
Noname manuscript No.
(will be inserted by the editor)

The Word Problem for Omega-Terms
over the Trotter-Weil Hierarchy

Manfred Kufleitner · Jan Philipp
Wächter

the date of receipt and acceptance should be inserted later

Abstract For two given ω-terms α and β, the word problem for ω-terms
over a variety V asks whether α = β in all monoids in V. We show that
the word problem for ω-terms over each level of the Trotter-Weil Hierarchy is
decidable. More precisely, for every fixed variety in the Trotter-Weil Hierarchy,
our approach yields an algorithm in nondeterministic logarithmic space (NL).
In addition, we provide deterministic polynomial time algorithms which are
more efficient than straightforward translations of the NL-algorithms. As an
application of our results, we show that separability by the so-called corners
of the Trotter-Weil Hierarchy is witnessed by ω-terms (this property is also
known as ω-reducibility). In particular, the separation problem for the corners
of the Trotter-Weil Hierarchy is decidable.

1 Introduction

Algebraic characterizations of classes of regular languages are interesting as
they often allow to decide the class’s membership problem. For example, by
Schützenberger’s famous theorem [23], one can decide whether a given regular
language is star-free by computing its syntactic monoid M and checking its
aperiodicity. The latter can be achieved by verifying x|M |! = x|M |!x for all
x ∈ M . This equation is also stated as xω = xωx since this notation is inde-
pendent of the monoid’s size. More formally, we can see the equation as a pair
of ω-terms: these are finite words built using letters, which are interpreted as
variables, concatenation and an additional formal ω-power. Checking an equa-
tion α = β in a finite monoid is easy: one can simply substitute each variable

The first author was supported by the German Research Foundation (DFG) under grants
DI 435/5-2 and KU 2716/1-1.

Institut für Formale Methoden der Informatik
University of Stuttgart, Germany
{kufleitner,jan-philipp.waechter}@fmi.uni-stuttgart.de

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Loughborough University Institutional Repository

https://core.ac.uk/display/288362271?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

by all elements of the monoid. For each substitution, this yields a monoid ele-
ment on the left hand side and one on the right hand side. The equation holds
if and only if they are always equal.

Often, the question whether an equation holds is not only interesting for
a single finite monoid but for a (possibly infinite) class of such monoids. For
example, one may ask whether all monoids in a certain class are aperiodic. This
is trivially decidable if the class is finite. But what if it is infinite? If the class
forms a variety (of finite monoids, sometimes also referred to as a pseudo-
variety), i. e. a class of finite monoids closed under (possibly empty) direct
products, submonoids and homomorphic images, then this problem is called
the variety’s word problem for ω-terms. Usually, the study of a variety’s word
problem for ω-terms also gives more insight into the variety’s structure, which
is interesting in its own right. McCammond showed that the word problem
for ω-terms of the variety A of aperiodic finite monoids is decidable [17]. The
problem was shown to be decidable in linear time for J, the class of J -trivial
finite monoids, by Almeida [3] and for R, the class of R-trivial monoids, by
Almeida and Zeitoun [4]. For the variety DA, Moura adapted and expanded
those ideas to show decidability in time O((nk)5) where n is the length of
the input ω-terms and k is the maximal nesting depth of the ω-power (which
can be linear in n) [18]. Remember that DA is the class of finite monoids
whose regular D-classes form aperiodic semigroups. This variety received a lot
of attention due to its many different characterizations; see e.g. [5,27]. Most
notably is its connection to two-variable first-order logic [28]. This logic is a
natural restriction of first-order logic over finite words, which in turn is the
logic characterization of A.

In this paper, we consider the word problem for ω-terms over the varieties
in the Trotter-Weil Hierarchy. It was introduced by Trotter and Weil [29] with
the idea of using the good understanding of the band varieties (cf. [7]) for
studying the lattice of sub-varieties of DA; bands are semigroups satisfying
x2 = x. The levels of this hierarchy exhaust DA. As it turns out, the Trotter-
Weil Hierarchy has tight connections to the quantifier alternation hierarchy
inside two-variable first-order logic [14]. In addition, many characterizations of
DA admit natural restrictions which allow climbing up this hiearchy (see [12]).

Please note that, in spite of this paper’s title, we will refer to ω-terms as π-
terms for most parts of the paper, the only exception being this introduction.
We follow this notation introduced by Perrin and Pin [19] to avoid notational
conflicts. Accordingly, we use π for the formal power in π-terms and speak of
the word problem for π-terms.

Results. In this paper, we present the following results.
– Our main tool for studying a variety V of the Trotter-Weil Hierarchy is

a family of finite index congruences ≡V,n for n ∈ N. These congruences
have the property that a monoid M is in V if and only if there exists n
for which M divides a quotient by ≡V,n. The congruences are not new but
they differ in some details from the ones usually found in the literature,

2

where they are introduced in terms of rankers [12,14,15]. Unfortunately,
these differences necessitate new proofs.

– We lift the combinatorics from finite words to ω-terms using the “linear
order approach” introduced by Huschenbett and the first author [10]. They
showed that, over varieties of aperiodic monoids, one can use the order
N+Z ·Q+ (−N) for the formal ω-power. In this paper, we use the simpler
order N + (−N). We show that two ω-terms α and β are equal in some
variety V of the Trotter-Weil Hierarchy if and only if JαKN+(−N) ≡V,n

JβKN+(−N) for all n ∈ N. Here, JαKN+(−N) denotes the generalized word
(i. e. the labeled linear order) obtained from replacing every occurrence of
the formal ω-power by the linear order N + (−N). Note that this order is
tailor-made for the Trotter-Weil Hierarchy and does not result from simple
arguments which work in any variety.

– We show that one can effectively check whether JαKN+(−N) ≡V,n JβKN+(−N)

for all n ∈ N.
– We further improve the algorithms and show that, for every variety V

of the Trotter-Weil Hierarchy, the word problem for ω-terms over V is
decidable in nondeterministic logarithmic space. The main difficulty is to
avoid some blow-up which (naively) is caused by the nesting depth of the
ω-power. For R, which appears in the hierarchy, this result is incomparable
to Almeida and Zeitoun’s linear time algorithm [4].

– We also introduce polynomial time algorithms, which are more efficient
than the direct translation of these NL algorithms.

– As an application, we prove that the separation problems for the so-called
corners of the Trotter-Weil Hierarchy are decidable by showing ω-reducibi-
lity. For J, we adapt the proof of van Rooijen and Zeitoun [30].

– With little additional effort, we also obtain all of the above results for DA,
the limit of the Trotter-Weil Hierarchy. The decidability of the separation
problem re-proves a result of Place, van Rooijen and Zeitoun [22]. The
algorithms for the word problem for ω-terms are more efficient than those
of Moura [18].

Separability of the join levels and the intersection levels is still open. We
conjecture that these problems can be solved with similar but more technical
reductions.

2 Preliminaries

Natural Numbers and Finite Words. Let N = {1, 2, . . . }, N0 = {0, 1, . . . } and
−N = {−1,−2, . . . }. For the rest of this paper, we fix a finite alphabet Σ. By
Σ∗, we denote the set of all finite words over the alphabet Σ, including the
empty word ε; Σ+ denotes Σ∗ \ {ε}.

Order Types. A linearly ordered set (P,≤P) consists of a (possibly infinite)
set P and a linear ordering relation ≤P of P , i. e. a reflexive, anti-symmetric,
transitive and total binary relation ≤P ⊆ P × P . To simplify notation we

3

define two special objects −∞ and +∞. The former is always smaller with
regard to ≤P than any element in P while the latter is always larger. We call
two linearly ordered sets (P,≤P) and (Q,≤Q) isomorphic if there is an order-
preserving bijection ϕ : P → Q. Isomorphism between linearly order sets is an
equivalence relation; its classes are called (linear) order types.

The sum of two linearly ordered sets (P,≤P) and (Q,≤Q) is (P]Q,≤P+Q)
where P]Q is the disjoint union of P and Q and ≤P+Q orders all elements of
P to be smaller than those of Q while it behaves as ≤P and ≤Q on elements
from their respective sets. Similarly, the product of (P,≤P) and (Q,≤Q) is
(P ×Q,≤P∗Q) where (p, q) ≤P∗Q (p̃, q̃) holds if and only if either q ≤Q q̃ and
q 6= q̃ or q = q̃ and p ≤P p̃ holds. Sum and product of linearly ordered sets
are compatible with taking the order type. This allows for writing µ + ν and
µ ∗ ν for order types µ and ν.

We re-use n ∈ N0 to denote the order type of ({1, 2, . . . , n},≤). One should
note that this use of natural numbers to denote order types does not result
in contradictions with sums and products: the usual calculation rules apply.
Besides finite linear order types, we need ω, the order type of (N,≤), and
its dual ω∗ the order type of (−N,≤). Another important order type in the
scope of this paper is ω + ω∗, whose underlying set is N] (−N). Note that,
here, natural numbers and the (strictly) negative numbers are ordered as
1, 2, 3, . . . , . . . ,−3,−2,−1; therefore, in this order type, we have for exam-
ple −1 ≥ω+ω∗ 1.

Generalized Words. Any finite word w = a1a2 . . . an of length n ∈ N0 with
ai ∈ Σ can be seen as a function which maps a position i ∈ {1, 2, . . . , n}
to the corresponding letter ai (or, possibly, the empty map). Therefore, it
is natural to denote the positions in a word w by dom(w). By relaxing the
requirement of dom(w) to be finite, one obtains the notion of generalized words:
a (generalized) word w over the alphabet Σ of order type µ is a function
w : dom(w) → Σ, where dom(w) is a linearly ordered set in µ. For dom(w),
we usually choose (N,≤), (−N,≤) and (N] (−N),≤ω+ω∗) as representative of
ω, ω∗ and ω + ω∗, respectively. The order type of a finite word of length n is
n.

Like finite words, generalized words can be concatenated, i. e. we write u
to the left of v and obtain uv. In that case, the order type of uv is the sum of
the order types of u and v. Beside concatenation, we can also take powers of
generalized words. Let w be a generalized word of order type µ which belongs
to (Pµ,≤µ) and let ν be an arbitrary order type belonging to (Pν ,≤ν). Then,
wν is a generalized word of order type µ ∗ ν which determines the ordering of
its letters; w maps (p1, p2) ∈ Pµ × Pν to w(p1). If ν = n for some n ∈ N, then
wν = wn is equal to the n-fold concatenation of w.

In this paper, the term word refers to a generalized word. If it is important
for a word to be finite, it is referred to explicitly as a finite word. As a coun-
terpart to the positions dom(w) in w, we define the set of letters appearing
in a word alph(w) as the image of w seen as a function. For example, for a

4

finite word w = a1a2 . . . an of length n ∈ N0 (with a1, a2, . . . , an ∈ Σ), we have
alph(w) = {a1, a2, . . . , an}.

We also introduce notation for factors of words. For a pair (l, r) ∈ ({−∞}]
dom(w)) × (dom(w)] {+∞}), define w(l,r) as the restriction of the word w
(seen as a mapping) to the set of positions (strictly) larger than l and (strictly)
smaller than r. Note that w = w(−∞,+∞) and w(l,r) = ε for any pair (l, r) with
no position between l and r.

Monoids, Divisors, Congruences and Recognition. In this paper, the termmon-
oid refers to a finite monoid (except when stated otherwise). It is well known
that, for any monoid M , there is a smallest number n ∈ N such that mn is
idempotent (i. e. m2n = mn) for every element m ∈ M ; this number is called
the exponent of M and shall be denoted by M ! = n.1 A monoid N is a divisor
of (another) monoid M , written as N ≺ M , if N is a homomorphic image of
a submonoid of M .

A congruence (relation) in a (not necessarily finite) monoidM is an equiv-
alence relation C ⊆M ×M such that x1 C x2 and y1 C y2 implies x1y1 C x2y2

for all x1, x2, y1, y2 ∈M . If M is a (possibly infinite) monoid and C ⊆M ×M
is a congruence, then the set of equivalence classes of C, denoted by M/C, is
a well-defined monoid (which might still be infinite), whose size is called the
index of C. For any two congruences C1 and C2, one can define their join C1∨C2
as the smallest congruence which includes C1 and C2; its index is at most as
large as the index of C1 and the index of C2.

A (possibly infinite) monoid M recognizes a language (of finite words)
L ⊆ Σ∗ if there is a homomorphism ϕ : Σ∗ → M with L = ϕ−1 (ϕ(L)). A
language is regular if and only if it is recognized by a finite monoid. It is well
known that there is a unique smallest monoid which recognizes a given regular
language: the syntactic monoid.

Green’s Relations. Among the most important tools for studying monoids are
Green’s Relations. Let x and y be elements of a monoid M . Define

x R y ⇔ xM = yM,

x L y ⇔ Mx = My and
x J y ⇔ MxM = MyM

where xM = {xm | m ∈M} is the right-ideal of x, Mx = {mx | m ∈M} its
left-ideal and MxM = {m1xm2 | m1,m2 ∈M} its (two-sided) ideal.

By simple calculation, one can see that x R y holds if and only if there are
z, z′ ∈ M such that xz = y and yz′ = x and, symmetrically, that x L y holds
if and only if there are z, z′ ∈M such that zx = y and z′y = x.

1 Note that all statements remain valid if one assumes that M ! is used to denote |M |!.

5

Varieties, π-Terms, Equations and Word Problem for π-terms. A variety (of
finite monoids) – sometimes also referred to as a pseudo-variety – is a class
of monoids which is closed under submonoids, homomorphic images and –
possibly empty – finite direct products. For example, the class R of R-trivial
monoids and the class L of L-trivial monoids both form a variety, see e.g. [20].
Clearly, if V and W are varieties, then so is V ∩W. For example, the class
J = R ∩ L is a variety; in fact, it is the variety of all J -trivial monoids. For
two varieties V and W, the smallest variety containing V ∪W, the so called
join, is denoted by V ∨W.

Many varieties can be defined in terms of equations (or identities). Because
it will be useful later, we take a more formal approach towards equations by
using π-terms2. A π-term is a finite word, built using letters, concatenation
and an additional formal π-power (and appropriate parentheses), whose π-
exponents act as a placeholder for a substitution value. Formally, every letter
a ∈ Σ is a π-term (over Σ). As a special case, also ε is a π-term. For two
π-terms α and β, their concatenation αβ is a π-term as well and, if γ is a
π-term, then so is (γ)π, where π is a formal exponent.

To state equations using π-terms, one needs to substitute the formal π-
exponents by actual values resulting in a word. We define JγKµ as the result
of substituting the π-exponents in γ by an order type µ, i. e. we have JεKµ =
ε, JaKµ = a for all a ∈ Σ, JαβKµ = JαKµJβKµ and J(γ)πKµ = (JγKµ)

µ. For
example3, we have

Ja ((b)πc)
πK3 = a ((bbb)c) ((bbb)c) ((bbb)c) .

An equation α = β consists of two π-terms α and β over the same alphabet
Σ, which, here, can be seen as a set of variables. A homomorphism σ : Σ∗ →M
is called an assignment of variables in this context. An equation α = β holds
in a monoid M if for every assignment of variables σ (JαKM !) = σ (JβKM !) is
satisfied. It holds in a variety V if it holds in all monoids in V. The word
problem for π-terms over a variety V is the problem to decide whether α = β
holds in V for the input π-terms α and β.

Mal’cev Products. Besides intersection and join, we need one more construc-
tions for varieties: the Mal’cev product, which is often defined using relational
morphisms. In this paper, we use a different, yet equivalent, approach based on
the congruences ∼K and ∼D, see [11] or [8, Corollary 4.3]. For their definition,
let x and y be elements of a monoid M and define

x ∼K y ⇔ ∀e ∈ E(S) : ex R e or ey R e ⇒ ex = ey

and x ∼D y ⇔ ∀e ∈ E(S) : xe L e or ye L e ⇒ xe = ye,

where E(S) denotes the set of idempotents in S.

2 As mentioned in the introduction, π-terms are usually referred to as ω-terms. In this
paper, however, we use ω to denote the order type of the natural numbers. Therefore, we
follow the approach of Perrin and Pin [19] and use π instead of ω.

3 For a more elaborate example (involving ω + ω∗) see Example 1 on page 36.

6

Obviously, ∼K and ∼D are of finite index in any (finite) monoid M . Thus,
we have that M/∼K and M/∼D are (finite) monoids and can define Mal’cev
products of varieties. Let V be a variety. The varieties K mV and D mV are
defined by

M ∈ K m V ⇔ M/∼K ∈ V and
M ∈ D m V ⇔ M/∼D ∈ V,

where M is a monoid. Note that, indeed, K m V and D m V are varieties for
any variety V and that, furthermore, we have V ⊆ K m V and V ⊆ D m V.

3 The Trotter-Weil Hierarchy

The main object of study in this paper, is the so-called Trotter-Weil Hierarchy.
We will approach it primarily using certain combinatorial congruence. We will
show that this approach is equivalent to the more common algebraic approach,
which we will use as the definition of the hierarchy.

The Trotter-Weil Hierarchy. As the name implies, this hierarchy was first stud-
ied by Trotter and Weil [29]. We will define it using Mal’cev products. Though
this approach is different to the original one used by Trotter and Weil, both
are equivalent [15]. We define:

R1 = L1 = J,

Rm+1 = K m Lm and
Lm+1 = D m Rm.

These varieties form the so-called corners of the hierarchy. Additionally, it
contains the join levels Rm ∨ Lm and the intersection levels Rm ∩ Lm. The
term “hierarchy” is justified by the following inclusions: we have Rm ∩ Lm ⊆
Rm,Lm ⊆ Rm ∨ Lm and Rm ∨ Lm ⊆ Rm+1 ∩ Lm+1; the latter can be seen
by induction.

R2 ∩ L2 = J = R1 = L1

R = R2 L2 = L

R2 ∨ L2

R3 ∩ L3

R3 L3

...

⋃ m
∈
N
R

m
∨
L
m

=
D
A

Fig. 1 Trotter-Weil Hierarchy

Among the corners of the Trotter-Weil
Hierarchy are some well known varieties:
we have R1 = L1 = J, R2 = R and L2 =
L (for the last two, see [20]; the others are
straightforward).

By taking the union of all varieties in
the hierarchy, one gets the varietyDA [13],
which is usually defined as the class of
monoids whose regular D-classes form ape-
riodic semigroups4:

4 In finite monoids, D-classes coincide with J -classes; a D-class is called regular if it
contains an idempotent. A semigroup is called aperiodic (or group-free) if it has no divisor
which is a nontrivial group.

7

Fact 1 DA =
⋃
m∈N

Rm ∨ Lm =
⋃
m∈N

Rm =
⋃
m∈N

Lm

These considerations yield the graphic representation given in Figure 1.

Connections to Two-Variable Logic. The variety DA is closely connected to
two-variable first-order logic. By FO2[<], denote the set of all first-order sen-
tences over finite words which may only use the < predicate (and equality) and
no more than two variables. A language L ⊆ Σ∗ of finite words is definable by
a sentence ϕ ∈ FO2[<] if and only if its syntactic monoid is in DA [28], which
it is if and only if it is in one of the Trotter-Weil Hierarchy’s varieties.

The intersection levels corresponds to the quantifier alternation hierarchy
within FO2[<] [14]: a first-order sentence using at most two variables belongs
to FO2

m[<] if, on any path in its syntax tree, there is no quantifier after the
first negation and there are at most m blocks of quantifiers. A language is
definable by a sentence in FO2

m[<] if and only if its syntactic monoid is in
Rm+1 ∩ Lm+1.

Equational Characterization. Besides its definition using Mal’cev products and
its connections to logic, the Trotter-Weil Hierarchy can also be characterized
in terms of equations. For our proofs, we only need the direction of this charac-
terization stated in the lemma below. The other direction does hold as well; we
will see later on in Lemma 5 that it is an easy consequence of the hierarchy’s
combinatorial characterization which we state below.

Lemma 1 Define the π-terms

U1 = (sx1)πs(y1t)
π and V1 = (sx1)πt(y1t)

π

over the alphabet Σ1 = {s, t, x1}. For m ∈ N, let xm+1 and ym+1 be new
characters not in the alphabet Σm and define the π-terms

Um+1 = (Umxm+1)πUm(ym+1Um)π and Vm+1 = (Umxm+1)πVm(ym+1Um)π

over the alphabet Σm+1 = Σm] {xm+1, ym+1}.
Then we have

M ∈ R1 = L1 = J ⇐ U1 = V1 holds in M ,
M ∈ Rm+1 ⇐ (Umxm+1)πUm = (Umxm+1)πVm holds in M ,
M ∈ Lm+1 ⇐ Um(ym+1Um)π = Vm(ym+1Um)π holds in M and

M ∈ Rm+1 ∩ Lm+1 ⇐ Um = Vm holds in M

for all m ∈ N.

Proof The first implication is a well-known characterization of J [21]. We show
the next two implications by induction over m (see also [12]).

First, assume m = 1 and consider a monoid M in which (U1x2)πU1 =
(U1x2)πV1 holds. We need to show M ∈ R2, which is equivalent to showing

8

M/∼K ∈ L1 = J. For this, we show u1 = σ (JU1KM !) ∼K σ (JV1KM !) = v1 for
an arbitrary assignment of variables σ : Σ∗1 →M . Afterwards, we are done by
the first implication since the exponent of M/∼K is a divisor of M !. Let e be
an arbitrary idempotent of M and assume eu1 R e (the other case from the
definition of ∼K is symmetrical). Thus, there is an element x2 ∈M such that
eu1x2 = e holds. We can extend σ by mapping the letter x2 ∈ Σ2 to the just
defined monoid element x2. We then have

eu1 = e(u1x2)u1 = . . . = e(u1x2)M !u1

= e(u1x2)M !v1 = · · · = e(u1x2)v1 = ev1.

The equality in the middle holds because (U1x2)πU1 = (U1x2)πV1 holds in M
by assumption. This concludes the m = 1 case because the third implication
is symmetrical.

Now, assume m > 1 and consider a monoid M in which (Umxm+1)πUm =
(Umxm+1)πVm holds. We need to showM ∈ Rm+1 and we do this by showing
M/∼K ∈ Lm. By induction, we only have to show that Um−1(ymUm−1)π =
Vm−1(ymUm−1)π holds in M/∼K . As before, let σ : (Σm−1] {ym})∗ →
M be an arbitrary assignment of variables. For convenience, let um−1 =
σ (JUm−1KM !) and vm−1 = σ (JVm−1KM !) and identify ym with σ(ym). Let
e be an arbitrary idempotent in M such that eum−1(ymum−1)M ! R e holds.
Clearly, this implies eum−1 R e and there are elements xm, xm+1 ∈ M such
that e = eum−1xm and e = eum−1(ymum−1)M !xm+1 holds. Extend σ to map
the letters xm and xm+1 to the respective monoid elements. Then, we have

eum−1(ymum−1)M ! = e(um−1xm)um−1(ymum−1)M !

= · · · = e(um−1xm)M !um−1(ymum−1)M ! = eum

with um = σ (JUmKM !). This yields

e = eum−1(ymum−1)M !︸ ︷︷ ︸
eum

xm+1 = e (umxm+1) = · · · = e (umxm+1)
M ! .

Using the fact that (Umxm+1)πUm = (Umxm+1)πVm holds in M (by assump-
tion), we get

eum = e (umxm+1)
M !
um = e (umxm+1)

M !
vm = evm

where vm = σ (JVmKM !). In combination, we have

eum−1(ymum−1)M ! = eum = evm = e(um−1xm)M !vm−1(ymum−1)M !

where the last equality holds due to the definition of Vm. Finally, we get

eum−1(ymum−1)M ! = e(um−1xm)M !vm−1(ymum−1)M !

= · · · = e(um−1xm)vm−1(ymum−1)M !

= evm−1(ymum−1)M !

9

Thus, we have shown um−1(ymum−1)M ! ∼K vm−1(ymum−1)M ! (the other case
from the definition of ∼K is symmetrical) and are done. The implication for
Lm+1 in the case m > 1 follows by symmetry again.

Finally, for the intersection levels, suppose that Um = Vm holds in a monoid
M . By the identities for the corners, we directly haveM ∈ Rm+1∩Lm+1. ut

Besides the equational characterization of the individual varieties in the
hierarchy, one can also characterize their union DA in terms of an equation:

Fact 2 Let M be a monoid. Then, we have

M ∈ DA ⇔ (xyz)πy(xyz)π = (xyz)π holds in M .

A proof of this fact can be found in [27].

4 Relations for the Trotter-Weil Hierarchy

Although we define the Trotter-Weil Hierarchy algebraically using Mal’cev
products, we will primarily use a different characterization which is based
on certain combinatorial congruences. Before we can finally introduce these
congruences, however, we need to give some definitions for factorizations of
words at the first or last a-position (i. e. an a-labeled position).

Factorizations and accessible words. For a word w, a position p ∈ dom(w)]
{−∞} and a letter a ∈ alph(w), let Xa(w; p) denote the first a-position
(strictly) larger than p (or the first a-position in w if p = −∞). It is un-
defined if there is no such position (i e. there is no a to the right of p in w) or
if the position is not well-defined. Define Ya(w; p) symmetrically as the first
a-position from the right which is (strictly) smaller than p. Notice that, with
generalized words, the first a-position to the right of a position p is not nec-
essarily well-defined even if there is an a-position larger than p. For example,
aω
∗

= . . . aa does not have a first a-position. We call words for which this
situation does not occur accessible; i. e. a word w is accessible if, for every
position p in w (including the special cases p ∈ {±∞}), Xa(w; p) is defined if
and only if there is an a-position in w(p,+∞) and Ya(w; p) is defined if and only
if there is an a-position in w(−∞,p). Note that all finite words are accessible
and that so are all words of the form JγKω+ω∗ for a π-term γ.

Let w be an accessible word, define

w ·XL
a = w(−∞,Xa(w;−∞)), w ·XR

a = w(Xa(w;−∞),+∞),

w · Y La = w(−∞,Ya(w;+∞)) and w · Y Ra = w(Ya(w;+∞),+∞)

for all a ∈ alph(w). Additionally, define Ca,b as a special form of applying XL
a

first and then Y Rb which is only defined if Xa(w;−∞) is strictly larger than
Yb(w; +∞). For an example of XL

a and XR
a acting on a word see Figure 2.

Note that we have w = (w · XL
a)a(w · XR

a) = (w · Y La)a(w · Y Ra) = (w ·
Y Lb)b(w · Ca,b)a(w · XR

a) (whenever these factors are defined). For example,

10

w = a b b a b b b b b a b b b a b a b b a b

l Xa(w; l) r

w(l,r) ·XL
a w(l,r) ·XR

a

Fig. 2 Application of XL
a and XR

a to an example word.

we have cbbcdcaca · Ca,b = cdc; see the upper part of Figure 4 for a graphical
representation of this example. If we apply a sequence of factorizations, we
omit the · between them, e. g. we write w ·XL

a Y
R
b = w ·XL

a · Y Rb = w · Ca,b.

Relations for the Trotter-Weil Hierarchy. With these definitions in place, we
define for m,n ∈ N the relations ≡Xm,n, ≡Ym,n and ≡WI

m,n of accessible words.5
The idea is that these relations hold on two words u and v if both words allow
for the same sequence of factorizations at the first or last occurrence of a letter.
For this, we use the following recursive definition.

Definition 1 Let m,n ∈ N and let u and v be accessible words. Define recur-
sively:

1. u ≡Z0,0 v, u ≡Zm,0 v and u ≡Z0,n v for Z ∈ {X,Y,WI} always hold.
2. u ≡Xm,n v ⇔ alph(u) = alph(v), u ≡Ym−1,n−1 v and

∀a ∈ alph (u) : u ·XL
a ≡Ym−1,n−1 v ·XL

a and

u ·XR
a ≡Xm,n−1 v ·XR

a

u ≡Ym,n v ⇔ alph(u) = alph(v), u ≡Xm−1,n−1 v and

∀a ∈ alph (u) : u · Y La ≡Ym,n−1 v · Y La and

u · Y Ra ≡Xm−1,n−1 v · Y Ra
u ≡WI

m,n v ⇔ alph(u) = alph(v),

∀a ∈ alph (u) : u ·XL
a ≡WI

m−1,n−1 v ·XL
a and

u ·XR
a ≡WI

m,n−1 v ·XR
a ,

∀a ∈ alph (u) : u · Y La ≡WI
m,n−1 v · Y La and

u · Y Ra ≡WI
m−1,n−1 v · Y Ra and

∀a, b ∈ alph (u) : u · Ca,b and v · Ca,b are either both undefined
or both defined and u · Ca,b ≡WI

m−1,n−1 v · Ca,b
holds.

Additionally, define u ≡XYm,n v ⇔ u ≡Xm,n v and u ≡Ym,n v for all m,n ∈ N0.

5 The presented relations could also be defined by (condensed) rankers (as it is done in
[14] and [15]). Rankers were introduced by Weis and Immerman [31] (thus, the WI exponent
in ≡WI

m,n) who reused the turtle programs by Schwentick, Thérien and Vollmer [24]. Another
concept related to condensed rankers is the unambiguous interval temporal logic by Lodaya,
Pandya and Shah [16].

11

u = b b c a a b c a

v = b c b a b c a a

X

X

Y X

Y X

≡
Ym
−

1
,n
−

1

≡
Xm
,n
−

1

Fig. 3 ≡Xm,n illustrated.

As this definition is vital for the understand-
ing of the rest of this paper, we try to give an
intuitive understanding of how the relations work.
In the parameter m, we remember the remaining
number of direction changes (which are caused by
an XL

a or Y Ra factorizations) in a factorization se-
quence and the parameter n is the number of re-
maining factorization moves (independent of their
direction). Thus, if m or n is zero, then the rela-
tions shall be satisfied on all accessible word pairs.
For m and n larger than zero, our first assertion
is that both words have the same alphabet; other-
wise, one of them would admit a factorization at
a letter while the other would not, as the letter is not in its alphabet. For the
letters of the common alphabet, we want to be able to perform further factor-
ization (until we reach n = 0). The X or Y exponent of the relation indicates
whether we start at the beginnings or at the ends of the two words; the WI
exponent is a special case, which we will discuss below. So, if we want u ≡Xm,n v
to hold and the alphabets of u and v coincide, then we can continue factorizing
at the first a in u and in v. In the next step, we continue either in the two
left parts or in the two right parts. If we continue in the right parts (i. e. we
do an XR

a factorization), then we require u ·XR
a ≡Xm,n−1 v ·XR

a . The X in the
exponent indicates that the last factorization position (the first a in u and v,
respectively) was at the beginning of the words. We have made one additional
factorization – thus, we only have n−1 remaining factorizations in this part –
but we did not change the direction because we were at the beginnings of the
words before and still are for the new word pair – thus, we still have m such
changes of direction. If, instead of taking the right parts after the first a, we
had taken the left parts, then we would still have made a single factorization;
thus we have n − 1 remaining factorizations. However, we would also have a
direction change: the factorization position (i. e. the first a) is to the right of
the new words u ·XL

a and v ·XL
a . Therefore, we have m−1 remaining direction

changes and we change the X exponent into a Y exponent. This is summed
up by requiring u · XL

a ≡Ym−1,n−1 v · XL
a . Both situations are illustrated in

Figure 3. Additionally, we also have the choice to switch from the beginning
to the end at the cost of one direction change and one factorization. This is
reflected in the fact that we require u ≡Ym−1,n−1 v for u ≡Xm,n v.

u = c b b c d c a c a

v = b c b d c c a a c

X

X

Y

Y

≡
W

I
m
−

1
,n
−

1

Fig. 4 ≡WI
m,n illustrated.

The relation ≡Ym,n works symmetrically to
≡Xm,n. However, ≡WI

m,n is a bit different. Here,
we still lose one direction change after an XL

a

or Y Ra factorization while the number keeps the
same for XR

a and Y La factorizations but we also
have the special Ca,b factorizations, which start
simultaneously at the beginning and the end.
Consider the situation given in Figure 4. We go

12

to the first a and the last b; the former is to the
right of the latter in both words (or the ≡WI

m,n

relation does not hold). For the pair of parts in
the middle, we require u ·Ca,b ≡WI

m−1,n−1 v ·Ca,b,
i. e. we count this as a single factorization move which loses a single direction
change.

Finally, there is ≡XYm,n where we can start factorizing at the beginning or
at the end.

By simple inductions, one can see that the relations are congruences of
finite index over Σ∗. Also note that u ≡Zm,n v implies u ≡Zm,k v and, if m > 0,
also u ≡Zm−1,k v for all k ≤ n and Z ∈ {X,Y,XY,WI}.

The importance of the just defined relations for this paper yields from their
connection to the Trotter-Weil Hierarchy (and, thus, to DA), which we state
in the next theorem.

Theorem 1 Let M be a monoid and m ∈ N. Then

– M ≺ Σ∗/≡Xm,n for some n ∈ N0 ⇔ M ∈ Rm,
– M ≺ Σ∗/≡Ym,n for some n ∈ N0 ⇔ M ∈ Lm,
– M ≺ Σ∗/≡XYm,n for some n ∈ N0 ⇔ M ∈ Rm ∨ Lm and
– M ≺ Σ∗/≡WI

m,n for some n ∈ N0 ⇔ M ∈ Rm ∩ Lm hold.

The combinatorial nature of the relations will turn out to be useful in
the remainder of this paper since it allow us, for example, to obtain efficient
algorithms for the problems we consider. Unfortunately, on the other hand, it
makes proving Theorem 1 quite technical. In fact, we will dedicate the next
section to this proof.

5 A Proof for Theorem 1

We will prove both directions of Theorem 1 individually. Before we can do
this, however, we need to introduce some more concepts.

R- and L-factorizations. Let ϕ : Σ∗ →M be a (monoid) homomorphism into
a monoid M . The R-factorization of a finite word w is the (unique) factoriza-
tion w = w0a1w1a2w2 . . . akwk with w0, w1 . . . , wk ∈ Σ∗ and a1, a2, . . . , ak ∈ Σ
such that, on the one hand,

ϕ(ε) R ϕ(w0) and
ϕ(w0a1w1a2w2 . . . ai) R ϕ(w0a1w1a2w2 . . . aiwi)

hold for i = 1, 2, . . . , k and, on the other hand,

ϕ(w0a1w1a2w2 . . . aiwi) 6R ϕ(w0a1w1a2w2 . . . aiwiai+1)

13

holds for i = 0, 1, . . . , k − 1. Symmetrically, the L-factorization of w is the
factorization w = w0a1w1a2w2 . . . akwk with w0, w1 . . . , wk ∈ Σ∗ and a1, a2,
. . . , ak ∈ Σ such that, on the one hand,

ϕ(wk) L ϕ(ε) and
ϕ(wi−1aiwiai+1wi+1 . . . akwk) L ϕ(aiwiai+1wi+1 . . . akwk)

hold for i = 1, 2, . . . , k and, on the other hand,

ϕ(aiwiai+1wi+1ai+2wi+2 . . . akwk) 6L ϕ(wiai+1wi+1ai+2wi+2 . . . akwk)

holds for i = 1, 2, . . . , k.

DA and R-classes. In DA, getting into a new R-class is strictly coupled to
an element’s alphabet, as the following lemma shows6, where a can be seen as
one of the monoids generators (i. e. a letter in its alphabet).

Lemma 2 Let M ∈ DA be a monoid and let s, t ∈M such that s R t. Then

s R sa ⇒ t R ta

holds for all a ∈M .

Proof Since we have t R s R sa, there are x, y ∈M with s = tx and t = say.
We then have

t = txay = t(xay)2 = · · · = t(xay)M !,

which yields

ta(xay)M ! = t(xay)M !a(xay)M ! = t(xay)M ! = t.

using the equation from Fact 2. Thus, we have ta R t. ut

One of the main applications of the previous lemma is the following. If we have
a monoid M ∈ DA, a homomorphism ϕ : Σ∗ → M and the R-factorization
w = w0a1w1a2w2 . . . akwk of a finite word w ∈ Σ∗, then we know that ai 6∈
alph(wi−1) for i = 1, 2, . . . , k. If we had ai ∈ alph(wi−1), we could factorize
wi−1 = uaiv and would have

ϕ(w0a1w1a2w2 . . . ai−1u) R ϕ(w0a1w1a2w2 . . . ai−1uai)

and, by the previous lemma, also

ϕ(w0a1w1a2w2 . . . ai−1uaiv) R ϕ(w0a1w1a2w2 . . . ai−1uaivai),

which results in a contradiction to the definition ofR-factorizations. Of course,
we can apply a left-right dual of the lemma to get an analogue statement for
L-factorizations.

Another application of Lemma 2 is stated in the following lemma.
6 The curious reader might be interested in the fact that the lemma’s assertion also holds

for monoids in DS, the variety of monoids whose regular D-classes form (arbitrary, but
finite) semigroups. More on DS can, for example, be found in [2].

14

Lemma 3 Let M ∈ DA be a monoid, s ∈ M and let ϕ : Σ∗ → M be a
homomorphism. Then, for all finite words u, v ∈ Σ∗ with alph(u) = alph(v),
we have

s R sϕ(u) ⇒ s R sϕ(v).

Proof The case u = v = ε is trivial. Therefore, assume s R sϕ(u) but s 6R
sϕ(v′a) for some prefix v′a of v with a ∈ Σ. Without loss of generality, let
v′a be the shortest such prefix; thus, we have s R sϕ(v′). Since we have
alph(u) = alph(v), the is a prefix u′a of u. Because of s R sϕ(u), we have
s R sϕ(u′) R sϕ(u′a). Thus, we have sϕ(v′) R s R sϕ(u′) R sϕ(u′)ϕ(a).
Now, Lemma 2 yields sϕ(v′) R sϕ(v′)ϕ(a), which is a contradiction to our
assumption. ut

Now, we are prepared to prove the characterization of the Trotter-Weil
Hierarchy stated in Theorem 1. This is done in the following two theorems
(see also [15] for the corners and [14] for the intersection levels). We use the
notations XD

Σ = {XL
a , X

R
a | a ∈ Σ}, Y DΣ = {Y La , Y Ra | a ∈ Σ} and some

natural variations of it.

Theorem 2 Let M be a finite monoid, ϕ : Σ∗ → M a homomorphism and
m ∈ N. Then:

– M ∈ Rm ⇒
(
∃n ∈ N ∀u, v ∈ Σ∗ : u ≡Xm,n v ⇒ ϕ(u) = ϕ(v)

)
– M ∈ Lm ⇒

(
∃n ∈ N ∀u, v ∈ Σ∗ : u ≡Ym,n v ⇒ ϕ(u) = ϕ(v)

)
– M ∈ Rm ∨ Lm ⇒

(
∃n ∈ N ∀u, v ∈ Σ∗ : u ≡XYm,n v ⇒ ϕ(u) = ϕ(v)

)
– M ∈ Rm+1 ∩ Lm+1 ⇒

(
∃n ∈ N ∀u, v ∈ Σ∗ : u ≡WI

m,n v ⇒ ϕ(u) = ϕ(v)
)

Proof We fix a homomorphism ϕ : Σ∗ → M and proceed by induction over
m. For m = 1, we have R1 = L1 = R1 ∨ L1 = R2 ∩ L2 = J. Thus, the
assertion follows from a result of Simon [25]. However, we also include a full
proof for completeness. Let M ∈ J and n = |M |, which is the number of
J -classes in M (and equal to the number of R-classes and the number of
L-classes). Assume that u ≡X1,n v for two finite words u, v ∈ Σ∗ and let
u = u0a1u1a2u2 . . . akuk be the R-factorization of u. We have k + 1 ≤ n
and, because M is R-trivial, ϕ(u0) = ϕ(u1) = · · · = ϕ(uk) = 1 or, more pre-
cisely, that no letter in u0u1 . . . uk can be mapped by ϕ to a value different
from 1. Notice that this implies ϕ(u) = ϕ(a1a2 . . . ak). Furthermore, we have
ϕ(a1), ϕ(a2), . . . , ϕ(ak) 6= 1 due to the definition of an R-factorization.

By definition of ≡Xm,n, we have a1 ∈ alph(v) and u·XR
a1 = a2u2a3u3 . . . akuk

≡X1,n−1 v ·XR
a1 . Therefore, we can find a2 in v ·XR

a1 and have u ·XR
a1 ·X

R
a2 =

a3u3a4u4 . . . akuk ≡Xm,n−2 v · XR
a1 · X

R
a2 . Iterating this approach yields that

a1a2 . . . ak is a subword7 of v. Now, let v = v0b1v1b2v2 . . . blvl be the R-
factorization of v. By symmetry, we get ϕ(b1), ϕ(b2), . . . , ϕ(bl) 6= 1 and that
b1b2 . . . bl is a subword of u. However, for no j ∈ {1, 2, . . . , l}, the letter bj
can occur in u0u1 . . . uk since all letters in that word must be mapped to 1.

7 A finite word c1c2 . . . cs with ci ∈ Σ is a subword of a (not necessarily finite) word w if
we can write w = w0c1w1c2w2 . . . csws for some words w0, w1, . . . , ws.

15

Thus, b1b2 . . . bl must in fact be a subword of a1a2 . . . ak. Again by symmetry,
a1a2 . . . ak must be a subword of b1b2 . . . bl and, thus, the two words must be
equal. This implies ϕ(u) = ϕ(a1a2 . . . ak) = ϕ(b1b2 . . . bl) = ϕ(v) where the
last equality follows from ϕ(v0) = ϕ(v1) = · · · = ϕ(vl) = 1, which holds due
to the R-triviality of M .

The argumentation for u ≡Y1,n v is symmetric using the L-factorization,
the case for u ≡XY1,n v follows trivially and the case for u ≡WI

1,n v uses the same
argumentation.

Now, let M ∈ Rm for an m > 1. This implies M/∼K ∈ Lm−1 and there is
an n′ ∈ N such that u′ ≡Ym−1,n′ v

′ ⇒ ϕ(u′) ∼K ϕ(v′) holds for all u′, v′ ∈ Σ∗.
Let r be the number of R-classes in M and let n = n′ + r. Consider the
R-factorization u = u0a1u1a2u2 . . . akuk of a finite word u ∈ Σ∗; note that
k + 1 ≤ r must hold. We have

ui = u ·XR
a1X

R
a2 . . . X

R
ai−1

XL
ai for i = 0, 1, . . . , k − 1 and

uk = u ·XR
a1X

R
a2 . . . X

R
ak
.

For a second finite word v ∈ Σ∗ with u ≡Xm,n v, we know that alph(u) =

alph(v). Thus, we can apply XL
a1 and XR

a1 to v and obtain

v0 = v ·XL
a1 and v′ = v ·XR

a1 .

By definition of ≡Xm,n, we have v0 ≡Ym−1,n−1 u0 and v′ ≡Xm,n−1 u1a2u2a3u3 . . .
akuk. Because of k ≤ r < n, we can apply the same argument on v′ and, by
iteration, get

vi = v ·XR
a1X

R
a2 . . . X

R
ai−1

XL
ai for i = 0, 1, . . . , k − 1 and

vk = v ·XR
a1X

R
a2 . . . X

R
ak

with ui ≡Ym−1,n−i−1 vi for i = 0, 1, . . . , k − 1 and uk ≡Xm,n−k vk. Because of
i ≤ k ≤ r− 1, we have n− i− 1 = n′+ r− i− 1 ≥ n′+ r− (r− 1)− 1 = n′ and
ui ≡Ym−1,n′ vi for i = 0, 1, . . . , k−1. For uk and vk, we have uk ≡Ym−1,n−k−1 vk
by the definition of the congruences and, therefore, uk ≡Ym−1,n′ vk because of
n− k− 1 ≥ n− i− 1 ≥ n′. Summing this up, we have ui ≡Ym−1,n′ vi and, thus,
ϕ(ui) ∼K ϕ(vi) for all i = 0, 1, . . . , k.

Since we have defined ui by the R-factorization of u, there is an si ∈M for
any i ∈ {0, 1, . . . , k} such that ϕ(u0a1u1a2u2 . . . aiui)si = ϕ(u0a1u1a2u2 . . . ai)
holds. For these, we have

(ϕ(ui)si)
M !
ϕ(ui) R (ϕ(ui)si)

M !

because of (ϕ(ui)si)
M !
ϕ(ui)si (ϕ(ui)si)

M !−1
= (ϕ(ui)si)

M !, which yields

(ϕ(ui)si)
M !
ϕ(ui) = (ϕ(ui)si)

M !
ϕ(vi)

16

by ϕ(ui) ∼K ϕ(vi). Thus, we have

ϕ(u0a1u1a2u2 . . . akuk) = ϕ(u0a1u1a2u2 . . . akuk) (skϕ(uk))
M !

= ϕ(u0a1u1a2u2 . . . ak) (ϕ(uk)sk)
M !
ϕ(uk)

= ϕ(u0a1u1a2u2 . . . ak) (ϕ(uk)sk)
M !
ϕ(vk)

= ϕ(u0a1u1a2u2 . . . ak)ϕ(vk)

= ϕ(u0a1u1a2u2 . . . ak−1uk−1)ϕ(akvk)

= ϕ(u0a1u1a2u2 . . . ak−1) (ϕ(uk−1)sk−1)
M !
ϕ(uk−1)ϕ(akvk)

= ϕ(u0a1u1a2u2 . . . ak−1) (ϕ(uk−1)sk−1)
M !
ϕ(vk−1)ϕ(akvk)

= ϕ(u0a1u1a2u2 . . . ak−2uk−2)ϕ(ak−1vk−1akvk)

= . . .

= ϕ(v0a1v1a2v2 . . . akvk),

which concludes the proof for Rm.
The proof for Lm is symmetrical. For Rm∨Lm, we observe that a monoid

is in the join V ∨W of two varieties V and W if and only if it is a divisor
(i. e. the homomorphic image of a submonoid) of a direct product M1 ×M2

such that M1 ∈ V and M2 ∈ W [6, Exercise 1.1]. Therefore, if we have a
monoid M ∈ Rm ∨ Lm, there are monoids M1 ∈ Rm and M2 ∈ Lm such
that M is a divisor of M1 ×M2; i. e. there is a submonoid N of M1 ×M2

and a surjective monoid homomorphism ψ : N � M . For every a ∈ Σ, we
can find elements ma,1 ∈ M1 and ma,2 ∈ M2 with (ma,1,ma,2) ∈ N such
that ϕ(a) = ψ(ma,1,ma,2). Indeed, we can define the maps ϕ1 : Σ → M1

and ϕ2 : Σ → M2 by setting ϕ1(a) := ma,1 and ϕ2(a) := ma,2. These maps
can be lifted into homomorphisms ϕ1 : Σ∗ → M1 and ϕ2 : Σ∗ → M2. By
induction, there are n1 and n2 such that u ≡Xm,n1

v implies ϕ1(u) = ϕ2(v)

and u ≡Ym,n2
v implies ϕ2(u) = ϕ2(v) for any two finite words u, v ∈ Σ∗. By

setting n = max{n1, n2}, we have

u ≡XYm,n v ⇒ ϕ1(u) = ϕ1(v) and ϕ2(u) = ϕ2(v)

for all u, v ∈ Σ∗. For all u, v ∈ Σ∗ with u ≡XYm,n v, this yields

ϕ(a1a2 . . . ak) = ϕ(a1)ϕ(a2) . . . ϕ(ak)

= ψ(ma1,1,ma1,2)ψ(ma2,1,ma2,2) . . . ψ(mak,1,mak,2)

= ψ((ma1,1,ma1,2)(ma2,1,ma2,2) . . . (mak,1,mak,2))

= ψ(ma1,1ma2,1 . . .mak,1,ma1,2ma2,2 . . .mak,2)

= ψ (ϕ1(u), ϕ2(u))

= ψ (ϕ1(v), ϕ2(v))

= ϕ(b1b2 . . . bl)

where u = a1a2 . . . ak, v = b1b2 . . . bl and a1, a2, . . . , ak, b1, b2, . . . , bl ∈ Σ.

17

Finally, let M ∈ Rm+1 ∩ Lm+1 with m > 1. Denote by 2Σ the monoid
of subsets of Σ whose binary operation is the union of sets. It is easy to see
that 2Σ is J -trivial. Therefore, we have M × 2Σ ∈ Rm+1 ∩ Lm+1. Next, we
lift ϕ : Σ∗ → M into a homomorphism ϕ̂ : Σ∗ → M × 2Σ by taking the
word’s alphabet as the entry in the second component. If we show u ≡WI

m,n

v ⇒ ϕ̂(u) = ϕ̂(v) for a suitable n ∈ N, we have, in particular, u ≡WI
m,n

v ⇒ ϕ(u) = ϕ(v). The advantage of this approach is that we have ϕ̂(u) =
ϕ̂(v) ⇒ alph(u) = alph(v) for all u, v ∈ Σ∗ by the construction of ϕ̂. Instead
of continuing to write ϕ̂, we simply substitute M by M × 2Σ and ϕ by ϕ̂.

We haveM/∼K ∈ Lm andM/∼D ∈ Rm. By ≈, denote the join of ∼K and
∼D. Since it is a homomorphic image of both,M/∼K andM/∼D, the monoid
M/≈ is in Rm ∩Lm and we can apply induction, which yields an n′ ∈ N such
that u ≡WI

m−1,n′ v implies ϕ(u) ≈ ϕ(v) for all finite words u, v ∈ Σ∗. Let c be
the sum of the number of R-classes and the number of L-classes in M and set
n = n′+ c. Suppose we have u ≡WI

m,n v for two finite words u, v ∈ Σ∗. Consider
the R-factorization u = u′0a1u

′
1a2u

′
2 . . . aru

′
r of u and the L-factorization v =

v′0b1v
′
1b2v

′
2 . . . blv

′
l of v. Clearly, we have r+ 1 + l+ 1 ≤ c. Define the positions

pw0 = −∞, pwr+1 = +∞ and pwi = Xai(w; pwi−1) for i = 1, 2, . . . , r and w = u, v.
By Lemma 2, we know that pui denotes the position of ai in the R-factorization
for i = 1, 2, . . . , r. Symmetrically, we can define qwl+1 = +∞, qw0 = −∞ and
qwj = Yaj (w; qwj+1) for j = l, l − 1, . . . , 1 and w = u, v. Again, we know that qvj
is the position of bj in the L-factorization of v for j = 1, 2, . . . , l. Additionally,
we have

pw0 < pw1 < · · · < pwr < pwr+1 and
qw0 < qw1 < · · · < qwl < qwl+1

for w = u and w = v by their definition. We are going to show that we
have pui O quj ⇔ pvi O qvj for O ∈ {<,=, >} and all i = 1, 2, . . . , r and
j = 1, 2, . . . , l. Together, these results yield that the sequence which is obtained
by ordering the pi and qj positions in u is equal to the corresponding sequence
in v. To prove this assertion, assume that we have quj ≤ pui but qvj > pvi for
an i ∈ {1, 2, . . . , r} and a j ∈ {1, 2, . . . , l} (all other cases are symmetric or
analogous). Without loss of generality, we may assume that pui−1 < quj ≤ pui
holds since, otherwise, we can substitute i by a smaller i for which the former
holds. Note that this substitution does not violate the condition qvj > pvi as pvi
gets strictly smaller if i decreases. Equally without loss of generality, we may
assume quj ≤ pui < quj+1 by a dual argumentation. The situation is presented
in Figure 5. We have

u(pui−1,q
u
j+1) = u ·XR

a1X
R
a2 . . . X

R
ai−1

Y Lbl Y
L
bl−1

. . . Y Lbj+1
and

v(pvi−1,q
v
j+1) = v ·XR

a1X
R
a2 . . . X

R
ai−1

Y Lbl Y
L
bl−1

. . . Y Lbj+1

18

u = ai−1 bj ai bj+1

pui−1 quj pui quj+1

v = ai−1 ai bj bj+1

pvi−1 qvjpvi qvj+1

Fig. 5 Contradiction: pi is to the right of qj in u but to its left in v.

and u(pui−1,q
u
j+1) ≡WI

m,n−(i−1)−(l−(j+1)+1) v(pvi−1,q
v
j+1), which yields u(pui−1,q

u
j+1) ≡WI

m,2

v(pvi−1,q
v
j+1) because of

n− (i− 1)− (l − (j + 1) + 1) = n′ + c− i+ 1− l + j + 1− 1

= n′ + c− i− l + j + 1

≥ n′ + c− (r + l) + 1

≥ n′ + c− (c− 2) + 1 = n′ + 3

> 2.

If quj = pui , we have a contradiction since u(pui−1,q
u
j+1) · Y Lbj contains no ai while

v(pvi−1,q
v
j+1) · Y Lbj does. For quj < pui , we can apply Cai,bj to u(pui−1,q

u
j+1) while

we cannot apply it to v(pvi−1,q
v
j+1) by its definition. Both situations constitute

a contradiction.
We have proved that if we order the set {pui , quj | i = 1, 2, . . . , r, j = 1, 2, . . . ,

l} = {Pu1 , Pu2 , . . . , Put } (with t ∈ N0) such that

Pu1 < Pu2 < · · · < Put

holds, then we can set

P vs =

{
pvi Pus = pui for some i ∈ {1, 2, . . . , r}
qvj Pus = quj for some j ∈ {1, 2, . . . , l}

for s = 1, 2, . . . , t and get

P v1 < P v2 < · · · < P vt .

These positions yield factorizations u = u0c1u1c2u2 . . . ctut and v = v0c1v1c2
v2 . . . ctvt such that cs ∈ {ai, bj | i = 1, 2, . . . , r, j = 1, 2, . . . , l} and Pws denotes
the position of cs in w ∈ {u, v} for s = 1, 2, . . . , t. To apply induction, we are
going to show us ≡WI

m−1,n′ vs for all s = 1, 2, . . . , t next.
To simplify notation, we say “Ps is an R-position” for any s ∈ {1, 2, . . . , t}

if Pus = pui for some i ∈ {1, 2, . . . , r} (or, equivalently, if P vs = pvi for some

19

i) and we say “Ps is an L-position” if Pus = quj for some j ∈ {1, 2, . . . , l} (or,
equivalently again, if P vs = qvj for some j). Note that this definition is not
exclusive, i. e. there can be a position which is both, an R-position and an
L-position.

Next, we consider the corner cases of u0/v0 and ut/vt. If P1 is an R-
position, we have c1 = a1 and

u0 = u ·XL
a1 as well as v0 = v ·XL

a1 ,

which yields u0 ≡WI
m−1,n′ v0 by definition of ≡WI

m,n and because of c > 0. If P1

is an L-position, we have c1 = b1 and

u0 = u · Y Lbl Y
L
bl−1

. . . Y Lb1 as well as

v0 = v · Y Lbl Y
L
bl−1

. . . Y Lb1 .

Because l < c, u0 ≡WI
m−1,n′ v0 holds also in this case. For ut and vt, we can

apply a symmetric argumentation.
Finally, we distinguish four cases for a fixed s ∈ {1, 2, . . . , t− 1}. If Ps and

Ps+1 are both R-positions, then we have cs = ai and cs+1 = ai+1 for some
i ∈ {1, 2, . . . , r} and also

us = u ·XR
a1X

R
a2 . . . X

R
aiX

L
ai+1

as well as

vs = v ·XR
a1X

R
a2 . . . X

R
aiX

L
ai+1

.

By definition of ≡WI
m,n, because of i + 1 ≤ c, we thus have us ≡WI

m−1,n′ vs. A
symmetric argument applies if both, Ps and Ps+1, are L-positions. If Ps is an
R-position but Ps+1 is an L-position, then cs = ai for some i ∈ {1, 2, . . . , r}
and cs+1 = bj for some j ∈ {1, 2, . . . , l}, which yields

us = u ·XR
a1X

R
a2 . . . X

R
aiY

L
bl
Y Lbl−1

. . . Y Lbj as well as

vs = v ·XR
a1X

R
a2 . . . X

R
aiY

L
bl
Y Lbl−1

. . . Y Lbj .

Therefore, we have us ≡WI
m−1,n′ vs because of the definition of ≡WI

m,n and n− i−
(l− j+ 1) = n′+ c− (i+ 1 + l) + j ≥ n′+ c− c+ 0 = n′. The fourth case is the
most interesting: if Ps is an L but not anR-position while Ps+1 is anR but not
an L-position, then cs = bj for some j ∈ {1, 2, . . . , l} and cs+1 = ai for some
i ∈ {1, 2, . . . , r}. Additionally, we have pwi−1 < Pws = qwj < Pws+1 = pwi < qj+1

for w = u and for w = v. We define

ũ = u ·XR
a1X

R
a2 . . . X

R
ai−1

Y Lbl Y
L
bl−1

. . . Y Lbj+1
as well as

ṽ = v ·XR
a1X

R
a2 . . . X

R
ai−1

Y Lbl Y
L
bl−1

. . . Y Lbj+1

(we consider the X-blocks as empty – meaning that we do not factorize –
if i = 1 and the Y -blocks as empty if j = l). We have ũ ≡WI

m,n−(i−1)−(l−j) ṽ.
Because of n−(i−1)−(l−j) = n′+c−(i+l)+j+1 ≥ n′+c−(r+l)+1 ≥ n′+1,
us = ũ·Cai,bj , vs = ṽ ·Cai,bj and the definition of ≡WI

m,n, we have us ≡WI
m−1,n′ vs.

20

We have shown us ≡WI
m−1,n′ vs for all s = 1, 2, . . . , t and, by induction,

therefore, know that ϕ(us) ≈ ϕ(vs), i. e. for a fixed s ∈ {1, 2, . . . , t}, there are
w1, w2, . . . , wk ∈ Σ∗ such that

ϕ(us) = ϕ(w1) ∼K ϕ(w2) ∼D · · · ∼K ϕ(wk−1) ∼D ϕ(wk) = ϕ(vs)

holds.
Remember that we substitutedM byM×2Σ so that we can assume ϕ(u) =

ϕ(v) ⇒ alph(u) = alph(v) for all u, v ∈ Σ∗. We can extend this implication:
if we have ϕ(u) ∼K ϕ(v) for two u, v ∈ Σ∗, then, by definition of ∼K , we also
have ϕ(u)M !ϕ(u) = ϕ(u)M !ϕ(v) because of ϕ(u)M !ϕ(u) R ϕ(u)M !. Therefore,
we have alph(u) = alph(u) ∪ alph(v) by the implication stated above. By
symmetry, we, thus, have alph(u) = alph(v). Since we can apply a similar
argumentation for ∼D, we have ϕ(u) ∼K ϕ(v) or ϕ(u) ∼D ϕ(v) ⇒ alph(u) =
alph(v) for all u, v ∈ Σ∗. This yields alph(us) = alph(w1) = alph(w2) = · · · =
alph(wk) = alph(vs).

Since the factorizations u = u0c1u1c2u2 . . . ctut and v = v0c1v1c2v2 . . . ctvt
are subfactorizations from the R-factorization of u and the L-factorization of
v, there are xs, ys ∈M with

ϕ(u0c1u1c2u2 . . . cs) = ϕ(u0c1u1c2u2 . . . csus)xs and
ϕ(cs+1vs+1cs+2vs+2 . . . ctvt) = ysϕ(vscs+1vs+1cs+2vs+2 . . . ctvt).

Because of alph(us) = alph(wi) for all i ∈ {1, 2, . . . , k} and by Lemma 3,

(ϕ(us)xs)
M ! R (ϕ(us)xs)

M !
ϕ(us) implies (ϕ(us)xs)

M ! R (ϕ(us)xs)
M !
ϕ(wi).

Similarly, we have

(ysϕ(vs))
M ! L ϕ(wi) (ysϕ(vs))

M !

for all i ∈ {1, 2, . . . , k}. For ϕ(wi) ∼K ϕ(wi+1), this implies

(ϕ(us)xs)
M !
ϕ(wi) = (ϕ(us)xs)

M !
ϕ(wi+1)

and
ϕ(wi) (ysϕ(vs))

M !
= ϕ(wi+1) (ysϕ(vs))

M !

for ϕ(wi) ∼D ϕ(wi+1). In either case, we have

(ϕ(us)xs)
M !
ϕ(wi) (ysϕ(vs))

M !
= (ϕ(us)xs)

M !
ϕ(wi+1) (ysϕ(vs))

M ! ,

which yields for any i ∈ {1, 2, . . . , k − 1}:

ϕ(u0c1u1c2u2 . . . cswics+1vs+1cs+2vs+2 . . . ctvt)

= ϕ(u0c1u1c2u2 . . . cs) (ϕ(us)xs)
M !
ϕ(wi) (ysϕ(vs))

M !
ϕ(cs+1vs+1cs+2vs+2 . . . ctvt)

= ϕ(u0c1u1c2u2 . . . cs) (ϕ(us)xs)
M !
ϕ(wi+1) (ysϕ(vs))

M !
ϕ(cs+1vs+1cs+2vs+2 . . . ctvt)

= ϕ(u0c1u1c2u2 . . . cswi+1cs+1vs+1cs+2vs+2 . . . ctvt)

21

So, we can substitute wi by wi+1 and, therefore, also us by vs, i. e. we have

ϕ(u0c1u1c2u2 . . . csuscs+1vs+1cs+2vs+2 . . . ctut)

= ϕ(u0c1u1c2u2 . . . csvscs+1vs+1cs+2vs+2 . . . ctvt).

Consecutively applying the former equation for s = t, then for s = t − 1 and
so on yields

ϕ(u) = ϕ(u0c1u1c2u2 . . . ct−1ut−1ctut)

= ϕ(u0c1u1c2u2 . . . ct−1ut−1ctvt)

= ϕ(u0c1u1c2u2 . . . ct−1vt−1ctvt)

...
= ϕ(v0c1v1c2v2 . . . ct−1vt−1ctvt)

= ϕ(v),

which concludes the proof. ut

It remains to show the other direction of Theorem 1 (i. e. the converse of
Theorem 2). We will do this by using the equations from Lemma 1. Therefore,
we begin with the following lemma.

Lemma 4 Let Σm, Um and Vm be as in Lemma 1 and let k ∈ N and n ∈
N0. Then, for every assignment of variables σ : Σ∗m → Σ∗ and all Z ∈
{X,Y,XY,WI}, we have

σ (JUmKnk) ≡Zm,n σ (JV1Knk)

σ (J(Umxm+1)
π
UmKnk) ≡Xm+1,n σ (J(Umxm+1)

π
VmKnk)

σ (JUm (Umxm+1)
πKnk) ≡Ym+1,n σ (JVm (Umxm+1)

πKnk)

for all m ∈ N.

Proof We only show the first assertion by induction over m. The other asser-
tions follow by similar arguments. For m = 1, we may assume n > 0 since,
otherwise, there is nothing to show. We have

U1 = (sx1)πs(y1t)
π and V1 = (sx1)πt(y1t)

π.

Let u1 = σ (JU1Knk) and v1 = σ (JV1Knk). First, assume Z = X. We are only
interested in at most n consecutive simultaneousXR

Σ factorizations of u1 and v1

because, as soon as we apply at least one XL
Σ factorization, we know that ≡X0,n

holds. As long as we apply only factorizations XR
a with a ∈ alph(σ(sx1)), the

factorization position stays in the (sx1)π part of u1 and v1. Since the number of
remaining factorizations decreases, the right parts will eventually be in relation
under ≡Xm,0. If there is at least one XR

a factorization in the sequence where
a is in alph(σ(y1t)) \ alph(σ(sx1)), the right-hand side of u1 belongs to the
(y1t)

π part and the right-hand side of v1 belongs to the t(y1t)
π part; but in

22

um+1 = (umxm+1) (umxm+1) . . . (umxm+1) um (ym+1um) (ym+1um) . . . (ym+1um)

vm+1 = (umxm+1) (umxm+1) . . . (umxm+1) vm (ym+1um) (ym+1um) . . . (ym+1um)

Repetition of the same word
for nk ≥ n times.

Repetition of the same word
for nk ≥ n times.

part containing the difference

Fig. 6 Schematic representation of um+1 and vm+1. Note that xm+1 and ym+1 are iden-
tified with σ(xm+1) and σ(ym+1), respectively.

both words, there are still at least n−1 instances of σ(y1t), which implies that
the right-hand sides are equal under ≡Xm,n−1. For Z = Y , the argumentation
is symmetric, which also handles the Z = XY case. The additional Ca,b of
Z = WI needs no special handling since it decreases the first index of ≡WI

m,n to
m− 1 = 0 anyway.

To conclude the induction, we show

um+1 = σ (JUm+1Knk) ≡Zm+1,n σ (JVm+1Knk) = vm+1

next. For a schematic representation of um+1 and vm+1, the reader is advised
to refer to Figure 6. For convenience, we identify xm+1 with σ(xm+1) and
ym+1 with σ(ym+1). We will only show the case Z = WI since this is the most
difficult one and the other ones are similar. In fact, we will proof the following
claim by an inner induction on l for 0 ≤ l ≤ n:

(umxm+1)lum(ym+1um)l ≡WI
m+1,l (umxm+1)lvm(ym+1um)l

The actual assertion then follows for the case l = n. For l = 0, there is nothing
to show. So, let l > 0. First, consider an XL

a or XR
a factorizations. Only two

cases can emerge: the factorization happens in the (umxm+1)l part or the
factorization happens in the (ym+1um)l part (in both words simultaneously).
The factorization cannot happen in the central um or vm part because we have
alph(vm) = alph(um) ⊆ alph(umxm+1).

First, consider the case in which the factorization happens at the begin-
ning. Clearly, if this is the case, then the factorization must occur in the first
(umxm+1) factor of both words at the same position:

(umxm+1) (umxm+1)l−1 um (ym+1um)l−1 (ym+1um)

(umxm+1) (umxm+1)l−1 vm (ym+1um)l−1 (ym+1um)

Xa

Xa

= =

≡
W

I
m

+
1
,l−

1

=

23

So, we have (umxm+1)lum(ym+1um)l·XL
a ≡WI

m,l−1 (umxm+1)lvm(ym+1um)l·
XL
a because the two words are equal. For anXR

a factorization, we have to apply
induction on l and get

(umxm+1)l−1um(ym+1um)l−1 ≡WI
m+1,l−1 (umxm+1)l−1vm(ym+1um)l−1

in the middle. Thus, we also get (umxm+1)lum(ym+1um)l · XR
a ≡WI

m+1,l−1

(umxm+1)lvm(ym+1um)l · XR
a (because the other word parts are equal and

because ≡WI
m+1,l−1 is a congruence).

If the factorization happens at the end, the situation is similar. Clearly,
the factorization can only happen at the same position in the first (ym+1um)
factor of each word, respectively (in fact, it can only happen within the first
ym+1):

(umxm+1) (umxm+1)l−1 um (ym+1um) (ym+1um)l−1

(umxm+1) (umxm+1)l−1 vm (ym+1um) (ym+1um)l−1

Xa

Xa

=

≡
W

I
m
,l−

1

= =

We have um ≡WI
m,n vm by induction on m and (because l ≤ n) also um ≡WI

m,l−1

vm. Because the other parts of the words are equal, respectively, and be-
cause ≡WI

m,l−1 is a congruence, we get (umxm+1)lum(ym+1um)l · XL
a ≡WI

m,l−1

(umxm+1)lvm(ym+1um)l·XL
a . We have (umxm+1)lum(ym+1um)l·XR

a ≡WI
m+1,l−1

(umxm+1)lvm(ym+1um)l ·XR
a directly because the word parts on the right co-

incide.
Because Y La and Y Ra factorizations are symmetrical, the only remaining

case is a Ca,b factorization. It is not possible that Ca,b is defined on one of the
words but not on the other because in each respective part the same letters ap-
pear. If Ca,b is defined on (umxm+1)lum(ym+1um)l and on (umxm+1)lvm(ym+1um)l,
then the only possible situation is that the XL

a factorization happens at the
same position of the first (ym+1um) part in each word and the Y Rb factorization
happens at the same position of the last (umxm+1) factor in each word:

24

(umxm+1)l−1 (umxm+1) um (ym+1um) (ym+1um)l−1

(umxm+1)l−1 (umxm+1) vm (ym+1um) (ym+1um)l−1

Xa

Xa

Yb

Yb

=

≡
W

I
m
,l−

1

=

As in the previous case, we have um ≡WI
m,l−1 vm and, because the other parts

of the words coincide respectively, also (umxm+1)lum(ym+1um)l · Ca,b ≡WI
m,l−1

(umxm+1)lvm(ym+1um)l · Ca,b. ut

Theorem 3 Let m,n ∈ N. Then:

– Σ∗/≡Xm,n ∈ Rm

– Σ∗/≡Ym,n ∈ Lm

– Σ∗/≡XYm,n ∈ Rm ∨ Lm

– Σ∗/≡WI
m,n ∈ Rm+1 ∩ Lm+1

Proof To prove the theorem, one needs to show that the equations from
Lemma 1 hold in the respective monoid. To do this, it is worthwhile to make
an observation: choose m,n ∈ N and Z ∈ {X,Y,XY,WI} arbitrarily and let
M = Σ∗/≡Zm,n. The observation is that an equation α = β holds in M if and
only if σ (JαKn·M !) ≡Zm,n σ (JβKn·M !) holds for all assignments σ : Γ → Σ∗

where Γ is the alphabet of α and β (i. e. the set of variables appearing in α
and β).

So, to showΣ∗/≡WI
m,n ∈ Rm+1∩Lm+1, it suffices to show that σ (JUmKn·M !)

≡WI
m,n σ (JVmKn·M !) holds for all assignments of variables σ : Σ∗m → Σ∗. How-

ever, this follows from the first assertion of Lemma 4. The same is true for R1

and L1. To show Σ∗/≡Xm+1,n ∈ Rm+1 for m ∈ N0, we use the second assertion
of Lemma 4 and, for Σ∗/≡Ym+1,n ∈ Lm+1, we use the third one.

To prove that M/≡XYm,n is in Rm ∨ Lm, one can recycle an observation
from the proof of Theorem 2: a monoid is in the join V ∨W of two varieties
V and W if and only if it is a divisor of a direct product M1 ×M2 such that
M1 ∈ V and M2 ∈ W. Indeed, for any two congruences C1 and C2 over a
monoid N , N/ (C1 ∩ C2) is a divisor of N/C1 ×N/C2 (as can be shown easily).
Therefore, M/≡XYm,n is a divisor of the direct product of M/≡Xm,n ∈ Rm and
M/≡Ym,n ∈ Lm. ut

25

To conclude this section, we finally state and prove the converse of Lemma 1.
This gives us a full characterization of the Trotter-Weil Hierarchy in terms of
equations (see also [12]). Note that we include this proof only for the sake of
completeness. Strictly speaking, it is not necessary for the remainder of this
paper.

Lemma 5 Define the π-terms

U1 = (sx1)πs(y1t)
π and V1 = (sx1)πt(y1t)

π

over the alphabet Σ1 = {s, t, x1}. For m ∈ N, let xm+1 and ym+1 be new
characters not in the alphabet Σm and define the π-terms

Um+1 = (Umxm+1)πUm(ym+1Um)π and Vm+1 = (Umxm+1)πVm(ym+1Um)π

over the alphabet Σm+1 = Σm] {xm+1, ym+1}.
Then we have

M ∈ R1 = L1 = J ⇒ U1 = V1 holds in M ,
M ∈ Rm+1 ⇒ (Umxm+1)πUm = (Umxm+1)πVm holds in M ,
M ∈ Lm+1 ⇒ Um(ym+1Um)π = Vm(ym+1Um)π holds in M and

M ∈ Rm+1 ∩ Lm+1 ⇒ Um = Vm holds in M

for all m ∈ N.

Proof As stated in the proof of Lemma 1, the first implication is due to a well-
known characterization in terms of equations of J [21]. The other implications
can be proved by combining Lemma 4 and Theorem 2. For example, suppose
M ∈ Rm+1 and let σ : (Σm] {xm+1})∗ → M be an arbitrary assignment of
variables. We need to show σ (J(Umxm+1)πUmKM !) = σ (J(Umxm+1)πVmKM !).
By Theorem 2, there is an n ∈ N such that u ≡Xm+1,n v implies σ(u) = σ(v)
for all u, v ∈ (Σm] {xm+1})∗. Thus, for this n, we have

σ (J(Umxm+1)πUmKM !) = σ (J(Umxm+1)πUmKn·M !)

= σ (J(Umxm+1)πVmKn·M !) = σ (J(Umxm+1)πVmKM !)

since we have J(Umxm+1)πUmKn·M ! ≡Xm+1,n J(Umxm+1)πVmKn·M ! by Lemma 4.
ut

6 Relations and Equations

Infinite Version of the Relations. So far, we have mainly considered finite
words. In this section, which connects the relational approach outlined above
with equations, we finally need to consider generalized words. Thus, we also
define an infinite version of the above relations. Here, we allow an arbitrary
number of factorizations: for m ∈ N0 and Z ∈ {X,Y,XY,WI}, define

u ≡Zm v ⇔ ∀n ∈ N : u ≡Zm,n v.

Notice that this definition is not useful for finite words as every one of them
is in its own class.

26

Connecting the Relations and Equations. In order to solve the word problem
for π-terms over the varieties in the Trotter-Weil Hierarchy, one can use the fol-
lowing connection between the relations defined above and equations in these
varieties, which is straightforward if one makes the transition from finite to
infinite words. Besides its use for the word problem for π-terms, this connec-
tion is also interesting in its own right as it can be used to prove or disprove
equations in any of the varieties. As the class of monoids in which an equation
α = β holds is a variety, one can see the assertion for the join levels as an
implication of the ones for the corners.

Theorem 4 Let α and β be two π-terms. For every m ∈ N, we have:

JαKω+ω∗ ≡Xm JβKω+ω∗ ⇔ α = β holds in Rm

JαKω+ω∗ ≡Ym JβKω+ω∗ ⇔ α = β holds in Lm

JαKω+ω∗ ≡XYm JβKω+ω∗ ⇔ α = β holds in Rm ∨ Lm

JαKω+ω∗ ≡WI
m JβKω+ω∗ ⇔ α = β holds in Rm+1 ∩ Lm+1

Using Fact 1, which states that DA is equal to the union of all varieties in the
Trotter-Weil Hierarchy, we immediately get the following corollary.

Corollary 1
(
∀m ∈ N : JαKω+ω∗ ≡XYm JβKω+ω∗

)
⇔ α = β holds in DA

To prove Theorem 4, we need two technical lemmas. The first one basically
says that a sufficiently large finite power is as good as an ω + ω∗ power.

Lemma 6 Let m ∈ N0, Z ∈ {X,Y,XY,WI} and let u and v be accessible
words. Then:

u ≡Zm,n v ⇒ ∀ 0 ≤ k ≤ n : uk+1 ≡Zm,k vω+ω∗

Proof The case m = 0 is trivial. Therefore, let m > 0 and continue by in-
duction over k. Again, the case k = 0 is trivial. To complete the induction,
it remains to show that uuk+1 ≡Zm,k+1 vω+ω∗ holds for k < n. Obviously,
alph(uk+2) = alph

(
vω+ω∗

)
is satisfied by assumption. Now assume Z = X.

The assumption u ≡Xm,n v implies u ≡Ym−1,n−1 v. By induction on m, this
yields uk+1 ≡Ym−1,k v

ω+ω∗ and u ≡Ym−1,k v. Because ≡Ym−1,k is a congruence,
this shows uuk+1 ≡Ym−1,k vv

ω+ω∗ = vω+ω∗ . Let a ∈ alph(u) = alph(v). It re-
mains to show uuk+1 ·XL

a ≡Ym−1,k v
ω+ω∗ ·XL

a and uuk+1 ·XR
a ≡Xm,k vω+ω∗ ·XR

a .
For the former, note that u ≡Xm,n v implies u ·XL

a ≡Ym−1,n−1 v ·XL
a , which in

turn implies uuk+1 ·XL
a = u ·XL

a ≡Ym−1,k v ·XL
a = vvω+ω∗ ·XL

a = vω+ω∗ ·XL
a .

For the latter, note that u ≡Xm,n v implies u · XR
a ≡Xm,n−1 v · XR

a and, thus,
u·XR

a ≡Xm,k v·XR
a . By induction on k, we also have uk+1 ≡Xm,k vω+ω∗ . Together

these yield uuk+1 ·XR
a = (u ·XR

a)uk+1 ≡Xm,k (v ·XR
a)vω+ω∗ = vω+ω∗ ·XR

a .
The case for Z = Y is symmetric and the case for Z = XY follows directly.

Finally, for Z = WI the argumentation is analogous because, for k > 0, neither
uuk+1 · Ca,b nor vω+ω∗ · Ca,b is defined for any pair (a, b) of letters. ut

27

The second technical lemma states that, for finitely many factorization
steps, only finitely many positions of ω + ω∗ are relevant.

Lemma 7 Let m,n ∈ N0, Z ∈ {X,Y,XY,WI} and let γ be a π-term. Then

JγKk ≡Zm,n JγKω+ω∗

holds for all k ∈ N0 with k > n.

Proof The cases form = 0 or n = 0 are trivial. Thus, assumem > 0 and n > 0.
If γ = ε or γ = a for an a ∈ Σ, then JγKk = γ = JγKω+ω∗ . If γ = αβ for two π-
terms α and β, then by induction JαKk ≡Zm,n JαKω+ω∗ and JβKk ≡Zm,n JβKω+ω∗

hold. As ≡Zm,n is a congruence, this implies JγKk ≡Zm,n JγKω+ω∗ .
Finally, let γ = (α)π for a π-term α. It remains to show that JαKkk ≡Zm,n

JαKω+ω∗

ω+ω∗ . Clearly, the alphabetic condition is satisfied and, by induction, JαKk
≡Zm,n JαKω+ω∗ holds. For Z = X, let a ∈ alph(α). By induction on m

and n, we have JαKkk = JγKk ≡Ym−1,n−1 JγKω+ω∗ = JαKω+ω∗

ω+ω∗ . We also have
JαKkk · XL

a = JαKk · XL
a ≡Ym−1,n−1 JαKω+ω∗ · XL

a = JαKω+ω∗

ω+ω∗ · XL
a by def-

inition of JαKk ≡Xm,n JαKω+ω∗ . To show JαKkk · XR
a ≡Xm,n−1 JαKω+ω∗

ω+ω∗ · XR
a ,

we use JαKk · XR
a ≡Xm,n−1 JαKω+ω∗ · XR

a , which holds because of JαKk ≡Xm,n
JαKω+ω∗ , and show JαKk−1

k ≡Xm,n−1 JαKω+ω∗

ω+ω . This is sufficient because ≡Xm,n−1

is a congruence and we have uuω+ω∗ = uω+ω∗ for all words u. For showing
JαKk−1

k ≡Xm,n−1 JαKω+ω∗

ω+ω , we write k − 1 = k′ + n for a k′ ∈ N0 and

JαKk−1
k = JαKk

′

k JαKnk and

JαKω+ω∗

ω+ω∗ = JαKk
′

ω+ω∗JαKω+ω∗

ω+ω∗ .

Setting k = n − 1 in Lemma 6 yields JαKnk ≡Xm,n−1 JαKω+ω∗

ω+ω∗ , which concludes
the proof for Z = X since ≡Xm,n−1 is a congruence.

The case for Z = Y is symmetric, which also shows the case for Z = XY .
For Z = WI, we note that JαKω+ω∗

ω+ω∗ · Ca,b is defined for no pair a, b of letters.
On the other hand, JαKkk ·Ca,b can only be defined for k = 1, in which case we
are done because we have n = 0.

Now, we are finally prepared to prove Theorem 4.

Proof (for Theorem 4) The proof is structurally identical for all stated vari-
eties. Therefore, we limit our discussion to Rm.

First, let JαKω+ω∗ ≡Xm JβKω+ω∗ . Choose a monoid M ∈ Rm and an as-
signment of variables σ : Σ∗ → M . Because M is in Rm, there is an n ∈ N
such that u ≡Xm,n v implies σ(u) = σ(v) for any two words u, v ∈ Σ∗ (see also
Theorem 2). Now, choose c ∈ N with M ! · c > n. Then by assumption and
Lemma 7, we have

Σ∗ 3 JαKM !·c ≡Xm,n JαKω+ω∗ ≡Xm,n JβKω+ω∗ ≡Xm,n JβKM !·c ∈ Σ∗

and, therefore, σ(JαKM !) = σ(JαKM !·c) = σ(JβKM !·c) = σ(JβKM !), which is
equivalent to α = β holding in M .

28

Now, let JαKω+ω∗ 6≡Xm JβKω+ω∗ , which implies that there is an n ∈ N such
that JαKω+ω∗ 6≡Xm,n JβKω+ω∗ . Define M := Σ∗/≡Xm,n, which is in Rm (by
Theorem 3), and choose c ∈ N such that M ! · c > n. Then, by assumption and
Lemma 7, we have

Σ∗ 3 JαKM !·c ≡Xm,n JαKω+ω∗ 6≡Xm,n JβKω+ω∗ ≡Xm,n JβKM !·c ∈ Σ∗.

As assignment of variables σ : Σ∗ →M choose the canonical projection. This
yields σ(JαKM !) = σ(JαKM !·c) 6= σ(JβKM !·c) = σ(JβKM !), which means that
α = β does not hold in M . ut

7 Decidability

In the previous section, we saw that checking whether α = β holds in a variety
of the Trotter-Weil Hierarchy boils down to checking JαKω+ω∗ ≡Zm JβKω+ω∗

(where ≡Zm depends on the variety in question). In this section, we give an
introduction on how to do this. The presented approach works uniformly for
all varieties in the Trotter-Weil Hierarchy (in particular, it also works for the
intersection levels, which tend to be more complicated) and is designed to yield
efficient algorithms.

The definition of the relations which need to be tested is inherently recur-
sive. One would factorize JαKω+ω∗ and JβKω+ω∗ on the first a and/or last b (for
a, b ∈ Σ) and test the factors recursively. Therefore, the computation is based
on working with factors of words of the form JγKω+ω∗ where γ is a π-term.

u u u u u u

1 2 3 −3 −2 −1

ω-part ω∗-part

Fig. 7 Representation of uω+ω
∗

What happens if we consecutively fac-
torize at a first/last a is best under-
stood if one considers the structure of
J(α)πKω+ω∗ = JαKω+ω∗

ω+ω∗ = uω+ω∗ = w,
which is schematically represented in Fig-
ure 7.

Suppose u only contains a single a and
we start with the whole word w(−∞,+∞).
If we factorize on the first a taking the part to the right, then we end up
with the factor w(Xa(w;−∞),+∞) with Xa(w;−∞) = (p, 1) where p is the single
a-position in u. If we do this again, we obtain w((p,2),+∞). If we now factorize
on the next a but take the part to the left, then we get w((p,2),(p,3)). Notice
that the difference between 2 and 3 is 1 and that there is no way of getting a
(finite) difference larger than one by factorizing on the respective first a. On
the other hand, we can reach any number in N as long as the right position is
not in the ω-part.

Notice that there is also no way of reaching (p,−2) as left border without
having (q,−1) or (q,−2) as right border for a position q ∈ dom(u). These
observations (and their symmetrical duals) lead to the notion of normalizable
pairs of positions.

29

Definition 2 Let γ be a π-term and let w = JγKω+ω∗ . A pair (l, r) of positions
in w such that l is strictly smaller than r is called normalizable (with respect
to γ) based on the following rules:

– Any pair is normalizable with respect to γ = ε or γ = a for an a ∈ Σ.
– (−∞,+∞) is normalizable with respect to any π-term.
– If γ = αβ for π-terms α and β, l ∈ dom(JαKω+ω∗)] {−∞} and r ∈

dom(JβKω+ω∗)] {+∞}, then (l, r) is normalizable with respect to γ if
(l,+∞) is with respect to α and (−∞, r) is with respect to β.

– If γ = αβ for π-terms α and β and l ∈ dom(JαKω+ω∗)]{−∞} as well as r ∈
dom(JαKω+ω∗) (or l ∈ dom(JβKω+ω∗) as well as r ∈ dom(JβKω+ω∗)]{+∞}),
then (l, r) is normalizable with respect to γ if it is with respect to α (or β,
respectively).

– If γ = (α)π for a π-term α, l = (l′, n) for l′ ∈ dom(JαKω+ω∗) and n ∈ N]−N
and r = +∞, then (l, r) is normalizable with respect to γ if (l′,+∞) is
with respect to α and n is in N] {−1}.

– If γ = (α)π for a π-term α, l = −∞, and r = (r′,m) for r′ ∈ dom(JαKω+ω∗)
and m ∈ N] −N, then (l, r) is normalizable with respect to γ if (−∞, r′)
is with respect to α and m is in {1}] −N.

– If γ = (α)π for a π-term α, l = (l′, n) for l′ ∈ dom(JαKω+ω∗) and n ∈ N]−N
and r = (r′,m) for r′ ∈ dom(JαKω+ω∗) and m ∈ N] −N, then (l, r) is
normalizable with respect to γ if
– n ∈ N, m ∈ −N and (l′,+∞) and (−∞, r′) are normalizable with

respect to α,
– n,m ∈ N or n,m ∈ −N and in both cases m = n and (l′, r′) is normal-

izable with respect to α, or
– n,m ∈ N or n,m ∈ −N and in both cases m = n+ 1 and (l′,+∞) and

(−∞, r′) are normalizable with respect to α.

This definition looks cumbersome at first. All it does, however, is formaliz-
ing our previous observations. This allows us to give a formal inductive proof
that these observations hold for all positions reachable by iterated first/last a
factorization. First, we need to extend our notation. For this, we consider (ab-
stract) positions p ∈ {−∞,+∞}]dom(w) in a word w to be implicitly linked
to w. For a pair of positions (l, r) ∈ ({−∞}] dom(w)) × (dom(w)] {+∞})
in an accessible word w, we write

(l, r) ·XL
a = (l,Xa(w; l)), (l, r) ·XR

a = (Xa(w; l), r),

(l, r) · Y La = (l, Ya(w; r)) and (l, r) · Y Ra = (Ya(w; r), r)

for all a ∈ alphw(l,r). Note that we now have w(l,r) · ZDa = w(l,r)·ZDa for all
Z ∈ {X,Y } and all D ∈ {L,R}. In fact, we could have used this as the
definition previously. We also write (l, r) ·Ca,b for (l, r) ·XL

a ·Y Rb if Xa(w; l) is
strictly larger than Yb(w; r). Therefore, we also have w(l,r) · Ca,b = w(l,r)·Ca,b .
As with words, we omit the · if we apply a sequence of steps longer than one,
e. g. we simply write (l, r) ·XL

a Y
R
b = (l, r) ·XL

a · Y Rb = (l, r) · Ca,b.

30

Lemma 8 Let γ be a π-term and let w = JγKω+ω∗ . Additionally, let (l, r) be
a normalizable (with respect to γ) pair of positions in w. Then the pairs

(l, r) ·XL
a , (l, r) ·XR

a , (l, r) · Y La and (l, r) · Y Ra
are normalizable with respect to γ for any a ∈ alph(w(l,r)).

Therefore, (−∞,+∞)·F1F2 . . . Fn is normalizable with respect to γ for any
F1, F2, . . . , Fn ∈ {XL

a , X
R
a , Y

L
a , Y

R
a , Ca,b | a, b ∈ Σ} (if it is defined).

Proof As the cases for Y La and Y Ra are symmetrical, we only show those for XL
a

andXR
a . Let p = Xa(w; l) for an a ∈ alph(w(l,r)). Clearly, we have l <µ p <µ r,

where µ is the order type of w, and we need to show that (l, p) and (p, r) are
normalizable. For this, we proceed by induction on the structure of γ. The
base case γ = ε or γ ∈ Σ is trivial.

Case 1 (γ = αβ) Define u = JαKω+ω∗ and v = JβKω+ω∗ . For l ∈ dom(u)]
{−∞} and r ∈ dom(u) we have p ∈ dom(u) as well. Additionally, (l, r) needs
to be normalizable with respect to α by the definition of normalizability and we
can apply induction. The same argument, but on β, works for l ∈ dom(v) and
r ∈ dom(v)]{+∞}. For l ∈ dom(u)]{−∞} and r ∈ dom(v)]{+∞} we know
that (l,+∞) is normalizable with respect to α and (−∞, r) is with respect to β
by the definition of normalizablity. If p ∈ dom(u), then (p,+∞) = (l,+∞)·XR

a

and (l, p) = (l,+∞) · XL
a . Induction yields normalizability with respect to α

for both and, by the definition of normalizability, we have that (p, r) and (l, p)
are normalizable with respect to γ. For p ∈ dom(v), we can apply a similar
argument, as then (−∞, p) = (−∞,+∞) ·XL

a and (p, r) = (−∞, r) ·XR
a are

normalizable with respect to β.

Case 2 (γ = (α)π) Define u = JαKω+ω∗ and let p = (p′, k). If l = (l′, n)
for an n ∈ N] −N and r = +∞, then, by the definition of normalizability,
we have that (l′,+∞) is normalizable with respect to α and n ∈ N] {−1}.
There are two cases: for k = n ∈ N]{−1} we know that p′ = Xa(u; l′) and, by
induction, that (l′, p′), (p′,+∞) are normalizable with respect to α. This yields
the normalizability with respect to γ of (l, p) and (p,+∞). For k = n + 1 we
know that n 6= −1 and, therefore, that n, k ∈ N. We also have p′ = Xa(u;−∞)
and, thus, that (−∞, p′) and (p′,+∞) are normalizable with respect to α by
induction. By definition, (p,+∞) and (l, p) are normalizable with respect to γ
then. Note that k cannot have any other value than n or n+ 1 since otherwise
it could not be the smallest a-position to the right of l.

If l = −∞ and r = (r′,m), then k = 1, and p′ = Xa(u;−∞), which yields
(−∞, p′) = (−∞,+∞) · XL

a and (p′,+∞) = (−∞,+∞) · XR
a . By induction,

both of these pairs are normalizable with respect to α and, by definition of
the normalizability, (−∞, p) is normalizable with respect to γ. Furthermore in
this case, we know that (−∞, r′) is normalizable with respect to α and that
m is in {1}]−N. For m ∈ −N, this shows the normalizability with respect to
γ of (p, r). For m = 1, we have (p′, r′) = (−∞, r′) ·XR

a and, by induction, its
normalizability with respect to α. This yields that (p, r) is normalizable with
respect to γ.

31

If l = (l′, n) and r = (r′,m) for n ∈ N and m ∈ −N, we know that
(l′,+∞) and (−∞, r′) are normalizable with respect to α. For k = n ∈ N,
we also know that p′ = Xa(u; l′) and, therefore, that (l′, p′) = (l′,+∞) · XL

a

and (p′,+∞) = (l′,+∞) ·XR
a are normalizable with respect to α by induction.

Then, by definition, (l, p) and (p, r) are normalizable with respect to γ. For k =
n+1 ∈ N we have that p′ = Xa(u;−∞) and, therefore, the normalizability with
respect to α of (−∞, p′) = (−∞,+∞) ·XL

a and (p′,+∞) = (−∞,+∞) ·XR
a

by induction. This yields the normalizability with respect to γ of (l, p) and
(p, r).

Finally, if l = (l′, n) and r = (r′,m) for n,m ∈ N or n,m ∈ −N, we know
that 0 ≤ m−n ≤ 1. Because p must be in between l and r, n = m also implies
n = m = k and that p′ is in between l′ and r′ as well as p′ = Xa(u; l′). In
that case, we have that (l′, r′) and, by induction, also (l′, p′) = (l′, r′) · XL

a

and (p′, r′) = (l′, r′) ·XR
a are normalizable with respect to α. This yields the

normalizability with respect to γ of (l, p) and (p, r). For m = n+ 1, we know
that (l′,+∞) and (−∞, r′) are normalizable with respect to α. Moreover,
there are only two cases: k = n and k = m. In the former case, we have p′ =
Xa(u; l′) and the normalizability with respect to α of (l′, p′) = (l′,+∞) ·XL

a

and (p′,+∞) = (l′,+∞) ·XR
a by induction, which yields the normalizability of

(l, p) and (p, r) with respect to γ. In the latter case, we have p′ = Xa(u;−∞)
and the normalizability with respect to α of (−∞, p′) = (−∞,+∞) ·XL

a and
(p′, r′) = (−∞, r′) ·XR

a , which yields the normalizability with respect to γ of
(l, p) and (p, r). ut

The choice of words indicates that normalizability of a pair (l, r) can be
used to define a normalization. Before we give a formal – unfortunately, quite
technical – definition of this, we describe its idea informally. Let us refer back to
the schematic representation of J(α)πKω+ω∗ = w as given in Figure 7. Basically,
there are three different cases for relative positions of the left border l and the
right border r which describe the factor w(l,r):

1. l is in the ω-part and r is in the ω∗-part,
2. l and r are either both in the ω-part or both in the ω∗-part and have the

same value there, or
3. l and r are either both in the ω-part or both in the ω∗-part but r has a

value exactly larger by one than l.

This is ensured by the normalizability of (l, r). Now, in the first case, we can
safely move l to value 1 (the first position) and r to value −1 (the last position)
without changing the described factor. In the second and third case, we can
move l and r to any value – as long as we retain the difference between the
values – without changing the described factor. Here, we move them to the
left-most values (which are 1, 1 or 1, 2). Afterwards, we go on recursively.

Unfortunately, things get a bit more complicated because l might be −∞
and r might be +∞. In these cases, we normalize to the left-most or right-most
value without changing the factor.

For concatenations of π-terms, we have a similar situation: either l and r
belong both to the left or to the right factor, in which case we can continue

32

by normalization with respect to that, or l belongs to the left factor and r
belongs to the right one. In this case, we have to continue the normalization
with (l,+∞) and (−∞, r) in the respective concatenation parts, as this ensures
that the described factor remains unchanged.

Formalizing these ideas results in the following inductive definition.

Definition 3 Let γ be a π-term, w = JγKω+ω∗ and (l, r) a normalizable pair
of positions in w. The normalized pair (l, r)

γ
= (l̄, r̄) with respect to γ is

defined recursively:

– For γ = ε or γ = a ∈ Σ define l̄ = l and r̄ = r.
– If γ = αβ for π-terms α and β, l ∈ dom(JαKω+ω∗)] {−∞} and r ∈

dom(JβKω+ω∗)] {+∞}, then define l̄ as the first component of (l,+∞)
α

and r̄ as the second component of (−∞, r)
β
.

– If γ = αβ for π-terms α and β and l ∈ dom(JαKω+ω∗)]{−∞} as well as r ∈
dom(JαKω+ω∗) (or l ∈ dom(JβKω+ω∗) as well as r ∈ dom(JβKω+ω∗)]{+∞}),
then define (l̄, r̄) = (l, r)

α
(or (l̄, r̄) = (l, r)

β
, respectively).

– If γ = (α)π for a π-term α, then:
– if l = −∞, define l̄ = −∞,
– if r = +∞, define r̄ = +∞,
– if l = (l′, n) and r = +∞, define l̄ = (l̄′, n̄) with l̄′ given by the first

component of (l′,+∞)
α
and n̄ given by

n̄ =

{
1 if n ∈ N
−1 if n = −1,

– if l = −∞ and r = (r′,m), define r̄ = (r̄′, m̄) with r̄′ given by the
second component of (−∞, r′)

α
and m̄ given by

m̄ =

{
1 if n = 1

−1 if n ∈ −N,

– if l = (l′, n) and r = (r′,m) with n ∈ N and m ∈ −N, define l̄ = (l̄′, 1)

with l̄′ being by the first component of (l′,+∞)
α
and define r̄ = (r̄′,−1)

with r̄′ given by the second component of (−∞, r′)
α
,

– if l = (l′, n) and r = (r′,m) with n = m, define l̄ = (l̄′, n̄) and r̄ =

(r̄′, m̄) with (l̄′, r̄′) = (l′, r′)
α
and n̄ = m̄ = 1, and

– if l = (l′, n) and r = (r′,m) with m = n + 1, define l̄ = (l̄′, n̄) and
r̄ = (r̄′, m̄) with l̄′ given by the first component of (l′,+∞)

α
, r̄′ given

by the second component of (−∞, r′)
α
, n̄ = 1 and m̄ = n̄+ 1 = 2.

One should note that if we normalize a normalizable pair (l, r), then the
resulting pair is normalizable itself. Indeed, if we normalize an already nor-
malized pair again, we do not change any values. Formally, this can be proved
by an induction on the structure of the π-term. As an example for such an
induction, we prove the following lemma which states that normalizing a pair
of positions does not change the described factor.

33

Lemma 9 Let γ be a π-term and let (l, r) be a normalizable pair of positions
in w = JγKω+ω∗ . Then

w(l,r) = w
(l,r)

γ

holds.

Proof Define (l, r)
γ

= (l̄, r̄) and proceed by induction on the structure of γ.
The base cases for γ = ε and γ ∈ Σ are trivial.

If γ = αβ for π-terms α and β, then define u = JαKω+ω∗ and v = JβKω+ω∗ .
If l ∈ dom(u)] {−∞} and r ∈ dom(v)] {+∞}, then

w(l,r) = u(l,+∞)v(−∞,r) = u
(l,+∞)

αv
(−∞,r)β = w

(l,r)
γ .

If l ∈ dom(u)] {−∞} and r ∈ dom(u), then

w(l,r) = u(l,r) = u
(l,r)

α = w
(l,r)

γ .

The case l ∈ dom(v) and r ∈ dom(v)] {+∞} is symmetrical.
If γ = (α)π for a π-term α, then define u = JαKω+ω∗ . The case l = −∞

and r = +∞ is trivial. If l = (l′, n) for an n ∈ N] −N and r = +∞, define l̄′

by (l′,+∞)
α

= (l̄′,+∞). For n ∈ N we then have

w(l,r) = w((l′,n),+∞) =
(
uω+ω∗

)
((l′,n),+∞)

=
(
uω+ω∗

)
((l′,1),+∞)

because of uω+ω∗ = uuω+ω∗ and further

w(l,r) = u(l′,+∞)u
ω+ω∗ = u

(l′,+∞)
αuω+ω∗ = u(l̄′,+∞)u

ω+ω∗

=
(
uω+ω∗

)
((l̄′,1),+∞)

= w
((l′,n),+∞)

γ = w
(l,r)

γ

and for n = −1 – the only remaining case – we have

w(l,r) = w((l′,−1),+∞) = u(l′,+∞) = u
(l′,+∞)

α = u(l̄′,+∞) = w((l̄′,−1),+∞) = w
(l,r)

γ .

The case for l = −∞ and r = (r′,m) is symmetrical.
Therefore, we can assume l = (l′, n) and r = (r′,m). The case n ∈ N and

m ∈ −N is proved by a calculation similar to the one given above. For n = m
we have

w(l,r) = w((l′,n),(r′,n)) = u(l′,r′) = u
(l′,r′)

α = w
(l,r)

γ

and for m = n+ 1 we have

w(l,r) = u(l′,+∞)u(−∞,r′) = u
(l′,+∞)

αu
(−∞,r′)α = w

(l,r)
γ .

ut

34

Another observation is crucial for the proof of the decidability: after nor-
malizing a pair (l, r) the values belonging to the ω + ω∗ parts for the two
positions are all in {1, 2,−2,−1}. But: there are only finitely many such po-
sitions in any word w = JγKω+ω∗ for a π-term γ. Because the normalization
preserves the described factor, this means that there are only finitely many
factors which can result from a sequence of first/last a factorizations.

Plugging all these ideas and observations together yields a proof for the
next theorem.

Theorem 5 For two π-terms α and β over the same alphabet Σ, it is decidable
for all m ∈ N0 and all Z ∈ {X,Y,XY,WI} whether

JαKω+ω∗ ≡Zm JβKω+ω∗

holds. Furthermore, it is decidable whether

∀m ∈ N : JαKω+ω∗ ≡XYm JβKω+ω∗

holds.

Proof We decide whether u = JαKω+ω∗ ≡Zm JβKω+ω∗ = v holds by trying to find
a factorization sequence F1F2 . . . Fn with F1, F2, . . . , Fn ∈ {XL

a , X
R
a , Y

L
a , Y

R
a ,

Ca,b | a, b ∈ Σ} that can be applied to u but not to v (or vice versa), i. e. we
rather try to decide u 6≡Zm v instead.

Which sequences need to be tested depends on the actual relation. For
example, for ≡Xm, we can start with arbitrary many XR

a factorizations but,
as soon as we apply an XL

a , Y La or Y Ra factorization, we have changed the
direction and we have to decrease m by one. If we did this because of a Y Da
factorization (with D ∈ {R,L}), we also need to switch to a ≡Ym−1 mode, in
which case we can continue with arbitrary many Y La factorizations while any
other factorization decreases the remaining number of direction changes and
might also switch back to a≡Xm−2 mode. If we want to test≡WI

m , we also need to
allow Ca,b factorizations and we need to count the number of direction changes
appropriately. For testing ≡XYm for all m ∈ N, the situation is simpler: here, we
do not need to keep track of the remaining direction changes as there always
is an arbitrary number of them left. Clearly, we can construct a deterministic
finite automaton for any of the relations which accepts exactly those sequences
F1F2 . . . Fn which need to be tested.

To test whether a factorization sequence can be applied on u, we construct
an additional deterministic finite automaton. The states of this automaton are
the normalized pairs of positions in u (of which there only finitely many, as
discussed above). The initial state is (−∞,+∞) and all states are final. This
does not result in a trivial automaton because it will not be complete in general.
We have an F -labeled transition with F ∈ {XD

a , Y
D
a , Ca,b | a, b ∈ Σ,D ∈

{L,R}} from (l, r) to (l, r) · F
α
if (l, r) ·F is defined. Note that normalization

does not change the implicitly stored factor of u by Lemma 9. This automaton,
by construction, accepts exactly those factorization sequences which can be
applied to u.

35

Using the same construction, we can also get such an automaton for v. We
intersect both automata with the one which accepts the relevant factorization
sequences. For the resulting pair of automata, we check the symmetric differ-
ence of the accepted languages for emptiness. It is empty if any only if u and
v are in relation. ut

Together with Theorem 4, this gives the following decidability result. Note
that previous partial results exist: Almeida proved decidability for J [1,3],
Almeida and Zeitoun proved it for R [4] and Moura for DA [18].

Corollary 2 The word problems for π-terms over Rm, Lm, Rm ∨ Lm and
Rm∩Lm are decidable for any m ∈ N. Moreover, the word problem for π-terms
over DA is decidable.

8 Nondeterministic Logarithmic Space

In the presented algorithm, we construct for a π-term γ over the alphabet
Σ a deterministic finite automaton which accepts exactly those factorization
sequences which can be applied to JγKω+ω∗ = w. For this, we had to store
normalized pairs (l, r) of positions in w and we had to compute (l, r) · F

γ
for

a factorization F ∈ {XD
a , Y

D
a , Ca,b | a, b ∈ Σ,D ∈ {L,R}}. In this section,

we will show that both can be done by a deterministic Turing machine in
logarithmic space. Afterwards, we will show that this yields membership of
the word problems for π-terms to the class of problems which can be solved
by nondeterministic Turing machines within logarithmic space.

Observations and Ideas. We will start by having a close look on how to store
a position p (and, therefore, a pair of positions) in the word w = JγKω+ω∗ on a
Turing machine. To do this, we first store the position in γ which corresponds
to p in w; this, basically, is a simple pointer. Additionally, we need to store
to which value in N] −N the position p belongs for all relevant π-exponents;
this, we can do by storing a pointer to the π-position in γ together with the
corresponding value. If p is part of a normalized pair of positions, the values
can only be in {1, 2,−2,−1}, which is a finite set and, thus, needs only finite
information.

Example 1 Have a look at the π-term γ = a (b(c)π)
π
a(b)πc. The word JγKω+ω∗

can be represented by the following tree:

36

a

b

c c

. b

c c c

a

b b

c

The highlighted position can also be represented this way:

a (b (c) π) π a (b) π c

2 −1

Note that the last π-position does not have a value since it is not relevant
for the position. Also note that storing the values on a second tape directly
under the π-position would require linear space (for a position belonging to a
normalized pair). We store them in a position/value list which will turn out
to be more efficient after some modifications.

Unfortunately, this approach still requires at least linear space. But for
normalized pairs, we can optimize it further if we look at the definition of the
normalization. At some point the two positions l and r in the normalized pair
(l, r) branch since l is a smaller position than r. This can either happen because
l = −∞ or r = +∞, because there are sub-π-terms α and β and l belongs to
JαKω+ω∗ while r belongs to JβKω+ω∗ , or because of a sub-π-term of the form
(α)π where l has a different value compared to r. In the former two cases, we
call the pair c-branching8 and in the latter case π-branching. Whichever is the
case, we know that the values of l and r belonging to hierarchically higher
π-positions are always equal and, by definition of the normalization, are equal
to 1. Thus, we do not need to store these values explicitly; instead, we are
going to store the branching position.

If the branching position is a π-position (i. e. the pair is π-branching), then,
for a normalized pair, the values of l and r at this position can, by definition,
only be 1 for l and 2 for r or 1 for l and −1 for r. This information can be
stored alongside the branching position in constant space.

To store the values hierarchically below the branching position, we need
to have an even closer look at normalized position pairs. Before we do this,
however, it is convenient to define four position forms: a position is in +-form
if all its values for relevant π-positions are from N and it is in −-form if they
are from −N. Positions in ∓-form may only have values from N for π-positions

8 The “c” is for concatenation.

37

which are hierarchically lower than the first π-position with a value from N
and positions in ±-form are defined symmetrically. More formally, we define:

Definition 4 A position p ∈ dom(JγKω+ω∗) for a π-term γ is in

– +-form (with respect to γ) if
– γ = ε or γ ∈ Σ,
– γ = αβ for π-terms α and β and p is in +-form with respect to its

respective sub-π-term, or
– γ = (α)π for a π-term α, p = (p′, n) with n ∈ N and p′ is in +-form

with respect to α,
– −-form (with respect to γ) if

– γ = ε or γ ∈ Σ,
– γ = αβ for π-terms α and β and p is in −-form with respect to its

respective sub-π-term, or
– γ = (α)π for a π-term α, p = (p′, n) with n ∈ −N and p′ is in −-form

with respect to α,
– ∓-form (with respect to γ) if

– γ = ε or γ ∈ Σ,
– γ = αβ for π-terms α and β and p is in ∓-form with respect to its

respective sub-π-term,
– γ = (α)π for a π-term α, p = (p′, n) with n ∈ N and p′ has +-form, or
– γ = (α)π for a π-term α, p = (p′, n) with n ∈ −N and p′ has ∓-form,

or
– ±-form (with respect to γ) if

– γ = ε or γ ∈ Σ,
– γ = αβ for π-terms α and β and p is in ±-form with respect to its

respective sub-π-term,
– γ = (α)π for a π-term α, p = (p′, n) with n ∈ −N and p′ has −-form,

or
– γ = (α)π for a π-term α, p = (p′, n) with n ∈ N and p′ has ±-form.

Example 2 The position

a (b (c) π) π a (b) π c

2 −1

from the previous example is in ∓-form but not in any of the other three forms.
The similar position represented by

a (b (c) π) π a (b) π c

2 3

is in +-form, in ∓-form and in ±-form but it is not in −-form.

What use are these definitions for our goal of storing positions efficiently?
If we know that a position is in +-form or −-form, then we do not need to store

38

whether a value is from N or from −N. Similarly, if a position is in ∓-form or
in ±-form, then we only need to store one potential π-position at which the
values switch form −N to N or vice versa. While this does not seem to be a
huge gain since we still need to store the actual value, it will turn out to be
crucial later on.

Next, we need to make some further observations. Consider a π-term γ and
define w = JγKω+ω∗ . If we start with a position p ∈ dom(w) in ∓-form and we
go to the next a on the right (i. e. we compute Xa(w; p)), then the follow-up
position p′ is in ∓-form as well because strictly after the branching of p and
p′ all values for relevant π-position have to be 1 (since otherwise there would
already have been an a before). By symmetry, if we start in ±-form and go to
the previous a on the left, the resulting position will also be in ±-form.

Example 3 Look again at the π-term γ = a (b(c)π)
π
a(b)πc. Suppose we are in

the position p in w = JγKω+ω∗ and advance to p′ = Xb(w; p):

a

b

c c

. b

c c c

a

b b

c

p

p′

Clearly, p′ is in ∓-form.
If we advanced to p′′ = Xc(w; p) instead, the situation would be as follows:

a

b

c c

. b

c c c c

a

b b

c

p p′′

Again, p′′ clearly has ∓-form.

39

More formally, we can prove the following lemma:

Lemma 10 Let γ be a π-term and w = JγKω+ω∗ . Then

– Xa(w;−∞) is in +-form for any a ∈ alph(w),
– if l ∈ dom(w) is in +-form, then so is Xa(w; l) for all a ∈ alph(w(l,+∞)),
– if l ∈ dom(w) is in ∓-form, then so is Xa(w; l) for all a ∈ alph(w(l,+∞)),
– Ya(w; +∞) is in −-form for any a ∈ alph(w),
– if r ∈ dom(w) is in −-form, then so is Ya(w; r) for all a ∈ alph(w(−∞,r)),

and
– if r ∈ dom(w) is in ∓-form, then so is Ya(w; r) for all a ∈ alph(w(−∞,r)).

Proof By symmetry, we only have to prove the first three assertions.
We start by proving the first one. The cases γ = ε and γ ∈ Σ are trivial.

For the other cases, let a ∈ alph(w) and define p = Xa(w;−∞). If γ = αβ for
two π-terms α and β, we define u = JαKω+ω∗ and v = JβKω+ω∗ . Now, we have
p = Xa(u;−∞) or p = Xa(v;−∞). In either case, we can apply induction,
which yields that p is in +-form with respect to its sub-π-term, and we are
done. If γ = (α)π for a π-term α, define u = JαKω+ω∗ . Clearly, p has to be
equal to (p′, 1) for p′ = Xa(u;−∞). By induction, we have that p′ is in +-form
and, since 1 ∈ N, we are done.

The second assertion can be proved similarly. Let l ∈ dom(w) be in +-
form. If γ = ε or γ ∈ Σ, we do not have any remaining positions in dom(w)
for p = Xa(w; l). In the other cases, let a ∈ alph(w(l,+∞)). If γ = αβ for
two π-terms α and β, we define u = JαKω+ω∗ and v = JβKω+ω∗ . We have to
distinguish: if l and p both are in dom(u) (or, symmetrically, in dom(v)), then
we have p = Xa(u; l) and we can apply induction. Therefore, p is in +-form
with respect to α, which yields that p is also in +-form with respect to γ. If
l ∈ dom(u) and p ∈ dom(v), then we know that p = Xa(v;−∞), which is in
+-form with respect to β by the first assertion and, therefore, also in +-form
with respect to γ.

If γ = (α)π for a π-term α, define u = JαKω+ω∗ . We can write l = (l′,m)
and p = (p′, k) for some m, k ∈ N] −N and l′, p′ ∈ dom(u). By definition, l′
is in +-form because l is so. For k, there are only two possible cases: k = m
and k = m+ 1. In the former case, we know that p′ = Xa(u; l′) and can apply
induction to get that p′ is in +-form with respect to α. Since l is in +-form,
we also know that k = m ∈ N. Together, this yields that p is in +-form with
respect to γ. In the latter case k = m + 1, we know that p′ = Xa(u;−∞) is
in +-form by the first assertion. Since l is in +-form, we have m ∈ N and,
therefore, also k = m+ 1 ∈ N. Thus, p is in +-form with respect to γ.

Now, we prove the third assertion. Let l be in ∓-form with respect to γ.
Again, for γ = ε or γ ∈ Σ, there is nothing to show. The case for γ = αβ for
two π-terms α and β can be proved analogously to the corresponding case in
the proof for the second assertion.

If γ = (α)π for a π-term α, define u = JαKω+ω∗ and let p = Xa(w; l)
for an a ∈ alph(w(l,+∞)). We can write l = (l′,m) and p = (p′, k) for some
m, k ∈ N] −N and l′, p′ ∈ dom(u). Again, there are only two possible cases:

40

k = m and k = m+1. In the former case we have p′ = Xa(u; l′). If k = m ∈ N,
we know that l′ is in +-form since l has to be in ∓-form. By the second
assertion, this yields that p′ is in +-form as well. Therefore, we have that p is
in ∓-form. If k = m ∈ −N, we can simply apply induction and get that p′ is
in ∓-form with respect to α. This yields that p is in ∓-form with respect to γ.
In the latter case k = m + 1, we know that p′ = Xa(u;−∞) is in +-form by
the first assertion and that m 6= −1. This yields ∓-form for p if k = m+ 1 ∈ N
or k = m+ 1 ∈ −N. ut

This observation is also important for pairs which arise by consecutive
factorization at the first/last a. If we start in (−∞,+∞) and apply a se-
quence X of elements from XR

Σ =
{
XR
a

∣∣ a ∈ Σ}, then l′ in the resulting pair
(l′,+∞) = (−∞,+∞) · X will be in ∓-form. Equally, for a sequence over
Y LΣ =

{
Y La

∣∣ a ∈ Σ}, the right position will be in ±-form. Can we assume
that the left position is always in ∓-form and the right one is always in ±-
form? Unfortunately, the answer to this question is “no”. Suppose we start in
the pair (l, r) where l is in ∓-form and r is in ±-form. If we apply XL

a for some
a ∈ Σ, then, obviously, we end up in a pair (l, r′) whose right position is in
∓-form. But: the right position r′ branches form l at some point and strictly
below that point values for relevant π-positions are equal to 1. So, we could
say that for this lower part r′, indeed, is in ±-form. In fact, we will prove that,
strictly below the branching, l is always in ∓-form and r is always in ±-form
for any pair (l, r) = (−∞,+∞) · F where F is a sequence of elements from
FΣ = {XD

a , Y
D
a , Ca,b | a, b ∈ Σ,D ∈ {L,R}}. The situation at the branching

point itself depends on whether we have a c-branching or a π-branching pair.
For a π-branching pair, we cannot make an assumption on the value of l and
r at the actual branching π-position. We accommodate for this by having two
definitions.

Definition 5 Let (l, r) be a pair of positions in JγKω+ω∗ for a π-term γ such
that l is strictly smaller than r.

The pair is called well-c-shaped (with respect to γ) if

– γ = ε or γ ∈ Σ,
– γ = αβ for π-terms α and β, l ∈ dom(JαKω+ω∗)]{−∞}, r ∈ dom(JαKω+ω∗)

and (l, r) is well-c-shaped with respect to α,
– γ = αβ for π-terms α and β, l ∈ dom(JβKω+ω∗), r ∈ dom(JβKω+ω∗)]{+∞}

and (l, r) is well-c-shaped with respect to β,
– γ = αβ for π-terms α and β, l ∈ dom(JαKω+ω∗)]{−∞}, r ∈ dom(JβKω+ω∗)]
{+∞}, and
– l = −∞ or l is in ∓-form with respect to α, and
– r = +∞ or r is in ±-form with respect to β,
or

– γ = (α)π for a π-term α and
– l = −∞ and r = +∞,
– l = −∞ and r is in ±-form,
– l is in ∓-form and r = +∞, or

41

– l = (l′, n) and r = (r′, n) for an n ∈ N]−N and (l′, r′) is well-c-shaped
with respect to α,

It is called well-π-shaped (with respect to γ) if γ 6= ε and γ 6∈ Σ as well as

– γ = αβ for π-terms α and β, l, r ∈ dom(JαKω+ω∗) and (l, r) is well-π-shaped
with respect to α,

– γ = αβ for π-terms α and β, l, r ∈ dom(JβKω+ω∗) and (l, r) is well-π-shaped
with respect to β, or

– γ = (α)π for a π-term α, l = (l′, n), r = (r′,m) for n,m ∈ N] −N and
l′, r′ ∈ dom(JαKω+ω∗) and
– n = m and (l′, r′) is well-π-shaped with respect to α, or
– n 6= m, l′ is in ∓-form and r′ is in ±-form.

Finally, it is called well-shaped (with respect to γ) if it is well-c-shaped or
well-π-shaped (with respect to γ).

The definition of well-c-shapedness is related to c-branching pairs and the
definition of well-π-shapedness is related to π-branching pairs. Note that any
pair (l, r) of positions in JγKω+ω∗ for a π-term is well-c-shaped if l = −∞ or
r = +∞. This results in some asymmetry in the definition.

We proceed by showing that any pair (l, r) which arises by consecutive
factorization at the first/last a is well-c-shaped or well-π-shaped.

Lemma 11 Let (l, r) be a pair of positions in JγKω+ω∗ for a π-term γ. If (l, r)
is well-shaped, then so is (l, r) · F for any F ∈ FΣ (if it is defined).

Therefore, (−∞,+∞) ·F1F2 . . . Fn is well-shaped with respect to γ for any
F1, F2, . . . , Fn ∈ FΣ (if it is defined).

Proof The second part follows from the first since (−∞,+∞) is well-c-shaped
by definition.

Let (l, r) be well-shaped and let p = Xa(w; l) be defined for an a ∈ Σ. Due
to symmetry, it remains to show that (l, p) and (p, r) are well-shaped. Note
that this also includes the Ca,b factorization.

First, consider (l, p). If l = −∞, then p is in +-form by Lemma 10 and,
therefore, also in ±-form. This yields that (−∞, p) is well-c-shaped. Thus, we
may safely assume that l 6= −∞ and proceed by induction on the structure of
γ. With this assumption, the cases γ = ε and γ ∈ Σ cannot occur.

If γ = αβ for two π-terms α and β, define u = JαKω+ω∗ and v = JβKω+ω∗ .
If l and r are both in dom(u), then we know, by definition of well-shapedness,
that (l, r) is well-shaped with respect to α. We also know that p = Xa(u; l)
since pmust be between l and r. By induction, we have that (l, p) is well-shaped
with respect to α, which yields that (l, p) is also well-shaped with respect to
γ. If l ∈ dom(v) and r ∈ dom(v)] {+∞}, we can apply a similar argument.
For l ∈ dom(u) and r ∈ dom(v)] {+∞}, we know that (l, r) is well-c-shaped
and that l is in ∓-form with respect to α. This yields that (l,+∞) is well-c-
shaped with respect to α. By induction, we then have that (l, p) = (l,Xa(u; l))
is well-shaped with respect to α if p ∈ dom(u). Well-shapedness with respect
to γ follows in both cases, i. e. (l, p) is well-c-shaped or (l, p) is well-π-shaped,

42

by definition of well-shapedness. If p ∈ dom(v), then we have p = Xa(v;−∞),
which is in +-form (and, thus, in ±-form) by Lemma 10. By definition, we
have the well-c-shapedness of (l, p) with respect to γ.

If γ = (α)π for a π-term α, then define u = JαKω+ω∗ . We can write l =
(l′,m) and p = (p′, k) for some m, k ∈ N]−N and l′, p′ ∈ dom(u). For k = m,
we have p′ = Xa(u; l′). This yields well-shapedness with respect to α of (l′, p′)
by induction. By definition, we also have well-shapedness with respect to γ.
For k = m+ 1 (the only other possible case), we know p′ = Xa(u;−∞) which
is in +-form with respect to α by Lemma 10 and, therefore, also in ±-form. If
r = +∞, then (l, r) had to be well-c-shaped and l has to be in ∓-form. Then,
(l, p) is well-π-shaped. If r = (r′, n) for a n ∈ N]−N and r′ ∈ dom(u), then n
must be greater than m (with respect to ω + ω∗), because it must be greater
than or equal to k. Therefore, (l, r) has to be well-π-shaped and l has to be
in ∓-form. Again, (l, p) is well-π-shaped then, which concludes the proof that
(l, p) is always well-shaped.

Next, consider (p, r). If r = +∞, then (l, r) has to be well-c-shaped. This
implies that l = −∞ or l is in ∓-form. In either case, we have that p = Xa(w; l)
is in ∓-form by Lemma 10. Thus, (p,+∞) is well-c-shaped. Again, we can
safely assume that r 6= +∞ and proceed by induction on the structure of γ
where the cases γ = ε and γ ∈ Σ do not occur.

If γ = αβ for two π-terms α and β, then define u = JαKω+ω∗ and v =
JβKω+ω∗ . The case l ∈ dom(u)] {−∞} and r ∈ dom(u) and the case l, r ∈
dom(v) are similar to the argumentation for (l, p). For l ∈ dom(u)]{−∞} and
r ∈ dom(v), (l, r) has to be well-c-shaped. Therefore, r has to be in ±-form
with respect to β and (−∞, r) is well-c-shaped with respect to β. Induction
yields the well-shapedness with respect to β, and, thus, also with respect to
γ, of (p, r) if p ∈ dom(v). If p ∈ dom(u), we observe that well-c-shapedness of
(l, r) yields l = −∞ or l in ∓-form. In either case, p is in ∓-form by Lemma 10.
Thus, (p, r) is well-c-shaped with respect to γ.

If γ = (α)π for a π-term α, define u = JαKω+ω∗ . We can write p = (p′, k)
and r = (r′, n) for k, n ∈ N]−N. For k = n, distinguish: if l = −∞, then (l, r)
is well-c-shaped and r has to be in ±-form with respect to γ. Therefore, r′ has
to be in ±-form with respect to α. If l = (l′,m) for l′ ∈ dom(u) andm ∈ N]−N
with m <ω+ω∗ k = n, then (l, r) is well-π-shaped and r′, again, is in ±-form.
In both cases, this yields that (−∞, r′) is well-c-shaped with respect to α.
Induction yields that (p′, r′) = (Xa(u;−∞), r′) is well-shaped with respect
to α. Since k = n, this implies that (p, r) is well-shaped. If l = (l′,m) but
m = k = n, then (l′, r′) has to be well-shaped with respect to α and so has
to be (p′, r′) by induction, which again means that (p, r) is well-shaped with
respect to γ. If k <ω+ω∗ n and l = −∞, then (l, r) is well-c-shaped, r is in
±-form and p′ is in +-form by Lemma 10. Therefore, (p, r) is well-π-shaped.
If l = (l′,m) for l′ ∈ dom(u) and m ∈ N] −N and m ≤ω+ω∗ k <ω+ω∗ n, then
l′ and, thus, also p′ by Lemma 10 has to be in ∓-form while r′ has to be in
±-form. This concludes the proof because, then, (p, r) is well-π-shaped. ut

43

By the previous lemma, we know that there is maximally one switching
between values form −N to values from N in l below the branching position
and that the same – but in reverse – is true for r when we consider a pair (l, r)
which arises from (−∞,+∞) by applying a sequence of factorizations from
FΣ . However, the algorithm described in the proof of Theorem 5 performs
a normalization after each factorization step. So far, we have ignored this
normalization but the next lemma states that normalization preserves well-
shapedness.

Lemma 12 Let (l, r) be a well-shaped, normalizable pair of positions in JγKω+ω∗

for a π-term γ over Σ. Then, (l, r)
γ
is well-shaped.

Proof Let (l, r)
γ

= (l̄, r̄). In the special case l = −∞ and r = +∞, we have
(l, r)

γ
= (l, r) and we are done. For the other cases, we proceed by induction

over γ.
For γ = ε and γ ∈ Σ, we have that (l, r)

γ
is well-c-shaped. In the case

γ = αβ for two π-terms α and β, we distinguish: if l ∈ {−∞}]dom(JαKω+ω∗)
and r ∈ dom(JβKω+ω∗)] {+∞}, we have that (l, r) must be well-c-shaped,
that l̄ is given by the first component of (l,+∞)

α
and that r̄ is given by the

second component of (−∞, r)
β
. For l = −∞, we also have l̄ = −∞ and, for

r = +∞, we also have r̄ = +∞. If l 6= −∞, then l must be in ∓-form. Note
that normalization preserves the form of l when normalizing (l,+∞), so l̄ is in
∓-from as well. Symmetrically, r̄ must be in ±-form if r 6= +∞. Thus, (l, r)

γ
is

well-c-shaped. For l ∈ {−∞}] dom(JαKω+ω∗) and also r ∈ dom(JαKω+ω∗), we
have (l, r)

γ
= (l, r)

α
, which is well-shaped by induction. The same argument

proves the symmetric case l ∈ dom(JβKω+ω∗) and r ∈ dom(JβKω+ω∗)] {+∞}.
The remaining case is γ = (α)π for a π-term α. If we have l = −∞ or

r = +∞, then we know that l is in ∓-form or that r is in ±-form, respec-
tively, because (l, r) has to be well-c-shaped. As before, normalizing (−∞, r)
or (l,+∞) preserves this form, which makes the result well-c-shaped as well.
Therefore, we have l = (l′, n) and r = (r′,m) for n,m ∈ N]−N and positions
l′, r′ ∈ dom(JαKω+ω∗). For n = m, we have l̄ = (l̄′, 1) and r̄ = (r̄′, 1) with
(l̄′, r̄′) = (l′, r′)

α
. By induction, we have that (l′, r′)

α
is well-c-shaped or well-

π-shaped with respect to α. In either case, (l̄, r̄) is also well-c-shaped or well-π-
shaped with respect to γ. For n 6= m, the pair (l, r) has to be well-π-shaped, l′
must be in ∓-form and r′ must be in ±-form. Additionally, we have l̄ = (l̄′, n̄)
and r̄ = (r̄′, m̄) for n̄, m̄ ∈ N] −N and positions l̄′, r̄′ ∈ dom(JαKω+ω∗). Note
that we also have n̄ 6= m̄ (in both of the cases which can occur when normal-
izing). Furthermore, normalization of (l′,+∞) (with respect to α) preserves
the ∓-form of l′ and normalization of (−∞, r′) preserves the ±-form of r′, i. e.
we have l̄′ in ∓-form and r̄′ in ±-form, which makes (l, r)

γ
well-π-shaped. ut

Combining the previous two lemmas shows the following. Suppose we start
with the position pair (−∞,+∞) and apply a single factorization F1 ∈ FΣ ,
then we get (l′1, r

′
1) = (−∞,+∞) · F1, which is well-shaped. If we then nor-

malize (l′1, r
′
1), the resulting pair (l1, r1) = (l′1, r

′
1)
γ
is also well-shaped. We can

44

Name Values Size
ShapeType {“well-c-shaped”, “well-π-shaped”} O(1)
BranchPosition a π-position or +∞ O(logn)
BranchValues {(1, 2), (1,−1)} O(1)
lSwitchPosition a π-position or ⊥ O(logn)
rSwitchPosition a π-position or ⊥ O(logn)
lEndPosition a Σ-position or −∞ O(logn)
rEndPosition a Σ-position or +∞ O(logn)

Table 1 The variables required to compute the values at π-positions and their sizes.

continue with another factorization and normalize again; the result (l1, r2) will
still be well-shaped. Therefore, all the pairs of positions (l, r) which are states
in the deterministic finite automaton constructed in the proof of Theorem 5
are well-shaped and normalized.

One last small observation is necessary before we discuss the details of
storing those pairs: by definition of the normalization, l and r may only have
values from {1,−1} for π-positions which are hierarchically lower than the
branching position. Therefore, it is sufficient to store the potential π-position
at which the values switch (from −1 to 1 for l or form 1 to −1 for r).

Storing a Well-Shaped, Normalized Pair. Summing up all of our observations
results in the situation which is schematically represented in Figure 8. There-

Branching, possible values: (1, 2) and (1,−1)

Switching, value: 1

l

values: 1

values: −1

Switching, value: −1

r

values: −1

values: 1

values: (1, 1)

Fig. 8 Schematic representation of the possible values of a normalized pair (l, r)

fore, we can construct the values of l and r for a normalized, well-shaped pair
(l, r) of positions in JγKω+ω∗ at all relevant π-positions in the π-term γ from
the variables specified in Table 1.

We are going to explain the variables in more detail. Obviously, ShapeType
gets the value “well-c-shaped” if (l, r) is well-c-shaped and the value “well-
π-shaped” if (l, r) is well-π-shaped. For a well-c-shaped pair, we store the
hierarchically lowest π-position for which l and r share the same value in
BranchPosition. If l and r differ already in the hierarchically highest π-
position, we store +∞ in BranchPosition. For well-π-shaped pairs, we store

45

the π-position at which l and r branch in BranchPosition and their respective
values there in BranchValues. The value of BranchValues is not relevant in
other cases. If there is a π-position at which the values of l switch from −1 to 1
(that position is bound to be hierarchically lower than the branching position),
then we store the position of the first occurrence of 1 in lSwitchPosition.
rSwitchPosition stores the (potential) corresponding position for r. Finally,
in lEndPosition and rEndPosition we store the position in the π-term γ
which corresponds to l or r, respectively.

One may verify that all these values can be stored in the size specified
in the table, where n is the length of the π-term γ seen as a finite word in
Σ] { (,), π }.

The variables are sufficient to compute the values of l and r at all relevant
π-positions deterministically within logarithmic space bounds. We only discuss
how to do this for r, as this version can easily be adapted for l. Assume we
want to compute the value of r at a π-position given in piPos. Notice that
piPos is relevant for r if and only if rEndPosition lies in between the opening
and closing parenthesis belonging to piPos. Because finding the matching left
or right parenthesis is a simple matter of counting the opening and closing
parentheses this can be done deterministically in logarithmic space. Thus, we
may safely assume that our routine is only ever called for π-positions which
are relevant for r. To compute the value of r at piPos, we only have to know
to which part of r it belongs with respect to the schematic representation in
Figure 8. The first part where all values of r are equal to 1 consists of all π-
positions which are hierarchically higher than BranchPosition (assuming that
it is not equal to ⊥), including BranchPosition if ShapeType is “well-c-shape”
or excluding if BranchPosition is “well-π-shaped”. Because we already know
that both, BranchPosition and piPos are relevant for r, checking whether
one is hierarchically higher than the other can be done by comparing their
positions in γ, which is possible in logarithmic space. The hierarchically higher
one is to the right of the lower one. If piPos belongs to the first part, we can
return 1 immediately. Next, we check whether BranchPosition is equal to
piPos and ShapeType is “well-π-shaped”. If this is the case, we can return
the value 2 or −1 depending on the value of BranchValues. The next part
is from BranchPosition (excluding) to rSwitchPosition (excluding). Again,
we can check whether piPos belongs to this part by comparing the position
in the π-term and return 1 immediately. If piPos was not in any part so far,
we know that it belongs to the last part from rSwitchPosition (including)
onwards and can return −1. If BranchPosition is +∞ or rSwitchPosition
is ⊥, then the corresponding parts in Figure 8 simply do not exist and we can
omit the respective checks.

Compute a Follow-Up Pair. Now that we know how to store the well-shaped,
normalized pair (l, r) efficiently, we need to find a way to compute the normal-
ized follow-up pair if we apply an element from ZDΣ = {XD

a , Y
D
a | a ∈ Σ,D ∈

{L,R}} (Ca,b needs to be handled a bit differently; see below). By symmetry,
we can restrict our considerations to elements from XD

Σ , which means that

46

we have to find the first a-position for an a ∈ Σ on the right of the position
l in JγKω+ω∗ for the π-term γ. For this, we use the additional variables from
Table 2.

Name Values Size
CurrentPPosition a position in γ O(logn)
pBranchPosition a π-position or +∞ O(logn)
OpenParentheses a value to count open parentheses O(logn)

Table 2 The variables required to compute the follow-up pair and their sizes.

We start by setting pBranchPosition to ⊥ and OpenParentheses to 0.
CurrentPPosition gets assigned the next position to the right of the value of
lEndPosition. The algorithm now iteratively moves CurrentPPosition to the
right one position at a time. If CurrentPPosition reaches an a-position, we
are done. If CurrentPPosition reaches the end of γ, then we know that there is
no further a and we can stop. If CurrentPPosition reaches an opening paren-
thesis, then we increment OpenParentheses. If CurrentPPosition reaches a
closing parenthesis and pBranchPosition is ⊥, we distinguish: if OpenParen-
theses is > 0, then we decrement it and move on; if it is = 0, then we know
that the corresponding π-position is relevant for l. We check if the value of l at
that position is equal to −1. If that is the case, we can simply move on. If the
value is from N or < −1, then we set pBranchPosition to the π-position which
corresponds to the closing parenthesis and move CurrentPPosition to the
matching opening parentheses using OpenParentheses to count the number of
opening and closing parentheses. From that position we continue with the nor-
mal algorithm. If we then reach a closing parenthesis and pBranchPosition is
equal to CurrentPPosition, then we set pBranchPosition to⊥ and OpenPar-
enthesis to 0 and continue normally. Any other closing parenthesis which is
reached while pBranchPosition is not equal to ⊥ simply gets ignored.

Example 4 The only interesting part of the algorithm is that when a closing
parenthesis is reached. Therefore, we explain this part in more detail. Suppose
we are in the following situation9 and want to move to the next a:

a (1 (2 a)2
π2 b (3 c b (4 b)4

π4)3
π3)1

π1 a (5 b)5
π5 c

l: 2 −1

The algorithm would move CurrentPPosition to the right until it reaches (4

where OpenParentheses gets increased to 1. When)4 gets reached, OpenParen-
theses is set back to 0, which triggers a different behavior when reaching)3

in the next step: pBranchPosition gets set to π3 and CurrentPPosition
gets moved to (3 since l has the value 2 (and not −1) at π3. From there,

9 The numbers here do not have a special meaning other than to tell the parenthesis pairs
and their exponents apart from one another.

47

CurrentPPosition moves back to the right until it reaches)3 because)4

simply gets ignored and because there is no a between (3 and)3. At)3,
OpenPrantheses and pBranchPosition are reset to 0 and ⊥. At the next
closing parenthesis)1, the value of l gets checked again. But this time it is
equal to −1 and we continue to the right where we find the sought-after next
a.

If l had had the value −2 at π1, then the algorithm would have moved to
(1 and the next a would have been the one between (2 and)2. In that case,
pBranchPosition would have been set to π1 when the final a is reached.

When the algorithm stops (and CurrentPPosition is not moved beyond
the end of γ) then CurrentPPosition points to the position in γ which corre-
sponds to the next a-position p in JγKω+ω∗ . The values at the π-positions can
be reconstructed from the stored variables. Again, this can be done by dividing
the π-positions into parts for which the value is well-known. If a π-position is
relevant for p but not for l, then the value of p at that position has to be 1.

Example 5 In the last example π2, π4 and π5 are not relevant for l. If CurrentP-
Position would end up within the pair of parentheses belonging to any of these
positions, its value there would be 1.

If pBranchPosition has a value other than ⊥, then p has the value of l plus
1 there. Note that the value of l cannot be −1 in that case by the definition of
the algorithm. For π-positions which are relevant for l and for p and which are
hierarchically higher than the position in pBranchPosition, we know that the
values of l and p are equal. At those positions which are hierarchically lower
than pBranchPosition and which are relevant for l and for p, the value of p
has to be 1 just like in the first case. If pBranchPosition is ⊥, then the values
of p at positions relevant for l and for p are equal to the values of l.

Because – as said – it can be checked in logarithmic space whether a π-
position is relevant for l, p or r, this yields a deterministic algorithm with
logarithmic space bounds for calculating the values for p at all its relevant
π-positions. It remains to test whether p is still strictly smaller than r and
to compute the new values of the variables in Table 1 after an XD

a -step and
normalization. This test can be done by walking through all π-positions in γ
from the right to the left and checking whether they are relevant for p and for r.
If that is the case, we check their values. If the value of p is strictly smaller than
that of r, we are done. If they are equal everywhere, then CurrentPPosition
needs to be to the left of rEndPosition in γ.

For calculating the new values for the variables, a similar approach can
be applied. Consider the (slightly more difficult) case of XR

a where p gets the
new l. We walk through the π-positions in γ from right to left and check their
relevance for p and for r. If they are relevant for one or the other, we can
compute the values. As long as the values are equal (which means that the
position is relevant for both, p and r) we know that the π-positions belong to
the part in Figure 8 where l and r share the value 1. If there is a π-position
where the values are different, we can store that position in BranchPosition

48

and update BranchValues according to the value pair which normalization
would yield. In that case, we can set ShapeType to “well-π-shaped”. After
the BranchPosition, we have to check p and r individually for a change
from values in N to values in −N or vice versa and store the corresponding
position. If the values at all positions have been equal so far and we reach
a position which is relevant for r but not for p (the other way round is not
possible because p has to be smaller than r), we can set ShapeType to “well-
c-shaped” and BranchPosition to the last π-position where the values were
equal. ShapeType gets also set to “well-c-shaped” if we reach rEndPos before
there is a difference in the values.

Special Handling of Ca,b. By Theorem 3, we have to test whether JαKω+ω∗

≡WI
m JβKω+ω∗ holds in order to test whether α = β holds in Rm+1 ∩ Lm+1.

The definition of ≡WI
m , however, does not only rely on factorizations at the

first or last a. It uses an additional special factorization which behaves like
first factorizing on the first a and then factorizing on the last b but which is
only possible if the first a is to the right of the last b. As defined above, this
kind of factorization is represented by Ca,b.

Clearly, (l, r) · Ca,b can only be defined if (l, r) · XaYb is defined. But the
other direction does not hold: it is possible that (l, r) ·XaYb is defined while
(l, r) · Ca,b is undefined.

We have described how we can compute the follow-up values of the vari-
ables in Table 1 for a factorization at the first a and, by symmetry, also for
factorizations at the last b when we start with a factor which is given by a
normalized pair (l, r). We can combine these two calculations into a single one
for Ca,b. For this, we assume that we have two instances of the variables in
Table 2, one instance for the factorization at the first a and one instance for
the factorization at the last b. For both instances, we apply the normal algo-
rithm for the corresponding factorization. Afterwards, we check whether the
position of the first a is to the left of r and whether the position of the last b is
to the right of l just like we did before. For Ca,b, we simply add a third check
which can be done in a similar manner to the other checks: we check whether
the position of the first a is to the right of the position of the last b. If this
check fails, then we know that (l, r) · Ca,b is undefined, otherwise it indeed is
defined.

Decidability in Nondeterministic Logarithmic Space. Let us recapitulate the
proof for decidability for the word problems for π-terms. First, we saw that
the actual problem we needed to decide was whether JαKω+ω∗ and JβKω+ω are
equivalent with respect to the relation belonging to the variety in question.
To decide this, we constructed a deterministic finite automata Aα and Aβ for
each of the input π-terms α and β. The automaton Aα accepted exactly those
factorization sequences F ∈ F ∗Σ for which JαKω+ω∗ · F (or JβKω+ω∗ · F in the
case of Aβ) is defined. Additionally, we also constructed a deterministic finite
automaton B which accepted those factorization sequences that need to be
tested for the respective relation. Finally, we created for Aα and for Aβ an

49

automaton accepting the intersection with the sequences accepted by B. For
these automata, we checked the symmetric difference for emptiness.

Checking the symmetric difference can be done in nondeterministic loga-
rithmic space by a naïve (iterative) guess and check algorithm. The automaton
B is fixed for every variety in the Trotter-Weil Hierarchy and for DA (or can
be constructed deterministically in space logarithmic in m if one considers this
as an input). Creating an automaton for the intersection can be done in deter-
ministic logarithmic space. The only interesting operation is the construction
of Aα and Aβ . With the ideas from this section, we can describe how to do
this in deterministic logarithmic space.

Input: a π-term α
Output: Aα (which accepts a subset of F ∗Σ)
Algorithm:

for all possible values V of the variables in Table 1 do
for all F ∈ FΣ do

Compute the values V ′ of the variables for the follow-up pair after
application of F and normalization.
If there is such a follow-up pair, then output the transition

V V ′
F

end for
end for
Mark the state which represents (−∞,+∞) as initial state.
Mark any state as final.

In difference to our previous construction, the states in this automaton are not
the normalized pairs of positions anymore. Instead, we are representing them
by their corresponding values for the variables in Table 1. Of course, not all
possible values of the variables represent a valid normalized pair, but, since
the corresponding states cannot be reached from the initial state, these errors
do not affect the result.

These considerations allow us to state the following theorem.

Theorem 6 Each of the word problems for π-terms over Rm, Lm, Rm∨Lm,
Rm ∩ Lm and DA can be solved by a nondeterministic Turing machine in
logarithmic space (for every m ∈ N).

9 Deterministic Polynomial Time

While NL is quite efficient from a complexity class perspective, directly trans-
lating the algorithm to polynomial time does not result in a better running
time than the algorithm for DA given by Moura [18]. However, with some
additional tweaks, the algorithm’s efficiency can be improved.

50

Encoding and Calculating Positions. Because we are not limited in space, we
can encode a position p ∈ dom(w) with w = JγKω+ω∗ for a π-term γ simply by
storing the values at the relevant π-positions and the corresponding position
in γ. Clearly, we can obtain the values of p at a given π-position in constant
time. Additionally, we can store a (possibly normalized) pair (l, r) by storing
l and r. If we want to normalized such a pair, we walk through all relevant
π-positions and update the values of l and r there, which requires at most
linear time. Similarly, we can test whether a position is strictly smaller (or
larger) than an other position in linear time.

Suppose we have stored a position p ∈ dom(w) and want to compute
Xa(w; p) for an a ∈ Σ. We can re-use the algorithm which we used previously
to solve the problem in logarithmic space (see page 47). This algorithm moves
a pointer, which belongs to a position in γ, to the right in every step. The
only time it is moved to the left is when it hits a closing parenthesis and p
has a value at the corresponding π-position which is not −1. In that case,
we move to the matching opening parenthesis and continue to move to the
right from there until we hit the closing parenthesis again. Note that there is
no “back-setting to the left” in that process. Therefore, we can compute the
position of the next a in at most quadratic time.

Computing the Automata and Equivalence Test. As we did before, we construct
a (not necessarily complete) deterministic finite automaton for each input
π-term γ. The automaton accepts exactly those sequences of factorizations
which can be applied to JγKω+ω∗ and which need to be tested for the variety
in question. We will only demonstrate the details of the construction for the
variety Rm+1 ∩ Lm+1 and the input term α; the construction for the other
varieties is similar. We need the variables core and fringe, which contain
subsets of (dom(u) × dom(u)) × {1, 2, . . . ,m} where u = JγKω+ω∗ such that
all pairs (l, r) ∈ dom(u) × dom(u) are normalized. The algorithm works as
follows:
core← ∅
fringe← {((−∞,+∞),m)}
while fringe 6= ∅ do

Remove ((l, r), k) from fringe
if k > 0 then

for all a ∈ Σ do
Compute (l′, r′) = (l, r) ·XL

a if defined . time limited by O(n2)
if (l′, r′) is defined then

(l̄′, r̄′)← (l′, r′)
α

. time limited by O(n)
Save transition

(l, r)
k

(l̄′, r̄′)
k − 1

XL
a

Add ((l̄′, r̄′), k − 1) to fringe unless it is in core

51

end if
Compute (l′, r′) = (l, r) ·XR

a if it is defined
if (l′, r′) is defined then

(l̄′, r̄′)← (l′, r′)
α

Save transition

(l, r)
k

(l̄′, r̄′)
k

XR
a

Add ((l̄′, r̄′), k) to fringe unless it is in core
end if
Handle Y La and Y Ra analogously
for all b ∈ Σ do . Special case which is only required for ≡WI

m

Compute (l′, r′) = (l, r) · Ca,b if it is defined
if (l′, r′) is defined then

(l̄′, r̄′)← (l′, r′)
α

Save transition

(l, r)
k

(l̄′, r̄′)
k − 1

Ca,b

Add ((l̄′, r̄′), k − 1) to fringe unless it is in core
end if

end for
end for
Add ((l, r), k) to core

end if
end while
Set ((−∞,+∞),m) as initial state
Mark all states as final states

Clearly, the resulting automaton accepts the desired factorization sequences.
We know that any normalized pair can be encoded by the variables in Table 1.
Therefore, the number of such pairs is limited by O(n5) when n is the length
of γ seen as a finite word. This directly yields that the constructed automaton
has at most O(n5m) states. Because the outer loop handles any ((l, r), k) at
most once the algorithm’s running time is limited by O(n7m).

After the construction of the two automata for α and β, we need to test
them for equivalence. They are equivalent if and only if JαKω+ω∗ ≡WI

m JβKω+ω∗

holds. The test for equivalence can be done by the algorithm of Hopcroft and
Karp [9] in almost linear time in the size of the automata. Since the number of
states is bounded by O(n5m), the total running time of our complete algorithm
is dominated by O(n7m2).

The automata for the varietiesRm, Lm andRm∨Lm need to store whether
the last factor was obtained by an element from XD

Σ or by an element from
Y DΣ . This information, however, is only of constant size and, therefore, does

52

not change the asymptotic running time of the overall algorithm. For DA we
can omit the counting for m in k by Fact 1, which even reduces the number
of states.

This finally shows the following theorem.

Theorem 7 The word problems for π-terms over Rm, Lm, Rm ∨ Lm and
Rm ∩ Lm can be solved by a deterministic algorithm with running time in
O(n7m2) where n is the length of the input π-terms. Moreover, the word prob-
lem for π-terms over DA can be solved by a deterministic algorithms in time
O(n7).

10 Separability

Two languages L1, L2 ⊆ Σ∗ are separable by a variety V if there is a language
S ⊆ Σ∗ with L1 ⊆ S and L2 ∩ S = ∅ such that S can be recognized by a
monoid M ∈ V. The separation problem of a variety V is the problem to
decide whether two regular input languages of finite words are separable by
V.

We are going to show the decidability of the separations problems of Rm

for all m ∈ N as well as for DA using the techniques presented in this paper10.
Note that, by symmetry, this also shows decidability for Lm.

The general idea is as follows. If the input languages are separable, then
we can find a separating language S which is recognized by a monoid in the
variety in question. We can do this by recursively enumerating all monoids and
all languages in a suitable representation. For the other direction, we show
that, if the input languages are inseparable, then there are π-terms α and
β which witness their inseparability. Since we can also recursively enumerate
these π-terms, we have decidability.

To construct suitable π-terms we need an additional combinatorial property
of the ≡Xm,n relations (which, in a slightly different form, can also be found in
[15]).

Lemma 13 Let n,m ∈ N with m ≥ 2 and let u ≡Xm,n v for two accessible
words u and v. Then, u·XL

a ≡Xm,n−1 v ·XL
a holds for all a ∈ alph(u) = alph(v).

Proof We prove the lemma by induction over n. For n = 1, the assertion is
satisfied by definition. Therefore, assume we have u ≡Xm,n+1 v and we want
to show u0 := u · XL

a ≡Xm,n v · XL
a =: v0. We already have u0 ≡Ym−1,n v0 by

definition of ≡Xm,n+1. This especially implies alph(u0) = alph(v0) since we have
m ≥ 2 and n ≥ 1, as well as u0 ≡Ym−1,n−1 v0. Additionally, we have

u0 ·XL
b = u ·XL

b ≡Ym−1,n v ·XL
b = v0 ·XL

b

for all b ∈ alph(u0) = alph(v0), which implies u0 · XL
b ≡Ym−1,n−1 v0 · XL

b .
All that remains to be shown is that u0 · XR

b ≡Xm,n−1 v0 · XR
b holds for all

10 Decidability of the separation problem of DA is already known [22]. The proof, however,
uses a fixed point algorithm, which is different from our approach.

53

b ∈ alph(u0) = alph(v0). Applying induction on u · XR
b ≡Xm,n v · XR

b (for
the same a) yields u · XR

b X
L
a ≡Xm,n−1 v · XR

b X
L
a . Since we have u0 · XR

b =

u ·XL
aX

R
b = u ·XR

b X
L
a and v0 ·XR

b = v ·XL
aX

R
b = v ·XR

b X
L
a , we are done. ut

Using this property, one can prove the following lemma about the π-term
construction.

Lemma 14 Let M be a monoid, ϕ : Σ∗ →M a homomorphism and m ∈ N0.
Let (un, vn)n∈N0 be an infinite sequence of word pairs (un, vn)n∈N0 with

– un, vn ∈ Σ∗,
– un ≡Xm,n vn,

– ϕ(un) = mu and
– ϕ(vn) = mv

for fixed monoid elements mu,mv ∈ M and all n ∈ N0. Then, the sequence
yields π-terms α and β (over Σ) such that ϕ (JαKM !) = mu, ϕ (JβKM !) = mv

and JαKω+ω∗ ≡Xm JβKω+ω∗ hold.

Before we give a proof of the general case, we give a separate one for the
case m = 1. It is basically an adaption of the ideas from the proof showing
decidability of the separation problem for the variety J of J -trivial monoids
given by van Rooijen and Zeitoun [30] to our setting.

Proof (m = 1) This proof is based on Simon’s Factorization Forest Theorem
[26]. For a finite word w ∈ Σ+, a factorization tree is a rooted, finite, unranked,
labeled ordered tree such that

– the tree’s root is labeled with w,
– the leaves are labeled with letters (from Σ) and
– any internal node has at least two children and, if its children are labeled

with w1, w2, . . . , wk ∈ Σ+, then the node is labeled with w1w2 . . . wk.

For every homomorphism ψ : Σ∗ → N into a monoid N , Simon’s Factorization
Forest Theorem yields a factorization tree for every finite word w ∈ Σ+ such
that ψ maps the labels of a node’s children to the same idempotent in N if
the node has at least three children. Furthermore, the tree’s height11 is finite
and limited by some constant that solely depends on |N | (and, in particular,
not on w).

Before we begin with the actual proof, we note that, if we remove pairs from
the sequence (un, vn)n∈N0

and still have an infinite sequence, then the resulting
sequence still satisfies all conditions stated above, in particular un ≡X1,n vn.

We extend ϕ into a homomorphism Σ∗ → M × 2Σ which maps a word w
to its alphabet alph(w) for the second component.12 Then, we observe that
there has to be an infinite subsequence such that all first components as well as
all second components have the same alphabet. Indeed, these two alphabets
have to coincide by the definition of ≡X1,n! We remove all other words from
the sequence. If the remaining words un and vn are all empty (i. e. they have

11 A single node has height 0.
12 2Σ is the monoid of all subsets of Σ with taking union as the monoid’s operation.

54

alphabet ∅), we can choose α = β = ε as well. Otherwise, we apply Simon’s
Factorization Forest Theorem to the remaining words un and vn, which yields
a sequence of factorization tree pairs (Tu,n, Tv,n). We first construct α from
(Tu,n)n∈N0

such that we have ϕ(JαKM !) = mu and the following conditions:

– If w ∈ Σ∗ is a subword13 of un for an n ∈ N0, then w is a subword of
JαKω+ω∗ .

– If w ∈ Σ∗ is a subword of JαKω+ω∗ , then it is a subword of all un with
n ≥ n0 for an n0 ∈ N0.

Afterwards, we proceed with (Tv,n)n∈N0
to construct β in the same manner.

We may assume that all trees Tu,n have the same height H as the height is
bounded by a constant and we can remove all words un from the underlying
sequence which yield a tree not of height H. If H is zero, all trees consist
of a single leaf and all words un consist of a single letter. Among these, one
letter a ∈ Σ has to appear infinitely often; we remove all other words from the
sequence and choose α = a. Clearly, all conditions for α are satisfied.

For H > 0, we consider the situation at the root of each Tu,n. Let un,1, un,2,
. . . , un,Kn be the labels of the root’s children in Tu,n. If the sequence (Kn)n∈N0

is bounded, there is an infinite subsequence such that Kn is equal to a specific
K ≥ 2 for all indexes n of the subsequence; we remove all words not belonging
to this subsequence. In the result, there is an infinite subsequence such that,
for each sequence (un,k)n∈N0

with 1 ≤ k ≤ K, all un,k get mapped to the same
monoid element by ϕ; we remove all other words. As each child of the root
yields a subtree, taking these subtrees gives K infinite sequences of factoriza-
tion trees of height H− 1. Applying induction on H yields α1, α2, . . . , αK . We
define α := α1α2 . . . αK . Because α1, α2, . . . , αK satisfy the conditions stated
above for their respective subtree sequence, so does α for (Tu,n)n∈N0

.
If the sequence (Kn)n∈N0

is unbounded, we can, without loss of gener-
ality, assume Kn ≥ 3 for all n ∈ N0 and that it is strictly increasing –
again taking the appropriate infinite subsequence. Also, we can assume that
all un,1, un,2, . . . , un,Kn get mapped to the same idempotent e ∈ M × 2Σ .
Choose w ∈ ϕ−1(e) arbitrarily and define α := (w)π. Note that we now have
alph(un,1) = alph(un,2) = · · · = alph(un,Kn) = alph(un) = alph(w) for all
n ∈ N0. Therefore, α satisfies the conditions above.

All which remains to be shown is that we now have JαKω+ω∗ ≡X1 JβKω+ω∗ .
The important observation here is that w1 ≡X1,n w2 with n ∈ N0 holds if and
only if w1 and w2 have the same subwords of length ≤ n. This means we
have to show that JαKω+ω∗ and JβKω+ω∗ have the same subwords (of arbitrary
length). To show the subword equality, assume w is a subword of JαKω+ω∗

(without loss of generality). By the conditions above, w is a subword of all un
with n ≥ n0 for an n0 ∈ N0. Let ñ = max{n0, |w|}. Since we have uñ ≡X1,ñ vñ
and by applying our observation regarding subwords and ≡X1,ñ, w is a subword
of vñ and, thus, a subword of JβKω+ω∗ . ut

13 Recall that a finite word u = a1a2 . . . an with ai ∈ Σ is a subword of a (not necessarily
finite) word v if we can write v = v0a1v1a2v2 . . . anvn for some words v0, v1, . . . , vn.

55

Next, we give a proof for the general case m ≥ 1.

Proof (of Lemma 14) The assertion is trivial for m = 0. The case m = 1 has
already been covered. Form > 1, we proceed by induction over |Σ|. For Σ = ∅,
we set α = β = ε = un = vn. For |Σ| > 0, remember the observation from the
previous proof: if we take an infinite subsequence (u′n, v

′
n)n∈N0

of (un, vn)n∈N0
,

this sequence will still satisfy all conditions of the lemma. In particular, we
will still have u′n ≡Xm,n v′n for all n ∈ N0.

Now, we factorize un = wn,0an,0wn,1an,1 . . . wn,Knan,Knwn,Kn+1 for all
n ∈ N0 such that alph(wn,k) = alph(un) \ {an,k} for all k ∈ {0, 1, . . . ,Kn}
and alph(wn,Kn+1) (alph(un). If the sequence (Kn)n∈N0

is bounded, let K
be one of the numbers which appear infinitely often in it and restrict all fur-
ther considerations to the corresponding subsequence of words. If (Kn)n∈N0 is
unbounded, let K = |M |2 + 1 and remove all word pairs (un, vn) for which
Kn is smaller than K from the sequence. For all k ∈ {0, 1, . . . ,K}, a single
letter ak ∈ Σ has to appear infinitely often in the sequence (an,k)n∈N0

be-
cause Σ is of finite size. We restrict our consideration to the corresponding
subsequence. Then, we define xn,k = un · XR

a0X
R
a1 . . . X

R
ak−1

XL
ak

and yn,k =

vn · XR
a0X

R
a1 . . . X

R
ak−1

XL
ak

for k ∈ {0, 1, . . . ,K} as well as xn,K+1 = un ·
XR
a0X

R
a1 . . . X

R
aK and yn,K+1 = vn · XR

a0X
R
a1 . . . X

R
aK . We, thus, have un =

xn,0a0xn,1a1 . . . xn,KaKxn,K+1 and vn = yn,0a0yn,1a1 . . . yn,KaKyn,K+1 for
all n ∈ N0. Because K is constant, we can safely assume that ϕ maps all
elements of the sequence (xn,k)n∈N0 (for every k ∈ {0, 1, . . . ,K + 1}) to the
same element sk ∈ M : one element has to appear infinitely often and we
take the corresponding subsequence. In the same way, we can ensure that ϕ
maps all element of (yn,k)n∈N0

to the same element tk ∈ M (again, for all
k ∈ {0, 1, . . . ,K+ 1}). By removing the first K+ 2 pairs of words, we can also
ensure un ≡Xm,n+K+2 vn for all n ∈ N0. This implies xn,k ≡Xm,n+K+2−k−1 yn,k
for all n ∈ N0 and all k ∈ {0, 1, . . . ,K} by Lemma 13. Directly by the def-
inition of ≡Xm,n, we already have xn,K+1 ≡Xm,n+K+2−K−1 yn,K+1 and, there-
fore, xn,k ≡Xm,n yn,k for all k ∈ {0, 1, . . . ,K + 1}. We can apply induction to
(xn,k, yn,k)n∈N0

for k ∈ {0, 1, . . . ,K} since we have ak 6∈ alph(xn,k) by con-
struction. This yields π-terms α0, α1, . . . , αK , β0, β1, . . . , βK . If (Kn)n∈N0 was
bounded, then alph(xn,K+1) = alph(yn,K+1) (alph(un) = alph(vn) holds
and we can apply induction as well, which yields π-terms αK+1 and βK+1.
Setting α = α0a0α1a1 . . . αKaKαK+1 and β = β0a0β1a1 . . . βKaKβK+1 sat-
isfies JαKω+ω∗ ≡Xm JβKω+ω∗ since ≡Xm is a congruence. If (Kn)n∈N0

was un-
bounded, we set K = |M |2 + 1 and, by the pigeon hole principle, there are
i, j ∈ {0, 1, . . . ,K} with i < j and

s0ϕ(a0)s1ϕ(a1) . . . siϕ(ai) = s0ϕ(a0)s1ϕ(a1) . . . sjϕ(aj) and
t0ϕ(a0)t1ϕ(a1) . . . tiϕ(ai) = t0ϕ(a0)t1ϕ(a1) . . . tjϕ(aj).

We define

α = α0a0α1a1 . . . αiai (αi+1ai+1αi+2ai+2 . . . αjaj)
π
αK+1 and

β = β0a0β1a1 . . . βiai (βi+1ai+1βi+2ai+2 . . . βjaj)
π
βK+1

56

where αK+1 and βK+1 are obtained by using induction on m (and symmetry)
for the sequences (xn,K+1)n∈N0 and (yn,K+1)n∈N0 , i. e. we have ϕ(JαK+1KM !) =
sK+1, ϕ(JβK+1KM !) = tK+1 and JαK+1Kω+ω∗ ≡Ym−1 JβK+1Kω+ω∗ . Therefore,
we have ϕ (JαKM !) = mu and ϕ (JβKM !) = mv by construction. We also have
JαKω+ω∗ ≡Xm JβKω+ω∗ : for the part left up to and including the (·)π, we have
equivalence by induction and because ≡Xm is a congruence; the right part, we
cannot reach by arbitrarily many XD

a factorizations since all letters appear
infinitely often in the (·)π part and, if we reach it by using at least one Y Da
factorization, we are done since we have JαKω+ω∗ ≡Ym−1 JβKω+ω∗ . ut

We can now plug everything together and prove the following theorem.

Theorem 8 For each m ∈ N, the separation problem for Rm is decidable and
so is the one for Lm.

Proof We only consider Rm as the case for Lm is symmetric. If the input
languages are separable, we can find a separating language by enumerating all
candidates. If the languages are inseparable, we have to apply the previous
lemma. As regular languages, the input languages L1 ⊆ Σ∗ and L2 ⊆ Σ∗ can
be recognized by monoids M1 and M2 via the homomorphisms ϕ1 and ϕ2 and
the homomorphism can be computed. Therefore, they are also recognized by
M := M1 ×M2 via the homomorphism ϕ which maps a finite word to a pair
whose first component is determined by ϕ1 and whose second component is
determined by ϕ2. Let n ∈ N0 be arbitrary. Since we have Σ∗/≡Xm,n ∈ Rm

and since L1 and L2 cannot be separated by Rm, there have to be finite
words un, vn ∈ Σ∗ with un ∈ L1, vn ∈ L2 and un ≡Xm,n vn; otherwise, we
could construct a separating language. The homomorphism ϕ has to map
infinitely many elements of the sequence (un, vn)n∈N0 to the same element
in M since M is finite. If we remove all other elements, we still have an
infinite sequence (un, vn)n∈N0

with un ≡Xm,n vn for all n ∈ N0 which also
satisfies all conditions of Lemma 14. Therefore, there are π-terms α and β
with JαKω+ω∗ ≡Xm JβKω+ω∗ , ϕ (JαKM !) ∈ ϕ(L1) and ϕ (JβKM !) ∈ ϕ(L2). Since
we can test whether JαKω+ω∗ ≡Xm JβKω+ω∗ holds for any two π-terms α and
β by Theorem 5, we can also recursively enumerate all possible π-term pairs
and check whether the conditions above are met. We know that we can find
such a pair if L1 and L2 are inseparable. On the other hand, suppose L1 and
L2 can be separated by S ⊆ Σ∗ which is recognized by the monoid N ∈ Rm

via a homomorphism ψ : Σ∗ → N and we have found a pair α and β with
JαKω+ω∗ ≡Xm JβKω+ω∗ , ϕ (JαKM !) ∈ ϕ(L1) and ϕ (JβKM !) ∈ ϕ(L2). Then, we
have ϕ (JαKN !·M !) = ϕ (JαKM !) ∈ ϕ(L1) and, thus, JαKN !·M ! ∈ L1 as well as
JβKN !·M ! ∈ L2 (by a similar argument). Also, α = β holds inRm by Theorem 4,
which implies s := ψ (JαKN !·M !) = ψ (JαKN !) = ψ (JβKN !) = ψ (JβKN !·M !).
If we have s ∈ ψ(S), then we have JβKN !·M ! ∈ S ∩ L2; otherwise, we have
JαKN !·M ! ∈ L1 but JαKN !·M ! 6∈ S and, thus, a contradiction in either case. ut

Since two languages are separable by Rm for m = |Σ| + 1 if they are
separable by DA [31], we also get decidability of the separation problem of
DA, which has already been shown by Place, van Rooijen and Zeitoun [22].

57

Corollary 3 The separation problem for DA is decidable.

References

1. Almeida, J.: Implicit operations on finite J -trivial semigroups and a conjecture of I. Si-
mon. Journal of Pure and Applied Algebra 69(3), 205 – 218 (1991)

2. Almeida, J.: Finite Semigroups and Universal Algebra. World Scientific (1994)
3. Almeida, J.: Finite semigroups: an introduction to a unified theory of pseudovarieties.

In: G.M. dos Gomes Moreira da Cunha, P.V.A. da Silva, J.É. Pin (eds.) Semigroups,
Algorithms, Automata and Languages, pp. 3–64. World Scientific (2002)

4. Almeida, J., Zeitoun, M.: An automata-theoretic approach to the word problem for
ω-terms over R. Theoretical Computer Science 370(1), 131–169 (2007)

5. Diekert, V., Gastin, P., Kufleitner, M.: A survey on small fragments of first-order logic
over finite words. Int. J. Found. Comput. Sci. 19, 513–548 (2008)

6. Eilenberg, S.: Automata, Languages, and Machines, vol. B. Academic press (1976)
7. Gerhard, J., Petrich, M.: Varieties of bands revisited. Proceedings of the London Math-

ematical Society 58(3), 323–350 (1989)
8. Hall, T., Weil, P.: On radical congruence systems. Semigroup Forum 59(1), 56–73 (1999)
9. Hopcroft, J., Karp, R.: A linear algorithm for testing equivalence of finite automata.

Tech. rep., Cornell University (1971)
10. Huschenbett, M., Kufleitner, M.: Ehrenfeucht-Fraïssé games on omega-terms. In:

E.W. Mayr, N. Portier (eds.) STACS 2014, Proceedings, LIPIcs, vol. 25, pp. 374–385.
Dagstuhl Publishing, Dagstuhl, Germany (2014)

11. Krohn, K., Rhodes, J.L., Tilson, B.: Homomorphisms and semilocal theory. In: M.A.
Arbib (ed.) Algebraic Theory of Machines, Languages, and Semigroups, chap. 8, pp.
191–231. Academic Press, New York and London (1968)

12. Kufleitner, M., Lauser, A.: The join levels of the Trotter-Weil Hierarchy are decidable.
In: B. Rovan, V. Sassone, P. Widmayer (eds.) MFCS 2012, Proceedings, LNCS, vol.
7464, pp. 603–614. Springer (2012)

13. Kufleitner, M., Weil, P.: On the lattice of sub-pseudovarieties of DA. Semigroup Forum
81, 243–254 (2010)

14. Kufleitner, M., Weil, P.: The FO2 alternation hierarchy is decidable. In: P. Cégiel-
ski, A. Durand (eds.) CSL 2012, Proceedings, LIPIcs, vol. 16, pp. 426–439. Dagstuhl
Publishing, Dagstuhl, Germany (2012)

15. Kufleitner, M., Weil, P.: On logical hierarchies within FO2-definable languages. Logical
Methods in Computer Science 8(3), 1–30 (2012)

16. Lodaya, K., Pandya, P., Shah, S.: Marking the chops: an unambiguous temporal logic.
In: IFIP TCS 2008, Proceedings, IFIP, pp. 461–476. Springer (2008)

17. McCammond, J.P.: Normal forms for free aperiodic semigroups. Int. J. Algebra Comput.
11(5), 581–625 (2001)

18. Moura, A.: The word problem for ω-terms over DA. Theoretical Computer Science
412(46), 6556–6569 (2011)

19. Perrin, D., Pin, J.É.: Infinite words, Pure and Applied Mathematics, vol. 141. Elsevier,
Amsterdam (2004)

20. Pin, J.É.: Varieties of Formal Languages. North Oxford Academic Publishers Ltd (1986)
21. Pin, J.É.: Varieties of Formal Languages. North Oxford Academic (1986)
22. Place, Th., van Rooijen, L., Zeitoun, M.: Separating regular languages by piecewise

testable and unambiguous languages. In: MFCS 2013, Proceedings, pp. 729–740.
Springer (2013)

23. Schützenberger, M.: On finite monoids having only trivial subgroups. Information and
Control 8, 190–194 (1965)

24. Schwentick, Th., Thérien, D., Vollmer, H.: Partially-ordered two-way automata: A new
characterization of DA. In: W. Kuich, G. Rozenberg, A. Salomaa (eds.) DLT 2001,
Proceedings, LNCS, vol. 2295, pp. 239–250. Springer (2002)

25. Simon, I.: Piecewise testable events. In: Autom. Theor. Form. Lang., 2nd GI Conf.,
LNCS, vol. 33, pp. 214–222. Springer (1975)

58

26. Simon, I.: Factorization forests of finite height. Theoretical Computer Science 72(1),
65–94 (1990)

27. Tesson, P., Thérien, D.: Diamonds are forever: The variety DA. In: G.M. dos Gomes
Moreira da Cunha, P.V.A. da Silva, J.É. Pin (eds.) Semigroups, Algorithms, Automata
and Languages, pp. 475–500. World Scientific (2002)

28. Thérien, D., Wilke, Th.: Over words, two variables are as powerful as one quantifier
alternation. In: Proceedings of the Thirtieth Annual ACM Symposium on Theory of
Computing, pp. 234–240. ACM (1998)

29. Trotter, P., Weil, P.: The lattice of pseudovarieties of idempotent semigroups and a
non-regular analogue. Algebra Universalis 37(4), 491–526 (1997)

30. van Rooijen, L., Zeitoun, M.: The separation problem for regular languages by piecewise
testable languages. CoRR abs/1303.2143 (2013)

31. Weis, Ph., Immerman, N.: Structure Theorem and Strict Alternation Hierarchy for FO2

on Words. Logical Methods in Computer Science 5(3), 1–23 (2009)

59

	Introduction
	Preliminaries
	The Trotter-Weil Hierarchy
	Relations for the Trotter-Weil Hierarchy
	A Proof for Theorem 1
	Relations and Equations
	Decidability
	Nondeterministic Logarithmic Space
	Deterministic Polynomial Time
	Separability

