104 research outputs found

    The Word Problem for Omega-Terms over the Trotter-Weil Hierarchy

    Get PDF
    For two given ω\omega-terms α\alpha and β\beta, the word problem for ω\omega-terms over a variety V\boldsymbol{\mathrm{V}} asks whether α=β\alpha=\beta in all monoids in V\boldsymbol{\mathrm{V}}. We show that the word problem for ω\omega-terms over each level of the Trotter-Weil Hierarchy is decidable. More precisely, for every fixed variety in the Trotter-Weil Hierarchy, our approach yields an algorithm in nondeterministic logarithmic space (NL). In addition, we provide deterministic polynomial time algorithms which are more efficient than straightforward translations of the NL-algorithms. As an application of our results, we show that separability by the so-called corners of the Trotter-Weil Hierarchy is witnessed by ω\omega-terms (this property is also known as ω\omega-reducibility). In particular, the separation problem for the corners of the Trotter-Weil Hierarchy is decidable

    The word problem for omega-terms over the Trotter-Weil hierarchy [extended abstract]

    Get PDF
    © Springer International Publishing Switzerland 2016. Over finitewords, there is a tight connection between the quantifier alternation hierarchy inside two-variable first-order logic FO 2 and a hierarchy of finite monoids: theTrotter-Weil Hierarchy. The variousways of climbing up this hierarchy include Mal’cev products, deterministic and codeterministic concatenation as well as identities of ω-terms.We show that the word problem for ω-terms over each level of the Trotter-Weil Hierarchy is decidable; this means, for every variety V of the hierarchy and every identity u = v of ω-terms, one can decide whether all monoids in V satisfy u = v. More precisely, for every fixed variety V, our approach yields nondeterministic logarithmic space (NL) and deterministic polynomial time algorithms, which are more efficient than straightforward translations of the NL-algorithms. From a language perspective, the word problem for ω- terms is the following: for every language variety V in theTrotter-Weil Hierarchy and every language varietyWgivenbyan identity of ω-terms, one can decide whether V ⊆ W. This includes the case where V is some level of the FO 2 quantifier alternation hierarchy. As an application of our results, we show that the separation problems for the so-called corners of the Trotter- Weil Hierarchy are decidable

    The FO^2 alternation hierarchy is decidable

    Get PDF
    We consider the two-variable fragment FO^2[<] of first-order logic over finite words. Numerous characterizations of this class are known. Th\'erien and Wilke have shown that it is decidable whether a given regular language is definable in FO^2[<]. From a practical point of view, as shown by Weis, FO^2[<] is interesting since its satisfiability problem is in NP. Restricting the number of quantifier alternations yields an infinite hierarchy inside the class of FO^2[<]-definable languages. We show that each level of this hierarchy is decidable. For this purpose, we relate each level of the hierarchy with a decidable variety of finite monoids. Our result implies that there are many different ways of climbing up the FO^2[<]-quantifier alternation hierarchy: deterministic and co-deterministic products, Mal'cev products with definite and reverse definite semigroups, iterated block products with J-trivial monoids, and some inductively defined omega-term identities. A combinatorial tool in the process of ascension is that of condensed rankers, a refinement of the rankers of Weis and Immerman and the turtle programs of Schwentick, Th\'erien, and Vollmer

    Recognizing pro-R closures of regular languages

    Full text link
    Given a regular language L, we effectively construct a unary semigroup that recognizes the topological closure of L in the free unary semigroup relative to the variety of unary semigroups generated by the pseudovariety R of all finite R-trivial semigroups. In particular, we obtain a new effective solution of the separation problem of regular languages by R-languages

    26. Theorietag Automaten und Formale Sprachen 23. Jahrestagung Logik in der Informatik: Tagungsband

    Get PDF
    Der Theorietag ist die Jahrestagung der Fachgruppe Automaten und Formale Sprachen der Gesellschaft für Informatik und fand erstmals 1991 in Magdeburg statt. Seit dem Jahr 1996 wird der Theorietag von einem eintägigen Workshop mit eingeladenen Vorträgen begleitet. Die Jahrestagung der Fachgruppe Logik in der Informatik der Gesellschaft für Informatik fand erstmals 1993 in Leipzig statt. Im Laufe beider Jahrestagungen finden auch die jährliche Fachgruppensitzungen statt. In diesem Jahr wird der Theorietag der Fachgruppe Automaten und Formale Sprachen erstmalig zusammen mit der Jahrestagung der Fachgruppe Logik in der Informatik abgehalten. Organisiert wurde die gemeinsame Veranstaltung von der Arbeitsgruppe Zuverlässige Systeme des Instituts für Informatik an der Christian-Albrechts-Universität Kiel vom 4. bis 7. Oktober im Tagungshotel Tannenfelde bei Neumünster. Während des Tre↵ens wird ein Workshop für alle Interessierten statt finden. In Tannenfelde werden • Christoph Löding (Aachen) • Tomás Masopust (Dresden) • Henning Schnoor (Kiel) • Nicole Schweikardt (Berlin) • Georg Zetzsche (Paris) eingeladene Vorträge zu ihrer aktuellen Arbeit halten. Darüber hinaus werden 26 Vorträge von Teilnehmern und Teilnehmerinnen gehalten, 17 auf dem Theorietag Automaten und formale Sprachen und neun auf der Jahrestagung Logik in der Informatik. Der vorliegende Band enthält Kurzfassungen aller Beiträge. Wir danken der Gesellschaft für Informatik, der Christian-Albrechts-Universität zu Kiel und dem Tagungshotel Tannenfelde für die Unterstützung dieses Theorietags. Ein besonderer Dank geht an das Organisationsteam: Maike Bradler, Philipp Sieweck, Joel Day. Kiel, Oktober 2016 Florin Manea, Dirk Nowotka und Thomas Wilk

    Locally countable pseudovarieties

    Get PDF
    The purpose of this paper is to contribute to the theory of profinite semigroups by considering the special class consisting of those all of whose finitely generated closed subsemigroups are countable, which are said to be locally countable. We also call locally countable a pseudovariety V (of finite semigroups) for which all pro-V semigroups are locally countable. We investigate operations preserving local countability of pseudovarieties and show that, in contrast with local finiteness, several natural operations do not preserve it. We also investigate the relationship of a finitely generated profinite semigroup being countable with every element being expressible in terms of the generators using multiplication and the idempotent (omega) power. The two properties turn out to be equivalent if there are only countably many group elements, gathered in finitely many regular J -classes. We also show that the pseudovariety generated by all finite ordered monoids satisfying the inequality 1 6 x n is locally countable if and only if n = 1

    Locally countable pseudovarieties

    Full text link
    The purpose of this paper is to contribute to the theory of profinite semigroups by considering the special class consisting of those all of whose finitely generated closed subsemigroups are countable, which are said to be locally countable. We also call locally countable a pseudovariety V (of finite semigroups) for which all pro-V semigroups are locally countable. We investigate operations preserving local countability of pseudovarieties and show that, in contrast with local finiteness, several natural operations do not preserve it. We also investigate the relationship of a finitely generated profinite semigroup being countable with every element being expressable in terms of the generators using multiplication and the idempotent (omega) power. The two properties turn out to be equivalent if there are only countably many group elements, gathered in finitely many regular J-classes. We also show that the pseudovariety generated by all finite ordered monoids satisfying the inequality 1≤xn1\le x^n is locally countable if and only if n=1n=1

    The linear nature of pseudowords

    Get PDF
    Given a pseudoword over suitable pseudovarieties, we associate to it a labeled linear order determined by the factorizations of the pseudoword. We show that, in the case of the pseudovariety of aperiodic finite semigroups, the pseudoword can be recovered from the labeled linear order.The work of the first, third, and fourth authors was partly supported by the Pessoa French-Portuguese project “Separation in automata theory: algebraic, logical, and combinatorial aspects”. The work of the first three authors was also partially supported respectively by CMUP (UID/MAT/ 00144/2019), CMUC (UID/MAT/00324/2019), and CMAT (UID/MAT/ 00013/2013), which are funded by FCT (Portugal) with national (MCTES) and European structural funds (FEDER), under the partnership agreement PT2020. The work of the fourth author was partly supported by ANR 2010 BLAN 0202 01 FREC and by the DeLTA project ANR-16-CE40-000

    Outlook Magazine, Autumn 1982

    Get PDF
    https://digitalcommons.wustl.edu/outlook/1066/thumbnail.jp
    • …
    corecore