393 research outputs found

    Resource Allocation and Mobility Prediction Algorithms for Multimedia Wireless Cellular Networks

    Get PDF
    Among the issues the telecommunication industry is the demand for multimedia applications with Quality of Service (QoS) in wireless/mobile networks. In the face of this increasingly complex traffic mix, where each service imposes different requirements, QoS provisioning and guarantee for multimedia services have become increasingly important. This is partially due to the users' requirements and poses a difficult challenge for network service providers. The tasks are more challenging than those in the wired networks due to the shortage of resources and the mobility present in wireless networks. The mobility factor causes severe fluctuations of resource usage. In this research, the QoS provisioning and resource utilization for multimedia services in wireless/mobile networks aspects are addressed. The first proposed scheme is called Adaptive Multi-Class Services Controller scheme (AMCSC). This scheme harnesses the combinations of Call Admission Control (CAC), an Adaptive Bandwidth Allocation (ABA) algorithm with micro-Acceptable Bandwidth Level (micro-ABL) and the Connection Management Table (CMT). The specific objective in designing the AMCSC Scheme is to reduce the New Connection Blocking Probability (NCBP) and the Handoff Connection Dropping Probability (HCDP) by managing resource allocation to address. The insufficient resource problem is experienced by the MTs. This scheme supports multiple classes of non-adaptive and adaptive multimedia services with diverse QoS requirements. The second proposed scheme is a bandwidth reservation scheme based on Mobility Prediction Scheme (MPS). Two proposed MPSs are deployed to predict the mobility movement of mobiles. The first MPS obtains the user mobility information by Received Signal Strength (RSS) which also includes the direction of the MT. This is enhanced based also on the position of the MT within a sector and zones of the cell. The second MPS obtains the user mobility information using the road map information of the cell and the integrated RSS and Global Position System (GPS) measurements. The simulation results show that the proposed scheme enhances the estimation of the target cell. This shown by the reduction of the signalling traffic in wireless cellular networks, reduction of the number of terminated ongoing calls of non-real time traffic and reduction of the number of cancelled reservation due to false reservation. The third proposed framework is an integration of the AMCSC scheme and the bandwidth reservation done based on the MPS. This integration is used to achieve the ideal balance between the users' QoS guarantee of multiple classes of wireless multimedia and maximizing the bandwidth utilization. The performance result of the proposed framework has proven to improve the achieved performance metrics. The performances analysis in this research is discrete simulation. The proposed schemes have proven to enhance the performance in terms of NCBP and HCDP for each type of traffic, management the resource for multiple traffics with diverse requirement, bandwidth utilization and predicting the target cell in the right time and place

    Mobility-based predictive call admission control and resource reservation for next-generation mobile communications networks.

    Get PDF
    Recently, the need for wireless and mobile communications has grown tremendously and it is expected that the number of users to be supported will increase with high rates in the next few years. Not only the number of users, but also the required bandwidth to support each user is supposed to increase especially with the deploying of the multimedia and the real time applications. This makes the researchers in the filed of mobile and wireless communications more interested in finding efficient solutions to solve the limitations of the available natural radio resources. One of the important things to be considered in the wireless mobile environment is that the user can move from one location to another when there is an ingoing call. Resource reservation ( RR ) schemes are used to reserve the bandwidth ( BW ) required for the handoff calls. This will enable the user to continue his/her call while he/she is moving. Also, call admission control ( CAC ) schemes are used as a provisioning strategy to limit the number of call connections into the network in order to reduce the network congestion and the call dropping. The problem of CAC and RR is one of the most challenging problems in the wireless mobile networks. Also, in the fourth generation ( 4G ) of mobile communication networks, many types of different mobile systems such as wireless local area networks ( WLAN s) and cellular networks will be integrated. The 4G mobile networks will support a broad range of multimedia services with high quality of service.New Call demission control and resource reservation techniques are needed to support the new 4G systems. Our research aims to solve the problems of Call Admission Control (CAC), and resource reservation (RR) in next-generation cellular networks and in the fourth generation (4G) wireless heterogeneous networks. In this dissertation, the problem of CAC and RR in wireless mobile networks is addressed in detail for two different architectures of mobile networks: (1) cellular networks, and (2) wireless heterogeneous networks (WHNs) which integrate cellular networks and wireless local area networks (WLANs). We have designed, implemented, and evaluated new mobility-based predictive call admission control and resource reservation techniques for the next-generation cellular networks and for the 4G wireless heterogeneous networks. These techniques are based on generating the mobility models of the mobile users using one-dimensional and multidimensional sequence mining techniques that have been designed for the wireless mobile environment. The main goal of our techniques is to reduce the call dropping probability and the call blocking probability, and to maximize the bandwidth utilization n the mobile networks. By analyzing the previous movements of the mobile users, we generate local and global mobility profiles for the mobile users, which are utilized effectively in prediction of the future path of the mobile user. Extensive simulation was used to analyze and study the performance of these techniques and to compare its performance with other techniques. Simulation results show that the proposed techniques have a significantly enhanced performance which is comparable to the benchmark techniques

    Dynamic Channel Allocation in Mobile Multimedia Networks Using Error Back Propagation and Hopfield Neural Network (EBP-HOP)

    Get PDF
    AbstractIn mobile multimedia communication systems, the limited bandwidth is an issue of serious concern. However for the better utilization of available resources in a network, channel allocation scheme plays a very important role to manage the available resources in each cell. Hence this issue should be managed to reduce the call blocking or dropping probabilities. This paper gives the new dynamic channel allocation scheme which is based on handoff calls and traffic mobility using hopfield neural network. It will improve the capacity of existing system. Hopfield method develops the new energy function that allocates channel not only for new call but also for handoff calls on the basis of traffic mobility information. Moreover, we have also examined the performance of traffic mobility with the help of error back propagation neural network model to enhance the overall Quality of Services (QoS) in terms of continuous service availability and intercell handoff calls. Our scheme decreases the call handoff dropping and blocking probability up to a better extent as compared to the other existing systems of static and dynamic channel allocation schemes

    3D Transition Matrix Solution for a Path Dependency Problem of Markov Chains-Based Prediction in Cellular Networks

    Get PDF
    Handover (HO) management is one of the critical challenges in current and future mobile communication systems due to new technologies being deployed at a network level, such as small and femtocells. Because of the smaller sizes of cells, users are expected to perform more frequent HOs, which can increase signaling costs and also decrease user's performance, if a HO is performed poorly. In order to address this issue, predictive HO techniques, such as Markov chains (MC), have been introduced in the literature due to their simplicity and generality. This technique, however, experiences a path dependency problem, specially when a user performs a HO to the same cell, also known as a re-visit. In this paper, the path dependency problem of this kind of predictors is tackled by introducing a new 3D transition matrix, which has an additional dimension representing the orders of HOs, instead of a conventional 2D one. Results show that the proposed algorithm outperforms the classical MC based predictors both in terms of accuracy and HO cost when re-visits are considered

    Adaptive Quality Of Service Call Admission Control With User Mobility Prediction For Multimedia Traffic Over Wireless Networks

    Get PDF
    Multimedia traffic is expected to be supported in the next generation wireless networks. As in wireline networks, the wireless network must also be capable of providing guaranteed quality of service (QoS) over the lifetime of mobile connections. Some challenging problems that appear in multimedia wireless networks, such as user mobility and shortage of bandwidth, influence the QoS provisioning for the users. In this thesis, we propose a new framework called Adaptive quality of service (AdQoS) to guarantee the QoS of multimedia traffic. The objectives that AdQoS framework tries to accomplish are minimum new call blocking and handoff dropping rates. The key feature of this framework is the bandwidth reallocation scheme. This scheme is developed to control the bandwidth operation of ongoing connections when the system is overloaded. The other key feature is the bandwidth reservation scheme incorporating a user mobility prediction to manage the QoS of the networks. Based on the mobility prediction, bandwidth is reserved to guarantee the uninterrupted hand off process. A comparison between existing user mobility prediction and the proposed scheme is also presented. An integrated system, which combines the Bandwidth Allocation Level technique and the user mobility prediction, is also proposed. The proposed user mobility prediction algorithm integrates the Received Signal Strength (RSS) measurements for the mobile terminal's intra-cell movement and aggregate history of mobile terminals for inter-cell movement. When compared with the conventional scheme proposed in the literature, the simulation results show that our proposed scheme reduces the new call blocking probabilities, the handoff dropping probabilities and reduces significantly the probability of terminating calls while still maintaining efficient bandwidth usage

    Mobile agent based distributed network management : modeling, methodologies and applications

    Get PDF
    The explosive growth of the Internet and the continued dramatic increase for all wireless services are fueling the demand for increased capacity, data rates, support of multimedia services, and support for different Quality of Services (QoS) requirements for different classes of services. Furthermore future communication networks will be strongly characterized by heterogeneity. In order to meet the objectives of instant adaptability to the users\u27 requirements and of interoperability and seamless operation within the heterogeneous networking environments, flexibility in terms of network and resource management will be a key design issue. The new emerging technology of mobile agent (MA) has arisen in the distributed programming field as a potential flexible way of managing resources of a distributed system, and is a challenging opportunity for delivering more flexible services and dealing with network programmability. This dissertation mainly focuses on: a) the design of models that provide a generic framework for the evaluation and analysis of the performance and tradeoffs of the mobile agent management paradigm; b) the development of MA based resource and network management applications. First, in order to demonstrate the use and benefits of the mobile agent based management paradigm in the network and resource management process, a commercial application of a multioperator network is introduced, and the use of agents to provide the underlying framework and structure for its implementation and deployment is investigated. Then, a general analytical model and framework for the evaluation of various network management paradigms is introduced and discussed. It is also illustrated how the developed analytical framework can be used to quantitatively evaluate the performances and tradeoffs in the various computing paradigms. Furthermore, the design tradeoffs for choosing the MA based management paradigm to develop a flexible resource management scheme in wireless networks is discussed and evaluated. The integration of an advanced bandwidth reservation mechanism with a bandwidth reconfiguration based call admission control strategy is also proposed. A framework based on the technology of mobile agents, is introduced for the efficient implementation of the proposed integrated resource and QoS management, while the achievable performance of the overall proposed management scheme is evaluated via modeling and simulation. Finally the use of a distributed cooperative scheme among the mobile agents that can be applied in the future wireless networks is proposed and demonstrated, to improve the energy consumption for the routine management processes of mobile terminals, by adopting the peer-to-peer communication concept of wireless ad-hoc networks. The performance evaluation process and the corresponding numerical results demonstrate the significant system energy savings, while several design issues and tradeoffs of the proposed scheme, such as the fairness of the mobile agents involved in the management activity, are discussed and evaluated

    Admission Control for Multiuser Communication Systems

    Get PDF
    During the last few years, broadband wireless communication has experienced very rapid growth in telecommunications industry. Hence, the performance analysis of such systems is one of the most important topics. However, accurate systems’ analysis requires first good modeling of the network traffic. Moreover, broadband wireless communication should achieve certain performance in order to satisfy the customers as well as the operators. Therefore, some call admission control techniques should be integrated with wireless networks in order to deny new users/services if accepting them will lead to degrade the network performance to less than the allowed threshold. This thesis mainly discusses the above two issues which can be summarized as follows. First issue is the traffic modeling of wireless communication. The performance analysis is discussed in terms of the quality of services (QoS) and also the grade of services (GoS). Different scenarios have been studies such as enhancing the GoS of handover users. The second issue is the admission control algorithms. Admission Control is part of radio resource management. The performance of admission control is affected by channel characteristics such as fading and interference. Hence, some wireless channel characteristics are introduced briefly. Seven different channel allocation schemes have been discussed and analyzed. Moreover, different admission control algorithms are analyzed such as power-based and multi-classes fuzzy-logic based. Some simulations analyses are given as well to show the system performance of different algorithms and scenarios.fi=Opinnäytetyö kokotekstinä PDF-muodossa.|en=Thesis fulltext in PDF format.|sv=Lärdomsprov tillgängligt som fulltext i PDF-format

    Efficient resource allocation and call admission control in high capacity wireless networks

    Get PDF
    Resource Allocation (RA) and Call Admission Control (CAC) in wireless networks are processes that control the allocation of the limited radio resources to mobile stations (MS) in order to maximize the utilization efficiency of radio resources and guarantee the Quality of Service (QoS) requirements of mobile users. In this dissertation, several distributed, adaptive and efficient RA/CAC schemes are proposed and analyzed, in order to improve the system utilization while maintaining the required QoS. Since the most salient feature of the mobile wireless network is that users are moving, a Mobility Based Channel Reservation (MBCR) scheme is proposed which takes the user mobility into consideration. The MBCR scheme is further developed into PMBBR scheme by using the user location information in the reservation making process. Through traffic composition analysis, the commonly used assumption is challenged in this dissertation, and a New Call Bounding (NCB) scheme, which uses the number of channels that are currently occupied by new calls as a decision variable for the CAC, is proposed. This dissertation also investigates the pricing as another dimension for RA/CAC. It is proven that for a given wireless network there exists a new call arrival rate which can maximize the total utility of users, while maintaining the required QoS. Based on this conclusion, an integrated pricing and CAC scheme is proposed to alleviate the system congestion

    Soft Handoff in MC-CDMA Cellular Networks Supporting Multimedia Services

    Get PDF
    An adaptive resource reservation and handoff priority scheme, which jointly considers the characteristics from the physical, link and network layers, is proposed for a packet switching Multicode (MC)-CDMA cellular network supporting multimedia applications. A call admission region is derived for call admission control (CAC) and handoff management with the satisfaction of quality of service (QoS) requirements for all kinds of multimedia traffic, where the QoS parameters include the wireless transmission bit error rate (BER), the packet loss rate (PLR) and delay requirement. The BER requirement is guaranteed by properly arranging simultaneous packet transmissions, whereas the PLR and delay requirements are guaranteed by the proposed packet scheduling and partial packet integration scheme. To give service priority to handoff calls, a threshold-based adaptive resource reservation scheme is proposed on the basis of a practical user mobility model and a proper handoff request prediction scheme. The resource reservation scheme gives handoff calls a higher admission priority over new calls, and is designed to adjust the reservation-request time threshold adaptively according to the varying traffic load. The individual reservation requests form a common reservation pool, and handoff calls are served on a first-come-first-serve basis. By exploiting the transmission rate adaptability of video calls to the available radio resources, the resources freed from rate-adaptive high-quality video calls by service degradation can be further used to prioritize handoff calls. With the proposed resource reservation and handoff priority scheme, the dynamic properties of the system can be closely captured and a better grade of service (GoS) in terms of new call blocking and handoff call dropping probabilities(rates) can be achieved compared to other schemes in literature. Numerical results are presented to show the improvement of the GoS performance and the efficient utilization of the radio resources

    An optimum dynamic priority-based call admission control scheme for universal mobile telecommunications system

    Get PDF
    The dynamism associated with quality of service (QoS) requirement for traffic emanating from smarter end users devices founded on the internet of things (IoTs) drive, places a huge demand on modern telecommunication infrastructure. Most telecom networks, currently utilize robust call admission control (CAC) policies to ameliorate this challenge. However, the need for smarter CAC has becomes imperative owing to the sensitivity of traffic currently being supported. In this work, we developed a prioritized CAC algorithm for third Generation (3G) wireless cellular network. Based on the dynamic priority CAC (DP-CAC) model, we proposed an optimal dynamic priority CAC (ODP-CAC) scheme for Universal Mobile Telecommunication System (UMTS). We then carried out simulation under heavy traffic load while also exploiting renegotiation among different call traffic classes. Also, we introduced queuing techniques to enhance the new calls success probability while still maintaining a good handoff failure across the network. Results show that ODP-CAC provides an improved performance with regards to the probability of call drop for new calls, network load utilization and grade of service with average percentage value of 15.7%, 5.4% and 0.35% respectively
    corecore