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ABSTRACT

EFFICIENT RESOURCE ALLOCATION AND CALL ADMISSION
CONTROL IN HIGH CAPACITY WIRELESS NETWORKS

by
Jiongkuan Hou

Resource Allocation (RA) and Call Admission Control (CAC) in wireless networks are

processes that control the allocation of the limited radio resources to mobile stations

(MS) in order to maximize the utilization efficiency of radio resources and guarantee

the Quality of Service (QoS) requirements of mobile users. In this dissertation, several

distributed, adaptive and efficient RA/CAC schemes are proposed and analyzed, in

order to improve the system utilization while maintaining the required QoS.

Since the most salient feature of the mobile wireless network is that users are

moving, a Mobility Based Channel Reservation (MBCR) scheme is proposed which

takes the user mobility into consideration. The MBCR scheme is further developed

into PMBBR scheme by using the user location information in the reservation making

process. Through traffic composition analysis, the commonly used assumption is

challenged in this dissertation, and a New Call Bounding (NCB) scheme, which uses

the number of channels that are currently occupied by new calls as a decision variable

for the CAC, is proposed.

This dissertation also investigates the pricing as another dimension for RA/CAC.

It is proven that for a given wireless network there exists a new call arrival rate which

can maximize the total utility of users, while maintaining the required QoS. Based

on this conclusion, an integrated pricing and CAC scheme is proposed to alleviate

the system congestion.
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CHAPTER 1

INTRODUCTION

1.1 Motivation

A wireless network is typically organized into geographical regions called cells. Radio

resources are assigned (statically or dynamically) to each cell to serve the mobile

stations (MS) inside the cell. Resource Allocation (RA) and Call Admission Control

(CAC) are processes that control the allocation of these limited radio resources to

MSs to maximize the utilization efficiency of radio resources and to guarantee the

Quality of Service (QoS) requirements of mobile users.

Due to the user mobility, the limitation of wireless resources and the harsh radio

frequency environment, RA and CAC processes are more complicated for wireless

networks than those for wired networks. Since a user may change its radio cell

(handoff) a number of times during the lifetime of its connection, if the availability

of the radio resources at the handcuff target cell cannot be guaranteed (i.e., when

congestion occurs), the connection will be terminated prematurely (dropped), which

presents a serious QoS degradation.

With the advancement in the field of wireless communications the recent

years, the problem of congestion control has gained high research and practical

importance. On one hand, the population of wireless/mobile users is growing at a

rapid rate and wireless systems are using micro/pico cellular architectures to provide

a higher capacity. Due to the smaller coverage area of micro/pico cells and the

characteristics of the multi-path and shadow fading environment, handcuff events

occur at a much higher rate. On the other hand, wireless networks are expected

to support multiple service types, such as voice, data and video, each of which has

different QoS requirements. The limited radio resources must be allocated fairly

1
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and efficiently among the different users, in order to maximize the system utilization

while meeting the users' QoS requirements.

These challenging requirements motivate the design of efficient, distributed,

adaptive and scalable RA and CAC schemes that can support multimedia services.

1.2 Background

In wireless networks, the radio resources are organized as logical channels in the forms

of time slots, frequency bandwidth or codes. Two types of calls share these channels:

the new calls and the handcuff calls. New calls are those initiated by mobile users in

the current cell, while the handcuff calls are those initiated in other cells and handed off

into the current cell. When a call arrives at a cell in which a channel is not available,

the call is said to be blocked. The new call blocking probability (Tub) and handcuff call

blocking probability (Thb) are two of the most significant connection level QoS metrics

in wireless mobile networks. In cellular systems, each arriving call, whether it is a

new call or a handcuff call, will be allocated one or several channels according to its

traffic characteristics and QoS requirements, if it is accepted for service. Thus, new

calls and handcuff calls compete for the usage of the same resources in a cell. Since the

number of channels in a cell is limited, the new call blocking probability and handcuff

call blocking probability cannot be decreased simultaneously.

From the users' point of view, a call being forced to terminate during the service

is more annoying than a call being blocked at its start. Hence, usually the handcuff call

blocking probability is much more stringent than the new call blocking probability.

Therefore, handoff calls are commonly given a higher priority in accessing the wireless

channels.

In recent years, considerable efforts have focused on the handcuff priority-based

Resource Allocation and Call Admission Control problems and many schemes that
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range from static to dynamic strategies have been proposed in literature. They can

be roughly classified into three categories:

(1) Guard Channel Schemes: A number of channels in each cell are reserved for

the exclusive use by handcuff calls; the rest of the channels are shared by both new

and handcuff calls. Guard channel schemes can be further divided into static schemes

and dynamic schemes.

The static guard channel schemes are also called fixed reservation or cut-off

priority schemes. In such schemes, the number of channels reserved for handcuff

purposes is fixed for each cell, and it is calculated according to the knowledge of

the traffic pattern of the area and the estimation of the channel occupancy time

distribution. Based on the assumptions that call arrival follows Poisson process and

channel holding time is exponentially distributed, Hong and Rappaport modeled

the system by birth-death processes and calculated and compared the new call

blocking probability and handcuff call blocking probabilities for both prioritized and

non-prioritized handcuff procedures [34]. Ramjee et al. proved that guard channel

policy is optimal for the MINOBJ problem, i.e., minimizing the penalties associated

with blocking of new and handcuff calls [70].

The fixed reservation schemes are very simple in their implementation since no

communication and computation overheads are involved. However, such schemes are

not flexible in the sense that they do not use the traffic information of the current

cell and the neighboring cells, and therefore, they cannot adapt to the real-time

network conditions. Dynamic guard channel schemes are proposed to overcome the

disadvantages of the static schemes to some extent.

Oliveira et al. set the number of channels to be reserved as a function of the

requested bandwidth of connections or as a function of the number of connections

[64]. The base station keeps monitoring the handcuff dropping probability and the

utilization of the channels, and based on these parameters the reservation is adjusted.
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Choi and Shin predicted the probability that a call will be handed off to a certain

neighboring cell based on the aggregate history of handoff observed in each cell in

order to determine the number of channels needed to be reserved [15]. The base

station records the number of handcuff call drops and adjusts the reservation values

by changing the size of the estimation window. Levine et al. introduced the shadow

cluster concept to estimate the future resource requirements based on the current

movement pattern of the mobile users [53].

(2) Queuing Priority Schemes: In Queuing Priority Schemes, when all channels

are occupied, either new calls are queued while handcuff calls are blocked [52], or

new calls are blocked while handcuff calls are queued [81], or both calls are queued

[10]. In standard PSTN, the queueing of new calls is impractical since the signaling

needed for the dialing is done on the communication channel itself. Queueing of

new call would therefore result in multiple redials that would unnecessarily occupy

some communication channels. In cellular systems, the setup of a call is done on a

separate control channel, which can provide the system with a way of queueing new

calls without affecting the transmission channels [31]. Queueing of handcuff calls is

possible due to the fact that there is a finite time interval between the time that the

received signal level drops below the handcuff threshold and the time that the call is

terminated due to insufficient signal level [72, 81].

The queueing of new call is proposed for a cutoff priority system to improve

the total carried traffic [31]. A two dimensional Markov chain model is constructed

to analyze the system and calculate the performance metrics such as handcuff call

blocking probability, average delay of new calls and average number of busy channels.

Tekinay and Jabbari proposed a measurement based handcuff queueing scheme [81].

The base station keeps measuring the receiving signal power of each queued call and

the queue is dynamically reordered as new measurement results are available: the

mobile station that has the lowest signal power is put at the head of the queue. Chang
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et al. proposed to integrate the guard channel scheme and the queueing scheme to

handle handcuff calls [10]. If no channels are available, both the new calls and handcuff

calls are put into their respective queues. To be more practical, the authors also

considers the situation that the new calls will renege from the queue if the waiting

time is longer than the patience time and handcuff call will drop if the waiting time is

longer than the handcuff time. Signal flow graphs and Mason's formula [51] are used

to obtain the performance metrics such as blocking probabilities and average waiting

time.

(3) Channel Borrowing Schemes: When all the channels in a cell are occupied,

the cell borrows channels from other cells to accommodate the incoming handcuff calls.

One problem associated with the channel borrowing scheme is Channel Locking. That

is, cells within the required minimum channel reuse distance from a cell that borrows

a channel cannot use the same channel [67].

Chang et al. suggested a two-phase channel borrowing scheme [11]: first if

channel borrowing is necessary, the channel is borrowed from neighboring cells by an

impact-based borrowing strategy; then channel reallocation procedures are used to

further improve the efficiency. Jiang and Rappaport proposed a Prioritized Channel

Borrowing Without Locking Scheme which makes borrowed channels to be used with

reduced power to guarantee no co-channel interference and hence solve the problem of

channel locking [44]. Since the borrowed channel can only be used in part of the cell,

channel rearrangement and cutoff priority are used to discourage excessive borrowing

and promote a more uniform grade of service throughout the service area.

An alternative to channel borrowing scheme is the sub-rating scheme [56]: when

there is no available channel at the arrival of a handcuff call, one of the currently

occupied channels is divided into two half rate channels to serve the handcuff call. In

other words, instead of borrowing channels from neighbor cells, a sub rate channel is

borrowed from users in the current cell.
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Some other papers in the literature provided additional models to analyze the

wireless systems and calculate the performance metrics of RA/CAC schemes. Lin et

al. analyzed the handcuff traffic of the cellular network with Poisson new call arrival,

and derived a general formula for handcuff call arrival rate [57], as follows:

where Ad  is the new call arrival rate, lien is the average cell dwell time (the time

that a mobile station spends in a cell whether it is active or not, cell dwell time is a

measure of user mobility), 1/p, is the average call holding time (how long the call will

last if it is not terminated prematurely), P d is the new call blocking probability, p f

is the handcuff call blocking probability and fm* (s) is the Laplace-Stieltjes transform

for the cell dwell time distribution. The above equation shows that the handcuff call

arrival process is not an independent process. It is generated during the operation of

the system and is a function of other system parameters.

1.3 Outline of the Dissertation

In this dissertation, several distributed RA/CAC schemes that are flexible, adaptive

and efficient in order to solve the congestion control problem are introduced, analyzed

and evaluated.

Chapter 2 proposes and evaluates the Mobility Based Channel Reservation

(MBCR) scheme. The basic idea behind the MBCR scheme is that a moving user, in

addition to its resource requirements in the current cell, exerts some influence on the

channel allocation in neighboring cells. Such an influence is related to the moving

pattern of this user (speed and direction), and it can be calculated statistically. In

Chapter 2, the concept of influence curve is introduced, which provides an estimate

of the resource requirements that the ongoing calls in current cell impose on a

neighboring cell. Based on this concept, a channel reservation scheme is proposed,
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which is capable of dynamically and adaptively adjusting the number of channels

that should be reserved for handcuff purposes in each cell. The proposed algorithm

can be carried out in a distributed way: each cell collects its current traffic condition,

calculates the influence and sends the results to all its neighbors periodically.

The MBCR scheme is further developed into Predictive Mobility-Based

Bandwidth Reservation (PMBBR) scheme. Based on the history location information,

the future moving speed and direction of each user can be predicted, which can be

used to further refine the reservation making process and reduce the likelihood of

false reservations. Furthermore, since the next generation wireless networks are going

to be based on the packet-switching technology, the radio resources that are allocated

to the users in PMBBR are in the form of bandwidth instead of logic channels.

By integration PMBBR with flexible QoS management and call admission control

processes, a comprehensive resource management framework for next generation

wireless networks is obtained.

Chapter 2 also investigates the User Channel Holding Time, which is an

important system parameter that influences heavily the accuracy and performance

of the analytical models. Through traffic composition analysis, in this dissertation,

the commonly used assumption in the literature is challenged, and it is demonstrated

that the average channel holding time for handcuff calls is always less than that for

new calls for a wireless network having multiple platforms. Based on this conclusion,

Chapter 3 presents the New Call Bounding (NCB) scheme. If too many new calls

are accepted in a cell (for instance the new calls arrive in bursts), there will be fewer

channels available in a relatively longer time, and the cell will be then congested.

NCB scheme places a direct limitation on the number of new calls admitted to a cell

in order to prevent potential congestion.

In Chapter 4, the role of pricing is investigated as an additional dimension of

the call admission control process in order to provide users with some incentives to
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use wireless resources efficiently. Traditional CAC schemes that mainly focus on the

tradeoff between new call blocking probability and handcuff call blocking probability

cannot solve the problem of congestion in wireless networks. It is first proven that for

a given wireless network there exists a new call arrival rate which can maximize the

total utility of users, while maintaining the required QoS. Based on this argument,

the integration of pricing and call admission control is proposed, where the price is

adjusted dynamically based on the current network conditions. Through extensive

simulation studies, it is indicated that the proposed integrated approach achieves to

efficiently alleviate the network congestion by re-shaping the incoming traffic load.

Finally, Chapter 5 concludes this dissertation and summarizes its main

contributions.



CHAPTER 2

MOBILITY BASED CHANNEL RESERVATION

AND CALL ADMISSION CONTROL

From the discussion presented in Chapter 1, it can be observed that most of the

guard channel schemes do not explicitly take the mobility of users into consideration.

Cheung and Mark has demonstrated that user mobility has a profound effect on QoS

provisioning [13]. The most salient feature of the mobile wireless network is mobility.

Hence, in order to make a reservation scheme effectively adapt to the changing network

traffic conditions, the user mobility information must be incorporated in the channel

reservation process. Levine et al. introduced the shadow cluster concept to estimate

the future resource requirements based on the current movement pattern of mobile

users [53]. Donis et al. proposed Virtual Cell Area Determination schemes to improve

the resource allocation based on the subscriber mobility patterns [19]. However, the

strength of these schemes depend on the accuracy of the knowledge of users' movement

patterns, such as the trajectory of a mobile user, which is difficult to predict in a real

system. Moreover, since they are centralized schemes, the signaling during the call

as well as the equipment requirements are greatly increased.

One critical issue associated with all the reservation based CAC schemes is how

the reservation is determined and implemented. In static guard channel schemes or

the cutoff priority schemes, the number of guard channels is determined based on the

prior knowledge of the cell traffic and the call blocking requirements. Obviously, the

performance will degrade if the cell traffic does not conform to the prior knowledge.

Thus, it is better to use dynamic channel reservation schemes which adjust the number

of guard channels with the network traffic. In order to determine an optimal or near

optimal reservation value, one must first answer the following question: When to

reserve channels for the incoming handoff calls? If the reservation is made at the time

9
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when it is needed, the resulting scheme will definitely achieve better performance.

Such timing is closely related with user mobility, and will be discussed in Section

2.4.1.

Handoffs occur when mobile users are moving during the call connection. Thus,

a good reservation scheme should be designed based on the users' mobility pattern.

Mobility patterns are determined by many factors, such as mobile users' destinations,

the geographical layout of the wireless network, the traffic condition in the network,

etc. Therefore, it is not easy to characterize in great details the mobility pattern

of each specific user. However, it should be noted that the network performance is

the collective outcome of all users in the network, and therefore, the statistical users'

mobility patterns are more useful.

Based on these observations, the Mobility-Based Channel Reservation (MBCR)

scheme and the Predictive Mobility-Based Bandwidth Reservation (PMBBR)

are proposed in this chapter. The remaining of this chapter is organized as

follows. Section 2.1 provides the description of the proposed mobility-based channel

reservation scheme. Specifically, in Subsection 2.1.1, the concept of influence curve

is introduced, and based on this in Subsections 2.1.2 through 2.1.4 the detailed

description of the proposed channel reservation scheme and the associated call

admission control procedures are provided. The performance evaluation of the

proposed scheme is provided in Section 2.2. The performance of MBCR is compared,

in terms of achieved blocking probabilities and traffic capacity under certain QoS

requirements, with the corresponding performance of a cellular system with fixed and

dynamic guard channel schemes. Section 2.3 provides a general analytical framework

and model which takes into account the different new call and handcuff call channel

holding times. Section 2.4 discusses the PMBBR scheme which uses the user position

information to further improve the performance. In Section 2.4, a flexible QoS

management based call admission control scheme is also introduced which can be
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used in combination with the PMBBR to address the resource allocation problem in

wireless network that supports multiple service types.

2.1 Mobility-Based Channel Reservation (MBCR)

Consider a wireless mobile network in which each cell is equipped with C channels.

In order to assign higher priority to handoffs calls, Ch channels out of the total C

channels can be reserved for the incoming handoffs calls. In this chapter, mobile users

are classified into two classes according to their velocities: high speed users (vehicular

users) and low speed users (pedestrians), for illustrative purposes. The average cell

dwell time of a high speed user is shorter than that of a low speed user. Based on such

a classification, the handoffs probability of each class is predicted and reservations are

made accordingly. Although the classification used here is coarse, the technique can

be easily generalized to handle more general situations.

2.1.1 Influence Curves

In order to understand the reasoning behind the proposed scheme, the following

observations are made:

(1) A user is more likely to request a handoffs in the far future than in the near

future after it enters a cell ( "enter" means either the initiation of a new call

or a successful handoffs of an ongoing call into this cell), which implies that the

handoffs probability (the probability that a call needs at least one handoffs during

the remaining call life) is a function of the time elapsed after a call enters a cell;

(2) After dwelling in a cell for the same length of time, a high-speed user is more

likely to request a handoffs than a low-speed user, which implies that the handoffs

probability is also related to the class of a user.

Due to the existence of call handoffs, resource requirements among cells are no

longer independent: when a call enters a cell, it does not only consume a channel
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in the current cell, but also generates certain requirements on the channels in the

neighboring cells (with certain probability). In other words, an ongoing call in the

current cell exerts some influence on the channel assignment in the neighboring cells.

From the aforementioned observations, it can be concluded that the extent of such

influence can be characterized by both the elapsed time and the class that the call

belongs to. The number of channels to be reserved, Ch, has a close relationship to

the extent of the influence. The more influence a call exerts on its neighboring cells,

the more likely channels should be reserved in the neighboring cells to maintain the

QoS requirement of this call. In order to characterize such influence, the concept of

influence curve is introduced as follows.

Let fh (t) and fiat) denote the cell-dwell-time probability density functions (pdJ)

of the high-speed users and the low-speed users, respectively. If a high-speed user

enters the cell at time instant t, the probability that it will request a handcuff after

time instant T is:

target cell is cell j when the call is being served in the cell i, where

and Nib denotes the set of the neighboring cells to the cell i. For a totally random

movement pattern in a homogeneous cellular network, the users move to all possible

directions with equal probabilities, = i\h for all the j E Nib, where denotes the

cardinality of the set Ni . For a cellular network with hexagonal layout, each cell has

six neighbors and the directional factors for this case will be 1/6. In an environment
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(such as highway) that users' movements follow a highly directional pattern, some

factors can be much greater than others (heterogeneous network).

and ai ,j , the influence curve for an ongoing high-speed

call or low-speed call is defined as follows:

The influence curve characterizes the influence exerted on cell j at time instant T by

an ongoing call which enters the cell i at time instant t.

2.1.2 Mobility-Based Channel Reservation

With the influence curve for every ongoing call, the number of channels needed to

be reserved in each cell can be further determined. The total influence that all the

ongoing calls in cell i exert on cell j is

where Si is the set of all the currently ongoing calls in cell i, L(tk , T) can be either

depending on the class of the call. The influence between

neighboring cells is shown in Figure 2.1. As mentioned before, the number of channels

needed to be reserved has a close relationship to the extent of the influence. In this

dissertation, this number is chosen to be proportional to the extent of the influence.

Thus the number of the reserved channels in cell j for calls in cell i is defined as

where B is a tunable constant. The effect of B is discussed in Section 2.2.2. Based

on the previous definitions, it can be concluded that at time T, cell j needs to reserve

totally
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channels for possible handcuff calls from its neighboring cells. The corresponding values

Rib for the various cells can be calculated in a distributed way without the need for

any central coordination. The only communication requirement is that neighboring

cells exchange information with each other: cell i should report R ib j to its neighbor

cell j. Since the users are mobile, the information exchange must be done regularly

(periodically) to guarantee that a cell can always have the latest information about

the reservation requirements of its neighbors. It should be noted here that there is

a tradeoff between the information exchange period, the accuracy of the information

and the estimation of values Rib, and the involved communication overhead.

Figure 2.1 The influence between neighboring cells.

2.1.3 A Special Case

If the cell dwell times for both classes of users have exponential distributions, then

are the average cell dwell

times for high-speed users and low-speed users, respectively. If it is further assumed

that users are moving in a random movement pattern in a cellular network with
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hexagonal layout, following the above procedures (from Equation (2.1) to (2.5)), the

influence and reservation value are obtained.

where tk is the enter time of ongoing call k to the cell of interest, S,! 1 is the set of all

the ongoing high-speed calls in cell i and Si includes all the ongoing low-speed calls

in cell i.

2.1.4 Call Admission Control

Call Admission Control (CAC) is used to determine whether an incoming call

(mostly a new call) is admitted for service or not. In order to meet the desired

QoS requirements of admitted calls, some calls have to be blocked although current

network resources (channels) are still available. Ramjee et al. proposed a general

setting for CAC: guard channel schemes can be formulated by call admission

probability [70], i.e., if i is a decision variable (for example, the number of busy

channels), a new arriving call is admitted into the network with probability T(i).

Depending on the choice of T(i), different CAC procedures can be obtained. In this

section, based on the above defined MBCR scheme, two different CAC procedures

are proposed.

Integral MBCR. At time instant T, cell j calculates Re  according to Equation

(2.5). Note that Rib may not be an integer. In this scheme, the final target number
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where T„,, is the admission probability for new calls, Bused and .13,,,u, are the number

of used channels and the number of channels required by the incoming new call,

respectively.

Fractional MBCR. In the above scheme, the reservation request is rounded to an

integer number of channels. However, some information carried by the fractional

part is lost during the rounding. For example, if the R ed is 2.6, Red becomes 3, and

therefore, the reservation is 15% more than the requirement. In order to fully use

the information, fractional reservation is introduced. If Red has integral part Rib and

fractional part R. , the scheme is defined as:

It should be noted that the Red value calculated according to Equation (2.5)

is the target reservation requirement in cell j. However, sometimes, especially when

traffic load is heavy, the number of available channels may be less than the target

value. In this case, the above suggested CAC schemes still try to reserve the target
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means that if the available channels (i.e., total number of channels minus the used

ones) in a cell are less than the target reservation value (Red or Red ), then at the time

of reservation cell j reserves the available channels. However, as channels are released

due to call completion or call handoff, these channels do not become available to new

calls, and are kept for the handoff purposes only, until the reservation value Red is

reached, or until target reservation value is updated.

2.2 Performance Evaluation of MBCR Scheme

As mentioned before, the proposed MBCR scheme mainly aims to introduce the

concepts of mobility and influence curve into the channel assignment and call

admission control processes, and quantify the gains that can be achieved through this

approach. In this section, the performance of MBCR is evaluated in a heterogeneous

networking environment. The performance of MBCR is compared, in terms of

achieved blocking probabilities and traffic capacity under certain QoS requirements,

with the corresponding performance of a cellular system with fixed and dynamic

guard channel schemes.

2.2.1 Model and Assumptions

In this simulation study, a more realistic system is considered as shown in Figure 2.2.

The wireless network under consideration consists of 37 cells, each of which has six

neighboring cells. The cells are wrapped around to eliminate the border effect. Solid

thin lines in the figure represent the existence of narrow streets in the cell, while solid

thick lines represent the main streets in a cell. Depending on the classes of users that

they mainly serve, as well as their corresponding geographic layout, there are three

different types of cells:
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• Type 1 cells: cells along the main streets (e.g., cell 8, 10, 30, ...). There are more

high-speed users in these cells and the users are moving in a highly directional

pattern;

• Type 2 cells: cells that represent the residential areas or shopping malls (e.g.,

cells 1, 4, 18, ...). Users in these cells are mainly low-speed users that move

randomly;

The traffic

pattern presented in these cells falls in between of type 1 and type 2.

Figure 2.2 The layout of cellular system under consideration.

Other system parameters and assumptions are summarized as follows:

(1) Each cell has C = 40 channels;

(2) The arrival of new calls initiating in each cell forms a Poisson process with rate

An;
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(3) Each call requires only one channel for service, 13,,,,,, = 1;

(4) The life time of each call is exponentially distributed with mean 240 seconds;

(5) The cell dwell time probability density functions fh (t) and fiat) follow exponential

distributions with mean value 120 seconds and 600 seconds, respectively;

(6) The new call requests are generated by either high-speed mobiles or by low-speed

(7) A cell reports the target reservation to all its neighboring cells every 30 seconds

and the Integral MBCR is used as CAC;

It should be noted here that the directional factors are actually different for

each user class. For example, in a cell that has a main street that goes through it,

if a high-speed user request a handcuff, it has only two possible target cells (along

the street), while for a low-speed user, the corresponding handcuff target cell can be

any one of the neighboring cells with higher probabilities to cells along the street

direction. Since this study concerns the statistical movement behavior of all the users

in a cell, and not the corresponding moving behavior of the individual users, in the

following, the directional factors (ai,j) are defined to be the weighted average of that

of low-speed users and high-speed users, where the weight depends on the composition

of traffic in each cell.

2.2.2 Comparison with Fixed Reservation Schemes

The QoS metrics considered in this study are the new call blocking probability (Tub)

and handcuff call blocking probability (Thb). As mentioned before, cells have different

traffic characteristics, which result in different Thighs and directional factors. Three
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typical cells (cell 1, cell 8 and cell 10) are chosen to investigate their performance.

Cell 1 belongs to type 2, cell 8 and cell 10 belong to type 1: cell 10 has two crossing

main streets within its coverage area, while cell 8 has only one.

In order to study and observe how the proposed scheme can control and adjust

the channel reservation as the network conditions change, two sets of experiments are

performed and the corresponding results are presented. The first set of experiments

aim to compare the new call/handoff call blocking probability of the proposed

scheme and the fixed reservation scheme, and demonstrate that proposed scheme

can dynamically reserve channels for each cell and for different offered traffic loads,

therefore, letting the system adaptively adjust to the changing traffic conditions. In

this set of experiments, each cell is offered with the same new originating traffic load

An . However, as the system operates and evolves, the overall offered load to each cell

changes, as a result of the generated handcuff calls due to the continuous moving of

the mobile users.

Figures 2.3, 2.4, 2.5 and 2.6 compare the new call/handoff call blocking

probabilities of the MBCR scheme (B = 0.3, here the choice of B is based on

experimentation) and the fixed reservation schemes for each cell. It can be observed

form these figures that for the fixed reservation schemes, as the number of reserved

channel (Ch ) increases, the new call blocking probability increases and the handcuff

call blocking probability decreases. Under MBCR scheme, the reservation changes

dynamically as the offered new call traffic load changes. For example, in cell 10, when

the new call arrival rate is 0.065, the performance of MBCR scheme lies between

two fixed reservation schemes with Ch = 3 and Ch = 4 respectively; while on the

other end of the simulation range, An = 0.13, MBCR scheme works like the fixed

reservation scheme with Ch = 6. Comparing the results of cell 10 with the ones

for cell 8 and cell 1, it can be seen that the within the given new call arrival rate,

the dynamic range of cell 8 goes from Ch = 2 to somewhere between Ch = 3 and



21

Ch = 4; for cell 1 the range is between Ch = 0 and Ch = 1. It can be concluded from

these figures that MBCR scheme can dynamically reserve channels for each cell and

for different offered traffic loads. Its dynamic range covers several fixed reservation

schemes therefore, overcoming the disadvantages of fixed reservation schemes and

simplifying the channel allocation process.

Figure 2.7 compares the performance of these three cells using the MBCR

scheme with B = 0.3. It can be observed that the operation points of cells are

different from one another. For example, if the QoS requirement of a mobile user is

Tnb < 1% and Thb < 0.1%, cell 10 works well when new call arrival rate is lower than

0.065, while the corresponding thresholds for cell 8 and cell 1 are 0.087 and 0.115,

respectively.

Two factors contribute to this difference. First, the handcuff call arrival rates

(Ah ) are different for different cells. As mentioned before, cells have different traffic

characteristics, and in proposed model, the handcuff processes are tightly coupled with

cell dwell time which is determined by the traffic of the cell. In cell 10, which has

two main streets in its coverage area, most of the users in its neighboring cells are
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Figure 2.6 Call blocking probabilities for cell 1: B = 0.3.

high-speed users; while for cell 1, on the other extreme, the users in its neighboring

cells are mainly low-speed users. Therefore, the Tchandoff arrival rate for cell 10 is

much higher than that of cell 1 when all the cells are loaded with the same new call

arrival rate. Figure 2.8 shows the generated Tchandoff arrival rates against the given

new call arrival rates for the three cells under consideration. In real systems, the new

call arrival rates of busy cells, such as cell 10, are much higher, and it will accordingly

result in even higher Tchandoff arrival rates. In order to handle such traffic, more

channels should be allocated to the busy cells dynamically during the busy periods.

The second reason of the results in Figure 2.7 is that channel holding times are

different for different cells. Channel holding time is the time that a call occupies a

channel in a cell ([22, 23]). For new calls, the channel holding time is determined

by call holding time, cell dwell time distribution and new call traffic composition

(Thigh ); for Tchandoff calls the channel holding time is determined by the residual call

holding time, cell dwell time distribution and the traffic composition of Tchandoff traffic.

Table 2.1 compares the channel holding time and traffic composition for new call and

Tchandoff calls, where Tc,,, and TChandof  are the average channel holding times for
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new calls and handcuff calls respectively, and Th i high is the percentage of high-speed

calls in the handcuff traffic.

It is observed that for cells with combined traffic (cell 10 and cell 8), channel

holding time for handcuff calls is always shorter than that of the new calls. That is

due to the fact that low-speed calls tend to terminate in the originating cell, while

there are more high-speed users in the handcuff traffic than in the new call traffic.

Furthermore, it has been demonstrated by Xie et al. that the pdf of the speeds of

handcuff terminals follows the "Biased Sampling formula" which favors the high speed

terminals [84]. The analysis of guard channel systems with different channel holding

times for new calls and handcuff calls is discussed in detail in Section 2.3.

Figure 2.9 shows the effect of different values of B on the corresponding call

blocking probabilities. As mentioned before, B is a constant parameter representing

the relationship between the influence and reservation. With the increase of B, the

number of reserved channels also increases, which will cause the new call blocking

probability to increase and handcuff call blocking probability to decrease. The choice

of B depends on the user's QoS requirement and the system capacity.

The second set of experiments demonstrate that the proposed algorithm is

capable of controlling and adjusting dynamically the channel reservation values to

the appropriate levels, in order to offer the same quality of service to the ongoing

calls throughout the system (similar handcuff call blocking probability). During this

experiment, the same level of total offered load (i.e., composite new call offered load



Figure 2.9 Call blocking probabilities for cell 10: different values of B.

and handcuff call offered load) is maintained to each cell and the performance of the

new call blocking probability and the handcuff call blocking probability is presented

as a function of the total overall offered load per cell. However, the combination of

the traffic (handoff calls vs. new calls) in each cell can be different, although the

total composite traffic per cell is the same. The corresponding results for the fixed

reservation scheme and MBCR scheme are compared in Figure 2.10 and 2.11. It can

be observed from these figures that the MBCR scheme provides similar handcuff call

blocking probability to all the users, independent of the area they are moving towards

(target cell) and independent of the traffic distribution in each cell (i.e., handcuff calls

vs. new calls), under the assumption that the overall composite offered load (i.e.,

handcuff call load plus new call load) presented to each cell is the same. On the other

hand, the handcuff call blocking probabilities for fixed reservation schemes are different

from cell to cell. These results demonstrate that MBCR scheme achieves to balance

the handcuff call blocking probabilities throughout the whole system, which actually

corresponds to an extra increase of 10% of the maximum traffic load that could be
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Figure 2.10 Call blocking probabilities vs. total offered load for fixed reservation
scheme: Ch = 2.

handled by a system with specific objectives and requirements on the handcuff blocking

probability of the ongoing calls.

2.2.3 Comparison with PRP Dynamic Scheme

In this study, the performance of MBCR scheme is compared with that of a

representative dynamic channel reservation scheme, namely, the Predictive Reservation

Policy (PRP) [6].

The main principle of PRP is that it dynamically reserves channels when the

number of communications in progress grows in a given cell. When the number

of occupied channels N (t) reaches the defined threshold k or a multiple of k in a

cell, the cell requests reservation of resources in the neighboring cells for which the

probability of transition is high. If the neighbors have free channels, the reservations

take place immediately. Otherwise, the PRP algorithm waits for a free channel. Two

thresholds are considered: if the transition probability is lower than a given value p,

the reservation threshold is k 0 , else it is k1.
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Figure 2.11 Call blocking probabilities vs. total offered load for MBCR scheme:
B = 0.3.

In the following, the PRP scheme is compared with the proposed MBCR scheme

for the system described in the previous section. Regarding the PRP, the following

specific parameters are used:

Figures 2.12, 2.13 and 2.14 compare the average number of reserved channels,

the new call blocking probability and the handcuff call probability of PRP scheme and

MBCR scheme for cell 10 and cell 8. It is observed that the PRP scheme reserves much

more channels than MBCR scheme in both cells. As a result, the PRP scheme makes

the handcuff call blocking probabilities unnecessary low. And the penalty for PRP is

that too many new calls are blocked and the resource utilization is low. Moreover,

Figure 2.15 shows the achieved performance of PRP scheme if the same level of total

offered load (i.e., composite new call offered load and handcuff call offered load) is

maintained to each cell as the second set of experiments of previous section. It can
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be observed that PRP dynamic scheme, just like the fixed guard channel schemes,

cannot balance the handcuff call blocking probabilities throughout the whole system.

The reason is that since PRP does not use the user mobility information, although

the reservation changes dynamically, it could not guarantee the same level of QoS

throughout the system.

2.3 Analysis of Guard Channel Scheme with Different New/Handoff

Call Channel Holding Time

In some traditional research efforts, when trying to analyze the call blocking

probabilities of guard channel schemes, researchers always assume that new calls and

handcuff calls have the same channel holding time 1/ 'u. Under this assumption the

problem is simplified, in the sense that system can be modeled by a one dimensional

Markov chain and the new call blocking probability (Tab ) and handcuff call blocking

probability (Thb) can be calculated accordingly.

However, some recent analysis [22, 23] showed that the above assumption (same

channel holding time) does not hold for a cellular network, and in Section 2.2.2, it

is observed that the handcuff calls have shorter average channel holding time than

new calls in cells with multiple mobility platforms. In this case, in order to analyze

and calculate the corresponding blocking probabilities, it is necessary to use a two

dimensional Markov chain model instead of the one dimensional model.

The transition diagram of the system with different channel holding time is given

in Figure 2.16, where A n , Ah, 1/pin and 1/ph are new call arrival rate, handcuff call

arrival rate, average new call channel holding time and average handcuff call holding

time, respectively; C is the capacity of the cell and Ch is the number of guard channels.

The state space is defined as:
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Figure 2.16 The state transition diagram.

where n 1 is the number of admitted new calls and n 2 is the number of admitted

handoff calls. From the diagram, the state-transition equations can be obtained as

shown below.

(i) If n 1 = 0, then

(An + ) h)P0,0 	 /1030,1 tbriPi,d 	 for n2 = 0;

(An ± Ad 7121-th)P0,n2 = AhP0,n 2 -1 + (n2 + 1 ),--"hPd,n2+1 + tinPi,n2

for 1 < n2 < C — Ch — 1;

()Rh + 712i-1h)Pd,n2 	AhPd,n2_1 + (n2 + 1)tthPd,n2+1 +

for C — Ch — 1 < n2 < C;

(n214 )P0,712 = 	 P0,71,2 —1
	 for n2 = C;

(ii) If 1 < n 1 < C — Ch — 1, then

(An Ad nisan)Pn1,0 = AnPn1-1,0 + (n 1 + 11 P/An- ni+1,0 	 tthPni,1 for n2 = 0;

(An + Ah	 ni,Un 	7121-th)Pn1,n2 = AnPn1-1,712 	 )'hPrti,n2-1 	 (nib + 1 )/inPni+1,712 +

(n2 + 1)1LihPn1,n2+1 	for 1 < n2 < C — Ch — nl — 1;

(Ah n i ttn + 712i-th)Pn 1 ,n 2 = AnPn1-1,12 AhPni,n2-1 + (n1 + 1 )AnPn1+1,712 +
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(n2 + 1 )/-thTni,n2+1
	 for n2 = C — Ch — n1;

(Ad + nom + n2suh)Pni,n2 = AhTn i ,n 2 -1 + (nib + 1)AnPni+i,n2 + (n 2 + 1)PhPn i ,n 2 +1

for C — Ch — + 1 <n2 < C — — 1;

(n i ,-1n + n2p,h)Tn i ,n2 = 	 for n2 = C — nib;

(iii) If n i = C — Ch, then

(Ad 	 nl/Gn )Tn1i0- n1,0 	 AnTn1-1,0 	 ithTni,1 	 for n2 = 0;

(Ad + nin + n2ith)Tn i ,n 2 = 	 + (n2 + 1)PhTni,n2-1-1 for 1 < n2 < C — n l — 1;

+ n2b1h)Tn i ,n 2 = AhTni,n2-1 	 for n2 = C — n1;

From the diagram, it can be observed that the given Markov chain is not

of product form, and thus there is no closed form solution to it. Therefore,

state probabilities must be calculated directly from the above equations and the

normalization condition:

Tni,n2 	 1; 	 (2.12)
(ni,n2)ES

With the state probabilities of all the possible states, the new call blocking probability

(Pnb) and the handoff call blocking probability (Thb) can be obtained as:

C—Ch	 C-n1

Pnb
	

Pni,n2
n1=0 n2=-C—Ch-n1

C-Ch

Thb
	 i Tni,C-ni

n1=0

The analytical results calculated according to above method are compared with

the simulation results in Figure 2.17. From this figure, it can be observed that the

proposed model matches the simulation results perfectly.
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2.4 Predictive Mobility-Based Bandwidth Reservation Scheme

Wireless geolocation technology has received considerable attention over the past

few years [8]. Among the basic functions of wireless geolocation is to figure out

the position of mobile stations in the service area. Although originally used and

developed to support the FCC E-911 requirements [8], this new function facilitates

several applications which will benefit businesses as well as consumers. At the same

time, the real time position information can also be used by resource management

mechanism to carry out functions such as resource allocation and call admission

control.

This section presents the Predictive Mobility-Based Bandwidth Reservation

Scheme (PMBBR) as an improved version of Mobility-based Channel Reservation

Scheme (MBCR) discussed above. The PMBBR scheme takes advantage of the

geolocation technology: based on the history user location information, the future

moving pattern of users can be predicted. By integrating these predictions into the

reservation making process, the PMBBR scheme achieves to optimize the efficiency

of handcuff mechanisms and minimize, if not eliminate, the unnecessary reservation of
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resources, and therefore, improve the system capacity and throughput. Furthermore,

bandwidth reconfiguration based call admission control processes are developed that

may allow the efficient resource re-distribution in a cell to balance the QoS among all

the mobile users in the cell, especially when users with flexible QoS requirements are

supported in the system. By combining these two approaches, an integrated resource

management strategy is proposed that can be implemented in next generation wireless

networks that support multimedia services (data, voice, video, etc.).

2.4.1 Description of PMBBR Scheme

The original MBCR scheme implies that each user requires one logical channel for

service. However, for next generation wireless networks that support multiple types

of services, each user may have different bandwidth requirements. Therefore, it is

important to enhance the MBCR scheme to support different bandwidth requirements

for different users and/or classes of service. In the following, this enhanced scheme is

referred to as Mobility-based Bandwidth Reservation (MBBR) scheme.

In the MBBR scheme, the influence curve for each ongoing call k is defined as:

where BWk is the bandwidth requirement of the call under consideration, a i,j and

L(tk , T) follow the definitions in Section 2.1

The amount of bandwidth cell j needs to reserve at time T can be calculated

based on Equations (2.3), (2.4) and (2.5):
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of all the currently ongoing calls in cell i, and B is a tunable constant which models

the relationship between influence and reservation.

With the moving speed and direction predictions, the MBBR scheme can be

improved in the following aspects:

(1) The directional factors. In MBBR scheme, the directional factors are

statistical values for all the users in current cell, which means that the influence value

of each single user is distributed to all the neighbor cells according to directional

factors. With the predicted moving direction and current position, the handcuff target

cell can be accurately calculated, so that the reservation is made only in one cell, and

therefore, the resource waste in other neighbor cells can be eliminated.

(2) The handoff probability. Let tkhf denote the time interval in the future that

the user k under consideration needs to request a handoff, which can be calculated

based on the current position and the predicted moving speed and direction of the

user. The probability that this ongoing call will request a handcuff in the future can

be calculated as:

(3) Reservation Timing. A critical issue that influences the performance of a

bandwidth reservation mechanism is the actual time that the reservation is made for

the incoming handcuff calls. If the reservation is made at the time that it can be

used at the near future, such a scheme can achieve better performance. Otherwise,

the reservation could result in waste of resources: if the reserved resources are not
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used by a handoffs call, the system will incur unnecessary new call blocking. This

problem is also addressed in [14], in which the concept of threshold distance (TD) is

introduced to reduce the likelihood of false reservations: users inside the TD circle

will not submit reservation requests. However, since users may have different moving

speed, a high speed user that is currently located inside the TD circle may move

out of the coverage region of the cell earlier than a low speed user that is outside

the TD circle. Therefore, distance alone is not a good solution to the problem of

reservation timing. Based on these considerations, a reservation advance time t -there

is set. Reservations are made only for those calls which will request handoffs in the

Taking all the above factors into consideration, the PMBBR scheme determines

the total amount of bandwidth to be reserved in cell j as:

where is the set of those ongoing calls which are currently in cell i and, according

to the prediction, are going to handoffs to cell j within time interval three. Notice

that, since the number of mobile users in the network and the location history of each

user keep changing as time evolves, the bandwidth reservation should be re-calculated

periodically.

2.4.2 Bandwidth Reconfiguration Based Call Admission Control

This section introduces the detailed call admission control and proposes resource

reconfiguration mechanism to be used for new and handoffs calls. In the following, for

simplicity and without loss of generality, it is assumed that there are two classes of

traffic in the network:

• Class 1 (realtime traffic): The desired bandwidth for each class 1 user is BM'.

If this requirement cannot be met, the user may have the option to continue at
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a lower bandwidth requirement BaI, for instance by adjusting the coding rate

so that the video/audio quality is still acceptable.

• Class 2 (non-realtime traffic): The desired bandwidth for each class 2 user is

BM and there are no strict QoS requirements. However, some flexible QoS

requirements are defined for this service type. The user could specify a set of

acceptable QoS levels that correspond to bandwidth requirements that range

from a lower bound bandwidth requirement BT41 to a maximum bandwidth

requirement BW2, and expect a QoS varying in the specified range.

The basic underlying principles of the proposed CAC scheme for the case of

multiple classes of service with different priorities are: handcuff calls always have

higher priority than new calls and class 1 traffic has higher priority than class 2

traffic to access bandwidth resources.

The following notations are used throughout the rest of the chapter:

• BWtotai : total bandwidth capacity of a cell;

• Bard : total bandwidth used by all the class 1 users in a cell;

• BM-L"d : total bandwidth used by all the class 2 users in a cell;

• BWri""d: minimum bandwidth that should be kept for current class 2 users

being served, to meet their minimum bandwidth requirements. BWrinused can

be calculated as:

where, class  is number of class 2 calls in service;

• Bares: bandwidth reservation request in a cell for class 1 users (for handcuff

purposes) from all neighbor cells. BWTes  can be calculated using Equation



39

where Po_ is the handcuff probability of class 1 user k, and S 1 ,1 is the set of those

ongoing class 1 calls which are currently in cell i and are going to handcuff to

cell j in less than three.

• BM's: bandwidth reservation request in a cell for class 2 users (for handcuff

purposes) from all neighbor cells. BWIes can be calculated using Equation

(2.16) for only class 2 traffic, as follows:

where Pk,2 is the handcuff probability of class 2 user k and 512 ,2 is the set of those

ongoing class 2 calls which are currently in cell i and are going to handcuff to

cell j in less than three.

The following paragraphs describe conceptually how the proposed CAC scheme

operates. For a new connection, the proposed scheme works as follows. For a class

1 new call, the scheme first attempts to allocate the desired amount of bandwidth

BWl ' , if it is available. Otherwise, the scheme tries to accept the new class 1 call at

the degraded quality (i. e., at bandwidth BT471), however, still acceptable to the user

(according to the pre-specified characteristics and requirements of a class 1 user). If

there is still not sufficient bandwidth available to do so, the call is rejected. It should

be noted here that the available bandwidth is calculated based on the total bandwidth

capacity, the bandwidth currently used by active calls and the bandwidth that has

been reserved in the current cell for handcuff purposes. The bandwidth reservation

at each step is determined by the PMBBR scheme described in Equations (2.18)

and (2.19), for class 1 and class 2 traffic, respectively. It should be also pointed out
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here that the bandwidth to be reserved in a cell represents the collective effect of

the influence that the class 1 (class 2) traffic from neighboring cells exerts on the cell

under consideration, and does not refer specifically to individual users. Therefore, this

bandwidth is available to be used for all the calls that belong to the corresponding

class as they may move into the target cell.

For a class 2 new call, the scheme first attempts to allocate the desired amount

of bandwidth BM', the call is accepted if there is enough bandwidth available.

Otherwise, the call is rejected. In this case, the new class 2 call is not accepted

at degraded quality where less bandwidth is required although such bandwidth could

be available at the time of the call generation. The reason lies in that a large number

of class 2 calls supported at the lowest acceptable bandwidth (i.e., BT41) will saturate

the system. It is desirable to keep some class 2 users operate at higher bandwidth,

and therefore, make possible the resource borrowing from ongoing class 2 calls to

accommodate future class 1 and class 2 handcuff calls.

For handcuff connections, the proposed scheme works as follows. For a class 1

handcuff call, it first attempts to allocate the desired amount of bandwidth BWIL.

If this is not available, the scheme tries to continue supporting the handcuff class

1 call at slightly degraded quality (i.e., allocate bandwidth BW). If the available

bandwidth is still not sufficient enough to do so, the bandwidth reconfiguration is

initiated which borrows bandwidth from current class 2 calls in this cell that are

supported with bandwidth higher than their minimum requirements. The detailed

procedure of the bandwidth reconfiguration as well as the selection of the class 2

users to participate in this process is described later in this section. The handcuff

call is dropped only when reconfiguration process could not get enough bandwidth to

support it.

For a class 2 handcuff call, the proposed scheme first attempts to allocate the

desired amount of bandwidth BAIL. If this is not available, the scheme tries to
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continue supporting the handcuff class 2 call at some lower bandwidth within the user

pre-specified range (i.e., between BT41 and BM`). At this step, the system attempts

to allocate to the handcuff class 2 call the maximum available bandwidth (within its

pre-specified range) without involving the bandwidth reconfiguration process. As a

last attempt to accept this handcuff call, the scheme tries to allocate the minimum

required bandwidth BT41 to this call by initiating the bandwidth reconfiguration

process. Again, as can be observed by the order of the above steps the bandwidth

reconfiguration process is invoked as a last resort in an attempt to minimize the

overhead associated with this process and to minimize the number of other class 2

calls impacted. Finally the handcuff call is dropped only when reconfiguration process

could not get enough bandwidth to support it.

As can be observed in the above procedure, under certain situations, bandwidth

reconfiguration is required to serve the handcuff call at the cost of degrading class 2

call(s) currently in service. In the following, a reconfiguration strategy is discussed

which minimizes the impact of bandwidth reconfiguration on current class 2 calls in

the cell. A virtual queue is established and maintained for all the class 2 calls in

each cell. The queueing policy is the handcuff time t iiif (the time interval in the future

that the user k will request a handoff, as defined in Section 2.4.1), the user with

lowest handcuff time is placed at the head of the queue. Each time a class 2 (new or

handoff) request is accepted in the cell with bandwidth more than BW it is put at

the appropriate position of this virtual queue (based on the predicted handcuff time).

The queue is reordered each time new t licif is available. Whenever bandwidth is needed

from current class 2 call(s), the call at the head of the queue decreases its bandwidth

occupation until enough bandwidth is spared or the lower bound BT41 is met. The

above procedure is repeated if necessary. This reconfiguration strategy guarantees

that the number of impacted class 2 users is minimized and the degradation time is

also reduced to the minimum possible values.
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The above resource reconfiguration based CAC process always attempts to

provide the required resources to meet the service quality of class 1 calls that present

more strict QoS requirements, whether these are new call attempts or handcuff calls.

At the same time, non-realtime traffic (class 2 traffic) that has been accepted into

the wireless networks can maintain high successful handcuff rate.

2.4.3 Performance Analysis

This section presents the performance analysis of the proposed scheme. Specifically,

the performance results of the proposed integrated strategy, where both advanced

bandwidth reservation (via the PMBBR scheme) and QoS management (via the

call admission control and resource reconfiguration scheme) are implemented,

are compared with the corresponding results of a conventional system where the

fixed bandwidth reservation is implemented, in terms of achievable new call and

handcuff call blocking probabilities. Furthermore, in order to gain some insights

into the individual impact of the different components of the proposed integrated

solution, the performance of a system, where only the direction-based advanced

bandwidth reservation (via the PMBBR scheme) is implemented while the bandwidth

reconfiguration based call admission control component is not implemented, is

investigated. The following sections first describe the model and assumptions used

throughout the performance study, and then present the corresponding results of the

comparative study.

Model and Assumptions. The wireless network used throughout this study is

composed of 37 cells, each of which has six neighboring cells. The cell radius is

set to be 1000 meters. In order to approximate the performance of a large cellular

system the cells are wrapped around to eliminate the border effect. The arrival of

new calls initiated in each cell forms a Poisson process with rate A. The life time
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of each call is exponentially distributed with mean 240 seconds [34, 53i. Additional

system and traffic parameters are summarized in Table 2.2. It should be noted

here that the proposed framework aims to suggest a general approach that supports

the seamless operation and provides flexibility for the resource management in the

next generation wireless networks that support multimedia services. The bandwidth

values for the different classes of service were chosen for illustration purposes.

New voice coding technologies and emerging data applications may bring different

bandwidth requirements to the wireless networks, which however can be easily fit

into the framework. Throughout the simulation study, it is assumed that the desired

bandwidth requirement for class 1 (e.g., voice) users is 30 Kbps and for class 2 (data)

users is 50 Kbps. These parameters are selected based on some current realistic

systems and some other research efforts that have been reported in the literature on

this topic [64i. For instance, a GPRS terminal is able to download data at the speed

up to 40-50Kbps and the voice data is sent at 22.8Kbps.

The mobility model used throughout this study is as follows. When a new call is

initiated, the corresponding MS is assigned with a random initial position inside the

cell, a random moving direction and an initial moving speed which is chosen according

to a uniform distribution in the interval [0, Vmaximile/hr. The speed (v) and direction



44

where Ov models the acceleration/deceleration of the mobile user and is a uniformly

distributed random variable over the interval [-5mile hr, 5mile I hri; AO characterizes

the user's change in moving direction and is a uniformly distributed variable over

the interval [—____AOrnax , A4,,,,xi; p is a uniformly distributed random variable over

the interval [0, 1i. The use of variable p allows us to simulate the situation

where a mobile user may stop occasionally during the course of moving. Based

on this mobility model, two mobility patterns are considered in this study: high

speed pattern and low speed pattern. In the high speed pattern, the mobility

parameters are set to be Amax = 60milel hr, A4,,,,,x = 7/4 which correspond to highly

directional, fast moving traffic (e.g., highway traffic); for the low speed pattern,

Amax = 30mile/hr, A077.,„x = 7/2 which corresponds to a less directional, slow

moving traffic (e.g., downtown traffic). The mobility update interval (At) is chosen

to be lOsec throughout this study.

Numerical Results. The corresponding numerical results for two different test

traffic scenarios regarding the composition of class 1 and class 2 traffic are presented

in the following. Specifically, in scenario 1, 10% of the new call attempts are class

2 calls, while in scenario 2, 50% of the new calls are class 2 calls. Note that in

the proposed CAC and resource reconfiguration scheme only class 2 calls can lend

bandwidth to handcuff calls, and therefore the number of ongoing class 2 calls in a cell

will influence the performance of the system.
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Figure 2.18 compares the handcuff call and new call blocking probabilities of

the proposed system with the corresponding results of the conventional system for

different new call arrival rates 7) under test traffic scenario 1, with users moving in

the high speed pattern. In the legends of the figures, "ci" and "c2" stand for class 1

and class 2 users respectively, "proposed" indicates that the results are obtained under

the proposed integrated system where both position-assisted advanced bandwidth

reservation (PMBBR) and resource reconfiguration are implemented, "PMBBR_only"

represents a system where only the advanced bandwidth reservation (via the PMBBR

scheme) is implemented, while the bandwidth reconfiguration based call admission

control component is not implemented, and finally "conventional" corresponds to the

case of a conventional system. The conventional system uses the fixed bandwidth

reservation, where the reservation value represents a fixed percentage of the total

capacity of the cell. In the following study, the corresponding reservation value of

the conventional system for class 1 users is BAD" = 3OKpbs and for class 2 users is

BVVI" = 50Kpbs. The reservation values are selected based on experimentation with

the objective of keeping similar handcuff blocking probability for both the proposed

system and the conventional system. The call admission control procedure for

conventional system is the same as the one proposed in section 2.4.2 except that the

bandwidth reconfiguration is not used. It can be observed from the figure that for

the given parameters, the proposed system and the conventional system have similar

handcuff call blocking probabilities. However, the proposed system can significantly

decrease the new call blocking probabilities for both user classes, which demonstrates

that the proposed system can admit more users than the conventional system while

still guarantee the same level of QoS for handcuff calls.

The reason is two-fold: first, by using PMBBR algorithm, the bandwidth

reservation is only made for those users that will request handcuff in the near future

and the reservation value can be dynamically adjusted according to the predicted user



Figure 2.18 Call blocking probabilities for high mobility pattern under test traffic
scenario 1

speed and direction. As can be seen by Figure 2.18, compared with the "conventional"

scheme, for both user classes, the " PMBBR_only" scheme achieves to decrease

significantly the new call blocking probability at the cost of a slight increase in the

handcuff call blocking. Then by utilizing the bandwidth reconfiguration based CAC

component the "proposed" scheme further improves the performance, by decreasing

significantly the handcuff call blocking probabilities with no impact on the new call

blocking probabilities. This means that the bandwidth reconfiguration component

works complementary to the PMBBR scheme and eliminates any potential impact on

handcuff call blocking probability that may be introduced by the PMBBR scheme. This

is because the bandwidth reconfiguration procedure makes some ongoing class 2 users

to reduce their current bandwidth usage to spare some bandwidth for the incoming

handcuff calls, which allows the system to achieve better handcuff performance at

relatively less reservation values. Less reservation value gives new calls better chance

to be granted admission to the system. Therefore, the bandwidth reconfiguration
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component and the PMBBR scheme work together to improve the system resource

utilization and guarantee seamless operation.

It should be noted here that the connection level QoS improvement achieved

by the proposed system is obtained at the cost of slightly decreasing the bandwidth

actually used by class 2 users. Table 2.3 lists the average used bandwidth by each

class 2 user. For the worst case where new call arrival rate A = 0.11, resource

reconfiguration makes the average class 2 users' used bandwidth to decrease by only

14%. In other words, the proposed scheme can significantly improve the connection

level QoS by slightly degrading the performance of class 2 service calls. This is due to

the fact that a class 2 user may lend bandwidth to incoming handcuff calls only when

a cell is congested and the degraded class 2 call can have a chance to obtain larger

bandwidth when it handcuff to a less busy cell. This degradation policy (as described

in section 2.4.2) can also guarantee that both the number of the degraded class 2

users and the degradation time are minimized.

Figure 2.19 presents the corresponding numerical results for test traffic scenario

2 where 50% of the new calls belong to class 2 traffic. It can be observed that

under this traffic configuration the proposed system can achieve to provide an even

better performance improvement: the new call blocking probabilities are significantly

decreased for both user classes, and the handcuff call blocking probabilities are zero

in the offered new call arrival rate range from 0.05 to O.1. As a result, calls for both

classes are never forced to termination and the users obtain seamless connections once

they are admitted into the system. Since each admitted class 2 call can spare some
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bandwidth (up to 45Kbps in the numerical study) to accommodate the handcuff calls,

if there are more class 2 users in service, the handcuff call can always have sufficient

bandwidth to borrow from when the reserved bandwidth is not enough to support it.

Figure 2.19 Call blocking probabilities with high mobility pattern under test traffic
scenario 2

Figure 2.20 shows the corresponding blocking probabilities that can be achieved

by the proposed system for different mobility patterns (high vs. low) under test traffic

scenario 1. As can be observed from the figure that the proposed scheme is capable of

achieving good performance even when the users move in the low speed pattern: the

proposed scheme achieves to provide very low handcuff failure rates (in the magnitude

of 10 -4 ) for both user classes, which are similar to the results obtained under the high

speed mobility pattern. These results indicate that regarding the achieved handcuff call

blocking probabilities, the proposed system is not very sensitive to the user mobility

pattern. Both the PMBBR algorithm and the bandwidth reconfiguration based

CAC contribute to such insensitivity. The PMBBR makes bandwidth reservation

based on the influence so that the proposed algorithm is capable of adjusting the

reserved bandwidth to the appropriate level according to the current traffic conditions.
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Moreover, the reservation advance time of the PMBBR controls the reservation timing

so that the likelihood of false reservation can be decreased even when users move in

the less directional low speed pattern. The bandwidth reconfiguration procedure is

concerned with the balance of the bandwidth usage between users and user classes,

and its functionality is independent of the user mobility in nature.

It can also be observed from Figure 2.20 that the new call blocking probability

for the high speed pattern is higher than that for the low speed pattern. This is

due to the fact that for the same new call arrival rate, higher user mobility results

in higher handcuff arrival rate [37i. Higher handcuff traffic load, on one hand requires

more bandwidth to be reserved, while on the other hand it requires more class 2 calls

to reduce their current bandwidth usage to lend some bandwidth to the incoming

handcuff calls, which in turn results in less bandwidth released by call completions

and handoff-outs. Hence, the bandwidth available to new calls is less and the new

call blocking probability is higher for the high speed pattern.

Figure 2.20 Call blocking probabilities for different mobility patterns under test
traffic scenario 1



CHAPTER 3

NEW CALL BOUNDING SCHEME (NCB)

3.1 New Call Bounding Scheme

As can be observed from literature studying that all guard channel schemes use the

number of occupied channels as a decision variable: when this number exceeds some

certain threshold, arriving new calls are blocked and only handoffs calls are accepted.

However, it may well happen that a large number of new calls are accepted into the

system, which may result in congestion in neighboring cells due to the handoffs of

these new calls in the future. This is the case when calls arrive in bursts.

When congestion occurs, the QoS of both new and handoffs calls is impacted. In

order to avoid network congestion, a New Call Bounding (NCB) scheme is proposed

in this chapter. The NCB scheme directly controls the number of admitted new calls

and uses the number of channels that are currently occupied by new calls as a decision

variable for the CAC. More specifically, the scheme works as follows: when a new call

which requires Bnew channels for service arrives at a cell, the probability that this

call will be admitted (Anew ) is:

where Busedmew and Bused are the number of channels that is currently used by new

calls and number of busy channels in this cell respectively and Nbd  is a given bound

for new calls. The idea behind this scheme is that the system would rather accept

fewer calls than drop ongoing calls in the future, so it controls the number of accepted

new calls directly. The performance of the NCB scheme is investigated through both

simulation study and Markov chain analysis in the following sections.

50
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3.2 Numerical Study

The performance of the NCB scheme is evaluated in a homogeneous network model.

The only difference between the homogeneous model and the heterogeneous model

proposed in Section 2.2.1 is that in a homogeneous model the geographic layout of

the cells is not assumed. Therefore, users follow a random movement pattern and all

the direction factors are 1/6.

Figures 3.1 and 3.2 present the new call blocking probability and handcuff call

blocking probability of NCB scheme with different new call traffic composition and

Nbd = 25. As can be seen by these figures, with the decrease of percentage of high

speed user in new call traffic, the handcuff call blocking probability is decreased and

the new call blocking probability is increased. In order to explain this observation,

the user channel holding time is investigated. Simulation results are collected and

listed in Table 3.1, where T c,,„ and T Cando f f are the average channel holding times

of new calls and handcuff calls, respectively, and Th f high is the percentage of high speed

calls in the handcuff traffic. The table shows that with the decrease of the percentage



of high speed users, the average channel holding time of new calls become longer.

When a new call is admitted, it tends to occupy the channel for a longer time. Recall

that the NCB scheme uses the number of accepted new users as a decision variable,

thus when the channel holding time for new calls is longer, the traffic intensity for

new calls increases, which leads to the increase of new call blocking probability.

Table 3.1 also shows that the channel holding time of handcuff calls is always

shorter than that of new calls (same fact is also observed in MBCR study, Section

2.2.2). The reason is that the low speed calls will more likely finish their session in
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the originating cell, and therefore, the handoffs traffic is dominated by high speed calls

whose channel holding time is shorter. Since new calls have longer average channel

holding time, it is implied that new calls are more reluctant to release channels than

handoffs calls once they are accepted. As mentioned above, if call arrives in bursts, the

neighboring cells will be congested due to future handoffs. To make the situation even

worse, if a large number of new calls are accepted in a cell, there will be fewer channel

available in a relatively longer time and thus the current cell is also congested. In

order to avoid this situation, it is desirable to limit the number of the admitted new

calls. The NCB scheme is suitable for the so called "hot-spot" cells such as subway

station and stadium, where calls tend to arrive in bursts.

3.3 Analysis of NCB Scheme

In order to model the system that carries out NCB call admission control scheme, the

following assumptions, typical of teletraffic analysis, are made:

• New call attempts and handoffs call attempts follow Poisson processes with

arrival rates An and )'h, respectively.

• Channel holding times of new calls and handoff calls are exponentially

distributed with mean 1 //in and 1/th , respectively.

• Let C be the total number of channels in a cell and K be the bound for new

The NCB scheme can be analyzed by using a two-dimensional Markov chain whose

transition diagram is shown in Figure 3.3.

The state space of two-dimensional Markov chain is:
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Figure 3.4 compares numerical results calculated according to Equation (3.4) with

the simulation results. It can be observed that two results match perfectly. This

analytical model can be used to determine the appropriate new call bound value

(Nbd) for the given system parameters and QoS requirements at the system planning

phase.

3.4 Integration of MBCR and NCB

If the NCB scheme is used in combination with Integral MBCR scheme, constraints

are imposed on the number of channels occupied by the new calls, as well as on the

number of channels occupied and reserved. The new call admission probability for

this scheme is as follows:

Figures 3.5 and 3.6 show the effect of new call bounding. It can be observed that

compared with MBCR only, the MBCR with new bound scheme achieves to further

decrease the handcuff call blocking probability, at the cost of a slight increase in the new

call blocking probability. By integrating new call bound with MBCR, the admission
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Figure 3.4 Comparison of simulation results and analysis results of NCB scheme:

Thigh = O.2.

policy for new calls becomes stricter: a new call can be admitted only when both

of the requirements are met. In this case, more new calls are blocked in order to

prevent the congestion, and as a result handcuff calls are given even higher priority,

which means that once a call is admitted, it can obtain a better service. As observed

by Figures 3.5 and 3.6, the lower the new bound, the stricter the limit, hence, the

higher the Pnb and the lower the Phb.
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CHAPTER 4

INTEGRATING PRICING WITH CALL ADMISSION CONTROL

4.1 Introduction

As discussed in Chapter 1, various handoff priority-based RA/CAC schemes have

been proposed in literature and can be roughly classified into three categories: Guard

Channel Schemes, Queuing Priority Schemes and Channel Borrowing Schemes. These

research efforts are mainly focused on how to adjust the tradeoff between new call

blocking probability and handoff call blocking probability: decreasing the handoff

call blocking probability at the cost of increasing the new call blocking probability

of this cell (Guard Channel schemes) or other cells (Channel Borrowing schemes).

Within a certain dynamic range of call arrival rate, these schemes can improve the

system performance. However, it can also be observed from the results presented

by these research efforts that with the increase of call arrival rate, both the new

call blocking probability and the handoff call blocking probability increase. When

the call arrival rate is temporarily very high (for example in busy hours), no matter

how the parameters are adjusted, these schemes cannot guarantee the QoS to users.

For example, in order to keep the handoff call blocking probability under a given

threshold, a dynamic guard channel CAC scheme must increase the number of guard

channels. This will result in a large number of new calls being blocked, which is also

a great penalty to the QoS. In this case, it is said that the offered traffic is beyond

the capacity of a cell or the cell is overloaded and congested.

In the Queuing Priority Scheme, if there are no available channels at the time

of new/handoff call arrival, arriving calls are placed in queue(s) and wait for the

currently occupied channels to be released. However, in a practical system the

assumption of infinite queue is not realistic: a handoff call may not wait in the

queue for long time since the user may move out of the handoff area; due to caller's
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impatience a new call will not stay in the queue for a long time either [10i. If the

overload lasts for a long period, the Queuing Priority Scheme cannot achieve a better

performance either.

The main reason of QoS degradation described above stems from the fact that

resources in a wireless network, such as time slots, code and power, are shared by all

the users. When one user is admitted into the network, it will cause QoS degradation

to other users. In terms of Economy, this phenomenon is recognized as Externality

[82i. In general, it can be observed that the most serious QoS violation (Externality)

occurs when the system is congested. However, the current CAC schemes cannot

avoid congestion, since they do not provide incentives for users to use the channel

resources effectively.

Network users act independently and sometimes "selfishly" , without considering

the current network traffic conditions. Hence, system overload situations are

unavoidable. With the emerging 3G and 4G services, conditions will become even

worse since users are allowed to use more bandwidth resources to transmit large

volume data or even real-time video [63i. If each user requests the resources that

maximize his/her individual level of satisfaction, the total utility of the community

will decrease, so that there must be some mechanism to provide incentives for users

to behave in ways that improve overall utilization and performance. In commercial

networks, this can be most effectively achieved through pricing.

Network pricing has recently been embraced by researchers in the multi-service

broadband networks [16, 17, 43i not only as an economic issue and element, covering

the infrastructure expenses and operational expenses through charging the end users,

but also as a resource management issue. The aggregate traffic load on a wireless

network is the result of many users' individual decisions about whether and how to

use the network resources, and these decisions are affected by the incentives these

users encounter when using the resources of a wireless network. These incentives can
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take many forms. One of the most important incentives is the monetary incentive

[16i—raising the unit price could make some of the users request less resources. This

provides another dimension for the design of CAC schemes that can be used in wireless

networks as well. In this chapter, pricing is integrated with CAC to address the

problem of congestion. The proposed approach combines concepts from network

design and engineering with concepts from economics and user behavior to provide

an overall call admission strategy that simultaneously: (a) alleviates the network

congestion; (b) meets the QoS requirements of users and (c) uses the network resources

efficiently.

The above goals are accomplished by integrating in the call admission control

process the following concepts and elements: (a) view the wireless network as a public

good, which should be efficiently used so that the social welfare can be maximized,

(b) implicitly implement a distributed user based mechanism to direct the user in

prioritizing his/her call by providing negative incentives according to the current

network condition, and therefore, shaping the traffic, and (c) take into account the

user behavior and the user demand function.

The remaining of this chapter is organized as follows. In Section 4.2, it is proven

that for a given wireless network there exists an optimal new call arrival rate where

the total utility of the users can be maximized. In Section 4.3, a detailed description

of the model and operation of the proposed system is provided, while Section 4.4

describes how the price is set dynamically according to traffic load. The performance

evaluation of the proposed approach and scheme is presented in Section 4.5, while

Section 4.6 extends the study and results to the case of multiple service types.
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4.2 Optimal Call Arrival Rate to Maximize Total Utility and Meet QoS

Requirements

Quality of Service is described in CCITT Recommendation E. 800 as: "The collective

effect of service performance which determines the degree of satisfaction of a user

of the service." This ties the quality of service to the user's perception of the

service. Meeting users' QoS requirements can be more appropriately expressed as

maximizing users' level of satisfaction towards the service, which is the ultimate goal of

network provisioning. While the traditional network performance metrics, such as call

blocking probability and bandwidth usage, fall short in capturing user's perception of

application performance, the Utility Function provides means to quantify the relations

between users experience and network performance metrics. In terms of economics,

utility functions describe users' level of satisfaction with the perceived Quality of

Service [16, 43i; the higher the utility, the more satisfied the users. In general, utility

function characterizes how sensitive users are to the changes in QoS. It is sometimes

useful to view the utility functions as of money a user is willing to pay for certain

QoS. Some utility functions have been suggested in literature in order to model the

customer behavior and evaluate the corresponding pricing policies. For example, in

[16i, Cocchi et al. proposed utility functions for four types of applications: electronic

mail (Email), file transfer service (FTP), remote login service (Telnet) and real-time

packetized voice. For Email applications, it is assumed that utility is a decreasing

function of both average delay and the percentage of messages not delivered within a

delay bound of five minutes; for remote login, utility decreases as the average packet

round-trip time increases. In this chapter, the utility function is defined as function

of the new and handcuff call blocking probabilities, which represent the main QoS

metrics in cellular networks.

This section proposes and proves a theorem which states that there exists a

new call arrival rate where the total user utility is maximized, and therefore, the
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network resources are optimally utilized. A wireless network that carries out Guard

Channel CAC scheme is considered; the arrival process of new calls is assumed to be

Poisson and the channel holding time is assumed to follow exponential distribution.

The parameters of the system are given, including the total number of channels, the

number of guard channels, the average new call channel holding time and average

handcuff call channel holding time, so that the performance of the system depends on

the new call arrival rate (A u ) and handcuff call arrival rate (\ h ) [34, 35, 50i. Lin et al.

also proved in [57i that handcuff call arrival rate is a function of new call arrival rate

and other system parameters. Therefore, the following study focuses on how the total

utility changes with the new call arrival rate. The analysis is based on the following

definitions, observations and assumptions.

Definition 1. The average number of admitted users (N) is defined as a function

is a differentiable and monotonically

increasing continuous function of A u with the following properties:

where C is the total number of channels assigned to this cell.

Definition 2. The Quality of Service metric Pb is defined as a weighted sum of new

call blocking probability (A70) and handcuff call blocking probability (Ahb):

where a and ,3 are constants that denote the penalty associated with rejecting new

calls and handcuff calls respectively, with ,(3 > a to reflect the higher cost of blocking

a handcuff call. Pb is also referred to as cost function since it characterizes the cost

on QoS when blocking a new call or a handcuff call. Since both P ub and Fhb are

monotonically increasing functions of A u , Ab = g(an ) is also a monotonically increasing
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function of Au . Function g(,\,,,,) has the following properties:

The general properties and characteristics of the user utility function are described

below. As mentioned before, utility function models network users' preference. It is

argued here that when the cost function (Pb) increases, users will observe higher call

blockings and the level of user satisfaction decreases. Please also note that when Pb is

small, the satisfaction degradation caused by the increase of Pb is not significant; as

Pb becomes large, the satisfaction degradation will be substantial, which is referred

to as the diminishing margin property [73i. Therefore, the following assumption is

made:

Assumption 1. The utility function of a single user (U,) is a differentiable and

monotonically decreasing concave function of the QoS parameter Pb. Therefore, U, =

h(Pb ) where function h(Pb ) has the following properties::

Note that U, achieves maximum value at Pb = O, which means that if the

blocking probability is O% the user has the highest level of satisfaction, therefore,

US (Pb = O) = Ur". Moreover, although different applications may have different

QoS requirements, and therefore, different utility functions, without loss of generality,

it can be assumed that there exists a Pir,'" such that US (Pb ) = 0 for all Pb > Fr".

This means that when call blocking probability is very high, the user satisfaction is

zero. In a realistic wireless system, PI:i" represents the threshold value (maximum)

of Pb that can be tolerated so that the Quality of Service is considered acceptable.

Based on the above definitions and assumptions, the following theorem is proven:



64

Theorem 1. For a given wireless network, there exists an optimal new call arrival

rate an that maximizes the total utility B, where B is defined as:

which means that Us is a continuous and monotonically decreasing function of A u ,

where AT" is the new

(ii) Since both N and B, are continuous functions over the closed interval

au E [O, A iT"i, B, as a product of N and B,, is also a continuous function over the

same interval. According to Extreme Value Theorem' [29i, it can be concluded that

function B has a minimum and a maximum value on that interval.

• From (i) and Equation (4.1), the minimum value is obtained at the endpoints of

the closed interval. Specifically, total utility

U(Au  = 0) = O) which corresponds to the case that no user is in the system or

which corresponds to the case that

single user's utility becomes zero.

• Assuming the maximum value of total user utility to be B ub , and by Extreme

Value Theorem it can be concluded that there exist at least one Am value,

denoted by A (7),, over interval (O, AT") that makes

'Extreme Value Theorem: Every function that is continuous over a closed interval
has a maximum and a minimum on that interval.
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(iii) The number of different values of 4, depends on the second order

derivatives of functions f, g and h.

• If there exists only one A that satisfies Equation (4.6), the optimal new call

arrival rate for the system is

• If there exist more that one different values of A n that satisfy Equation (4.6),

the optimal new call arrival rate is set to be:

which is the highest new call arrival rate value that can maximize the total user

utility.

0

Maximum total user utility also means that channel resources are most efficiently

utilized. When Am < A m*, users can get a better quality than their QoS requirements,

but some channel resources are wasted and from the perspective of the service

provider, this means less revenue. On the other hand, when A n > An*, a large number

of users are blocked when trying to initiate their calls or when trying to handoff to

another cell in the middle of a call, which means that the QoS degrades and may

become unacceptable. In this case, although on average, more channels are used,

due to the increasing handoff failures, it is hard for a user to finish his/her call

successfully and as a result the "effective" utilization of channel resources is low.

Therefore, Am = A m* is a point where the number of satisfied users is maximized and

channel resources are most efficiently used. When An > An*, both the total user

utility and the QoS decrease with any further increase of A n and the cell enters the

congestion state. From the view point of QoS guarantee, it is ideal for a system to

operate at the optimal traffic load (A m*) or below.
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Figure 4.1 Integration of pricing scheme with call admission control.

4.3 System Model

Current wireless networks use flat pricing schemes: users are charged with fixed rate

or based on the time of the day. The major advantage of these schemes is that

the billing and accounting processes are simple. However, the price is independent

of the current state of the network, or any dependence is fixed and is based on

decisions that have been made during the planning phase of the system and may

not correspond to the actual system conditions. Hence, such systems cannot provide

enough incentives for users to avoid congestion, and furthermore, cannot react

effectively to the dynamic and sometimes unpredictable variation of the network

usage and conditions. This chapter proposes a new scheme which integrates the

congestion pricing with call admission control to address this problem. Figure 4.1

provides a schematic representation of the proposed approach and model.

The system is composed of two functional blocks: CAC block and Pricing block.

Here, a guard channel scheme is used at the CAC block. The pricing block works

as follows: when the traffic load is less than the optimal value, A m < A ria*, anormal

price is charged to each user. The normal price is the price that is acceptable to

every user. When the traffic load increases beyond the optimal value, dynamic peak

hour price will be charged to users who want to place their calls at this time. Base
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stations broadcast the current unit price to users when they try to place calls. It

should be noted here that according to the proposed scheme the decision about the

peak hour price is based on the network conditions and not only on the time of the

day. This means that the price is continuously and dynamically adjusted according

to the changes in the system condition as the system evolves. The following points

should also be noted in Figure 4.1:

• The handcuff call arrival rate Ad is determined by the new call arrival rate A n and

other system parameters. The handcuff calls do not go through the pricing block,

since they are continuation of previously admitted calls and their operation is

governed by the price agreed at the time of the call acceptance (i. e., price does

not change during the operation of the call);

• During the period that dynamic peak hour price is charged to users, if some users

are not willing to accept the extra charge, they will choose not to place their calls

at this time. These users can make their calls later when the network conditions

change and the price decreases. This generates another traffic stream to the

pricing block—the retry traffic, whose arrival rate is denoted by A, in Figure

4.1. Different mechanisms that model the retry traffic can be implemented

depending on the behavior of users that retry to place their calls. In Figure 4.1,

this behavior is represented by the block labeled "Delay" .

• Since the traffic load varies according to the time of the day, the above used

The system function of pricing block (H(t)) is defined as the percentage of the

incoming users that will accept the price at time t, i. e.,
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where Ain,(t) is the rate of input traffic to CAC block. The congestion pricing block

should be designed in such a way that by adjusting H(t) according to current traffic

condition, A in, (t) always meets the following requirement:

is the optimal new call arrival rate obtained in Section 4.2. This constraint

guarantees that the cell will not be congested, and therefore, the quality of service

requirements of the callers in service can be guaranteed.

4.4 Resource Pricing According to Traffic Load

As mentioned before, monetary incentive can influence the way that users use

resources and is usually characterized by demand functions. Demand function

describes the reaction of users to the change of price. Different demand functions

have been proposed in literature [17, 27i. In this chapter, the following demand

function [271 is used.

where Pd is the normal price, p(t) is the price charged to users at time t which is the

sum of normal price and extra peak hour price (if applicable). D p (t)i denotes the

percentage of users that will accept this price. Note that D(pd ) = 1, which means that

the normal price is acceptable to all users. In the proposed scheme, p(t) is determined

by current traffic load fin, (t) + (t). The control function of H(t) is realized by users'

reaction to the current price, therefore:
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Taking into account Equation (4.9) and (4.10), in order to obtain the desired QoS,

at time t the price should be set as :

4.5 Performance Analysis

In this section, the performance of the proposed integrated pricing and call admission

control is evaluated in terms of congestion prevention, achievable total user utility

and obtained revenue. The achieved performance of different variations of the

proposed integrated approach (the variations model the potential behavior of users

with regard to pricing and call blocking) is compared with the corresponding results

of conventional systems where pricing is not taken into consideration in the call

admission control process. It is observed that the proposed integrated scheme achieves

to alleviate the system congestion occurrences and meet the QoS requirements of

the users in service, while other conventional CAC schemes fail to do so. Moreover,

considerable improvements are also observed on both the achieved total user utility

and the obtained revenue.

Section 4.5.1 introduces specific utility functions that used throughout the study.

In Section 4.5.2, the basic assumptions about the system under consideration as well

as the specific experiments performed are described in detail. Section 4.5.3 provides

the corresponding results of the different settings compared.

4.5.1 Utility Functions vs. "Elastic"/ "Inelastic" QoS Requirements

In Section 4.2, instead of suggesting an explicit utility function, only a qualitative

description of the properties of user utility function was presented. Exact user

utility functions can be obtained through field tests and user surveys. Many wireless

operators and researchers have conducted sophisticated surveys to find the utility

function for various QoS metrics [45i. In the remaining, without loss of generality,
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two user utility functions B1 and B2 are assumed, as defined in Equations (4.13) and

(4.14) respectively.

Figure 4.2 User utility functions: B 1 and B2.

A schematic representation of these two utility functions is shown in Figure 4.2.

These two utility functions differ in their corresponding QoS requirements. The first

utility function (B1 ) describes the case that users have "hard" QoS requirement, which

means that users will not accept the service when QoS is worse than a pre-specified

threshold. From Equation (4.13) and Figure 4.2(a), it can be observed that when

Pb is more than 1%, the utility becomes zero. This is also referred to as "inelastic"

QoS requirement [74i. The second utility function (B 2 ) describes the situation that

users' satisfaction gradually decreases with the increase of blocking probability, which
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means that users can tolerate some degree of service outage. B2 corresponds to a soft

or "elastic" QoS requirement [74i.

4.5.2 Model and Assumptions

The parameters used throughout the performance evaluation are as follows:

(1) Each cell is assigned C = 40 channels, and 2 of them are used as guard channels.

(2) Each call requires only one channel for service.

(3) For both new calls and handcuff calls, the call duration times are exponentially

distributed with mean (I) 240 seconds, and the cell dwell times are also

exponentially distributed with mean ( 1n ) 120 seconds. Although the price

changes dynamically, it is assumed here that the call duration is independent of

the price [76i. Through congestion pricing experiments, Shih et al. found that

users do not terminate their calls earlier with the increase of price, "because

users do not know how long time the price increase will last" . Moreover, as

mentioned before, once a call has been accepted in the system its operation is

governed by the price agreed at the time of call acceptance (i.e., the price of a

specific call does not change during the operation of the call).

(4) The arrival of new calls initiating in each cell forms a Poisson process with

rate A ri (t). The variation of new call arrival rate during a 24-hour period used

throughout this study is shown in Figure 4.3.

(5) Parameters a and /3 in Equation (4.2) are set to be 3and 3respectively, which

means that handcuff calls are treated twice more important than new calls.

(6) In the following numerical study, Bs = B1 (defined in Section 4.5.1). The

optimal new call arrival rate for this system is calculated to be A u* = 0.12

call/sec. Based on the analysis in Section 4.2, this is the optimal operation
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Figure 4.3 Input new call arrival rate as function of time.

point of the system in the sense that at this point, the total user utility can be

maximized given that the hard QoS requirement (Pb < O.01) is met.

In Equation (4.12), the traffic load input into the pricing block (A r(t) + Ar(t))

is used to calculate the price. However, in a real system it is very difficult, if not

impossible, to obtain traffic load in a realtime fashion. In this study, the estimated

traffic load is used to calculate the price. The 24-hour period is divided into 5-minute

sections. At the end of each section, the average offered traffic load (A r(t) + Art))

during this section is calculated and the price is determined using Equation (4.12).

This price will be used in the next 5-minute section.

In order to study and observe how the proposed scheme can solve the problem

of congestion in wireless networks, five experiments are performed. The first two

experiment setups correspond to conventional systems that do not implement dynamic

pricing mechanism while the last three experiments are variations of the proposed

scheme which integrates pricing and call admission control. The specific setting for

each experiment is as follows:
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No. 1: No pricing block is implemented. Users blocked by CAC (blocked users) retry

after waiting some time. This is referred to as Conventional System with Retry

(CSwR).

No. 2: No pricing block is implemented. One third of the blocked users leave the

system and the rest wait and retry. This is referred to as Conventional System

with Retry and Loss (CSwRL).

No. 3: A user that does not accept the current price (hold-off users) waits for some

time and retries, while blocked users do not retry and they are cleared from

the system. This is the scenario implied by Figure 2.1. This is referred to as

Pricing System with Hold-off Retry (PSwHR).

No. 4: Both hold-off users and blocked users retry after waiting some time. This is

referred to as Pricing System with Retry (PSwR).

No. 5: One third of the hold-off users and one third of blocked users leave the system,

and the rest hold-off and blocked users will wait some time and retry. This is

referred to as Pricing System with Retry and Loss (PSwRL).

The corresponding diagrams of CSwR, CSwRL, PSwR and PSwRL (experiments

1, 2, 4 and 5) are shown in Figure 4.4. They all take the blocked call retry into

consideration, hence, there is a new traffic stream input to the pricing block: the

blocked retry traffic whose rate is denoted by A br (t). The corresponding diagram of

PSwHR (experiment 3) is shown in Figure 4.1. For the comparison purposes, all the

five experiments use the same fixed guard channel scheme (2 guard channels) in the

"Call Admission Control" block.

4.5.3 Numerical Results and Discussion

Congestion Prevention. Figures 4.5 and 4.6 show the results of conventional

systems (CSwR and CSwRL) that do not use pricing in the call admission control
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Figure 4.4 The diagrams of experiments No.1, No.2, No.4 and No.5.

process to control the traffic. Figure 4.5(a) and (b) show the traffic rates (vertical axis)

at different points of the system for experiments CSwR and CSwRL, respectively

(horizontal axis corresponds to the 24-hour period). Specifically, four curves are

presented in each of these figures. The optimal new call arrival rate is denoted by A*;

the new call arrival rate is denoted by fi n, (t), the rate of traffic input to CAC block

is denoted by Airiest) and the traffic rate of calls that are admitted into the system is

denoted by A admit (t). It can be first observed that for the given system parameters

and input traffic pattern, the system works within a wide range of channel loads,

from a light load at midnight hours to heavy load at noon hours (the highest A in
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value for experiment CSwR is 0.182 call/sec which corresponds to utilization factor 2

= 84.3%). It is also observed from this figure that for both experiments, Airiest)

exceeds the optimal operation value in noon hours. From Figure 4.6, it can be seen

that when traffic load is heavy (e.g., in noon hours), Pb can be as high as 8% (for

experiment CSwR) and 6% (for experiment CSwRL). These values are far beyond

users' minimum QoS requirement 1%, and therefore, it can be concluded that cells

are seriously congested during this period. As a result the QoS of on-going calls is

also affected significantly.

Figure 4.5 Experiments CSwR and CSwRL: Traffic rates at different points.

The corresponding results of experiments PSwHR, PSwR and PSwRL are shown

in Figures 4.7 through 4.9. All these three experiments use pricing to prevent

congestion occurrence. The difference among these three schemes is that users have

different behavior modes. When encountered with unacceptable price or denial of

channel access request, in experiment PSwHR, all hold-off users (users that did not

accept the current price) may choose to retry while the blocked users are cleared from
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Figure 4.6 Experiments CSwR and CSwRL: Weighted call blocking probabilities.

the system; in experiment PSwR, all of the hold-off and blocked users may choose

to retry; in experiment PSwRL, part of the hold-off and blocked users may leave the

system due to caller's impatience and the rest choose to retry. In general, these three

experiments model and represent the various user reactions to pricing and CAC.

Figure 4.7 also shows how the price is adjusted according to the change of offered

traffic load. For the given new call arrival rate variation, when the offered traffic load

into the pricing block is more than the optimal new call arrival rate (6:3OAM to

11:0OPM in Figure 4.7(a)), the ratio p(t) I pd becomes more than 1, which means that

the pricing mechanism comes into effect and the peak hour prices are charged to users.

The heavier the traffic load, the higher the price, so that the less the percentage of

users that would like to access the network, as suggested by Equation (4.12). In

the proposed scheme, there is no central control mechanism to determine which user

can access the channel resources. Each base station just sets the price according to

current traffic load of the cell, and it is the individual user's decision on whether to

accept this price or not that controls the input traffic load to the system at this time.

This implicitly implements a distributed user-based prioritization scheme where the

priority is set by user's reaction to current price.
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Figure 4.7 Experiments PSwHR, PSwR and PSwRL: Setting price according to
traffic conditions.

Figure 4.8 shows the traffic rates at different points of the system for experiments

PSwHR, PSwR and PSwRL. From this figure, it can be first observed that no matter

how the hold-off and blocked users behave, the inputs to the CAC block are always

lower than the optimal rate, i.e., Ain (t) < Am*, which means that the cell is not

congested. The reason is that the price is adjusted based on the user demand

function and current traffic load (Equation (4.12)) so that the price is always set

to the appropriate value to guarantee that the traffic rate going through the pricing

block is less than the optimal value. This result is justified by Figure 4.9. From this
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figure, it is observed that the weighted call blocking probabilities are always lower

than 1%, which means that the QoS of the users who accept the current price can

be guaranteed. Comparing Figure 4.8 with Figure 4.5, it can be observed that the

pricing block works like a traffic shaper, which can "move" part of the peak hour

(6:3OAM to 6:0OPM in Figure 4.8(a)) traffic to relatively idle hours that follow the

peak (6:0OPM to 11:0OPM in Figure 4.8(a)). The traffic being "moved" is composed

of users that do not accept the peak hour price, however, they are willing to retry to

place their calls at a later time. Therefore, the traffic load input to the CAC block

presents a "flat" shape during the peak hours and following few hours, and during

that "flat" period the system achieves maximum total utility.

From Figure 4.8, it is also observed that the shaped traffics (A in (t)) for PSwHR,

PSwR and PSwRL are different. PSwR has the longest "flat" period, PSwHR has a

slightly shorter one, and PSwRL's "flat" period is much shorter than the previous two.

This difference is due to different user behavior modes in these three experiments.

Compared with PSwR, PSwHR clears blocked users from the system. Since call

blocking probability is limited to be less than 1%, whether blocked calls will retry

or be cleared from the system only slightly affect the output of the experiments.

Compared with PSwR, in PSwRL one third of the hold-off and blocked users will

leave the system. In peak hours, in order to guarantee the QoS of users in service,

high congestion prices may be charged to users (p(t) can be as high as 1.8p0 in Figure

4.7(c)), therefore, the percentage of users that do not accept the price can be high

(up to 46%). Since a large number of users leave the system during peak hours, the

traffic volume that can be "moved" is relatively less which further results in a much

shorter "flat" period for PSwRL than that for PSwR.

As mentioned before, the results in Figures 4.7 through 4.9 have been obtained

for the utility function B1 (defined in Section 4.5.1) that corresponds to the case

of hard QoS requirements. If users have soft QoS requirements (e.g., use of utility
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function B2 ), it can be calculated that A = O.136 call/sec and at this point Pb = 2.5%

which means that more users are blocked. In this case, it is expected that PSwHR

and PSwRL have even shorter "flat" periods.

From the above results and discussion, it can be concluded that no matter how

users behave, the proposed integrated approach can always prevent the occurrence of

congestion. Furthermore, the proposed scheme provides a dynamic method to operate

the system at the optimal point, where the number of new calls that can be accepted
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in the system is maximized under the constraints of guaranteeing the required QoS

for a given user utility function.

Figure 4.9 Experiments PSwHR, PSwR and PSwRL: Weighted sum of call blocking
probabilities.

Increasing Total User Utility. As discussed in Section 4.2, total user utility is a

measure of how efficiently the channel resources are used. Table 4.1 compares the

achieved total user utility during a one-day period for the five different experiments

under evaluation. From this table, it is observed that no matter how the hold-off

and blocked users behave, compared with the conventional CAC schemes, integrating
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pricing with CAC always increases the total user utility significantly. Comparing the

results of experiments PSwHR, PSwR and PSwRL, it can be found that PSwR has

the largest achievable total user utility while PSwRL has the lowest one. The reason

lies in that in PSwR all the hold-off users and blocked users choose to retry while

in PSwRL some of users give up retrying, so that PSwR can serve more users than

PSwRL, and PSwR has longer "flat" period than PSwRL, as can be seen by Figure

4.8.

Comparison of Obtained Revenue. Previous results demonstrate that integrating

pricing with CAC can effectively prevent congestion occurrence and increase the total

user utility. In this subsection, the impact of the integration of pricing in the call

admission control process on the network operators/providers is studied from the

generated revenue point of view. The average revenue can be calculated as follows:

and T is the average duration time of calls. The

corresponding revenues for the five different experiments are shown in Table 4.2.

Comparing the results of experiments PSwR and PSwRL with their counterpart
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experiments CSwR and CSwRL, respectively, it is observed that when pricing is

introduced into the call admission control process, the revenue for operators is

increased significantly as well (82% for experiment PSwR over CSwR and 28% for

experiment PSwRL over CSwRL). The increase in revenue during busy hours (when

is due to the fact that with the suggested demand function, when congestion

occurs the effect of decrease in the number of accepted users can be compensated by

the higher congestion price charged to users. For example, at peak hours, the 'admit

for CSwR and PSwR are O.1487 and O.119, respectively, while the price charged to

each user are Pd and 2.3p0 , respectively. However, it should be noted here that PSwR

can guarantee the required QoS while CSwR fails to do so. The overall increase

in revenue during the hours following the busy hours is due to the combined effect

of both the increased arrival traffic load (due to the traffic shaping feature of the

proposed scheme i.e., A i, > A as can be observed from Figure 4.8) and increased

price (i.e., p(t)/pd > 1 as can be observed from Figure 4.7).

4.6 Maximizing the Total User Utility in Wireless Networks with

Multiple Service Types

The development of wireless networks and of new emerging services, along with the

evolution of communication infrastructures into multiplexed and multiple service-class

networks, provides the capability and need to support a wide variety of applications.

In order to allocate the resources efficiently among users that have different resource

and QoS requirements, this section investigates how the total users utility varies with

different traffic loads and studies the problem of maximizing the total user utility in

wireless networks with multiple service types. Based on this, the input traffic space

is divided into congestion space and operation space to avoid system congestion and

provide users with satisfactory service.
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4.6.1 Maximizing Total User Utility

In the following, a wireless networks that can support T + 1 different types of

calls/applications is considered, where each one of them may present different QoS

and bandwidth requirements. For simplicity in the presentation and without loss

of generality it is assumed that type 0 corresponds to real-time services such as

conversational voice, while types 1 to T correspond to T different types of data

applications, that may range from web-browsing to transaction services, e-mail etc.

The total arrival process of new calls is assumed to follow Poisson process with

rate A, while the type i (i = 0, 1, • • • , T) user channel holding time is assumed

to follow exponential distribution with mean Tcih . Upon acceptance, a type 0 call

always requests bandwidth BW0 , while each type i (i = 1, • . • , T) data call can

be associated with multiple levels of bandwidth assignment. Note that for each

type i data user, different bandwidth assignment will result in different quality of

service and therefore different levels of user satisfaction, which will be reflected by

the corresponding utility function. It is also assumed that a type i data call has L i

different service choices (levels) where each level corresponds to certain bandwidth

classes of calls to be served in the system, where each class k corresponds to a certain

application type i working on a certain service level j. Each call arrival is assumed

. Please note that if each

application type has only one service level, i.e., L i = 1, in this special case K = T.

If the parameters of the system (total capacity, service rate, etc.,) are given, the

performance of the system depends on the offered traffic load (rate and composition).

This section investigates how the total utility changes with the new call arrival rate

for any given traffic composition, i.e., -Lk values. In section 4.2, the problem of

maximizing the total user utility for a single class of service was studied. This section

extends this approach to the case of multiple service types.



where C denotes the total capacity of the cell under consideration and BWk is the

bandwidth allocated to class k users based on the application type and service level.

For each class, a cost function is defined as the composite call blocking

probability Pk represented by the weighted sum of new call blocking probability

(Pe) and handcuff call blocking probability (TV) experienced by users of type i:

Following the Assumption 1 made in section 4.2, the general properties and

characteristics of the user utility function are described below. The utility function

models the network users' preference. It is argued that when the cost function (Pk)

increases the users will observe higher blocking and their level of satisfaction decreases.

Please also note that when Pk is small, the satisfaction degradation caused by the

increase of Pk is not significant; as Pk becomes large, the satisfaction degradation will

be substantial. For data users, i. e., type I, . • • , T, the user's preference to service
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is also related to the amount of bandwidth actually allocated to them. Taking these

factors into consideration, the following assumption is made throughout this section:

Assumption 2. The utility function of a single type 0 user is a differentiable

and monotonically decreasing concave function of the QoS parameter Pk (k = O).

Therefore, B0 = 14(P0 ) where function (P0 ) has the following properties:

The utility function (Uk) of a single class k data user (whose application type is i and

service level is j) is assumed to be:

where BWri" denotes the maximum bandwidth that can be allocated to a single type

i application, which the class k user belongs to, i. e.,

and function hd models the class k users' perception to the call blocking probabilities,

and it has the same properties with 1-6. Note that all classes belonging to type i share

the same function format of Jr/cc

which means that if the blocking probability is O% the user has the highest level

of satisfaction. Therefore, the following is assumed here: k ( Pk = O) = our"
Although different applications may have different QoS requirements and therefore

different utility functions, for all practical purposes it can be assumed that there

exists pr" such that k (Pk ) = 0 when Pk > pr". This means that when call

blocking probability is very high, the user satisfaction is zero. In a realistic wireless

system Pr" represents the threshold value (maximum) of Pk that can be tolerated

by class k users so that the Quality of Service is considered acceptable. The total
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Based on the above definitions and assumptions the following theorem the following

theorem can be proven:
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(i.e., B(A = O) = O) which corresponds to the case that there is no user in the

system, or when A = Am" (i.e., B(\ = Am") = O) which corresponds to the

case that each single user's utility becomes zero.

• Let Bubb denote the maximum value of total user utility. Then by Extreme

Value Theorem [29i it can be concluded that there exist at least one A value(s),

denoted by A u , (n = O, 1, ...) over interval (O, Am") such that:

BMA = Am) =B ub(4.23)

(iii) The number of different values of Au depends on the second order

derivatives of functions fk, Lk R, and Ricci .

• If there exists only one An (n = O) that satisfies equation (4.23), the optimal

new call arrival rate for the system is A*(ro) = Add;

• If there exist more that one different values of A that satisfy equation (4.23), the

optimal new call arrival rate is set to be: A* (Td ) = supu , {0 , 1 ,... } {Au I u(Au) =

Bub},which is the highest new call arrival rate value that can maximize the

total user utility.

For given utility functions, these optimal values can be easily calculated for each

traffic composition F using K + 1 dimensional Markov Chain model.

4.6.2 Operation Space and Congestion Space

As discussed in Section 4.2, the maximum total user utility also means that bandwidth

resources are most efficiently utilized. When A > A* (F 0 ), a large number of users

are blocked when trying to initiate their calls or when trying to handoff to another

cell in the middle of a call, which means that the QoS degrades and may become



88

unacceptable. Although on average the total resource utilization is higher, due to the

increasing number of handcuff failures it is hard for a user to finish the call successfully,

and as a result the "effective" utilization of bandwidth resources is low. In this case,

both the total user utility and the single user utility decrease with any further increase

of A and the cell is congested. From the viewpoint of congestion prevention, it is ideal

for a system to operate at the optimal traffic load (A* (F 0 )) or below when traffic

composition is F0.

Numerical results are presented in the following to demonstrate the existence

of optimal new call arrival rates and the division of the traffic space into Operation

Space (OS) and Congestion Space (C S). A wireless network that carries out the

Guard Channel CAC scheme is considered where the capacity of each cell is C units

of bandwidth, with Ch units out of the C reserved for handcuff purposes only. In

the experiment presented here, for simplicity in the presentation and without loss of

generality, it is assumed that there are two types of calls (i. e., T = 1): type 0 with
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voice users have different perception and tolerance towards call blocking. The

corresponding numerical results for two different cell capacities C = 10 and C = 12

seconds. For

every point in each curve, the corresponding Y-axis value indicates the optimal new

call arrival rate for the given traffic composition (represented by the X-axis value).

The area below the curve is the OS and the area above is the CS.



CHAPTER 5

CONCLUSIONS

Resource allocation (RA) and Call Admission Control (CAC) in wireless networks

are processes that control the allocation of the limited radio resources to mobile

stations (MS) to maximize the utilization efficiency of radio resources and guarantee

the (QoS) requirements of mobile users. Wireless networking has enjoyed dramatic

increase in popularity over the last few years. The advances in hardware design and

the increased user requirements for mobility and geographic dispersion have generated

a tremendous need for the support of multiple classes of services with certain QoS

requirements. Large-scale deployment of multimedia services over wireless networks

depends heavily on the offered QoS, network reliability and cost effectiveness of the

services. Therefore, more efficient RA/CAC schemes need to be designed to handle

these emerging challenges.

Through the review of current research efforts in this area, it is observed

that most existing schemes do not take the user mobility into consideration, so

that they cannot effectively adapt to the real time network conditions. Moreover,

these schemes do not provide incentives for users to use the limited radio resources

efficiently, therefore, they cannot prevent the occurrence of network congestion. In

this dissertation, several RA/CAC schemes are proposed and analyzed to solve the

above mentioned problems.

Due to user mobility, an ongoing call, in addition to its channel requirements

in the current cell, exerts some influence on the channel allocation in neighboring

cells. The proposed MBCR scheme quantifies this influence and based on this makes

resource reservations in neighboring cells. The MBCR algorithm can be carried out

in a distributed way: each cell collects its current traffic condition, calculates the

influence and sends the results to all its neighbors periodically. Extensive simulation

90
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study demonstrated that MBCR scheme outperforms the fixed guard channel schemes

and other dynamic schemes in that it enables the system to automatically adjust to

the changing traffic conditions, provides same quality of service to the ongoing calls

throughout the system and simplifies the channel pre-allocation process.

In order to improve the applicability and efficiency of the MBCR schemes, the

MBCR scheme is further developed into PMBBR scheme, which uses geolocation

information in the reservation making process. Based on the history location

information, the future moving speed and direction of each user can be predicted.

These predictions are further used to refine the calculation of handcuff probabilities

and direction factors and to solve the problem of reservation timing. By taking into

account the multiple service types with different QoS requirements, a bandwidth

reconfiguration based call admission control strategy is proposed, which takes

advantage of the service priorities and the flexible QoS requirements of certain

service types. The proposed CAC scheme can be integrated with the PMBBR

scheme to maximize the efficient use of available bandwidth in next generation

wireless networks, that may support multiple classes of service with various levels of

quality ranging from strict to flexible and soft QoS requirements. The performance

analysis indicated that the integrated approach is capable of alleviating the problem

of over-reservation, supporting seamless operation throughout the wireless network

and increasing significantly the system capacity.

Most of the existing guard channel schemes use the total number of occupied

channels as the decision variable for CAC. However, they cannot prevent the potential

cell congestion, especially when users arrive in bursts as expected in current and future

wireless networks. The traffic composition analysis and the MBGR simulation study

revealed the fact that the channel holding time for handcuff calls is shorter than that

for new calls. Based on this conclusion, the New Call Bounding (NCB) scheme, which
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uses the number of admitted new calls as the decision variable for CAC, is proposed

and analyzed.

Furthermore, this dissertation investigates the role of pricing as an additional

dimension of the call admission control process in order to efficiently and effectively

control the use of wireless network resources, and proposes to integrate dynamic

pricing with CAC. It is proven that for a given wireless network there exists a new

call arrival rate which can maximize the total utility of users, while maintaining

the required QoS. Based on this result, a pricing strategy is developed, which can

dynamically adjust the price according on the current network conditions. The

proposed scheme works as a traffic shaper which implicitly implements a distributed

user-based traffic prioritization. The problem of network congestion, as well as the

achievable total user utility and obtained revenue, has been extensively studied via

simulation. The corresponding numerical results indicate that the proposed scheme

can alleviate the problem of congestion in wireless networks, while at the same time

achieves to meet the required user QoS and maximize the efficient use of channel

resources.

This integrated approach is also extended into multiple service-class network

environment. It is further proven that in a wireless network, for any traffic

composition there always exits a new call arrival rate that maximizes the total

users utility. Based on these values, the input traffic space can be divided into

Operation Space and Congestion Space. These results can provide guidelines and

insights for the development of efficient call admission control schemes, resource

allocation algorithms and pricing schemes in order to increase the total benefit of the

user community and avoid the system congestion.
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