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Abstract
We consider the two-variable fragment FO2[<] of first-order logic over finite words. Numerous
characterizations of this class are known. Thérien and Wilke have shown that it is decidable
whether a given regular language is definable in FO2[<]. From a practical point of view, as
shown by Weis, FO2[<] is interesting since its satisfiability problem is in NP. Restricting the
number of quantifier alternations yields an infinite hierarchy inside the class of FO2[<]-definable
languages. We show that each level of this hierarchy is decidable. For this purpose, we relate
each level of the hierarchy with a decidable variety of finite monoids.

Our result implies that there are many different ways of climbing up the FO2[<]-quantifier
alternation hierarchy: deterministic and co-deterministic products, Mal’cev products with defi-
nite and reverse definite semigroups, iterated block products with J -trivial monoids, and some
inductively defined omega-term identities. A combinatorial tool in the process of ascension is
that of condensed rankers, a refinement of the rankers of Weis and Immerman and the turtle
programs of Schwentick, Thérien, and Vollmer.
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1 Introduction

The investigation of logical fragments has a long history. McNaughton and Papert [17]
showed that a language over finite words is definable in first-order logic FO[<] if and only
if it is star-free. Combined with Schützenberger’s characterization of star-free languages in
terms of finite aperiodic monoids [23], this leads to an algorithm to decide whether a given
regular language is first-order definable. Many other characterizations of this class have been
given over the past 50 years, see [3] for an overview. Moreover, mainly due to its relation to
linear temporal logic [7], it became relevant to a large number of application fields, such as
verification.

Very often one is interested in fragments of first-order logic. From a practical point of view,
the reason is that smaller fragments often yield more efficient algorithms for computational
problems such as satisfiability. For example, satisfiability for FO[<] is non-elementary [26],
whereas the satisfiability problem for first-order logic with only two variables is in NP, cf. [39].
And on the theoretical side, fragments form the basis of a descriptive complexity theory
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inside the regular languages: the simpler a logical formula defining a language, the easier the
language. Moreover, in contrast to classical complexity theory, in some cases one can actually
decide whether a given language has a particular property. From both the practical and the
theoretical point of view, several natural hierarchies have been considered in the literature:
the quantifier alternation hierarchy inside FO[<] which coincides with the Straubing-Thérien
hierarchy [28, 32], the quantifier alternation hierarchy inside FO[<,+1] with a successor
predicate +1 which coincides with the dot-depth hierarchy [2, 36], the until hierarchy of
temporal logic [34], and the until-since hierarchy [35]. Decidability is known for the levels of
the until and the the until-since hierarchies, and only for the very first levels of the alternation
hierarchies, see e.g. [4, 21].

Fragments are usually defined by restricting resources in a formula. Such resources can be
the predicates which are allowed, the quantifier depth, the number of quantifier alternations,
or the number of variables. When the quantifier depth is restricted, only finitely many
languages are definable over a fixed alphabet: decidability of the membership problem is
not an issue in this case. When restricting the number of variables which can be used (and
reused), then first-order logic FO3[<] with three variables already has the full expressive
power of FO[<], see [6, 7]. On the other hand, first-order logic FO2[<] with only two variables
defines a proper subclass. The languages definable in FO2[<] have a huge number of different
characterizations, see e.g. [4, 30, 31]. For example, FO2[<] has the same expressive power
as ∆2[<]; the latter is a fragment of FO[<] with two blocks of quantifiers [33].

Turtle programs are one of these numerous descriptions of FO2[<]-definable languages [24].
They are sequences of instructions of the form “go to the next a-position” and “go to the
previous a-position”. Using the term ranker for this concept and having a stronger focus
on the order of positions defined by such sequences, Weis and Immerman [40] were able to
give a combinatorial characterization of the alternation hierarchy FO2

m[<] inside FO2[<].
Straubing [29] gave an algebraic characterization of FO2

m[<]. But neither result yields the
decidability of FO2

m[<]-definability for m > 2. In some sense, this is the opposite of a
previous result of the authors [15, Thm. 6.1], who give necessary and sufficient conditions
which helped to decide the FO2

m[<]-hierarchy with an error of at most one. In this paper
we give a new algebraic characterization of FO2

m[<], and this characterization immediately
yields decidability.

The algebraic approach to the membership problem of logical fragments has several
advantages. In favorable cases, it opens the road to decidability procedures. Moreover, it
allows a more semantic comparison of fragments; for example, the equality FO2[<] = ∆2[<]
was obtained by showing that both FO2[<] and ∆2[<] correspond to the same variety of
finite monoids, namely DA [22, 33].

Building on previous detailed knowledge of the lattice of band varieties (varieties of
idempotent monoids), Trotter and Weil defined a sub-lattice of the lattice of subvarieties of
DA [37], which we call the Rm-Lm-hierarchy. These varieties have many interesting properties
and in particular, each Rm (resp. Lm) is efficiently decidable (by a combination of results of
Trotter and Weil [37], Kufleitner and Weil [14], and Straubing and Weil [27], see Section 3
for more details). Moreover, one can climb up the Rm-Lm-hierarchy algebraically, using
Mal’cev products, see [14] and Section 2 below; language-theoretically, in terms of alternated
closures under deterministic and co-deterministic products [19, 15]; and combinatorially
using condensed rankers, see [13, 16] and Section 2.

We relate the FO2[<] quantifier alternation hierarchy with the Rm-Lm-hierarchy. More
precisely, the main result of this paper is that a language is definable in FO2

m[<] if and
only if it is recognized by a monoid in Rm+1 ∩ Lm+1, thus establishing the decidability of
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Figure 1 The positions defined by r in u, when r = Xa1 Xa2 Xa3 Xa4 Ya5 Ya6 Xa7 is condensed on u.

each FO2
m[<]. This result was first conjectured in [13], where one inclusion was established.

Our proof combines a technique introduced by Klíma [8] and a substitution idea [10] with
algebraic and combinatorial tools inspired by [15]. The proof is by induction and the base
case is Simon’s Theorem on piecewise testable languages [25].

2 Preliminaries

Let A be a finite alphabet and let A∗ be the set of all finite words over A. The length
|u| of a word u = a1 · · · an, ai ∈ A, is n and its alphabet is alph(u) = {a1, . . . , an} ⊆ A.
A position i of u = a1 · · · an is an a-position if ai = a. A factorization u = u−au+ is the
a-left factorization of u if a 6∈ alph(u−), and it is the a-right factorization if a 6∈ alph(u+),
i.e., we factor at the first or at the last a-position.

2.1 Rankers
A ranker is a nonempty word over the alphabet {Xa,Ya | a ∈ A}. It is interpreted as a
sequence of instructions of the form “go to the next a-position” and “go to the previous
a-position”. More formally, for u = a1 · · · an ∈ A∗ and x ∈ {0, . . . , n+ 1} we let

Xa(u, x) = min {y | y > x and ay = a} , Xa(u) = Xa(u, 0),
Ya(u, x) = max {y | y < x and ay = a} , Ya(u) = Ya(u, n+ 1).

Here, both the minimum and the maximum of the empty set are undefined. The modality
Xa is for “neXt-a” and Ya is for “Yesterday-a”. For r = Z s, Z ∈ {Xa,Ya | a ∈ A}, we set

r(u, x) = s(u,Z(u, x)), r(u) = s(u,Z(u)).

In particular, rankers are executed (as a set of instructions) from left to right. Every
ranker r either defines a unique position in a word u, or it is undefined on u. For example,
Xa Yb Xc(bca) = 2 and Xa Yb Xc(bac) = 3 whereas Xa Yb Xc(cabc) and Xa Yb Xc(bcba) are
undefined. A ranker r is condensed on u if it is defined and, during the execution of r, no
previously visited position is overrun [15]. One can think of condensed rankers as zooming in
on the position they define, see Figure 1. More formally r = Z1 · · ·Zk, Zi ∈ {Xa,Ya | a ∈ A},
is condensed on u if there exists a chain of open intervals

(0; |u|+ 1) = (x0; y0) ⊃ (x1; y1) ⊃ · · · ⊃ (xn−1; yn−1) 3 r(u)

such that for all 1 ≤ ` ≤ n− 1 the following properties are satisfied:
If Z` Z`+1 = Xa Xb, then (x`; y`) = (Xa(u, x`−1); y`−1).
If Z` Z`+1 = Ya Yb, then (x`; y`) = (x`−1; Ya(u, y`−1).
If Z` Z`+1 = Xa Yb, then (x`; y`) = (x`−1; Xa(u, x`−1)).
If Z` Z`+1 = Ya Xb, then (x`; y`) = (Ya(u, y`−1); y`−1).
For example, Xa Yb Xc is condensed on bca but not on bac.
The depth of a ranker is its length as a word. A block of a ranker is a maximal factor of the

form Xa1 · · ·Xak
or of the form Yb1 · · ·Yb`

. A ranker with m blocks changes direction m− 1
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times. By Rm,n we denote the class of all rankers with depth at most n and with up to m
blocks. We write RX

m,n for the set of all rankers in Rm,n which start with an Xa-modality
and we write RY

m,n for all rankers in Rm,n which start with a Ya-modality.
We define u .m,n v if the same rankers in RX

m,n ∪ RY
m−1,n−1 are condensed on u and v.

Similarly, u /m,n v if the same rankers in RY
m,n ∪RX

m−1,n−1 are condensed on u and v. The
relations .m,n and /m,n are finite index congruences [15, Lem. 3.13].

The order type ord(i, j) is one of {<,=, >}, depending on whether i < j, i = j, or i > j,
respectively. We define u ≡m,n v if

the same rankers in Rm,n are defined on u and v,
for all r ∈ RX

m,n and s ∈ RY
m,n−1: ord(r(u), s(u)) = ord(r(v), s(v)),

for all r ∈ RY
m,n and s ∈ RX

m,n−1: ord(r(u), s(u)) = ord(r(v), s(v)),
for all r ∈ RX

m,n and s ∈ RX
m−1,n−1: ord(r(u), s(u)) = ord(r(v), s(v)),

for all r ∈ RY
m,n and s ∈ RY

m−1,n−1: ord(r(u), s(u)) = ord(r(v), s(v)).

I Remark. For m = 1, each of the families (≡1,n)n, (.1,n)n, and (/1,n)n defines the class
of piecewise testable languages, see e.g. [8, 25]. Recall that a language L ⊆ A∗ is piecewise
testable if it is a Boolean combination of languages of the form A∗a1A

∗ · · · akA∗ (k ≥ 0,
a1, . . . , ak ∈ A).

2.2 First-order Logic
We denote by FO[<] the first-order logic over words interpreted as labeled linear orders.
The atomic formulas are > (for true), ⊥ (for false), the unary predicates a(x) (one for each
a ∈ A), and the binary predicate x < y for variables x and y. Variables range over the
linearly ordered positions of a word and a(x) means that x is an a-position. Apart from the
Boolean connectives, we allow composition of formulas using existential quantification ∃x : ϕ
and universal quantification ∀x : ϕ for ϕ ∈ FO[<]. The semantics is as usual. A sentence
in FO[<] is a formula without free variables. For a sentence ϕ the language defined by ϕ,
denoted by L(ϕ), is the set of all words u ∈ A∗ which model ϕ.

The fragment FO2[<] of first-order logic consists of all formulas which use at most two
different names for the variables. This is a natural restriction, since FO with three variables
already has the full expressive power of FO. A formula ϕ ∈ FO2[<] is in FO2

m[<] if, on every
path of its parse tree, ϕ has at most m blocks of alternating quantifiers.

Note that FO2
1[<]-definable languages are exactly the piecewise testable languages, cf. [29].

For m ≥ 2, we rely on the following important result, due to Weis and Immerman [40,
Thm. 4.5].

I Theorem 1. A language L is definable in FO2
m[<] if and only if there exists an integer

n ≥ 1 such that L is a union of ≡m,n-classes.

I Remark. The definition of ≡m,n above is formally different from the conditions in Weis
and Immerman’s [40, Thm. 4.5]. A careful but elementary examination reveals that they are
actually equivalent.

2.3 Algebra
A monoid M recognizes a language L ⊆ A∗ if there exists a morphism ϕ : A∗ →M such that
L = ϕ−1ϕ(L). If ϕ : A∗ →M is a morphism, then we set u ≡ϕ v if ϕ(u) = ϕ(v). The join
≡1 ∨ ≡2 of two congruences ≡1 and ≡2 is the least congruence containing ≡1 and ≡2. An
element u is idempotent if u2 = u. The set of all idempotents of a monoid M is denoted by

CSL’12
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Figure 2 The Rm-Lm-hierarchy.

E(M). For every finite monoid M there exists an integer ω ≥ 1 such that uω is idempotent
for all u ∈ M . Green’s relations J , R, and L are an important concept to describe the
structural properties of a monoid M : we set u ≤J v (resp. u ≤R v, u ≤L v) if u = pvq (resp.
u = vq, u = pv) for some p, q ∈M . We also define u J v (resp. u R v, u L v) if u ≤J v and
v ≤J u (resp. u ≤R v and v ≤R u, u ≤L v and v ≤L u). The strict version <J of ≤J is
defined by u <J v if u ≤J v but not u J v. The relations <R and <L are defined similarly.
A monoid M is J -trivial (resp. R-trivial, L-trivial) if J (resp. R, L) is the identity relation
on M . We define the relations ∼K, ∼D, and ∼LI on M as follows:

u ∼K v if and only if, for all e ∈ E(M), we have either eu, ev <J e, or eu = ev.
u ∼D v if and only if, for all f ∈ E(M), we have either uf, vf <J f , or uf = vf .
u ∼LI v if and only if, for all e, f ∈ E(M) such that e J f , we have either euf, evf <J e,
or euf = evf .

The relations ∼K, ∼D and ∼LI are congruences [9]. If V is a class of finite monoids, we say
that a monoid M is in K©m V (resp. D©m V, LI©m V) if M/∼K ∈ V (resp. M/∼D ∈ V,
M/∼LI ∈ V). The classes K©m V, D©m V and LI©m V are called Mal’cev products and
they are usually defined in terms of relational morphisms. In the present context however,
the definition above will be sufficient [9], see [5]. We will need the following classes of finite
monoids:

J1 consists of all finite commutative monoids satisfying x2 = x.
J (resp. R, L) consists of all finite J -trivial (resp. R-trivial, L-trivial) monoids.
A consists of all finite monoids satisfying xω+1 = xω. Monoids in A are called aperiodic.
DA consists of all finite monoids satisfying (xy)ωx(xy)ω = (xy)ω.
R1 = L1 = J, Rm+1 = K©m Lm, Lm+1 = D©m Rm.

It is well known that

DA = LI©m J1, R2 = R, L2 = L, R ∩ L = J, and
Rm ∪ Lm ⊆ Rm+1 ∩ Lm+1 ( DA ( A

see e.g. [20]. The Rm-Lm-hierarchy is depicted in Figure 2.
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2.4 The variety approach to the decidability of FO2
m[<]

Classes of finite monoids that are closed under taking submonoids, homomorphic images and
finite direct products are called pseudovarieties. The classes of finite monoids J1, J, A, DA,
Rm and Lm introduced above are all pseudovarieties.

If V is a pseudovariety of monoids, then the class V of languages recognized by a monoid
in V is called a variety of languages. Eilenberg’s variety theorem (see e.g. [18, Annex B])
shows that varieties of languages are characterized by natural closure properties, and that
the correspondence V 7→ V is onto. Elementary automata theory shows in addition that a
language L is recognized by a monoid in a pseudovariety V if and only the syntactic monoid
of L is in V. It follows that if V has a decidable membership problem, then so does the
corresponding variety of languages V.

Simon’s Theorem on piecewise testable languages [8, 25] is an important instance of this
Eilenberg correspondence: a language L is recognizable by a monoid in J if and only if L is
piecewise testable (and hence, as we already observed, if and only if L is definable in FO2

1[<]).
Simon’s result implies the decidability of piecewise testability.

It immediately follows from the definition that membership in Rm and Lm is decidable
for all m since membership in J is decidable (see Corollary 8 for a more precise statement).
Many additional properties of the pseudovarieties Rm and Lm, and of the corresponding
varieties of languages were established by the authors [14, 15, 37]. We will use in particular
the following results, respectively [15, Cor. 3.15] and [14, Thms. 2.5 and 3.1].

I Proposition 2. An A-generated monoid M is in Rm (resp. Lm) if and only if there exists
an integer n such that M is a quotient of A∗/.m,n (resp. A∗//m,n).

Let x1, x2, . . . be a sequence of variables. For each word u, we denote by u the mirror
image of u, that is, the word obtained by reading u from right to left. Let G2 = x2x1,
I2 = x2x1x2 and, for m ≥ 2, Gm+1 = xm+1Gm and Im+1 = Gm+1xm+1Im. Finally, let ϕ be
the substitution given by

ϕ(x1) = (xω1 xω2 xω1 )ω, ϕ(x2) = xω2 ,

and, for m ≥ 2, ϕ(xm+1) = (xωm+1ϕ(GmGm)ωxωm+1)ω.

I Proposition 3. Rm (resp. Lm) is the class of finite monoids satisfying the identities
(xy)ωx(xy)ω = (xy)ω and ϕ(Gm) = ϕ(Im) (resp. ϕ(Gm) = ϕ(Im)).

Straubing [29] and Kufleitner and Lauser [11, Cor. 1] established, by different means, that
for each m ≥ 1, the class of FO2

m[<]-definable languages forms a variety of languages, and
we denote by FO2

m the corresponding pseudovariety. In particular, FO2
1 = J. Our strategy

for establishing the decidability of FO2
m[<]-definability, is to establish the decidability of

membership in FO2
m.

It is to be noted that neither Straubing’s result, nor Kufleitner and Lauser’s result implies
the decidability of FO2

m. Straubing’s result is the following [29, Thm. 4].

I Theorem 4. For m ≥ 1, FO2
m+1 = FO2

m ∗∗ J, where ∗∗ denotes the two-sided semidirect
product.

We refer the reader to [29] for the definition of the two-sided wreath product, which is
also called the block product in the literature. As discussed by Straubing, this exact algebraic
characterization of FO2

m implies the decidability of FO2
2 but not of the other levels of the

hierarchy. Straubing however conjectured that the following holds [29, Conj. 10].

CSL’12



432 The FO2 alternation hierarchy is decidable

I Conjecture 5 (Straubing). Let u1 = (x1x2)ω, v1 = (x2x1)ω and, for m ≥ 1,

um+1 = (x1 · · ·x2nx2n+1)ωun(x2n+2x1 · · ·x2n)ω

vm+1 = (x1 · · ·x2nx2n+1)ωvn(x2n+2x1 · · ·x2n)ω.

Then a monoid is in FO2
m if and only if it satisfies xω+1 = xω and um = vm.1

If established, this conjecture would prove the decidability of each FO2
m. The authors on

the other hand proved the following [15, Thm. 5.1].

I Theorem 6. If a language L is recognized by a monoid in the join Rm ∨ Lm, then L is
definable in FO2

m[<]; and if L is definable in FO2
m[<], then L is recognized by a monoid in

Rm+1 ∩ Lm+1.

3 The FO2 alternation hierarchy is decidable

We tighten the connection between the alternation hierarchy within FO2[<] and the Rm-
Lm-hierarchy and we prove the following result.

I Theorem 7. A language L ⊆ A∗ is definable in FO2
m[<] if and only if it is recognizable by

a monoid in Rm+1 ∩ Lm+1.

Theorem 7 immediately yields a decidability result.

I Corollary 8. For each m ≥ 1, it is decidable whether a given regular language L is FO2
m[<]-

definable. This decision can be achieved in Logspace on input the multiplication table of
the syntactic monoid of L, and in Pspace on input its minimal automaton.

Moreover, given an FO2[<]-definable language L, one can compute the least integer m
such that L is FO2

m[<]-definable.

Proof. We already observed that the Rm and Lm are decidable, and that each is described
by two omega-term identities (Proposition 3). The decidability statement follows immediately.
The complexity statement is a consequence of Straubing and Weil’s [27, Thm. 2.19]. The
computability statement follows immediately. J

We now turn to the proof of Theorem 7. One implication was established in Theorem 6.
To prove the reverse implication, we prove Proposition 9 below, which establishes that every
language recognized by a monoid M ∈ Rm+1 ∩ Lm+1 is a union of ≡m,n-classes for some
integer n depending on M . Theorem 7 follows, in view of Theorem 1.

I Proposition 9. For every m ≥ 1 and every morphism ϕ : A∗ →M with M ∈ Rm+1∩Lm+1
there exists an integer n such that ≡m,n is contained in ≡ϕ.

Before we embark in the proof of Proposition 9, we record several algebraic and combina-
torial lemmas.

1 While this paper was under revision, Krebs and Straubing announced a proof of Conjecture 5, see
arXiv:1205.4802.

arXiv:1205.4802
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A∗ M

P(A) M/∼LI

ϕ

πalph

ψ

Figure 3 M ∈ DA = LI©m J1.

3.1 A collection of technical lemmas
I Lemma 10. Let M be a finite monoid. If s R sx and x ∼K y, then sx = sy. If s L xs
and x ∼D y, then xs = ys.

Proof. Let z ∈ M such that sxz = s. We have (xz)ωx J (xz)ω. Now, x ∼K y implies
(xz)ωx = (xz)ωy. Thus sx = s(xz)ωx = s(xz)ωy = sy. The second statement is left-right
symmetric. J

The following lemma illustrates an important structural property of monoids in DA.

I Lemma 11. Let ϕ : A∗ →M be a surjective morphism onto M ∈ DA and let x, y, z ∈ A∗
such that ϕ(x) R ϕ(xy) and alph(z) ⊆ alph(y). Then ϕ(x) R ϕ(xz).

Proof. The map alph : A∗ → P(A) can be seen as a morphism, where the product on the
power set P(A) of A is the union operation. Since M ∈ DA, we have M/∼LI ∈ J1; let
π : M →M/∼LI be the projection morphism. It is easily verified that there exists a morphism
ψ : P(A)→M/∼LI such that ψ ◦ alph = π ◦ ϕ, see Figure 3.

By assumption, ϕ(x) = ϕ(xyt) for some t ∈ A∗, and hence ϕ(x) = ϕ(x)ϕ(yt)ω. Since
alph((yt)ω) = alph((yt)ωz(yt)ω), we have ϕ(yt)ω ∼LI ϕ(yt)ωϕ(z)ϕ(yt)ω. Applying the
definition of ∼LI with e = f = ϕ(yt)ω, it follows that ϕ(yt)ω = ϕ(yt)ωϕ(z)ϕ(yt)ω and we
now have

ϕ(x) = ϕ(x)ϕ(yt)ω = ϕ(x)ϕ(yt)ωϕ(z)ϕ(yt)ω = ϕ(x)ϕ(z)ϕ(yt)ω.

Therefore ϕ(x) R ϕ(xz), which concludes the proof. J

A proof of the following lemma can be found in [15, Prop. 3.6 and Lem. 3.7].

I Lemma 12. Let m ≥ 2, u, v ∈ A∗, a ∈ A.
1. If u .m,n v and u = u−au+ and v = v−av+ are a-left factorizations, then u− .m,n−1 v−

and u+ .m,n−1 v+.
2. If u .m,n v and u = u−au+ and v = v−av+ are a-right factorizations, then u− .m,n−1 v−

and u+ /m−1,n−1 v+.
Dual statements hold for u /m,n v.

I Lemma 13. Let m,n ≥ 2 and let u = u−au+ and v = v−av+ be a-left factorizations. If
u ≡m,n v, then u− ≡m−1,n−1 v− and u+ ≡m,n−1 v+. A dual statement holds for the factors
of the a-right factorizations of u and v.

Proof. We first show u− ≡m−1,n−1 v−. Consider a ranker r ∈ Rm−1,n−1, supposing first that
r ∈ RX

m−1,n−1. Then r is defined on u− if and only if r is defined on u and ord(r′(u),Xa(u))
is < for every nonempty prefix r′ of r. By definition of ≡m,n, this is equivalent to r being
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defined on v−. If instead r ∈ RY
m−1,n−1, then r is defined on u− if and only if Xa r ∈ Rm,n is

defined on u and ord(Xa r′(u),Xa(u)) is < for every nonempty prefix r′ of r. Again, this is
equivalent to r being defined on v− since u ≡m,n v. Thus, the same rankers in Rm−1,n−1 are
defined on u− and v−.

Now consider rankers r ∈ RX
m−1,n−1 and s ∈ RY

m−1,n−2, which we can assume to be
defined on both u− and v−. Then the order types induced by r and s on u− and v− are
equal, since ord(r(u−), s(u−)) = ord(r(u),Xa s(u)) = ord(r(v),Xa s(v)) = ord(r(v−), s(v−))
and Xa s ∈ RX

m,n−1.
The same reasoning applies if r ∈ RY

m−1,n−1 and s ∈ RX
m−1,n−2 (resp. if r ∈ RX

m−1,n−1 and
s ∈ RX

m−1,n−2, if r ∈ RY
m−1,n−1 and s ∈ RY

m−2,n−2) since in that case, ord(r(u−), s(u−)) =
ord(Xa r(u), s(u)) (resp. ord(r(u), s(u)), ord(Xa r(u),Xa s(u))). Therefore, u− ≡m−1,n−1 v−.

We now verify that u+ ≡m,n−1 v+. The proof is very similar to the first part and
deviates only in technical details. Consider a ranker r ∈ Rm,n−1, say, in RX

m,n−1. Then r
is defined on u+ if and only if Xa r ∈ Rm,n is defined on u and ord(Xa r′(u),Xa(u)) is >
for every nonempty prefix r′ of r. Again, this is equivalent to r being defined on v+ since
u ≡m,n v. If instead r ∈ RY

m,n−1, then r is defined on u+ if and only if r is defined on u
and ord(r′(u),Xa(u)) is > for every nonempty prefix r′ of r, which is equivalent to r being
defined on v+. Thus, the same rankers in Rm,n−1 are defined on u+ and v+.

Now consider rankers r ∈ RX
m,n−1 and s ∈ RY

m,n−2, both defined on u+ and v+. Then
the order types induced by r and s on u+ and v+ are equal, since ord(r(u+), s(u+)) =
ord(Xa r(u), s(u)) and Xa r ∈ RX

m,n.
Again, a similar verification guarantees that the order types induced by r and s on u+

and v+ are equal also if r ∈ RY
m,n−1 and s ∈ RX

m,n−2, or if r ∈ RX
m,n−1 and s ∈ RX

m−1,n−2, or
if r ∈ RY

m,n−1 and s ∈ RY
m−1,n−2. This shows u+ ≡m,n−1 v+ which completes the proof. J

I Lemma 14. Let m,n ≥ 2 and let u = u−au0bu+ and v = v−av0bv+ describe b-left
and a-right factorizations (that is, a 6∈ alph(u0bu+) ∪ alph(v0bv+) and b 6∈ alph(u−au0) ∪
alph(v−av0)). If u ≡m,n v, then u0 ≡m−1,n−1 v0.

Proof. A ranker r ∈ RX
m−1,n−1 is defined on u0 if and only if Ya r ∈ Rm,n is defined on u

and ord(Ya r′(u),Ya(u)) is > and ord(Ya r′(u),Xb(u)) is < for every nonempty prefix r′ of r.
Similarly, a ranker r ∈ RY

m−1,n−1 is defined on u0 if and only if Xb r ∈ Rm,n is defined on u
and ord(Xb r′(u),Ya(u)) is > and ord(Xb r′(u),Xb(u)) is < for every nonempty prefix r′ of r.
Thus, if u ≡m,n v, then the same rankers in Rm−1,n−1 are defined on u0 and v0.

Now consider rankers r ∈ RX
m−1,n−1 and s ∈ RY

m−1,n−2 (resp. r ∈ RY
m−1,n−1 and s ∈

RX
m−1,n−2), defined on both u0 and v0. Then ord(r(u0), s(u0)) = ord(Ya r(u),Xb s(u)) (resp.

ord(Xb r(u),Ya s(u)). Since u ≡m,n v, Ya r ∈ RY
m,n and Xb s ∈ RX

m,n−1 (resp. Xb r ∈ RX
m,n

and Ya s ∈ RY
m,n−1), the order types defined by r and s on u0 and v0 are equal.

If m = 2, we are done proving that u0 ≡m−1,n−1 v0. We now assume that m ≥ 3. Let
r ∈ RX

m−1,n−1 and s ∈ RX
m−2,n−2 (resp. r ∈ RY

m−1,n−1 and s ∈ RY
m−2,n−2) be defined on

both u0 and v0. Then ord(r(u0), s(u0)) = ord(Ya r(u),Ya s(u)) (resp. ord(Xb r(u),Xb s(u))).
By the same reasoning as above, the order type defined by v on u0 and v0 is the same since
Ya r ∈ RY

m,n and Ya s ∈ RY
m−1,n−1 (resp. Xb r ∈ RX

m,n and Xb s ∈ RX
m−1,n−1). This concludes

the proof of the lemma. J

3.2 Proof of Proposition 9
The proof is by induction on m. We already observed that L is FO2

1[<]-definable if and only
if it is piecewise testable, if and only if it is accepted by a monoid in J. Since J = R2 ∩ L2,
Proposition 9 holds for m = 1. We now assume that m ≥ 2.
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A∗

M

M/∼D M/∼K

A∗/(≡ρ ∨ ≡λ)

A∗/.m,n A∗//m,n

A∗/≡m−1,n

ϕ

ρ λ
πD πK

Figure 4 A commutative diagram.

Let ϕ : A∗ → M be a morphism with M ∈ Rm+1 ∩ Lm+1. We note that it suffices to
prove Proposition 9 for the morphism ϕ′ : A∗ → M × 2A given by ϕ′(u) = (ϕ(u), alph(u)).
Observe that, for u, v ∈ A∗,

ϕ′(u) ∼D ϕ′(v) (resp. ϕ′(u) ∼K ϕ′(v)) implies alph(u) = alph(v). (1)

Indeed we have ϕ′(u)ϕ′(u)ω = ϕ′(u)ω (since M is aperiodic): then ϕ′(u) ∼D ϕ′(v) implies
that ϕ′(v)ϕ′(u)ω = ϕ′(u)ϕ′(u)ω and by definition of ϕ′, alph(v) is contained in alph(u). By
symmetry, u and v have the same alphabetical content and the same holds for ∼K.

To lighten up the notation, we dispense with the consideration of ϕ′ and we assume
that ϕ satisfies Property (1). Moreover, we assume that ϕ is surjective.

Let πD : M →M/∼D and πK : M →M/∼K be the natural morphisms. By definition of
Rm+1 and Lm+1, we have M/∼D ∈ Rm and M/∼K ∈ Lm. Let ρ = πD ◦ ϕ and λ = πK ◦ ϕ,
see Figure 4. The monoid A∗/(≡ρ ∨ ≡λ) is a quotient of both M/∼D and M/∼K, so
A∗/(≡ρ ∨ ≡λ) ∈ Rm ∩ Lm and there exists n ≥ 1 such that

.m,n is contained in ≡ρ and /m,n is contained in ≡λ (by Proposition 2),
≡m−1,n is contained in ≡ρ ∨ ≡λ (by induction).
We show that ≡m,n+2|M | is contained in ≡ϕ. Let u ≡m,n+2|M | v. Consider the R-

factorization of u, i.e., u = s1a1 · · · skaksk+1 with ai ∈ A and si ∈ A∗ such that 1 = ϕ(s1)
and for all 1 ≤ i ≤ k:

ϕ(s1a1 · · · si) >R ϕ(s1a1 · · · siai) R ϕ(s1a1 · · · siaisi+1).

Since the number of R-classes is at most |M |, we have k < |M |. Similarly, let v =
t1b1 · · · tk′bk′tk′+1 with bi ∈ A and ti ∈ A∗ be the L-factorization of v such that ϕ(tk′+1) = 1
and for all 1 ≤ i ≤ k′:

ϕ(tibiti+1 · · · bk′tk′+1) L ϕ(biti+1 · · · bk′tk′+1) <L ϕ(ti+1 · · · bk′tk′+1).

As before, we have k′ < |M |. By Lemma 11 (applied with x = s1 · · · si−1ai−1, y = si and
z = ai), we have ai 6∈ alph(si); and similarly, bi 6∈ alph(ti+1). Therefore, the positions
of the ai’s in u are exactly the positions visited by the ranker r = Xa1 · · ·Xak

, and the
positions of the bi’s in v are exactly the positions visited by the ranker s = Ybk′ · · ·Yb1 . Since
u ≡m,n+2|M | v, each of the rankers r and s is defined on both u and v, and all the positions
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visited by the rankers r and s occur in the same order in u as in v. We call these positions
special. Let

u = u1c1 · · ·u`c`u`+1

v = v1c1 · · · v`c`v`+1

be obtained by factoring u and v at all the special positions. We have ` ≤ k + k′ < 2 |M |.
We say that a special position is red if it is visited by r, and that it is green if it is visited
by s. Some special positions may be both red and green, which means that more than one of
the cases below may apply.

For u the above factorization is a refinement of the R-factorization; and for v it is a
refinement of the L-factorization. In particular, ϕ(u1) = 1, ϕ(v`+1) = 1 and

ϕ(u1 · · ·ui−1ci−1) R ϕ(u1 · · ·ui−1ci−1ui) for 1 < i ≤ `+ 1, (Eq(R))
ϕ(vicivi+1 · · · c`) L ϕ(civi+1 · · · c`) for 1 ≤ i ≤ `. (Eq(L))

In order to prove u ≡ϕ v, we show that we can gradually substitute ui for vi in the product
v1c1 · · · v`c`v`+1 = v, starting from i = 1, while maintaining ≡ϕ-equivalence. Namely we
show that, for each i, it holds

u1 · · ·ui−1ci−1 ui civi+1 · · · v`+1 ≡ϕ u1 · · ·ui−1ci−1 vi civi+1 · · · v`+1. (Eq(i))

Let h0 be the index of the leftmost red position: then ch0 = a1 and s1 = u1c1 · · ·uh0 .
Since ϕ(s1) = 1 andM is aperiodic, the ϕ-image of every letter in s1 is 1. Applying Lemma 13
to the a1-left factorizations of u and v, we find that u1c1 · · ·uh0−1 ≡m−1,n−1 v1c1 · · · vh0−1
and in particular, these words have the same alphabet. It follows that ϕ(ui) = ϕ(vi) = 1 for
all i ≤ h0, and hence (Eq(i)) holds for all i ≤ h0.

The right-left dual of this reasoning establishes that ϕ(ui) = ϕ(vi) = 1 for all the ui, vi
to the right of the last (rightmost) green position; let j0 be its index. In particular, (Eq(i))
also holds for all i > j0.

We now assume that h0 < i ≤ j0 and we let h− 1 be the index of the first red position
to the left of i and j be the index of the first green position to the right of i: we have
h0 < h ≤ i ≤ j ≤ j0.

Case 1: h = i (i− 1 is red)

We have u .m,n+2|M | v. By Lemma 12 (1), a sequence of at most i − 1 left-factorizations
yields uici · · ·u`+1 .m,n+2|M |−i+1 vici · · · v`+1. If i is red, then by Lemma 12 (1), after
one ci-left-factorization, we see that ui .m,n+2|M |−i vi. If i is not red, then i is green
and by Lemma 12 (2), after at most ` − i right-factorizations, we find that ui and vi are
.m,n+2|M |−i−(`−i)-equivalent. In any case, we have ui .m,n vi and thus ui ≡ρ vi (i.e.,
ϕ(ui) ∼D ϕ(vi)) by the choice of n. In view of (Eq(L)), Lemma 10 now implies

uicivi+1 · · · c`v`+1 ≡ϕ vicivi+1 · · · c`v`+1

and left multiplication by u1c1 · · · ci−1 yields (Eq(i)).

Case 2: j = i (i is green)

As in Case 1, we see that ui ≡λ vi. (Eq(R)) and Lemma 10 then implies

u1c1 · · ·ui−1ci−1ui ≡ϕ u1c1 · · ·ui−1ci−1vi,

and right multiplication by civi+1 · · · v`+1 yields (Eq(i)).



M. Kufleitner and P. Weil 437

Case 3: h < i < j (i− 1 is not red and i is not green)

By Lemma 13, after at most h− 1 left factorizations and `− j + 1 right factorizations, we
obtain uhch · · ·uj ≡m,n+j−h vhch · · · vj (since n+ j − h ≤ n+ 2 |M | − (h− 1)− (`− j + 1)).
Lemma 14, applied with a = ci−1 and b = ci, then yields ui ≡m−1,n vi. Since ≡m−1,n is
contained in ≡λ ∨ ≡ρ, there exist words w1, . . . , wd such that

vi = w1 ≡ρ w2 ≡λ w3 ≡ρ · · · ≡λ wd−2 ≡ρ wd−1 ≡λ wd = ui.

After the discussion at the beginning of this section, we have alph(vi) = alph(w2) = · · · =
alph(wd−1) = alph(ui). Thus, by Lemma 11, we have ϕ(pui) R ϕ(p) if and only if ϕ(pwg) R
ϕ(p), and ϕ(viq) L ϕ(q) if and only if ϕ(wgq) L ϕ(q) for all p, q ∈ A∗. As in Cases 1 and 2,
we conclude that for each 1 ≤ e < d,

if we ≡ρ we+1, then

weci · · · c`v`+1 ≡ϕ we+1ci · · · c`v`+1, and thus
u1c1 · · ·uici−1weci · · · c`v`+1 ≡ϕ u1c1 · · ·uici−1we+1ci · · · c`v`+1;

and if we ≡λ we+1, then

u1c1 · · · ci−1we ≡ϕ u1c1 · · · ci−1we+1, and thus
u1c1 · · · ci−1wecivi+1 · · · c`v`+1 ≡ϕ u1c1 · · · ci−1we+1civi+1 · · · c`v`+1.

It follows by transitivity of ≡ϕ that (Eq(i)) holds.

Concluding the proof

We have now established (Eq(i)) for every 1 ≤ i ≤ `+1. It follows immediately, by transitivity,
that u ≡ϕ v. J

4 Conclusion

We have shown that for each m ≥ 1, it is decidable whether a given regular language is
FO2

m[<]-definable. Previous results in the literature only showed decidability for levels 1
and 2 of this quantifier alternation hierarchy. Our decidability result follows from the
proof that FO2

m (the pseudovariety of finite monoids corresponding to the FO2
m[<]-definable

languages) is equal to the intersection Rm+1 ∩ Lm+1, which was known to be decidable.
This result implies the decidability of the levels of the hierarchy given by V1 = J and

Vm+1 = Vm ∗∗ J, since Straubing showed that Vm = FO2
m [29]. Straubing used general

results of Almeida and Weil on two-sided semidirect products to deduce from this that FO2
2

is decidable, but these results do not extend to FO2
m when m > 2 ([1, 38], see [29, Sec. 5] for

a discussion). In particular, this shows that Conjecture 5 holds for m = 2.
We also showed that the decision procedure whether a regular language L is FO2

m-
definable, is in Logspace on input the multiplication table of the syntactic monoid of L,
and in Pspace on input the minimal automaton of L. The result behind this statement
is the fact that membership in Rm and in Lm is characterized by a small set of (rather
complicated) identities. Another equational description of Rm and Lm was recently given by
Kufleitner and Lauser [12]. Straubing conjectured a different and simpler set of identities for
FO2

m, see Conjecture 5 above. While this paper was under revision, Krebs and Straubing
announced that they succeeded in extending the latter set of identities to all the levels of the
hierarchy, see arXiv:1205.4802.
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