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Abstract. Over finite words, there is a tight connection between the
quantifier alternation hierarchy inside two-variable first-order logic FO2

and a hierarchy of finite monoids: the Trotter-Weil Hierarchy. The var-
ious ways of climbing up this hierarchy include Mal’cev products, de-
terministic and co-deterministic concatenation as well as identities of
ω-terms. We show that the word problem for ω-terms over each level of
the Trotter-Weil Hierarchy is decidable; this means, for every variety V
of the hierarchy and every identity u = v of ω-terms, one can decide
whether all monoids in V satisfy u = v. More precisely, for every fixed
variety V, our approach yields nondeterministic logarithmic space (NL)
and deterministic polynomial time algorithms, which are more efficient
than straightforward translations of the NL-algorithms. From a language
perspective, the word problem for ω-terms is the following: for every lan-
guage variety V in the Trotter-Weil Hierarchy and every language variety
W given by an identity of ω-terms, one can decide whether V ⊆ W. This
includes the case where V is some level of the FO2 quantifier alternation
hierarchy. As an application of our results, we show that the separa-
tion problems for the so-called corners of the Trotter-Weil Hierarchy are
decidable.

1 Introduction

For the study of many regular language classes, it turned out to be fruitful if
one finds multiple characterizations for the class. For instance, one can consider
the class of languages recognized by extensive deterministic finite automata (i. e.
automata whose states can be ordered topologically). This is algebraically char-
acterized by the variety R of R-trivial monoids [3, Chap. 10]. Another example
is the class of star-free languages. It is defined as the set of languages which
can be defined by a regular expression which may use complementation instead
of Kleene’s star. Schützenberger’s famous theorem [20] yields an algebraic char-
acterization for this class: it coincides with the class of languages which are
? The first author was supported by the German Research Foundation (DFG) under
grant DI 435/5-2.
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recognized by aperiodic monoids. A monoid M is aperiodic if x|M |! = x|M |!x
holds for all x ∈ M . In the case of star-free languages (as in many other cases)
this algebraic characterization is particularly useful as it makes it possible to
decide whether a given language is star-free: compute the language’s syntactic
monoid M (which, for a regular language, must be finite) and check whether it
is aperiodic. The latter can be achieved by checking the equation x|M |! = x|M |!x
for all x ∈M . Often, this equation is also stated as xω = xωx since this notation
is independent of the monoid’s size. More formally, we can see the equation as a
pair of ω-terms: these are finite words built using letters, which are interpreted
as variables, concatenation and an additional formal ω power. In order to check
whether the equation α = β consisting of the two ω-terms α and β holds in
a monoid M one first substitutes the formal ω exponents in α and β by |M |!,
which results in a finite word in variables. One, then, needs to substitute each
variable by all element ofM , which is possible ifM is finite. These substitutions
yield a monoid element belonging to α and one belonging to β. If and only if the
respective pairs of monoid elements are equal for all variable substitutions, the
equation holds in M .

Often, the question whether an equation holds is not only interesting for a
single finite monoid but for a (possibly infinite) set of such monoids. For example
one may ask whether all monoids in a certain set are aperiodic. This is trivially
decidable if the set is finite. But what if the set is infinite? If the set forms
a variety (of finite monoids) – that is a set of finite monoids which is closed
under (possibly empty) direct products, submonoids and homomorphic images;
sometimes also referred to as pseudo-varieties –, then this problem is called
the variety’s word problem for ω-terms. Usually, the study of a variety’s word
problem for ω-terms also gives more insight into the variety’s structure, which is
interesting in its own right. McCammond showed that the word problem for ω-
terms of the variety A of aperiodic finite monoids is decidable [14]. The problem
was shown to be decidable in linear time for J by Almeida [1] and for R by
Almeida and Zeitoun [2]. Later Moura applied their ideas to show decidability
in time O((nk)5) where k is the maximal nesting depth of the ω-power (which
can be linear in n) of the problem for the variety DA [16]. The variety DA is the
set of finite monoids whose regular D-classes form aperiodic semigroups. This
class is interesting because of another characterization of A and, therefore, star-
free languages: a language is star-free if and only if it can be defined by a sentence
in first-order logic over words [15]. It is easy to see that any first-order sentence
over words is equivalent to one which uses only three variables. Therefore, it is
a natural question to ask what happens if one restricts the number of variables
to two. This leads to two-variable first-order logic (over words). As it turns out,
this class of languages is characterized by DA [24]; see [23] for a survey.

In this paper, we consider the word problems for ω-terms of the varieties of
the Trotter-Weil Hierarchy. Trotter and Weil [25] used the good understanding
of the band varieties (cf. [4]) for studying the lattice of sub-varieties of DA;
bands are semigroups satisfying x2 = x. An important aspect of the Trotter-
Weil Hierarchy is its connection with the quantifier alternation hierarchy inside
two-variable first-order logic. In addition, many characterizations of two-variable
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first-order logic naturally appear within this hierarchy, see [8]. The Trotter-Weil
Hierarchy has a zig-zag shape, see Figure 2. There are non-symmetric varieties,
the so-called corners; amongst them is the variety R as well as its symmetric
dual L, the variety of L-trivial monoids. Then there are the intersections of
corners, the intersection levels; and finally there are the joins of the corners, the
join levels. Two-variable quantifier alternation corresponds to the intersection
levels [11]; in particular, the variety J of J -trivial monoids is one of them. The
union of all levels is DA [10].
In this paper, we present the following results.
– Our main tool for studying a variety V of the Trotter-Weil Hierarchy is a

family of finite index congruences ≡V,n for n ∈ N. These congruences have
the property that a monoid M is in V if and only if there exists n for
which M divides a quotient by ≡V,n. The congruences are not new but they
differ in some minor but crucial details (and these details necessitate new
proofs). In the literature, the congruences are usually introduced in terms of
rankers [8, 11, 12].

– We lift the combinatorics from finite words to ω-terms using the “linear order
approach” introduced by Huschenbett and the first author [6]. They showed
that, over varieties of aperiodic monoids, one can use the order N+Z·Q+(−N)
for the formal ω-power. In this paper, we use the simpler order N+(−N). We
show that two ω-terms α and β are equal in some variety V of the Trotter-
Weil hierarchy if and only if JαKN+(−N) ≡V,n JβKN+(−N) for all n ∈ N. Here,
JαKN+(−N) denotes the labeled linear order obtained from replacing every
ω-power by the linear order N + (−N). Note that this order is tailor-made
for the Trotter-Weil Hierarchy and does not result from simple arguments
which work in any variety.

– We show that one can effectively check whether JαKN+(−N) ≡V,n JβKN+(−N)

for all n ∈ N. For some varieties in the Trotter-Weil Hierarchy this is rather
straightforward but for the so-called intersection levels it additionally re-
quires some kind of synchronization.

– We further improve the algorithms and show that, for every variety V of the
Trotter-Weil Hierarchy, the word problem for ω-terms over V is decidable
in nondeterministic logarithmic space. The main difficulty is to avoid some
blow-up which (naively) is caused by the nesting depth of the ω-power. For
the variety R of R-trivial monoids, this result is incomparable to Almeida
and Zeitoun’s linear time algorithm [2].

– We also introduce polynomial time algorithms, which are more efficient than
the direct translation of these NL algorithms.

– As an application, we show that the separation problem for each corner of
the Trotter-Weil Hierarchy is decidability; for J we adapt the proof of van
Rooijen and Zeitoun [26].

– With little additional effort, we also obtain all of the above results for the
limit of the Trotter-Weil hierarchy, the variety DA. The decidability of the
separation problem re-proves a result of Place, van Rooijen and Zeitoun
[19]. The algorithms for the word problem for ω-terms are more efficient
than Moura’s results [16].
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Separability of the join-levels and the intersection-levels is still open. We
conjecture that these problems can be solved with similar but more technical
reductions.

2 The Trotter-Weil Hierarchy

Let N = {1, 2, . . . }, N0 = {0, 1, . . . } and −N = {−1,−2, . . . }. For the rest of this
paper, we fix a finite alphabet Σ. By Σ∗, we denote the set of all finite words
over the alphabet Σ, including the empty word ε; Σ+ denotes that excluding
the empty word. Let w = a1a2 . . . an ∈ Σ∗ be a word of length n ∈ N0. The set
{ai | i = 1, 2, . . . , n} of letters appearing in w shall be denoted by alph(w). As
a finite word w ∈ Σ∗ can be seen as a mapping w : {1, 2, . . . , n} → Σ, we use
dom(w) to denote the set of positions in w.

For a pair (l, r) ∈ ({−∞} ] dom(w)) × (dom(w) ] {+∞}), define w(l,r) as
the restriction of w (seen as a mapping) to the set of positions (strictly) larger
than l and (strictly) smaller than r. Note that w = w(−∞,+∞) and w(l,r) = ε for
any pair (l, r) with no position between l and r.

Monoids, Divisors, Congruences and Recognition. In this paper, the termmonoid
refers to a finite monoid (except when stated otherwise). it is well known that,
for any monoidM , there is a smallest number n ∈ N such that mn is idempotent
(i. e. m2n = mn) for every element m ∈ M ; this number is called the exponent
of M and shall be denoted by M ! = n.1 A monoid N is a divisor of (another)
monoid M , written as N ≺ M , if N is an homomorphic image of a submonoid
of M .

A congruence (relation) in a (not necessarily finite) monoid M is an equiv-
alence relation C ⊆ M ×M such that x1 C x2 and y1 C y2 implies x1y1 C x2y2

for all x1, x2, y1, y2 ∈ M . If M is a (possibly infinite) monoid and C ⊆ M ×M
is a congruence, then the set of equivalence classes of C, denoted by M/C, is a
well-defined monoid (which might still be infinite), whose size is called the index
of C. For any two congruences C1 and C2 over a monoid M , one can define their
join C1 ∨ C2 as the smallest congruence which includes C1 and C2; its index is at
most as large as the index of C1 and the index of C2.

A (possibly infinite) monoid M recognizes a language of finite words L ⊆ Σ∗
if there is a homomorphism ϕ : Σ∗ → M with L = ϕ−1 (ϕ(L)). A language is
regular if and only if it is recognized by a finite monoid. It is well known that
there is a unique smallest monoid which recognizes a given regular language: the
syntactic monoid.

Varieties, π-Terms and Equations. A variety (of finite monoids) – sometimes
also referred to as a pseudo-variety – is a set of monoids which is closed under
submonoids, homomorphic images and – possibly empty – finite direct products.
For example, the set R of R-trivial monoids and the set L of L-trivial monoids
both form a variety, see e.g. [18]. Clearly, if V and W are varieties, then so is
1 Note that all statements remain valid if one assumes that M ! is used to denote |M |!.
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w = a b b a b b b b b a b b b a b a b b a b

l Xa(w; l) r

w(l,r) ·XL
a w(l,r) ·XR

a

Fig. 1. Application of XL
a and XR

a to an example word.

V ∩W. For example, the set J = R ∩ L is a variety; in fact, it is the variety of
all J -trivial monoids. For two varieties V and W, the smallest variety which is
a superset of V ∪W, the so called join, is denoted by V ∨W.

Often, varieties are defined in terms of equations (or identities). Because it
will be useful later, we take a more formal approach towards equations by using
π-terms2. A π-term is a finite word, built using letters, concatenation and an
additional formal π-power (and appropriate parentheses), whose π-exponents act
as a placeholder for a substitution value.3

To state equations using π-terms, one needs to substitute these placeholders
by actual values resulting in an ordinary finite word. We define JγKn as the result
of substituting the π-exponents in γ by n ∈ N0. An equation α = β consists of
two π-terms α and β over the same alphabet Σ, which, here, can be seen as a set
of variables. A homomorphism σ : Σ∗ →M is called an assignment of variables
in this context. An equation α = β holds in a monoid M if for every assignment
of variables σ (JαKM !) = σ (JβKM !) is satisfied. If holds in a variety V, if it holds
in all monoids in V.

Relations for the Trotter-Weil Hierarchy. In this paper, we approach the Trotter-
Weil Hierarchy by using certain congruences. First, however, we give some defi-
nitions for factorizations of words at the first or last a-position (i. e. an a-labeled
position). For a word w, a position p ∈ dom(w)]{−∞} and a letter a ∈ alph(w),
let Xa(w; p) denote the first a-position (strictly) larger than p (or the first a-
position in w if p = −∞). It is undefined if there is no such position. Define
Ya(w; p) symmetrically as the first a-position from the right which is (strictly)
smaller than p.

Let w be a word, define

w ·XL
a = w(−∞,Xa(w;−∞)), w ·XR

a = w(Xa(w;−∞),+∞),

w · Y La = w(−∞,Ya(w;+∞)) and w · Y Ra = w(Ya(w;+∞),+∞)

for all a ∈ alph(w). Additionally, define Ca,b as a special form of apply XL
a

first and then Y Rb which is only defined if Xa(w;−∞) is strictly larger than
Yb(w; +∞). For an example of XL

a and XR
a acting on a word see Figure 1. Note

that we have w = (w ·XL
a )a(w ·XR

a ) = (w ·Y La )a(w ·Y Ra ) = (w ·Y Lb )b(w ·Ca,b)a(w ·
XR
a ) (whenever these factors are defined).

2 Usually, π-terms are referred to as ω-terms. In this paper, however, we use ω to
denote the order type of the natural numbers. Therefore, we follow the approach of
Perrin and Pin [17] and use π instead of ω.

3 See the appendix for an inductive definition.
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With these definitions in place, we define the relations4 ≡Xm,n, ≡Ym,n and ≡WI
m,n

of words for m,n ∈ N. The idea is that these relations hold on two words u and
v if both words allow for the same sequence of factorizations at the first or last
occurrence of a letter. The parameter m is the remaining number of direction
changes (which are caused by anXL

a or Y Ra factorizations) in such a sequence and
the parameter n is the number of remaining factorization moves (independent
of their direction). Thus, if m or n is zero, then all of the three relations shall
be satisfied for all words. For m and n larger than zero, our first assertion is
that both words have the same alphabet; otherwise, one of them would admit
a factorization at a letter while the other would not, as the letter is not in its
alphabet. Furthermore, for u ≡Xm,n v to hold, we require u ·XL

a ≡Ym−1,n−1 v ·XL
a

and u · XR
a ≡Xm,n−1 v · XR

a for all a in the common alphabet of u and v. The
former states that, after an Xa factorization, the left parts of this factorization
in both words have to admit the same factorization sequences where the number
of moves as well as the direction changes has decreased by one. We loose one
direction change because we factorize at the first a to the right of the words’
beginnings but take the factors to the left. On the other hand, if we take the
factors to the right, we only lose one move but no change in direction; this is
stated in the latter requirement. Additionally, we can also change the starting
point of our factorization (which, normally, is the beginning of the words for
≡Xm,n); for this, we loose one move and one change in direction. Therefore, we
also require u ≡Ym−1,n−1 v for u ≡Xm,n v to hold

Symmetrically, we define u ≡Ym,n v if and only if we have alph(u) = alph(v),
u ≡Xm−1,n−1 v and u · Y La ≡Ym,n−1 v · Y La as well as u · Y Ra ≡Xm−1,n−1 v · Y Ra for
all a ∈ alph(u). Additionally, we define ≡Rm,n as the intersection for ≡Xm,n and
≡Ym,n for all m,n ∈ N.

For u ≡WI
m,n v withm,n ∈ N to hold, we require alph(u) = alph(v) and, for all

a ∈ alph(u), u ·XL
a ≡WI

m−1,n−1 v ·XL
a , u ·XR

a ≡WI
m,n−1 v ·XR

a , u ·Y La ≡WI
m,n−1 v ·Y La

and u · Y Ra ≡WI
m−1,n−1 v · Y Ra , as well as that u · Ca,b and v · Ca,b are either

both undefined or both defined and u ·Ca,b ≡WI
m−1,n−1 v ·Ca,b holds. All of these

requirements except for the last one are analogous to the cases for ≡Xm,n and
≡Ym,n. The last assertion states that the first a is to the right of the last b in u if
and only if it is so in v and that, in this case, we can continue to factorize in the
middle part between b and a with one less move and one less direction change.5

By simple inductions, one can see that the relations are congruences of finite
index over Σ∗. Also note that u ≡Zm,n v implies u ≡Zm,k v and, if m > 0, also
u ≡Zm−1,k v for all k ≤ n and Z ∈ {X,Y,R,WI}.

4 The presented relations could also be defined by (condensed) rankers (as it is done in
[11] and [12]). Rankers were introduced by Weis and Immerman [27] who reused the
turtle programs by Schwentick, Thérien and Vollmer [21]. Another concept related
to condensed rankers is the unambiguous interval temporal logic by Lodaya, Pandya
and Shah [13].

5 The definitions of these congruences in formulas can also be found in the appendix.

6



R2 ∩ L2 = J = R1 = L1

R = R2 L2 = L

R2 ∨ L2

R3 ∩ L3

R3 L3

...

⋃ m
∈
N
R

m
∨
L
m

=
D
A

Fig. 2. Trotter-Weil Hierarchy

The Trotter-Weil Hierarchy. Using these rela-
tions, we can define the Trotter-Weil Hierar-
chy. As the name implies, this hierarchy was
first studied by Trotter and Weil [25], who ob-
tained it by taking a different approach. For
more information on the equivalence of the
two definitions see also [12], [7] and [5, Corol-
lary 4.3]6.

The Trotter-Weil Hierarchy consists of
corners, join levels and intersection levels. The corners of the layer m ∈ N are
the varieties Rm and Lm. A monoid M is in Rm if and only if M ≺ Σ∗/≡Xm,n
for an n ∈ N0 and it is in Lm if and only if M ≺ Σ∗/≡Ym,n for an n ∈ N0. The
corresponding join level is Rm ∨ Lm and the corresponding intersection level is
Rm∩Lm. A monoidM is in Rm∨Lm if and only ifM ≺ Σ∗/≡Rm,n for an n ∈ N
and it is in Rm ∩ Lm if and only if M ≺ Σ∗/≡WI

m,n for an n ∈ N.7
The term “hierarchy” is justified by the following inclusions: we have Rm ∩

Lm ⊆ Rm,Lm ⊆ Rm ∨ Lm and Rm ∨ Lm ⊆ Rm+1 ∩ Lm+1. The Trotter-Weil
Hierarchy contains some well known varieties: we have R1 = L1 = J, R2 = R
and L2 = L (for the last two, see [18]).8

By taking the union of all varieties in the hierarchy, one gets the variety
DA [10], which is usually defined as the set of monoids whose regular D-classes
form aperiodic semigroups9. Though we state this as a fact here, it can also
be seen as the definition of DA for this paper. These considerations yield the
graphic representation given in Figure 2. We also note that the intersection
levels corresponds to the quantifier alternation hierarchy of first-order logic with
at most two variables.

3 Relations and Equations

Order Types. A linearly ordered set (P,≤P ) consists of a (possibly infinite) set P
and a linear ordering relation ≤P of P , i. e. a reflexive, anti-symmetric, transitive
and total binary relation ≤P ⊆ P×P . To simplify notation we define two special
objects −∞ and +∞. The former is always smaller with regard to ≤P than any
element in P while the latter is always larger. We call two linearly ordered
sets (P,≤P ) and (Q,≤Q) isomorphic if there is an order-preserving bijection
ϕ : P → Q. Isomorphism between linearly order sets is an equivalence relation;
its classes are called (linear) order types.

6 as well as the appendix
7 This follows from the equivalence shown in the appendix.
8 These assertions are straightforward if one uses the alternative definition given in
the appendix.

9 For finite monoids, D-classes coincide with J -classes; a D-class is called regular if it
contains an idempotent. A semigroup is called aperiodic (or group-free) if it has no
divisor which is a nontrivial group.
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The sum of two linearly ordered sets (P,≤P ) and (Q,≤Q) is (P ]Q,≤P+Q)
where P]Q is the disjoint union of P andQ and≤P+Q orders all elements of P to
be smaller than those of Q while it behaves as ≤P and ≤Q on elements from their
respective sets. Similarly, the product of (P,≤P ) and (Q,≤Q) is (P ×Q,≤P∗Q)
where (p, q) ≤P∗Q (p̃, q̃) holds if and only if either q ≤Q q̃ and q 6= q̃ or q = q̃
and p ≤P p̃ holds. Sum and product of linearly ordered sets are compatible with
taking the order type. This allows for writing µ+ ν and µ ∗ ν for order types µ
and ν.

We re-use n ∈ N0 to denote the order type of ({1, 2, . . . , n},≤). One should
note that this use of natural numbers to denote order types does not result in
contradictions with sums and products: the usual calculation rules apply. Besides
finite linear order types, we need ω, the order type of (N,≤), and its dual ω∗ the
order type of (−N,≤). Another important order type in the scope of this paper
is ω + ω∗, whose underlying set is N ] (−N). Note that, here, natural numbers
and the (strictly) negative numbers are ordered as 1, 2, 3, . . . , . . . ,−3,−2,−1;
therefore, in this order type, we have for example −1 ≥ω+ω∗ 1.

Generalized Words. As already mentioned, any finite word w = a1a2 . . . an of
length n ∈ N0 with ai ∈ Σ can be seen as a function which maps a position i ∈
dom(w) to the corresponding letter ai (or, possibly, the empty map). By relaxing
the requirement of dom(w) to be finite, one obtains the notion of generalized
words: a (generalized) word w over the alphabet Σ of order type µ is a function
w : dom(w)→ Σ, where dom(w) is a linearly ordered set in µ. For dom(w), we
usually choose (N,≤), (−N,≤) and (N ] (−N),≤ω+ω∗) as representative of ω,
ω∗ and ω + ω∗, respectively. The order type of a finite word of length n is n.

Like finite words, generalized words can be concatenated, i e. we write u to
the left of v and obtain uv. In that case, the order type of uv is the sum of
the order types of u and v. Besides, concatenation, we can also take powers of
generalized words. Let w be a generalized word of order type µ which belongs
to (Pµ,≤µ) and let ν be an arbitrary order type belonging to (Pν ,≤ν). Then,
wν is a generalized word of order type µ ∗ ν which determines the ordering of
its letters; w maps (p1, p2) ∈ Pµ × Pν to w(p1). If ν = n for some n ∈ N, then
wν = wn is equal to the n-fold concatenation of w.

In this paper, the term word refers to a generalized word. If it is important
for a word to be finite, it is referred to explicitly as a finite word. One may verify
that all previous results still apply if a “word” is considered to be a generalized
word instead of a finite word and that previous definitions extend naturally to
generalized words. Especially, we can define alph(w) as the image of w and apply
the ≡Zm,n relations also to generalized words. We also extend the notation JγKµ
to arbitrary order types µ. The result of the π-substitution now, of course, is
a generalized word. Only useful for generalized words, however, is the following
congruence: for m ∈ N0 and Z ∈ {X,Y,R,WI}, define u ≡Zm v ⇔ ∀n ∈ N :
u ≡Zm,n v.

Word Problem for π-terms. The word problem for π-terms over a variety V is
the problem to decide whether α = β holds in V for the input π-terms α and β.
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In order to solve the word problem for π-terms over the varieties in the
Trotter-Weil Hierarchy, one can use the following connection between the rela-
tions defined above and equations in these varieties, which is straightforward if
one make the transition from finite to infinite words.10 Besides its use for the
word problem for π-terms, this connection is also interesting in its own right as
it can be used to prove or disprove equations in any of the varieties. As the set of
monoids in which an equation α = β holds is a variety, one can see the assertion
for the join levels as an implication of the ones for the corners.

Theorem 1. Let α and β be two π-terms. For every m ∈ N, we have:

JαKω+ω∗ ≡Xm JβKω+ω∗ ⇔ α = β holds in Rm

JαKω+ω∗ ≡Ym JβKω+ω∗ ⇔ α = β holds in Lm

JαKω+ω∗ ≡Rm JβKω+ω∗ ⇔ α = β holds in Rm ∨ Lm

JαKω+ω∗ ≡WI
m JβKω+ω∗ ⇔ α = β holds in Rm+1 ∩ Lm+1

Corollary 1.
(
∀m ∈ N : JαKω+ω∗ ≡Rm JβKω+ω∗

)
⇔ α = β holds in DA

4 Decidability

In the previous section, we saw that checking whether α = β holds in a variety of
the Trotter-Weil Hierarchy boils down to checking JαKω+ω∗ ≡Zm JβKω+ω∗ (where
≡Zm depends on the variety in question). In this section, we give an introduction
on how to do this. The presented approach works uniformly for all varieties in
the Trotter-Weil Hierarchy (in particular, it also works for the intersection levels,
which tend to be more complicated) and is designed to yield efficient algorithms.

The definition of the relations which need to be tested is inherently recur-
sive. One would factorize JαKω+ω∗ and JβKω+ω∗ on the first a and/or last b (for
a, b ∈ Σ) and test the factors recursively. Therefore, the computation is based on
working with factors of words of the form JγKω+ω∗ where γ is a π-term. We have
already introduced the notation w(l,r) to denote the factor of a finite w which
arises by restricting the domain of w to the open interval (l, r). This notation
can easily be extended to the case of generalized words.

u u u . . . . . . u u u

1 2 3 −3 −2 −1

ω-part ω∗-part

Fig. 3. Representation of uω+ω
∗

What happens if we consecutively factor-
ize at a first/last a is best understood if
one considers the structure of J(α)πKω+ω∗ =

JαKω+ω∗

ω+ω∗ = uω+ω∗ = w, which is schematically
represented in Figure 3.

Suppose u only contains a single a and we
start with the whole word w(−∞,+∞). If we
factorize on the first a taking the part to the
10 The theorem’s proof can be found in the appendix.
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right, then we end up with the factor w(Xa(w;−∞),+∞) with Xa(w;−∞) = (p, 1)
where p is the single a-position in u. If we do this again, we obtain w((p,2),+∞).
If we now factorize on the next a but take the part to the left, then we get
w((p,2),(p,3)). Notice that the difference between 2 and 3 is 1 and that there is no
way of getting a (finite) difference larger than one by factorizing on the respective
first a. On the other hand, we can reach any number in N as long as the right
position is not in the ω-part.

Notice that there is also no way of reaching (p,−2) as left border without
having (q,−1) or (q,−2) as right border for a position q ∈ dom(u). These obser-
vations (and their symmetrical duals) lead to the notion of normalizable pairs
of positions.11

The choice of words indicates that normalizability of a pair (l, r) can be used
to define a normalization. We omit a formal – unfortunately, quite technical –
definition of this12, but give a description of its idea. Let us refers back to the
schematic representation of J(α)πKω+ω∗ = w as given in Figure 3. Basically, there
are three different cases for relative positions of the left border l and the right
border r which describe the factor w(l,r):

1. l is in the ω-part and r is in the ω∗-part,
2. l and r are either both in the ω-part or both in the ω∗-part and have the

same value there, or
3. l and r are either both in the ω-part or both in the ω∗-part but r has a value

exactly larger by one than l.

This is ensured by the normalizability of (l, r). Now, in the first case, we can
safely move l to value 1 (the first position) and r to value −1 (the last position)
without changing the described factor. In the second and third case, we can move
l and r to any value – as long as we retain the difference between the values –
without changing the described factor. Here, we move them to the left-most
values (which are 1, 1 or 1, 2). Afterwards, we go on recursively.

Unfortunately, things get a bit more complicated because l might be −∞
and r might be +∞. In these cases, we normalize to the left-most or right-most
value without changing the factor.

For concatenation of π-terms, we have a similar situation: either l and r
belong both to the left or to the right factor, in which case we can continue
by normalization with respect to that, or l belongs to the left factor and r
belongs to the right one. In this case we have to continue the normalization with
(l,+∞) and (−∞, r) in the respective concatenation parts, as this ensures that
the described factor remains unchanged.13

One should note that if we normalize a normalizable pair (l, r), then the re-
sulting pair is normalizable itself. Indeed, if we normalize an already normalized
pair again, we do not change any values.
11 for which we give a formal definition in the appendix. Alongside the definition, we

also give a proof that any pair (l, r) of positions is normalizable if it describes a
factor which arises by multiple first/last a factorizations.

12 It can be found in the appendix.
13 A formal proof showing that the factor does not change can be found in the appendix.
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Another observation is crucial for the proof of the decidability: after normal-
izing a pair (l, r) the values belonging to the ω + ω∗ parts for the two positions
are all in {1, 2,−2,−1}. But: there are only finitely many such positions in any
word w = JγKω+ω∗ for a π-term γ. Because the normalization preserves the de-
scribed factor, this means that there are only finitely many factors which can
result from a sequence of first/last a factorizations.

Plugging all these ideas and observations together yields a proof for the next
theorem (note that decidability for DA has already been shown by Moura [16]).
Here, we only give a sketch of the proof.14

Theorem 2. The word problems for π-terms over Rm, Lm, Rm ∨ Lm and
Rm ∩Lm are decidable for any m ∈ N. Moreover, the word problem for π-terms
over DA is decidable.

Proof (Sketch). The proof is structurally equivalent for all stated varieties.
Though it can also be proved directly, decidability for the join levels can be seen
as an implication of the decidability for the corners.

The basic idea is to construct a finite automaton for each input π-term γ.
The nodes consist of the normalized position pairs and the edges are labeled
by ZDa for variables a, Z ∈ {X,Y } and D ∈ {L,R}. The node (l, r) has an
out-going ZDa -edge if w′ = w(l,r) · ZDa is defined for w = JγKω+ω∗ ; its target is
obtained by normalizing the pair describing w′. Except for DA, we additionally
have to keep track of the alternations between Xa and Ya factorizations; this can
be done by taking the intersection of two automata. For the intersection levels,
we also need Ca,b-edges which are defined analogously. If there is a path labeled
by Z1Z2 . . . Zk in the automaton for α but not in the one for β, we know that
JαKω+ω∗ is not in relation with JβKω+ω∗ under the appropriate relation given
by Theorem 1. Therefore, checking α = β reduces to checking the automata’s
symmetric difference for emptiness. ut

In the presented algorithm, we have to store and compute normalized pairs of
positions in words of the form JγKω+ω∗ for a π-term γ. To store a single position
of such a pair, one could simply store the values for the π-exponents and a
position in γ. While this would be sufficient to exactly determine the position, it
is impossible to do in logarithmic space. With some additional ideas, however, it
is, in fact, possible to solve the problems in nondeterministic logarithmic space,
which we state in the following theorem (see the technical report [9] for more
details).

Theorem 3. The word problems for π-term over Rm, Lm, Rm∨Lm, Rm∩Lm

and DA can be solved by a nondeterministic Turing machine in logarithmic space
(for every m ∈ N).

While NL is quite efficient from a complexity class perspective, directly trans-
lating the algorithm to polynomial time does not result in a better running time
than the algorithm for DA given by Moura [16]. However, with some additional
14 For a complete proof, we refer to the appendix
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tweaks, the algorithm’s efficiency can be improved, which yields the following
theorem [9].

Theorem 4. The word problems for π-terms over Rm, Lm, Rm∨Lm and Rm∩
Lm can be solved by a deterministic algorithm with running time in O(n7m2)
where n is the length of the input π-terms. Moreover, the word problem for π-
terms over DA can be solved by a deterministic algorithms in time O(n7).

5 Separability

Two languages L1, L2 ⊆ Σ∗ are separable by a variety V if there is a language
S ⊆ Σ∗ with L1 ⊆ S and L2∩S = ∅ such that S can be recognized by a monoid
M ∈ V. The separation problem of a variety V is the problem to decide whether
two regular input languages of finite words are separable by V.

We are going to show the decidability of the separations problems of Rm for
all m ∈ N as well as for DA using the techniques presented in this paper15. Note
that, by symmetry, this also shows decidability for Lm.

The general idea is as follows. If the input languages are separable, then
we can find a separating language S which is recognized by a monoid in the
variety in question. This, we can do by recursively enumerating all monoids
and all languages in a suitable representation. For the other direction, we show
that, if the input languages are inseparable, then there are π-terms α and β
which witness their inseparability. Since we can also recursively enumerate these
π-terms, we have decidability.

To construct suitable π-terms we need an additional combinatoric property
of the ≡Xm,n relation(s) (which, in a slightly different form, can also be found
in [12])16 Using that, one can prove the following lemma concerning the π-term
construction16 and plug everything together.
Lemma 1. LetM be a monoid, ϕ : Σ∗ →M a homomorphism and m ∈ N0. Let
(un, vn)n∈N0

be an infinite sequence of word pairs (un, vn)n∈N0
with un, vn ∈ Σ∗,

un ≡Xm,n vn, ϕ(un) = mu and ϕ(vn) = mv for fixed monoid elements mu,mv ∈
M and all n ∈ N0. Then, the sequence yields π-terms α and β (over Σ) such
that ϕ (JαKM !) = mu, ϕ (JβKM !) = mv and JαKω+ω∗ ≡Xm JβKω+ω∗ hold.

Theorem 5. The separation problem for Rm and Lm is decidable for all m ∈ N.

Proof (idea). The full proof can be found in the appendix. The idea is to re-
cursively enumerate all separating languages and also all the π-terms which, by
the last lemma, witness inseparability. ut

Since two languages are separable by Rm for some m ∈ N which depends
only on the size of Σ [27] if they are separable by DA, we also get decidability
for DA, which has already been shown by Place, van Rooijen and Zeitoun [19].
Corollary 2. The separation problem for DA is decidable.
15 Decidability for DA is already known [19]. The proof, however, uses a fix point

saturation, which is different from our approach.
16 See the appendix.
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A More on the Trotter-Weil Hierarchy

Definition of the Congruences for the Trotter-Weil Hierarchy in Formulas.

Definition 1. Let m,n ∈ N and let u and v be words. Define recursively:

1. u ≡Z0,0 v, u ≡Zm,0 v and u ≡Z0,n v for Z ∈ {X,Y,WI} always hold.
2. u ≡Xm,n v ⇔ alph(u) = alph(v), u ≡Ym−1,n−1 v and

∀a ∈ alph (u) : u ·XL
a ≡Ym−1,n−1 v ·XL

a and

u ·XR
a ≡Xm,n−1 v ·XR

a

u ≡Ym,n v ⇔ alph(u) = alph(v), u ≡Xm−1,n−1 v and

∀a ∈ alph (u) : u · Y La ≡Ym,n−1 v · Y La and

u · Y Ra ≡Xm−1,n−1 v · Y Ra
u ≡WI

m,n v ⇔ alph(u) = alph(v),

∀a ∈ alph (u) : u ·XL
a ≡WI

m−1,n−1 v ·XL
a and

u ·XR
a ≡WI

m,n−1 v ·XR
a ,

∀a ∈ alph (u) : u · Y La ≡WI
m,n−1 v · Y La and

u · Y Ra ≡WI
m−1,n−1 v · Y Ra and

∀a, b ∈ alph (u) : u · Ca,b and v · Ca,b are either both undefined
or both defined and u · Ca,b ≡WI

m−1,n−1 v · Ca,b
holds.

Additionally, define u ≡Rm,n v ⇔ u ≡Xm,n v and u ≡Ym,n v for all m,n ∈ N0.

A More Formal Approach to π-Terms. As it is important for inductions over
the structure of a π-term, we give an additional formal definition of π-terms:
any letter a ∈ Σ is a π-term (over Σ) and if α and β are π-terms (over Σ),
then αβ is also a π-term (over Σ); additionally, if γ is a π-term (over Σ), then
so is (γ)π. As a special case, the empty word ε is also a π-term. To define the
substitution of the π-exponents formally, let µ be an arbitrary order type. For
a π-term γ ∈ Σ ∪ {ε}, let JγKµ = γ. If γ = αβ for two π-terms α and β, let
JαβKµ = JαKµJβKµ, and if γ = (α)π for a π-term α, let J(α)πKµ = (JαKµ)

µ.

Green’s Relations. An important tool for studying monoids are Green’s Rela-
tions. Let x and y be elements of a monoid M . Define

x R y ⇔ xM = yM,

x L y ⇔ Mx = My and
x J y ⇔ MxM = MyM

where xM = {xm | m ∈M} is the right-ideal of x, Mx = {mx | m ∈M} its
left-ideal and MxM = {m1xm2 | m1,m2 ∈M} its (two-sided) ideal.
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By simple calculation, one can see that x R y holds if and only if there are
z, z′ ∈ M such that xz = y and yz′ = x and, symmetrically, that x L y holds if
and only if there are z, z′ ∈M such that zx = y and z′y = x.

Let ϕ : Σ∗ → M be a (monoid) homomorphism into a monoid M . The R-
factorization of a word w is the (unique) factorization w = w0a1w1a2w2 . . . akwk
with w0, w1 . . . , wk ∈ Σ∗ and a1, a2, . . . , ak ∈ Σ such that on the one hand

ϕ(ε) R ϕ(w0) and
ϕ(w0a1w1a2w2 . . . ai) R ϕ(w0a1w1a2w2 . . . aiwi)

hold for i = 1, 2, . . . , k and on the other hand

ϕ(w0a1w1a2w2 . . . aiwi) 6R ϕ(w0a1w1a2w2 . . . aiwiai+1)

holds for i = 0, 1, . . . , k−1. Symmetrically, the L-factorization of w is the factor-
ization w = w0a1w1a2w2 . . . akwk with w0, w1 . . . , wk ∈ Σ∗ and a1, a2, . . . , ak ∈
Σ such that on the one hand

ϕ(wk) L ϕ(ε) and
ϕ(wi−1aiwiai+1wi+1 . . . akwk) L ϕ(aiwiai+1wi+1 . . . akwk)

hold for i = 1, 2, . . . , k and on the other hand

ϕ(aiwiai+1wi+1ai+2wi+2 . . . akwk) 6L ϕ(wiai+1wi+1ai+2wi+2 . . . akwk)

holds for i = 1, 2, . . . , k.

The Variety DA Revisited. Remember that we define DA as the set of all
monoids whose regular D-classes form aperiodic semigroups. But one can also
characterize DA in terms of an equation.

Fact 1. Let M be a monoid. Then, we have

M ∈ DA ⇔ (xyz)πy(xyz)π = (xyz)π holds in M .

A proof of this fact can be found in [23].
InDA, getting into a newR-class is strictly coupled to an element’s alphabet,

as the following lemma shows17, where a can be seen as one of the monoids
generators (i. e. a letter in its alphabet).

Lemma 2. Let M ∈ DA be a monoid and let s, t ∈M such that s R t. Then

s R sa ⇒ t R ta

holds for all a ∈M .
17 The curious reader might be interested in the fact that the lemma’s assertion also

holds for monoids in DS, the variety of monoids whose regular D-classes form (ar-
bitrary, but finite) semigroups.
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Proof. Since we have t R s R sa, there are x, y ∈ M with s = tx and t = say.
We then have

t = txay = t(xay)2 = · · · = t(xay)M !,

which yields

ta(xay)M ! = t(xay)M !a(xay)M ! = t(xay)M ! = t.

using the equation from Fact 1. Thus, we have ta R t. ut

One of the main applications of the previous lemma is the following. If we have
a monoid M ∈ DA, a homomorphism ϕ : Σ∗ →M and the R-factorization w =
w0a1w1a2w2 . . . akwk of a finite word w ∈ Σ∗, then we know that ai 6∈ alph(wi−1)
for i = 1, 2, . . . , k. If we had ai ∈ alph(wi−1), we could factorize wi−1 = uaiv and
would have ϕ(w0a1w1a2w2 . . . ai−1u) R ϕ(w0a1w1a2w2 . . . ai−1uai) and, by the
previous lemma, also ϕ(w0a1w1a2w2 . . . ai−1uaiv) R ϕ(w0a1w1a2w2 . . . ai−1uaiv
ai), which results in a contradiction to the definition of R-factorizations. Of
course, we can apply a left-right dual of the lemma to get an analogue statement
for L-factorizations.

Mal’cev Products. Besides intersection and join, we need one more constructions
for varieties: the Mal’cev product, which is often defined using relational mor-
phism. In this paper, we use a different, yet equivalent, approach based on the
congruences ∼K and ∼D, see [7] or [5, Corollary 4.3]. For their definition, let x
and y be elements of a monoid M and define

x ∼K y ⇔ if ex R e or ey R e, then ex = ey

and x ∼D y ⇔ if xe L e or ye L e, then xe = ye.

Obviously, ∼K and ∼D are of finite index in any (finite) monoid M . Thus,
we have that M/∼K and M/∼D are (finite) monoids and can define Mal’cev
products of varieties. Let V be a variety. The varieties K m V and D m V are
defined by

M ∈ K m V ⇔ M/∼K ∈ V and
M ∈ D m V ⇔ M/∼D ∈ V,

where M is a monoid. Note that, indeed, K m V and D m V are varieties for
any variety V and that, furthermore, we have V ⊆ K m V and V ⊆ D m V.

Alternative Definition of the Trotter-Weil-Hierarchy. Using Mal’cev products,
we can define the Trotter-Weil Hierarchy in a different way. While this approach
is yet different to the one originally taken by Trotter and Weil [25], both are
equivalent [12].

In this section, we use the following definition of the Trotter-Weil Hierarchy:

R1 = L1 = J,

Rm+1 = K m Lm and
Lm+1 = D m Rm.
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With this definition, we have the inclusions Rm∩Lm ⊆ Rm,Lm ⊆ Rm∨Lm

trivially. Additionally, one can show Rm ∨ Lm ⊆ Rm+1 ∩ Lm+1 by induction.
We repeat some facts about the Trotter-Weil Hierarchy. Firstly, we have

that, in addition to J, the varieties R and L appear in the hierarchy, as we have
R2 = R and L2 = L [18]. The next fact is that the union of all varieties in the
Trotter-Weil Hierarchy is itself a variety. As already mentioned, it is the variety
DA (see e. g. [10]).

Fact 2. DA =
⋃
m∈N

Rm ∨ Lm =
⋃
m∈N

Rm =
⋃
m∈N

Lm

The variety DA is closely connected to two-variable first-order logic. By
FO2[<], denote the set of all first-order sentences over words which may only
use the < predicate (and equality) and no more than two variables. A language
L ⊆ Σ∗ of finite words is definable by a sentence ϕ ∈ FO2[<] if and only if
its syntactic monoid is in DA [24], which it is if and only if it is in one of the
Trotter-Weil Hierarchy’s varieties. More precisely, such a language is definable
in FO2

m[<] (which is the subset of sentences from FO2[<] that have at most m
blocks of quantifiers on every path in their syntax tree) if and only if its syntactic
monoid is in Rm+1 ∩ Lm+1 [11].

Beside the definition of the Trotter-Weil Hierarchy using Mal’cev products,
one can also characterize its varieties in terms of equations. Here, however, we
only need one direction of this characterization.

Lemma 3. Define the π-terms

U1 = (sx1)πs(y1t)
π and V1 = (sx1)πt(y1t)

π

over the alphabet Σ1 = {s, t, x1}. For m ∈ N, let xm+1 and ym+1 be new char-
acters not in the alphabet Σm and define the π-terms

Um+1 = (Umxm+1)πUm(ym+1Um)π and Vm+1 = (Umxm+1)πVm(ym+1Um)π

over the alphabet Σm+1 = Σ ] {xm+1, ym+1}.
Then we have

M ∈ R1 = L1 ⇐ U1 = V1 holds in M ,
M ∈ Rm+1 ⇐ (Umxm+1)πUm = (Umxm+1)πVm holds in M ,
M ∈ Lm+1 ⇐ Um(ym+1Um)π = Vm(ym+1Um)π holds in M and

M ∈ Rm+1 ∩ Lm+1 ⇐ Um = Vm holds in M

for all m ∈ N.

Proof. For the corners, see [8]. For the intersection levels, suppose that Um =
Vm holds in a monoid M . By the identities for the corners, we directly have
M ∈ Rm+1 ∩ Lm+1. ut
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Now, we are prepared to show the equivalence to the definition using divi-
sors of Σ∗/ ≡Zm,n. This is done in the following two theorems (see also [12] for
the corners and [11] for the intersection levels). We use the notations XD

Σ =
{XL

a , X
R
a | a ∈ Σ}, Y DΣ = {Y La , Y Ra | a ∈ Σ} and some natural variations of it.

Theorem 6. Let M be a finite monoid, ϕ : Σ∗ → M a homomorphism and
m ∈ N. Then:

– M ∈ Rm ⇒
(
∃n ∈ N∀u, v ∈ Σ∗ : u ≡Xm,n v ⇒ ϕ(u) = ϕ(v)

)
– M ∈ Lm ⇒

(
∃n ∈ N∀u, v ∈ Σ∗ : u ≡Ym,n v ⇒ ϕ(u) = ϕ(v)

)
– M ∈ Rm ∨ Lm ⇒

(
∃n ∈ N∀u, v ∈ Σ∗ : u ≡Rm,n v ⇒ ϕ(u) = ϕ(v)

)
– M ∈ Rm+1 ∩ Lm+1 ⇒

(
∃n ∈ N∀u, v ∈ Σ∗ : u ≡WI

m,n v ⇒ ϕ(u) = ϕ(v)
)

Proof. We fix a homomorphism ϕ : Σ∗ → M and proceed by induction over
m. For m = 1, we have R1 = L1 = R1 ∨ L1 = R2 ∩ L2 = J. Let M ∈ J
and n = |M |, which is the number of J -classes in M (and equal to the number
of R-classes and the number of L-classes). Assume that u ≡X1,n v for two finite
words u, v ∈ Σ∗ and let u = u0a1u1a2u2 . . . akuk be the R-factorization of u.
We have k + 1 ≤ n and, because M is R-trivial, u0 = u1 = · · · = uk = ε, which
allows for writing u = a1a2 . . . ak. By definition of ≡Xm,n, we have a1 ∈ alph(v)

and u · XR
a1 = a2a3 . . . ak ≡X1,n−1 v · XR

a1 . Therefore, we can find a2 in v · XR
a1

and have u ·XR
a1 ·X

R
a2 = a3a4 . . . ak ≡Xm,n−2 v ·XR

a1 ·X
R
a2 . Iterating this approach

yields that u is a subword of v and, by symmetry, also that v is a subword of u.
Thus, u is equal to v and we have ϕ(u) = ϕ(v). The argumentation for u ≡Y1,n v
is symmetric using the L-factorization, the case for u ≡R1,n v follows trivially and
the case for u ≡WI

1,n v uses the same argumentation.
Now, letM ∈ Rm for anm > 1. This impliesM/∼K ∈ Lm−1 and there is an

n′ ∈ N such that u′ ≡Ym−1,n′ v
′ ⇒ ϕ(u′) ∼K ϕ(v′) holds for all u′, v′ ∈ Σ∗. Let r

be the number of R-classes inM and let n = n′+r. Consider the R-factorization
u = u0a1u1a2u2 . . . akuk of a finite word u ∈ Σ∗; note that k+ 1 ≤ r must hold.
We have

ui = u ·XR
a1X

R
a2 . . . X

R
ai for i = 0, 1, . . . , k − 1 and

uk = u ·XR
a1X

R
a2 . . . X

R
ak
.

For a second finite word v ∈ Σ∗ with u ≡Xm,n v, we know that alph(u) = alph(v).
Thus, we can apply XL

a1 and XR
a1 to v an receive

v0 = v ·XL
a1 and v′ = v ·XR

a1 .

By definition of≡Xm,n, we have v0 ≡Xm−1,n−1 u0 and v′ ≡Xm,n−1 u1a2u2a3u3 . . . akuk.
Because of k ≤ r < n, we can apply the same argument on v′ and, by iteration,
get

vi = v ·XR
a1X

R
a2 . . . X

R
ai for i = 0, 1, . . . , k − 1 and

vk = v ·XR
a1X

R
a2 . . . X

R
ak
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with ui ≡Ym−1,n−i−1 vi for i = 0, 1, . . . , k − 1 and uk ≡Xm,n−k vk. Because of
i ≤ k ≤ r− 1, we have n− i− 1 = n′ + r− i− 1 ≥ n′ + r− (r− 1) + 1 = n′ and
ui ≡Ym−1,n′ vi for i = 0, 1, . . . , k − 1. For uk and vk, we have uk ≡Ym−1,n−k−1 vk
by the definition of the congruences and, therefore, uk ≡Ym−1,n′ vk because of
n− k− 1 = n′+ r− k− 1 ≤ n′+ r− (r− 1)− 1 = n′. Summing this up, we have
ui ≡Ym−1,n′ vi and, thus, ϕ(ui) ∼K ϕ(vi) for all i = 0, 1, . . . , k.

Since we have defined ui by the R-factorization of u, there is an si ∈M for
any i ∈ {0, 1, . . . , k} such that ϕ(u0a1u1a2u2 . . . aiui)si = ϕ(u0a1u1a2u2 . . . ai)
holds. For these, we have

(ϕ(ui)si)
M !
ϕ(ui) R (ϕ(ui)si)

M !

because of (ϕ(ui)si)
M !
ϕ(ui)si (ϕ(ui)si)

M !−1
= (ϕ(ui)si)

M !, which yields

(ϕ(ui)si)
M !
ϕ(ui) = (ϕ(ui)si)

M !
ϕ(vi)

by ϕ(ui) ∼K ϕ(vi). Thus, we have

ϕ(u0a1u1a2u2 . . . akuk) = ϕ(u0a1u1a2u2 . . . akuk) (skϕ(uk))
M !

= ϕ(u0a1u1a2u2 . . . ak) (ϕ(uk)sk)
M !
ϕ(uk)

= ϕ(u0a1u1a2u2 . . . ak) (ϕ(uk)sk)
M !
ϕ(vk)

= ϕ(u0a1u1a2u2 . . . ak)ϕ(vk)

= ϕ(u0a1u1a2u2 . . . ak−1uk−1)ϕ(akvk)

= ϕ(u0a1u1a2u2 . . . ak−1) (ϕ(uk−1)sk−1)
M !
ϕ(uk−1)ϕ(akvk)

= ϕ(u0a1u1a2u2 . . . ak−1) (ϕ(uk−1)sk−1)
M !
ϕ(vk−1)ϕ(akvk)

= ϕ(u0a1u1a2u2 . . . ak−2uk−2)ϕ(ak−1vk−1akvk)

= . . .

= ϕ(v0a1v1a2v2 . . . akvk),

which concludes the proof for Rm.
The proof for Lm is symmetrical. For Rm ∨ Lm, we observe that a monoid

is in the join V ∨W of two varieties V and W if and only if it is a divisor
(i. e. the homomorphic image of a submonoid) of a direct product M1 × M2

such that M1 ∈ V and M2 ∈ W [3, Exercise 1.1]. Therefore, if we have a
monoid M ∈ Rm ∨ Lm, there are monoids M1 ∈ Rm and M2 ∈ Lm such
that M is a divisor of M1 ×M2; i. e. there is a submonoid N of M1 ×M2 and
a surjective monoid homomorphism ψ : N � M . For every a ∈ Σ, we can
find elements ma,1 ∈ M1 and ma,2 ∈ M2 such that ϕ(a) = ψ(π(ma,1,ma,2)),
where π is the natural projection from M1 ×M2 onto N . Indeed, we can define
the maps ϕ1 : Σ → M1 and ϕ2 : Σ → M2 by setting ϕ1(a) := ma,1 and
ϕ2(a) := ma,2. These maps can be lifted into homomorphisms ϕ1 : Σ∗ → M1

and ϕ2 : Σ∗ → M2. By induction, there are n1 and n2 such that u ≡Xm,n1
v

implies ϕ1(u) = ϕ2(v) and u ≡Ym,n2
v implies ϕ2(u) = ϕ2(v) for any two finite
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words u, v ∈ Σ∗. By setting n = max{n1, n2}, we have

u ≡Rm,n v ⇒ ϕ1(u) = ϕ1(v) and ϕ2(u) = ϕ2(v)

for all u, v ∈ Σ∗. For all u, v ∈ Σ∗ with u ≡Rm,n v, this yields

ϕ(a1a2 . . . ak) = ϕ(a1)ϕ(a2) . . . ϕ(ak)

= ψ(π(ma1,1,ma1,2))ψ(π(ma2,1,ma2,2)) . . . ψ(π(mak,1,mak,2))

= ψ(π(ma1,1,ma1,2)π(ma2,1,ma2,2) . . . π(mak,1,mak,2))

= ψ(π((ma1,1,ma1,2)(ma2,1,ma2,2) . . . (mak,1,mak,2)))

= ψ (π (ϕ1(u), ϕ2(u)))

= ψ (π (ϕ1(v), ϕ2(v)))

= ϕ(b1b2 . . . bl)

where u = a1a2 . . . ak, v = b1b2 . . . bl and a1, a2, . . . , ak, b1, b2, . . . , bl ∈ Σ.
Finally, let M ∈ Rm+1 ∩ Lm+1 with m > 1. Denote by 2Σ the monoid of

subsets of Σ whose binary operation is the union of sets. It is easy to see that
2Σ is J -trivial. Therefore, we have M × 2Σ ∈ Rm+1 ∩ Lm+1. Next, we lift ϕ :
Σ∗ →M into a homomorphism ϕ̂ : Σ∗ →M×2Σ by taking the word’s alphabet
as the entry in the second component. If we show u ≡m,n v ⇒ ϕ̂(u) = ϕ̂(v) for
a suitable n ∈ N, we especially have u ≡m,n v ⇒ ϕ(u) = ϕ(v). The advantage
of this approach is that we have ϕ̂(u) = ϕ̂(v) ⇒ alph(u) = alph(v) for all
u, v ∈ Σ∗ by the construction of ϕ̂. Instead of continuing to write ϕ̂, we simply
substitute M by M × 2Σ and ϕ by ϕ̂.

We have M/∼K ∈ Lm and M/∼D ∈ Rm. By ≈, denote the join of ∼K and
∼D. Since it is a homomorphic image of both, M/∼K and M/∼D, the monoid
M/≈ is in Rm ∩ Lm and we can apply induction, which yields an n′ ∈ N such
that u ≡WI

m−1,n′ v implies ϕ(u) ≈ ϕ(v) for all finite words u, v ∈ Σ∗. Let c be
the sum of the number of R-classes and the number of L-classes in M and set
n = n′ + c. Suppose we have u ≡WI

m,n v for two finite words u, v ∈ Σ∗. Consider
the R-factorization u = u′0a1u

′
1a2u

′
2 . . . aru

′
r of u and the L-factorization v =

v′0b1v
′
1b2v

′
2 . . . blv

′
l of v. Clearly, we have r + 1 + l + 1 ≤ c. Define the positions

pw0 = −∞, pwr+1 = +∞ and pwi = Xai(w; pi−1) for i = 1, 2, . . . , r and w = u, v.
By Lemma 2, we know that pui denotes the position of ai in the R-factorization
for i = 1, 2, . . . , r. Symmetrically, we can define qwl+1 = +∞, qw0 = −∞ and
qj = Yaj (w; qj+1) for j = l, l − 1, . . . , 1 and w = u, v. Again, we know that qvj is
the position of bj in the L-factorization of v for j = 1, 2, . . . , l. Additionally, we
have

pw0 < pw1 < · · · < pwr < pwr+1 and
qw0 < qw1 < · · · < qwl < qwl+1

for w = u and w = v by their definition. We are going to show that we have
pui O q

u
j ⇔ pvi O q

v
j for O ∈ {<,=, >} and all i = 1, 2, . . . , r and j = 1, 2, . . . , l.

Together, these results yield that the sequence which is obtained by ordering the
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u = ai−1 bj ai bj+1

pui−1 quj pui quj+1

v = ai−1 ai bj bj+1

pvi−1 qvjpvi qvj+1

Fig. 4. Contradiction: pi is to the right of qj in u but to its left in v.

pi and qj positions in u is equal to the corresponding sequence in qj . To prove
this assertion, assume that we have quj ≤ pui but qvj > pvi for an i ∈ {1, 2, . . . , r}
and a j ∈ {1, 2, . . . , l} (all other cases are symmetric or analogous). Without
loss of generality, we may assume that pui−1 < quj ≤ pui holds since, otherwise,
we can substitute i by a smaller i for which the former holds. Note that this
substitution does not violate the condition qvj > pvi as pvi gets strictly smaller if
i decreases. Equally without loss of generality, we may assume quj ≤ pui < quj+1

by a dual argumentation. The situation is presented in Figure 4. We have

u(pui−1,q
u
j+1) = u ·XR

a1X
R
a2 . . . X

R
ai−1

Y Lbl Y
L
bl−1

. . . Y Lbj+1
and

v(pvi−1,q
v
j+1) = v ·XR

a1X
R
a2 . . . X

R
ai−1

Y Lbl Y
L
bl−1

. . . Y Lbj+1

and u(pui−1,q
u
j+1) ≡WI

m,n−(i−1)−(l−(j+1)+1) v(pvi−1,q
v
j+1), which yields u(pui−1,q

u
j+1) ≡WI

m,2

v(pvi−1,q
v
j+1) because of

n− (i− 1)− (l − (j + 1) + 1) = n′ + c− i+ 1− l + j + 1− 1

= n′ + c− i− l + j + 1

≥ n′ + c− (r + l) + 1

≥ n′ + c− (c− 2) + 1 = n′ + 3

> 2.

If quj = pui , we have a contradiction since u(pui−1,q
u
j+1) · Y Lbj contains no ai while

v(pvi−1,q
v
j+1) · Y Lbj does. For quj < pui , we can apply Cai,bj to u(pui−1,q

u
j+1) while

we cannot apply it to v(pvi−1,q
v
j+1) by its definition. Both situations constitute a

contradiction.
We have proved that if we order the set {pui , quj | i = 1, 2, . . . , r, j = 1, 2, . . . ,

l} = {Pu1 , Pu2 , . . . , Put } (with t ∈ N0) such that

Pu1 < Pu2 < · · · < Put
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holds, then we can set

P vs =

{
pvi Pus = pui for some i ∈ {1, 2, . . . , r}
qvj Pus = quj for some j ∈ {1, 2, . . . , l}

for s = 1, 2, . . . , t and get

P v1 < P v2 < · · · < P vt .

These positions yield factorizations u = u0c1u1c2u2 . . . ctut and v = v0c1v1c2
v2 . . . ctvt such that cs ∈ {ai, bj | i = 1, 2, . . . , r, j = 1, 2, . . . , l} and Pws denotes
the position of cs in w ∈ {u, v} for s = 1, 2, . . . , t. To apply induction, we are
going to show us ≡WI

m−1,n′ vs for all s = 1, 2, . . . , t next.
To simplify notation, we say “Ps is an R-position” for any s ∈ {1, 2, . . . , t} if

Pus = pui for some i ∈ {1, 2, . . . , r} (or, equivalently, if P vs = pvi for some i) and
we say “Ps is an L-position” if Pus = quj for some j ∈ {1, 2, . . . , l} (or, equivalently
again, if P vs = qvj for some j). Note that this definition is not exclusive, i. e. there
can be a position which is both, an R-position and an L-position.

Next, we consider the corner cases of u0/v0 and ut/vt. If P1 is an R position,
we have c1 = a1 and

u0 = u ·XL
a1 as well as v0 = v ·XL

a1 ,

which yields u0 ≡WI
m−1,n′ v0 by definition of ≡WI

m,n and because of c > 0. If P1 is
an L-position, we have c1 = b1 and

u0 = u · Y Lbl Y
L
bl−1

. . . Y Lb1 as well as

v0 = v · Y Lbl Y
L
bl−1

. . . Y Lb1 .

Because l < c, u0 ≡WI
m−1,n′ v0 holds also in this case. For ut and vt, we can apply

a symmetric argumentation.
Finally, we distinguish four cases for a fixed s ∈ {1, 2, . . . , t − 1}. If Ps and

Ps+1 are both R-positions, then we have cs = ai and cs+1 = ai+1 for some
i ∈ {1, 2, . . . , r} and also

us = u ·XR
a1X

R
a2 . . . X

R
aiX

L
ai+1

as well as

vs = v ·XR
a1X

R
a2 . . . X

R
aiX

L
ai+1

.

By definition of ≡WI
m,n, because of i + 1 ≤ c, we thus have us ≡WI

m−1,n′ vs. A
symmetric argument applies if both, Ps and Ps+1, are L-positions. If Ps is an
R-position but Ps+1 is an L-position, then cs = ai for some i ∈ {1, 2, . . . , r} and
cs+1 = bj for some j ∈ {1, 2, . . . , l}, which yields

us = u ·XR
a1X

R
a2 . . . X

R
aiY

L
bj Y

L
bl−1

. . . XL
bj as well as

vs = v ·XR
a1X

R
a2 . . . X

R
aiY

L
bj Y

L
bl−1

. . . XL
bj .
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Therefore, we have us ≡WI
m−1,n′ vs because of the definition of ≡WI

m,n and n− i−
(l − j + 1) = n′ + c − (i + 1 + l) + j ≥ n′ + c − c + 0 = n′. The fourth case is
the most interesting: if Ps is an L-but not an R-position while Ps+1 is an R but
not an L-position, then cs = bj for some j ∈ {1, 2, . . . , l} and cs+1 = ai for some
i ∈ {1, 2, . . . , r}. Additionally, we have pwi−1 < Pws = qwj < Pws+1 = pwi < qj+1 for
w = u and for w = v. We define

ũ = u ·XR
a1X

R
a2 . . . X

R
ai−1

Y Lbl Y
L
bl−1

. . . Y Lbj+1
as well as

ṽ = v ·XR
a1X

R
a2 . . . X

R
ai−1

Y Lbl Y
L
bl−1

. . . Y Lbj+1

(we consider the X-blocks as empty – meaning that we do not factorize – if i = 1
and the Y -blocks as empty if j = l). We have ũ ≡WI

m,n−(i−1)−(l−j) ṽ. Because of
n − (i − 1) − (l − j) = n′ + c − (i + l) + j + 1 ≥ n′ + c − (r + l) + 1 ≥ n′ + 1,
us = ũ ·Cai,bj , vs = ṽ ·Cai,bj and the definition of ≡WI

m,n, we have us ≡WI
m−1,n′ vs.

We have shown us ≡m−1,n′ vs for all s = 1, 2, . . . , t and, by induction,
therefore, know that ϕ(us) ≈ ϕ(vs), i. e. for a fixed s ∈ {1, 2, . . . , t}, there are
w1, w2, . . . , wk ∈ Σ∗ such that

ϕ(us) = ϕ(w1) ∼K ϕ(w2) ∼D · · · ∼K ϕ(wk−1) ∼D ϕ(wk) = ϕ(vs)

holds.
Remember that we substituted M by M × 2Σ so that we can assume ϕ(u) =

ϕ(v) ⇒ alph(u) = alph(v) for all u, v ∈ Σ∗. We can extend this implication: if
we have ϕ(u) ∼K ϕ(v) for two u, v ∈ Σ∗, then we trivially have ϕ(u)M !ϕ(u) R
ϕ(u)M ! and, by definition of ∼K also ϕ(u)M !ϕ(u) = ϕ(u)M !ϕ(v). Therefore, we
have alph(u) = alph(u)∪alph(v) by the implication stated above. By symmetry,
we, thus, have alph(u) = alph(v). Since we can apply a similar argumentation
for ∼D, we have ϕ(u) ∼K ϕ(v) or ϕ(u) ∼D ϕ(v) ⇒ alph(u) = alph(v) for all
u, v ∈ Σ∗. This yields alph(us) = alph(w1) = alph(w2) = · · · = alph(wk) =
alph(vs).

Since the factorizations u = u0c1u1c2u2 . . . ctut and v = v0c1v1c2v2 . . . ctvt
are subfactorizations from the R-factorization of u and the L-factorization of v,
there are xs, ys ∈M with

ϕ(u0c1u1c2u2 . . . cs) = ϕ(u0c1u1c2u2 . . . csus)xs and
ϕ(cs+1vs+1cs+2vs+2 . . . ctvt) = ysϕ(vscs+1vs+1cs+2vs+2 . . . ctvt).

Because of alph(us) = alph(wi) for all i ∈ {1, 2, . . . , k} and by Lemma 2,

(ϕ(us)xs)
M ! R (ϕ(us)xs)

M !
ϕ(us) implies (ϕ(us)xs)

M ! R (ϕ(us)xs)
M !
ϕ(wi).

Similarly, we have
(ysϕ(vs))

M ! L ϕ(wi) (ysϕ(vs))
M !

for all i ∈ {1, 2, . . . , k}. For wi ∼K wi+1, this implies

(ϕ(us)xs)
M !
ϕ(wi) = (ϕ(us)xs)

M !
ϕ(wi+1)
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and
ϕ(wi) (ysϕ(vs))

M !
= ϕ(wi+1) (ysϕ(vs))

M !

for wi ∼D wi+1. In either case, we have

(ϕ(us)xs)
M !
ϕ(wi) (ysϕ(vs))

M !
= (ϕ(us)xs)

M !
ϕ(wi+1) (ysϕ(vs))

M ! ,

which yields for any i ∈ {1, 2, . . . , k − 1}:

ϕ(u0c1u1c2u2 . . . cswics+1vs+1cs+2vs+2 . . . ctvt)

= ϕ(u0c1u1c2u2 . . . cs) (ϕ(us)xs)
M !
ϕ(wi) (ysϕ(vs))

M !
ϕ(cs+1vs+1cs+2vs+2 . . . ctvt)

= ϕ(u0c1u1c2u2 . . . cs) (ϕ(us)xs)
M !
ϕ(wi+1) (ysϕ(vs))

M !
ϕ(cs+1vs+1cs+2vs+2 . . . ctvt)

= ϕ(u0c1u1c2u2 . . . cswi+1cs+1vs+1cs+2vs+2 . . . ctvt)

So, we can substitute wi by wi+1 and, therefore, also ui by vi, i. e. we have

ϕ(u0c1u1c2u2 . . . csuscs+1vs+1cs+2vs+2 . . . ctut)

= ϕ(u0c1u1c2u2 . . . csvscs+1vs+1cs+2vs+2 . . . ctvt).

Consecutively applying the former equation for s = t, then for s = t− 1 and so
on yields

ϕ(u) = ϕ(u0c1u1c2u2 . . . ct−1ut−1ctut)

= ϕ(u0c1u1c2u2 . . . ct−1ut−1ctvt)

= ϕ(u0c1u1c2u2 . . . ct−1vt−1ctvt)

...
= ϕ(v0c1v1c2v2 . . . ct−1vt−1ctvt)

= ϕ(v),

which concludes the proof. ut

It remains to show the other direction, stated in the next theorem.

Theorem 7. Let m,n ∈ N. Then:

– Σ∗/≡Xm,n ∈ Rm

– Σ∗/≡Ym,n ∈ Lm

– Σ∗/≡Rm,n ∈ Rm ∨ Lm

– Σ∗/≡WI
m,n ∈ Rm+1 ∩ Lm+1

Proof (Sketch of Proof). To prove the theorem’s assertion one needs to show
that the equations from Lemma 3 hold in the respective monoid. To do this, it
is worthwhile to make an observation: choose m,n ∈ N and Z ∈ {X,Y,R,WI}
arbitrarily and let M = Σ∗/≡Zm,n. The observation is that an equation α = β

holds in M if and only if σ (JαKn·M !) ≡Zm,n σ (JβKn·M !) holds for all assignments
σ : Γ → Σ∗ where Γ is the alphabet of α and β (i. e. the set of variables
appearing in α and β).
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Proving the equations from Lemma 3 now boils down to an outer induction
overm and an inner induction over n. We will only give a sketch of this induction.

For Rm+1 ∩ Lm+1, it suffices to show that σ (JUmKn·M !) ≡WI
m,n σ (JVmKn·M !)

holds for all assignments σ : Σm → Σ∗. Indeed, we can show this assertion for
≡Zm,n with Z ∈ {X,Y,R,WI} arbitrarily. For m = 1, we have

U1 = (sx1)πs(y1t)
π and V1 = (sx1)πt(y1t)

π.

Let u = σ (JU1Kn·M !) and v = σ (JV1Kn·M !). First, assume Z = X. We are only
interested in at most n consecutive simultaneous XR

Σ factorizations of u and v
because, as soon as we apply at least one XL

Σ factorization, we know that ≡X0,n
holds. As long as we apply only factorizations XR

a with a ∈ alph(σ(sx1)), the
factorization position stays in the (sx1)π part of u and v. Since the number of
remaining factorizations decreases, the right parts will eventually be in relation
under ≡Xm,0. If there is at least one XR

a factorization in the sequence where a
is in alph(σ(y1t)) \ alph(σ(sx1)), the right side of u belongs to the (y1t)

π part
and the right side of v belongs to the t(y1t)

π part; but in both words there are
still at least n−1 instance of σ(y1t), which implies that the right sides are equal
under ≡Xm,n−1. For Z = Y , the argumentation is symmetric, which also handles
the Z = R case. The additional Ca,b of Z = WI needs no special handling since
it decreases the first index of ≡WI

m,n to m− 1 = 0 anyway.
To conclude the induction, we show σ (JUm+1Kn·M !) ≡Zm+1,n σ (JVm+1Kn·M !)

next. Since, by induction, σ (JUmKn·M !) ≡Z
′

m,n σ (JVmKn·M !) holds for all Z ′ ∈
{X,Y,R,WI} and since ≡Z′m,n is a congruence, we have σ (JUm+1Kn·M !) ≡Z

′

m,n

σ (JVm+1Kn·M !) for all Z ′ ∈ {X,Y,R,WI}. Therefore, we do not need to consider
factorizations of the form XL

a , Y Ra or Ca,b any further. Neither do we need to
consider Y La factorizations due to symmetry. If we apply a sequence of XR

Σ fac-
torization, then two situations can emerge: first, all of the factorization positions
can belong to the (Umxm+1)π part. In that case, we are done since that part is
identical in Um+1 and in Vm+1 and since in the end the number of remaining
possible factorizations is 0. In the second case, there is a factorization position
which belongs to the (ym+1Um)π part. In this case, we are done as well, as
the remaining right side of the factorization is identical in Um+1 and in Vm+1.
Note, that no factorization position can belong to the Um or Vm part in the
middle: this is the case because xm+1, ym+1 6∈ alph (σ (JUmKn·M !)) and because
any other letter from Σm appears at least n times in (J(Umxm+1)πKn·M !) and
in (J(ym+1Um)πKn·M !). This establishes σ (JUmKn·M !) ≡Zm,n σ (JVmKn·M !) for all
m,n ∈ N and Z ∈ {X,Y,R,WI} and, thus, M/≡WI

m,n ∈ Rm+1 ∩ Lm+1.
Showing

σ (J(Umxm+1)
π
UmKn·M !) ≡Xm+1,n σ (J(Umxm+1)

π
VmKn·M !)

and
σ (JUm (Umym+1)

πKn·M !) ≡Ym+1,n σ (VmJ(Umym+1)
πKn·M !)

can be done using similar argumentation, which proves M/≡Xm,n ∈ Rm and
M/≡Ym,n ∈ Lm.
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To prove that M/≡Rm,n is in Rm ∨ Lm, one can recycle an observation from
the proof of Theorem 6: a monoid is in the join V ∨W of two varieties V and
W if and only if it is a divisor of a direct product M1 ×M2 such that M1 ∈ V
and M2 ∈ W. Indeed, for any two congruences C1 and C2 over a monoid N ,
N/ (C1 ∩ C2) is a divisor of N/C1 × N/C2 (as can be shown easily). Therefore,
M/≡Rm,n is a divisor of the direct product ofM/≡Xm,n ∈ Rm andM/≡Ym,n ∈ Lm.

ut

Proof for Theorem 1

To prove Theorem 1, we need the following technical lemmas.

Lemma 4. Let m ∈ N0, Z ∈ {X,Y,R,WI} and let u and v be words over Σ.
Then:

u ≡Zm,n v ⇒ ∀0 ≤ k ≤ n : uk ≡Zm,k vω+ω∗

Proof. The case m = 0 is trivial. Therefore, let m > 0 and continue by induction
over k. Again, the case k = 0 is trivial. To complete the induction, it remains
to show that uuk ≡Zm,k+1 vω+ω∗ holds for k < n. Obviously, alph(uk+1) =

alph
(
vω+ω∗

)
is satisfied by assumption. Now assume Z = X. The assumption

u ≡Xm,n v implies u ≡Ym−1,n−1 v. By induction onm, this yields uk ≡Ym−1,k v
ω+ω∗

and u ≡Ym−1,k v. Because ≡Ym−1,k is a congruence, this shows uuk ≡Ym−1,k v
ω+ω∗ .

Let a ∈ alph(u) = alph(v). If factorization on the first a in u and v yields
u = u0au1 and v = v0av1, then such a factorization on uuk and vω+ω∗ yields
uuk = u0au1u

k and vω+ω∗ = vvω+ω∗ = v0av1v
ω+ω∗ . The assumption u ≡Xm,n v

implies u0 ≡Ym−1,k v0 and u1 ≡Xm,k v1. The latter yields u1u
k ≡Xm,k v1v

ω+ω∗

because ≡Xm,k is a congruence and uk ≡Xm,k vω+ω∗ holds by induction on k.
The case for Z = Y is symmetric and the case for Z = R follows directly.

Finally, for Z = WI the argumentation is analogous because there clearly are
no letters a, b ∈ Σ which yield a factorization vω+ω∗ = v0bv1av2 with a 6∈
alph(v0bv1) and b 6∈ alph(v1av2). ut

Lemma 5. Let m,n ∈ N0, Z ∈ {X,Y,R,WI} and let γ be a π-term. Then

JγKk ≡Zm,n JγKω+ω∗

holds for all k ∈ N0 with k ≥ n.

Proof. The cases for m = 0 or n = 0 are trivial. Thus, assume m > 0 and n > 0.
If γ = ε or γ = a for an a ∈ Σ, then JγKk = γ = JγKω+ω∗ . If γ = αβ for two
π-terms α and β, then by induction JαKk ≡Zm,n JαKω+ω∗ and JβKk ≡Zm,n JβKω+ω∗

hold. As ≡Zm,n is a congruence, this implies JγKk ≡Zm,n JγKω+ω∗ .
Finally, let γ = (α)π for a π-term α. It remains to show that JαKkk ≡Zm,n

JαKω+ω∗

ω+ω∗ . Clearly, the alphabetic condition is satisfied and, by induction, JαKk
≡Zm,n JαKω+ω∗ holds. For Z = X, let a ∈ alph(α). Then there are factorizations
JαKk = u0au1 and JαKω+ω∗ = v0av1 with a 6∈ alph(u0)∪alph(v0). This yields the
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factorizations JαKkk = u0au1JαKk−1
k and JαKω+ω∗

ω+ω∗ = v0av1JαKω+ω∗

ω+ω∗ . By induction,
we have u0au1 = JαKk ≡Xm,n JαKω+ω∗ = v0av1. This yields u0 ≡Ym−1,n−1 v0 and
u1 ≡Xm,n−1 v1. Therefore, if we show JαKk−1

k ≡Xm,n−1 JαKω+ω∗

ω+ω∗ , then we are done
with this case. For that, write k − 1 = k′ + n− 1 for a k′ ∈ N0 and then

JαKk−1
k = JαKk

′

k JαKn−1
k and

JαKω+ω∗

ω+ω∗ = JαKk
′

ω+ω∗JαKω+ω∗

ω+ω∗ .

Because ≡Xm,n−1 is a congruence and by Lemma 4, this concludes the proof
for Z = X. The case for Z = Y is symmetric, which also shows the case for
Z = R. For Z = WI, the only remaining case is that in which there are a, b ∈ Σ
which yield factorizations JαKkk = u0bu1au2 and JαKω+ω∗

ω+ω∗ = v0bv1av2 with a 6∈
alph(u0bu1) ∪ alph(v0bv1) and b 6∈ alph(u1au2) ∪ alph(v1av2). Clearly, this can
only happen for k = 1 ≥ n > 0, which is equivalent to n = 1. Therefore, one
may apply Lemma 4. ut

Proof (for Theorem 1). The proof is structurally identical for all stated varieties.
Therefore, we limit our discussion to Rm.

First, let JαKω+ω∗ ≡Xm JβKω+ω∗ . Choose a monoid M ∈ Rm and an assign-
ment for variables σ : Σ∗ → M . By Theorem 6, there is an n ∈ N such that
u ≡Xm,n v implies σ(u) = σ(v) for any two words u, v ∈ Σ∗. Now, choose c ∈ N
with M ! · c ≥ n. Then by assumption and Lemma 5, we have

Σ∗ 3 JαKM !·c ≡Xm,n JαKω+ω∗ ≡Xm,n JβKω+ω∗ ≡Xm,n JβKM !·c ∈ Σ∗

and, therefore, σ(JαKM !) = σ(JαKM !·c) = σ(JβKM !·c) = σ(JβKM !), which is equiv-
alent to α = β holding in M .

Now, let JαKω+ω∗ 6≡Xm JβKω+ω∗ , which implies that there is an n ∈ N such
that JαKω+ω∗ 6≡Xm,n JβKω+ω∗ . Define M := Σ∗/≡Xm,n, which is in Rm according
to Theorem 7, and choose c ∈ N such that M ! · c ≥ n. Then, by assumption and
Lemma 5, we have

Σ∗ 3 JαKM !·c ≡Xm,n JαKω+ω∗ 6≡Xm,n JβKω+ω∗ ≡Xm,n JβKM !·c ∈ Σ∗.

As assignment of variables σ : Σ∗ → M choose the canonical projection. This
yields σ(JαKM !) = σ(JαKM !·c) 6= σ(JβKM !·c) = σ(JβKM !), which means that α = β
does not hold in M . ut

More on Decidability

We start by giving a formal definition of normalizable pairs.

Definition 2. Let γ be a π-term and let w = JγKω+ω∗ . A pair (l, r) of positions
in w such that l is strictly smaller than r is called normalizable (with respect to
γ) based on the following rules:

– Any pair is normalizable with respect to γ = ε or γ = a for an a ∈ Σ.
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– (−∞,+∞) is normalizable with respect to any π-term.
– If γ = αβ for π-terms α and β, l ∈ dom(JαKω+ω∗) ] {−∞} and r ∈

dom(JβKω+ω∗)]{+∞}, then (l, r) is normalizable with respect to γ if (l,+∞)
is with respect to α and (−∞, r) is with respect to β.

– If γ = αβ for π-terms α and β and l ∈ dom(JαKω+ω∗)]{−∞} as well as r ∈
dom(JαKω+ω∗) (or l ∈ dom(JβKω+ω∗) as well as r ∈ dom(JβKω+ω∗)]{+∞}),
then (l, r) is normalizable with respect to γ if it is with respect to α (or β,
respectively).

– If γ = (α)π for a π-term α, l = (l′, n) for l′ ∈ dom(JαKω+ω∗) and n ∈ N]−N
and r = +∞, then (l, r) is normalizable with respect to γ if (l′,+∞) is with
respect to α and n is in N ] {−1}.

– If γ = (α)π for a π-term α, l = −∞, and r = (r′,m) for r′ ∈ dom(JαKω+ω∗)
and m ∈ N ] −N, then (l, r) is normalizable with respect to γ if (−∞, r′) is
with respect to α and m is in {1} ] −N.

– If γ = (α)π for a π-term α, l = (l′, n) for l′ ∈ dom(JαKω+ω∗) and n ∈ N]−N
and r = (r′,m) for r′ ∈ dom(JαKω+ω∗) and m ∈ N ] −N, then (l, r) is
normalizable with respect to γ if
• n ∈ N, m ∈ −N and (l′,+∞) and (−∞, r′) are normalizable with respect
to α,
• n,m ∈ N or n,m ∈ −N and in both cases m = n and (l′, r′) is normal-
izable with respect to α, or
• n,m ∈ N or n,m ∈ −N and in both cases m = n + 1 and (l′,+∞) and

(−∞, r′) are normalizable with respect to α.

Next, we formally prove that, in fact, our observations from above hold for
all positions which can be reached by consecutive factorization at the first/last
a, i. e. that all these pairs are normalizable. We extend our notation: we write
(l, r)·ZDa for the pair of positions (l, r) ∈ ({−∞} ] dom(w))×(dom(w) ] {+∞})
in w and mean the pair of positions (l′, r′) such that w(l′,r′) = w(l,r) · ZDa (for
Z ∈ {X,Y } and D ∈ {L,R}). We also use this notation with Ca,b.

Lemma 6. Let γ be a π-term and let w = JγKω+ω∗ . Additionally, let (l, r) be a
normalizable pair of positions in w. Then the pairs

(l, r) ·XL
a , (l, r) ·XR

a , (l, r) · Y La and (l, r) · Y Ra

are normalizable with respect to γ for any a ∈ alph(w(l,r)).
Therefore, (−∞,+∞) · F1F2 . . . Fn is normalizable with respect to γ for any

F1, F2, . . . , Fn ∈ {XL
a , X

R
a , Y

L
a , Y

R
a , Ca,b | a, b ∈ Σ} (if it is defined).

Proof. As the cases for Y La and Y Ra are symmetrical, we only show those for XL
a

and XR
a . Let p = Xa(w; l) for an a ∈ alph(w(l,r)). Clearly, we have l <µ p <µ r,

where µ is the order type of w, and we need to show that (l, p) and (p, r) are
normalizable. For this, we proceed by induction on the structure of γ. The base
case γ = ε or γ ∈ Σ is trivial.

Case 1. γ = αβ Define u = JαKω+ω∗ and v = JβKω+ω∗ . For l ∈ dom(u) ] {−∞}
and r ∈ dom(u) we have p ∈ dom(u) as well. Additionally, (l, r) needs to be
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normalizable with respect to α by the definition of normalizability and we can
apply induction. The same argument, but on β, works for l ∈ dom(v) and r ∈
dom(v) ] {+∞}. For l ∈ dom(u) ] {−∞} and r ∈ dom(v) ] {+∞} we know
that (l,+∞) is normalizable with respect to α and (−∞, r) is with respect to β
by the definition of normalizablity. If p ∈ dom(u), then (p,+∞) = (l,+∞) ·XR

a

and (l, p) = (l,+∞) · XL
a . Induction yields normalizability with respect to α

for both and, by the definition of normalizability, we have that (p, r) and (l, p)
are normalizable with respect to γ. For p ∈ dom(v), we can apply a similar
argument, as then (−∞, p) = (−∞,+∞) · XL

a and (p, r) = (−∞, r) · XR
a are

normalizable with respect to β.

Case 2. γ = (α)π Define u = JαKω+ω∗ and let p = (p′, k). If l = (l′, n) for
an n ∈ N ] −N and r = +∞, then, by the definition of normalizability, we
have that (l′,+∞) is normalizable with respect to α and n ∈ N ] {−1}. There
are two cases: for k = n ∈ N ] {−1} we know that p′ = Xa(u; l′) and, by
induction, that (l′, p′), (p′,+∞) are normalizable with respect to α. This yields
the normalizability with respect to γ of (l, p) and (p,+∞). For k = n + 1 we
know that n 6= −1 and, therefore, that n, k ∈ N. We also have p′ = Xa(u;−∞)
and, thus, that (−∞, p′) and (p′,+∞) are normalizable with respect to α by
induction. By definition, (p,+∞) and (l, p) are normalizable with respect to γ
then. Note that k cannot have any other value than n or n + 1 since otherwise
it could not be the smallest a-position to the right of l.

If l = −∞ and r = (r′,m), then k = 1, and p′ = Xa(u;−∞), which yields
(−∞, p′) = (−∞,+∞) · XL

a and (p′,+∞) = (−∞,+∞) · XR
a . By induction,

both of these pairs are normalizable with respect to α and, by definition of the
normalizability, (−∞, p) is normalizable with respect to γ. Furthermore in this
case, we know that (−∞, r′) is normalizable with respect to α ynd that m is in
{1}]−N. For m ∈ −N, this shows the normalizability with respect to γ of (p, r).
Form = 1, we have (p′, r′) = (−∞, r′)·XR

a and, by induction, its normalizability
with respect to α. This yields that (p, r) is normalizable with respect to γ.

If l = (l′, n) and r = (r′,m) for n ∈ N and m ∈ −N, we know that
(l′,+∞) and (−∞, r′) are normalizable with respect to α. For k = n ∈ N,
we also know that p′ = Xa(u; l′) and, therefore, that (l′, p′) = (l′,+∞) ·XL

a and
(p′,∞) = (l′,+∞)·XR

a are normalizable with respect to α by induction. Then, by
definition, (l, p) and (p, r) are normalizable with respect to γ. For k = n+ 1 ∈ N
we have that p′ = Xa(u;−∞) and, therefore, the normalizability with respect to
α of (−∞, p′) = (−∞,+∞) ·XL

a and (p′,+∞) = (−∞,+∞) ·XR
a by induction.

This yields the normalizability with respect to γ of (l, p) and (p, r).
Finally, if l = (l′, n) and r = (r′,m) for n,m ∈ N or n,m ∈ −N, we know that

0 ≤ m−n ≤ 1. Because pmust be in between l and r, n = m also implies n = m =
k and that p′ is in between l′ and r′ as well as p′ = Xa(u; l′). In that case, we have
that (l′, r′) and, by induction, also (l′, p′) = (l′, r′) ·XL

a and (p′, r′) = (l′, r′) ·XR
a

are normalizable with respect to α. This yields the normalizability with respect
to γ of (l, p) and (p, r). For m = n + 1, we know that (l′,+∞) and (−∞, r′)
are normalizable with respect to α. Moreover, there are only two cases: k = n
and k = m. In the former case, we have p′ = Xa(u; l′) and the normalizability
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with respect to α of (l′, p′) = (l′,−∞) · XL
a and (p′,+∞) = (l′,+∞) · XR

a by
induction, which yields the normalizability of (l, p) and (p, r) with respect to γ.
In the latter case, we have Xa(u;−∞) and the normalizability with respect to
α of (−∞, p′) = (−∞,+∞) ·XL

a and (p′, r′) = (−∞, r′) ·XR
a , which yields the

normalizability with respect to γ of (l, p) and (p, r).
ut

The formal definition of the normalization is as follows.

Definition 3. Let γ be a π-term, w = JγKω+ω∗ and (l, r) a normalizable pair of
positions in w. The normalized pair (l, r)

γ
= (l̄, r̄) with respect to γ is defined

recursively:

– For γ = ε or γ = a ∈ Σ define l̄ = l and r̄ = r.
– If γ = αβ for π-terms α and β, l ∈ dom(JαKω+ω∗) ] {−∞} and r ∈

dom(JβKω+ω∗) ] {+∞}, then define l̄ as the first component of (l,+∞)
α

and r̄ as the second component of (−∞, r)
β
.

– If γ = αβ for π-terms α and β and l ∈ dom(JαKω+ω∗)]{−∞} as well as r ∈
dom(JαKω+ω∗) (or l ∈ dom(JβKω+ω∗) as well as r ∈ dom(JβKω+ω∗)]{+∞}),
then define (l̄, r̄) = (l, r)

α
(or (l̄, r̄) = (l, r)

β
, respectively).

– If γ = (α)π for a π-term α, then:
• if l = −∞, define l̄ = −∞,
• if r = +∞, define r̄ = +∞,
• if l = (l′, n) and r = +∞, define l̄ = (l̄′, n̄) with l̄′ given by the first
component of (l′,+∞)

α
and n̄ given by

n̄ =

{
1 if n ∈ N
−1 if n = −1,

• if l = −∞ and r = (r′,m), define r̄ = (r̄′, m̄) with r̄′ given by the second
component of (−∞, r′)

α
and m̄ given by

m̄ =

{
1 if n = 1

−1 if n ∈ −N,

• if l = (l′, n) and r = (r′,m) with n ∈ N and m ∈ −N, define l̄ = (l̄′, 1)

with l̄′ being by the first component of (l′,+∞)
α
and define r̄ = (r̄′,−1)

with r̄′ given by the second component of (−∞, r′)
α
,

• if l = (l′, n) and r = (r′,m) with n = m, define l̄ = (l̄′, n̄) and r̄ = (r̄′, m̄)

with (l̄′, r̄′) = (l′, r′)
α
and n̄ = m̄ = 1, and

• if l = (l′, n) and r = (r′,m) with m = n + 1, define l̄ = (l̄′, n̄) and
r̄ = (r̄′, m̄) with l̄′ given by the first component of (l′,+∞)

α
, r̄′ given by

the second component of (−∞, r′)
α
, n̄ = 1 and m̄ = n̄+ 1 = 2.

We proceed by a formal proof of the normalization not changing the described
factor:
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Lemma 7. Let γ be a π-term, w = JγKω+ω∗ and (l, r) ∈ P̄ (γ). Then

w(l,r) = w
(l,r)

γ

holds.

Proof. Define (l, r)
γ

= (l̄, r̄) and proceed by induction on the structure of γ. The
base cases for γ = ε and γ ∈ Σ are trivial.

If γ = αβ for π-terms α and β, then define u = JαKω+ω∗ and v = JβKω+ω∗ . If
l ∈ dom(u) ] {−∞} and r ∈ dom(v) ] {+∞}, then

w(l,r) = u(l,+∞)v(−∞,r) = u
(l,+∞)

αv
(−∞,r)β = w

(l,r)
γ .

If l ∈ dom(u) ] {−∞} and r ∈ dom(u), then

w(l,r) = u(l,r) = u
(l,r)

α = w
(l,r)

γ .

The case l ∈ dom(v) and r ∈ dom(v) ] {+∞} is symmetrical.
If γ = (α)π for a π-term α, then define u = JαKω+ω∗ . The case l = −∞ and

r = +∞ is trivial. If l = (l′, n) for an n ∈ N ] −N and r = +∞, define l̄′ by
(l′,+∞)

α
= (l̄′,+∞). For n ∈ N we then have

w(l,r) = w((l′,n),+∞) =
(
uω+ω∗

)
((l′,n),+∞)

=
(
uω+ω∗

)
((l′,1),+∞)

because of uω+ω∗ = uuω+ω∗ and further

w(l,r) = u(l′,+∞)u
ω+ω∗ = u

(l′,+∞)
αuω+ω∗ = u(l̄′,+∞)u

ω+ω∗

=
(
uω+ω∗

)
((l̄′,1),+∞)

= w
((l′,n),+∞)

γ = w
(l,r)

γ

and for n = −1 – the only remaining case – we have

w(l,r) = w((l′,−1),+∞) = u(l′,+∞) = u
(l′,+∞)

α = u(l̄′,+∞) = w((l̄′,−1),+∞) = w
(l,r)

γ .

The case for l = −∞ and r = (r′,m) is symmetrical.
Therefore, we can assume l = (l′, n) and r = (r′,m). The case n ∈ N and

m ∈ −N is proved by a calculation similar to the one given above. For n = m
we have

w(l,r) = w((l′,n),(r′,n)) = u(l′,r′) = u
(l′,r′)

α = w
(l,r)

γ

and for m = n+ 1 we have

w(l,r) = u(l′,+∞)u(−∞,r′) = u
(l′,∞)

αu
(−∞,r′)α = w

(l,r)
γ .

ut
These results allow us to prove Theorem 2 formally. Rather than giving more
details on the construction of the automata described in the main paper’s proof
sketch, we describe a direct algorithm.
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Theorem 2. The word problems for π-terms over Rm, Lm, Rm ∨ Lm and
Rm ∩Lm are decidable for any m ∈ N. Moreover, the word problem for π-terms
over DA is decidable.

Proof. We only describe the decision algorithm for Rm+1∩Lm+1, as the others
are similar. By Theorem 1, we need to test whether

u := JαKω+ω∗ ≡WI
m JβKω+ω∗ =: v

holds for the input π-terms α and β. For this, we have to perform consecutive
factorizations at the first or last a in the current factors of u and v while we keep
track of the remaining possible values of m. If at some point the factorization is
only possible in one of the two words, then we know that u 6≡WI

m v.
In more detail, we have the variables core and fringe which contain subsets

of P̄ (α) × P̄ (β) × {1, 2, . . . ,m}, where P̄ (α) (or P̄ (β)) is the set of all normal-
ized pairs of positions in u (or in v, respectively). Initially, core is empty and
fringe contains only ((−∞,+∞), (−∞,+∞),m); then we execute the following
algorithm:
while fringe 6= ∅ do

Remove ((lα, rα), (lβ , rβ), k) from fringe
if k > 0 then

for all a ∈ Σ do
if either (lα, rα) ·XL

a or (lβ , rβ) ·XL
a is defined (but not both) then

return u 6≡WI
m v . Alphabets of u(lα,rα) and v(lβ ,rβ) differ

else
Add ((lα, rα) ·XL

a

α
, (lβ , rβ) ·XL

a

β
, k − 1) to finge unless it

is in core . We must have u(lα,rα)·XLa ≡
WI
k−1 v(lβ ,rβ)·XLa

end if
if either (lα, rα) ·XR

a or (lβ , rβ) ·XR
a is defined (but not both) then

return u 6≡WI
m v

else
Add ((lα, rα) ·XR

a

α
, (lβ , rβ) ·XR

a

β
, k) to finge unless it is in

core . We must have u(lα,rα)·XRa ≡
WI
k v(lβ ,rβ)·XRa

end if
Handle Y La and Y Ra analogously
for all b ∈ Σ do

if either (lα, rα) ·Ca,b or (lβ , rβ) ·Ca,b is defined (not both) then
return u 6≡WI

m v
else

Add ((lα, rα) · Ca,b
α
, (lβ , rβ) · Ca,b

β
, k− 1) to finge unless it

is in core
. We must have u(lα,rα)·Ca,b ≡WI

k−1 v(lβ ,rβ)·Ca,b
end if

end for
end for

end if
Add ((lα, rα), (lβ , rβ), k) to core
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end while
return u ≡WI

m v

What the algorithm does is trying to guess a sequence of factorizations at
the first or last a such that the factorization can be applied to u but not to v
(or vice versa). Because normalization does not change the factor of the word
by Lemma 7, we can normalize the pair which describes the factor at any time.
Here, we perform a normalization before we add the pairs to fringe. For ≡WI

m ,
we are in the special situation that we can perform a factorization at the first a
and the last b in one step, which means that we only have to go to m−1 instead
of m− 2; this case has to be handled specially in the above algorithm.

By the definition of ≡WI
m , we can find a sequence of factorizations which can

be applied to u but not to v (or vice versa) if u 6≡WI
m v. The definition yields also

the other way: if u ≡WI
m v, then we can apply any sequence of factorizations at

the first/last a (which respects the value of m) to u if and only if we can apply
it to v. Which shows the correctness of the algorithm.

Termination is guaranteed because there are only finitely many pairs in P̄ (α)
and in P̄ (β).

The algorithm can be adapted for Rm, Lm and Rm ∨ Lm by changing the
way how we compute k for the next tuple accordingly. All we have to do for this is
keep track of whether the last factorization operation was in {XL

a , X
R
a | a ∈ Σ}

or in {Y La , Y Ra | a ∈ Σ} using an additional position in the tuple.
An algorithm for DA can be obtained by omitting the counting of k in the

algorithm for Rm ∨ Lm by Fact 2. ut

B More on Separability

First, we state the mentioned and proof the combinatoric property of ≡Xm,n.

Lemma 8. Let n,m ∈ N with m ≥ 2 and let u ≡Xm,n v for two words u and v.
Then, u ·XL

a ≡Xm,n−1 v ·XL
a holds for all a ∈ alph(u) = alph(v).

Proof. We prove the lemma by induction over n. For n = 1, the assertion is
satisfied by definition. Therefore, assume we have u ≡Xm,n+1 v and we want to
show u0 := u·XL

a ≡Xm,n v ·XL
a =: v0. We already have u0 ≡Ym−1,n v0 by definition

of ≡Xm,n+1. This especially implies alph(u0) = alph(v0) since we have m ≥ 2 and
n ≥ 1 as well as u0 ≡Ym−1,n−1 v0. Additionally, we have

u0 ·XL
b = u ·XL

b ≡Ym−1,n v ·XL
b = v0 ·XL

b

for all b ∈ alph(u0) = alph(v0), which implies u0 ·XL
b ≡Ym−1,n−1 v0 ·XL

b . All that
remains to be shown is that u0 ·XR

b ≡Xm,n−1 v0 ·XR
b holds for all b ∈ alph(u0) =

alph(v0). Applying induction on u · XR
b ≡Xm,n v · XR

b (for the same a) yields
u ·XR

b X
L
a ≡Xm,n−1 v ·XR

b X
L
a . Since we have u0 ·XR

b = u ·XL
aX

R
b = u ·XR

b X
L
a

and v0 ·XR
b = v ·XL

aX
R
b = v ·XR

b X
L
a , we are done. ut
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Next, we present the omitted proof for decidability of the separation problem
for the variety J of J -trivial monoids (m = 1). It is basically an adaption of the
ideas from the proof showing decidability given by van Rooijen and Zeitoun [26]
to our setting.

Lemma 9. Let M be a monoid and ϕ : Σ∗ →M a homomorphism. An infinite
sequence of word pairs (un, vn)n∈N0

with

– un, vn ∈ Σ∗,
– un ≡X1,n vn,

– ϕ(un) = mu and
– ϕ(vn) = mv

for fixed monoid elements mu,mv ∈ M and all n ∈ N0 yields π-terms α and β
(over Σ) such that ϕ (JαKM !) = mu, ϕ (JβKM !) = mv and JαKω+ω∗ ≡X1 JβKω+ω∗

hold.

Proof. This proof is based on Simon’s Factorization Forest Theorem [22]. For
a finite word w ∈ Σ∗, a factorization tree is a rooted, finite, unranked, labeled
ordered tree such that

– the tree’s root is labeled with w,
– the leaves are baled by letters (from Σ) and
– any internal node has at least two children and, if its children are labeled

with w1, w2, . . . , wk ∈ Σ∗, then the node is labeled with w1w2 . . . wk.

For every homomorphism ψ : Σ∗ → N into a monoid N , Simon’s Factorization
Forest Theorem yields a factorization tree for every finite word w ∈ Σ∗ such
that ψ maps the labels of a node’s children to the same idempotent in N if the
node has at least three children. Furthermore, the tree’s height18 is finite and
limited by some constant that solely depends on |N | (and, especially, not on w).

Before we begin with the actual proof, we note that, if we remove pairs from
the sequence (un, vn)n∈N0

and still have an infinite sequence, then the resulting
sequence still satisfies all conditions states above, especially un ≡X1,n vn.

We extend ϕ into a homomorphism Σ∗ →M × 2Σ which maps a word w to
its alphabet alph(w) for the second component.19 Then, we observe that there
has to be an infinite subsequence such that all first components as well as all
second components have the same alphabet20; we remove all other words from
the sequence. To the remaining words un and vn, we apply Simon’s Factorization
Forest Theorem, which yields a sequence of factorization tree pairs (Tu,n, Tv,n).
We first construct α from (Tu,n)n∈N0

such that we have ϕ(JαKM !) = mu and the
following conditions:

– If w ∈ Σ∗ is a subword21 of un for an n ∈ N0, then w is a subword of
JαKω+ω∗ .

18 A single node has height 0.
19 2Σ is the monoid of all subsets of Σ with taking union as the monoid’s operation.
20 Indeed, these two alphabets have to coincide by the definition of ≡X1,n
21 A finite word u = a1a2 . . . an with ai ∈ Σ is a subword of a (not necessarily finite)

word v if we can write v = v0a1v1a2v2 . . . anvn for some words v0, v1, . . . , vn.
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– If w ∈ Σ∗ is a subword of JαKω+ω∗ , then it is a subword of all un with n ≥ n0

for an n0 ∈ N0.

Afterwards, we proceed with (Tv,n)n∈N0 to construct β in the same manner.
We may assume that all trees Tu,n have the same height H as the height

is bounded by a constant and we can remove all words un from the underlying
sequence which yield a tree not of height H. If H is zero, all trees consist of a
single leaf and all words un consist of a single letter. Among these, one letter
a ∈ Σ has to appear infinitely often; we remove all other words from the sequence
and choose α = a. Clearly, all conditions for α are satisfied.

For H > 0, we consider the situation at the root of each Tu,n. Let un,1, un,2,
. . . , un,Kn be the labels of the root’s children in Tu,n. If the sequence (Kn)n∈N0

is bounded, there is an infinite subsequence such that Kn is equal to a specific
K ≥ 2 for all n ∈ N0; we remove all words not belonging to this subsequence. Ad-
ditionally, there is an infinite subsequence such that, for each sequence (un,k)n∈N0

with 1 ≤ k ≤ K, all un,k get mapped to the same monoid element by ϕ; we re-
move all other words. As each child of the root yields a subtree, taking these
subtrees gives K infinite sequences of factorization trees of height H−1. Apply-
ing induction on H, yields α1, α2, . . . , αK . We define α := α1α2 . . . αK . Because
α1, α2, . . . , αK satisfy the conditions stated above for their respective subtree
sequence, so does α for (Tu,n)n∈N0

.
If the sequence (Kn)n∈N0

is unbounded, we can, without loss of generality, as-
sume Kn ≥ 3 for all n ∈ N0 – again taking the appropriate infinite subsequence.
Also, we can assume that all un,1, un,2, . . . , un,Kn get mapped to the same idem-
potent e ∈ M × 2Σ . Choose w ∈ ϕ−1(e) arbitrarily and define α := (w)π. Note
that we now have alph(un,1) = alph(un,2) = · · · = alph(un,Kn) = alph(un) =
alph(w) for all n ∈ N0. Therefore, α satisfies the conditions above.

All which remains to be shown is that we now have JαKω+ω∗ ≡X1 JβKω+ω∗ .
The important observation here is that w1 ≡X1,n w2 with n ∈ N0 holds if and
only if w1 and w2 have the same subwords of length ≤ n. This means we have to
show that JαKω+ω∗ and JβKω+ω∗ have the same subwords (of arbitrary length).
To show the subword equality, assume w is a subword of JαKω+ω∗ (without loss
of generality). By the conditions above, w is a subwords of all un with n ≥ n0 for
an n0 ∈ N0. Let ñ = max{n0, |w|}. Since we have uñ ≡X1,ñ vñ and by applying
our observation regarding subwords and ≡X1,ñ, w is a subword of vñ and, thus, a
subword of JβKω+ω∗ . ut

Now, we prove the general case for m > 1.

Lemma 1. LetM be a monoid, ϕ : Σ∗ →M a homomorphism and m ∈ N0. Let
(un, vn)n∈N0

be an infinite sequence of word pairs (un, vn)n∈N0
with un, vn ∈ Σ∗,

un ≡Xm,n vn, ϕ(un) = mu and ϕ(vn) = mv for fixed monoid elements mu,mv ∈
M and all n ∈ N0. Then, the sequence yields π-terms α and β (over Σ) such
that ϕ (JαKM !) = mu, ϕ (JβKM !) = mv and JαKω+ω∗ ≡Xm JβKω+ω∗ hold.

Proof. The assertion is trivial for m = 0. The case m = 1 is covered by the
previous lemma. For m ≥ 1, we proceed by induction over |Σ|. For Σ = ∅, we
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set α = β = ε = un = vn. For |Σ| > 0, we start by making an observation: if
we take an infinite subsequence (u′n, v

′
n)n∈N0

of (un, vn)n∈N0
, this sequence still

satisfies all conditions of the lemma. In particular, we would still have u′n ≡Xm,n v′n
for all n ∈ N0.

Now, we factorize un = wn,0an,0wn,1an,1 . . . wn,Knan,Knwn,Kn+1 for all n ∈
N0 such that alph(wn,k) = alph(un) \ {an,k} for all k ∈ {0, 1, . . . ,Kn} and
alph(wn,Kn) ( alph(un). If the sequence (Kn)n∈N0

is bounded, let K be one
of the numbers which appear infinitely often in it. If (Kn)n∈N0

is unbounded,
let K = |M |2 + 1. In either case, restrict all further considerations to the
subsequence of word pairs corresponding to K. Because Σ is of finite size, a
single letter ak ∈ Σ has to appear infinitely often in the sequence (an,k)n∈N0

for all k ∈ {0, 1, . . . ,K}. We restrict our consideration to the appropriate sub-
sequence. Then, we define xn,k = un · XR

a0X
R
a1 . . . X

R
ak−1

XL
ak

and yn,k = vn ·
XR
a0X

R
a1 . . . X

R
ak−1

XL
ak

for k ∈ {0, 1, . . . ,K} as well as xn,K+1 = un ·XR
a0X

R
a1 . . .

XR
aK and yn,K+1 = vn·XR

a0X
R
a1 . . . X

R
aK . We, thus, have un = xn,0a0xn,1a1 . . . xn,K

aKxn,K+1 and vn = yn,0a0yn,1a1 . . . yn,KaKyn,K+1 for all n ∈ N0. Because K
is constant, we can safely assume that ϕ maps all elements of the sequence
(xn,k)n∈N0

(for every k ∈ {0, 1, . . . ,K}) to the same element sk ∈ M : one ele-
ment has to appear infinitely often and we take the appropriate subsequence. In
the same way, we can ensure that ϕ maps all element of (yn,k)nN0 to the same
element tk ∈ M (again, for all k ∈ {0, 1, . . . ,K}). By removing the first K + 2
pairs of words, we can also ensure un ≡Xm,n+K+2 vn for all n ∈ N0. This implies
xn,k ≡Xm,n+K+2−k−2 yn,k for all n ∈ N0 and all k ∈ {0, 1, . . . ,K} by Lemma 8. Di-
rectly by the definition of ≡Xm,n, we already have xn,K+1 ≡Xm,n+K+2−K−1 yn,K+1

and, therefore, xn,k ≡Xm,n yn,k for all k ∈ {0, 1, . . . ,K + 1}. We can apply in-
duction to (xn,k, yn,k)n∈N0

for k ∈ {0, 1, . . . ,K} since we have ak 6∈ alph(xn,k)
by construction. This yields π-terms α0, α1, . . . , αK , β0, β1, . . . , βK . If (Kn)n∈N0

was bounded, then alph(xn,K+1) = alph(yn,K+1) ( alph(un) = alph(vn) holds
and we can apply induction as well, which yields π-terms αK+1 and βK+1. Set-
ting α = α0a0α1a1 . . . αKaKαK+1 and β = β0a0β1a1 . . . βKaKβK+1 satisfies
JαKω+ω∗ ≡Xm JβKω+ω∗ since ≡Xm is a congruence. If (Kn)n∈N0

was unbounded, we
set K = |M |2 + 1 and, by the pigeon hole principle, there are i, j ∈ {0, 1, . . . ,K}
with i < j and

s0ϕ(a0)s1ϕ(a1) . . . siϕ(ai) = s0ϕ(a0)s1ϕ(a1) . . . sjϕ(aj) and
t0ϕ(a0)t1ϕ(a1) . . . tiϕ(ai) = t0ϕ(a0)t1ϕ(a1) . . . tjϕ(aj).

We define

α = α0a0α1a1 . . . αiai (αi+1ai+1αi+2ai+2 . . . αjaj)
π
αK+1 and

β = β0a0β1a1 . . . βiai (βi+1ai+1βi+2ai+2 . . . βjaj)
π
βK+1

where αK and βK are obtained by using induction on m (and symmetry) for
the sequences (xn,K+1)n∈N0

and (yn,K+1)n∈N0
. Thus, they map to the same

monoid element as the elements in their respective sequence. Therefore, we have
ϕ (JαKM !) = mu and ϕ (JβKM !) = mv by construction. We also have JαKω+ω∗ ≡Xm
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JβKω+ω∗ : for the part left to and including the (·)π, we have equivalence by
induction and because ≡Xm is a congruence; the right part, we cannot reach by
arbitrarily many Xa factorizations since any letter appears infinitely often in the
(·)π part and, if we reach it by using at least one Ya factorization, we are done
since m decreases. ut

This allows us to prove Theorem 5.

Theorem 5. The separation problem for Rm and Lm is decidable for all m ∈ N.

Proof. We only consider Rm as the case for Lm is symmetric. If the input lan-
guages are separable, we can find a separating language by enumerating all candi-
dates. If the languages are inseparable, we have to apply the previous lemma. As
regular languages, the input languages L1 ⊆ Σ∗ and L2 ⊆ Σ∗ can be recognized
by monoids M1 and M2 via the homomorphisms ϕ1 and ϕ2 and the homomor-
phism can be computed. Therefore, they are also be recognized byM := M1×M2

via the homomorphism ϕ which maps a word to a pair whose first component is
determined by ϕ1 and whose second component is determined by ϕ2. Let n ∈ N0

be arbitrary. Since we have Σ∗/≡Xm,n ∈ Rm and since L1 and L2 cannot be sep-
arated by Rm, there have to be finite words un, vn ∈ Σ∗ with un ∈ L1, vn ∈ L2

and un ≡Xm,n vn; otherwise, we could construct a separating language. The ho-
momorphism ϕ has to map infinitely many element of the sequence (un, vn)n∈N0

to the same element in M since M is finite. If we remove all other elements, we
still have an infinite sequence (un, vn)n∈N0

with un ≡Xm,n vn for all n ∈ N0 which
also satisfies all conditions of Lemma 1. Therefore, there are π-terms α and β
with JαKω+ω∗ ≡Xm JβKω+ω∗ , ϕ (JαKM !) ∈ ϕ(L1) and ϕ (JβKM !) ∈ ϕ(L2). Since we
can test whether JαKω+ω∗ ≡Xm JβKω+ω∗ holds for any two π-terms α and β using
the algorithm described in Section 4, we can also recursively enumerate all possi-
ble π-term pairs and check whether the conditions above are met. We know that
we can find such a pair if L1 and L2 are inseparable. On the other hand, sup-
pose L1 and L2 can be separated by S ⊆ Σ∗ which is recognized by the monoid
N ∈ Rm via a homomorphism ψ : Σ∗ → N and we have found a pair α and
β with JαKω+ω∗ ≡Xm JβKω+ω∗ , ϕ (JαKM !) ∈ ϕ(L1) and ϕ (JβKM !) ∈ ϕ(L2). Then,
we have ϕ (JαKN !·M !) = ϕ (JαKM !) ∈ ϕ(L1) and, thus, JαKN !·M ! ∈ L1 as well as
JβKN !·M ! ∈ L2 (by a similar argumentation). Also, α = β holds in Rm by Theo-
rem 1, which implies n := ψ (JαKN !·M !) = ψ (JαKN !) = ψ (JβKN !) = ψ (JβKN !·M !).
If we have n ∈ ψ(S), then we have JβKN !·M ! ∈ S ∩ L2; otherwise, we have
JαKN !·M ! ∈ L1 but JαKN !·M ! 6∈ S and, thus, a contradiction in either case. ut
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