: vecLen

409 // Descriotion: This function computes the length of an n-dimensional

410 // vector.

411 // -----------------------------------------------------------------

412 double vecLen(std::vector <double > v)

413 {

414 int numVals = v.size();

415 double sum = 0;

416 double vLength = 0;

417
418 for (int i=0; i<numVals; i++)

419 {

420 sum = sum + pow(v[i],2);

421 }

422
423 vLength = sqrt(sum);

424
425 return(vLength);

426
427 }

428
429 // -----------------------------------------------------------------

430 // Function Name: cart2sph

431 // Descriotion: This function converts cartesian coordinates

432 // (x,y,z) to shperical coordinates (r,p,t).

433 // -----------------------------------------------------------------

434 pt3sph cart2sph(double x, double y, double z)

435 {

436 pt3sph s;

437
438 // Note: MATLAB cart2sph calls

439 // phi = elevation , theta = azimuth

440
441 s.r = sqrt( pow(x,2) + pow(y,2) + pow(z,2) ); // radius

442 s.t = (s.r==0) ? 0 : acos(z/s.r); // theta: inclination

443 s.p = atan2(y,x); // phi: azimuth (counterclockwise form +x)

444
445 return(s);

446 }

447
448 // -----------------------------------------------------------------

449 // Function Name: shp2cart

450 // Descriotion: This function converts sherical coordinates

451 // (r,t,p) to shperical coordinates (x,y,z).

452 // -----------------------------------------------------------------

453 pt3 sph2cart(double r, double phi , double theta)

454 {

455 pt3 c;

456
457 c.x = r * sin(theta) * cos(phi);

458 c.y = r * sin(theta) * sin(phi);

459 c.z = r * cos(theta);

460
461 return(c);

462 }

463
464 // -----------------------------------------------------------------

465 // Function name: arrayInit

466 // Description: This function initializes a 2D array structured

467 // as a vector of vectors <double >.

468 // -----------------------------------------------------------------

469 std::vector <std::vector <double > > arrayInit(int rows , int cols , double initVal)

470 {

471 std::vector <double > newRow (0);

472 std::vector <std::vector <double > > a(0);

473 int i;

474
475 for(i=0; i<cols; i++) {

476 newRow.push_back(initVal);

477 }

478 for(i=0; i<rows; i++) {

479 a.push_back(newRow);

480 }

481 newRow.clear();

482
483 return(a);

484
485 }

A.1.10 assertions.h

1 // This file contains ASSERTIONS to flag runtime errors.
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2
3 // -------------------------------------------------------------------

4 // Function name: ASSN_duplicateConx

5 // Description: This function checks for connections which originate

6 // and terminate on the same node.

7 // -------------------------------------------------------------------

8 void ASSN_duplicateConx(std::vector <connection > &C)

9 {

10 int numConx = C.size();

11
12 for (int i=0; i<numConx; i++) {

13 if(C[i].v1 == C[i].v2) {

14 printf("ASSERTION: Duplicate Conx: C[%d].v1 = %d, C[%d].v2 = %d\n",

15 i, C[i].v1, i, C[i].v2);

16 }

17 }

18 }

19
20
21 // -------------------------------------------------------------------

22 // Function name: ASSN_gestureClassScan

23 // Description: This function checks for bad command line scans.

24 // -------------------------------------------------------------------

25 void ASSN_gestureClassScan(int scanResult)

26 {

27 if (scanResult != 1) {

28 printf("ASSERTION: Bad gesture class scan. Num results = %d\n",

29 scanResult);

30 }

31 }

32
33 // -------------------------------------------------------------------

34 // Function name: ASSN_feedbackCheck

35 // Description: This function checks for a feedback value out of bounds.

36 // If the feedback is out of bounds , the feedback is set to 5 (no motion).

37 // -------------------------------------------------------------------

38 void ASSN_feedbackCheck(std::vector <int > &feedback)

39 {

40 int minFeedback = 0;

41 int maxFeedback = 10;

42
43 int numFeedbacks = feedback.size();

44
45 for (int i=0; i<numFeedbacks; i++) {

46
47 if (feedback[i] < minFeedback || feedback[i] > maxFeedback)

48 {

49 printf("ASSERTION: Bad feedback value found. Feedback = %d\n",

50 feedback[i]);

51
52 feedback[i] = 5;

53 }

54 }

55
56 } // ASSN_feedbackCheck

A.1.11 lists.h

1 #include "kinect_includes.h"

2
3 class descriptor

4 {

5
6 public:

7 std::vector <double > featureVec;

8 int classNum;

9
10 // Constructor

11 descriptor (): featureVec (0) {};

12
13
14 }; // descriptorList

15
16 // -------------------------------------------------------------------

17 // Function name: read_DIs

18 // Description: This function reads in a list of Dynamic Instants (DIs)

19 // from a file to a descriptorList data structure.

20 //

21 // The file structure is assumed to be:

22 // (int class#) ,(std::vector <double > featureVec[numFeatures ]) per line.

23 // -------------------------------------------------------------------

24 std::vector <descriptor > read_descriptor_list(const char* fname , const int &numFeatures)

25 {

26 std::vector <descriptor > descriptor_list (0);

27 std::vector <double > featureVec (0);
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28 descriptor newD;

29 int c; // class number

30 double feature;

31
32 FILE *pFile;

33 pFile = fopen(fname ,"r");

34
35 if (pFile == NULL)

36 {

37 printf("File %s does not exist.\n", fname);

38 }

39 else // Read in

40 {

41 while(fscanf(pFile , "%d", &c) != EOF)

42 {

43 newD.classNum = c;

44
45 newD.featureVec.clear();

46 for(int i=0; i<numFeatures; i++)

47 {

48 if(fscanf(pFile , "%lf", &feature) != EOF)

49 {

50 newD.featureVec.push_back(feature);

51 }

52 }

53 descriptor_list.push_back(newD);

54 } // while reading a line

55 }

56
57 return(descriptor_list);

58
59 } // read_A

A.1.12 graphs.h

1 #include "kinect_includes.h"

2 #include "matrixOps.h"

3
4 // -------------------------------------------------------------------

5 // This .h file contains tools related to graph theory.

6 // -------------------------------------------------------------------

7
8
9 // -------------------------------------------------------------------

10 // Function name: getMaxNodeLabelA

11 // Description: This function scans the [A] matrix for the largest

12 // nodeLabel.

13 // -------------------------------------------------------------------

14 int getMaxNodeLabelA(std::vector <refNode > &A)

15 {

16 int numNodes = A.size();

17 int maxNodeLabel = -1;

18
19 for (int i=0; i<numNodes; i++)

20 {

21 if (A[i]. nodeLabel > maxNodeLabel)

22 {

23 maxNodeLabel = A[i]. nodeLabel;

24 }

25 }

26
27 return(maxNodeLabel);

28 }

29
30 // -------------------------------------------------------------------

31 // Function name: getMaxNodeLabelC

32 // Description: This function scans the [C] matrix for the largest

33 // nodeLabel.

34 // -------------------------------------------------------------------

35 int getMaxNodeLabelC(std::vector <connection > &C)

36 {

37 int numEdges = C.size();

38 int maxNodeLabel = -1;

39
40 // Scan vertex 1

41 for (int i=0; i<numEdges; i++){

42 if (C[i].v1 > maxNodeLabel){

43 maxNodeLabel = C[i].v1;

44 }

45 }

46
47 for (int i=0; i<numEdges; i++){

48 if (C[i].v2 > maxNodeLabel){

49 maxNodeLabel = C[i].v2;
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50 }

51 }

52
53 return(maxNodeLabel);

54 }

55
56
57 // -------------------------------------------------------------------

58 // Function name: floyd

59 // Description: This function reads in C matrix (from the GNG algorithm)

60 // and creates a 2D vector of vectors of distances betwen all pairs of

61 // nodes using Floyd’s algorithm (see A. Tucker , "Applied Combinatorics ").

62 // -------------------------------------------------------------------

63 std::vector <std::vector <double > > floyd(std::vector <refNode > &A,

64 std::vector <connection > &C)

65 {

66 int numEdges = C.size();

67 std::vector <double > newVector (0);

68 double huge_distance = 9999999.0; // = inf

69 int v1, v2;

70 double edgeLength;

71 std::vector <std::vector <double > > D(0);

72
73 // Initialize maxNodeLabel to be larger by one so that we can address

74 // nodes in a vector without dealing with the zero -th entry.

75 int maxNodeLabel = getMaxNodeLabelC(C);

76
77 // D will have entries for nodes that do not exist

78 // since the A matrix may have larger nodeLabels than the

79 // maxNodeCnt due to deletions by GNG.

80 for (int i=0; i<= maxNodeLabel; i++)

81 {

82 newVector.clear();

83 for (int j=0; j<= maxNodeLabel; j++)

84 {

85 newVector.push_back(huge_distance);

86 }

87 // Set nodes’ distances from themselves to 0.

88 if (i > 0) {newVector[i] = 0;}

89 D.push_back(newVector);

90 }

91
92 // Set distances between adjacenct nodes.

93 for (int i=0; i<numEdges; i++)

94 {

95 v1 = C[i].v1;

96 v2 = C[i].v2;

97 edgeLength = C[i].age;

98
99 D[v1][v2] = (double)edgeLength;

100 D[v2][v1] = (double)edgeLength;

101 }

102
103 double temp = 0;

104 for (int k=1; k<= maxNodeLabel; k++)

105 {

106 for (int i=1; i<= maxNodeLabel; i++)

107 {

108 for (int j=1; j<= maxNodeLabel; j++)

109 {

110 temp = (D[i][k] + D[k][j]);

111
112 if (temp < D[i][j])

113 {

114 D[i][j] = temp;

115 }

116 }

117 }

118 }

119
120
121 // Adjust the distances based on whether the

122 // ancestor of the current action gave us good advice.

123 // Set distances to infinity if bad advice was given.

124 int my_ancestor;

125 int my_nodeLabel;

126 int Arows = A.size();

127 for (int i=0; i<Arows; i++)

128 {

129 my_ancestor = A[i]. ancestor;

130 my_nodeLabel = A[i]. nodeLabel;

131
132 if ((A[i]. reward == -1) && (my_ancestor != my_nodeLabel))

133 {

134 D[my_nodeLabel ][ my_ancestor] = huge_distance;

135 D[my_ancestor ][ my_nodeLabel] = huge_distance;

136 }
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137 }

138
139 return(D);

140
141 } // end floyd

142
143
144
145 // -------------------------------------------------------------------

146 // Function name: nodeAdjacency

147 // Description: This function reads in C matrix (from the GNG algorithm)

148 // and creates a 2D matrix of node adjacencies. C is understood to be

149 // an undirected graph. A square matrix is allocated in case the maxNodeLabel

150 // is greater than the number of nodes.

151 // -------------------------------------------------------------------

152 std::vector <std::vector <double > > nodeAdjacency(

153 std::vector <connection > &C)

154 {

155
156 std::vector <std::vector <double > > AdjMat (0);

157
158 // Add one to ignore zero -th entries in vectors.

159 int maxNodeLabel = getMaxNodeLabelC(C);

160
161 int numEdges = C.size();

162 std::vector <double > newVector (0);

163 int vertex1 , vertex2;

164
165 // Initialize the Adjacency matrix.

166 AdjMat.clear();

167 for (int i=0; i<= maxNodeLabel; i++)

168 {

169 newVector.clear();

170 for (int j=0; j<= maxNodeLabel; j++)

171 {

172 newVector.push_back (0);

173 }

174 AdjMat.push_back(newVector);

175 }

176
177
178 for (int i=0; i<numEdges; i++)

179 {

180 vertex1 = C[i].v1;

181 vertex2 = C[i].v2;

182
183 // AdjMat is symmetric (Since C is undirected).

184 AdjMat[vertex1 ][ vertex2] = 1.0;

185 AdjMat[vertex2 ][ vertex1] = 1.0;

186 }

187
188 return(AdjMat);

189
190 } // end nodeAdjacency

191
192
193 // -------------------------------------------------------------------

194 // Function name: nodeDegree

195 // Description: This function computes the k_vector (node degree)

196 // for a C graph matrix.

197 // -------------------------------------------------------------------

198 std::vector <double > nodeDegree(std::vector <connection > &C)

199 {

200 std::vector <double > k_vector (0);

201 int vertex1 , vertex2;

202 int maxNodeLabel = getMaxNodeLabelC(C);

203 int numEdges = C.size();

204
205 // Initialize k_vector.

206 for (int i=0; i<= maxNodeLabel; i++)

207 {

208 k_vector.push_back (0);

209 }

210
211 for (int i=0; i<numEdges; i++)

212 {

213 vertex1 = C[i].v1;

214 vertex2 = C[i].v2;

215
216 k_vector[vertex1] += 1.0;

217 k_vector[vertex2] += 1.0;

218 }

219
220 return(k_vector);

221
222 }

223
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224 // -------------------------------------------------------------------

225 // Function name: clumpiness

226 // Description: This function computes the clumpiness matrix

227 // for a network based on the degrees of nodes and the distance

228 // between them. The clumpiness , distance and adjacency matrices are

229 // structured as vectors of vectors.

230 // -------------------------------------------------------------------

231 std::vector <std::vector <double > > clumpiness(std::vector <refNode > &A,

232 std::vector <connection > &C)

233 {

234 int maxNodeLabel = getMaxNodeLabelC(C);

235 std::vector <double > k_vector (0);

236 std::vector <double > newVector (0);

237 std::vector <std::vector <double > > DistMat (0);

238 std::vector <std::vector <double > > ClumpMat (0);

239
240 k_vector = nodeDegree(C);

241 DistMat = floyd(A,C);

242
243 // Initialize ClumpMat (2D clumpiness matrix).

244 for (int i=0; i<= maxNodeLabel; i++){

245 newVector.clear();

246 for (int j=0; j<= maxNodeLabel; j++){

247 newVector.push_back (0);

248 }

249 ClumpMat.push_back(newVector);

250 }

251
252
253 for (int i=1; i<= maxNodeLabel; i++) {

254 for (int j=1; j<=i; j++) {

255 if (i != j) {

256 ClumpMat[i][j] = (double)(( k_vector[i] * k_vector[j]) / pow(DistMat[i][j],2));

257 ClumpMat[j][i] = ClumpMat[i][j];

258 }

259 }

260 }

261
262 return(ClumpMat);

263
264 } // clumpiness

265
266 // -------------------------------------------------------------------

267 // Function name: admittanceMatrix

268 // Description: This function computes the admittance (Kirchhoff) matrix

269 // Av for a GNG network based on the C matrix.

270 // -------------------------------------------------------------------

271 std::vector <std::vector <double > > admittanceMatrix(

272 std::vector <connection > &C)

273 {

274 int numEdges = C.size();

275 int numNodes = getMaxNodeLabelC(C);

276 std::vector <std::vector <double > > Av(0);

277 std::vector <double > newVector;

278
279 printf("admittanceMatrix 1\n");

280
281 // Initialize Av;

282 for (int i=0; i<= numNodes; i++) {

283 for (int j=0; j<numNodes; j++) {

284 newVector.push_back (0);

285 }

286 Av.push_back(newVector);

287 }

288
289
290 printf("admittanceMatrix 2, Av size = %d\n", Av.size());

291
292 int v1, v2;

293 double admittance = 0.0;

294 double age = 0.0;

295 for (int i=0; i<numEdges; i++) {

296 v1 = C[i].v1;

297 v2 = C[i].v2;

298 age = (double)C[i].age;

299 admittance = (1/( age+1));

300 // printf (" admittance = %.3f\n",admittance);

301
302 Av[v1][v2] = admittance;

303 Av[v2][v1] = admittance;

304 printf("i = %d, v1 = %d, v2 = %d, age = %.2f, admittance = %.3f\n",i, v1, v2, age , admittance);

305 }

306
307 printf("admittanceMatrix 3\n");

308
309 return(Av);

310
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311 } // admittanceMatrix

312
313 // -------------------------------------------------------------------

314 // Function name: laplacian

315 // Description: This function computes the laplacian matrix

316 // for a GNG network based on the adjacency (degree) and admittance

317 // matrices.

318 // -------------------------------------------------------------------

319 std::vector <std::vector <double > > laplacian(

320 std::vector <std::vector <double > > &K, // Adjacency matrix

321 std::vector <std::vector <double > > &Av) // Admittance matrix

322 {

323 std::vector <std::vector <double > > L(0);

324 std::vector <double > newVector (0);

325
326 int L_size = K.size();

327
328 printf("L_size = %d\n", L_size);

329 printf("K_size = %d\n", K.size());

330 printf("Av_size = %d\n", Av.size());

331
332 // Initialize L

333 for(int i=0; i<L_size; i++){

334 newVector.push_back (0);

335 }

336 for(int i=0; i<L_size; i++){

337 L.push_back(newVector);

338 }

339
340
341 for(int i=0; i<L_size; i++) {

342 for(int j=0; j<L_size; j++) {

343
344 /*

345 printf ("i = %d, j = %d, K = %.3f, Av = %.3f.\n",

346 i,j,K[i][j],Av[i][j]);

347 */

348
349 L[i][j] = K[i][j] - Av[i][j];

350 }

351 }

352
353 printf("laplacian 1\n");

354
355 return(L);

356
357 } // laplacian

358
359 // -------------------------------------------------------------------

360 // Function name: resDist

361 // Description: This function computes the resistance distance matrix

362 // for a GNG network based on the C matrix.

363 // -------------------------------------------------------------------

364 std::vector <std::vector <double > > resDist(std::vector <connection > &C)

365 {

366 // int numEdges = C.size();

367 int numNodes = getMaxNodeLabelC(C);

368 std::vector <double > k_vector (0);

369
370 printf("resDist 1: numNodes = %d\n", numNodes);

371
372 // Calculate the Admittance (Kirchhoff) matrix Av.

373 std::vector <std::vector <double > > Av(0);

374 Av = admittanceMatrix(C);

375
376 printf("resDist 2: Av size = %d\n", Av.size());

377
378 // Calculate the degree vector (k_vector) and adjacency matrix K.

379 std::vector <std::vector <double > > K(0);

380 k_vector = nodeDegree(C);

381 K = nodeAdjacency(C);

382
383 printf("resDist 3: K size = %d\n", K.size());

384
385 // Calculate the Laplacian of the network

386 std::vector <std::vector <double > > L(0);

387 L = laplacian(K,Av);

388
389 printf("resDist 4: L size = %d\n", L.size());

390
391 // Calculate the auxiliary matrix.

392 std::vector <std::vector <double > > sumMat (0);

393 std::vector <double > newVector (0);

394 for(int i=0; i<= numNodes; i++) {

395 newVector.clear();

396 for(int j=0; j<numNodes; j++) {

397 newVector.push_back(L[i][j] + 1/ numNodes);
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398 }

399 sumMat.push_back(newVector);

400 }

401 printf("resDist 4a: sumMat size = %d\n", sumMat.size());

402
403 int n = sumMat.size();

404 std::vector <std::vector <double > > sumMatInv (0);

405 sumMatInv = matrix_inverse(sumMat ,n);

406
407
408
409 // /////////////////////////////////

410 // /////////////////////////////////

411 // /////////////////////////////////

412 // ///////////////////////////////// NOT WORKING - use matlab implementation.

413 // /////////////////////////////////

414 // /////////////////////////////////

415 // /////////////////////////////////

416
417 n = sumMatInv.size();

418 printf("resDist 5: sumMatInv size = %d\n",n);

419
420 double resistance = 0;

421 std::vector <std::vector <double > > Omega (0);

422 printf("resDist5a :\n");

423 newVector.clear();

424 for (int i=0; i<n; i++){

425 newVector.push_back (0);

426 }

427 for (int i=0; i<n; i++){

428 Omega.push_back(newVector);

429 }

430
431 n = Omega.size();

432 printf("resDist 6: Omega_size = %d\n", n);

433
434 for(int i=0; i<= numNodes; i++){

435 for (int j=0; j<=i; j++) {

436 // printf ("i = %d, j = %d, smi[%d][%d]=%.2f, smi[%d][%d]=%.2f, smi[%d][%d]=%.2f\n", i,j,i,i,sumMatInv[i][i

],i,j,sumMatInv[i][j],j,j,sumMatInv[j][j]);

437 resistance = sumMatInv[i][i] - 2* sumMatInv[i][j] + sumMatInv[j][j];

438
439 Omega[i][j] = resistance;

440 Omega[j][i] = resistance;

441 }

442
443 // Prevent a node from having its lowest R-distance to itself.

444 Omega[i][i] = 9999999;

445 }

446
447 return(Omega);

448
449
450 }

A.1.13 gngTrain.cpp

1 #include "kinect_includes.h"

2 #include "points.h"

3 #include "utilities.h"

4 #include "gng.h"

5 #include "graphs.h"

6 #include "assertions.h"

7 #include "gestureLrn.h"

8 #include "lists.h"

9
10 using namespace sensor_msgs;

11 using namespace ros;

12 using namespace std;

13
14 char A_fname [40] = "A.txt";

15 char C_fname [40] = "C.txt";

16 char* baseFileName;

17 int autoGen = 1;

18 std::vector <refNode > A(0);

19 std::vector <refNode > N(0);

20 std::vector <connection > C(0);

21 knownGoals autoGoals;

22 refNode NN;

23 int observationNum = 0;

24 int gestureClass = 99;

25 double err_tol = 0.2;

26 V_string args;

27
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28 // Data representation parameters

29 std::vector <descriptor > descriptor_list (0);

30 // char descriptor_fname [40] = "DIs.txt";

31 int featureVecSize = 20;

32 // char descriptor_fname [40] = "HOGs.txt";

33 // int featureVecSize = 8;

34 std::vector <double > vec_in;

35
36 // GNG parameters

37 int lambda = 100;

38 int maxNodeCnt = 100; // Change to 100 for randomized samples.

39 bool done = false;

40 double avgE = 0;

41 std::vector <double > avgE_history (0);

42 int history_limit = 10;

43 int history_size;

44 double err_thold = 0.005* maxNodeCnt;

45 int numNodes;

46 int numEpochs = 0;

47 int top , bottom;

48 int precision = 100;

49
50
51 int main(int argc , char **argv)

52 {

53
54 srand(time (0));

55
56 /*

57 printf("+------------------------------------------+\n");

58 printf ("| Running: gestureLrnList |\n");

59 printf("+------------------------------------------+\n");

60 */

61
62 // Parse the command line for number of epochs to run.

63 if (argc != 2)

64 {

65 printf("Usage: gngTrain <DI_training_data_file >\n");

66 return (0);

67 }

68 else

69 {

70
71 char* descriptor_fname = argv [1];

72
73
74 // Read in DIs from file.

75 descriptor_list = read_descriptor_list(descriptor_fname , featureVecSize);

76 int numSamples = descriptor_list.size();

77 printf("Read %d DIs from file %s.\n", numSamples , descriptor_fname);

78
79
80 while(done == false)

81 {

82
83 // One epoch

84 for(int v=0; v<numSamples; v++)

85 {

86 vec_in = descriptor_list[v]. featureVec;

87 gestureClass = descriptor_list[v]. classNum;

88
89 // Apply the representation to the GNG algorithm.

90 NN = gng(A_fname , C_fname , A, C, vec_in , N, lambda , maxNodeCnt);

91 ASSN_duplicateConx(C);

92
93 } // for v

94
95 // How many epochs did it take?

96 numEpochs += 1;

97
98
99 // Store the last history_limit error samples.

100 avgE = calc_avgE(A);

101 history_size = avgE_history.size();

102 if (history_size == history_limit)

103 {

104 for (int i=0; i<history_limit -1; i++)

105 {

106 avgE_history[i] = avgE_history[i+1];

107 }

108 avgE_history[history_limit -1] = avgE;

109
110 top = (int) round(avgE_history [0]* precision);

111 bottom = (int) round(avgE_history[history_limit -1]* precision);

112 }

113 else

114 {
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115 avgE_history.push_back(avgE);

116 }

117
118
119
120 numNodes = A.size();

121
122 printf("%6d epochs , avgE = %f\n", numEpochs , avgE);

123
124
125 // Check for a history of n common

126
127
128
129 if ((top == bottom) && (history_size == history_limit) && (numNodes == maxNodeCnt))

130 {

131 done = true;

132 }

133
134 } //while

135
136
137
138 // Write [A] and [C].

139 write_A(A_fname , A);

140 write_C(C_fname , C);

141
142 int numEdges = C.size();

143 printf("GNG trained in %d epochs: \n",numEpochs);

144 printf("numNodes = %d\n", numNodes);

145 printf("numEdges = %d\n", numEdges);

146 printf("avgE = %.3f\n", avgE);

147
148 } // else (arg cnt)

149
150
151 return (1);

152
153 } // end main

A.1.14 getSkelData.h

1 #include "kinect_includes.h"

2
3 class getSkelData {

4
5 public:

6 getSkelData ();

7
8 const char* A_fname;

9 const char* C_fname;

10 const char* participantName;

11 std::vector <refNode > A;

12 std::vector <connection > C;

13 std::vector <double > vec_in;

14 int numFrames;

15 int autoGen;

16
17 // Goal configurations for known gestures (autoGen mode only)

18 knownGoals autoGoals;

19
20 // Motion data capture (from Kinect).

21 // void getJointsCallback_1(const body_msgs :: Skeletons &skel); // obsolete

22 void getJointsCB(const body_msgs :: Skeletons &skel);

23
24 // Get the gesture type from command line input.

25 int getGestureType(char* gestureType , char* baseFileName , char* bagFileName , int obsNum);

26
27 // Node Handles

28 ros:: NodeHandle nh1; // Kinect skeleton subscriber

29
30 // Publishers and subscribers

31 ros:: Subscriber skel_sub; // Kinect skeleton

32
33 // Skeleton data.

34 rosbag ::Bag gesture_bag;

35
36 };

37
38 // Constructor

39 getSkelData :: getSkelData ()

40 {

41 skel_sub = nh1.subscribe("/skeletons" ,3,&getSkelData :: getJointsCB ,this);

42 }

163



43
44
45 // -------------------------------------------------------------------

46 // Function name: getGestureType

47 // Description: This function queries the user for the type of gesture

48 // that is about to be performed. For initial testing , one of three

49 // designations is possible: 0=unknown , 1=come , 2=go , 3=stop.

50 // Designatins > "3" are also assigned to "unknown ."

51 //

52 // "gestureType" is used to compare the gesture response to known

53 // goals when this program is run in autoGen mode. It is also used

54 // as a string field in the bag file name to help identify it for

55 // any future testing.

56 // -------------------------------------------------------------------

57 int getSkelData :: getGestureType(char* gestureType , char* baseFileName , char* bagFileName , int obsNum)

58 {

59 /*

60 static int unknown = 0;

61 static int come = 1;

62 static int go = 2;

63 static int stop = 3;

64 static int eat = 4;

65 static int read = 5;

66 static int rest = 6;

67 static int get = 7;

68 static int give = 8;

69 static int therapy = 9;

70 */

71 int gestureClassNum = 0;

72 // int retVal = 0;

73
74 printf("Gesture types :\n");

75 printf("0 = unknown\n");

76 printf("1 = come\n");

77 printf("2 = go\n");

78 printf("3 = stop\n");

79 printf("4 = eat\n");

80 printf("5 = read\n");

81 printf("6 = sleep\n");

82 printf("7 = get\n");

83 printf("8 = give\n");

84 printf("9 = therapy\n");

85
86 printf("Enter the type of gesture to be made: ");

87 std::cin >> gestureClassNum;

88 std::cin.ignore (); // Need this to ignore the carriage return.

89
90 // retVal = scanf ("%d", &gestureClassNum);

91 // ASSN_gestureClassScan(retVal);

92
93 switch (gestureClassNum)

94 {

95 case 1: sprintf(gestureType ,"come"); break;

96 case 2: sprintf(gestureType ,"go"); break;

97 case 3: sprintf(gestureType ,"stop"); break;

98 case 4: sprintf(gestureType ,"eat"); break;

99 case 5: sprintf(gestureType ,"read"); break;

100 case 6: sprintf(gestureType ,"sleep"); break;

101 case 7: sprintf(gestureType ,"get"); break;

102 case 8: sprintf(gestureType ,"give"); break;

103 case 9: sprintf(gestureType ,"therapy"); break;

104 default: sprintf(gestureType ,"unknown"); break;

105 }

106
107 /* Commented this block out in favor of the switch statement above on 4/17/2013.

108
109 if (gestureClassNum == come)

110 {

111 // printf (" sprintf come.\n");

112 sprintf(gestureType ,"come");

113 }

114 else if (gestureClassNum == go)

115 {

116 // printf (" sprintf go.\n");

117 sprintf(gestureType ,"go");

118 }

119 else if (gestureClassNum == stop)

120 {

121 // printf (" sprintf stop.\n");

122 sprintf(gestureType ,"stop");

123 }

124 else

125 {

126 // printf (" sprintf unkown .\n");

127 gestureClassNum = unknown;

128 sprintf(gestureType ," unknown ");

129 }
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130
131 */

132
133
134 // printf ("GOT HERE before a char()\n");

135 sprintf(baseFileName ,"%s_%d_%s", participantName , obsNum , gestureType);

136 sprintf(bagFileName , "%s.bag", baseFileName);

137 printf("Press <enter > to begin collecting to %s.", bagFileName);

138
139 char temp = ’x’;

140 while(temp != ’\n’) {

141 std::cin.get(temp);

142 }

143
144 return(gestureClassNum);

145
146 } // getGestureType

147
148 // -------------------------------------------------------------------

149 // Function name: getJointsCallback_2

150 // Description: This function generates a ROS bag file of skeleton

151 // motion data consisting of desiredFrames worth of messages. The

152 // user is then prompted to continue. Subsequent bag files are numbered.

153 // A participant ’s name is used as the filename root.

154 // -------------------------------------------------------------------

155 void getSkelData :: getJointsCB(const body_msgs :: Skeletons &skel)

156 {

157
158 // static int come = 1;

159 // static int go = 2;

160 // static int stop = 3;

161 static int numFrames = 0;

162 static int observationNum = 0;

163 static int desiredFrames = 150;

164 static int gestureClass = 0;

165 static char bagFileName [40];

166 static char baseFileName [40];

167 static char gestureType [40];

168 refNode NN;

169
170 if (numFrames == 0)

171 {

172 // Open a new ROS bag file on the first frame.

173 observationNum ++;

174 gestureClass = getGestureType(gestureType , baseFileName , bagFileName , observationNum);

175 gesture_bag.open(bagFileName , rosbag :: bagmode :: Write);

176
177 }

178 if (numFrames < desiredFrames) {

179 gesture_bag.write("Skeletons", ros::Time::now(), skel);

180 numFrames ++;

181 }

182 else

183 {

184 numFrames = 0;

185 gesture_bag.close();

186 printf("Bagfile %s saved. \n", bagFileName);

187
188 // Finished. After <return > go to top and collect a new bag file.

189 printf("Press [ENTER] to continue. ");

190 getchar ();

191 printf("\n");

192 }

193
194 } // end getJointsCB

A.1.15 getSkelData.cpp

1 #include "kinect_includes.h"

2 #include "points.h"

3 #include "utilities.h"

4 #include "gng.h"

5 #include "assertions.h"

6 #include "getSkelData.h"

7
8 using namespace sensor_msgs;

9
10 char A_fname [40] = "A.txt";

11 char C_fname [40] = "C.txt";

12 char participantName [40] = "p14";

13
14 int main(int argc , char **argv)

15 {

16 ros::init(argc , argv , "GSD");
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17 getSkelData GSD;

18
19 GSD.A_fname = A_fname;

20 GSD.C_fname = C_fname;

21 GSD.participantName = participantName;

22 GSD.autoGen = 1;

23
24 ros::spin();

25
26 } // end main

A.1.16 genDI.cpp

1 #include "kinect_includes.h"

2 #include "points.h"

3 #include "utilities.h"

4 #include "gng.h"

5 #include "assertions.h"

6 #include "graphs.h"

7 #include "gestureLrn.h"

8
9 using namespace sensor_msgs;

10 using namespace ros;

11 using namespace std;

12
13 char DI_fname [40] = "DIs.txt";

14 char* baseFileName;

15 int gestureClass = 99;

16 std::vector <double > vec_in;

17 V_string args;

18
19
20 int main(int argc , char **argv)

21 {

22
23 /*

24 printf("+------------------------------------------+\n");

25 printf ("| Running: genDIs |\n");

26 printf("+------------------------------------------+\n");

27 */

28
29 if (argc != 2)

30 {

31 printf("Missing bag file name.\n");

32 return (0);

33 }

34 else

35 {

36
37 baseFileName = argv [1];

38 gestureClass = getBagType(baseFileName);

39
40 // printf (" Reading bag file: %s.bag\n", baseFileName);

41
42 // Clear the arguments before initializing ROS

43 ros:: removeROSArgs(argc , argv , args);

44 ros::init(argc , argv , "generate_DI");

45
46 // Generate a motion representation.

47 vec_in = genRep_dynamicInstants(baseFileName);

48 write_to_descriptor_list(DI_fname , vec_in , gestureClass);

49
50
51 // Apply the representation to the GNG algorithm.

52
53 }

54
55 return (1);

56
57 } // end main

A.1.17 TurtleControl.h

1 /*

2 #include <ros/ros.h>

3 #include <turtlesim/Pose.h>

4 #include <turtlesim/Velocity.h>

5 #include <actionlib/server/simple_action_server.h>

6 #include <turtleControl/moveTurtleAction.h>

7 #include <cmath >

8 #include <math.h>

9 #include <angles/angles.h>
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10 */

11
12 // This class computes the command_velocities for turtlesim

13 // to rotate through and angle and to move through a distance.

14 class moveTurtle

15 {

16 public:

17
18 moveTurtle(std:: string name) :

19 as_(nh_ , name),

20 action_name_(name)

21 {

22 // register the goal and feeback callbacks

23 as_.registerGoalCallback(boost::bind(& moveTurtle ::goalCB , this));

24 as_.registerPreemptCallback(boost::bind(& moveTurtle ::preemptCB , this));

25
26 // subscribe to the data topic of interest

27 sub_ = nh_.subscribe("/turtle1/pose", 1, &moveTurtle ::controlCB , this);

28 pub_ = nh_.advertise <turtlesim ::Velocity >("/turtle1/command_velocity", 1);

29 }

30
31 ~moveTurtle(void)

32 {

33 }

34
35 void goalCB ()

36 {

37 // accept the new goal

38 turtleControl :: moveTurtleGoal goal = *as_.acceptNewGoal ();

39 //save the goal as private variables

40
41 x = goal.x;

42 y = goal.y;

43 theta = goal.theta;

44
45 target_angle_1 = atan2(y,x);

46 target_distance = sqrt(pow(x,2) + pow(y,2));

47 target_angle_2 = theta;

48
49 result.x = x;

50 result.y = y;

51 result.theta = theta;

52 // turtle_step = 0;

53 start_edge = true;

54
55 // Reset helper variables

56
57 /*

58 edges_ = goal.edges;

59 radius_ = goal.radius;

60
61 // reset helper variables

62 interior_angle_ = ((edges_ -2)*M_PI)/edges_;

63 apothem_ = radius_*cos(M_PI/edges_);

64 // compute the side length of the polygon

65 side_len_ = apothem_ * 2* tan( M_PI/edges_);

66 //store the result values

67 result_.apothem = apothem_;

68 result_.interior_angle = interior_angle_;

69 turtle_step =0;

70 start_edge_ = true;

71 */

72 } // goalCB

73
74 void preemptCB ()

75 {

76 ROS_INFO("%s: Preempted", action_name_.c_str());

77 // set the action state to preempted

78 as_.setPreempted ();

79 }

80
81 void controlCB(const turtlesim ::Pose:: ConstPtr& msg)

82 {

83 // make sure that the action hasn’t been canceled

84 if (!as_.isActive ()) {

85 // printf ("Shape action not active. Returning .\n");

86 return;

87 }

88
89 // scalar values for driving the turtle faster and straighter

90 double l_scale = 6.0;

91 double a_scale = 6.0;

92 double error_tol = 0.00001;

93
94 if (start_edge)

95 {

96 start_x = msg ->x;
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97 start_y = msg ->y;

98 start_angle = msg ->theta;

99 start_edge = false;

100 }

101
102 theta_1_error = angles :: normalize_angle_positive(target_angle_1 -

103 (msg ->theta - start_angle));

104
105 theta_2_error = angles :: normalize_angle_positive(target_angle_2 -

106 (msg ->theta - start_angle));

107
108 distance_error = target_distance -

109 fabs(sqrt((start_x - msg ->x)*(start_x -msg ->x) + (start_y -msg ->y)*(start_y -msg ->y)));

110
111 // Angle 1

112 if (fabs(theta_1_error) > error_tol && distance_error > error_tol)

113 {

114 printf("Rotating to target angle 1: %8.5f.\n", target_angle_1);

115 command.linear = 0;

116 command.angular = a_scale * theta_1_error;

117 }

118 // Linear distance

119 else if (distance_error > error_tol)

120 {

121 printf("Moving distance: %8.5f.\n", target_distance);

122 command.linear = l_scale * distance_error;

123 command.angular = 0;

124 }

125 // Angle 2

126 else if (fabs(theta_2_error) > error_tol)

127 {

128 printf("Rotating to target angle 2: %8.5f.\n", target_angle_2);

129 command.linear = 0;

130 command.angular = a_scale * theta_2_error;

131 }

132 else

133 {

134 command.linear = 0;

135 command.angular = 0;

136 start_edge = true;

137
138 ROS_INFO("%s: Succeeded", action_name_.c_str());

139 as_.setSucceeded(result);

140 }

141
142 // Publish the velocity command.

143 pub_.publish(command);

144
145
146 }

147
148 protected:

149
150 ros:: NodeHandle nh_;

151 actionlib :: SimpleActionServer <turtleControl :: moveTurtleAction > as_;

152 std:: string action_name_;

153
154 double x, y, theta;

155 double target_angle_1 , target_angle_2 , target_distance;

156
157 // scalar values for driving the turtle faster and straighter

158 // double l_scale = 6.0;

159 // double a_scale = 6.0;

160 // double error_tol = 0.00001;

161
162 // double radius_ , apothem_ , interior_angle_ , side_len_;

163 double start_x , start_y , start_angle;

164 double theta_1_error , theta_2_error , distance_error;

165 // int edges_ , turtle_step;

166 bool start_edge;

167 turtlesim :: Velocity command;

168 turtleControl :: moveTurtleFeedback feedback_;

169 turtleControl :: moveTurtleResult result;

170 ros:: Subscriber sub_;

171 ros:: Publisher pub_;

172 };

173
174 /*

175
176
177 int main(int argc , char** argv)

178 {

179 ros::init(argc , argv , "turtle_motion ");

180
181 moveTurtle action(ros:: this_node :: getName ());

182 ros::spin();

183
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184 return 0;

185 }

186
187 */

A.1.18 turtleControl client.h

1 #include <ros/ros.h>

2 #include <actionlib/client/simple_action_client.h>

3 #include <actionlib/client/terminal_state.h>

4 #include <turtleControl/moveTurtleAction.h>

5
6 int main (int argc , char **argv)

7 {

8 ros::init(argc , argv , "test_shape");

9
10 // create the action client

11 // true causes the client to spin it’s own thread

12 // actionlib :: SimpleActionClient <turtle_actionlib :: ShapeAction > ac(" turtle_shape", true);

13 actionlib :: SimpleActionClient <turtleControl :: moveTurtleAction > ac("turtle_motion", true);

14
15 ROS_INFO("Waiting for action server to start.");

16 // wait for the action server to start

17 ac.waitForServer (); //will wait for infinite time

18
19 ROS_INFO("Action server started , sending goal.");

20 // send a goal to the action

21 turtleControl :: moveTurtleGoal goal;

22
23
24 goal.x = -2.0;

25 goal.y = 0;

26 goal.theta = M_PI /3;

27 ac.sendGoal(goal);

28
29 //wait for the action to return

30 bool finished_before_timeout = ac.waitForResult(ros:: Duration (40.0));

31
32 if (finished_before_timeout)

33 {

34 actionlib :: SimpleClientGoalState state = ac.getState ();

35 ROS_INFO("Action finished: %s",state.toString ().c_str());

36 }

37 else

38 {

39 ROS_INFO("Action did not finish before the time out.");

40 }

41
42 /*

43 goal.x = 3.0;

44 goal.y = 3.0;

45 goal.theta = 2*M_PI /3;

46 ac.sendGoal(goal);

47
48 //wait for the action to return

49 finished_before_timeout = ac.waitForResult(ros:: Duration (40.0));

50
51 if (finished_before_timeout)

52 {

53 actionlib :: SimpleClientGoalState state = ac.getState ();

54 ROS_INFO (" Action finished: %s",state.toString ().c_str());

55 }

56 else

57 {

58 ROS_INFO (" Action did not finish before the time out.");

59 }

60
61 */

62
63
64 //exit

65 return 0;

66
67 }

A.1.19 turtleControl server.h

1 #include <ros/ros.h>

2 #include <turtlesim/Pose.h>

3 #include <turtlesim/Velocity.h>

4 #include <actionlib/server/simple_action_server.h>

5 #include <turtleControl/moveTurtleAction.h>
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6 #include <cmath >

7 #include <math.h>

8 #include <angles/angles.h>

9 #include "turtleControl.h"

10
11
12 int main(int argc , char** argv)

13 {

14 ros::init(argc , argv , "turtle_motion");

15
16 moveTurtle action(ros:: this_node :: getName ());

17 ros::spin();

18
19 return 0;

20 }
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A.2 Matlab Code

This appendix includes Matlab code to support the research of chapters 2, 3
and 4. Programs specifically related to the experimentation of chapter 2 may be found
in Appendix A.2.5. Top level programs related to the experimentation of chapters 3
and 4 include:

• gestureLrnList.m: This program emulates gestureLrnList.cpp. This pro-
gram is capable of all methods tested in chapter 3 including those not covered by
the C++ implementation (node insertion/deletion, policy freezing for trained
nodes, and resistance distance).

• gl oneShot.m: This program implements the use model described in section
4.1.2.

• gl kNN.m: This program emulates gl oneShot.m for the kNN algorithm.

A.2.1 Gesture Recognition Tools

A.2.1.1 calc di ideal.m

1 % This script generates a collection of seperable points 3D points.

2 % Each set of three 3d points constitutes a Dynamic Instant (DI).

3
4 numGestureTypes = 3;

5 numDIsPerSample = 5;

6
7 % ---------------------------------------------------------------

8 % Read in DI data

9 % ---------------------------------------------------------------

10 % Read in an existing DI list to match its randomness.

11 fprintf(’Reading in DI data\n’);

12 DIdata = dlmread(’/home/pyanik/ros_workspace/kinect/bin/DIs_750_ideal.txt’);

13
14 % Each DI consists of [gestureType ],[DInum], [x,y,z] = 4x1

15
16 [rows ,cols] = size(DIdata);

17
18 % k = 0;

19 % for i=1: rows

20 % rowType = DI_Data(i,1);

21 % for j=1: numDIsPerSample

22 % start = (j*3)+(j-1);

23 % stop = (start + 2);

24 % DI_array{rowType ,j}(end +1 ,1:5) = [rowType , j, DI_Data(i,start:stop)];

25 % end

26 % end

27
28 % ---------------------------------------------------------------

29 % Generate the randomized ideal DIs

30 % ---------------------------------------------------------------

31 outFileName = ’/home/pyanik/ros_workspace/kinect/bin/DIs_750_ideal_3vec.txt’;

32
33 seeds = cell(numGestureTypes , numDIsPerSample);

34
35 for i=1: numGestureTypes

36 for j=1: numDIsPerSample

37 seeds{i,j}(1 ,1:3) = [2*j, 2*1, 2*i];

38 end

39 end

40
41 numSamples = 250;

42 numDIsPerSample = 5;

43 DIs = cell(numGestureTypes ,numDIsPerSample);

44 marginVal = 0.3;

45
46
47 for i=1: numGestureTypes
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48 for j=1: numDIsPerSample

49
50 m = seeds{i,j}(1 ,1:3);

51
52 rmin = m(1 ,1:3) - marginVal;

53 rmax = m(1 ,1:3) + marginVal;

54
55
56 for k=1: numSamples

57
58 DIs{i,j}(k,1) = i+0.0001;

59
60 for q=1:3

61 a = rmin(1,q);

62 b = rmax(1,q);

63
64 num = a + (b-a).*rand (1,1);

65 DIs{i,j}(k,q+1) = num;

66 end

67
68 end

69 end

70 end

71
72
73 % ---------------------------------------------------------------

74 % Plot DIs

75 % ---------------------------------------------------------------

76 fprintf(’Plotting Ideal DIs.\n’);

77
78
79 for i=1: numGestureTypes

80 for j=1: numDIsPerSample;

81 switch j

82 case 1

83 c = ’r.’;

84 case 2

85 c = ’g.’;

86 case 3

87 c = ’b.’;

88 case 4

89 c = ’m.’;

90 case 5

91 c = ’c.’;

92 otherwise

93 fprintf(’Bad numPtClouds %d.\n’,j);

94 end

95
96 plot3(DIs{i,j}(: ,2), DIs{i,j}(:,3), DIs{i,j}(: ,4),c);

97 hold on;

98
99

100 end

101 end

102
103 hold off;

104
105 xlabel(’X’); ylabel(’Y’); zlabel(’Z’);

106 title(’Idealized Dynamic Instants for straight trajectories ’);

107 legend(’DI 1’, ’DI 2’, ’DI 3’, ’DI 4’, ’DI 5’, ’Location ’, ’Northeast ’);

108
109
110 % Reformat DIs to the format expected by gestureLrn.cpp

111 outArray = zeros(rows ,cols);

112 typePtrs = zeros(numGestureTypes , 1); % Pointers into gen_DI_array

113
114
115 for i=1: rows

116 rowType = DIdata(i,1);

117 typePtrs(rowType ,1) = typePtrs(rowType ,1) + 1;

118 a = typePtrs(rowType ,1);

119
120 outArray(i,1) = rowType;

121
122 for j=1: numDIsPerSample

123 start = (j*4) -2;

124 stop = (start + 3);

125 oneDI = DIs{rowType ,j}(a ,1:4);

126 outArray(i,start:stop) = oneDI;

127 end

128
129 end

130
131
132
133
134
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135
136 % Write out the idealized DI file.

137
138 dlmwrite(outFileName ,outArray ,’delimiter ’,’ ’,’precision ’, ’%d’, ’precision ’, ’%12.8f’);

139
140
141
142 fprintf(’Printed %d DIs to file %s. Done.\n’, size(outArray ,1), outFileName);

143 fprintf(’Done.\n’);

A.2.1.2 calc err.m

1 % Function name: calc_err

2 %

3 % This function calculates the average error for a number of runs

4 % of gestureLrnList over a common number of epochs. This is for the

5 % purpose of comparing different scenarios (e.g. neighborhood vs. no

6 % neighborhood).

7
8 function [] = calc_err(realIdeal , hoodRadius , numEpochs , numRuns);

9
10 baseFileStr = [’/home/pyanik/ros_workspace/kinect/bin/batch_data/rawData_ ’,realIdeal ,’_radius ’,num2str(hoodRadius

),’_run’];

11
12 per_run_error = zeros(numRuns ,1);

13 avg_run_error = 0;

14
15
16 for run=1: numRuns

17
18 fileName = [baseFileStr ,num2str(run)];

19 fileData = dlmread(fileName);

20
21 numGestures = 3;

22 come = 1;

23 go = 2;

24 stop = 3;

25
26
27 totalSamples = size(fileData ,1);

28 samplesPerEpoch = totalSamples/numEpochs;

29
30 sampleCounts = zeros(numGestures ,1);

31 epochAvgs = zeros(numGestures , numEpochs);

32
33 epoch_GNG_AvgE = zeros(numEpochs ,1);

34
35
36 % Find the number of gestures of each type sampled.

37 for i=1: totalSamples

38
39 gestType = fileData(i,1);

40
41 sampleCounts(gestType ,1) = sampleCounts(gestType ,1) + 1;

42
43 end

44
45 sampleCounts = sampleCounts / numEpochs;

46
47 % fprintf(’Come = %3d, go = %3d, stop = %3d.\n’, ...

48 % sampleCounts (1,1), sampleCounts (2,1), sampleCounts (3,1));

49
50
51 k = 0;

52 for i=1: numEpochs

53
54 oneEpochAvgs = zeros(numGestures , 1);

55
56 avgE = 0;

57
58 for j=1: samplesPerEpoch

59
60 k = k + 1;

61
62 gestType = fileData(k,1);

63 error = fileData(k,2);

64
65 % Add up error for each gesture type.

66 oneEpochAvgs(gestType ,1) = oneEpochAvgs(gestType ,1) + error;

67
68 % Add up the GNG cloud error (column 3).

69 % avgE = avgE + fileData(k,3);

70
71 end

72
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73 % epoch_GNG_AvgE(i,1) = avgE / samplesPerEpoch;

74
75
76 for j=1: numGestures

77
78 oneEpochAvgs(j,1) = oneEpochAvgs(j,1)/sampleCounts(j,1);

79
80 end

81
82
83 epochAvgs(:,i) = oneEpochAvgs;

84
85 per_run_error(run ,1) = per_run_error(run ,1) + sum(oneEpochAvgs);

86
87
88 end

89
90 % Average the per_run_error over the number of epochs.

91 per_run_error(run ,1) = per_run_error(run ,1);

92
93 fprintf(’Run %3d error = %12.3f\n’, run , per_run_error(run ,1));

94
95
96 end % runs

97
98 avg_run_error = sum(per_run_error)/numRuns;

99
100 fprintf(’Avg run error for %d runs is %12.3f\n’, numRuns , avg_run_error);

101 fprintf(’Done.\n’);

A.2.1.3 countNodeRwds.m

1 function [hotCnt ,warmCnt ,coldCnt] = countNodeRwds(A,P)

2 % -------------------------------------------------------------------------

3 % Function name: countNodeRwds

4 % Author: Paul Yanik

5 %

6 % Description: This function counts the number of nodes in the GNG A

7 % matrix having hot/warm/cold rewards and returns the respective count

8 % values. It may be used to create another factor for adding new GNG nodes

9 % such as a condition for new_node_needed.

10 % -------------------------------------------------------------------------

11
12 numNodes = size(A,1);

13
14 hotCnt = 0;

15 warmCnt = 0;

16 coldCnt = 0;

17
18
19 for i = 1: numNodes

20
21 thisRwd = A(i,P.reward);

22
23 switch thisRwd

24
25 case P.warm

26 warmCnt = warmCnt + 1;

27
28 case P.hot

29 hotCnt = hotCnt + 1;

30
31 case P.cold

32 coldCnt = coldCnt + 1;

33
34 otherwise

35 fprintf(’ERROR - Invalid reward value = %d\n’, thisRwd);

36
37 end % switch

38 end

39
40
41 end % function

A.2.1.4 findNearHood.m

1 % -------------------------------------------------------------------------

2 % Script name: findNearHood

3 % Author: Paul Yanik

4 %

5 % Description: This script selects the nodes within a mean neighborhood

6 % radius of a given reference node (NN). It uses the list of all connected

7 % nodes generated in gng.adjustNeighbors (N).
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8 % -------------------------------------------------------------------------

9
10 numNeighbors = size(N,1);

11
12 fvec1 = P.fvec1;

13 fvec2 = P.fvec2;

14
15 % Store the distances of each neighbor from the winner (NN).

16 distances = zeros(numNeighbors ,1);

17 for i=1: numNeighbors

18
19 distances(i,1) = norm(NN(fvec1:fvec2) - N(i,fvec1:fvec2));

20
21 N(i,P.Q) = norm(N(i,fvec1:fvec2));

22
23 end

24 mean_distance = mean(distances);

25
26 % Generate the nearHood list.

27 for i=1: numNeighbors

28
29 if (distances(i,1) < mean_distance)

30
31 nearN(end+1,:) = N(i,:);

32
33 end

34
35 end

A.2.1.5 genAction xyt.m

1 % -------------------------------------------------------------------------

2 % Script name: genAction_xyt

3 % Author: Paul Yanik

4 %

5 % Description:

6 % This script generates a [robotic] action on (x,y,t) space.

7 % Several methods for generating this action are currently populated.

8 % Others may be added by augmenting the options for the ’hoodRadius ’

9 % variable. The GNG network cloud is used to determine the node

10 % with the best action to emulate based on expected reward and distance

11 % from a winning refrence node (NN).

12 % -------------------------------------------------------------------------

13
14 % compareANN(A,NN,P,’GenAct1 ’);

15
16 reward = P.reward;

17 Q = P.Q;

18 act1 = P.act1;

19 act2 = P.act2;

20 last1 = P.last1;

21 last2 = P.last2;

22 nodeLabel = P.nodeLabel;

23 ancestor = P.ancestor;

24 warm = P.warm;

25 hot = P.hot;

26 cold = P.cold;

27 step_size = P.step_size;

28 angle_delta = P.angle_delta;

29
30 numNodes = max(A(:, nodeLabel) ,1);

31 Arows = size(A,1);

32
33
34 % Add the winner node (NN) to its neighborhood list (N).

35 NN_Q = norm(NN(1,act1:act2));

36
37
38
39 % Choose neighborhood radius and assign neighbors within it to nearN.

40 nearN = [];

41 if (hoodRadius == 7) % kNN

42
43 % The neighborhood is already defined.

44 nearN = kNN_hood;

45
46 % Set NN to be the first in the kNN_hood.

47 % NN = kNN_hood (1,:);

48
49
50 elseif (hoodRadius == 6) % Resistance distance

51
52 Omega = resDist(C, P.v1, P.v2, P.edgeLen_col);

53
54 thisNode = NN(1,nodeLabel);
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55
56 [val , minNodeLabel] = min(Omega(thisNode ,:));

57
58
59 % Assign nearN to be the node with minNodeLabel.

60 for z=1: Arows

61
62 % A(z,Q) = norm(A(z,act1:act2));

63
64 if (A(z,nodeLabel) == minNodeLabel)

65 nearN (1,:) = A(z,:);

66
67 % fprintf(’Got One.\n’);

68
69 % Recalculate Q values

70 % A(z,Q) = norm(A(z,act1:act2));

71
72 end

73 end

74
75 % Add NN to the near neighborhood if not already there.

76 if (size(nearN ,1) == 0)

77 nearN = NN;

78 elseif (nearN(1,nodeLabel) ~= NN(1,nodeLabel))

79 nearN(end+1,:) = NN;

80 % fprintf(’GOT ONE\n’);

81 end

82
83 elseif (hoodRadius == 5) % clumpiness

84
85 clumpMat = clumpiness(C,P,A);

86
87 % Choose the node with largest clumpiness coefficient for thisNode.

88 thisNode = NN(1,nodeLabel);

89 [val ,max_nodeLabel] = max(clumpMat(thisNode ,:));

90
91
92 % Assign nearN to be the node with max_nodeLabel.

93 for z=1: numNodes

94
95 if ((A(z,nodeLabel) == max_nodeLabel))

96 nearN (1,:) = A(z,:);

97 end

98 end

99
100 % Add NN to the near neighborhood if not already there.

101 if (size(nearN ,1) == 0)

102 nearN = NN;

103 elseif (nearN(1,nodeLabel) ~= NN(1,nodeLabel))

104 nearN(end+1,:) = NN;

105 end

106
107
108
109 elseif (hoodRadius == 4) % Floyd

110
111 thisNode = NN(1,nodeLabel);

112
113 D = floyd(C,P,A);

114
115 % Disallow a node choosing itself as nearest neighbor.

116 for i=1: size(D,1);

117 D(i,i) = inf;

118 end

119
120 % Search all nodes with reward = 1.

121 % Choose the nearest one that is longer than the current Q.

122
123 % Rule out nodes with reward = -1 by making their distance inf in D.

124 for z=1: Arows

125 if ((A(z,reward) == -1))

126
127 D_index = A(z,nodeLabel);

128
129 % Rule out nodes with reward = -1.

130 D(D_index ,thisNode) = inf;

131 D(thisNode ,D_index) = inf;

132 end

133 end

134
135 % Rule out nodes with shorter Q values shorter than NN.

136 for z=1: Arows

137 if (A(z,reward) == 1)

138
139 % Recalculate Q.

140 A(z,Q) = norm(A(z,act1:act2));

141
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142 if (A(z,Q) <= NN_Q)

143
144 D_index = A(z,nodeLabel);

145
146 D(D_index ,thisNode) = inf;

147 D(thisNode ,D_index) = inf;

148
149 end

150 end

151 end

152
153
154 [val ,min_nodeLabel] = min(D(thisNode ,:));

155
156 % Assign nearN to be the node with min_nodeLabel (i.e. the closest).

157 for z=1: Arows

158
159 if (A(z,nodeLabel) == min_nodeLabel)

160
161 nearN = A(z,:);

162 break;

163
164 end

165 end

166
167 % Add NN to the near neighborhood if not already there.

168 if (size(nearN ,1) == 0)

169 nearN = NN;

170 elseif (nearN(1,nodeLabel) ~= NN(1,nodeLabel))

171 nearN(end+1,:) = NN;

172 end

173
174
175
176 elseif (hoodRadius == 3)

177
178 % Use all neighbors.

179 nearN = N;

180 nearN(end+1,:) = NN;

181
182 elseif (hoodRadius == 2)

183
184 % Use neighbors within a lesser radius.

185 nearN(end+1,:) = NN;

186 findNearHood;

187 % print_N(nearN ,P);

188
189 elseif (hoodRadius == 1)

190
191 % Use only the winner itself (NN).

192 nearN(end+1,:) = NN;

193 if (size(nearN ,1) > 1)

194 fprintf(’BADLY SIZED neighborhood !!!!!\n’);

195 end

196
197 else fprintf(’Bad scenario: hoodRadius = %d.\n’, hoodRadius);

198 end

199
200
201 % t5 = tic;

202
203 if (NN(1,reward) == hot)

204
205 % Do nothing.

206 % fprintf(’HOT =%3d ’, NN(1,nodeLabel));

207
208 else ...

209
210 % Find the near neighborhood member with max Q and

211 % reward = 1 (if it exists).

212 numNbrs = size(nearN ,1);

213
214 maxQ = -99;

215 maxQnode = -99;

216 foundOne = 0;

217 x = -99;

218 y = -99;

219 theta = -99;

220 this_reward = -99;

221
222
223 for i=1: numNbrs

224
225 if (nearN(i,reward) == cold)

226 action = nearN(i,last1:last2);

227 else action = nearN(i,act1:act2);

228 end
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229
230 this_Q = norm(action);

231
232 if (this_Q > maxQ)

233
234 maxQ = this_Q;

235
236 x = action (1);

237 y = action (2);

238 theta = action (3);

239 this_reward = nearN(i,reward);

240
241 maxQNode = i;

242
243 end

244
245 end % for numNbrs

246
247
248 [t,p,r] = cart2sph(x,y,theta);

249
250
251 % Lengthen action vector if needed.

252 % if (( this_reward == warm) || (r == 0))

253 if (this_reward == warm) % Maintain current angle.

254
255 r = r + step_size;

256
257 end

258
259 if (this_reward == cold)

260
261 if (r == 0)

262 % Cast about until we find a warmer direction.

263 p = rand_in_range(-pi,pi);

264 t = rand_in_range(-pi,pi);

265 r = r + step_size;

266 else ...

267
268 % Adjust the action vector by a small angular correction.

269 p = p + rand_in_range(-angle_delta/r, angle_delta/r);

270 t = t + rand_in_range(-angle_delta/r, angle_delta/r);

271 end

272
273 end

274
275 [x,y,theta] = sph2cart(t,p,r);

276
277 % Apply the action/last/ancestor/reward of nearN(maxQnode) to NN.

278 switch(this_reward)

279
280 case hot

281
282 NN(1,last1:last2) = nearN(maxQNode ,act1:act2);

283 NN(1,act1:act2) = nearN(maxQNode ,act1:act2);

284 NN(1,ancestor) = nearN(maxQNode ,nodeLabel);

285
286 % Do not assign reward. The neighbor from which the

287 % reward is taken may be hot , but reward by the user may

288 % end up being warm or cold.

289 % NN(1,reward) = nearN(maxQNode ,reward);

290
291 case warm

292
293 % Set last to the current action.

294 NN(1,last1:last2) = nearN(maxQNode ,act1:act2);

295 NN(1,act1:act2) = [x,y,theta ];

296 NN(1,ancestor) = nearN(maxQNode ,nodeLabel);

297
298 case cold

299
300 % No change to ’last ’

301 NN(1,act1:act2) = [x,y,theta ];

302 NN(1,ancestor) = nearN(maxQNode ,nodeLabel);

303
304 otherwise % Do nothing.

305
306 end % switch

307
308
309 end

310
311 % t5e = toc(t5);

312
313
314 NN(1,Q) = norm(NN(1,act1:act2));

315
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316 % compareANN(A,NN,P,’GenAct2 ’);

A.2.1.6 genGaussDIs.m

1 function [] = genGaussDIs(N,DIs_outFile)

2 % -------------------------------------------------------------------------

3 % This function generates a gaussian distribution of dynamic instants (DI)

4 % based on a set of input training gestures (1 sample per gesture).

5 % The output is intended to be similar to an ideal data set with nominal

6 % variation among DIs. Note that this assumes the covariance matrix for

7 % each canddiate gesture is the identity matrix.

8 %

9 % The input training data is assumed to be if the form:

10 % [class , vector (1: vecSize)]

11 %

12 % The computation of the unbiased covariance matrix estimate is taken

13 % from Pattern Recognition (Schalkoff ,1992) , p. 62. The matlab cov function

14 % emulates this computation.

15 %

16 % DIs are written to the fileName specified by the user as "DIs_outFile ".

17 % -------------------------------------------------------------------------

18
19 % Load the input file.

20 inFile_data = load(’/home/pyanik/ros_workspace/kinect/bin/DIs_750_real.txt’, ’ascii’);

21
22
23 % Find the mean DI for each type among the input data.

24 d = size(inFile_data ,2) - 1;

25 types2find = unique(inFile_data (:,1))’;

26 numSamples = size(inFile_data ,1);

27 numTypes = size(types2find ,2);

28 meanDIs = zeros(numTypes ,d+1);

29
30 k = 0;

31 for i = types2find

32
33 thisType = i;

34
35 % Store the gesture type in column 1.

36 k = k + 1;

37 meanDIs(k,1) = thisType;

38
39 % Extract the samples of the current type

40 samples = [];

41 for j = 1: numSamples

42 if (inFile_data(j,1) == thisType)

43 samples(end+1,1:d) = inFile_data(j,2:end);

44 end

45 end

46
47 for j = 1:d

48 meanDIs(k,1+j) = mean(samples(:,j));

49 end

50
51 end

52
53 % Set up a matrix for the output points.

54 DIs_gauss = zeros(N*numTypes ,d+1);

55
56 k = 0;

57 b = 0;

58 for i = types2find

59
60 thisType = i;

61
62 % The data (1 sample) is the mean for that gesture type.

63 b = b + 1;

64 u = meanDIs(b,2: end);

65
66 % Assume a spherical point cloud for the data by making covariance

67 % matrix equal to the identity matrix.

68 covMat = eye(d)*(0.001* max(max(inFile_data (:,2:end))));

69
70 % Generate N Gaussian DIs.

71 generated_vectors = mgd(N,d,u,covMat);

72
73 % Store the generated vectors.

74 for m = 1:N

75 k = k + 1;

76 temp(k,2:d+1) = generated_vectors(m,:);

77 temp(k,1) = int32(thisType);

78 end

79
80 end

81
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82
83
84 % Randomize the generated vectors.

85 k = size(DIs_gauss ,1);

86 for i = 1:k

87
88 foundOne = 0;

89
90 % Generate random indices until an unused

91 % location in DIs_gauss is found.

92 while(foundOne == 0)

93
94 g = randi(k,[1 ,1]);

95
96 if (DIs_gauss(g,1) == 0)

97 DIs_gauss(g,:) = temp(i,:);

98 foundOne = 1;

99 end

100 end

101 end

102
103
104 % Write the output file.

105 save(DIs_outFile ,’DIs_gauss ’,’-ascii ’);

106
107 % % Plot the data (for a test).

108 % plot(temp (1:N,2),temp (1:N,3) ,’r.’, ...

109 % temp(N+1:2*N,2),temp(N+1:2*N,3) ,’b.’, ...

110 % temp (2*N+1:N*3,2),temp (2*N+1:3*N,3) ,’g.’);

111
112
113
114
115 end % function

A.2.1.7 gestureLrnList.m

1 function [] = gestureLrnList(descr_file , numEpochs , hoodRadius , kNN)

2 % -------------------------------------------------------------------------

3 % Function name: gestureLrnList

4 % Author: Paul Yanik

5 %

6 % Description:

7 % This function emulates gestureLrnList.cpp. It reads in a descriptor list

8 % (of DIs) from a file and applies them to the GNG algorithm in series.

9 % One pass throught the input data constitutes an epoch. The ’hoodRadius ’

10 % variable denotes the number/types of neighbors used to accelerate

11 % learning. The meanings of values for hoodRadius can be found in

12 % genAction_xyt.m.

13 % -------------------------------------------------------------------------

14
15 params;

16 read_A;

17 read_C;

18
19
20 new_node_needed = 0;

21 neighbors_used = 0;

22 neighbors_used_successfully = 0;

23 oneShot = 0;

24
25
26
27 % Read in DIs from file.

28 [featureVecs , classNums , numSamples] = read_descriptor_list(descr_file);

29
30 % Results array for one run of numEpochs.

31 % Format of results: [classNum , Err].

32 results_array = zeros(numSamples*numEpochs , 2);

33
34
35 % Run numEpochs

36 for epoch = 1: numEpochs

37
38 fprintf(’Epoch = %3d, nodes = %3d\n’, epoch , size(A,1));

39
40 for sample = 1: numSamples

41
42 vec_in = featureVecs(sample ,:);

43 gestureClass = classNums(sample ,1);

44
45
46 gng;

47
48 genAction_xyt;

180



49
50 getResponse_warmerColder;

51
52
53 if (( hoodRadius == 5) || (hoodRadius == 4))

54 fprintf(’Ep=%2d, Smpl =%3d, n=%3d\n’,epoch ,sample ,size(A,1));

55 end

56
57
58
59
60 end

61
62 end

63
64
65 write_results;

66 write_A;

67 write_C;

A.2.1.8 getResponse warmerColder.m

1 % -------------------------------------------------------------------------

2 % Script name: getResponse_warmerColder

3 % Author: Paul Yanik

4 %

5 % Description:

6 % This script emulates getResponseFeedback_warmerColder.cpp

7 % It accepts a NN.action and compares it to a known goal (as would a human

8 % user). If the action moves closer to action than the last action then

9 % a reward of +1 is assigned. Otherwise a reward of -1 is assigned. If

10 % the goal has been achieved , a reward of 0 is assigned.

11 %

12 % Determine the desired goal for the current classNum

13 % Format of knownGoals: [x, y, t] for [come; go; stop ...] respectively.

14 % -------------------------------------------------------------------------

15 goal = knownGoals(gestureClass ,:);

16
17 % compareANN(A,NN,P,’GetResp1 ’);

18
19
20 action = NN(1,P.act1:P.act2);

21 last = NN(1,P.last1:P.last2);

22
23 mag_dist2goal = norm(goal - action);

24 mag_last2goal = norm(goal - last);

25
26
27 fb = -99;

28 if (mag_dist2goal < P.err_tol)

29
30 % Goal achieved.

31 fb = P.hot;

32
33 elseif (mag_dist2goal < mag_last2goal)

34
35 % Warmer.

36 fb = P.warm;

37
38 elseif (mag_dist2goal >= mag_last2goal)

39
40 % Colder

41 fb = P.cold;

42
43 else ...

44
45 fprintf(’---------- FEEDBACK ERROR ----------\n’);

46
47 end

48
49
50
51 if (kNN ~= 0)

52
53 % Need to alter this according to gl_kNN (training data) or

54 % gl_kNN2 (history buffer).

55
56 NN(1,P.reward) = fb;

57
58 if (kNN_buff ~= 0) % Using a kNN buffer.

59
60 % Comment these lines out for gl_kNN

61 NN(1,P.fvec1:P.fvec2) = vec_in;

62 NN(1,P.nodeLabel) = max(A(:,P.nodeLabel)) + 1;

63 A(end+1,:) = NN;
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64
65 else ... % Using a fixed number of training data points.

66
67 % Put the updated node NN back into A

68 Arows = size(A,1);

69 for i=1: Arows

70
71 if (A(i,P.nodeLabel) == NN(1,P.nodeLabel))

72
73 A(i,:) = NN(1,:);

74
75 break;

76 end

77 end

78
79 end

80
81 else ...

82
83 % This section of code is for the scenario where a node is being

84 % fully trained before any other vectors are considered.

85
86 % Watch for cases where two samples are in the same node ’s receptive

87 % field , but represent different gestures. If this happens , ignore that

88 % sample going forward. In the future , I may add a GNG node when this

89 % happens.

90
91 if ( ((fb == P.cold) || (fb == P.warm)) && (NN(1,P.reward) == P.hot))

92
93 % % If NN is using a response from its neighbor when this happens , set

94 % % the length of the edge between the two nodes to a large value.

95 % if (NN(1,P.nodeLabel) ~= NN(1,P.ancestor))

96 %

97 % thisEdge = [NN(1,P.nodeLabel), NN(1,P.ancestor)];

98 %

99 % [found , index] = edgeExists(C, P.v1, P.v2, thisEdge);

100 %

101 % if (found == 1)

102 %

103 % C(index , P.edgeLen_col) = 999;

104 %

105 % fprintf(’Setting length = 999\n’);

106 %

107 % else

108 %

109 % ignore(sample ,1) = 1;

110 %

111 % fprintf(’Ignoring\n’);

112 %

113 % end

114 %

115 % else

116 %

117 % % Ignore this sample for now. This may not be the right thing to

118 % % do in the long run. We may need to add a new node to the GNG

119 % % cloud since receptive fields may be large.

120 %

121 % ignore(sample ,1) = 1;

122 %

123 % end

124
125 % % Determine if this node site is a good candidate

126 % % for insertion of a new node.

127 %

128 % % Find the node adjacency matrix

129 % Av = nodeAdjacency(C,P);

130 % % Find the nodeDegree matrix (number of connections)

131 % [k, K_matrix] = nodeDegree(Av);

132 % thisNode = NN(1,P.nodeLabel);

133 % % A good insertion site has node degree less than average.

134 % goodInsertionSite = (k(thisNode ,1)/mean(k) < 1);

135
136
137 if (oneShot == 1)

138
139 ignore(sample ,1) = 1;

140
141 % Inflate the error at this node so that a new node

142 % is more likely to be added here.

143
144 maxE = max(A(:,P.E));

145 NN(1,P.E) = maxE + 1;

146
147 % Artificially age the node with oldest connections if

148 % numNodes > maxNodeCnt so that it will be most likely

149 % to be deleted.

150 ageColdNode;
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151
152 end

153
154
155 else

156
157
158 NN(1,P.reward) = fb;

159
160 end

161
162 % Put the updated node NN back into A

163 Arows = size(A,1);

164 for i=1: Arows

165
166 if (A(i,P.nodeLabel) == NN(1,P.nodeLabel))

167
168 A(i,:) = NN(1,:);

169
170 break;

171 end

172 end

173
174 end

175
176
177
178 % Put results in the results matrix.

179 index = ((epoch -1)*numSamples)+sample;

180 results_array(index , 1:3) = [gestureClass , epoch , mag_dist2goal ];

181
182 % % Count the number of non -neighbor successful responses.

183 % if (NN(1,P.ancestor) ~= NN(1,P.nodeLabel))

184 %

185 % neighbors_used = neighbors_used + 1;

186 %

187 % NN_reward = NN(1,P.reward);

188 %

189 % if (( NN_reward == 1) || (NN_reward == 0))

190 % neighbors_used_successfully = neighbors_used_successfully + 1;

191 % end

192 %

193 % end

A.2.1.9 gl oneShot.m

1 function [] = gl_oneShot(descr_file , numEpochs , hoodRadius , kNN)

2 % -------------------------------------------------------------------------

3 % Function name: gl_oneShot

4 % Author: Paul Yanik

5 %

6 % Description:

7 % This function emulates gestureLrnList.cpp except that a single gesture

8 % sample is allowed to receive feedback until it is fully trained.

9 %

10 % kNN is a true/false (1/0) value that turns on a block of code in

11 % getResponse_warmerColder.m

12 % -------------------------------------------------------------------------

13
14 tic

15
16 % descr_file = ’DIs_450_real_tst.txt ’;

17 % numEpochs = 250;

18 % hoodRadius = 1;

19
20 % This file contains runtime parameters for gestureLrn.

21 params;

22
23
24
25 neighbors_used = 0;

26 neighbors_used_successfully = 0;

27 hot_nodes = 0;

28 oneShot = 1;

29 max_training_iterations = 1000;

30
31 % Read in the trained A and C matrices.

32 read_A;

33 read_C;

34 compareAC(A,C,P,’gl_oneShot ’);

35
36 % Read in DIs from file.

37 [featureVecs , classNums , numSamples] = read_descriptor_list(descr_file);

38
39
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40 % Results array for one run of numEpochs.

41 % Format of results: [classNum , Err].

42 results_array = zeros(numSamples*numEpochs , 2);

43
44 % Create an array of samples to ignore.

45 ignore = zeros(numSamples ,1);

46
47 % Create an indicator for when new nodes should be added.

48 new_node_needed = 0;

49
50 % Record the number of times neighbors were used and

51 % the number of times they were used with improvement.

52 neighbors_used = 0;

53 neighbors_used_successfully = 0;

54 hot_nodes = 0;

55
56
57 % Run numEpochs

58 total_iterations = 0;

59 for epoch = 1: numEpochs

60
61
62 fprintf(’Epoch = %d \n’, epoch);

63 ignore = zeros(numSamples ,1);

64 numIgnored = 0;

65
66
67 for sample = 1: numSamples

68
69 vec_in = featureVecs(sample ,:);

70 gestureClass = classNums(sample ,1);

71
72 % Add a new node to the GNG cloud if a sample was ignored.

73 % Look for change:

74 [hotCnt ,warmCnt ,coldCnt] = countNodeRwds(A,P);

75
76 % new_node_needed = (((sum(ignore (:,1)) > numIgnored) && ...

77 % (hoodRadius ~= 6)) || (coldCnt == 0));

78
79 new_node_needed = (((sum(ignore (:,1)) > numIgnored)) || ...

80 (coldCnt == 0));

81
82
83 numIgnored = sum(ignore (:,1));

84 % gng;

85
86 % fprintf(’new_node_needed = %d\n’,new_node_needed);

87
88
89 fb = -99;

90 sample_iterations = 0;

91 % sample_error = 0;

92 while ((fb ~= 0) && (ignore(sample ,1) == 0))

93
94 gng;

95 new_node_needed = 0;

96
97 genAction_xyt;

98
99 getResponse_warmerColder;

100
101 sample_iterations = sample_iterations + 1;

102 if (sample_iterations > max_training_iterations)

103 ignore(sample ,1) = 1;

104 end

105
106 % Floyd and clumpiness - very slow (show progress)

107 if (( hoodRadius == 5) || (hoodRadius == 4))

108 fprintf(’sample_iterations = %4d\n’,sample_iterations);

109 end

110
111
112 end

113
114
115
116
117 if (sample_iterations > 0)

118 sample_iterations = sample_iterations - 1;

119 end

120
121 % Put results in the results matrix.

122 index = ((epoch -1)*numSamples)+sample;

123 results_array(index , 1:2) = [gestureClass , mag_dist2goal ];

124
125 total_iterations = total_iterations + sample_iterations;

126
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127 fprintf(’ep=%d, smpl = %d, itns= %d, tot= %d, nodes= %d\n’, ...

128 epoch ,sample ,sample_iterations ,total_iterations ,size(A,1));

129
130 % compareAC(A,C,P,’Epochs2 ’);

131
132 end

133
134 fprintf(’ Ignrd = %d\n’,sum(ignore));

135
136
137
138
139 end

140
141
142 ignoreCnt = sum(ignore);

143 avg_iterations_per_sample = total_iterations / (numSamples -ignoreCnt);

144
145
146
147 % Count the number of fully trained nodes.

148 Arows = size(A,1);

149 for z=1: Arows

150 if (A(z,P.reward) == 0)

151 hot_nodes = hot_nodes + 1;

152 end

153 end

154
155
156 fprintf(’\n’);

157 fprintf(’SUMMARY RESULTS :\n’);

158 fprintf(’Scenario = %8d\n’, hoodRadius);

159 fprintf(’Total nodes = %8d.\n’, Arows);

160 fprintf(’Trained nodes = %8d.\n’, hot_nodes);

161 fprintf(’Total iterations = %8d.\n’, total_iterations);

162 fprintf(’Samples ignored = %8d.\n’, ignoreCnt);

163 fprintf(’Average = %8.2f\n’, avg_iterations_per_sample);

164 fprintf(’Neighbors used = %8.2f\n’, neighbors_used);

165 fprintf(’Successful Nbrs = %8.2f\n’, neighbors_used_successfully);

166
167
168
169
170 write_results;

171 write_A;

172 write_C;

173
174 % fprintf(’Neighbors used = %d.\n’, neighbors_used);

175
176 toc;

A.2.1.10 gngTrain.m

1
2
3 function [] = gngTrain(descr_file , history , precision)

4 % -------------------------------------------------------------------------

5 % This function trains a Growing Neural Gas cloud based on a collection of

6 % input descriptors. The output is a C.txt and A.txt file that contain the

7 % descriptor fields associated with gesture recognition (params.m).

8 % -------------------------------------------------------------------------

9
10
11 % Read in DIs from file.

12 [featureVecs , classNums , numSamples] = read_descriptor_list(descr_file);

13
14 done = 0;

15 numEpochs = 0;

16
17 % Create a list of average errors (initially large).

18 avgE_history (1: history +1,1) = 9999;

19
20
21 while(done == 0)

22
23 for sample =1: numSamples

24
25 vec_in = featureVecs(sample ,:);

26 gestureClass = classNums(sample ,1);

27
28 gng;

29 end

30
31 % Count the number of training epochs.

32 numEpochs = numEpochs + 1;
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33
34 % Compute the average error for the GNG cloud.

35 avgE = mean(A(:,P.E));

36 avgE_history(history +1,1) = avgE;

37 avgE_history (1: history ,1) = avgE_history (2: history +1,1);

38
39
40 spread = avgE_history (1,1) - avgE_history(history ,1);

41
42 if (abs(spread) < precision)

43
44 done = 1;

45
46 end

47
48 fprintf(’Epoch = %3d, avgE = %8.3f\n’, ...

49 numEpochs , avgE_history(history +1,1));

50
51
52 end % while

53
54
55 write_A;

56 write_C;

57
58 fprintf(’GNG is trained in %3d epochs: nodes = %3d, avgE = %8.3f.\n’, ...

59 numEpochs , numNodes , avgE);

A.2.1.11 params.m

1 % -------------------------------------------------------------------------

2 % Script name: params

3 % Author: Paul Yanik

4 %

5 % Description:

6 % This parameter structure contains static runtime parameters for

7 % gestureLrnList (or similar) calling functions. The P data structure

8 % passes numerous useful parameters into the functions.

9 % -------------------------------------------------------------------------

10
11 numFeatures = 20;

12
13 kNN = 0;

14
15 if (kNN == 0)

16 num_initial_GNG_nodes = 2;

17 else num_initial_GNG_nodes = 1;

18 end

19
20
21 dataDir = ’/home/pyanik/ros_workspace/kinect/bin/’;

22 workDir = ’/home/pyanik/ros_workspace/kinect/bin/’;

23 A_file = [dataDir ,’A.txt’]; % Use dataDir for C++ generated A matrix.

24 C_file = [dataDir ,’C.txt’]; % Use dataDir for C++ generated C matrix.

25 results_file = [workDir ,’results ’];

26
27
28 % Use the gestureClassNum as a row index into goals matrix.

29 knownGoals = [

30 3.95, 3.95, pi/4; % Come

31 3.95, -3.95, 7*pi/4; % Go

32 -3.95, -3.95, 5*pi/4; % Stop

33 -3.95, 3.95, 3*pi/4; % Eat

34 3.95, 0, 0; % Read

35 0, 3.95, 2*pi/4; % Sleep

36 -3.95, 0, 4*pi/4; % Get

37 0, -3.95, 6*pi/4; % Give

38 3.95, 1.98, 1*pi/8]; % Therapy

39
40
41 % featureVec column start/end subscripts.

42 fvec1 = 14;

43 fvec2 = fvec1+numFeatures -1;

44
45 P = struct( ...

46 ... % C matrix column subscripts

47 ’v1’, 1, ...

48 ’v2’, 2, ...

49 ’age’, 3, ...

50 ’len’, 4, ...

51 ’C_cols ’, 4, ...

52 ’edgeLen_col ’, 3, ... % This will point either to ’age ’ or ’len ’

53 ... % A matrix column subscripts

54 ’numObs ’, 1, ...

55 ’nodeLabel ’, 2, ...
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56 ’numConx ’, 3, ...

57 ’reward ’, 4, ...

58 ’ancestor ’, 5, ...

59 ’Q’, 6, ...

60 ’E’, 7, ...

61 ’act1’, 8, ...

62 ’act2’, 10, ...

63 ’last1’, 11, ...

64 ’last2’, 13, ...

65 ’fvec1’, fvec1 , ...

66 ’fvec2’, fvec2 , ...

67 ’A_cols ’, fvec2 , ...

68 ... % GNG runtime parameters

69 ’ep_w’, 0.05, ...

70 ’ep_n’, 0.0006 , ... % Fritzke uses 0.0006

71 ’ageMax ’, 300, ... % Use a high number for resistance distance.

72 ’alpha’, 0.5, ...

73 ’beta’, 0.0005 , ... % Fritzke uses 0.0005

74 ’lambda ’, 100, ...

75 ’maxNodeCnt ’, 100, ...

76 ... % Action parameters

77 ’come’, 1, ...

78 ’go’, 2, ...

79 ’stop’, 3, ...

80 ’eat’, 4, ...

81 ’read’, 5, ...

82 ’sleep’, 6, ...

83 ’get’, 7, ...

84 ’give’, 8, ...

85 ’therapy ’, 9, ...

86 ’hot’, 0, ...

87 ’warm’, 1, ...

88 ’cold’, -1, ...

89 ’step_size ’, 0.1, ...

90 ’angle_delta ’, pi/18, ...

91 ’err_tol ’, 0.1 ...

92 );

A.2.1.12 plot A.m

1 % -------------------------------------------------------------------------

2 % Script name: plot_A

3 % Author: Paul Yanik

4 % Description: This script reads in the A and C matrices for a GNG cloud

5 % and characterizes each node for its reward characteristics and the total

6 % ages of its connecting edges.

7 % -------------------------------------------------------------------------

8
9 params;

10
11 A = dlmread(A_file);

12 C = dlmread(C_file);

13
14 numNodes = size(A,1);

15 numEdges = size(C,1);

16
17 [Arows , Acols] = size(A);

18 [Crows , Ccols] = size(C);

19
20 % Characterize nodes w.r.t. connection ages.

21 results = zeros(numNodes ,4); % [nodeLabel , rwd , numCnx , totAge]

22 numHot = 0;

23 numWarm = 0;

24 numCold = 0;

25 other = 0;

26 numObs = A(1,P.numObs);

27 for i=1: numNodes

28
29 % Collect node/edge data

30 nodeLabel = A(i,P.nodeLabel);

31 totAge = 0;

32 numCnx = 0;

33 rwd = A(i,P.reward);

34 for j=1: numEdges

35
36 v1 = C(j,P.v1);

37 v2 = C(j,P.v2);

38
39 if (v1 == nodeLabel || v2 == nodeLabel)

40 totAge = totAge + C(j,P.age);

41 numCnx = numCnx + 1;

42 end

43
44 end

45 results(i,1:4) = [nodeLabel ,rwd ,numCnx ,totAge ];
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46
47 % Count reward frequency

48 switch rwd

49 case P.hot

50 numHot = numHot + 1;

51 case P.warm

52 numWarm = numWarm + 1;

53 case P.cold

54 numCold = numCold + 1;

55 % coldList(end+1,1) = A(i,P.nodeLabel);

56 otherwise

57 other = other + 1;

58 end

59
60 end

61
62 fprintf(’\n’);

63 fprintf(’%d Obs , %d Nodes , %d Edges: \n’, numObs , numNodes ,numEdges);

64 fprintf(’%3d hot\n’, numHot);

65 fprintf(’%3d warm\n’, numWarm);

66 fprintf(’%3d cold\n’, numCold);

67 fprintf(’%3d other\n’, other);

68 fprintf(’\n’);

69
70 % fprintf(’Node stats: \n’);

71 %

72 % for i=1: numNodes

73 %

74 % nodeLabel = results(i,1);

75 % rwd = results(i,2);

76 % numCnx = results(i,3);

77 % totAge = results(i,4);

78 %

79 % fprintf(’NodeLabel = %3d, rwd = %2d, numCnx = %2d, totAge = %4d\n’, ...

80 % nodeLabel , rwd , numCnx , totAge);

81 %

82 %

83 %

84 % end

85
86
87 fprintf(’\nDone.\n’);

A.2.1.13 plot di.m

1 function [] = plot_di(mode , gesture_type , DI_filename , participantID);

2 % -------------------------------------------------------------------------

3 % This function plots Dynamic instants for gesture data.

4 % Modes:

5 % 0: plot all DIs of the specified gesture_type.

6 % n: plot DI #n (n = 1...5) for all gesture types.

7 % -------------------------------------------------------------------------

8
9 posData = dlmread(’/home/pyanik/ros_workspace/kinect/bin/POS.txt’);

10
11 DI_path = [’/home/pyanik/ros_workspace/kinect/bin/’,DI_filename]

12 DI_Data = dlmread(DI_path);

13
14 numGestureTypes = 9;

15 numDIsPerSample = 5;

16
17 % Possible gesture_types:

18 come = 1;

19 go = 2;

20 stop = 3;

21 eat = 4;

22 read = 5;

23 sleep = 6;

24 get = 7;

25 give = 8;

26 therapy = 9;

27
28 types = {’COME’,’GO’,’STOP’,’EAT’,’READ’,’SLEEP’,’GET’,’GIVE’,’THERAPY ’};

29
30 % ---------------------------------------------------------------

31 % Read in POS data

32 % ---------------------------------------------------------------

33 fprintf(’Reading POS data.\n’);

34
35 [rows ,cols] = size(posData);

36 numCells = max(posData (:,1));

37
38 % Store samples in a cell array.

39 samples = cell(numCells ,1);

40
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41 % Each sample consists of:

42 % [sampleNum],[dataType],[frameNum],[x, y, z]

43
44 % 1 3 10 0.00799585 0.99651375 0.22241513

45
46 for i=1: rows

47 cellNum = posData(i,1);

48 cellRow = posData(i,3);

49
50 samples{cellNum }(cellRow ,1:5) = posData(i,2:6);

51 end

52
53 % ---------------------------------------------------------------

54 % Read in DI data

55 % ---------------------------------------------------------------

56
57 DI_array = cell(numGestureTypes , numDIsPerSample);

58
59 % Each DI consists of [gestureType ],[DInum], [x,y,z] = 5x1

60
61 fprintf(’Reading in DI data\n’);

62 [rows ,cols] = size(DI_Data)

63 k = 0;

64 for i=1: rows

65 rowType = DI_Data(i,1);

66 for j=1: numDIsPerSample

67 start = (j*3)+(j-1);

68 stop = (start + 2);

69 DI_array{rowType ,j}(end +1 ,1:5) = [rowType , j, DI_Data(i,start:stop)];

70 end

71 end

72
73
74 % ---------------------------------------------------------------

75 % Plot DIs

76 % ---------------------------------------------------------------

77 fprintf(’Plotting DIs.\n’);

78 clf;

79
80 numPtsPerCloud = size(DI_array {1,1},1);

81 if (mode == 0)

82 numPtClouds = numDIsPerSample;

83 titleString = [’All DIs for the ’,types{gesture_type},’ gesture by participant #’,num2str(participantID)];

84 else

85 numPtClouds = numGestureTypes;

86 titleString = [’DI #’, int2str(mode),’ for all gesture types.’];

87 end

88 scatterPts = cell(numPtClouds);

89
90
91 % Extract the cells from DI_array to be scatter plotted.

92 if (mode == 0)

93 % Collect points for the input gesture type.

94 fprintf(’Printing all DIs for gesture type %s.\n’, types{gesture_type });

95 for i=1: numPtClouds

96 scatterPts{i} = DI_array{gesture_type ,i};

97 end

98 else

99 % Collect all DIs of a given index.

100 fprintf(’Printing DI #%d for all gesture types. \n’, mode);

101 for i=1: numPtClouds

102 scatterPts{i} = DI_array{i,mode};

103 % scatterPts{i}(1:5 ,:)

104 end

105 end

106
107 for i=1: numPtClouds

108 switch i

109 case 1

110 c = ’r.’;

111 case 2

112 c = ’g.’;

113 case 3

114 c = ’b.’;

115 case 4

116 c = ’y.’;

117 case 5

118 c = ’c.’;

119 otherwise

120 fprintf(’Bad numPtClouds: %d\n’,numPtClouds);

121 end

122 % fprintf(’Plotting (numPtClouds = %d, i = %d, c = %s)\n’, numPtClouds , i, c);

123 plot3(scatterPts{i}(: ,5),scatterPts{i}(: ,3) ,-scatterPts{i}(:,4),c);

124 hold on;

125
126 end

127 hold off;
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128
129
130 xlabel(’X’); ylabel(’Y’); zlabel(’Z’);

131 title(titleString);

132 if (mode == 0)

133 legend(’DI 1’, ’DI 2’, ’DI 3’, ’DI 4’, ’DI 5’, ’Location ’, ’Northeast ’);

134 else

135 legend(’Come’, ’Go’, ’Stop’, ’Location ’, ’Northeast ’);

136 end

137
138
139
140 fprintf(’Done.\n’);

A.2.1.14 plot epochs2.m

1 function [] = plot_epochs2(scenario , kval);

2
3 fdata = dlmread(’/home/pyanik/ros_workspace/kinect/bin/results ’);

4
5 % Results data format:

6 % results = [gestureType , epochNum , E];

7 type_Col = 1;

8 epoch_Col = 2;

9 E_Col = 3;

10
11
12 come = 1;

13 go = 2;

14 stop = 3;

15 eat = 4;

16 read = 5;

17 sleep = 6;

18 get = 7;

19 give = 8;

20 therapy = 9;

21
22 gestureNames = {’Come’,’Go’,’Stop’,’Eat’,’Read’,’Sleep’,’Get’,’Give’,’Therapy ’};

23 plotColors = {’r.-’,’b.-’,’g.-’,’c.-’,’m.-’,’y.-’,’r.-’,’b.-’,’g.-’};

24
25 what2plot = unique(fdata(:,type_Col))’;

26 numGestures = max(fdata(:,type_Col));

27 numSamples = size(fdata ,1);

28 numEpochs = max(fdata(:, epoch_Col));

29
30 results = zeros(numGestures ,numEpochs);

31 samplesPerEpoch = zeros(numGestures ,numEpochs);

32
33
34 % Collect total error per epoch

35 for i = 1: numSamples

36
37 gestType = fdata(i,type_Col);

38 error = fdata(i,E_Col);

39 epoch = fdata(i,epoch_Col);

40
41 results(gestType ,epoch) = results(gestType ,epoch) + error;

42
43 samplesPerEpoch(gestType ,epoch) = samplesPerEpoch(gestType ,epoch) + 1;

44
45 end

46
47 % Compute averages.

48 for i = what2plot

49
50 for j = 1: numEpochs

51
52 results(i,j) = results(i,j) / samplesPerEpoch(i,j);

53
54 end

55 end

56
57
58
59 switch scenario

60 case 1

61 scenario_str = ’(no neighbors considered)’;

62 case 2

63 scenario_str = ’(neighbors < mean considered)’;

64 case 3

65 scenario_str = ’(all neighbors considered)’;

66 case 4

67 scenario_str = ’(distance matrix with inf)’;

68 case 5

69 scenario_str = ’(clumpiness matrix)’;
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70 case 6

71 scenario_str = ’(resistance distance)’;

72 case 7

73 scenario_str = [’(kNN: k = ’,num2str(kval),’)’];

74 otherwise

75 fprintf(’Bad Scenario: %d.\n’, scenario);

76 end

77
78 titleStr = [’Gesture Response Error ’,scenario_str ];

79
80 t = 1:1: numEpochs;

81 numCurves = size(what2plot ,2);

82
83 for i = 1: numCurves

84
85 gest2plot = what2plot(1,i);

86
87 plot(t(1,:), results(gest2plot ,:),plotColors{gest2plot });

88
89 hold on;

90
91 end

92
93 total_error = sum(sum(results));

94
95 xlabel(’Epoch ’);

96 ylabel(’Average distance to goal (m)’);

97 title(titleStr);

98 legend(gestureNames{what2plot}, ’Location ’, ’Northeast ’);

99
100 hold off;

101
102
103 fprintf(’Total error = %.2f\n’, total_error);

104
105 fprintf(’Done.\n’);

A.2.1.15 plot epochs3.m

1 function [] = plot_epochs3(filename ,scenario ,kVal);

2
3 params;

4
5 fdata = dlmread ([workDir ,filename ]);

6
7 % Results data format:

8 % results = [gestureType , epochNum , E];

9 type_Col = 1;

10 epoch_Col = 2;

11 E_Col = 3;

12
13
14 come = 1;

15 go = 2;

16 stop = 3;

17 eat = 4;

18 read = 5;

19 sleep = 6;

20 get = 7;

21 give = 8;

22 therapy = 9;

23
24 gestureNames = {’Come’,’Go’,’Stop’,’Eat’,’Read’,’Sleep’,’Get’,’Give’,’Therapy ’};

25 plotColors = {’r.-’,’b.-’,’g.-’,’c.-’,’m.-’,’y.-’,’r.-’,’b.-’,’g.-’};

26
27 what2plot = unique(fdata(:,type_Col))’;

28 numGestures = max(fdata(:,type_Col));

29 numSamples = size(fdata ,1);

30 numEpochs = max(fdata(:, epoch_Col));

31
32 results = zeros(numGestures ,numEpochs);

33 samplesPerEpoch = zeros(numGestures ,numEpochs);

34
35
36 % Collect total error per epoch

37 for i = 1: numSamples

38
39 gestType = fdata(i,type_Col);

40 error = fdata(i,E_Col);

41 epoch = fdata(i,epoch_Col);

42
43 results(gestType ,epoch) = results(gestType ,epoch) + error;

44
45 samplesPerEpoch(gestType ,epoch) = samplesPerEpoch(gestType ,epoch) + 1;

46
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47 end

48
49 % Compute averages.

50 for i = what2plot

51
52 for j = 1: numEpochs

53
54 results(i,j) = results(i,j) / samplesPerEpoch(i,j);

55
56 end

57 end

58
59
60
61 switch scenario

62 case 1

63 scenario_str = ’(no neighbors considered)’;

64 case 2

65 scenario_str = ’(neighbors < mean considered)’;

66 case 3

67 scenario_str = ’(all neighbors considered)’;

68 case 4

69 scenario_str = ’(Floyd distance matrix)’;

70 case 5

71 scenario_str = ’(clumpiness matrix)’;

72 case 6

73 scenario_str = ’(resistance distance)’;

74 case 7

75 scenario_str = [’(kNN: k = ’,num2str(kVal),’)’];

76 otherwise

77 fprintf(’Bad Scenario: %d.\n’, scenario);

78 end

79
80 titleStr = [’Gesture Response Error ’,scenario_str ];

81
82 t = 1:1: numEpochs;

83 numCurves = size(what2plot ,2);

84
85 for i = 1: numCurves

86
87 gest2plot = what2plot(1,i);

88
89 plot(t(1,:), results(gest2plot ,:),plotColors{gest2plot });

90
91 hold on;

92
93 end

94
95 total_error = sum(sum(results));

96
97 xlabel(’Epoch ’);

98 ylabel(’Average distance to goal (m)’);

99 title(titleStr);

100 legend(gestureNames{what2plot}, ’Location ’, ’Northeast ’);

101
102 hold off;

103
104
105 fprintf(’Total error = %.2f\n’, total_error);

106
107 fprintf(’Done.\n’);

A.2.1.16 plot epochs.m

1 function [] = plot_epochs(numEpochs , scenario , kval);

2
3 fileData = dlmread(’/home/pyanik/ros_workspace/kinect/bin/results ’);

4
5
6 numGestures = max(fileData (:,1));

7 come = 1;

8 go = 2;

9 stop = 3;

10 eat = 4;

11 read = 5;

12 sleep = 6;

13 get = 7;

14 give = 8;

15 therapy = 9;

16
17 gestureNames = {’Come’,’Go’,’Stop’,’Eat’,’Read’,’Sleep’,’Get’,’Give’,’Therapy ’};

18 plotColors = {’r.-’,’b.-’,’g.-’,’c.-’,’m.-’,’y.-’,’r.-’,’b.-’,’g.-’};

19
20
21 % Choose any 6 of the gestures above (only 6 colors):
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22 % what2plot = [4 5 6 7 8 9];

23 what2plot = [1 2 3];

24
25
26
27 totalSamples = size(fileData ,1);

28 samplesPerEpoch = totalSamples/numEpochs;

29
30 sampleCounts = zeros(numGestures ,1);

31 epochAvgs = zeros(numGestures , numEpochs);

32
33 epoch_GNG_AvgE = zeros(numEpochs ,1);

34
35
36 % Find the number of gestures of each type sampled.

37 for i=1: totalSamples

38
39 gestType = fileData(i,1);

40
41 sampleCounts(gestType ,1) = sampleCounts(gestType ,1) + 1;

42
43 end

44
45 sampleCounts = sampleCounts / numEpochs;

46
47 % fprintf(’Come = %3d, go = %3d, stop = %3d.\n’, ...

48 % sampleCounts (1,1), sampleCounts (2,1), sampleCounts (3,1));

49
50
51 k = 0;

52 for i=1: numEpochs

53
54 oneEpochAvgs = zeros(numGestures , 1);

55
56 avgE = 0;

57
58 for j=1: samplesPerEpoch

59
60 k = k + 1;

61
62 gestType = fileData(k,1);

63 error = fileData(k,2);

64
65 % Add up error for each gesture type.

66 oneEpochAvgs(gestType ,1) = oneEpochAvgs(gestType ,1) + error;

67
68 % Add up the GNG cloud error (column 3).

69 % avgE = avgE + fileData(k,3);

70
71 end

72
73 % epoch_GNG_AvgE(i,1) = avgE / samplesPerEpoch;

74
75
76 for j=1: numGestures

77
78 if (sampleCounts(j,1) ~= 0)

79
80 oneEpochAvgs(j,1) = oneEpochAvgs(j,1)/sampleCounts(j,1);

81
82 end

83
84 end

85
86 % fprintf(’ComeAvg = %12.8f, goAvg = %12.8f, stopAvg = %12.8f \n’, ...

87 % oneEpochAvgs (1,1), oneEpochAvgs (2,1), oneEpochAvgs (3,1));

88
89
90 epochAvgs(:,i) = oneEpochAvgs;

91
92 end

93
94 t = 1:1: numEpochs;

95
96 % epoch_GNG_AvgE (1,:);

97
98 switch scenario

99 case 1

100 scenario_str = ’(no neighbors considered)’;

101 case 2

102 scenario_str = ’(neighbors < mean considered)’;

103 case 3

104 scenario_str = ’(all neighbors considered)’;

105 case 4

106 scenario_str = ’(distance matrix with inf)’;

107 case 5

108 scenario_str = ’(clumpiness matrix)’;
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109 case 6

110 scenario_str = ’(resistance distance)’;

111 case 7

112 scenario_str = [’(kNN: k = ’,num2str(kval),’)’];

113 otherwise

114 fprintf(’Bad Scenario: %d.\n’, scenario);

115 end

116
117 titleStr = [’Gesture Response Error ’,scenario_str ];

118
119
120 numCurves = size(what2plot ,2)

121
122 for i = 1: numCurves

123
124 gest2plot = double(what2plot (1,i));

125
126 plot(t(1,:), epochAvgs(gest2plot ,:),plotColors{gest2plot });

127
128 hold on;

129
130 end

131
132 total_error = sum(sum(epochAvgs));

133
134 xlabel(’Epoch ’);

135 ylabel(’Average distance to goal (m)’);

136 title(titleStr);

137 legend(gestureNames{what2plot}, ’Location ’, ’Northeast ’);

138
139 %

140 % subplot (2,1,2);

141 % plot(t(1,:), epoch_GNG_AvgE (:,1) ’, ’r.-’);

142 % xlabel(’Epoch ’);

143 % ylabel(’Average GNG Node Error ’);

144 % title(’Average GNG Node Error Per Epoch ’);

145
146
147 hold off;

148
149
150 fprintf(’Total error = %.2f\n’, total_error);

151
152 fprintf(’Done.\n’);

A.2.1.17 plot pos.m

1 function [] = plot_pos(gestureType);

2
3 posData = dlmread(’/home/pyanik/ros_workspace/kinect/bin/POS.txt’);

4
5
6 % Possible gesture_types:

7 come = 1;

8 go = 2;

9 stop = 3;

10 eat = 4;

11 read = 5;

12 sleep = 6;

13 get = 7;

14 give = 8;

15 therapy = 9;

16
17 % ---------------------------------------------------------------

18 % Read in POS data

19 % ---------------------------------------------------------------

20 fprintf(’Reading POS data.\n’);

21
22 [rows ,cols] = size(posData);

23 numCells = max(posData (:,1));

24
25 % Store samples in a cell array.

26 samples = cell(numCells ,1);

27
28 % Each sample consists of:

29 % [gestureSample ],[ gestureType ],[frameNum],[x, y, z]

30
31 % 1 3 10 0.00799585 0.99651375 0.22241513

32
33 for i=1: rows

34 cellNum = posData(i,1);

35 cellRow = posData(i,3);

36
37 samples{cellNum }(cellRow ,1:5) = posData(i,2:6);

38 end
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39
40 % ---------------------------------------------------------------

41 % Read in POS data

42 % ---------------------------------------------------------------

43 fprintf(’Plotting POS data.\n’);

44 clf;

45
46 gestureTypeCol = 1;

47 frameNumCol = 2;

48 xCol = 3;

49 yCol = 4;

50 zCol = 5;

51
52 for i = 1: numCells

53
54 if (samples{i}( gestureTypeCol) == gestureType)

55
56 xData = samples{i}(:,xCol);

57 yData = samples{i}(:,yCol);

58 zData = samples{i}(:,zCol);

59 tData = samples{i}(:, frameNumCol);

60
61
62 subplot (3,1,1)

63 plot(tData ,xData ,’b.-’); hold on;

64
65 subplot (3,1,2)

66 plot(tData ,yData ,’r.-’); hold on;

67
68 subplot (3,1,3)

69 plot(tData ,zData ,’g.-’); hold on;

70
71 end

72
73
74 end

75
76 hold off;

77
78 % % ---------------------------------------------------------------

79 % % Plot gesture curves with DIs

80 % % ---------------------------------------------------------------

81 % fprintf(’Plotting gesture curve .\n’);

82 %

83 % % for i=1: numCells

84 % % if (samples{i,1}(1 ,1) == gesture_type)

85 % % plot3(samples{i,1}(: ,5), samples{i,1}(: ,3), samples{i,1}(: ,4));

86 % % hold on;

87 % % end

88 % % end

89 %

90 % k = 0;

91 % scatterPts1 = zeros (1,3);

92 % scatterPts2 = zeros (1,3);

93 % scatterPts3 = zeros (1,3);

94 % scatterPts4 = zeros (1,3);

95 % scatterPts5 = zeros (1,3);

96 % for i=1: numDIs

97 % if (DIs(i,1) == gesture_type)

98 % k = k + 1;

99 % switch DIs(k,2)

100 % case 1

101 % scatterPts1(k,1:3) = [DIs(i,5), DIs(i,3), DIs(i,4)];

102 % case 2

103 % scatterPts2(k,1:3) = [DIs(i,5), DIs(i,3), DIs(i,4)];

104 % case 3

105 % scatterPts3(k,1:3) = [DIs(i,5), DIs(i,3), DIs(i,4)];

106 % case 4

107 % scatterPts4(k,1:3) = [DIs(i,5), DIs(i,3), DIs(i,4)];

108 % case 5

109 % scatterPts5(k,1:3) = [DIs(i,5), DIs(i,3), DIs(i,4)];

110 % otherwise

111 % fprintf(’Cannot find DI number ’);

112 %

113 % end % switch

114 % end

115 % end

116 %

117 %

118 %

119 % % DIs (1:10 ,:)

120 % % scatterPts;

121 % % samples {2}(1:10 ,:)

122 %

123 % plot3(scatterPts1 (:,1), scatterPts1 (:,2), scatterPts1 (:,3) ,’r.’); hold on;

124 % plot3(scatterPts2 (:,1), scatterPts2 (:,2), scatterPts2 (:,3) ,’g.’); hold on;

125 % plot3(scatterPts3 (:,1), scatterPts3 (:,2), scatterPts3 (:,3) ,’b.’); hold on;
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126 % plot3(scatterPts4 (:,1), scatterPts4 (:,2), scatterPts4 (:,3) ,’c.’); hold on;

127 % plot3(scatterPts5 (:,1), scatterPts5 (:,2), scatterPts5 (:,3) ,’y.’); hold on;

128 % xlabel(’X’); ylabel(’Y’); zlabel(’Z’);

129 % title(’Come gestures (Left Hand trajectory)’);

130 % hold off;

131 %

132 %

133 %

134 % %

135 % % t = 1:1: numEpochs;

136 % %

137 % % epoch_GNG_AvgE (1,:);

138 % %

139 % %

140 % % % subplot (2,1,1);

141 % %

142 % % plot(t(1,:), epochAvgs (1,:), ’r.-’, ...

143 % % t(1,:), epochAvgs (2,:), ’b.-’, ...

144 % % t(1,:), epochAvgs (3,:), ’g.-’);

145 % % xlabel(’Epoch ’);

146 % % ylabel(’Average distance to goal ’);

147 % % title(’Gesture response error ’);

148 % % legend(’Come closer ’, ’Go away ’, ’Stop ’, ’Location ’, ’Northeast ’);

149 %

150 % %

151 % % subplot (2,1,2);

152 % % plot(t(1,:), epoch_GNG_AvgE (:,1) ’, ’r.-’);

153 % % xlabel(’Epoch ’);

154 % % ylabel(’Average GNG Node Error ’);

155 % % title(’Average GNG Node Error Per Epoch ’);

156 % %

157 %

158
159 fprintf(’Done.\n’);

A.2.1.18 write results.m

1 % -------------------------------------------------------------------------

2 % Script name: write_results

3 % Author: Paul Yanik

4 %

5 % Description:

6 % This script writes out results from gestureLrnList for one run of

7 % gestureLrnList (numEpochs * numSamples). The name of the results_file is

8 % set in params

9 % -------------------------------------------------------------------------

10
11 FID = fopen(results_file , ’w’);

12
13 numEntries = size(results_array ,1);

14
15
16 for i=1: numEntries

17
18 % results_array = [gestureType , epochNum , error]

19
20 fprintf(FID , ’%d %d %f\n’, results_array(i, 1:3));

21
22 end

23
24 fclose(FID);

A.2.2 GNG Tools

A.2.2.1 adjustNeighbors.m

1 % -------------------------------------------------------------------------

2 % Script name: adjustNeighbors

3 % Author: Paul Yanik

4 %

5 % This script adjusts the topological neighbors of the winner node in

6 % the GNG cloud [A] by moving them a fraction (ep_n) toward the input

7 % vector. The script also increments the ages of all edges emmanating from

8 % the winner.

9 %

10 % This script also yields the neighborhood (N) of the winner node (NN) for

11 % development of the response vector in later scripts.

12 % -------------------------------------------------------------------------

13
14 numEdges = size(C,1);

15 numNodes = size(A,1);
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16
17 v1 = P.v1;

18 v2 = P.v2;

19 age = P.age;

20 nodeLabel = P.nodeLabel;

21 ep_n = P.ep_n;

22 fvec1 = P.fvec1;

23 fvec2 = P.fvec2;

24
25 N = [];

26 for k=1: numEdges

27
28 found_nbr = 0;

29 nbr = -99;

30
31 if (C(k,v1) == s1)

32
33 found_nbr = 1;

34 nbr = C(k,v2);

35 C(k,age) = C(k,age) + 1;

36
37 end

38
39 if (C(k,v2) == s1)

40
41 found_nbr = 1;

42 nbr = C(k,v1);

43 C(k,age) = C(k,age) + 1;

44
45 end

46
47 if (found_nbr == 1)

48
49 for p=1: numNodes

50
51
52 % if (A(p,nodeLabel) == s1)

53 %

54 % % Store the winning node in NN.

55 % NN = A(p,:);

56 %

57 % end

58
59 if (A(p,nodeLabel) == nbr)

60
61 if (s1_hot == 1)

62 adjustment = ep_n * (vec_in - A(p,fvec1:fvec2));

63 else ...

64 adjustment = ep_n * (vec_in - A(p,fvec1:fvec2));

65 end

66
67 A(p,fvec1:fvec2) = A(p,fvec1:fvec2) + adjustment;

68
69 % Store the neighborhood of the winner node in N.

70 N(end+1,:) = A(p,:);

71
72 end

73
74 end

75
76 end

77
78 end % for k

A.2.2.2 adjustWinner.m

1 % -------------------------------------------------------------------------

2 % Script name: adjustWinner

3 % Author: Paul Yanik

4 %

5 % Description: This script adjust the winner node ’s local error and moves

6 % its feature vector closer to the input vector.

7 % -------------------------------------------------------------------------

8
9 numEdges = size(C,1);

10 numNodes = size(A,1);

11
12 E = P.E;

13 fvec1 = P.fvec1;

14 fvec2 = P.fvec2;

15 ep_w = P.ep_w;

16 nodeLabel = P.nodeLabel;

17 hot = P.hot;

18 reward = P.reward;

19
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20 for k = 1: numNodes

21
22 if (A(k,nodeLabel) == s1)

23
24 % Step 5.

25 % Add to the winner ’s local error.

26 distance = Dv(1,1);

27
28 % if (A(k,reward) ~= hot) % No change for trained nodes.

29 % A(k,E) = A(k,E) + distance ^2;

30 % else ...

31 % % No change

32 % end

33
34 % Error adjustment according to the GNG algorithm.

35 A(k,E) = A(k,E) + distance ^2;

36
37 % Step 6.

38 % Move the winner toward the input by a faction (ep_w)

39 % of its current distance.

40
41
42 fVec = A(k,fvec1:fvec2);

43
44 % Disallow node movement if the node is trained

45 s1_hot = 0;

46 if (A(k,reward) == hot)

47 adjustment = 0;

48 s1_hot = 1; % Signal to neighbors not to move

49 else ...

50 adjustment = ep_w * (vec_in - fVec);

51 end

52
53 adjustment = ep_w * (vec_in - fVec);

54
55
56 A(k,fvec1:fvec2) = A(k,fvec1:fvec2) + adjustment;

57
58
59 end

60
61 end

A.2.2.3 ageColdNode.m

1 % -------------------------------------------------------------------------

2 % Script name: ageColdNode

3 % Author: Paul Yanik

4 %

5 % Description: In the event of a new gesture falling into the receptive

6 % field of a node which has already been trained to handle a different

7 % gesture type , this script will find and artificially age the links of the

8 % oldest node elsewhere in the GNG cloud which has a cold reward. This

9 % script should be called in getResponse_warmerColder if the situation

10 % described above applies.

11 % -------------------------------------------------------------------------

12
13 % Find a node to delete only if the GNG cloud is at max capacity.

14 maxNodeCnt = P.maxNodeCnt;

15 numNodes = size(A,1);

16 numEdges = size(C,1);

17 if (numNodes >= maxNodeCnt)

18
19 max_ageTot = -99;

20 max_ageLabel = -99;

21
22 foundOne = 0;

23
24 for i=1: numNodes

25
26 % Find cold nodes

27 if (A(i,P.reward) == P.cold)

28
29 thisNode = A(i,P.nodeLabel);

30 ageTot = 0;

31
32 % Add the ages of all edges for this node.

33 for j=1: numEdges

34
35 v1 = C(j,P.v1);

36 v2 = C(j,P.v2);

37
38 if (v1 == thisNode || v2 == thisNode)

39 ageTot = ageTot + C(j,P.age);

40 end
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41
42 end

43
44 if (ageTot > max_ageTot)

45 max_ageTot = ageTot;

46 max_ageLabel = thisNode;

47 foundOne = 1;

48 end

49
50 end

51
52 end

53
54
55 if (hoodRadius ~= 6) % Do not artificially age nodes when using resDist

56 for i=1: numEdges

57
58 v1 = C(i,P.v1);

59 v2 = C(i,P.v2);

60
61 if (( foundOne == 1) && ...

62 ((v1 == max_ageLabel) || (v2 == max_ageLabel)) )

63
64 % Artificially age connections to the node.

65 C(i,P.age) = P.ageMax + 1;

66 end

67
68 end

69
70 end

71
72 end

A.2.2.4 check4Connection.m

1 % -------------------------------------------------------------------------

2 % Script name: check4Connection

3 % Author: Paul Yanik

4 %

5 % Description:

6 % This script checks for a connection in [C] between two nodes in

7 % a GNG cloud [A]. If the connection exists , it is refreshed. Otherwise ,

8 % it is created.

9 % -------------------------------------------------------------------------

10
11
12 % compareAC(A,C,P,’Check4Cnx1 ’);

13
14 numEdges = size(C,1);

15 numNodes = size(A,1);

16
17 connectionExists = 0;

18 if (numEdges > 0)

19
20 for k=1: numEdges

21
22 edge = [C(k,P.v1), C(k,P.v2)];

23
24 if ( mEq(edge ,[s1,s2]) || mEq(edge ,[s2 ,s1]) )

25
26 % Refresh the connection.

27 C(k,P.age) = 0;

28 connectionExists = 1;

29
30 end

31
32 end

33
34 end

35
36 if (connectionExists == 0)

37
38 % Establish the connection: [v1, v2, age , length]

39 newConx = [s1 , s2 , 0, 1];

40
41 C(end+1,:) = newConx;

42
43 % Update connection counts in [A].

44 for j=1: numNodes

45
46 if ( (A(j,P.nodeLabel)==s1) || (A(j,P.nodeLabel)==s2) )

47 A(j,P.numConx) = A(j,P.numConx) + 1;

48 end

49 end

50
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51 end

52
53
54 % compareAC(A,C,P,’Check4Cnx2 ’);

A.2.2.5 compareAC

1 function [] = compareAC(A,C,P,locString)

2 % -------------------------------------------------------------------------

3 % Function name: compareAC

4 % Author: Paul Yanik

5 %

6 % Description: This function compares the GNG [A] and [C] matrices. The

7 % number of connections in A are compared with the number of neighbors in

8 % C. This is done to find a bug in which A and C did not reconcile when

9 % insterting a new node.

10 % -------------------------------------------------------------------------

11
12 numNodes = size(A,1);

13 numEdges = size(C,1);

14
15 for i=1: numNodes

16
17 numConx = A(i,P.numConx);

18 thisNode = A(i,P.nodeLabel);

19
20 numNbrs = 0;

21 for (j=1: numEdges)

22
23 v1 = C(j,P.v1);

24 v2 = C(j,P.v2);

25
26
27 if (v1 == thisNode)

28 numNbrs = numNbrs + 1;

29 end

30
31 if (v2 == thisNode)

32 numNbrs = numNbrs + 1;

33 end

34
35 end

36
37 if (numNbrs ~= numConx)

38 fprintf(’[%s] Node %d has %d conx in A but %d edges in C\n’, ...

39 locString , thisNode , numConx , numNbrs);

40 myChar = input(’Press any key: ’,’s’);

41 end

42
43
44 end

45
46
47
48 end % function

A.2.2.6 compareANN

1 function [] = compareANN(A,NN ,P,locString)

2 % -------------------------------------------------------------------------

3 % Function name: compareANN

4 % Author: Paul Yanik

5 %

6 % Description: This function compares certain fields of A(nodeLabel) with

7 % NN which has been selected by GNG.

8 % -------------------------------------------------------------------------

9
10 numNodes = size(A,1);

11
12
13 for i=1: numNodes

14
15 if (A(i,P.nodeLabel) == NN(1,P.nodeLabel))

16
17 AnumConx = A(i,P.numConx);

18 NNnumConx = NN(1,P.numConx);

19
20
21 if (AnumConx ~= NNnumConx);

22
23 fprintf(’[%s] A.numConx = %d, NN.numConx = %d\n’, ...

24 locString , AnumConx , NNnumConx);

25
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26 myChar = input(’Press a key: ’,’s’);

27
28 end

29 end

30
31 end

32
33
34 end % function

A.2.2.7 decreaseNodeError

1 % -------------------------------------------------------------------------

2 % Script name: decreaseNodeError

3 % Author: Paul Yanik

4 %

5 % Description: This script performs two functions:

6 % 1) It decreases node error on all nodes in [A],

7 % 2) It increments the number of observations (numObs) field.

8 % -------------------------------------------------------------------------

9
10 % Decrease node error.

11 A(:,P.E) = A(:,P.E) - (P.beta * A(:,P.E));

12
13 % Increment number of observations.

14 A(:,P.numObs) = A(:,P.numObs) + 1;

A.2.2.8 edgeExists

1 % This function determines the existence of an edge in an undirected graph

2 % having vertices a and b (order indpendent). It returns the row number of

3 % an existing edge in a graph matrix.

4
5 function [found , index] = edgeExists(C, v1_col , v2_col , edge)

6
7 found = 0;

8 index = -99;

9
10 numEdges = size(C,1);

11
12 for i=1: numEdges

13
14 edge1 = [C(i,v1_col),C(i,v2_col)];

15 edge2 = [C(i,v2_col),C(i,v1_col)];

16
17 if ( mEq(edge ,edge1) || mEq(edge ,edge2) )

18
19 found = 1;

20 index = i;

21
22 end

23
24
25 end

A.2.2.9 findMaxErr

1 % -------------------------------------------------------------------------

2 % Script name: findMaxErr

3 % Author: Paul Yanik

4 %

5 % Description: This script finds the node (q) in [A] with the maximum

6 % accumulated error and its neighbor (f) with max accumulated error.

7 % The values of q and f are interpreted as indices into [A].

8 % -------------------------------------------------------------------------

9
10 numNodes = size(A,1);

11 numEdges = size(C,1);

12
13 % compareAC(A,C,P,’FindMaxErr1 ’);

14
15 % Column subscripts

16 nodeLabel = P.nodeLabel;

17 v1 = P.v1;

18 v2 = P.v2;

19 E = P.E;

20
21 % Find the node with max error.

22 % q is the row address of maxErr.

23 [maxErr ,q] = max(A(:,P.E));

24
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25
26 % Generate a list of the neighbors of q (by nodeLabel).

27 nbrs = [];

28 for i=1: numEdges

29
30 if (C(i,v1) == A(q,nodeLabel))

31 nbrs(end+1,1) = C(i,v2);

32 elseif (C(i,v2) == A(q,nodeLabel))

33 nbrs(end+1,1) = C(i,v1);

34 end

35
36 end

37 numNbrs = size(nbrs ,1);

38
39 % if (numNbrs == 0)

40 %

41 % fprintf(’nodeLabel = %d, numConx = %d\n’,A(q,nodeLabel),A(q,P.numConx));

42 %

43 % myChar = input(’No neighbors. Press a key: ’,’s’);

44 %

45 % end

46
47
48 % Find the neighbor f of q with max error.

49 maxNbrErr = -99;

50 f = -99;

51 for i=1: numNbrs

52
53 nbr = nbrs(i,1);

54
55 for j=1: numNodes

56
57 % fprintf(’nbr = %d, node = %d, E = %.2f, maxE = %.2f\n’, ...

58 % nbr , A(j,nodeLabel), A(j,P.E), maxNbrErr);

59 %

60
61 if ( (A(j,nodeLabel) == nbr) && (A(j,E) > maxNbrErr) )

62
63 maxNbrErr = A(j,E);

64 f = j; % index into A

65
66 end

67
68 end

69
70 end

71
72 % compareAC(A,C,P,’FindMaxErr2 ’);

A.2.2.10 get2ClosestNodes

1 % -------------------------------------------------------------------------

2 % Script name: get2ClosestNodes

3 % Author: Paul Yanik

4 % Description: This script finds the two closest nodes in a GNG cloud

5 % [A] to an input vector (vec_in).

6 % -------------------------------------------------------------------------

7
8 numNodes = size(A,1);

9
10 fvec1 = P.fvec1;

11 fvec2 = P.fvec2;

12 nodeLabel = P.nodeLabel;

13
14 % Find the input vector ’s distance to all nodes , sort ,

15 % and choose the two closest to the input vector. Store the results in Dv.

16 Dv = zeros(numNodes ,2);

17
18 for k = 1: numNodes

19 A_fvec = A(k,fvec1:fvec2);

20 distance = norm(vec_in - A_fvec);

21 Dv(k ,1:2) = [distance , A(k,nodeLabel)];

22 end % k

23
24 % Sort by distance (ascending order).

25 Dv = sortrows(Dv ,1);

26 s1 = Dv(1,2); % winner nodeLabel

27 s2 = Dv(2,2); % 2nd nearest nodeLabel

A.2.2.11 getNNHood.m

1 % -------------------------------------------------------------------------

2 % Script name: getNNHood
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3 % Author: Paul Yanik

4 %

5 % Description: This script uses the nearest reference node number from the

6 % GNG algorithm (s1) to create two variables: NN and N. NN is the

7 % reference node and all associated variables from the A matrix. N is the

8 % neighborhood of NN (all connected nodes).

9 % -------------------------------------------------------------------------

10
11 numNodes = size(A,1);

12 numEdges = size(C,1);

13
14
15 NN = [];

16 for i = 1: numNodes

17
18 if (A(i,P.nodeLabel) == s1)

19 NN = A(i,:);

20 end

21 end

22
23
24 % Add constrution of N later. This is already done in adjustNeighborss.

25 % I was going to add it here for clarity ... but it is redundant.

A.2.2.12 gng.m

1 % This script implements the Growing Neural Gas (GNG) algorithm.

2
3
4 % Runtime parameters.

5 params;

6
7 % ---------------

8 % Step 1

9 % ---------------

10 % This step attemps to read in or initialize both the A and C matrices.

11 % fprintf(’Step 1. Reading A and C.\n’);

12 read_A;

13 read_C;

14
15 % ---------------

16 % Step 2

17 % ---------------

18 % Select a vector. Use the vec_in read by the calling function.

19 % fprintf(’Step 2.\n’);

20
21 % ---------------

22 % Step 3

23 % ---------------

24 % fprintf(’Step 3. get2ClosestNodes .\n’);

25 % compareAC(A,C,P,’Get2Closest1 ’);

26 get2ClosestNodes;

27
28 % ---------------

29 % Step 4

30 % ---------------

31 % Refresh or establish the connection between the 2 nearest nodes in C.

32 % fprintf(’Step 4. check4Connections .\n’);

33 check4Connection;

34
35 % ---------------

36 % Step 5, Step 6

37 % ---------------

38 % Adjust the winner node ’s error and feature vector.

39 % fprintf(’Steps 5 and 6. adjustWinner .\n’);

40 adjustWinner;

41
42 % ---------------

43 % Step 7

44 % ---------------

45 % Adjust the winner node ’s topological neighbors and increment

46 % winner node ’s connection ages. Also , construct the neighbohood for

47 % later use.

48 % fprintf(’Step 7. adjustNeighbors .\n’);

49 adjustNeighbors;

50 % compareANN(A,NN,P,’Chk4Conx2 ’);

51
52 % ---------------

53 % Step 8

54 % ---------------

55 % Remove connections with an age greater tham ageMax.

56 % fprintf(’Step 8. removeOldConnections .\n’);

57 removeOldConnections;

58 % compareANN(A,NN,P,’RemConx2a ’);

59
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60 % ---------------

61 % Step 9

62 % ---------------

63 % Insert a new node if necessary (based on lamdba).

64 % fprintf(’Step 9. insertNewNode .\n’);

65 insertNewNode;

66 % compareANN(A,NN,P,’InsertNode2 ’);

67
68 % ---------------

69 % Step 10

70 % ---------------

71 % Decrease the error of all units.

72 % fprintf(’Step 10. decreaseNodeError .\n’);

73 % compareAC(A,C,P,’DecreaseE1 ’);

74 decreaseNodeError;

75 % compareAC(A,C,P,’DecreaseE2 ’);

76
77
78 % Get NN (and N in the future).

79 getNNHood;

A.2.2.13 insertNewNode.m

1 % -------------------------------------------------------------------------

2 % Script name: insertNewNode

3 % Author: Paul Yanik

4 %

5 % Description: This script inserts a new node into the GNG cloud as

6 % needed. This is classically based on lambda , but other conditions are

7 % added for this implementaion.

8 % -------------------------------------------------------------------------

9
10 numNodes = size(A,1);

11 numEdges = size(C,1);

12
13 % compareAC(A,C,P,’Insert1 ’);

14
15
16 numObservations = A(1,P.numObs) + 1;

17
18 if ((( mod(numObservations ,P.lambda)==0) && (numNodes <P.maxNodeCnt)) || ...

19 (new_node_needed == 1))

20
21 % fprintf(’Adding a new node.\n’);

22
23 % Find nodeLabel for node with maxErr (q)

24 % and it’s neighbor with maxErr (f).

25 findMaxErr;

26
27 % Interpolate between nodes q and f to produce a new node.

28 interpolateNodes;

29
30
31 end

32
33 % compareAC(A,C,P,’Insert2 ’);

A.2.2.14 interpolateNodes.m

1 % -------------------------------------------------------------------------

2 % Script name: interpolateNodes

3 % Author: Paul Yanik

4 %

5 % Description: This script interpolates between nodes q and f (calculated in

6 % findMaxErr) in the GNG cloud to produce a new node , r.

7 % -------------------------------------------------------------------------

8
9 % compareAC(A,C,P,’Interpolate1 ’);

10
11
12 [maxNodeLabel , row] = max(A(:,P.nodeLabel));

13
14 % for i=1: numNodes

15 %

16 % if (A(i,nodeLabel) > maxNodeLabel)

17 % maxNodeLabel = A(i,nodeLabel;

18 % end

19 %

20 % end

21
22 % Calculate the new node ’s feature vector.

23 % fprintf(’numNodes = %d, q = %d, f = %d\n’, size(A,1),q,f);

24 wr = (A(q,P.fvec1:P.fvec2) + A(f,P.fvec1:P.fvec2))/2;
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25
26 % Decrease the error on nodes q and f.

27 A(q,P.E) = A(q,P.E) - (P.alpha * A(q,P.E));

28 A(f,P.E) = A(f,P.E) - (P.alpha * A(f,P.E));

29
30 % Create the new node r, and update the necessary fields.

31 r = zeros(1,size(A(1,:) ,2));

32 r(1,P.nodeLabel) = maxNodeLabel + 1;

33 r(1,P.numConx) = 2;

34 r(1,P.reward) = -1;

35 r(1,P.ancestor) = r(1,P.nodeLabel);

36 r(1,P.Q) = norm(wr);

37 r(1,P.E) = (A(q,P.E) + A(f,P.E))/2;

38
39 % r(1,P.act1:P.act2) = (A(q,P.act1:P.act2) + A(f,P.act1:P.act2))/2;

40 % r(1,P.last1:P.last2) = (A(q,P.last1:P.last2) + A(f,P.last1:P.last2))/2;

41
42 % Set actions/last actions for new nodes to untrained status.

43 r(1,P.act1:P.act2) = [0,0,0];

44 r(1,P.last1:P.last2) = [0,0,0];

45
46
47 r(1,P.fvec1:P.fvec2) = wr;

48
49 A(end+1,:) = r;

50
51
52
53 % node = struct(’numObs ’, n(1,1), ...

54 % ’nodeLabel ’, n(1,2), ...

55 % ’numConx ’, n(1,3), ...

56 % ’reward ’, n(1,4), ...

57 % ’Q’, n(1,5), ...

58 % ’E’, n(1,6), ...

59 % ’action ’, n(1 ,7:9), ...

60 % ’last ’, n(1 ,10:12), ...

61 % ’featureVec ’, n(1 ,13:13+ numFeatures -1) );

62
63
64
65 % Remove the defunct connection between q and f.

66 edges2Delete = [];

67 for i=1: numEdges

68
69 % Generate a list of C indices to remove.

70 % Note: this list should only have 1 element.

71
72 % The q-f connection.

73 if ( (C(i,P.v1) == A(q,P.nodeLabel)) && ...

74 (C(i,P.v2) == A(f,P.nodeLabel)) )

75
76 edges2Delete(end+1) = i;

77
78 elseif ( (C(i,P.v1) == A(f,P.nodeLabel)) && ...

79 (C(i,P.v2) == A(q,P.nodeLabel)) )

80
81 edges2Delete(end+1) = i;

82
83 end

84
85 end

86 % size(C)

87 % edges2Delete

88
89 % Remove the connection from C.

90 C(edges2Delete ,:) = [];

91
92 % size(C)

93
94 % Add the new connections {q,r} and {f,r}

95 C(end+1,:) = [A(f,P.nodeLabel), r(1,P.nodeLabel), 0, 1.0];

96 C(end+1,:) = [A(q,P.nodeLabel), r(1,P.nodeLabel), 0, 1.0];

97
98
99 % compareAC(A,C,P,’Intrpolate2 ’);

A.2.2.15 print N.m

1 % This script prints a neighborhood of GNG nodes.

2
3 function [] = print_N(hood , P);

4
5 hoodSize = size(hood ,1)

6
7
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8
9 for n = 1: hoodSize

10
11 action = hood(n,P.act1:P.act2);

12 last = hood(n,P.last1:P.last2);

13
14 Q = norm(action);

15
16 fprintf(’[print_N ]: Node %2d, actn =(%4.2f,%4.2f,%4.2f), last =(%4.2f,%4.2f,%4.2f), rwd=%d, anc=%d, Q=%5.3f\n’,

...

17 hood(n,P.nodeLabel), ...

18 action (1), action (2), action (3), ...

19 last (1), last (2), last (3), ...

20 hood(n,P.reward), ...

21 hood(n,P.ancestor), ...

22 Q ...

23 );

24
25
26 end

A.2.2.16 read A.m

1 % -------------------------------------------------------------------------

2 % Script name: read_A

3 % Author: Paul Yanik

4 %

5 % Description:

6 % This script checks to see if the A matrix exists. If it does not exist

7 % then it checks for the file A.txt and reads it into the A matrix for the

8 % Growing Neural Gas algorithm.

9 % -------------------------------------------------------------------------

10
11 params;

12
13
14 % Check to see if the A matrix or A.txt file exists.

15 if (exist (’A’, ’var’))

16
17 % Do nothing.

18 numNodes = size(A,1);

19
20 elseif (exist(A_file , ’file’))

21
22 % Read in the A matrix from file A.txt.

23 A = dlmread(A_file);

24
25 % numNodes = number of rows of A.txt.

26 numNodes = size(A,1);

27 fprintf(’Existing A.txt file contains %d nodes.\n’, numNodes);

28
29
30 % Use of cells of structs was horribly slow.

31 % node = struct(’numObs ’, n(1,1), ...

32 % ’nodeLabel ’, n(1,2), ...

33 % ’numConx ’, n(1,3), ...

34 % ’reward ’, n(1,4), ...

35 % ’Q’, n(1,5), ...

36 % ’E’, n(1,6), ...

37 % ’action ’, n(1 ,7:9), ...

38 % ’last ’, n(1 ,10:12), ...

39 % ’featureVec ’, n(1 ,13:13+ numFeatures -1) );

40 %

41 % A{i} = node;

42
43
44 else ...

45
46 fprintf(’[A] does not exist. Init with %d nodes.\n’, ...

47 num_initial_GNG_nodes);

48
49 % Inialize A with a defined number of random nodes.

50 A = zeros(num_initial_GNG_nodes ,P.A_cols);

51
52 for i=1: num_initial_GNG_nodes

53
54 A(i,P.numObs) = 0;

55 A(i,P.nodeLabel) = i;

56 A(i,P.numConx) = 0;

57
58 % Initialize rewards pessimistically - trigger random guess.

59 A(i,P.reward) = -1;

60
61 % New nodes are their own ancestor.

62 A(i,P.ancestor) = A(i,P.nodeLabel);
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63
64 % Initial length and error are zero.

65 A(i,P.Q) = 0;

66 A(i,P.E) = 0;

67
68 % Initialize actions to the origin of the arena (e.g. TurtleSim).

69 A(i,P.act1:P.act2) = [0,0,0];

70 A(i,P.last1:P.last2) = [0,0,0];

71
72 % Feature vector

73 for j=P.fvec1:P.fvec2

74 A(i,j) = rand_in_range (0.0 ,0.5);

75 end

76
77
78 end

79
80 end

A.2.2.17 read C.m

1 % This script reads C.txt for the Growing Neural Gas algorithm if no

2 % C matrix currently exists.

3
4 params;

5
6 % Check to see if the C matrix or C.txt file exists.

7 if (exist(’C’, ’var’))

8
9 % Do nothing

10 numEdges = size(C,1);

11
12 elseif (exist(C_file , ’file’))

13
14 % Read in C.txt

15 C = dlmread(C_file);

16
17 numEdges = size(C,1);

18 fprintf(’Existing C.txt file contains %d edges.\n’,numEdges);

19
20 else ...

21
22 % fileNotFound(C_file);

23
24 % Initialize C to an empty matrix.

25 C = [];

26
27 end

A.2.2.18 read descriptor list.m

1 function[featureVecs , classNums , numSamples] = read_descriptor_list(fname)

2 % -------------------------------------------------------------------------

3 % Function name: read_descriptor_list

4 % Author: Paul Yanik

5 %

6 % Description: This function reads feature vectors from a specifid input

7 % file as input to the GNG algorithm.

8 % -------------------------------------------------------------------------

9
10 params;

11
12
13 % Assume that the descriptor file is stored in dataDir.

14 fname = [dataDir ,fname ];

15
16
17 if (exist(fname , ’file’))

18
19 % Do nothing

20 % fprintf(’Reading in %s.\n’, fname);

21
22 fileData = dlmread(fname);

23 numSamples = size(fileData ,1);

24
25 % descriptor_list = cell(numSamples ,1);

26
27 featureVecs = zeros(numSamples , numFeatures);

28 classNums = zeros(numSamples , 1);

29
30 for i=1: numSamples

31
32 s = fileData(i,:);
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33
34 featureVecs(i,1: numFeatures) = s(1 ,2:2+ numFeatures -1);

35 classNums(i,1) = s(1,1);

36
37 end

38
39 else ...

40 fileNotFound(fname);

41 end

A.2.2.19 removeOldConnections.m

1 % This script removes edges in the C matrix which have aged beyond

2 % a fixed limit (ageMax).

3
4 numEdges = size(C,1);

5 numNodes = size(A,1);

6
7 % compareANN(A,NN,P,’RemOldCnx1 ’);

8
9

10
11 newC = [];

12 for i=1: numEdges

13
14 % Look for connections that are too old.

15 if (C(i,P.age) > P.ageMax)

16
17 % Find the vertices.

18 v1 = C(i,P.v1);

19 v2 = C(i,P.v2);

20
21 % Decrement connection counts for the vertex nodes.

22 for j=1: numNodes

23
24 thisNode = A(j,P.nodeLabel);

25
26 if (( thisNode ==v1) || (thisNode ==v2))

27 A(j,P.numConx) = A(j,P.numConx) - 1;

28
29 % if (NN(1,P.nodeLabel) == thisNode)

30 % NN(1,P.numConx) = NN(1,P.numConx) - 1;

31 % end

32
33
34 end

35
36 end

37
38
39 else ...

40
41 % The connection is young enough to keep.

42 newC(end+1,:) = C(i,:);

43
44 end

45 end

46 C = newC;

47
48 % compareANN(A,NN,P,’RemOldCnx1a ’);

49
50
51 % Remove nodes with zero connections from A.

52 newA = [];

53 for z=1: numNodes;

54
55 if (A(z,P.numConx) > 0)

56 newA(end+1,:) = A(z,:);

57 end

58
59 end

60 A = newA;

61
62
63 % compareANN(A,NN,P,’RemOldCnx2 ’);

A.2.2.20 write A.m

1 % This function writes the A matrix to the file A.txt

2 % for the Growing Neural Gas algorithm.

3
4 params;

5
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6 FID = fopen(A_file , ’w’);

7
8 numNodes = size(A,1);

9
10 for i=1: numNodes

11
12 fprintf(FID , ’%d ’, A(i,P.numObs));

13 fprintf(FID , ’%d ’, A(i,P.nodeLabel));

14 fprintf(FID , ’%d ’, A(i,P.numConx));

15 fprintf(FID , ’%d ’, A(i,P.reward));

16 fprintf(FID , ’%d ’, A(i,P.ancestor));

17 fprintf(FID , ’%f ’, A(i,P.Q));

18 fprintf(FID , ’%f ’, A(i,P.E));

19
20 for j=P.act1:P.act2

21 fprintf(FID , ’%f ’, A(i,j));

22 end

23
24 for j=P.last1:P.last2

25 fprintf(FID , ’%f ’, A(i,j));

26 end

27
28 for j=P.fvec1:P.fvec2

29 fprintf(FID , ’%f ’, A(i,j));

30 end

31
32
33 fprintf(FID , ’\n’);

34
35 end

36
37 fclose(FID);

A.2.2.21 write C.m

1 % This function writes the C matrix to the file C.txt

2 % for the Growing Neural Gas algorithm.

3
4 params;

5
6 v1 = P.v1;

7 v2 = P.v2;

8 age = P.age;

9 len = P.len;

10
11 FID = fopen(C_file , ’w’);

12
13 numEdges = size(C,1)

14
15 for i=1: numEdges

16
17 fprintf(FID , ’%d ’, C(i,v1));

18 fprintf(FID , ’%d ’, C(i,v2));

19 fprintf(FID , ’%d ’, C(i,age));

20 fprintf(FID , ’%f ’, C(i,len));

21 fprintf(FID , ’\n’);

22
23 % fprintf(FID , ’%d ’, C{i,1}.v1);

24 % fprintf(FID , ’%d ’, C{i,1}.v2);

25 % fprintf(FID , ’%d ’, C{i,1}. age);

26 % fprintf(FID , ’\n’);

27
28 end

29
30 fclose(FID);

A.2.3 Graph Tools

A.2.3.1 admittance matrix.m

1 function[Av] = admittance_matrix(C, v1_col , v2_col , edge_len_col)

2 % -------------------------------------------------------------------------

3 % Function name: admittance_matrix

4 %

5 % Description:

6 % This function calculates the admittance (Kirchhoff) matrix (Av) for an

7 % undirected graph (C) with node -pair vertices and edge lengths. Each edge

8 % is defined as a row vector with a column # for vertex 1, a column # for

9 % vertext 2, and a column # for length.

10 %

11 % This matrix is used in calculation of a graph ’s resistance distance
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12 % matrix. The resistance distance only applies if the graph is connected.

13 % This function includes a warning for Inf admittance.

14 % -------------------------------------------------------------------------

15
16 % Column vectors of edge vertices.

17 v1_vec = C(:,v1_col);

18 v2_vec = C(:,v2_col);

19
20 % Graph parameters.

21 numNodes = max(max(v1_vec), max(v2_vec));

22 numEdges = size(C,1);

23
24 % Node Adjacency matrix (Av).

25 Av = zeros(numNodes);

26 bad_admittance = 0;

27 for i=1: numEdges

28
29 vertex1 = C(i,v1_col);

30 vertex2 = C(i,v2_col);

31
32 % Add 1 to C(i,edge_len_col) for cases where the age of the link is 0.

33 % This prevents a singular age matrix.

34
35 admittance = 1/(C(i,edge_len_col) + 1); % 1

36
37 if (admittance == Inf)

38 bad_admittance = 1;

39 C

40 fprintf(’Inf Y: Edge length between nodes %d and %d = %8.3f.\n’, ...

41 vertex1 , vertex2 , C(i,edge_len_col));

42 end

43
44 Av(vertex1 , vertex2) = admittance; % G1(i,3);

45 Av(vertex2 , vertex1) = admittance; % G1(i,3);

46 end

47
48 end % function

A.2.3.2 centrality.m

1 % This function computes the centrality of a network. Various centrality

2 % measures exist and may be (eventually) selectable by an input parameter.

3 %

4 % 9/23/2012: Implement degree centrality and closeness centrality.

5
6
7
8 function[centrality_matrix] = centrality(centrality_type , Adj_matrix , C, Params)

9
10
11 v1 = Params.v1;

12 v2 = Params.v2;

13
14 numNodes = max(max(C(:,v1:v2)));

15
16
17
18 switch centrality_type

19
20
21 case 1 % Degree centrality.

22
23 % Estrada , eq. (7.1)

24 centrality_matrix = sum(Adj_matrix);

25
26 case 2 % Closeness centrality

27
28 % This algorithm assumes that all links have a length < inf.

29
30 D = floyd(C,Params)

31
32 s = sum(D)

33
34 % Estrada , eq. (7.49)

35 centrality_matrix = (numNodes -1) ./ s

36
37 otherwise

38
39 fprintf(’Invalid centrality type specified: %d.\n’, centrality_type);

40
41 end

A.2.3.3 clumpiness.m
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1 function [Xi] = clumpiness(C,P,A)

2 % -------------------------------------------------------------------------

3 % Function name: clumpiness

4 % Author: Paul Yanik

5 %

6 % Description:

7 % This function computes a matrix of clumpiness coefficients (Xi) for a

8 % graph based on a topology of connections (C), distances between nodes (D),

9 % and the degree matrix (K).

10 %

11 % This method is described in Estrada (2012) , The Structure of Complex

12 % Networks.

13 % -------------------------------------------------------------------------

14 v1 = P.v1;

15 v2 = P.v2;

16 nodeLabel = P.nodeLabel;

17
18 numNodes = max(max(C(:,v1:v2)));

19
20 AdjMat = nodeAdjacency(C,P);

21
22 % Find the nodeDegree matrix (number of connections)

23 [k, K_matrix] = nodeDegree(AdjMat);

24
25 D = floyd(C,P,A);

26
27 Xi = zeros(numNodes);

28
29
30 % Compute the clumpiness coefficients

31 for i=1: numNodes

32 for j=1:i

33
34 if (i ~= j)

35
36 clump_val = (k(i) * k(j)) / D(i,j)^2;

37
38 Xi(i,j) = clump_val;

39 Xi(j,i) = clump_val;

40
41
42 end

43
44 end

45 end

46
47
48 end % function

A.2.3.4 edgeLengths.m

1 % This function generates a square length matrix from an array of graph

2 % edge lengths: [vertex1 , vertex2 , length ].

3
4
5 function[lengths] = edgeLengths(C)

6
7
8 numEdges = size(C,1);

9 numNodes = max(max(C(: ,1:2)));

10
11 lengths = inf(numNodes);

12
13
14 for i=1: numEdges

15
16 v1 = C(i,1);

17 v2 = C(i,2);

18
19 lengths(v1,v2) = C(i,3);

20 lengths(v2,v1) = C(i,3);

21
22
23 end

A.2.3.5 floyd.m

1 function [D] = floyd(C, P, A)

2 % -------------------------------------------------------------------------

3 % Function name: floyd

4 % Author: Paul Yanik

5 %

6 % Description:
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7 % This function implements Floyd ’s algorithm for finding the minimum

8 % distance between all pairs of nodes in a network.

9 % Refer to A. Tucker , "Applied Combinatorics", p. 129.

10 %

11 % Currently (9/16/2012) , it is assumed that a matrix consisting of rows of

12 % the form [vertex1 , vertex2 , age , length] is available. Future

13 % implementations may use the adjacency matrix [Adj] to infer edge lengths.

14 % -------------------------------------------------------------------------

15
16 numEdges = size(C,1);

17 numNodes = max(max(C(: ,1:2)));

18 v1 = P.v1;

19 v2 = P.v2;

20 len = P.edgeLen_col;

21 nodeLabel = P.nodeLabel;

22 ancestor = P.ancestor;

23 reward = P.reward;

24 age = P.age;

25
26 % Initialize all interNode distances to infinity.

27 D = zeros(numNodes);

28 W = inf(numNodes);

29
30 D = D + triu(W,1); % Add upper triangle of inf.

31 D = D + tril(W,-1); % Add lower triange of inf.

32
33 for i=1: numEdges

34
35 vertex1 = C(i,v1);

36 vertex2 = C(i,v2);

37
38 D(vertex1 ,vertex2) = C(i,len);

39 D(vertex2 ,vertex1) = C(i,len);

40
41 end

42
43
44 % Find the minimum distance between all pairs of nodes

45 for k = 1: numNodes

46 for i = 1: numNodes

47 for j = 1: numNodes

48
49 temp = D(i,k) + D(k,j);

50
51 if (temp < D(i,j))

52
53 D(i,j) = temp;

54
55 end

56
57 end

58 end

59 end

60
61
62 % Lengthen distance between nodes where bad response guidance was given.

63 % This should reduce clumpiness of badly associated nodes.

64 Arows = size(A,1);

65 for i=1: Arows

66
67 my_ancestor = A(i,ancestor);

68 my_nodeLabel = A(i,nodeLabel);

69
70 % if (((A(i,reward) == -1) && (my_ancestor ~= my_nodeLabel)) ...

71 % || (A(i,reward) == 0))

72
73 if ((A(i,reward) == -1) && (my_ancestor ~= my_nodeLabel))

74
75 D(my_nodeLabel ,my_ancestor) = inf;

76 D(my_ancestor ,my_nodeLabel) = inf;

77
78
79 end

80
81 end

A.2.3.6 laplacian.m

1 function[L] = laplacian(K, Av);

2 % -------------------------------------------------------------------------

3 % Function name: laplacian

4 % Author: Paul Yanik

5 %

6 % Description:

7 % This script computes the Laplacian matrix given an adjacency
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8 % (or admittance) matrix [Av] and a degree matrix [K].

9 %

10 % This formula is taken from E. Estrada , "The Structure of Complex

11 % Networks", p. 38, eq. 2.32.

12 % -------------------------------------------------------------------------

13
14 L = K - Av;

A.2.3.7 nodeAdjacency.m

1 function[adjMatrix] = nodeAdjacency(C,P)

2 % -------------------------------------------------------------------------

3 % Function name: nodeAdjacency

4 % Author: Paul Yanik

5 %

6 % Descripton:

7 % This function/script generates a node -adjacency matrix from the [C] matrix

8 % of a Growing Neural Gas network. [C] is understood to be an undirected

9 % graph.

10 %

11 % Allocate a square matrix that is the size of the largest node label

12 % (which may be larger than the number of nodes).

13 % -------------------------------------------------------------------------

14
15 v1 = P.v1;

16 v2 = P.v2;

17
18 numNodes = max(max(C(:,v1:v2)));

19 numEdges = size(C,1);

20
21 adjMatrix = zeros(numNodes);

22
23
24 % Since [C] is an undirected graph , adjMatrix will be symmetric.

25 for i=1: numEdges

26
27 vertex1 = C(i,v1);

28 vertex2 = C(i,v2);

29
30 adjMatrix(vertex1 , vertex2) = 1;

31 adjMatrix(vertex2 , vertex1) = 1;

32
33 end

34
35
36
37
38 % % Check for accuracy (debug purposes).

39 % Arows = size(A,1);

40 % nodeLabel = P.nodeLabel;

41 % numConx = P.numConx;

42 % for i=1: numNodes

43 %

44 % a = sum(adjMatrix (:,i));

45 %

46 % for j=1: Arows

47 %

48 % if ( (A(j,nodeLabel)==i) && (A(j,numConx)~=a))

49 %

50 % fprintf(’ERR: NodeLabel =%3d, adj =%2d, numConx =%2d.\n’, ...

51 % i,a,A(j,numConx));

52 %

53 % elseif ( (A(j,nodeLabel)==i) && (A(j,numConx)==a) )

54 %

55 % fprintf(’OK: NodeLabel =%3d, adj=%2d, numConx =%2d.\n’, ...

56 % i,a,A(j,numConx));

57 %

58 % else ...

59 % % Do nothing

60 %

61 % end

62 % end

63 %

64 % end

A.2.3.8 nodeDegree.m

1 function[k_vector ,K_matrix] = nodeDegree(Av)

2 % -------------------------------------------------------------------------

3 % Function name: nodeDegree

4 %

5 % Description:

6 % This function computes the vector [k] and matrix of node degrees [K] from
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7 % the adjancency matrix or admittance matrix [Av].

8 % -------------------------------------------------------------------------

9
10 k_vector = sum(Av)’;

11
12 K_matrix = diag(k_vector);

13
14 end % function

A.2.3.9 resDist.m

1 function[Omega] = resDist(C, v1_col , v2_col , edge_len_col)

2 % -------------------------------------------------------------------------

3 % Function name: resDist

4 % Author: Paul Yanik

5 %

6 % Description:

7 % This function computes the resistance distance for a network based on the

8 % Laplacian matrix (based on the method of Klien and Randic , 1995).

9 % -------------------------------------------------------------------------

10
11 numEdges = size(C,1)

12 numNodes = max( max(C(:,v1_col)), max(C(:,v2_col)) )

13
14
15 % Admittance (Kirchhoff) matrix.

16 Av = admittance_matrix(C, v1_col , v2_col , edge_len_col)

17
18 % Degree matrix.

19 [k_vec , K] = nodeDegree(Av)

20
21
22 % Laplacian matrix (L)

23 L = laplacian(K,Av)

24
25
26 % Auxiliary Matrix (Phi) and

27 % inverse sumMatrix (non -singluar for connected graphs).

28 Phi = ones(numNodes);

29 sumMat = L + (Phi/numNodes);

30 sumMatInv = inv(sumMat);

31
32
33 % Resistance Distance Matrix (Omega) -- symmetric

34 for i=1: numNodes

35 for j=1:i;

36
37 resistance = sumMatInv(i,i) - 2* sumMatInv(i,j) + sumMatInv(j,j);

38
39 Omega(i,j) = resistance;

40 Omega(j,i) = resistance;

41
42 end

43
44 % This prevents a node from having the lowest R-distance to itself.

45 Omega(i,i) = inf;

46 end

47
48
49 end % function

A.2.4 kNN Tools

A.2.4.1 gl kNN2.m

1 % =========================================================================

2 % Filename: gl_kNN2.m

3 % Author: Paul Yanik

4 %

5 % Description: This file contains code which emulates gestureLrnList.m

6 % using kNN from a DI training set as reference nodes instead of GNG. The

7 % training data is read in. Test data is then read in. Near neighbors are

8 % found in the training data. The longest action vector among the near

9 % neighbors is selected as the action to be taken. The action vector for

10 % the training data is then lengthened by a learning step.

11 %

12 %

13 % Use model: gl_knn(tstData , numEpochs , k)

14 %

15 % Where:

16 % descr_file is a file containing dynamic instant (DI) training data.
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17 % =========================================================================

18
19 function [] = gl_kNN2(tstData , numEpochs , hoodRadius , kVal ,kNN_buff)

20
21 tic

22
23
24 % This file contains runtime parameters for gestureLrn.

25 params;

26 oneShot = 0;

27
28
29 % Variables

30 neighbors_used = 0;

31 neighbors_used_successfully = 0;

32 hot_nodes = 0;

33
34
35 % Read in training DIs from file (e.g. DIs_300_real_trn.txt).

36 % [trnVecs , trnClassNums , numTrnSamples] = read_descriptor_list(trnData);

37
38
39 % Start with a raw 2-node A matrix.

40 read_A;

41
42 % Initialize a neighborhood structure.

43 kNN_hood = zeros(kVal ,size(A,2));

44 fprintf(’kVal = %d\n’, kVal);

45
46 % Read in test DIs from file (e.g. DIs_450_real_tst.txt).

47 [tstVecs , tstClassNums , numSamples] = read_descriptor_list(tstData);

48
49
50 % Results array for one run of numEpochs.

51 % Format of results: [classNum , Err].

52 results_array = zeros(numSamples*numEpochs , 2);

53
54
55
56 % Run numEpochs

57 index = 0;

58 for epoch = 1: numEpochs

59
60 fprintf(’Epoch = %3d\n’, epoch);

61
62
63 for sample = 1: numSamples

64
65 index = index + 1;

66
67 vec_in = tstVecs(sample ,:);

68 gestureClass = tstClassNums(sample ,1);

69
70 % Use the most recent samples (bottom of A).

71 Arows = size(A,1);

72 maxNeighbors = kNN_buff;

73 if (Arows > maxNeighbors)

74 A = A(Arows - maxNeighbors + 1:Arows ,:);

75 end

76
77 [NN , kNN_hood] = kNN_A_noClassifier(kVal ,A,vec_in);

78
79 genAction_xyt;

80 getResponse_warmerColder;

81
82
83 % Put results in the results matrix.

84 % index = ((epoch -1)*numSamples)+sample;

85 results_array(index , 1:3) = [gestureClass , epoch , mag_dist2goal ];

86
87 end

88
89
90 end

91
92 write_results;

93
94
95
96 fprintf(’Done.\n’);

97
98
99 toc;
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A.2.4.2 gl kNN.m

1 % =========================================================================

2 % Filename: gl_kNN.m

3 % Author: Paul Yanik

4 %

5 % Description: This file contains code which emulates gestureLrnList.m

6 % using kNN from a DI training set as reference nodes instead of GNG. The

7 % training data is read in. Test data is then read in. Near neighbors are

8 % found in the training data. The longest action vector among the near

9 % neighbors is selected as the action to be taken. The action vector for

10 % the training data is then lengthened by a learning step.

11 %

12 %

13 % Use model: gl_knn(tstData , numEpochs , k)

14 %

15 % Where:

16 % descr_file is a file containing dynamic instant (DI) training data.

17 % =========================================================================

18
19 function [] = gl_kNN(trnData , tstData , numEpochs , hoodRadius , kVal)

20
21 tic

22 kNN_buff = 0;

23
24
25 % This file contains runtime parameters for gestureLrn.

26 params;

27
28 % Variables

29 neighbors_used = 0;

30 neighbors_used_successfully = 0;

31 hot_nodes = 0;

32
33
34 % Read in training DIs from file (e.g. DIs_300_real_trn.txt).

35 [trnVecs , trnClassNums , numTrnSamples] = read_descriptor_list(trnData);

36
37 % Create an A matrix (similar to A for GNG) from training data.

38 A = read_A_kNN(trnVecs);

39
40
41 % Initialize a neighborhood structure.

42 kNN_hood = zeros(kVal ,size(A,2));

43 fprintf(’kVal = %d\n’, kVal);

44
45 % Read in test DIs from file (e.g. DIs_450_real_tst.txt).

46 [tstVecs , tstClassNums , numSamples] = read_descriptor_list(tstData);

47
48
49 % Results array for one run of numEpochs.

50 % Format of results: [classNum , Err].

51 results_array = zeros(numSamples*numEpochs , 2);

52
53
54
55 % Run numEpochs

56 index = 0;

57 for epoch = 1: numEpochs

58
59 fprintf(’Epoch = %3d\n’, epoch);

60
61
62 for sample = 1: numSamples

63
64 index = index + 1;

65
66 vec_in = tstVecs(sample ,:);

67 gestureClass = tstClassNums(sample ,1);

68
69 [NN , kNN_hood] = kNN_A_noClassifier(kVal ,A,vec_in);

70
71 genAction_xyt;

72 getResponse_warmerColder;

73
74
75 % Put results in the results matrix.

76 % index = ((epoch -1)*numSamples)+sample;

77 results_array(index , 1:3) = [gestureClass , epoch , mag_dist2goal ];

78
79 end

80
81
82 end

83
84 write_results;
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85
86
87
88 fprintf(’Done.\n’);

89
90
91 toc;

A.2.4.3 kNN A noClassifier.m

1 % =========================================================================

2 % Filename: kNN_A_noClassifier.m

3 % Author: Paul Yanik

4 %

5 % Description: This function finds the k nearest neighbors from a set of

6 % training data. The original application for this code was in support of

7 % my research at Clemson University on gesture recognition with mapping to

8 % a robot configuration vector (x,y,theta). As such , this function does

9 % not classify the output , but only returns the indices of the k nearest

10 % neighbors of an input vector to a set of sample vectors (A).

11 %

12 % Use model: myNbrs = kNN_A_noClassifier(k,A,mySample)

13 % =========================================================================

14
15 function [NN, nbrs] = kNN_A_noClassifier(k, A, mySample)

16
17 params;

18
19
20 % Determine the number and dimension of training data vectors.

21 % The input trnData is assumed to contain input samples in each row.

22 [rows ,cols] = size(A);

23
24
25 % Set up a results matrix to store distances and indices

26 distances = zeros(rows ,2);

27 sorted_results = zeros(rows ,2);

28
29 % Calculate distances

30 for n = 1:rows

31
32 A_vec = A(n,P.fvec1:P.fvec2);

33
34 distances(n,1) = A(n,P.nodeLabel);

35 distances(n,2) = norm(A_vec - mySample);

36
37 end

38
39 % Sort the rows of the results matrix by distance.

40 % The top k entries are the nearest neighbors

41 sorted_results = sortrows(distances ,2);

42 numNbrs = min(k, size(A,1)); % in case A has fewer than k entries.

43 nbr_labels = sorted_results (1: numNbrs ,:);

44
45
46 % Pull the nbr_label rows out of A

47 nbrs = zeros(numNbrs ,cols);

48 for i = 1: numNbrs

49 for j = 1:rows

50
51 if (A(j,P.nodeLabel) == nbr_labels(i,1))

52
53 nbrs(i,:) = A(j,:);

54
55 end

56 end

57 end

58
59 % Return the nearest neighbor

60 NN = nbrs (1,:);

61
62
63
64 end % function

A.2.4.4 read A kNN.m

1 % This function generates an A matrix similar to the one used with GNG. This

2 % affords access to all fields of A for generating actions and feedback

3 % when using kNN.

4
5 function [A] = read_A_kNN(vecs)

6
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7 [numVecs ,cols] = size(vecs);

8
9 params;

10
11 % Initialize A

12 A = zeros(numVecs ,P.A_cols);

13
14 for i = 1: numVecs

15
16 A(i,P.numObs) = 0;

17 A(i,P.nodeLabel) = i;

18 A(i,P.numConx) = 0;

19
20 % Initialize rewards pessimistically - trigger random guess.

21 A(i,P.reward) = -1;

22
23 % Nodes are their own ancestor.

24 A(i,P.ancestor) = A(i,P.nodeLabel);

25
26 % Initial length and error are zero.

27 A(i,P.Q) = 0;

28 A(i,P.E) = 0;

29
30 % Initialize actions to the origin of the TurtleSim arena.

31 A(i,P.act1:P.act2) = [0,0,0];

32 A(i,P.last1:P.last2) = [0,0,0];

33
34 % Feature vector

35 A(i,P.fvec1:P.fvec2) = vecs(i,:);

36
37 end

38
39 fprintf(’A matrix contains %d nodes .\n’, size(A,1));

40
41
42 end % function

A.2.5 SSM Tools

A.2.5.1 classifyHOGs.m

1 % ========================================================================

2 % Filename: classifyHOGs.m

3 % Author: Paul Yanik

4 % Date: October , 2010

5 %

6 % Description:

7 % This program classifies three motions (reach , grab , press) using a mean

8 % Histograms of Oriented Gradients (HOG) as the descriptor for motion

9 % sensor data readings taken from various points on spherical surface

10 % surrounding the motions. Classification is performed using a Bayesian

11 % classifier (closest to the mean). A classification is made and the

12 % closest actual HOG (using Frobenius norm) to the mean is taken to be the

13 % optimal vantage point for viewing that particular motion (reach , grab ,

14 % or press).

15 % ========================================================================

16 function[dist2mean ,closest2mean ,stats] = classifyHOGs(sensorType , ...

17 patchHeight ,patchWidth ,exemplarMethod ,trnPercent ,genViews ,version , ...

18 verbose);

19
20 % Read in runtime parameters.

21 HOGParams;

22
23 % Generate a view list for those views that will be used

24 % to calculate exemplars versus those whic will be used as

25 % views to be classified.

26 if (genViews == 1)

27 [viewList ,numTrnViews ,numTstViews] = genRandViewList(trnPercent);

28 else

29 load(’viewList.mat’);

30 end

31
32 % Statistics collection matrix:

33 % Each row is a class: [#actual , #found , P(error)]

34 % stats = zeros(numTstViews*numClasses ,3);

35 stats = zeros(numClasses ,3);

36
37 % Store the actual motion that is closest to mean for each class.

38 % Initialize 3x7 matrix: [theta ,phi ,FrobDist2mean ,class ,x,y,z]

39 closest2mean = zeros(numClasses ,7);

40 closest2mean (:,3) = 999999;

41
42 % Store all distances to the mean exemplars.
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43 % [1,2,3] = [dist2reach , dist2press , dist2grab ];

44 dist2mean = zeros(numTstViews*numClasses ,numClasses +8);

45 % The other (8) column labels (someday , make these variable

46 % so that we can add more classes).

47 actualClass = 4;

48 foundClass = 5;

49 rCol = 6;

50 tCol = 7;

51 pCol = 8;

52 xCol = 9;

53 yCol = 10;

54 zCol = 11;

55
56 % Consider all views from one exemplar at a time

57 for explrNum = 1: numClasses

58
59 if (explrNum == reach)

60 explrType = ’reach ’;

61 elseif (explrNum == press)

62 explrType = ’press ’;

63 elseif (explrNum == grab)

64 explrType = ’grab’;

65 else fprintf(’BAD CLASS NUMBER\n’);

66 end

67
68 % Calculate exemplar for the current class.

69 if (exemplarMethod == 3)

70 % Generate a mean HOG exemplar using the randomized view list.

71 exemplar = genHOGexemplar(explrType ,sensorType ,viewList ,3,version ,0);

72 else fprintf(’Unrecognized exemplar generation method: %d.\n’, ...

73 exemplarMethod);

74 end

75
76 motNum = 0; % Motion number (1 of numPts)

77 trainPtsCnt = 0;

78 testPtsCnt = 0;

79 viewListIndex = 0;

80 for theta = thetaMin:thetaInterval:thetaMax

81 for phi = phiMin:phiInterval:phiMax

82
83 viewListIndex = viewListIndex + 1;

84
85 if (viewList(viewListIndex ,1) == 1)

86 trainPtsCnt = trainPtsCnt + 1;

87 else

88
89 % Perform classification for 0s in viewlist.

90 testPtsCnt = testPtsCnt + 1;

91
92 % Compare each motion at this vantage point to exemplar.

93 for c = 1: numClasses

94
95 motNum = motNum + 1;

96
97 if (c == reach)

98 motionType = ’reach ’;

99 elseif (c == press)

100 motionType = ’press ’;

101 elseif (c == grab)

102 motionType = ’grab’;

103 else fprintf(’BAD CLASS NUMBER\n’);

104 end

105
106 mHOG = genArrayHOG(patchHeight ,patchWidth , ...

107 motionType ,sensorType ,theta ,phi ,version ,0);

108
109 dist2mean(motNum ,explrNum) = ...

110 norm(exemplar - mHOG ,’fro’);

111 dist2mean(motNum ,actualClass) = c;

112
113 dist2mean(motNum ,rCol:pCol) = [r,theta ,phi];

114 [x,y,z] = sph2cart(d2r*phi , ((pi/2) -(d2r*theta)), r);

115 dist2mean(motNum ,xCol:zCol) = [x,y,z];

116
117 end % for c (each motion at this view)

118
119 end % if motNum in viewList

120
121 end % for phi

122 end % for theta

123 end % for explrNum

124
125 trainPtsCnt;

126 testPtsCnt;

127
128 % Find the nearest exemplar (by distance to Frob. mean) and classify.

129 for i = 1:( numTstViews*numClasses)
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130 [val ,classFound] = min(dist2mean(i,1:3));

131 dist2mean(i,foundClass) = classFound;

132 end

133
134 dist2mean (: ,1:5);

135
136
137 % Calculate the statistics for each class.

138 % Row = [#actual , #found , %error]

139 stats = zeros(numClasses ,3);

140
141 for i = 1:( numTstViews*numClasses)

142
143 a = dist2mean(i,actualClass);

144 f = dist2mean(i,foundClass);

145
146 % Increment actual motion count.

147 stats(a,1) = stats(a,1) + 1;

148
149 % Increment found motion count.

150 if (a == f)

151 stats(a,2) = stats(a,2) + 1;

152 end

153
154 end

155
156 % Calculate P(error) and avgPerr

157 avgPerr = 0;

158 for i = 1: numClasses

159 stats(i,3) = 1 - (stats(i,2) / stats(i,1));

160 avgPerr = avgPerr + stats(i,3);

161 end

162 avgPerr = avgPerr / i;

163
164 % Open an output file for writing.

165 % filename = ’ExhaustiveExemplarSearch.txt ’;

166 % FID = fopen(filename ,’w’);

167
168 if (verbose == 1)

169 fprintf(’---------------------------------------------------\n’);

170 fprintf(’Classification stats: \n\n’);

171 fprintf(’ Actual Found P(error) \n’);

172 fprintf(’Reach: %3d %3d %6.3f\n’,stats(reach ,1),stats(reach ,2),stats(reach ,3));

173 fprintf(’Press: %3d %3d %6.3f\n’,stats(press ,1),stats(press ,2),stats(press ,3));

174 fprintf(’Grab : %3d %3d %6.3f\n\n’,stats(grab ,1),stats(grab ,2),stats(grab ,3));

175 fprintf(’Average P(error) = %6.3f\n’,avgPerr);

176 fprintf(’---------------------------------------------------\n’);

177 end

178
179 % Find the closest vantage point to the mean.

180 for i = 1:( numTstViews*numClasses)

181 a = dist2mean(i,actualClass);

182 f = dist2mean(i,foundClass);

183 d = dist2mean(i,a);

184
185 if ((a == f) && (d < closest2mean(a,3)) )

186 % Store a new nearest vantage point

187 closest2mean(a,1) = dist2mean(i,tCol); % theta

188 closest2mean(a,2) = dist2mean(i,pCol); % phi

189 closest2mean(a,3) = d; % Frob. distance

190 closest2mean(a,4) = a; % class - redundant

191 closest2mean(a,5) = dist2mean(i,xCol); % x

192 closest2mean(a,6) = dist2mean(i,yCol); % y

193 closest2mean(a,7) = dist2mean(i,zCol); % z

194 end

195 end

196
197 if (verbose == 1)

198 fprintf(’Exemplars found: \n\n’);

199 fprintf(’Reach: theta = %3d, phi = %3d, dist2mean = %6.3f \n’, closest2mean(reach ,1), closest2mean(reach ,2),

closest2mean(reach ,3));

200 fprintf(’Press: theta = %3d, phi = %3d, dist2mean = %6.3f \n’, closest2mean(press ,1), closest2mean(press ,2),

closest2mean(press ,3));

201 fprintf(’Grab : theta = %3d, phi = %3d, dist2mean = %6.3f \n’, closest2mean(grab , 1), closest2mean(grab , 2),

closest2mean(grab ,3));

202 fprintf(’---------------------------------------------------\n’);

203 end

204
205
206 % Graph the Frobenius distances of each HOG from the mean HOG

207 % versus the geometric distance of each vantage point from the vantage

208 % point that was found to be the best.

209 % [dist2mean , dist2view]

210 % geomDist = zeros(numViews ,numClasses);

211 % frobDist = zeros(numViews ,numClasses);

212 % viewPos = zeros (1:3);

213 % meanPos = zeros (1:3);
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214 %

215 % for i = 1: numClasses

216 %

217 % meanPos = closest2mean(i,5:7); % [x,y,z] of best vantage point.

218 %

219 % k = 0;

220 % for j = 1: numPts

221 % if (dist2mean(j,actualClass) == i)

222 % k = k + 1;

223 % viewPos = dist2mean(j ,9:11);

224 % frobDist(k,i) = dist2mean(j,i);

225 % geomDist(k,i) = norm(viewPos - meanPos ,’fro ’);

226 % end

227 % end % for j

228 % end % for i

229
230
231 % plotting = 0;

232 % if (plotting == 1)

233 % scatter(geomDist(:,reach),frobDist(:,reach),’filled ’); hold on;

234 % scatter(geomDist(:,press),frobDist(:,press),’filled ’); hold on;

235 % scatter(geomDist(:,grab ),frobDist(:,grab ),’filled ’);

236 %

237 % % scatter(geomDist(:,reach),frobDist(:,reach)); hold on;

238 % % scatter(geomDist(:,press),frobDist(:,press)); hold on;

239 % % scatter(geomDist(:,grab ),frobDist(:,grab ));

240 %

241 % title(’Distances from mean view to mean HOG.’);

242 % xlabel(’Distance to best vantage point ’);

243 % ylabel(’Dist to mean HOG ’);

244 % legend(’Reach ’,’Press ’,’Grab ’,’Location ’,’Northwest ’);

245 % end

A.2.5.2 classifyHOGsPlot.m

1 % ========================================================================

2 % Filename: classifyHOGsPlot.m

3 % Author: Paul Yanik

4 % Date: October , 2010

5 %

6 % Description:

7 % ========================================================================

8 function[x,y,myZ ,distances2mean] = classifyHOGsPlot(sensorType ,motion , ...

9 patchHeight ,patchWidth ,exemplarMethod ,trnPercent ,genViews ,version);

10
11 % Read in runtime parameters.

12 HOGParams;

13
14 % Generate a view list for those views that will be used

15 % to calculate exemplars (training data) versus those which will be

16 % used as views to be classified (test data).

17 if (genViews == 1)

18 [viewList ,numTrnViews ,numTstViews] = genRandViewList(trnPercent);

19 else

20 load(’viewList.mat’);

21 end

22
23 % Store all distances to the mean exemplars.

24 % [1,2,3] = [dist2reach , dist2press , dist2grab ];

25 distances2mean = zeros(numViews ,numClasses +3);

26 % The other column labels:

27 rCol = 4;

28 tCol = 5;

29 pCol = 6;

30
31 z = zeros(thetaVals ,phiVals ,3);

32
33 % Consider all views from one exemplar at a time

34 for c = 1: numClasses

35
36 if (c == reach)

37 explrType = ’reach ’;

38 elseif (c == press)

39 explrType = ’press ’;

40 elseif (c == grab)

41 explrType = ’grab’;

42 else fprintf(’BAD CLASS NUMBER\n’);

43 end

44
45 % Calculate exemplar for the current class.

46 if (exemplarMethod == 3)

47 % Generate a mean HOG exemplar using the randomized view list.

48 exemplar = genHOGexemplar(explrType ,sensorType ,viewList ,3,version ,0);

49 else fprintf(’Unrecognized exemplar generation method: %d.\n’, ...

50 exemplarMethod);
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51 end

52
53 k = 0;

54 t = 0;

55 p = 0;

56
57 for theta = thetaMin:thetaInterval:thetaMax

58 t = t + 1;

59 p = 0;

60 for phi = phiMin:phiInterval:phiMax

61 p = p + 1;

62
63 k = k + 1;

64 distances2mean(k,rCol) = r;

65 distances2mean(k,pCol) = phi;

66 distances2mean(k,tCol) = theta;

67
68 if (c == reach)

69 motionType = ’reach’;

70 elseif (c == press)

71 motionType = ’press’;

72 elseif (c == grab)

73 motionType = ’grab’;

74 else fprintf(’BAD CLASS NUMBER\n’);

75 end

76
77 mHOG = genArrayHOG(patchHeight ,patchWidth , ...

78 motionType ,sensorType ,theta ,phi ,version ,0);

79
80 Q = norm(exemplar - mHOG ,’fro’);

81
82 distances2mean(k,c) = Q;

83
84 z(t,p,c) = Q;

85
86 end % for phi

87 end % for theta

88 end % for c

89
90 z;

91
92 x = thetaMin:thetaInterval:thetaMax;

93 y = phiMin:phiInterval:phiMax;

94 myZ = z;

95
96 if (motion == 1) mString = ’Reach’; end

97 if (motion == 2) mString = ’Press’; end

98 if (motion == 3) mString = ’Grab’; end

99
100
101 titleString = [’Dist: HOG to class exemplar: ’,mString ,’, Train = ’,num2str(trnPercent),’%’];

102 surf(x,y,myZ(:,:,motion)’);

103 title(titleString);

104 xlabel(’Theta ’);

105 ylabel(’Phi’);

106 zlabel(’Frob. Distance ’);

107 set(gca ,’XTick’,thetaMin :30: thetaMax);

108 set(gca ,’YTick’,phiMin :30: phiMax);

109 view (-45,75);

A.2.5.3 findOptVPs.m

1 % -----------------------------------------------------------------------

2 % Filename: genMotSSMHybrid.m

3 % Author: Paul Yanik

4 % Date: January , 2011

5 %

6 % Description:

7 % This function runs classifyHOGs multiple times and plots the

8 % optimal vantage points to see if they cluster. Also , the most common

9 % optimal vantage point found for each motoin through all trials is

10 % determined.

11 % -------------------------------------------------------------------------

12 function [dist2mean , optimalVPs] = findOptVPs(numTrials ,version ,displayMe)

13
14 HOGParams;

15
16 % Draw the spherical wire frame.

17 if (displayMe == 1)

18 drawSphereFrame;

19 end

20
21 % Create a matrix to store optimal vantage point counts from

22 % each run of the classifier.

23 VPStats = zeros(numViews ,6); % Vantage Point Stats
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24 i = 0;

25 for t = thetaMin:thetaInterval:thetaMax

26 for p = phiMin:phiInterval:phiMax

27 i = i + 1;

28 VPStats(i,:) = [30,t,p,0,0,0];

29 end

30 end

31
32 % -------------------------------------------------------

33 % Run the classifier and plot the optimal vantage points.

34 % -------------------------------------------------------

35 reach = 1;

36 press = 2;

37 grab = 3;

38
39 xCol = 5;

40 yCol = 6;

41 zCol = 7;

42
43 % numTrials = 1;

44
45 reachXYZ = zeros(numTrials ,3);

46 pressXYZ = zeros(numTrials ,3);

47 grabXYZ = zeros(numTrials ,3);

48
49 for i=1: numTrials

50
51 fprintf(’Performing classification trial: %3d.\n’,i);

52
53 [dist2mean ,closest2mean ,stats] = ...

54 classifyHOGs(’Motion ’ ,1,1,3,50,1,version ,0);

55
56 % reach

57 x = closest2mean(reach ,xCol);

58 y = closest2mean(reach ,yCol);

59 z = closest2mean(reach ,zCol);

60 reachXYZ(i,:) = [30, closest2mean(reach ,1),closest2mean(reach ,2)];

61 r = 30;

62 t = closest2mean(reach ,1);

63 p = closest2mean(reach ,2);

64 for g = 1: numViews

65 if (( VPStats(g,1) == r) && (VPStats(g,2) == t) && (VPStats(g,3) == p))

66 VPStats(g,reach +3) = VPStats(g,reach +3) + 1;

67 end

68 end

69
70 if (displayMe == 1)

71 scatter3(x,y,z,10,’ro’,’filled ’);

72 hold on;

73 end

74
75 % press

76 x = closest2mean(press ,xCol);

77 y = closest2mean(press ,yCol);

78 z = closest2mean(press ,zCol);

79 pressXYZ(i,:) = [30, closest2mean(press ,1),closest2mean(press ,2)];

80 r = 30;

81 t = closest2mean(press ,1);

82 p = closest2mean(press ,2);

83 for g = 1: numViews

84 if (( VPStats(g,1) == r) && (VPStats(g,2) == t) && (VPStats(g,3) == p))

85 VPStats(g,press +3) = VPStats(g,press +3) + 1;

86 end

87 end

88
89 if (displayMe == 1)

90 scatter3(x,y,z,10,’bo’,’filled ’);

91 hold on;

92 end

93
94 % grab

95 x = closest2mean(grab ,xCol);

96 y = closest2mean(grab ,yCol);

97 z = closest2mean(grab ,zCol);

98 grabXYZ(i,:) = [30, closest2mean(grab ,1),closest2mean(grab ,2)];

99 r = 30;

100 t = closest2mean(grab ,1);

101 p = closest2mean(grab ,2);

102 for g = 1: numViews

103 if (( VPStats(g,1) == r) && (VPStats(g,2) == t) && (VPStats(g,3) == p))

104 VPStats(g,grab +3) = VPStats(g,grab +3) + 1;

105 end

106 end

107
108 if (displayMe == 1)

109 scatter3(x,y,z,10,’ko’,’filled ’);

110 hold on;
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111 end

112
113 end

114 % fprintf(’Done.\n’);

115
116 [bestReach ,bestReachLoc] = max(VPStats(:,reach +3));

117 [bestPress ,bestPressLoc] = max(VPStats(:,press +3));

118 [bestGrab , bestGrabLoc] = max(VPStats(:,grab +3));

119
120 reachRTP = [VPStats(bestReachLoc ,1),VPStats(bestReachLoc ,2),VPStats(bestReachLoc ,3)];

121 pressRTP = [VPStats(bestPressLoc ,1),VPStats(bestPressLoc ,2),VPStats(bestPressLoc ,3)];

122 grabRTP = [VPStats(bestGrabLoc , 1),VPStats(bestGrabLoc , 2),VPStats(bestGrabLoc , 3)];

123
124 optimalVPs = [reachRTP; pressRTP; grabRTP ];

125
126 fprintf(’Best reach at (%3d,%3d,%3d). (%3d / %3d).\n’, ...

127 reachRTP (1,1),reachRTP (1,2),reachRTP (1,3),bestReach ,numTrials);

128
129 fprintf(’Best press at (%3d,%3d,%3d). (%3d / %3d).\n’, ...

130 pressRTP (1,1),pressRTP (1,2),pressRTP (1,3),bestPress ,numTrials);

131
132 fprintf(’Best grab at (%3d,%3d,%3d). (%3d / %3d).\n’, ...

133 grabRTP (1,1),grabRTP (1,2),grabRTP (1,3),bestGrab ,numTrials);

A.2.5.4 genArrayHOG.m

1 % -----------------------------------------------------------------------

2 % Filename: genArrayHOG.m

3 % Author: Paul Yanik

4 % Date: September , 2010

5 %

6 % Description:

7 % This function returns the average of HOGs surrounding the vantage point

8 % (r,theta ,phi) by ’rows ’ and ’cols ’.

9 % -----------------------------------------------------------------------

10 function[arrayHOG] = genArrayHOG(rows ,cols , ...

11 motionType ,sensorType ,theta ,phi ,version ,display)

12
13 HOGParams;

14
15 % Set up a matrix of thetas and phis over which to generate an

16 % average HOG.

17 thetas = zeros(1,rows);

18 phis = zeros(1,cols);

19
20 % Create a rows*cols "patch" of vantage points with the input

21 % vantage point (theta ,phi) in the upper right corner

22
23 % Mirror any overSteps from the region (thetaMax , phiMax)

24 % before the angleMax

25 overage = 0;

26 for i = 1:cols

27 phis(1,i) = phi + ((i-1) * phiInterval);

28 if (phis(1,i) > phiMax)

29 overage = phis(1,i) - phiMax;

30 phis(1,i) = phiMax - overage;

31 end

32 end

33
34 for j = 1:rows

35 thetas(1,j) = theta + ((j-1) * thetaInterval);

36 if (thetas(1,j) > thetaMax)

37 overage = thetas(1,j) - thetaMax;

38 thetas(1,j) = thetaMax - overage;

39 end

40 end

41
42 phis;

43 thetas;

44
45 thisPhi = 0;

46 thisTheta = 0;

47 k = 0;

48 for i = 1:cols

49 thisPhi = phis(1,i);

50
51 for j = 1:rows

52 k = k + 1;

53
54 thisTheta = thetas(1,j);

55
56 if (display == 1)

57 fprintf(’%5s ’,motionType);

58 fprintf(’(r,t,p) = (%2d,%3d,%3d), ’,r,theta ,phi);

59 fprintf(’[Rows ,Cols] = [%1d,%1d], ’,rows ,cols);
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60 fprintf(’Local (t,p) = (%3d,%3d), ’,thisTheta ,thisPhi);

61 fprintf(’k = %d ’,k);

62 fprintf(’\n’);

63 end

64
65 inFileName = [’HOG_’,motionType ,’_’,sensorType ,’_r’, ...

66 num2str(r),’t’, num2str(thisTheta),’p’, ...

67 num2str(thisPhi),’_v’,num2str(version),’.mat’];

68
69 load(inFileName);

70
71 if (k == 1)

72 totalHOG = hog;

73 else totalHOG = totalHOG + hog;

74 end

75
76 end

77 end

78
79 arrayHOG = totalHOG / k;

A.2.5.5 genHOGexemplar.m

1 % ------------------------------------------------------------------------

2 % Filename: genHOGexemplar.m

3 % Author: Paul Yanik

4 % Date: November , 2010

5 %

6 % Description:

7 % This program finds a mean HOG over selected views for a given motion

8 % type and sensor type. This mean can be used as an exemplar for

9 % classification.

10 % ------------------------------------------------------------------------

11
12 function[meanHOG] = genHOGexemplar(motionType ,sensorType , ...

13 viewList ,exemplarType ,version ,display);

14
15 HOGParams;

16
17 % Exemplar types (not finished implementing all these):

18 % 1 = one specific viewpoint

19 % 2 = uniform distribution

20 % 3 = randomized

21
22 % Calculate a cumulative exemplar over selected HOGs (from viewList).

23 k = 0;

24 q = 0;

25 for theta = thetaMin:thetaInterval:thetaMax

26 for phi = phiMin:phiInterval:phiMax

27
28 if (display == 1)

29 fprintf(’findHOGMean: ’);

30 fprintf(’%s sensor (%s): ’,sensorType ,motionType);

31 fprintf(’(r,theta ,phi) = (%2d,%3d,%3d).\n’,r,theta ,phi);

32 end

33
34 % Use k to index viewList.

35 k = k + 1;

36
37 if (viewList(k,1) == 1)

38
39 % Use q to count HOGs factored into the exemplar.

40 q = q + 1;

41
42 inFileName = [’HOG_’,motionType ,’_’,sensorType ,’_r’, ...

43 num2str(r),’t’,num2str(theta),’p’,num2str(phi), ...

44 ’_v’,num2str(version),’.mat’];

45
46 load(inFileName);

47
48 if (q == 1)

49 meanHOG = hog;

50 else

51 meanHOG = meanHOG + hog;

52 end

53
54 end % checking viewList

55
56 end % for phi

57 end % for theta

58
59 meanHOG = meanHOG / q;
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A.2.5.6 genHOG.m

1 % ------------------------------------------------------------------------

2 % Filename: genHOG.m

3 % Author: Paul Yanik

4 % Date: August , 2010

5 %

6 % Use model:

7 % genHOG(motionType ,SensorType ,r,theta ,phi)

8 %

9 % Description:

10 % This function generates a HOG for points along the main diagonal of

11 % a Self Similarity Matrix (SSM). The cells of the HOG are hardcoded in

12 % log -polar form for eleven regions as described in Junejo , et al. (2008).

13 %

14 % Reference:

15 % I. Junejo , E. Dexter , I. Laptev and P. Perez , "Cross -View Action

16 % Recognition from Temporal Self -Similarities", European Conference

17 % on Computer Vision -- ECCV 2008, 2008, pp. 293 -306.

18 % ------------------------------------------------------------------------

19
20 function [hog] = genHOG(motionType ,sensorType ,r,theta ,phi ,version ,display)

21
22 if (display == 1)

23 fprintf(’genHOG: %6s sensor (%5s), (r,theta ,phi) = (%2d,%3d,%3d), ver %d, ’, ...

24 sensorType , motionType , r, theta , phi , version);

25 end

26
27 % Generate the fileName from which to read the SSM (called ’D’).

28 inFileName = [’SSM_’,motionType ,’_’,sensorType ,’_r’,num2str(r),’t’, ...

29 num2str(theta),’p’,num2str(phi),’_v’,num2str(version),’.mat’];

30
31 % Generate the fileName to which to write the HOG matrix.

32 outFileName = [’HOG_’,motionType ,’_’,sensorType ,’_r’,num2str(r),’t’, ...

33 num2str(theta),’p’,num2str(phi),’_v’,num2str(version),’.mat’];

34
35 % Read in cell boundaries

36 getCellBoundsHOG;

37
38 % Test matrix:

39 % D = [0 1 2 3; 0 0 3 4; 0 0 0 5; 0 0 0 0];

40
41 % Read in the SSM: "D".

42 load(inFileName);

43 [numSamples , cols] = size(D);

44
45 % Set up angle quantization bins (in radians/bin).

46 numBins = 8;

47 twoPi = 2*pi;

48 binSize = twoPi/numBins;

49
50
51 % Calculate gradients at all points on or above the diagonal in D.

52 % Use Pruitt gradient calculation. Compute gradient_x (Gx) and

53 % gradient_y (Gy) for each point. Then convert each pair (Gx,Gy)

54 % to the equivalent (magnitude ,theta).

55
56 % Number of points on or above the diagonal

57 numGradients = 0.5*( numSamples ^2) + 0.5* numSamples;

58
59 % ’gradients ’ stores magnitude and quantized angle of gradient for

60 % each point on or above the diagonal of D.

61 gradients = zeros(numGradients ,2);

62
63 k = 0;

64 % fprintf(’Finding gradients .\n’);

65 for i = 1: numSamples % rows of D

66 % fprintf(’i = %3d\n’,i);

67 for j = i:numSamples % columns of D

68
69 k = k + 1;

70
71 % Calculate Gx

72 if (j == 1) % first column

73 Gx = D(i,j+1) - D(i,j);

74 elseif (j == numSamples) % last column

75 Gx = D(i,j) - D(i,j-1);

76 else % normal case

77 Gx = D(i,j+1) - D(i,j-1);

78 end

79
80 % Calculate Gy

81 if (i == 1) % first row

82 Gy = D(i,j) - D(i+1,j); % replicates first row

83 elseif (i == numSamples) % last row

84 Gy = D(i-1,j) - D(i,j);
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85 else % normal case

86 Gy = D(i-1,j) - D(i+1,j);

87 end

88
89 % Find the gradient magnitude

90
91 % Manhattan distance

92 gradients(k,1) = abs(Gx) + abs(Gy);

93
94 % Euclidean distance:

95 % gradients(k,1) = norm([Gx ,0] + [0,Gy]);

96
97 % Find gradient angle , quanitize it into bins

98
99 theta = atan2(Gy ,Gx);

100 if (theta < 0)

101 theta = theta + twoPi;

102 end

103 binNum = floor(theta/binSize) + 1;

104
105 % Fix an apparent MatLab bug

106 if (binNum > 8)

107 binNum = binNum - 8;

108 elseif (binNum < 0)

109 binNum = binNum + 8;

110 end

111
112 gradients(k,2) = binNum;

113
114
115 end % for j

116 end % for i

117
118 clear D;

119
120 % Starting from each point on the diagonal of D,

121 % calculate the cell number (1-11) of all other points

122 % and tally the histogram.

123 % fprintf(’Finding HOG.\n’);

124
125 hog = zeros(numSamples * 11, numBins);

126
127 k = 0;

128 for i = 1: numSamples % rows of D.

129 % fprintf(’i = %3d\n’,i);

130 for j = i:numSamples % columns of D.

131 k = k + 1;

132
133 if (i == j) % a point not on the diagonal

134
135 % Calculate the descriptor for this point (cell HOGs).

136 t = 0;

137 for r = 1: numSamples

138 for s = r:numSamples

139 t = t + 1;

140
141 % Find the distance to other points.

142
143 % Manhattan distance:

144 dist = abs(r - i) + abs(s - j);

145
146 % Euclidean distance:

147 % dist = norm([r,s] - [i,j]);

148 angle = atan2((-r+i) ,(s-j));

149 if (angle < 0)

150 angle = angle + twoPi;

151 end

152
153
154 % HOG is log -polar.

155 % Consider distances at 1, 10, 100 from the point.

156 % Consider angular regions centered at even multiples

157 % of pi/8.

158
159 getCellNumHOG;

160
161 % degAngle = angle * (360/ twoPi);

162
163 row = (i-1)*11 + cellNum;

164
165 % Junejo does not appear to consider gradient

166 % magnitudes. I tried it that way. Then I tried

167 % it with the magnitudes as a histogram scalar of

168 % gradient in a given cell as below.

169
170 col = gradients(t,2);

171
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172 % Without gradient magnitude:

173 % hog(row ,col) = hog(row ,col) + 1;

174
175 % With gradient magnitude:

176 hog(row ,col) = hog(row ,col) + (1 * gradients(t,1));

177
178 end % for s

179 end % for r

180 end % if (i == j)

181
182 end % for j

183 end % for i

184
185 % fprintf(’Found HOG.\n’);

186
187
188 % Normalize the HOG

189 totals = sum(hog ,2);

190
191 for i = 1:( numSamples *11)

192 rowTotal = totals(i,1);

193 for j = 1: numBins

194 if (rowTotal > 0)

195 hog(i,j) = hog(i,j)/rowTotal;

196 end

197 end

198 end

199
200 if (display == 1)

201 [Hrows ,Hcols] = size(hog);

202 fprintf(’HOG is (%d x %d).\n’, ...

203 Hrows , Hcols);

204 end

205
206
207 % Store HOG matrix in a .mat file

208 fileWriteCommand = sprintf(’save %s hog -mat’, outFileName);

209 eval(fileWriteCommand);

A.2.5.7 genMotSSM.m

1 % -----------------------------------------------------------------------

2 % Filename: genMotSSM.m

3 % Author: Paul Yanik

4 % Date: August , 2010

5 %

6 % Use model:

7 % genMotSSM(motionType ,sensorType ,r,theta ,phi ,plotSSM)

8 %

9 % Description:

10 % This function generates a Self -Similarity Matrix (SSM) from IR motion

11 % sensor data.

12 %

13 % Reference:

14 % I. Junejo , E. Dexter , I. Laptev and P. Perez , "Cross -View Action

15 % Recognition from Temporal Self -Similarities", European Conference

16 % on Computer Vision -- ECCV 2008, 2008, pp. 293 -306.

17 % ------------------------------------------------------------------------

18 function [] = genMotSSM(motionType ,sensorType ,inSituPercentage , ...

19 r,theta ,phi ,version ,plotSSM)

20
21 fprintf(’genMotSSM (%3d percent): %6s sensor (%5s), (r,theta ,phi) = (%2d,%3d,%3d), v %d, ’, ...

22 inSituPercentage , sensorType , motionType , r, theta , phi , version);

23
24 % Generate the fileName to read from input parameters.

25 inFileName = [motionType ,sensorType ,’_theta_ ’,num2str(theta)];

26
27 % Generate the fileName to write from input parameters.

28 outFileName = [motionType ,’_’,sensorType ,’_r’,num2str(r),’t’, ...

29 num2str(theta),’p’,num2str(phi),’_v’,num2str(version)];

30
31 % Read in motion data from the appropriate file.

32 motionDataFile = dlmread ([inFileName ,’.txt’]);

33 [rows ,cols] = size(motionDataFile);

34
35 ssmParams;

36
37 % Number of samples to read from the input file.

38 numDataPts = floor (( inSituPercentage /100) * numSamples);

39
40 % Read the entire motionData file into an array.

41 motionData = zeros(numSamples ,1);

42
43 k = 0;

44 m = 0;
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45 for i = 1:rows

46 if (motionDataFile(i,phiCol) == phi)

47
48 % Count total data points in the input file.

49 m = m + 1;

50
51 if (k < numDataPts)

52 k = k + 1;

53 motionData(k,1) = motionDataFile(i,s2Col);

54 end

55
56 end

57 end

58
59
60
61 GK = genGaussKernel (0.5);

62
63 motionData = smooth1D(motionData ,GK);

64 motionData = smooth1D(motionData ,GK);

65 motionData = smooth1D(motionData ,GK);

66 motionData = smooth1D(motionData ,GK);

67 motionData = smooth1D(motionData ,GK);

68
69 % x = 1:1: numDataPts;

70 % plot(x,motionData ,’r.-’);

71 % hold on;

72
73 % motionData = accel(motionData);

74 % plot(x,motionData ,’b.-’);

75
76
77 % Check the integrity of the input file.

78 if (m ~= numSamples)

79 fprintf (’BAD INPUT FILE \n’);

80 fprintf (’Found %d samples for (theta ,phi) = (%d,%d). \n’, ...

81 k,theta ,phi);

82 end

83 clear motionDataFile;

84
85 % Calculate the Euclidean Distance Matrix (EDM), D.

86 % This matrix compares all pairs of points across a single sequence of

87 % data (1 motion from 1 view over some numDataPts/sampleInterval);

88 D = zeros(floor(numDataPts/sampleInterval), ...

89 floor(numDataPts/sampleInterval));

90
91 m = 0;

92 for i = sampleInterval:sampleInterval:numDataPts

93 m = m + 1;

94 % fprintf(’i = %3d, m = %3d\n’,i,m);

95 n = 0;

96 for j = sampleInterval:sampleInterval:numDataPts

97 n = n + 1;

98 D(m,n) = norm(motionData(i,1) - motionData(j,1));

99 end

100 end

101 [Drows ,Dcols] = size(D);

102 fprintf(’D is %d x %d.\n’,Drows ,Dcols);

103
104 % Store D matrix in a .mat file.

105 fileWriteCommand = sprintf(’save %s D -mat’, [’SSM_’,outFileName ,’.mat’]);

106 eval(fileWriteCommand);

107
108 % Redefine numDataPts to those actually used.

109 numDataPts = m;

110 clear motionData;

111
112 maxDval = max(max(D)); % Used to normalize D

113
114 if (plotSSM == 1)

115 k = 0;

116 x = zeros(numDataPts*numDataPts , 1);

117 y = zeros(numDataPts*numDataPts , 1);

118 color = zeros(numDataPts*numDataPts , 1);

119 axis([1,numDataPts ,1, numDataPts ]);

120 for i = 1: numDataPts

121 for j = 1: numDataPts

122 k = k + 1;

123 m = D(i,j)/maxDval;

124 x(k) = i;

125 y(k) = numDataPts - j;

126 color(k) = m;

127 end

128 end

129
130 scatter(x,y,5,color ,’filled ’);

131
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132 titleString = [sensorType ,’ sensor (’,motionType ,’), r = ’, ...

133 num2str(r),’, theta = ’,num2str(theta),’ phi = ’, num2str(phi)];

134
135 title(titleString);

136
137 print (’-djpeg ’, outFileName)

138
139 end % plotSSM

140
141 clear all;

A.2.5.8 genVidSSM.m

1 % ------------------------------------------------------------------------

2 % Filename: genVideoSSM.m

3 % Author: Paul Yanik

4 % Date: November , 2010

5 %

6 % Description:

7 % Generate a Self -Similarity Matrix (SSM) from video data.

8 % Video data was converted from still image sequences to SSMs using C++.

9 % This function converts the text form of the SSMs to Matlab m files.

10 % The format of the text data is a coordinate pair (x,y) and the SSM value

11 % for that pair of matrix coordinates: x y val (one data point per line).

12 % ------------------------------------------------------------------------

13 function [] = genVidSSM(motionType ,sensorType ,r,theta ,phi ,plotSSM)

14
15 fprintf(’genVidSSM: %6s sensor (%5s), (r,theta ,phi) = (%2d,%3d,%3d)\n’, ...

16 sensorType , motionType , r, theta , phi);

17
18 % Generate the input fileName to read using the input parameters.

19 inFileName = [motionType ,’theta ’,num2str(theta),’phi’,num2str(phi)];

20
21 % Generate the output fileName to write using the input parameters.

22 outFileName = [motionType ,’_’,sensorType ,’_r’,num2str(r),’t’, ...

23 num2str(theta),’p’,num2str(phi)];

24
25 % Read in video data from the appropriate file.

26 dataFile = dlmread ([inFileName ,’.txt’]);

27 [rows ,cols] = size(dataFile);

28
29 % Find the largest x coordinate.

30 numSamples = max(dataFile (:,1)) + 1;

31
32 % Find the largest val (for normalization).

33 maxDval = max(dataFile (:,1))^2;

34
35 % Initialize the SSM.

36 D = zeros(numSamples ,numSamples);

37
38 for i=1: rows

39 x = dataFile(i,1) + 1;

40 y = dataFile(i,2) + 1;

41 val = dataFile(i,3);

42 D(x,y) = val/maxDval;

43 end

44
45 % Store SSM matrix in a .mat file.

46 fileWriteCommand = sprintf(’save %s D -mat’, [’SSM_’,outFileName ,’.mat’]);

47 eval(fileWriteCommand);

48 clear dataFile;

49
50 markerSize = 5;

51 if (plotSSM == 1)

52 k = 0;

53 x = zeros(numSamples*numSamples , 1);

54 y = zeros(numSamples*numSamples , 1);

55 color = zeros(numSamples*numSamples , 1);

56 axis([1,numSamples ,1, numSamples ]);

57 for i = 1: numSamples

58 for j = 1: numSamples

59 k = k + 1;

60 m = D(i,j);

61 x(k) = i;

62 y(k) = numSamples - j;

63 color(k) = m;

64 % scatter(numSamples - i,j,3,m,’filled ’);

65 % hold on;

66 end

67 end

68
69 scatter(x,y,markerSize ,color ,’filled ’);

70
71 titleString = [sensorType ,’ sensor (’,motionType ,’), r = ’, ...

72 num2str(r),’, theta = ’,num2str(theta),’ phi = ’, num2str(phi)];

230



73
74 title(titleString);

75
76 print (’-djpeg ’, outFileName)

77 end % plotSSM

78
79 clear all;

A.2.5.9 getCellBoundsHOG.m

1 % Cell angle boundary angles for HOG cells

2
3 cellBounds = zeros (5,2);

4
5 cellBounds (1,1) = 14*pi/8; cellBounds (1,2) = 15*pi/8; % 315.0 - 347.5

6 cellBounds (2,1) = 15*pi/8; cellBounds (2,2) = pi/8; % 347.5 - 22.5

7 cellBounds (3,1) = pi/8; cellBounds (3,2) = 3*pi/8; % 22.5 - 67.5

8 cellBounds (4,1) = 3*pi/8; cellBounds (4,2) = 5*pi/8; % 67.5 - 112.5

9 cellBounds (5,1) = 5*pi/8; cellBounds (5,2) = 6*pi/8; % 112.5 - 135.0

A.2.5.10 getCellNumHOG.m

1 % Find the cell that a point belongs in.

2
3 if (dist < 1)

4 cellNum = 1;

5 elseif ((dist >=1) && (dist < 10))

6 if (( angle >= cellBounds (1,1)) && (angle < cellBounds (1,2)))

7 cellNum = 2;

8 elseif ...

9 ((( angle >= cellBounds (2,1)) && (angle < twoPi )) || ...

10 ((angle >= 0 ) && (angle < cellBounds (2,2))) )

11 cellNum = 3;

12 elseif ...

13 ((angle >= cellBounds (3,1)) && (angle < cellBounds (3,2)))

14 cellNum = 4;

15 elseif ...

16 ((angle >= cellBounds (4,1)) && (angle < cellBounds (4,2)))

17 cellNum = 5;

18 elseif ...

19 ((angle >= cellBounds (5,1)) && (angle <= cellBounds (5,2)))

20 cellNum = 6;

21 else

22 cellNum = 99;

23 % fprintf(’BAD ANGLE: %f, distance = %f \n’,angle , dist);

24 end

25
26 else % distance > 10

27 if ((( angle >= cellBounds (1,1)) && (angle < twoPi )) || ...

28 ((angle >= 0 ) && (angle < cellBounds (1,2))))

29 cellNum = 7;

30 elseif ...

31 ((( angle >= cellBounds (2,1)) && (angle < twoPi )) || ...

32 ((angle >= 0 ) && (angle < cellBounds (2,2))) )

33 cellNum = 8;

34 elseif ...

35 ((angle >= cellBounds (3,1)) && (angle < cellBounds (3,2)))

36 cellNum = 9;

37 elseif ...

38 ((angle >= cellBounds (4,1)) && (angle < cellBounds (4,2)))

39 cellNum = 10;

40 elseif ...

41 ((angle >= cellBounds (5,1)) && (angle <= cellBounds (5,2)))

42 cellNum = 11;

43 else ...

44 cellNum = 99;

45 % fprintf(’BAD ANGLE: %f, distance = %f \n’,angle , dist);

46 end

47 end

A.2.5.11 HOGParams.m

1 % Radius of the virtual sphere.

2 r = 30;

3
4 % Find number of views to compare.

5 % thetaMin = 0;

6 % thetaInterval = 30;

7 % thetaMax = 180;

8 % phiMin = 0;

9 % phiInterval = 30;
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10 % phiMax = 240;

11
12 thetaMin = 0;

13 thetaInterval = 15;

14 thetaMax = 180;

15 phiMin = 0;

16 phiInterval = 15;

17 phiMax = 255;

18
19
20 thetaVals = 0;

21 phiVals = 0;

22 for localTheta1 = thetaMin:thetaInterval:thetaMax

23 thetaVals = thetaVals + 1;

24 end

25 for localPhi1 = phiMin:phiInterval:phiMax

26 phiVals = phiVals + 1;

27 end

28
29 % Motion classes

30 numClasses = 3;

31 reach = 1;

32 press = 2;

33 grab = 3;

34
35 numViews = phiVals * thetaVals;

36 numPts = numClasses * phiVals * thetaVals;

37
38 % Typical parameters - may pass these in the future

39 numBins = 8;

40 d2r = pi/180;

A.2.5.12 ssmParams.m

1 % This file contains runtime parameters related to motion sensor data

2 % analysis.

3
4 % Number of samples at a given vantage point

5 numSamples = 350;

6
7 % Downsampling rate

8 sampleInterval = 3;

9
10 % In situ percentage. This is the percentage of data points to use

11 % for calculation of a sub -SSM before moving the sensors.

12 % inSituPercentage = 1;

13
14 % Number of samples to read from the input file.

15 % numDataPts = floor(inSituPercentage * numSamples);

16
17 % Motion data file column labels

18 rCol = 1; % radius value column

19 thetaCol = 2; % theta value column

20 phiCol = 3; % phi value column

21 s1Col = 4; % sensor 1 output column

22 s2Col = 5; % sensor 2 output column

23 classCol = 6; % class output column

A.2.6 General Tools

A.2.6.1 fileNotFound.m

1 % This function prints an error when a file does not exist.

2
3
4 function [] = fileNotFound(fileName)

5
6
7 fprintf(’ERROR: File %s not found\n’, fileName);

A.2.6.2 genGaussKernel.m

1 % void buildGaussKernel(float &mu, float &sigma , vector <float > &GKernel)

2 % // void buildGaussKernel(float &sigma , vector <float > &GKernel)

3 % {

4 % // float f = 2.5;

5 % // float mu = round(f*sigma - 0.5);

6 % float w = 2 * mu + 1;

7 % float sum = 0;
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8 %

9 % for (int i=0; i<w; i++) {

10 % GKernel.push_back( exp(-(i-mu)*(i-mu) / 2*sigma*sigma) );

11 % // sum = GKernel[i] * i;

12 % sum += GKernel[i];

13 % }

14 % for (int i=0; i<w; i++) {

15 % GKernel[i] = GKernel[i]/sum;

16 % }

17 %

18 % int s = GKernel.size();

19 % printf (" Gaussian Kernel = [");

20 % for (int i=0; i<s; i++) {

21 % printf (" %5.3f",GKernel[i]);

22 % }

23 % printf ("] \n");

24 % }

25
26 function[g] = genGaussKernel(sigma)

27
28 % sigma = 0.5, mu = 1, GK = [ 0.319 0.362 0.319]

29 % sigma = 1.0, mu = 2, GK = [ 0.054 0.244 0.403 0.244 0.054]

30 % sigma = 1.5, mu = 3, GK = [ 0.000 0.007 0.194 0.598 0.194 0.007 0.000]

31
32 f = 2.5;

33 mu = floor(f * sigma + 0.5);

34 w = 2 * mu + 1;

35
36 g = zeros(1,w);

37
38 sum = 0;

39
40 for i = 0:w-1

41 g(1,i+1) = exp( -(i-mu)*(i-mu)/2* sigma*sigma );

42 sum = sum + g(1,i+1);

43 end

44
45 g;

46
47 for i = 1:w

48 g(1,i) = g(1,i)/sum;

49 end

A.2.6.3 mEq.m

1 % This function returns a single bit (0 or 1) if two 2d matrices

2 % are equal. The two input matrices must be the same size.

3
4 function [equality] = mEq(a,b);

5
6 equalityMatrix = (a == b);

7
8 c = sum(sum(equalityMatrix));

9
10 equality = (c == prod(size(a)));

A.2.6.4 rand in range.m

1 % This function generates a single random floating point number within

2 % a specified range.

3
4 function[r] = rand_in_range(a, b)

5
6
7 r = a + (b-a).*rand (1,1);

A.2.6.5 smooth1D.m

1 % Filename: smooth1D

2 % Description:

3 % This function smooths a 1D curve by an input kernel.

4
5 function [smoothedCurve] = smooth1D(inCurve , kernel)

6
7 [numDataPts ,cols] = size(inCurve);

8 smoothedCurve = zeros(numDataPts ,1);

9
10 [kernelRows ,kernelCols] = size(kernel);

11
12 % Assume an odd kernel size.

13 limit = floor(kernelCols /2);

233



14
15 for i = 1: numDataPts

16 sum = 0;

17 e = 0;

18 for j = (i - limit):(i + limit)

19 e = e + 1;

20 element = kernel(1,e);

21
22 if (j < 1)

23 sum = element * inCurve(-j + 2,1);

24 elseif (j > numDataPts)

25 sum = element * inCurve(numDataPts - (j - numDataPts));

26 else sum = element * inCurve(j);

27 end

28
29 smoothedCurve(i,1) = smoothedCurve(i,1) + sum;

30
31 end

32 end

A.2.6.6 vecSimilarity.m

1 % This function computes the cosine of an angle between two n-dimensional

2 % column vectors.

3
4 function[similarity] = vecSimilarity(vec1 , vec2)

5
6
7 similarity = dot(vec1 ,vec2) / (norm(vec1) * norm(vec2));
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Appendix B

IRB-Approved Consent Forms

235



(a)

Figure B.1: IRB constent form for gesture recognition experimentation phase 1, page
(a) 1 of 2.
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(b)

Figure B.1: IRB constent form for gesture recognition experimentation phase 1, page
(b) 2 of 2.
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