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LOCALLY COUNTABLE PSEUDOVARIETIES

J. Almeida and O. Kĺıma

Abstract: The purpose of this paper is to contribute to the theory of profinite

semigroups by considering the special class consisting of those all of whose finitely
generated closed subsemigroups are countable, which are said to be locally countable.

We also call locally countable a pseudovariety V (of finite semigroups) for which all

pro-V semigroups are locally countable. We investigate operations preserving local
countability of pseudovarieties and show that, in contrast with local finiteness, sev-

eral natural operations do not preserve it. We also investigate the relationship of a
finitely generated profinite semigroup being countable with every element being ex-

pressible in terms of the generators using multiplication and the idempotent (omega)

power. The two properties turn out to be equivalent if there are only countably many
group elements, gathered in finitely many regular J -classes. We also show that the

pseudovariety generated by all finite ordered monoids satisfying the inequality 1 6 xn

is locally countable if and only if n = 1.
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1. Introduction

With the advent of modern computers, several mathematical mod-
els of computation emerged. One of the simplest and most successful in
applications is that of a finite automaton, which computes regular lan-
guages. The transition semigroup of the minimal automaton of a regular
language, which is also its syntactic semigroup, provides an alterna-
tive purely algebraic computation model. This connection with algebra
turned out to be rather fruitful and eventually led to a general frame-
work for the translation of combinatorial problems on classes of regular
languages to algebraic problems about finite semigroups, which is pro-
vided by Eilenberg’s correspondence [19]. On the algebraic side, one
considers so-called pseudovarieties of semigroups, classes of finite semi-
groups closed under taking homomorphic images, subsemigroups, and
finite direct products.

Unlike varieties, pseudovarieties do not in general possess free mem-
bers. It is possible to overcome this problem by considering more general
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structures, namely profinite semigroups, which are inverse limits of fi-
nite semigroups. Relatively free profinite semigroups are then realized
naturally as topological spaces, namely as the Stone duals of Boolean al-
gebras of regular languages [3, Theorem 3.6.1] (see also [36]). In fact, the
algebraic structure of such profinite semigroups is also captured by dual-
ity theory [21, 20, 9]. Particularly in view of Reiterman’s theorem [37],
which provides a description of pseudovarieties in terms of formal equali-
ties of members of a free profinite semigroup (so-called pseudoidentities),
such semigroups thus naturally came to play an important role in the
theory of pseudovarieties of semigroups, which remains the core of the
theory of finite semigroups [41].

A very special type of pseudovarieties is that of locally finite pseudova-
rieties. They may be characterized by the existence of a finite bound on
the cardinality of members on a given number of generators, or by the
finiteness of the finitely generated relatively free profinite semigroups.
Locally finite pseudovarieties constitute a particularly well-behaved spe-
cial case, for instance when dealing with the important operation of
semidirect product (see [41, Section 3.7]).

In this paper, we consider a generalization of locally finite pseu-
dovarieties: locally countable pseudovarieties. These are pseudovarieties
whose finitely generated relatively free profinite semigroups are count-
able. They turn out to have an important property, namely that closed
congruences on their finitely generated relatively free profinite semi-
groups are profinite [9], a property that holds for arbitrary profinite
groups but that fails in general for profinite semigroups. The authors
came across this property in connection with the conjectured complete-
ness of a proof scheme for pseudoidentities [7].

It should be noted that an infinite countably generated profinite semi-
group is either countable or has the cardinality of the continuum. This
follows from the Cantor–Bendixson Theorem (see [28, Theorem 6.4]),
which holds in every complete metric space with a countable dense sub-
set. In the case of a finitely generated profinite semigroup S, one may say
more precisely that, if S is uncountable, then it is the union of a count-
able set with a closed set homeomorphic to the Cantor set. In particular,
from the point of view of cardinality, locally countable pseudovarieties
deserve special attention.

There is a duality significance of a Stone space being countable that
adds motivation to considering this cardinality condition. Indeed, the
Boolean algebras whose dual spaces are countable have been charac-
terized by Day [17, Section 4] as the countable superatomic Boolean
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algebras, where superatomic means that every homomorphic image is
atomic.

We proceed to describe briefly the organization and main contribu-
tions of this paper. Section 2 provides the preliminary material on semi-
groups used in the rest of the paper. In Section 3 we start the inves-
tigation of locally countable pseudovarieties of semigroups; in particu-
lar, we discuss how they behave with respect to the operations of join
and semidirect product. The Mal’cev product is considered in Section 4,
where a profinite characterization from [35] is recalled that plays a role in
later sections. A well-known and key result is that the set of locally finite
pseudovarieties is closed under Mal’cev product, a fact that comes from
Brown’s finiteness theorem [15]. One of the several proofs in the litera-
ture of Brown’s theorem is due to Simon [44] and uses his factorization
forest theorem. This important theorem turns out to have applications
also in the study of locally countable pseudovarieties that are based on
a theorem presented in Section 5 concerning algebraic generation of a
finitely generated profinite semigroup. In Section 6, we discuss profinite
semigroups with only finitely many regular J -classes. In particular, we
show that such a finitely generated profinite semigroup is countable if
and only if it has only countably many group elements, in which case it
is algebraically generated by the finite generating set together with the
idempotents. The special case where there are only finitely many idem-
potents is considered in Section 7, where it is shown that the Mal’cev
product of a locally countable pseudovariety of semigroups with only one
idempotent with a locally finite pseudovariety is again locally countable.
Moreover, in such a case, we show that elements of finitely generated
relatively free profinite semigroups may be obtained from the generators
by using only product and the ω-power, without the need to nest the
latter operation; this generalizes a result of the first author [2] that has
been extensively used. The Mal’cev product of a locally countable pseu-
dovariety with a locally finite pseudovariety in general is considered in
Section 8, where it is shown that if the second factor consists of nilpotent
semigroups, then the resulting Mal’cev product is locally countable. By
examining the atoms in the lattice of pseudovarieties containing non-
nilpotent semigroups, we show in Section 9 that the result of Section 8
fails as soon as the second factor contains a non-nilpotent semigroup.
Finally, in Section 10 we use aperiodic inverse semigroups to show that
certain pseudovarieties of block groups are not locally countable, thus
answering some questions raised in our paper [8]. In particular, we show
that the pseudovariety generated by all finite ordered monoids satisfying
the inequality 1 6 xn is not locally countable whenever n > 2.
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2. Preliminaries

As the remainder of the paper is concerned with semigroups, we gather
in this section the required preliminary material on that subject. For
general background, the reader is referred to [3, 41].

A fundamental tool in semigroup theory is given by the so-called
Green’s relations [22]. They are binary relations concerning the ideal
structure of a semigroup S and are defined as follows. For s, t ∈ S,
write s 6R t if s belongs to the principal right ideal generated by t.
Replacing right by left or two-sided, one obtains respectively the rela-
tions 6L and 6J . The intersection of the relations 6R and 6L is denoted
by 6H. Each of the above relations 6K is a quasi-order on S and the
corresponding equivalence relation 6K ∩>K is denoted by K. The rela-
tions R and L commute under composition and so D = RL is also an
equivalence relation on S. In particular, every D-class D is a union of
R-classes and also a union of L-classes, where the intersection of each
R-class with each L-class within D is an H-class. It turns out that the
relations D and J coincide in each compact semigroup (see, for instance,
[41, Proposition 3.1.10]).

By a pseudovariety we mean a class of finite semigroups that is closed
under taking homomorphic images, subalgebras, and finite direct prod-
ucts. For a pseudovariety V, a pro-V semigroup is an inverse limit of semi-
groups from V. In the case of the pseudovariety S of all finite semigroups,
a pro-S semigroup is simply called a profinite semigroup. A topological
semigroup is locally countable if every finitely generated closed subsemi-
group is countable. Recall that a pseudovariety V is locally finite if every
finitely generated pro-V semigroup is finite. We say that a pseudovari-
ety V is locally countable if every pro-V semigroup is locally countable.
Of course, a locally finite pseudovariety is also locally countable.

The classes of all finite semigroups in which the relations J and R
are trivial (meaning that they are reduced to the equality relation) are
denoted by, respectively, J and R. On the other hand, the class of all
H-trivial finite semigroups is denoted by A. All three are pseudovarieties,
the reason for the notation A being that the members of A are the finite
aperiodic semigroups, that is, finite semigroups in which all subgroups
are trivial.

An element s of a semigroup S is regular if there exists s′ ∈ S such
that s = ss′s. It follows immediately from the definitions that an element
is regular if and only if its R-class (respectively its L-class) contains an
idempotent. Hence, a D-class consists of regular elements if and only if
it contains a regular element, if and only if it contains an idempotent in
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each R-class and in each L-class. Such D-classes are said to be regular.
The H-classes of S that contain idempotents are exactly the maximal
subgroups of S.

Profinite semigroups with only one J -class are said to be completely
simple. A profinite semigroup with zero whose non-zero elements form a
regular J -class is said to be completely 0-simple. The finite completely
simple semigroups constitute a pseudovariety, denoted by CS. Those
whose subgroups lie in a pseudovariety of groups H form a subpseu-
dovariety of CS, denoted by CS(H).

Given an ideal I of a semigroup S, the union of the equality relation
on S with the universal relation on I is a congruence on S. The corre-
sponding quotient semigroup is denoted by S/I and is called the Rees
quotient of S by I.

For a semigroup S, denote by E(S) the set of its idempotent elements.
Several operators may be defined on pseudovarieties. Let us consider

first some unary operators, defined on a pseudovariety V. We denote
by DV the class of all finite semigroups whose regular D-classes consti-
tute subsemigroups belonging to V. The class EV consists of all finite
semigroups S such that the subsemigroup generated by E(S) belongs
to V. For LV, we take the class of all finite semigroups S such that, for
every e ∈ E(S), the subsemigroup eSe = {ese : s ∈ S} belongs to V.
The definition of the block operator B is a bit more complicated. Given a
regular D-class D of a finite semigroup S, we consider the smallest equiv-
alence relation β on the idempotents of D for which L or R-equivalent
idempotents are equivalent. For each β-class C, we consider the subsemi-
group T generated by the union of theH-classes containing members of C
and the ideal I = {t ∈ T : t <J e} of T , where e ∈ C is arbitrary. The
Rees quotient T/I is called a block of D. We denote by BV the class of
all finite semigroups whose blocks belong to V. It is well-known that BV,
DV, EV, and LV are pseudovarieties.

Three binary operators on pseudovarieties play a special role in finite
semigroup theory. They correspond to classical algebraic constructions.
Given a semigroup S, we denote by S1 the monoid obtained from S
by adding an identity element unless S is already a monoid; we also
denote by End(S) the monoid of all endomorphisms of S. Given another
semigroup T and a monoid homomorphism ϕ : T 1 → End(S), we denote
ϕ(t)(s) by ts. The Cartesian product S × T is then a semigroup under
the operation (s, t)(s′, t′) = (s ts′, tt′) which is denoted by S ∗ T and is
called the semidirect product of S and T determined by ϕ.

Given a class C of finite semigroups, there is a smallest pseudovariety
containing it, which is called the pseudovariety generated by C. Let V
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and W be two pseudovarieties. The join V ∨ W is the pseudovariety
generated by V∪W and may be thought of as the pseudovariety generated
by all direct products S × T with S ∈ V and T ∈ W. The semidirect
product V∗W is the pseudovariety generated by the class of all semidirect
products S∗T with S ∈ V and T ∈W. The Mal’cev product V©mW is the
pseudovariety generated by the class of all finite semigroups S such that
there exists a homomorphism ϕ : S → T with T ∈ W and ϕ−1(e) ∈ V
for every e ∈ E(S).

We say that a continuous mapping ϕ : X → S from a topological
space X into a topological semigroup S is a generating mapping if the
subsemigroup of S generated by ϕ(X) is dense; in this case, we also say
that S is X-generated.

Let V be a pseudovariety and let X be a topological space. We say
that a continuous function ϕ : X → S into a pro-V semigroup S defines
S as a free pro-V semigroup over X if it has the following universal prop-
erty: for every continuous mapping ψ : X → T into another pro-V semi-

group T , there is a unique continuous homomorphism ψ̂ : S → T such

that ψ̂◦ϕ = ψ. Standard arguments show that such a pro-V semigroup S
is unique up to homeomorphic isomorphism respecting the choice of gen-
erators and it is denoted by ΩXV. In the case of X being a finite set, we
generally consider X as a discrete space when referring to ΩXV. More-
over, when we write ΩnV for a positive integer n, we mean ΩXV, where
X = {1, . . . , n}.

The existence of free pro-V semigroups over an arbitrary topological
space X may be established by considering inverse limits of X-generated
semigroups from V. In particular, ΩXV is X-generated. The generating
mapping ϕ : X → ΩXV is also called the natural mapping. If V is not
the trivial pseudovariety I, consisting only of singleton semigroups, and
X is a profinite space, then the natural mapping ϕ into ΩXV is injective
and we usually identify each x ∈ X with ϕ(x). Elements of ΩXV are
sometimes called pseudowords. Elements of the subsemigroup of ΩXV
generated by X are said to be finite, the remaining elements being called
infinite. A word u = x1 · · ·xn with each xi ∈ X is said to be a subword of
the pseudoword v ∈ ΩXV if there is a factorization v = v0x1v1 · · ·xnvn
with each vi in (ΩXV)1.

Note that the pseudovariety V is locally countable if and only if ΩnV
is countable for every positive integer n.
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For a compact semigroup S and an element s ∈ S, it is well-known
that the closed subsemigroup generated by s contains a unique idempo-
tent, which we denote by sω. In the case of S being a finite semigroup,
sω is the unique idempotent power of s.

Given a finite set X and a pseudovariety V, each element w ∈ ΩXV
may be viewed as an operation wS : SX → S on each pro-V semi-
group S as follows: given a function ψ ∈ SX and the natural map-

ping ϕ : X → ΩXV, we let wS(ψ) = ψ̂(w), where ψ̂ is the unique contin-
uous homomorphism such that the following diagram commutes:

X
ϕ //

ψ
!!

ΩXV

ψ̂

��
S

It may be shown that in this way S becomes a profinite algebra where,
for each n > 1, ΩnV is the set of n-ary operation symbols. Another
convenient signature is that reduced to the ω-power and multiplication,
for which every profinite semigroup thus has a natural structure. The
elements of the subalgebra of ΩXV generated by X in this signature are
called ω-words.

A formal equality u = v of elements of ΩXV is said to be a V-pseu-
doidentity over X. It is said to be satisfied in the pro-V semigroup S
if the equality uS = vS holds. The class of all semigroups from V sat-
isfying a set Σ of V-pseudoidentities is a subpseudovariety of V denoted
by JΣKV and it is said to be defined by Σ. By Reiterman’s theorem [37],
every subpseudovariety is defined by some set of V-pseudoidentities. In
the case of V being the pseudovariety S of all finite semigroups, then we
omit reference to V. The elements of X are often called variables. We may
sometimes write u = 1 as an abbreviation for the pair of pseudoidenti-
ties ux = x = xu, where x is a new variable. A similar convention applies
to u = 0, which abbreviates ux = u = xu.

Given a residually finite discrete semigroup S, we may define a metric
on S by letting d(s, s) = 0 and, for distinct s, s′ ∈ S, d(s, s′) = 2−r(s,s

′),
where r(s, s′) is the minimum cardinality of a finite semigroup T for
which there is a homomorphism ϕ : S → T such that ϕ(s) 6= ϕ(s′).
Note that the multiplication of S is uniformly continuous with respect
to d. The completion of the metric space (S, d) therefore has a natural
topological semigroup structure. In the case of S being finitely generated,

this completion is the profinite completion of S, which is denoted by Ŝ. In
the particular case where S = X+ is the free semigroup generated by a

finite (discrete) set X, X̂+ may be shown to be a free profinite semigroup



134 J. Almeida, O. Kĺıma

over X. In particular, every element of ΩXS is the limit of some sequence

of words. For an infinite discrete set X, X̂+ is not a metric space.

Denote by N̂ the profinite completion of the additive monoid N of
natural numbers. It may be thought of as the monoid (Ω1S)1, written
additively. If we denote by x the unique generator of Ω1S, the identifi-

cation between N̂ and (Ω1S)1 sends 0 to the identity element 1 and each
positive n ∈ N to xn. In general, we write xα for the element of (Ω1S)1

corresponding to α ∈ N̂.
Many pseudovarieties play a role in the sequel. For the moment, for

the sake of example, we introduce the following:

• Sl = Jx2 = x, xy = yxK is the pseudovariety of all finite semilat-
tices;

• N = Jxω = 0K =
⋃
n>1Jx1 · · ·xn = 0K is the pseudovariety of all

finite nilpotent semigroups;

• G = Jxω = 1K is the pseudovariety of all finite groups;

• K = Jxωy = xωK is the pseudovariety of all finite semigroups in
which idempotents are left zeros;

• IE = Jxω = yωK is the pseudovariety of all finite semigroups with a
unique idempotent.

Further pseudovarieties will be introduced as needed.

3. Locally countable pseudovarieties

We proceed with some examples of locally countable pseudovarieties
of semigroups.

It was conjectured by I. Simon and proved by the first author that the
pseudovariety J is locally countable [2, Corollary 3.4]. In particular, we
deduce that the pseudovariety J satisfies the strong form of the conjecture
of [7].

For groups, local countability does not provide a new class of pseu-
dovarieties.

Theorem 3.1. The following are equivalent for a pseudovariety of
groups H:

(i) Ω1H is countable;
(ii) H is locally countable;
(iii) H is locally finite;
(iv) H satisfies some identity of the form xn = 1, where n is a positive

integer;
(v) Ω1H is finite.

Proof: (iv) ⇔ (v) and (iii) ⇒ (ii) ⇒ (i) are obvious.



Locally Countable Pseudovarieties 135

(iv) ⇒ (iii) follows from Zelmanov’s solution of the restricted Burnside
problem [51, 50, 52].1

(i) ⇒ (iv) Suppose that Ω1H is countable and assume that (iv) fails.
Then, H must contain groups of arbitrarily large exponent. If the number
of primes appearing in such exponents is finite, then there is a prime p
such that the cyclic group of order pn belongs to H for every n > 1.
But the inverse limit of such cyclic groups is the additive group of the
ring Zp of p-adic integers, which is uncountable and a homomorphic im-

age of Ω1H, contradicting the hypothesis (i). Hence, there is an infinite

set of primes {p1, p2, . . . } such that Z/piZ belongs to H. For each α ∈ N̂,
consider the pseudovariety Abα = Jxα = 1, xy = yxK. Let α be an accu-

mulation point of the sequence (p1 · · · pn)n in N̂. By the Chinese remain-
der theorem, it is easy to show that the mapping Ω1Abα →

∏∞
i=1 Ω1Abpi

induced by the natural projections Ω1Abα → Ω1Abpi is a bijection. This
again contradicts the assumption that H satisfies (i) since Abα is con-
tained in H.

Actually, a more general result is true: every profinite countable group
is finite. Several proofs of this fact may be given. A direct proof can be
found in [42, Proposition 2.3.1]. Other proofs are obtained by applying
various results. In [49, Section 2.3], one can find immediate proofs based
on the Baire category theorem or using the Haar measure. Yet another
proof is obtained by considering the set of isolated points of a profinite
countable group. By symmetry, if there is such a point, then all points
are isolated so that, by compactness, the group is finite. Otherwise, by
the Cantor–Bendixson theorem, the group is uncountable. In the proof
of Theorem 3.1, thanks to Zelmanov’s theorem, we only need to deal
with the cyclic case.

Example 3.2. Consider the equational pseudovariety N2 = Jx2 = 0K.
Note that it is locally countable. For a finite alphabet A, the semi-
group ΩAN2 is the Rees quotient of A+ by the ideal consisting of the
words containing some square factor. Hence, ΩAN2 is infinite whenever
|A| > 3 [48]. Thus, in contrast with the group case, a locally countable
pseudovariety need not be locally finite, even if it is equational.

1As was pointed out by a referee, Zelmanov solved the restricted Burnside problem

for prime-power exponents. The case of an arbitrary exponent follows from a theorem
of Hall and Higman [23, Theorem 4.4.3] which reduces it to the case of prime-power

exponents and two properties of simple groups: the Schreier conjecture that the outer

automorphism group of a finite simple group is solvable; and, up to isomorphism,
there are only finitely many simple groups of given exponent. Both of these properties

are known to be consequences of the classification of finite simple groups.
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The remainder of this section examines operations that preserve local
countability and, therefore, provide methods to produce many examples
of locally countable pseudovarieties.

Theorem 3.3. If V and W are locally countable pseudovarieties, then
so is V ∨W.

Proof: Let A be a finite set. Simply note that the natural projections
ΩA(V ∨W) onto ΩAV and ΩAW yield an embedding of ΩA(V ∨W) into
the product ΩAV×ΩAW, which is countable since the factors are count-
able.

The next result is an immediate application of a representation theo-
rem for free profinite semigroups over a semidirect product of pseudova-
rieties V ∗ W [12]. Indeed, as has already been observed in [7], since
ΩA(V ∗W) embeds in a certain semidirect product ΩBV ∗ ΩAW, where
B = (ΩAW)1 ×A, we have the following theorem.

Theorem 3.4. If V and W are pseudovarieties of semigroups such that
V is locally countable and W is locally finite, then V ∗W is also locally
countable.

For example, the pseudovarieties J ∗ B, where B = Jx2 = xK is the
pseudovariety of all finite bands, and J ∗ Jxn = 1K are locally countable.
Consider the pseudovariety R. It is known that Sl ∗ J = R [16] and that
R is not locally countable: in fact R contains the pseudovariety K and
even Ω2K is uncountable as its infinite elements are in natural bijection
with the infinite words over a two-letter alphabet (cf. [3, Section 3.7]).
Hence, the assumptions on V and W may not be exchanged in the hy-
pothesis of Theorem 3.4. Since it is well-known and easy to check that
R is closed under semidirect product, we also have the equality J ∗ J = R
and so even the semidirect product of a locally countable pseudovariety
with itself may not be locally countable.

For the Mal’cev product, the situation is considerably more compli-
cated and is analyzed in the next six sections.

4. The Mal’cev product and profinite semigroups

Recall from Section 2 the definition of the Mal’cev product of pseu-
dovarieties in terms of generators. A comprehensive description of the
Mal’cev product involves the notion of relational morphisms.

By a relational morphism µ : S ◦−→ T between semigroups S and T
we mean a subsemigroup µ of the direct product S × T such that the
projection µ → S on the first component is onto. In other words, a
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relational morphism S ◦−→ T is a relation with domain S and values in T
which is closed under multiplication. Some authors prefer to emphasize
the transformation character of a relational morphism, which is viewed
as a function associating subsets of T to elements of S, calling the set of
pairs (s, t) ∈ S×T such that s is related to t, the graph of the relational
morphism (cf. [41]). We make no such distinction as we view relations
as sets of ordered pairs, as is common in set theory.

It is well-known that the Mal’cev product V©m W consists of all finite
semigroups S for which there is a relational morphism µ : S ◦−→ T into
some T ∈ W such that µ−1(e) ∈ V for every e ∈ E(T ). The following
result, which will be instrumental later in the paper, provides a profinite
version of this comprehensive characterization of the Mal’cev product.

Theorem 4.1 ([35, Proposition 4.4]). Let S be a profinite semigroup
and let V and W be pseudovarieties. Then S is pro-(V©m W) if and only
if there exists a closed relational morphism µ : S ◦−→ T such that T is a
pro-W semigroup and µ−1(e) is a pro-V semigroup for every e ∈ E(T ).

In the special case of the profinite semigroup ΩA(V©m W), we may
say a bit more. Since it is a pro-(V©m W) semigroup, by Theorem 4.1
there is a closed relational morphism µ : ΩA(V©m W) ◦−→ T into a pro-W
semigroup T such that µ−1(e) is pro-V for every e ∈ E(T ). We may
choose for each a ∈ A an element ta ∈ µ(a). The closed subsemigroup
of µ generated by the set {(a, ta) : a ∈ A} is still a closed relational
morphism sharing the above property with µ, and so we may assume
that it coincides with µ. Moreover, for the second component projec-
tion π2 : µ → T , the semigroup π−12 (e) = µ−1(e) × {e} is pro-V. By
Theorem 4.1, µ is a pro-(V©m W) semigroup. Since it is A-generated via
the mapping a 7→ (a, ta), it follows that the first component projection
π1 : µ → ΩA(V©m W) is an isomorphism. The composite π−11 π2 = µ is,

therefore, a continuous homomorphism ϕ : ΩA(V©m W)→ T . Since T is
pro-W, ϕ factors through the natural projection p : ΩA(V©m W)→ ΩAW,
which is identical on generators, as ϕ = ψ ◦ p:

µ
π1

xx

π2

!!
ΩA(V©m W)

ϕ //

p

%%

T

ΩAW

ψ
==
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Given an idempotent e ∈ ΩAW, by the commutativity of the above di-
agram, we have the inclusion p−1(e) ⊆ ϕ−1(ψ(e)), which entails that
p−1(e) is a pro-V semigroup. This discussion proves the following con-
sequence of Theorem 4.1, which could easily have been included in [35].

Corollary 4.2. The natural projection p : ΩA(V©m W)→ ΩAW is such
that p−1(e) is a pro-V semigroup for every e ∈ E(ΩAW).

From Corollary 4.2 and Theorem 4.1, it is immediate to deduce the so-
called Pin–Weil basis theorem for the Mal’cev product [35] (see also [41,
Theorem 3.7.13]): if {ui(x1, . . . , xni) = vi(x1, . . . , xni) : i ∈ I} is a basis
of pseudoidentities for V, then

{ui(w1, . . . , wni) = vi(w1, . . . , wni) : i ∈ I, W |= w2
1 = w1 = · · · = wni}

is a basis of pseudoidentities for V©m W.

5. An application of the factorization forest theorem

Already the preservation of local finiteness by the Mal’cev product of
semigroup pseudovarieties is a non-trivial result depending on a finiteness
theorem of Brown [14, 15] which was first proved using combinatorial
methods. Several proofs of Brown’s theorem are available in the litera-
ture. See [41, Theorem 4.2.4 and Notes to Chapter 4] for an algebraic
proof and several references.

A particularly elegant proof of Brown’s theorem is due to Simon [44]
using his factorization forest theorem, which we proceed to recall.

For a set X, let F(X) be the set of all finite sequences (x1, . . . , xn)
of elements of X. The length of the sequence s = (x1, . . . , xn) is n and
is denoted by |s|. By a factorization forest over A we mean a pair F =
(X, d), where X is a subset of A+ and d : X → F(X) such that, for
every x ∈ X, d(x) = (x1, . . . , xn) implies x = x1 · · ·xn.

Let F = (X, d) be a factorization forest over A. If x ∈ X, then we say
that the degree of x ∈ X is 0 if |d(x)| = 1, while it is |d(x)| otherwise.
The external elements of F are the elements of X of degree 0. The
height h(x) of x is defined recursively as follows: h(x) = 0 if x is external
and h(x) = 1+max{h(xi) : 1 6 i 6 n} if d(x) = (x1, . . . , xn) with n > 1.
The height of F is h(F ) = sup{h(x) : x ∈ X}.

Let f : A+ → S be a semigroup homomorphism. A factorization for-
est F is Ramseyan modulo f if, whenever the degree of x is at least 3 and
d(x) = (x1, . . . , xn), we have f(x) = f(x1) = · · · = f(xn) and f(x) is an
idempotent. We say that f admits the factorization forest F = (X, d) if
X = A+ and the external set is A.
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Theorem 5.1 (Factorization forest theorem [45]). Every homomor-
phism f : A+ → S into a finite semigroup S admits a Ramseyan fac-
torization forest of height at most 9|S|.

Relaxing the linear bound in the above theorem to an exponential
bound, Simon ([46]) has also produced a simplified proof based on the
Krohn–Rhodes decomposition theorem.

Our proof of the following result relies on the methods and ideas of
Simon’s proof of Brown’s theorem [44, Theorem 5].

Theorem 5.2. Let ϕ : S → T be a continuous homomorphism where
S is a profinite semigroup generated by a finite set A and T is a finite
semigroup. Then the semigroup S is algebraically generated by A together
with the elements that map to idempotents in T .

Proof: Let ψ : ΩAS→ S be the continuous homomorphism mapping each
generator to itself and let f : A+ → T be obtained by restricting ϕ ◦ ψ
to A+. By Theorem 5.1, f admits a Ramseyan factorization forest F =
(A+, d) of finite height H. For each integer k ∈ [0, H], consider the
subset Sk of S consisting of all elements of the form ψ(w) where w =
limwn for a sequence of words wn ∈ A+ with h(wn) 6 k. Note that
SH = S. Let E = E(T ). By induction on k, we show that every element
of Sk is a (finite) product of elements of A ∪ ϕ−1(E).

Since the factorization forest F is admitted by f , the set of exter-
nal elements of F is A. As A is a finite set, it follows that S0 = A.
Assume now, inductively, that k > 0 and Sk−1 is contained in the sub-
semigroup 〈A ∪ ϕ−1(E)〉 generated by A ∪ ϕ−1(E). Let s ∈ Sk and let
(wn)n be a convergent sequence of words from A+ of height at most k
such that s = ψ(limwn). We claim that s ∈ 〈A ∪ ϕ−1(E)〉.

In the case of an infinite number of terms wn of the sequence having
height less than k, then s ∈ Sk−1 and the induction hypothesis yields the
claim. On the other hand, if an infinite number of the wn have degree 2,
say d(wn) = (un, vn), then h(un) and h(vn) are both less than k. By
compactness, there is a strictly increasing sequence of indices nr such
that the sequences (unr

)r and (vnr
)r converge. Let s′ = ψ(limunr

) and
s′′ = ψ(lim vnr

), so that s = s′s′′. Since s′ and s′′ belong to 〈A∪ϕ−1(E)〉
by the induction hypothesis, it follows that so does s.

Hence, we may assume that every wn has degree at least 3. Since F
is Ramseyan modulo f , we conclude that f(wn) is an idempotent. Since
T is finite and f is continuous, it follows that ϕ(s) is also an idempotent,
that is, s ∈ ϕ−1(E). This concludes the induction step and the proof.
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6. Profinite semigroups with only finitely many regular
J -classes

In this section, we investigate profinite semigroups with only finitely
many regular J -classes and their relationship with pseudovarieties con-
sisting of semigroups with only one regular J -class, that is, subpseu-
dovarieties of LG. We start with a couple of general results about Green’s
relations in profinite semigroups.

Proposition 6.1. Let S be a profinite semigroup and let K be any of the
Green’s relations L, R, J , H, or the corresponding quasi-orders 6L, 6R,
6J , and 6H. Then two elements of S are K-related if and only if their
images under every continuous homomorphism onto a finite semigroup
are K-related.

Proof: The proof is a more or less standard compactness argument which
works more generally for a system of equations with given parameters
(see [3, Section 5.6], where the argument is formulated only for relatively
free profinite semigroups). For the sake of completeness, we present the
proof in the case of L. The other cases may be proved similarly. Since
homomorphisms preserve the relation L, we may consider a pair of el-
ements u, v ∈ S such that ϕ(u) and ϕ(v) are L-related for every con-
tinuous homomorphism ϕ : S → T onto a finite semigroup T . We may
consider an inverse system Si of finite semigroups Si indexed by a di-
rected set I and onto homomorphisms Si → Sj (i > j) whose inverse
limit is isomorphic to S. For each i ∈ I, let ϕi : S → Si be the projection
homomorphism. Let Xi be the set of all pairs (x, y) of elements of S1

such that ϕi(xu) = ϕi(v) and ϕi(yv) = ϕi(u). Since ϕi is continuous,
Xi is a closed subset of S1×S1. On the other hand, since I is a directed
set and Xi ⊆ Xj whenever i > j, every finite subfamily of the family
of closed sets (Xi)i∈I has non-empty intersection. By compactness, the
set X =

⋂
i∈I Xi is non-empty. Given a pair (x, y) ∈ X, we must have

xu = v and yv = u since the two sides of each of these equations have the
same image under every homomorphism ϕi. This shows that u L v.

The following is a simple application of Proposition 6.1.

Corollary 6.2. Let S be a profinite semigroup. Then each of the Green’s
relations L, R, J , and H is a closed equivalence relation and the corre-
sponding quotient topological space is profinite.

Proof: Since the argument is similar for all the considered relations,
we deal only with L. By Proposition 6.1, the relation LS on S is the
intersection of the closed relations (ϕ × ϕ)−1LT , where ϕ runs over all
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continuous homomorphisms S → T onto finite semigroups T . Hence,
LS is closed. Moreover, if u, v ∈ S are not L-related, then, again by
Proposition 6.1, there exists a continuous homomorphism ϕ : S → T onto
a finite semigroup T such that ϕ(u) and ϕ(v) are not L-related. Since
the L relation is preserved by homomorphisms, we obtain the following
commutative diagram of continuous functions, where the vertical arrows
are the natural mappings:

S
ϕ //

��

T

��
S/LS // T/LT

Thus, distinct points in the quotient space S/LS may be distinguished
by continuous mappings onto finite discrete sets, which shows that S/LS
is a profinite space.

Proposition 6.3. A countably generated pro-LG semigroup is countable
if and only if it has only countably many idempotents and its subgroups
are finite.

Proof: Let S be a countably generated pro-LG semigroup. If S is count-
able, then it certainly has only countably many idempotents and all its
subgroups are countable, whence finite (cf. Section 3). For the converse,
the hypothesis guarantees that the minimum ideal K of S is countable
since it is the union of the subgroups contained in it. Furthermore, since
S is pro-LG, the Rees quotient S/K is a countably generated pro-N semi-
group, whence countable. Thus, S is countable.

The following result shows how LG may be used to decompose semi-
groups with only finitely many regular J -classes. It depends on the well-
known fact that a profinite semigroup is pro-LG if and only if the only
semilattice that embeds in it is the trivial one.

Proposition 6.4. Let S be a profinite semigroup with only finitely many
regular J -classes. Then, there is a continuous homomorphism ϕ : S → T
onto a finite semigroup such that ϕ−1(e) is a pro-LG semigroup for every
idempotent e ∈ T .

Proof: Choose an element sJ from each regular J -class J of S. By Propo-
sition 6.1, there exists a continuous homomorphism ϕ : S → T onto a
finite semigroup T such that the restriction of the J -order of S to the
elements sJ is isomorphic under ϕ to the restriction of the J -order of T
to the ϕ(sJ).
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We claim that ϕ−1(e) is pro-LG for every idempotent e ∈ T . Indeed,
from the choice of ϕ it follows that there cannot be a pair of idempo-
tents f and g in ϕ−1(e) such that f <J g. This implies that ϕ−1(e) is
a pro-LG semigroup.

We may now give a characterization of finitely generated profinite
semigroups with only finitely many regular J -classes in terms of Mal’cev
products.

Corollary 6.5. Let S be a finitely generated profinite semigroup. Then
S has only finitely many regular J -classes if and only if S is a pro-
(LG©m V) semigroup for some locally finite pseudovariety V.

Proof: Suppose first that S has only finitely many regular J -classes.
Consider a continuous homomorphism ϕ : S → T given by Proposi-
tion 6.4 and let V be the pseudovariety generated by the finite semi-
group T . Then, by Theorem 4.1, S is a pro-(LG©m V) semigroup.

Conversely, if S is a pro-(LG©m V) semigroup with V locally finite,
then Theorem 4.1 provides a closed relational morphism µ : S ◦−→ T
into a pro-V semigroup T . Since S is finitely generated, we may assume
that so is T . Since V is locally finite, it follows that T is finite. Given
a regular element s ∈ S, there exists s′ ∈ S such that ss′s = s and
s′ss′ = s′. Take an idempotent e in the subsemigroup µ(ss′) of T . Then,
the idempotent ss′ belongs to µ−1(e). Since there is only one regular
J -class J in µ−1(e), as µ−1(e) is pro-LG, we conclude that s belongs
to the J -class of S containing J . Hence, there are only finitely many
regular J -classes in S.

Pseudovarieties of the form LG©m V play a special role in the semilocal
theory of Rhodes (cf. [41, Theorem 4.6.50]).

The following theorem gives factorizations for elements of a finitely
generated profinite semigroup with only finitely many regular J -classes.

Theorem 6.6. If S is a profinite semigroup generated by a finite set A
and S has only finitely many regular J -classes, then S is algebraically
generated by A together with the group elements of S. Moreover, in the
case of S having only countably many group elements, S is algebraically
generated by A ∪ E(S).

Proof: By Proposition 6.4, there is a continuous homomorphism ϕ : S →
T onto a finite semigroup such that ϕ−1(e) is a pro-LG semigroup for
every idempotent e ∈ T . By Theorem 5.2, S is algebraically generated
by A ∪ ϕ−1(E(T )). By induction on the depth of an idempotent e ∈
E(T ) in the poset E(T )/J |E(T ), we show that every element in ϕ−1(e)
is a product of elements of A and group elements. Indeed, given an
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idempotent e ∈ T , since ϕ−1(e) is pro-LG, its elements are either group
elements or products of elements ofA∪ϕ−1(Ee), where Ee denotes the set
of all idempotents of T strictly J -above e. By the induction hypothesis,
in the latter case such elements are themselves products of elements of A
and group elements of S.

In the special case where S has only countably many group elements,
we may choose a maximal subgroup Ge of ϕ−1(e) for each idempo-
tent e ∈ E(T ). By assumption, Ge is countable, whence finite. There
is, therefore, a continuous homomorphism ψ : S → U onto a finite semi-
group U that separates the points of Ge for every e ∈ E(T ).

Now, let g ∈ ϕ−1(e) be a group element. Let ε be the idempotent in Ge
and, in the semigroup ϕ−1(e), let f be the idempotent in the R-class
of g that is L-equivalent to ε. Since the product εgf belongs to Ge and
S is topologically generated by A, there exists a product w of elements
of A such that ψ(w) = ψ(εgf) and ϕ(w) = e. As ψ(Ge) is a group and
ψ(ε) is its idempotent, we have ψ(w) = ψ(εwε). Since ϕ−1(e) is a pro-
LG semigroup, εwε is an element of Ge. As ψ separates the elements
of Ge, we deduce from the equalities ψ(εwε) = ψ(w) = ψ(εgf) that
εwε = εgf . Taking into account that gω is an idempotent R-equivalent
to f and gω+1 = g, it follows that

fεwεgω = fεgfgω = fgfgω = gω+1 = g.

This shows that g is a product of elements of A ∪ E(S) and, in view of
the first part of the proof, completes the proof of the theorem.

For the pseudovariety S of all finite semigroups, since the regular
J -classes of ΩADS are characterized by their content (cf. [3, Theo-
rem 8.1.7]), Theorem 6.6 applies to every finitely generated pro-DS semi-
group. Hence, Theorem 6.6 generalizes a result of Azevedo and the first
author [4] (see also [3, Section 8.1]).

Corollary 6.7. If S is a finitely generated profinite semigroup with only
finitely many regular J -classes and countably many group elements, then
S is countable.

Proof: By Theorem 6.6, S is algebraically generated by a countable set
and, therefore, it is countable.

7. Profinite semigroups with only finitely many
idempotents

In this section, we consider the special case of the setting of Section 6
when there are only finitely many idempotents.
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Recall that the pseudovariety IE consists of all finite semigroups with
only one idempotent.

Proposition 7.1. A subpseudovariety V of IE is locally countable if and
only if it is contained in N∨H for some locally finite pseudovariety H of
groups.

Proof: Suppose that V is locally countable. Then, so is the intersection
H = V ∩ G. By Theorem 3.1, the pseudovariety H is locally finite. As
observed in [3, Section 9.1], it follows that V ⊆ N ∨ H.

The converse follows from Theorem 3.3.

The following is an elementary but useful observation that holds more
generally for compact semigroups.

Lemma 7.2. Let S be a profinite semigroup and suppose that its mini-
mum ideal has a unique idempotent e. Then e is central in S.

Proof: Let s ∈ S and let K be the minimum ideal of S. As (se)ω and
(es)ω are both idempotents in K, they are equal to e. Hence, we have

se = s(es)ω = (se)ωs = es.

The relationship between the cardinality of the set of idempotents
of a profinite semigroup and the pseudovariety IE is considered in the
following result.

Theorem 7.3. Let S be a profinite semigroup.

(i) The set E(S) is a singleton if and only if S is pro-IE.
(ii) If E(S) is finite, then S is pro-(IE ©m V) for some locally finite

pseudovariety V.
(iii) If V is a locally finite pseudovariety and S is a finitely generated

pro-(IE©m V) semigroup, then E(S) is finite.

Proof: (i) If S has two distinct idempotents, then they may be separated
by a continuous homomorphism onto a finite semigroup T . Since T has at
least two idempotents, it follows that T is not in IE. Hence, S is not pro-
IE. Conversely, if S is pro-IE, then it embeds in a product of semigroups
with only one idempotent and so it has only one idempotent.

(ii) Now, suppose that the profinite semigroup S has only finitely many
idempotents. Since S is residually finite, there is an idempotent-sepa-
rating continuous homomorphism ϕ : S → T onto a finite semigroup T .
By (i), since ϕ−1(e) has only one idempotent for each e ∈ E(T ), the
profinite semigroup ϕ−1(e) is pro-IE. Hence, by Theorem 4.1, S is pro-
(IE©m V(T )), where V(T ) is the (locally finite) pseudovariety generated
by T .
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(iii) Suppose that S is a finitely generated pro-(IE©m V) semigroup where
V is a locally finite pseudovariety. To show that S has finitely many idem-
potents, it suffices to show that so does ΩA(IE©m V) for every finite set A.
Consider the natural continuous homomorphism ϕ : ΩA(IE©m V)→ ΩAV.
Then, for each idempotent e ∈ E(ΩAV), the profinite semigroup ϕ−1(e)
is pro-IE by Corollary 4.2, whence it has only one idempotent by (i).
Since the image of every idempotent of ΩA(IE©m V) is an idempotent
of ΩAV, there are no further idempotents to consider other than those
from the ϕ−1(e) with e ∈ E(ΩAV). Hence, ΩA(IE©m V) has the same
number of idempotents as the finite semigroup ΩAV.

Note that the hypothesis that S is finitely generated may not be
dropped from the statement (iii) of Theorem 7.3. Indeed, if A is the
one-point compactification of an infinite discrete set, then the semi-
group ΩASl consists of idempotents and it is uncountable for, as is ob-
served in [12, Example, Section 1.2], ΩASl is isomorphic to the semilat-
tice of closed subsets of A under union.

Theorem 7.4. Let V be a locally countable subpseudovariety of IE and
let W be a locally finite pseudovariety. Then V©m W is locally countable.

Proof: By Proposition 7.1, there is a locally finite pseudovariety of
groups H such that V ⊆ N ∨ H. Let A be a finite set and consider
the natural continuous homomorphism ϕ : ΩA(V©m W) → ΩAW, which
is idempotent-separating since the preimage of each idempotent belongs
to IE. By Theorem 6.6, we know that every element of ΩA(V©m W) is a
product of elements of A and group pseudowords. Hence, to show that
ΩA(V©m W) is countable, it suffices to show that it has only countably
many group elements. In fact, we show that it has only finitely many
group elements, that is, that every subgroup is finite. Since ΩA(V©m W)
has only finitely many idempotents, namely as many as ΩAW, that goal
is achieved by showing, equivalently, that every regular J -class J of
ΩA(V©m W) is finite.

Consider the closed subsemigroup S of ΩA(V©m W) generated by J .
The restriction of ϕ to S is still an idempotent-separating continuous
homomorphism. The fact that the preimage of each idempotent belongs
to IE guarantees that ϕ(J) ∩ ϕ(S \ J) = ∅: if u ∈ J and s ∈ S are such
that ϕ(u) = ϕ(s), then there exists v ∈ J such that uv is an idempotent
from J and so ϕ(uv) = ϕ((sv)ω); since ϕ−1(ϕ(uv)) is pro-IE, it follows
that uv = (sv)ω, which entails that s ∈ J . Hence, the profinite com-
pletely 0-simple semigroup given by the Rees quotient S0 = S/(S \ J)
admits an idempotent-separating continuous homomorphism ψ onto a
finite semigroup T . If s is an element of J but not a group element,
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then we claim that ϕ(s) cannot be idempotent. Otherwise, we have
ϕ(s) = ϕ(sω) = ϕ(0); since ϕ preserves J -equivalence, all of J must be
mapped to ϕ(0), which contradicts the choice of ϕ. Hence, the preimage
of each idempotent is a pro-H group and, therefore, it is locally finite.
By Brown’s theorem, we conclude that S0 is locally finite. Observing
that taking the Rees quotient by the ideal S \ J to obtain S0 does not
affect J , we conclude that, to prove that J is finite, it suffices to show
that S0 is finitely generated.

Returning to ΩA(V©m W), given an idempotent e ∈ J , the profinite
semigroup U=ϕ−1(ϕ(e)) is open. Since the subsemigroup of ΩA(V©m W)
generated by A is dense, we deduce that its intersection V with U is dense
in U . Given v ∈ V , we have e = vω = (eve)ω since e is central in U by
Lemma 7.2. Hence, eve lies in the maximal subgroup He containing e
and He is generated by the elements of the form eve with v ∈ V . If
v = aw with a ∈ A and |w| = |v| − 1, then ea and we belong to J
and, by Green’s lemma, since eawe ∈ He, there is an idempotent e1 ∈ J
in the intersection of the L-class of ea with the R-class of we and so
eve = eae1we. Similarly, if w = bu with b ∈ A and |u| = |w| − 1, then
there is an idempotent e2 ∈ J such that e1we = e1be2ue. Proceeding
inductively in this manner, we conclude that eve may be factorized as
a product of elements of the form e′ae′′ where a ∈ A and e′ and e′′ are
idempotents of J . In conclusion, finitely many elements of the special
form e′ae′′ (a ∈ A, e′, e′′ ∈ E(J)) generate a profinite subsemigroup T
of S0 that contains all maximal subgroups in J . Since S0 is locally finite,
we deduce that T is finite and, hence, the maximal subgroups in J are
finite. Since J has only finitely many idempotents, we also conclude that
J is finite.

We may now improve Theorem 6.6 in the special case of the pseu-
dovarieties of Theorem 7.4 as follows.

Corollary 7.5. If H ⊆ G and V ⊆ S are locally finite pseudovarieties,
then every pseudoword over (N∨H)©m V) is an ω-word of height at most 1.

Proof: By Theorem 6.6, it suffices to show that every idempotent e of
the semigroup ΩA((N ∨ H)©m V) is an ω-word of height 1. Let (un)n
be a sequence of words converging to e. Then we have limuωn = e. But,
since ΩA((N∨H)©mV) has only finitely many idempotents, the convergent
sequence (uωn)n must eventually stabilize at its limit e. Hence, e is indeed
an ω-word of height 1.

The special case where the pseudovariety V of Corollary 7.5 is Sl
leads to quite familiar pseudovarieties. Indeed, it is easy to see that
(N ∨ H)©m Sl = DH and, in particular, N©m Sl = J. Thus, Corollary 7.5
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generalizes the first author’s result that every pseudoword over J is an
ω-word of height at most 1 [2].

In view of the results of this section, it is natural to ask whether
a countable finitely generated profinite semigroup is necessarily finitely
generated in the signature consisting of multiplication and ω-power. This
is left as an open problem.

8. Mal’cev product with locally finite pseudovarieties

The question addressed in this and the next sections is whether the
Mal’cev product of a locally countable pseudovariety with a locally finite
pseudovariety is also locally countable. First we consider the special case
where the locally finite pseudovariety consists of nilpotent semigroups.

Theorem 8.1. Suppose that S is a profinite semigroup and ϕ : S →
N is a continuous homomorphism into a finite nilpotent semigroup N
such that ϕ−1(0) is locally countable. If S is finitely generated, then so
is ϕ−1(0). In particular, S is locally countable.

Proof: Suppose that S is generated as a topological semigroup by a finite
subset A. Let n be such that N satisfies the identity x1 · · ·xn = 0. We
claim that ϕ−1(0) is generated by the following set, where Ak denotes
the set of all words of length k in the alphabet A:

B = ϕ−1(0) ∩
⋃
k<2n

Ak.

Note that the finite set B contains all Ak with n 6 k < 2n since products
of length at least n are zero in N . Given an arbitrary element s of ϕ−1(0),
since ϕ−1(0) is an open set and the subsemigroup T of S generated
algebraically by A is dense in S, there is a sequence (wr)r of elements
of T ∩ ϕ−1(0) converging to s. Each wr admits a factorization in the
elements of A, say in kr factors. If kr < n, then wr belongs to Ak ∩
ϕ−1(0) with k = kr. Otherwise, wr admits a factorization into elements
of

⋃
n6k<2nA

k, simply by taking successive blocks of n factors of A and
combining the remainder block with the previous block. Hence, s belongs
to the closed subsemigroup generated by B, which shows that ϕ−1(0)
is finitely generated as a topological semigroup. Since ϕ−1(0) is locally
countable by assumption, it follows that it is countable. To conclude that
S is countable it now suffices to apply Theorem 5.2.

In contrast, if ϕ : G→ H is a continuous homomorphism from an in-
finite finitely generated profinite group to a finite group, then ϕ−1(1) is
finitely generated as a topological group. To prove it, it suffices to con-
sider the case where G is a free profinite group. The preimage ϕ−1(1) is
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then a clopen subgroup in which the intersection I with the free group F
on the same finite set of generators is dense. Since I is a subgroup of
finite index of F , I is finitely generated by the Nielsen–Schreier theorem.
Hence ϕ−1(1) is finitely generated as a topological (semi)group. A more
precise statement can be found in [42, Section 3.6].

Corollary 8.2. Let V be a locally countable pseudovariety and let W
be a locally finite pseudovariety of nilpotent semigroups. Then the pseu-
dovariety V©m W is locally countable.

It is well-known that the atoms in the lattice of all pseudovarieties
of semigroups are Jxy = 0K, Sl, the pseudovariety Abp of all finite ele-
mentary Abelian p-groups, where p is prime, and the pseudovarieties LZ
and RZ, respectively of all finite left-zero and right-zero semigroups.
Note that the largest pseudovariety not containing all but the first one
is precisely N. The next theorem shows that the pseudovariety N is op-
timal in Theorem 8.1.

Theorem 8.3. For every non-nilpotent finite semigroup T , there is a
non-locally countable profinite semigroup S and a continuous homomor-
phism ϕ : S → U into a divisor of T such that ϕ−1(e) is locally countable
for every e ∈ E(U).

Proof: It suffices to show that, if W is any of the atoms Sl, Abp, LZ,
or RZ, then there is a locally countable pseudovariety V such that V©m W
is not locally countable. This is proved in the next section for all but the
atom RZ, for which the result follows from the case of LZ by left/right
duality.

Corollary 8.4. Let W be a locally finite pseudovariety. Then V©m W is
locally countable for every locally countable pseudovariety V if and only
if W is contained in N.

9. Mal’cev products with non-nilpotent atoms

In this section we prove the claim stated in the proof of Theorem 8.3
that for every non-nilpotent atom W in the lattice of pseudovarieties of
semigroups there is a locally countable pseudovariety V such that V©m W
is not locally countable.

9.1. The atom Sl. The following construction seems to have been first
used in [40] in the so-called synthesis theory and plays a role in several
contexts [38, 39, 18, 6, 10]. Here, we extend it to profinite semigroups.
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Let S and T be profinite semigroups and let f : S → T be a continuous
mapping. Consider the Cartesian product K = S×T ×S. We define on
U(S, T, f) = S ]K a multiplication extending that of S as follows:

• (s1, t, s2)(s′1, t
′, s′2) = (s1, tf(s2s

′
1)t′, s′2);

• s(s1, t, s2) = (ss1, t, s2);
• (s1, t, s2)s = (s1, t, s2s).

It is easy to see that this multiplication on U(S, T, f) is associative
(this has been done in the purely algebraic setting, for instance in [6,
Lemma 3.1]). If we endow U(S, T, f) with the coproduct topology of the
space S with the product space K, then U(S, T, f) is a compact zero-di-
mensional space in which the multiplication is continuous. By a theorem
of Numakura [32, Theorem 1], it follows that U(S, T, f) is a profinite
semigroup.

Theorem 9.1. For every non-trivial locally finite pseudovariety of
groups H, the join N ∨ CS(H) is locally countable but the Mal’cev prod-
uct (N ∨ CS(H))©m Sl is not.

Proof: Since it is well-known that CS(H) = H ∗ RZ, it follows from The-
orems 3.4 and 3.3 that the join N∨CS(H) is locally countable. To prove
that (N∨CS(H))©m Sl is not locally countable, we exhibit an uncountable
finitely generated profinite semigroup U and a continuous homomor-
phism ϕ : U → F onto a finite semilattice F such that, for each e ∈ F ,
the subsemigroup ϕ−1(e) is pro-(N ∨ CS(H)). The theorem then follows
from Theorem 4.1.

To construct U , consider the monoid M = N ∪ {∞} under addition,
where the topology is given by the one-point compactification of the
discrete set N of natural numbers. Let G = ΩMH and let f : M → G
be the natural generating function. We take U = U(M,G, f) to be the
profinite semigroup defined above.

For F , we take the meet-semilattice given by the three-element chain
0 6 1 6 2. The mapping ϕ sends 0 ∈ M to 2, M \ {0} to 1, and
K = M ×G×M to 0. Note that ϕ is a continuous homomorphism. We
claim that U is not locally countable.

We first observe that U is generated as a topological monoid by the
two elements a = 1 ∈ M and b = (0, 1, 0), where the middle 1 is the
idempotent of the group G. Indeed, 1 ∈ M generates the topological
monoid M , while the elements baib = (0, f(i), 0) generate the topolog-
ical group {0} × G × {0} and ai(0, g, 0)aj = (i, g, j). Moreover, U is
uncountable since G is isomorphic to each of the maximal subgroups in
its minimum ideal and G is an infinite profinite group (as the function f
is injective), whence uncountable, as observed in Section 3.
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To prove the claim, it remains to show that K is locally finite. This
follows from showing that K is pro-CS(H): the calculation

(i, g, j) = (i, gh−1f(k)−1, 0)(k, h, `)(0, f(`)−1, j)

shows that K has only one J -class while the maximal subgroups of K
are isomorphic to G.

To conclude the proof, it suffices to observe that ϕ−1(2) = {1},
ϕ−1(1) ' Ω1N, and ϕ−1(0) = K is pro-CS(H), as shown above. By Theo-
rem 4.1 it follows that the profinite monoid U is pro-(N∨CS(H))©m Sl.

The semigroup U of the preceding proof may also be used to establish
the following result, which shows that the hypothesis that W is locally
finite may not be dropped in Corollary 8.2.

Theorem 9.2. There is a locally finite pseudovariety V such that V©m N
is not locally countable.

Proof: Let S be the profinite semigroup that is obtained from U by
removing the identity element. Note that, in the notation of the proof
of Theorem 9.1, I = K ∪ {∞} is an ideal of S and S/I is isomorphic
to Ω1N. Taking into account that K is locally finite, it is easy to see
that I is also locally finite. By the proof of Theorem 9.1, S is not locally
countable. Moreover, if V is a pseudovariety such that I is pro-V, then S
is pro-(V©m N) by Theorem 4.1. Thus, to complete the proof, it suffices
to exhibit a locally finite pseudovariety V for which I is pro-V. We claim
that the locally finite pseudovariety Sl∨CS(H) has the required property.

Consider the product P = K×{0, 1} of K with the two-element semi-
lattice and the subset T =(K×{0})∪{(e, 1)}, where e = (∞, f(∞)−1,∞).
Since e is an idempotent, T is a closed subsemigroup of P . The profi-
nite semigroup P is pro-(Sl∨CS(H)) since K is pro-CS(H). To establish
the claim, it thus suffices to show that T is isomorphic to I, which is a
consequence of the following calculations: for (x, g, y) in K, we have

• e(x, g, y) = (∞, f(∞)−1 · f(∞) · g, y) = (∞, g, y) =∞(x, g, y);
• dually, (x, g, y)e = (x, g, y)∞.

9.2. The atom LZ. Our treatment of the atom LZ requires a more
casuistic and complicated construction than that of Sl. This subsection
provides a somewhat long and technical proof of the following result,
while the terminology is explained later.

Theorem 9.3. There is an aperiodic locally countable pseudovariety U
of semigroups of dot depth 1 such that U©m LZ is not locally countable.



Locally Countable Pseudovarieties 151

Let k be a positive integer. We consider the semigroup Sk with zero
given by the following presentation:

〈a, b | ak+1 = ak, bk+1 = bk, akbkak = ak, bkakbk = bk,

anbna = bnanb = 0 (n < k)〉.

The elements of Sk may be represented by words of the form

(1) w = aγ0bγ1 · · · aγ2`bγ2`+1 .

To describe the unique representation of each element different from 0,
we first denote by Ek = {0, 1, . . . , k} the set of potential exponents,
since we may assume that {γ0, γ1, . . . , γ2`+1} ⊆ Ek as higher powers
may be reduced by applying the rules ak+1 7→ ak and bk+1 7→ bk. And,
of course, we assume that only γ0 and γ2`+1 may take the value 0.
Then we consider the relation ≺k on Ek given by the formula i ≺k j
if i < j or i = j = k. We may assume that for each 0 6 i < 2` − 1
we have γi ≺k γi+1, since otherwise we have w = 0 by the defining re-
lations anbna = bnanb = 0. For the same reason, we may assume that
γ2`−1 ≺k γ2` in the case γ2`+1 6= 0. Furthermore, we may assume that at
most two exponents take the value k, since otherwise we could shorten
the word by applying the transformations akbkak 7→ ak or bkakbk 7→
bk. This describes canonical forms of words in Sk. The canonical form
may be obtained from each word by applying rules which are oriented by
the defining relations from longer words to shorter ones. To say it more
formally, we may add a new symbol 0 and the rules a0, 0a, b0, 0b 7→ 0,
and mention that the resulting rewriting system is obviously confluent
with the canonical forms described above. Finally, notice that the semi-
group Sk is finite, since there are only finitely many canonical words.

Now, let V be the pseudovariety generated by the set of all such semi-
groups Sk with k > 1. Notice that all semigroups Sk are aperiodic and,
therefore, we have V ⊆ A. More precisely, Sk is a semigroup of “dot
depth 1”. The Straubing–Thérien dot depth hierarchy is a filtration of A
as an infinite increasing chain of pseudovarieties, which has been exten-
sively studied. The natural definition of the hierarchy comes from lan-
guage theory (cf. [34]) via Eilenberg’s correspondence between pseudova-
rieties of semigroups and so-called “varieties of regular languages” [19].
The second level of the hierarchy (which starts at level 0, given by the
trivial pseudovariety I) is known as dot depth 1 and has been shown by
Knast [29] to be defined by the pseudoidentity

(2) (exfye)ωxft(ezfte)ω = (exfye)ω(ezfte)ω,

where e = uω, f = vω, and t, u, v, x, y, z are distinct variables.
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Lemma 9.4. The semigroup Sk is of dot depth 1.

Proof: All non-zero idempotents of Sk lie in the same D-class D, which
consists of all elements in canonical form (1) for which the first or second
non-zero exponent is k. It follows that, if a product of the form esf is
a factor of a non-zero idempotent, where e and f are idempotents, then
esf belongs to D. Thus, esf is the only element in the intersection of
the R-class of e with the L-class of f . Hence, if fte is also a factor of a
non-zero idempotent, then the equality esfte = e follows from Green’s
lemma (cf. [26, Proposition 2.3.7]) and aperiodicity. This shows that Sk
satisfies the pseudoidentity (2).

The next step for the proof of Theorem 9.3 is the following result.

Lemma 9.5. The pseudovariety V is not locally countable.

Proof: We fix the alphabet A = {a, b} and consider the relatively free
profinite semigroups ΩAA and ΩAV. We denote by η : ΩAA→ ΩAV and
ψk : ΩAV→ Sk (k > 1) the natural continuous homomorphisms; all these
homomorphisms map the generating set A identically. We describe an
uncountable subset X in ΩAA such that the restriction of η to X is an
injective mapping.

Let s = (si)i∈N be an increasing sequence of natural numbers. For
each such s, we consider the following sequence of words: we put w1 =
as1bs2 and, for each i > 1, we let wi = wi−1a

s2i−1bs2i . We claim that
the sequence (wi)i∈N converges in ΩAA. Indeed, let α : ΩAA → S be a
continuous homomorphism into a finite aperiodic semigroup S. Then,
for some n, we have un = un+1 for every element u ∈ S. In particular,
we have α(a)m = α(a)n and α(b)m = α(b)n for every m > n. Thus, for
such m > n, we have α(wm) = α(wn(anbn)m−n) and therefore α(wm) =
α(wn(anbn)n) for every m > 2n and we see that the sequence (α(wi))i∈N
is eventually constant. Let ws be the limit in ΩAA of the converging
sequence (wi)i∈N. Let X be the set of all ws’s obtained in this way.

Let s and t be distinct increasing sequences of natural numbers. Let
j be the minimum index such that sj 6= tj . Without loss of generality,
we may assume that sj < tj . Now we put k = sj + 1 and consider the
semigroup Sk. Let us assume first that j is an even index. We see that,
for i such that 2i > j, we have ψk(η(wi)) = as1bs2 · · · asj−1bsjakbk. Let
w′i = at1bt2 · · · at2i−1bt2i be the words in the given sequence converg-
ing to wt. Since tj > k, we get that, for every i such that 2i > j,
the equality ψk(η(w′i)) = as1bs2 · · · asj−1bk holds. Therefore, the ele-
ment ψk(η(ws)) of Sk is equal to as1bs2 · · · asj−1bsjakbk, while ψk(η(wt))
is equal to as1bs2 · · · asj−1bk. Thus, ψk(η(ws)) 6= ψk(η(wt)) in the case
of even j. The case of odd j may be treated in the same way. Hence,
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we have η(ws) 6= η(wt) and we conclude that X is uncountable and the
restriction of η to the set X is an injective mapping, as claimed.

For each k, let Tk be the subsemigroup of Sk consisting of 0 and the
elements in canonical form (1) with γ0 6= 0. Let U be the pseudovariety
generated by all finite semigroups Tk (k > 2). Thus, we have U ⊆ V ⊆ A.

Let C be a finite set. It is known that, for arbitrary u ∈ ΩCA and
every factor x ∈ C of u, there are u′, u′′ ∈ (ΩCA)1 such that u = u′xu′′

and x is not a factor of u′, where u′ is uniquely determined (see [11]).2

We talk about the first occurrence of x in u. We denote by [xy(u) the
number of occurrences of an element y of C in u′: if it exists, [xy(u) is
the maximum non-negative number n such that yn is a subword of u′;
otherwise, [xy(u) is the symbol ∞. Thus, [xy(u) is defined for any pair
of distinct letters x, y such that x occurs in u. Dually, if we consider
the last occurrence of x in u, then we get u = v′xv′′, where x does not
appear in the uniquely determined v′′; we denote by ]xy(w) the number
of occurrences of y in v′′. Furthermore, for each pair of not necessarily
distinct letters x, y we consider the set Mu(x, y) of all words w ∈ C∗

in which x and y do not appear and such that xwy is a factor of u.
By Higman’s theorem [25], for every set of words the set of its minimal
members in the subword ordering is finite. We denote this finite subset
of Mu(x, y) by mu(x, y). Notice that mu(x, y) is empty if and only if u
has no finite factor of the form xwy; also, mu(x, y) = {1} if and only if
xy is a factor of u.

The following technical lemma plays a crucial role in our investigation
of the pseudovariety U.

Lemma 9.6. Let u, v ∈ ΩCA be a pair of infinite pseudowords satisfying
the following assumptions:

(i) Both u and v contain the word x3 as a subword for every x ∈ C.
(ii) For every pair x, y ∈ C of distinct letters, we have [xy(u) = [xy(v)

and ]xy(u) = ]xy(v).
(iii) For each x, y ∈ C we have mu(x, y) = mv(x, y).

Then U |= u = v.

Proof: Let ϕ : C → Tk be an arbitrary mapping with k > 2; we denote
by the same symbol the unique extension to a continuous homomorphism
ϕ : ΩCA→ Tk. We want to show that ϕ(u) = ϕ(v). Let us assume for a
contradiction that ϕ(u) 6= ϕ(v).

2Actually, by “equidivisibility” of the pseudovariety A, u′′ is also unique. See [5],
where equidivisible pseudovarieties are characterized.
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If ϕ(x) = 0 for some x ∈ C, then ϕ(u) = ϕ(v) = 0. Thus, we may
assume that, for each x ∈ C, the image ϕ(x) is a canonical word of
the form (1) with γ0 6= 0. Assume for a moment that some expo-
nent γ2i+1 of b in ϕ(x) is smaller than k. Since x3 is a subword of u, we
may factorize u in the following way: u = u0xu1xu2xu3 for some pseu-
dowords u0, . . . , u3 ∈ (ΩCA)1. Since the canonical forms of both ϕ(u1x)
and ϕ(u2x) start with a, a representation of ϕ(xu1xu2x) in the form (1)
contains two factors of the form abγ2i+1a, which means that ϕ(u) = 0.
So, we reach a contradiction and from hereon we may assume that ϕ(x)
is of the form aγ0bkaγ2 or it is a power of a. Denote by X the set of
all x ∈ C such that ϕ(x) is a power of a. If all letters are mapped to
powers of a, then we see that ϕ(u) = ϕ(v) = ak since both u and v are
infinite pseudowords. Hence, we may assume that there is y ∈ C \ X
such that there is a factorization u = u0yu

′ with u0 ∈ ΩXA. By (i),
there is also a factorization v = v0yv

′ where y is not a factor of v0.
By (ii), the factors of v0 from C are the same as those in u0. So, y is
also the leftmost factor of v from C \ X. Taking also into account the
left/right dual argument, we conclude that we may assume that there are
letters y, z ∈ C \X and factorizations u = u0yu1zu2 and v0yv1zv2 such
that u0, v0, u2, v2 ∈ (ΩXA)1 are uniquely determined. By the assump-
tion (ii), we get that ϕ(u0) = ϕ(v0) = am and ϕ(u2) = ϕ(v2) = an for
some natural numbers m and n. Then there are just two possible values
of ϕ(u) and ϕ(v), namely 0 and am+γ0bkaj with j = k or j = γ2 + n,
where γ0 is the exponent of the first a in ϕ(y) and γ2 is the exponent of
the last a in ϕ(z).

Now, since the images ϕ(u) and ϕ(v) are distinct, we see that exactly
one of them is equal to 0. We may assume without loss of generality that
it is ϕ(u). Let (un)n be a sequence of words from C+ converging to u
in ΩCA. Since ϕ is continuous, without loss of generality we may assume
that ϕ(un) = 0 for every n. Since every letter in C\X maps to an element
of Tk of the form aγ0bkaγ2 and those in X map to powers of a, we deduce
that there is a finite factor y′w′z′ of un such that ϕ(y′) = aα0bkaα2 ,
ϕ(z′) = aβ0bkaβ2 , ϕ(w′) = am (where we let a0 = 1), and α2+m+β0 < k.
As there are only finitely many possibilities for such factors y′w′z′, for
|w′| < k, there are infinitely many values of n for which we may choose
the same such factor y′w′z′. Hence, there is also such a factor y′w′z′

of u. Using the hypothesis (iii) for the pair of letters y′, z′, we know
that there is a word w′′ which is a subword of w′ and such that y′w′′z′

is a factor of v. Clearly, ϕ(w′′) = an with n 6 m and, therefore, we
have ϕ(v) = 0, which contradicts the assumption at the beginning of the
paragraph.
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We are now ready to establish the following result, which is part of
the proof of Theorem 9.3.

Proposition 9.7. The pseudovariety U is locally countable.

Proof: Let C be a finite set and consider ΩCU and ΩCA. We prove
inductively with respect to the size of C that ΩCU is countable. Since
U ⊆ A, we see that ΩCU is countable for every singleton set C. We next
assume that ΩBU is countable for every proper subset B of C. We show
that there is a countable subset W of ΩCA such that for each u ∈ ΩCA
there is w ∈ W such that U |= u = w. This proves that the cardinality
of ΩCU is at most the cardinality of the set W , whence ΩCU is countable.

At first, assume that u does not contain all words from C∗ as sub-
words and consider some shortest word v that is not a subword of u.
Then, there is a factorization v = a1a2 · · · anan+1, where a1a2 · · · an is
a subword of u. Moreover, there is a factorization of u of the form u =
u1a1u2a2 · · · anun+1 such that each letter ai does not occur in ui for 1 6
i 6 n+ 1. Therefore, each ui belongs to ΩBA for some proper subset B
of C. By the induction hypothesis, there is a countable set WB ⊆ ΩBA
of representatives of elements of ΩBU. We construct the set W of all
pseudowords of the form w0a1w1a2 · · · anwn+1 with wi ∈ ΩBi

A, where
Bi = C \ {ai} (i = 1, . . . , n + 1). The set W is countable and for each
pseudoword u which does not contain all words from C∗ as subwords
there is a pseudoword w ∈W such that U |= u = w.

Thus, it remains to deal with the case when u contains all words
from C∗ as subwords. Denote by Z the set of all such pseudowords u. We
consider an equivalence relation ∼ on Z such that u ∼ v if u and v satisfy
the conditions (ii) and (iii) of Lemma 9.6; note that the definition of Z
entails that its elements are infinite and that condition (i) of Lemma 9.6
is satisfied for every pair of elements of Z. Thus, the relation ∼ is in fact
an intersection of finitely many equivalence relations on Z each of which
has countably many classes. Hence, also ∼ has countably many classes
and we may choose from each class one representative and collect them
into the countable subset W ′ of Z ⊆ ΩCA. By Lemma 9.6, we deduce
that for each u ∈ Z there is w ∈ W ′ such that U |= u = w. We have
proved that there is a countable set W = W ∪ W ′ with the required
property.

Proposition 9.8. The pseudovariety U©m LZ is not locally countable.

Proof: Let S be the two-element set {a, b} and consider the operation
on S given by xy = x. Thus, S is a left zero semigroup. For every k > 2,
we denote by Rk the subsemigroup of Sk ×S, which is generated by the
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pair of elements (a, a) and (b, b). Clearly, both projections π1 : Sk×S →
Sk and π2 : Sk×S → S to the first and second coordinates are surjective
when restricted to Rk. Note that π−12 (a) = Tk × {a} ∈ U. Also, the
subsemigroup π−12 (b) is isomorphic to Tk by applying the automorphism
of Sk that exchanges the generators a and b. Hence Rk belongs to U©m LZ
and since Sk is a homomorphic image of Rk, we get V ⊆ U©m LZ. By
Lemma 9.5, it follows that U©m LZ is not locally countable.

Proof of Theorem 9.3: The result follows from Propositions 9.7 and 9.8
together with Lemma 9.4.

9.3. The atom Abp. Throughout this subsection, p denotes a fixed
prime number. Our aim is to establish the following result.

Theorem 9.9. There is a locally countable pseudovariety Up such that
the Mal’cev product Up©m Abp is not locally countable.

The proof follows the same lines as the proof of Theorem 9.3, based
on a similar construction. We include just those details in which the new
construction differs from the previous one.

Let k be a positive integer. We consider the semigroup Sk(p) with
zero given by the following presentation:

〈a, b | a2 = 0, bk+1 = bk, bk(abk)p = bk, bnabna = 0 (n < k)〉.
Since a2 = 0, the elements of Sk(p) different from 0 may be represented
by words of the form

(3) w = bβ0abβ1abβ2a · · · abβ` .

Here, the integer ` denotes the number of occurrences of the letter a in
the word, including the case ` = 0, where the considered word is bβ0 with
a positive exponent β0. To describe canonical forms of words in Sk(p), we
use the same notation Ek and i ≺k j as in Subsection 9.2. So, we assume
that {β0, . . . , β`} ⊆ Ek since bk+1 = bk, and only β0 and β` may take
the value 0, where b0 is interpreted as the empty word. Furthermore,
for 0 6 i < ` − 1 we assume that βi ≺k βi+1, and at most p of the
exponents β take the value k, since otherwise we could shorten the word
by applying the equality bk(abk)p = bk. In particular, under all these
assumptions, for canonical words of the form (3) we have ` 6 k+p and we
conclude that there are only finitely many canonical forms representing
elements of the semigroup Sk(p), which is consequently finite. Moreover,
for w in the canonical form (3) with ` 6= 0 and such that w3 6= 0, we
see that β1 = · · · = β`−1 = k 6 β0 + β`. Then, for each m > 3, we
have wm = bβ0(abk)m`−1abβ` . Thus wp+3 = w3, an equality that holds
also in the case where w3 = 0. If w is the canonical word (3) with
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` = 0, then w = bβ0 and we have wk+1 = wk. Hence Sk(p) satisfies the
identity xmax{k,3}+p = xmax{k,3}.

Let Vp be the pseudovariety generated by the semigroups Sk(p) with
k > 2. By the arguments at the end of the previous paragraph we obtain
the inclusion Vp ⊆ Jxω+p = xωK. We denote by Wp the latter pseudovari-
ety which consists of all finite semigroups containing as non-trivial sub-
groups only groups of exponent p. Notice that A ⊆ Wp for an arbitrary
prime p.

Lemma 9.10. For each prime p, the pseudovariety Vp is not locally
countable.

Proof: Although the proof is a quite straightforward modification of the
proof of Lemma 9.5, we include the details since the canonical forms of
elements in Sk(p) are slightly different from those in Sk.

Let η : ΩAWp → ΩAVp and ψk : ΩAVp → Sk(p) (k > 2) be the natural
continuous homomorphisms which map the generating set A = {a, b}
identically. Our aim is to show that ΩAVp is not countable.

For an increasing sequence of natural numbers s = (si)i>1, we con-
sider the following sequence of words: w1 = abps1abps2 · · · abpsp and for
each i > 1 we put

wi = wi−1 ab
psp(i−1)+1 abpsp(i−1)+2 · · · abpspi .

We show that the sequence (wi)i>1 converges in ΩAWp. Let S be an

arbitrary finite semigroup from Wp and let α : ΩAWp → S be a con-
tinuous homomorphism. There is an integer n such that un = un+p

for every element u ∈ S. Clearly, if we fix such n (depending just on
the semigroup S), we also have um = um+p for every m > n. In par-
ticular, for every m > n, upm = upn is a unique idempotent which
is a power of u ∈ S. To simplify the notation, we denote aS = α(a)
and bS = α(b). Then we have α(abpsm) = aSb

psm
S = aSb

pn
S for ev-

ery m > n because sm > m. Now, for each m > 2n, we deduce
that α(wm) = α(wn)(aSb

pn
S )p(m−n) = α(wn)(aSb

pn
S )pn. Hence, the se-

quence (α(wi))i>1 is eventually constant and (wi)i>1 converges. Let ws
be the limit of the converging sequence (wi)i>1.

We show that η(ws) 6= η(wt) for every pair of distinct increasing se-
quences of natural numbers s 6= t. This proves that ΩAVp is uncountable
as there are uncountably many increasing sequences of natural numbers.

Assume that (wi)i>1 and (w′i)i>1 are the constructed converging se-
quences for s and t respectively. Let j be the minimum index such that
sj 6= tj and assume that sj < tj as the opposite case can be treated in
the same way. We put k = p(sj + 1) and consider the semigroup Sk(p).
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Denote by j′ the unique integer such that p(j′ − 1) < j 6 pj′. For
each i > j′, we have

ψk(η(wi)) = abps1abps2 · · · abpsj−1abpsj (abk)pj
′−j(abk)p(i−j

′).

Thus we deduce that ψk(η(ws)) is equal to abps1 · · · abpsj−1abpsj (abk)`,
for a certain ` ∈ {1, . . . , p}. On the other hand, the word

w′i = abpt1abpt2 · · · abptpi

is such that, for every i > j′, the equality

ψk(η(w′i)) = abps1abps2 · · · abpsj−1abk(abk)pj
′−j(abk)p(i−j

′)

holds. Thus, ψk(η(wt)) is equal to abps1 · · · abpsj−1(abk)`+1 with the same
` as above. We conclude that ψk(η(ws)) 6= ψk(η(wt)) in Sk(p), which
implies that η(ws) 6= η(wt).

For each k, we denote by Tk(p) the subsemigroup of Sk(p) consisting
of the element 0 and all elements in canonical form (3), where the number
of occurring a’s, that is, `, is divisible by p. The pseudovariety generated
by all semigroups Tk(p) is denoted by Up. Notice that Up ⊆ Vp ⊆Wp.

Our aim is the same as in the previous subsection, namely to prove
inductively with respect to the size of a finite set C that ΩCUp is count-

able. First of all, for u ∈ ΩCWp, we may define all technical notions,
that is, [xy(u), ]xy(w), Mu(x, y), and mu(x, y), in the same way, because
Wp satisfies the same conditions as A which enable us to apply the re-
sults from [11] when we define the first occurrence of the letter in the
pseudoword u.

We formulate a slight modification of Lemma 9.6.

Lemma 9.11. Let u, v ∈ ΩCWp be a pair of infinite pseudowords satis-
fying the following assumptions:

(i) For every x ∈ C, both u and v contain x2 as a subword.
(ii) For every pair x, y ∈ C of distinct letters, we have [xy(u) = [xy(v)

and ]xy(u) = ]xy(v).
(iii) For each x, y ∈ C, we have mu(x, y) = mv(x, y).

Then Up |= u = v.

Proof: We proceed in the same way as in the proof of Lemma 9.6. Let
ϕ : ΩCWp → Tk(p) be a continuous homomorphism and assume for a
contradiction that ϕ(u) 6= ϕ(v).

The case when ϕ(x) = 0 for some x ∈ C is clear. So, assume
that, for each x ∈ C, the element ϕ(x) ∈ Tk(p) is represented by the
canonical word ϕ(x) = bβ0abβ1 · · · abβ` with ` divisible by p. If there is
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1 6 i < ` such that βi < k, then ϕ(u) = ϕ(v) = 0 since x2 is a subword
of both u and v. Thus we may also assume that every ϕ(x) is of the
form bβ0(abk)p−1abβp or bβ0 . Now we denote by X the set of all x ∈ C
such that ϕ(x) is a power of b and the rest of the proof is essentially the
same as in the case of Lemma 9.6 and is omitted.

Proposition 9.12. For each prime p, the pseudovariety Up is locally
countable.

Proof: This result can be proved in the same way as Proposition 9.7. The
pseudovariety A is replaced by Wp and the pseudovariety U by Up. At

the induction basis, we again have that ΩCWp is countable whenever
C is a singleton set.

Proposition 9.13. For every prime p, the pseudovariety Up©m Abp is
not locally countable.

Proof: Let G = {1, a, a2, . . . , ap−1} be a cyclic group of order p. For
every k > 2, we consider the semigroup Sk(p) × G and its subsemi-
group Rk generated by (a, a) and (b, 1). Let π2 : Rk → G be the restric-
tion of the projection from Sk(p)×G onto the second coordinate. Then
π−12 (1) = Tk(p) ∈ Up, where 1 is a unique idempotent in the group G.
Thus Rk belongs to Up ©m Abp. Considering the restriction of the pro-
jection from Sk(p) ×G onto the first coordinate, we see that Sk(p) is a
homomorphic image of Rk. Thus, we have Vp ⊆ Up©m Abp. We deduce
that Up©m Abp is not locally countable by Lemma 9.10.

Proof of Theorem 9.9: It suffices to invoke Propositions 9.12 and 9.13.

Unlike in the case of the atom LZ, we do not have a familiar upper
bound for the pseudovariety Vp. Yet, the same argument as in the proof
of Lemma 9.4 shows that Sk(p) satisfies the pseudoidentity obtained
from (2) by raising both sides to the pth power.

10. Pseudovarieties of aperiodic inverse semigroups

Recall that a semigroup is said to be an inverse semigroup if, for every
element s, there is a unique element t such that sts = s and tst = t; an
element t satisfying these equalities is called an inverse of s. The exis-
tence of an inverse characterizes regular elements. An inverse semigroup
may also be characterized as a semigroup in which every element is reg-
ular and in which idempotents commute. Another important property
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of inverse semigroups is that they arise precisely as semigroups of par-
tial bijections, that is, of bijections between two subsets of a fixed set;
the operation is composition and the set should be closed under taking
function inverses.

Denote by Inv the class of all finite inverse semigroups. The pseudova-
riety of semigroups generated by Inv turns out to be ESl [13], which
may be decomposed both as Sl ∗ G and as Sl©m G. It is natural to ask
whether a pseudovariety bound on the groups in a class of finite inverse
semigroups leads to a smaller bound on a pseudovariety containing the
class. The negative answer to this question may be found in [24, The-
orem 5.3]: in particular, if Inv ∩ A ⊆ DA©m H for a pseudovariety of
groups H, then H = G.

The main purpose of this section is to show that the pseudovari-
ety ESl ∩ A is not locally countable. The proof of this result requires
some combinatorial tools which we proceed to introduce.

Given a word w = a1a2 · · · an over an alphabet A, we consider the
following linear A-labeled digraph Λw:

q1
a1 // q2

a2 // q3 // · · · an // qn+1.

The vertices q1 and qn+1 are called respectively the beginning and end
vertices. For words w1, . . . , wr, the flower digraph Φ(w1, . . . , wr) is ob-
tained by taking the disjoint union of the digraphs Λwi

(i = 1, . . . , r)
and identifying all beginning and end vertices to a single vertex which
is denoted by q0.

Consider the Prouhet–Thue–Morse endomorphism µ of the free
monoid {a, b}∗, which is defined by µ(a) = ab and µ(b) = ba. Noting that
µn(a) is a prefix of µn+1(a), we see that the sequence of words (µn(a))n
determines an infinite word, denoted by t, which is also known as the
Prouhet–Thue–Morse word : the word µn(a) is the prefix of t of length 2n.
See [1] for the name attribution and many relevant properties. In partic-
ular, Thue ([48]) proved that t is cube-free and even overlap-free in the
sense that it contains respectively no factor of the forms w3 and uvuvu
with u,w ∈ {a, b}+ and v ∈ {a, b}∗. The latter corresponds to a minimal
situation where we find overlapping occurrences of the same word. By
direct inspection, one verifies that the only words in {a, b}+ of length at
most 3 that are not factors of t are the cubes a3 and b3. Note also that
if the finite word w is a factor of t, then so is µ(w).

For n > 0, we let Γn = Φ(µn(a), µn(b)), with vertex set Vn, where µ0

means the identity mapping. The vertex q0 of the graph Γn is denoted
by 0n. The first three {a, b}-labeled digraphs Γn are depicted in Figure 1.
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Figure 1. The flower digraphs Γ0, Γ1, and Γ2.

For an A-labeled digraph ∆, one may view each letter a ∈ A as
representing a binary relation on the set of vertices, namely the rela-
tion ∆(a) consisting of the pairs of vertices (p, q) such that there is an

edge p
a−→ q in the digraph. The monoid of binary relations generated

by all ∆(a) with a ∈ A is called the transition monoid of ∆ and is de-
noted by T (∆). Note that, for a word w = a1a2 · · · an (ai ∈ A), a pair of
vertices (p, q) belongs to the product ∆(a1)∆(a2) · · ·∆(an) if and only
if there is a path in ∆ beginning at p and ending at q for which w is
the concatenation of the labels of the successive edges; in this case, we

also write p
w−→ q. If the relations ∆(a) (a ∈ A) are partial functions,

then every word w in A∗ induces a right action on the vertices of ∆ by

p · w = q if p
w−→ q. For simplicity, we then also say that words of A∗

act on ∆.
In the case where distinct edges either starting or ending at the same

vertex have distinct labels, the relations ∆(a) are partial bijections. Since
the words µn(a) and µn(b) start with different letters and end with dif-
ferent letters, that property holds for the flower digraphs Γn. We denote
by Mn the transition monoid of the disjoint union Γ̃n =

⊎n
i=0 Γi. Since

it is generated by partial bijections of a finite set, Mn embeds in the
inverse monoid of all partial bijections of the vertex set of Γ̃n and so
Mn belongs to the pseudovariety ESl. Note that the restriction of the
mappings from Mn+1 to the graph Γ̃n defines an onto homomorphism
ϕn : Mn+1 → Mn. Also note that, if we let Tn = T (Γn), then Mn is a
subdirect product of the monoids T0, . . . , Tn. The fact that the identity
mapping on generators does not extend to a homomorphism Tn+1 → Tn
explains the need to work with Mn to obtain an inverse system. For
instance, µn(a3) acts as a non-empty transformation on Vn while, as
the arguments in the proof of Lemma 10.5 show, it acts as the empty
transformation on Vn+1.
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Recall that a language L ⊆ A∗ over a finite alphabet A is said to be
star-free if it may be expressed in terms of the languages ∅, {1}, and {a}
(a ∈ A) using only the operations of finite union, finite product, and
complement (in A∗) [34].

There is a nice alternative description of the semigroup Tn which we
proceed to give. Consider Γn as a (deterministic, incomplete) automa-
ton An with 0n as the only initial and terminal state. The language it
recognizes is simply the image Imµn of the homomorphism µn. Since no
quotient of the automaton recognizes the same language, Tn is the syn-
tactic monoid of Imµn. We claim that the language Imµn is star-free.
We prove this below by induction on n > 0. The induction step depends
on the following result.

Lemma 10.1. Let η be an injective endomorphism of the free monoid A∗

such that Im η is star-free. If L ⊆ A∗ is a star-free language, then so
is η(L).

Proof: By assumption, L is obtained from the languages ∅, {1}, and {a}
(a ∈ A) by applying a finite number of times the operations of finite
union, finite product, and complement in A∗. Proceeding by induction
on the number of times the operations are applied, η(L) may be obtained
from the languages ∅, {1}, and {η(a)} (a ∈ A) by applying the opera-
tions of finite union, finite product, and η(K) 7→ η(A∗ \K). Since finite
languages are star-free and homomorphisms preserve union and multipli-
cation, all we need to show is that, in the induction process, the image
under η of the complement also produces star-free languages. Indeed,
since η is injective, we obtain the following equalities:

η(A∗ \K) = {η(w) : w ∈ A∗ \K} = (Im η) ∩ (A∗ \ η(K)).

By the induction hypothesis, we may assume that η(K) is star-free.
Hence, so is η(A∗ \K) as Im η is assumed to be star-free.

It is well-known and easy to check that syntactic monoids of star-free
languages are aperiodic. The converse is a key result of Schützenber-
ger [43].

We may now easily prove our claim.

Proposition 10.2. The language Imµn is star-free.

Proof: We first note that an elementary hand (or computer) calcula-
tion shows that T1 is a 15-element aperiodic inverse monoid. Hence, by
Schützenberger’s theorem, the language Imµ = {ab, ba}∗ is star-free.3

3The calculation is carried out in detail in Example 2.1 of Chapter 4 of [33], where
a star-free expression for the language {ab, ba}∗ is also derived.
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Furthermore, the language Imµ0 = {a, b}∗ is star-free, being the com-
plement of the empty language. Also note that µ is injective. Finally,
as Imµn+1 = µ(Imµn), assuming inductively that Imµn is star-free,
Lemma 10.1 yields that so is Imµn+1.

As an immediate consequence of Proposition 10.2, we obtain the fol-
lowing result.

Corollary 10.3. The monoid Tn is aperiodic.

The following is a little technical observation about the action of cer-
tain words on Vn.

Lemma 10.4. The two words µn+1(a) and µn+1(b) act in the same way
on Vn, namely as the identity at the single vertex 0n.

Proof: To prove the lemma, note that, by construction of the graph Γn,
the words µn(a) and µn(b) label circuits at the vertex 0n. Since µn+1(a)=
µn(a)µn(b), this word also labels a circuit at the vertex 0n. We need to
show that it does not label a path starting at any other vertex of Γn.
Indeed, otherwise, there would be some word u = u1u2u3 (ui ∈ {a, b})
and a factorization

µn(u) = xµn+1(a)y = xµn(a)µn(b)y

with 1 6 |x| < 2n. In particular, µn(a) is a factor of µn(u1u2) which
overlaps with µn(u2) and µn(b) is a factor of µn(u2u3) which also over-
laps with µn(u2). Since both µn(u1u2) and µn(u2u3) are factors of t
and no two consecutive occurrences of a factor of t may overlap, by con-
sidering respectively the factor µn(a) of µn(u1u2) and the factor µn(b)
of µn(u2u3) we conclude that u2 may be neither a nor b, which is absurd.
Interchanging the roles of a and b, we conclude that also µn+1(b) acts
on Vn precisely as the identity on the vertex 0n.

There is a natural graph homomorphism respecting labels γn : Γn+1 →
Γn: it maps 0n+1 to 0n and each vertex 0n+1 ·w to 0n ·w; this mapping
is well defined since the two simple cycles at 0n+1 in Γn+1 are labeled
by the words µn+1(a) and µn+1(b), which fix 0n. The preimage of 0n
in Γn+1 consists of three vertices, namely 0n+1, 0′n+1 = 0n+1 ·µn(a) and
0′′n+1 = 0n+1 · µn(b). The two vertices 0′n+1 and 0′′n+1 are distinguished
in particular by the fact that from the first only leaves an arrow labeled
b (which is the first letter of µn(b)) while from the second only leaves an
arrow labeled a (the first letter of µn(a)).

The following result was discovered by computer calculation for small
values of n. The proof that it holds for all n > 0 is somewhat technical.
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Lemma 10.5. The monoid Mn satisfies the identity x4 = x3.

Proof: It suffices to show that each monoid Tn (n > 1) satisfies the
identity x4 = x3.

We claim that if w ∈ {a, b}+, then, on Vn, either w3 acts as the empty
transformation or w acts as a local identity. Indeed, having a path from p
to q labeled w3 implies that wr is a factor of µn(u) for some word u that
we may assume to be of minimum length. More precisely, there is a
factorization µn(u) = xw3y with 0 6 max{|x|, |y|} < 2n and 0n · x = p
(cf. Figure 2, where u = u1u2 · · ·um, with the ui ∈ {a, b}).

µn(u1) µn(u2) µn(u3) . . . µn(um)

w3
x y

Figure 2. A factorization involving wr.

Since t is cube-free, µn(u) cannot be a factor of t and, therefore, neither
can u. Hence, we must have |u| > 3 and at least one of the words µn(a)
or µn(b) must be a factor of w3. Since the two situations are symmetric,
we assume that µn(a) is a factor of w3. By Lemma 10.4, µn(a) acts as the
identity at the single vertex 0n−1 of Γn−1. We deduce that the domain of
the action of µn(a) on Vn consists of the vertices 0n and 0′′n. Moreover,
by definition of the graph Γn, µn(a) fixes both 0n and 0′′n.

If either µn(a) or µn(b) is actually a factor of w, then the domain
of the (partial injective) action of w on Vn has at most two vertices.
Since p · w3 is defined, either p · w = p, and we are done, or p · w 6= p
and p · w2 = p. The latter case is excluded because Tn is aperiodic by
Corollary 10.3. Hence, we may assume that neither µn(a) nor µn(b) is a
factor of w.

Suppose now that w is not a factor of either µn(a) or µn(b). In this
case, the beginning of the factorization of µn(u) must be as in Figure 3.

µn(u1) µn(u2) µn(u3) µn(u4)

w w w

Figure 3. A factorization involving w3.

Again, since t is cube-free, the word u1u2u3u4 cannot be a factor of t
and so either the first three or the last three letters of u1u2u3u4 must be
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equal. In either case, there is a letter c such that w2 appears as a factor
of µn(c3) as in Figure 4.

µn(c) µn(c) µn(c)

w w

Figure 4. A factorization involving w2.

If |w| 6= 2n, as in Figure 4, then comparing the two factorizations of
µn(c2), we find an overlap of w within t (see Figure 5), which is impos-
sible.

µn(c) µn(c)

w w

Figure 5. A factorization involving µn(c2).

Hence, we must have |w| = 2n and w and µn(c) are conjugate words,
that is, there is a factorization µn(c) = αβ such that w = βα. It follows
that w3 = β(αβ)2α = w2 in Tn as µn(c) acts as a local identity on Vn,
and this fulfills our claim since w acts as a partial bijection on Vn.

It remains to consider the case where, in the factorization of Figure 2,
there is at least one of the factors w in w3 that falls completely and prop-
erly within one of the factors µn(ui). Looking at such a factor µn(ui),
within which appears a full factor w in the factorization of Figure 2,
we find a word z = z1z2z3 (with zi ∈ {a, b}) such that w3 is a factor
of µn(z). Since the word w3 is not a factor of t, the infinite word t cannot
have z as a factor. Hence, we must find w3 as a factor of µn(c3) for some
letter c, but not as a factor of µn(c2). Depending on where each factor w
starts, the picture may look different, but one possible configuration is
represented in Figure 6.

µn(c) µn(c) µn(c)

w w w

Figure 6. Another factorization involving w3.

In any case, comparing again the two factorizations of µn(c2), since
|w| < 2n, we find again an overlap within µn(c2) unless |w| = 2n−1 (see
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Figure 7), which is impossible. In the exceptional case, looking at the
middle factor µn(c), we see that there is a factorization µn(c) = rws,
where r is a suffix of w and s is a prefix of w; since |µn(c)| = 2|w|,
it follows that w = sr and so (rs)2 = µn(c) = µn−1(c)µn−1(d), where
{c, d} = {a, b}, which is impossible since the factors µn−1(c) and µn−1(d)
have the same length and start with distinct letters.

µn(c) µn(c)

w2 w2

Figure 7. Another factorization involving µn(c2).

This completes the proof of the lemma.

Since Mn is defined as a monoid of binary relations, it is ordered by
the relation s 6 t if s ⊇ t in the sense that 6 is a partial order that is
stable under multiplication.

The pseudovariety of ordered monoids J1 6 xnK is the main theme
of the authors’ paper [8]. The main problem considered in that paper is
to determine the pseudovariety of monoids (or semigroups) 〈J1 6 xnK〉
generated by the ordered monoids in J1 6 xnK once the order is forgotten.
The conjectured result is the subpseudovariety of BG defined by the
pseudoidentities (xyn)ω = (ynx)ω and xω+n = xω, which is denoted
by (BG)n.

Lemma 10.6. The ordered monoid Mn satisfies the inequality 1 6 xk

for every k > 3.

Proof: Note that, since idempotents of Mn are partial bijections, they
are identity mappings of some subset of the vertex set of Γ̃n. Thus,
Mn satisfies the inequality 1 6 xω. By Lemma 10.5, Mn satisfies the
identity xω = xk for every k > 3 and whence also the inequality 1 6
xk.

To simplify the proof and as it is sufficient for our purposes, the
following lemma states only a special case of a much more general phe-
nomenon.

Lemma 10.7. Given any transformation t ∈ T (Γn) of domain 0n, there
are words u and v whose action on Vn coincides with t and whose actions
on Vn+1 are distinct transformations of domain 0n+1.
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Proof: Suppose that t is given by t : 0n → p. Let w be the label of
the shortest path from 0n to p. Since w is a prefix of µn(c) for some
c ∈ {a, b} (there is a choice for c only in the case w = 1), we consider
such a letter c. Let u = µn+2(a)w and v = µn+2(a)µn(d)w, where d is
the letter such that {c, d} = {a, b}. By Lemma 10.4, the domain of the
actions of u and v on Vn+1 is reduced to 0n+1 and they both act like t
on Vn.

The homomorphisms ϕn : Mn+1 → Mn constitute a chain and de-
termine an inverse limit lim←−Mn. Our key result of this section is the
following.

Theorem 10.8. The inverse limit lim←−Mn is uncountable.

Proof: We may build a tree by taking as vertices at level n the elements
of Mn and letting the sons of a vertex s ∈Mn be the elements of ϕ−1n (s).
The elements of lim←−Mn may then be identified with the infinite simple
paths from the root. The result will follow from showing that the com-
plete infinite binary tree embeds in our tree. The existence of such an
embedding follows from Lemma 10.7, which provides two alternatives for
lifting elements of Mn whose action on Vn is a transformation with do-
main 0n to transformations whose action on Vn+1 has domain 0n+1.

We conclude this section with consequences of Theorem 10.8.

Corollary 10.9. None of the pseudovarieties A ∩ ESl, BV (for every
pseudovariety V), 〈J1 6 xnK〉, and (BG)n (n > 3) is locally countable.

Proof: By Lemma 10.5, the monoid Mn is aperiodic and its idempotents
commute. Hence, the semigroup S = lim←−Mn \ {1} is a pro-(A ∩ ESl)
semigroup on two generators. Since S is uncountable by Theorem 10.8,
so is Ω2(A∩ESl). For BV, the result follows from the inclusions A∩ESl ⊆
BI ⊆ BV. For the remaining pseudovarieties, the result follows from the
inclusion 〈J1 6 xnK〉 ⊆ (BG)n [8, Proposition 4.2], Lemma 10.6, and
Theorem 10.8.

The questions as to whether (BG)n or BJxn = 1K are locally count-
able were raised in our paper [8, Section 8]. With the restriction n >
3, Corollary 10.9 does not handle the case of (BG)2 and 〈J1 6 x2K〉,
while (BG)1 = 〈J1 6 xK〉 = J is locally countable. We will not go
into details, but the case of n = 2 may be treated similarly by work-
ing with a suitable substitution generating an infinite square-free word
instead of the Prouhet–Thue–Morse substitution. One such substitu-
tion over a three-letter alphabet is given by ϕ(a) = abc, ϕ(b) = ac,
ϕ(c) = b [30, Proposition 2.3.2]. The idea is to start with the flower di-
graph Φ(ϕn(a), ϕn(b), ϕn(c)) and apply the Stallings folding procedure
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(see [47, 31, 27]) to reduce it to a labeled digraph Λn in which each let-
ter acts as a partial bijection. The graphs Λn for n = 1, . . . , 5 are drawn
in Figure 8. The transition semigroup of Λn plays the role of the semi-
group Tn in the above argument. Then, one may prove analogs of the
previous results in this section, which yield an extension of Corollary 10.9
to cover the case n = 2. We leave open the question as to whether the
profinite semigroups Ω2〈J1 6 x2K〉 and Ω2(BG)2 are countable.
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[6] J. Almeida and O. Kĺıma, On the irreducibility of pseudovarieties of semi-
groups, J. Pure Appl. Algebra 220(4) (2016), 1517–1524. DOI: 10.1016/j.jpaa.

2015.09.015.
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[48] A. Thue, “Über die gegenseitige Lage gleicher Teile gewisser Zeichenreihen”,

J. Dybwad, Kristiania, 1912.
[49] M. Vannacci, On a family of hereditarily just infinite profinite groups which are

not virtually pro-p, Thesis (Ph.D.)-University of London (2015).

http://dx.doi.org/10.1142/S0218196701000498
http://dx.doi.org/10.2307/2033267
http://dx.doi.org/10.1007/978-3-642-59136-5_10
http://dx.doi.org/10.1006/jabr.1996.0192
http://dx.doi.org/10.1007/s002240000045
http://dx.doi.org/10.1007/BF02483902
http://dx.doi.org/10.1016/0021-8693(86)90005-0
http://dx.doi.org/10.1016/0021-8693(86)90005-0
http://dx.doi.org/10.1016/0021-8693(86)90070-0
http://dx.doi.org/10.1016/0021-8693(86)90070-0
http://dx.doi.org/10.1016/0001-8708(73)90010-8
http://dx.doi.org/10.1016/0001-8708(73)90010-8
http://dx.doi.org/10.1007/b104443
http://dx.doi.org/10.1007/978-3-642-01642-4
http://dx.doi.org/10.1007/978-3-642-01642-4
http://dx.doi.org/10.1016/S0019-9958(65)90108-7
http://dx.doi.org/10.1016/S0019-9958(65)90108-7
http://dx.doi.org/10.1007/BFb0013112
http://dx.doi.org/10.1016/0304-3975(90)90047-L
http://dx.doi.org/10.1007/BF02095993


172 J. Almeida, O. Kĺıma

[50] E. I. Zel’manov, Solution of the restricted Burnside problem for groups of odd

exponent (Russian), Izv. Akad. Nauk SSSR Ser. Mat. 54(1) (1990), 42–59, 221;
translation in Math. USSR-Izv. 36(1) (1991), 41–60.

[51] E. I. Zelmanov, On the restricted Burnside problem, in: “Proceedings of the

International Congress of Mathematicians”, Vol. I, II (Kyoto, 1990), Math. Soc.
Japan, Tokyo, 1991, pp. 395–402.

[52] E. I. Zelmanov, A solution of the restricted Burnside problem for 2-groups
(Russian), Mat. Sb. 182(4) (1991), 568–592; translation in Math. USSR-Sb.

72(2) (1992), 543–565.

J. Almeida
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