75 research outputs found

    A note on paraconsistent entailment in machine learning

    Get PDF
    Recent publications witness that there is a growing interest in multi-valued logics for machine learning; some of them arose as a more or less formal description of a computer program's inferential behaviour. The referred origin of these systems is Belnap's fourvalued logic, which has been adopted for the various needs of knowledge representation in a machine learning system. However, it is unclear what an inconsistent knowledge base entails. We investigate Mobal's logic < and show how to interpret the term `paraconsistent inference' of this system. It turns out that the meaning of the basic connective ! of < can be represented as a combination of two systems of Kleene's strong three-valued logic, where the two systems differ in the set of designated truth values. The resulting logic is functionally complete but the entailment relation is not axiomatizable. This drawback yields a fundamental difference between nonmontonicity within belief-revision and non-monotonic reasoning systems like Servi's refinement 1 of Gabbay's

    Investigations in Belnap's Logic of Inconsistent and Unknown Information

    Get PDF
    Nuel Belnap schlug 1977 eine vierwertige Logik vor, die -- im Gegensatz zur klassischen Logik -- die Faehigkeit haben sollte, sowohl mit widerspruechlicher als auch mit fehlender Information umzugehen. Diese Logik hat jedoch den Nachteil, dass sie Saetze der Form 'wenn ..., dann ...' nicht ausdruecken kann. Ausgehend von dieser Beobachtung analysieren wir die beiden nichtklassischen Aspekte, Widerspruechlichkeit und fehlende Information, indem wir eine dreiwertige Logik entwickeln, die mit widerspruechlicher Information umgehen kann und eine Modallogik, die mit fehlender Information umgehen kann. Beide Logiken sind nicht monoton. Wir untersuchen Eigenschaften, wie z.B. Kompaktheit, Entscheidbarkeit, Deduktionstheoreme und Berechnungkomplexitaet dieser Logiken. Es stellt sich heraus, dass die dreiwertige Logik, nicht kompakt und ihre Folgerungsmenge im Allgemeinen nicht rekursiv aufzaehlbar ist. Beschraenkt man sich hingegen auf endliche Formelmengen, so ist die Folgerungsmenge rekursiv entscheidbar, liegt in der Klasse Σ2P\Sigma_2^P der polynomiellen Zeithierarchie und ist DIFFP-schwer. Wir geben ein auf semantischen Tableaux basierendes, korrektes und vollstaendiges Berechnungsverfahren fuer endliche Praemissenmengen an. Darueberhinaus untersuchen wir Abschwaechungen der Kompaktheitseigenschaft. Die nichtmonotone auf S5-Modellen basierende Modallogik stellt sich als nicht minder komplex heraus. Auch hier untersuchen wir eine sinnvolle Abschwaechung der Kompaktheitseigenschaft. Desweiteren studieren wir den Zusammenhang zu anderen nichtmonotonen Modallogiken wie Moores autoepistemischer Logik (AEL) und McDermotts NML-2. Wir zeigen, dass unsere Logik zwischen AEL und NML-2 liegt. Schliesslich koppeln wir die entworfene Modallogik mit der dreiwertigen Logik. Die dabei enstehende Logik MKT ist eine Erweiterung des nichtmonotonen Fragments von Belnaps Logik. Wir schliessen unsere Betrachtungen mit einem Vergleich von MKT und verschiedenen informationstheoretischen Logiken, wie z.B. Nelsons N und Heytings intuitionistischer Logik ab

    Simultaneous Replacement in Normal Programs

    Get PDF
    The simultaneous replacement transformation operation is here defined and studied w.r.t. normal programs. We give applicability conditions able to ensure the correctness of the operation w.r.t. the set of logical consequences of the completed database. We consider separately the cases in which the underlying language is infinite and finite; in this latter case we also distinguish according to the kind of domain closure axioms adopted. As corollaries we obtain results for Fitting's and Kunen's semantics. We also show how simultaneous replacement can mimic other transformation operations such as thinning, fattening and folding, thus producing applicability conditions for them too

    Realizability and recursive mathematics

    Get PDF
    Section 1: Philosophy, logic and constructivityPhilosophy, formal logic and the theory of computation all bear on problems in the foundations of constructive mathematics. There are few places where these, often competing, disciplines converge more neatly than in the theory of realizability structures. Uealizability applies recursion-theoretic concepts to give interpretations of constructivism along lines suggested originally by Heyting and Kleene. The research reported in the dissertation revives the original insights of Kleene—by which realizability structures are viewed as models rather than proof-theoretic interpretations—to solve a major problem of classification and to draw mathematical consequences from its solution.Section 2: Intuitionism and recursion: the problem of classificationThe internal structure of constructivism presents an interesting problem. Mathematically, it is a problem of classification; for philosophy, it is one of conceptual organization. Within the past seventy years, constructive mathematics has grown into a jungle of fullydeveloped "constructivities," approaches to the mathematics of the calculable which range from strict finitism through hyperarithmetic model theory. The problem we address is taxonomic: to sort through the jungle, set standards for classification and determine those features which run through everything that is properly "constructive."There are two notable approaches to constructivity; these must appear prominently in any proposed classification. The most famous is Brouwer's intuitioniam. Intuitionism relies on a complete constructivization of the basic mathematical objects and logical operations. The other is classical recursive mathematics, as represented by the work of Dekker, Myhill, and Nerode. Classical constructivists use standard logic in a mathematical universe restricted to coded objects and recursive operations.The theorems of the dissertation give a precise answer to the classification problem for intuitionism and classical constructivism. Between these realms arc connected semantically through a model of intuitionistic set theory. The intuitionistic set theory IZF encompasses all of the intuitionistic mathematics that does not involve choice sequences. (This includes all the work of the Bishop school.) IZF has as a model a recursion-theoretic structure, V(A7), based on Kleene realizability. Since realizability takes set variables to range over "effective" objects, large parts of classical constructivism appear over the model as inter¬ preted subsystems of intuitionistic set theory. For example, the entire first-order classical theory of recursive cardinals and ordinals comes out as an intuitionistic theory of cardinals and ordinals under realizability. In brief, we prove that a satisfactory partial solution to the classification problem exists; theories in classical recursive constructivism are identical, under a natural interpretation, to intuitionistic theories. The interpretation is especially satisfactory because it is not a Godel-style translation; the interpretation can be developed so that it leaves the classical logical forms unchanged.Section 3: Mathematical applications of the translation:The solution to the classification problem is a bridge capable of carrying two-way mathematical traffic. In one direction, an identification of classical constructivism with intuitionism yields a certain elimination of recursion theory from the standard mathematical theory of effective structures, leaving pure set theory and a bit of model theory. Not only are the theorems of classical effective mathematics faithfully represented in intuitionistic set theory, but also the arguments that provide proofs of those theorems. Via realizability, one can find set-theoretic proofs of many effective results, and the set-theoretic proofs are often more straightforward than their recursion-theoretic counterparts. The new proofs are also more transparent, because they involve, rather than recursion theory plus set theory, at most the set-theoretic "axioms" of effective mathematics.Working the other way, many of the negative ("cannot be obtained recursively") results of classical constructivism carry over immediately into strong independence results from intuitionism. The theorems of Kalantari and Retzlaff on effective topology, for instance, turn into independence proofs concerning the structure of the usual topology on the intuitionistic reals.The realizability methods that shed so much light over recursive set theory can be applied to "recursive theories" generally. We devote a chapter to verifying that the realizability techniques can be used to good effect in the semantical foundations of computer science. The classical theory of effectively given computational domains a la Scott can be subsumed into the Kleene realizability universe as a species of countable noneffective domains. In this way, the theory of effective domains becomes a chapter (under interpre¬ tation) in an intuitionistic study of denotational semantics. We then show how the "extra information" captured in the logical signs under realizability can be used to give proofs of classical theorems about effective domains.Section 4: Solutions to metamathematical problems:The realizability model for set theory is very tractible; in many ways, it resembles a Boolean-valued universe. The tractibility is apparent in the solutions it offers to a number of open problems in the metamathematics of constructivity. First, there is the perennial problem of finding and delimiting in the wide constructive universe those features that correspond to structures familiar from classical mathematics. In the realizability model, it is easy to locate the collection of classical ordinals and to show that they form, intuitionistically, a set rather than a proper class. Also, one interprets an argument of Dekker and Myhill to prove that the classical powerset of the natural numbers contains at least continuum-many distinct cardinals.Second, a major tenet of Bishop's program for constructivity has been that constructive mathematics is "numerical:" all the properties of constructive objects, including the real numbers, can be represented as properties of the natural numbers. The realizability model shows that Bishop's numericalization of mathematics can, in principle, be accomplished. Every set over the model with decidable equality and every metric space is enumerated by a collection of natural numbers

    Power constructs and propositional systems

    Get PDF
    Bibliography : p. 161-176.Propositional systems are deductively closed sets of sentences phrased in the language of some propositional logic. The set of systems of a given logic is turned into an algebra by endowing it with a number of operations, and into a relational structure by endowing it with a number of relations. Certain operations and relations on systems arise from some corresponding base operation or relation, either on sentences in the logic or on propositional valuations. These operations and relations on systems are called power constructs. The aim of this thesis is to investigate the use of power constructs in propositional systems. Some operations and relations on systems that arise as power constructs include the Tarskian addition and product operations, the contraction and revision operations of theory change, certain multiple- conclusion consequence relations, and certain relations of verisimilitude and simulation. The logical framework for this investigation is provided by the definition and comparison of a number of multiple-conclusion logics, including a paraconsistent three-valued logic of partial knowledge

    Belnap's epistemic states and negation-as-failure

    Get PDF
    Generalizing Belnap's system of epistemic states [Bel77] we obtain the system of disjunctive factbases which is the paradigm for all other kinds of disjunctive knowledge bases. Disjunctive factbases capture the nonmonotonic reasoning based on paraminimal models. In the schema of a disjunctive factbase, certain predicates of the resp. domain are declared to be exact, i.e. two-valued, and in turn some of these exact predicates are declared to be subject to the Closed-World Assumption (CWA). Thus, we distinguish between three kinds of predicates: inexact predicates, exact predicates subject to the CWA, and exact predicates not subject to the CWA

    Programming in three-valued logic

    Get PDF
    AbstractThe aim of this paper is to propose a logical and algebraic theory which seems well-suited to logic programs with negation and deductive databases. This theory has similar properties to those of Prolog theory limited to programs with Horn clauses and thus can be considered as an extension of the usual theory. This parallel with logic programming without negation lies in the introduction of a third truth value (Indefinite) and of a new non-monotonic implication connective. Our proposition is different from the other ways of introducing a third truth value already used in Logic Programming and databases but it is somehow related to some of them, especially to Fitting's theory. We introduce a “consequence” operator associated with a logic program with negation which extends the operator of Apt and Van Emden. In the case of a consistent program, the post-fixpoints of this operator are the models of the program as they are usually. This operator is related to Fitting's one, the relation being obtained by completing the program. We finally give an operational semantics for a program with negation by the obtention of a three-valued interpreter from a bivalued one

    The logic of preference and decision supporting systems

    Get PDF
    In this thesis we are exploring some models for von Wright's preference logic. Given (initial) set of axioms and a set of formulae, some of them valid, some of them problematic (in the sense that it is not always intuitively clear should they be valid or not), we investigated some matrix semantics for those formulae including semantics in relevance logics (first degree entailment and RM3), various many--valued (Kleene's, {\L}ukasiewicz's, \dots) and/or paraconsistent logics, in Sugihara matrix, and one interpretation for preference relation using modal operators L and M. In each case, we also investigated dependence results between various formulae. Opposite problem (i.e.\ searching for a logic that satisfies given constraints) is also addressed. At the end, a {\tt LISP} program is presented that implements von Wright's logic as a decision supporting system, i.e.\ that decides for a given set of preferences, what alternatives (world--situation) should we choose, according to von Wright's preference logic system

    Non-classical modal logic for belief

    Get PDF
    corecore