
Belnap's Epistemic States and Negation-as-Failure�

Gerd Wagner

Institut f�ur Informatik, Universit�at Leipzig y

Abstract

Generalizing Belnap's system of epistemic states [Bel77] we obtain the system of dis-
junctive factbases which is the paradigm for all other kinds of disjunctive knowledge bases.
Disjunctive factbases capture the nonmonotonic reasoning based on paraminimal models.
In the schema of a disjunctive factbase, certain predicates of the resp. domain are declared
to be exact, i.e. two-valued, and in turn some of these exact predicates are declared to be
subject to the Closed-World Assumption (CWA). Thus, we distinguish between three kinds
of predicates: inexact predicates, exact predicates subject to the CWA, and exact predicates
not subject to the CWA.

Contents

1 Introduction 2

1.1 Preliminaries : 4

1.2 Partial Logics with Two Kinds of Negation : 4

2 Knowledge Systems 6

2.1 Regular Knowledge Systems : 9

2.2 Formal Properties of Knowledge Systems : 11

2.2.1 Basic Properties of Inference and Update : : : : : : : : : : : : : : : : : : 11

2.2.2 Nonmonotonicity : 12

2.3 Vivid Knowledge Systems : 13

2.4 A Further Example: Deductive Factbases : 14

3 Belnap's Epistemic States 16

3.1 Formalization : 16

3.2 Relation to Standard Logics : 19

3.3 Problems with Belnap's KS : 20

3.3.1 No Unique Representation : 20

3.3.2 No Disjunctive Syllogism : 20

3.3.3 No Input Completeness : 20

4 Disjunctive Factbases 21

�To appear in H. Wansing (Ed.), Negation { A Notion in Focus, de Gruyter, 1996.
yE-Mail: gw@inf.fu-berlin.de

1

5 Exact Predicates and the Closed-World Assumption 23

6 Reasoning with Three Kinds of Predicates 25

7 A General Construction of Disjunctive Knowledge Systems 26

8 A Case Study: Disjunctive Deductive Factbases 27

9 Conclusion 28

1 Introduction

In this paper, we shall address issues of disjunctive information processing, resp. disjunctive

knowledge representation and reasoning, such as the interplay between disjunctive and negative

information (concerning explicit negative information, negation-as-failure and the Closed-World

Assumption), and the notion of inclusive versus exclusive disjunctive information. These issues

have �rst been discussed in the �eld of disjunctive logic programming (see, e.g. [Min82, RT88,

Sak89, GL91, LMR92]). However, there is no generally acknowledged semantics for disjunctive

logic programs, and many proposals are not based on clear logical principles but seem to be

rather ad-hoc. It appears that the non-rule-related issues of disjunctive information processing

are complicated by the presence of deduction rules, and a semantical account for the interplay

between disjunctive, negative and deductive knowledge is hard to �nd. Therefore, we believe it

is methodologically preferable to settle these issues in a simpler framework without rules, and

this is the approach taken here.

The concept of a knowledge representation and reasoning system, or shorter: knowledge

system (KS), consists essentially of two main components: an inference and an update operation

manipulating knowledge bases as abstract objects,1 together with a set of formal properties these

operations may have. In general, there are no speci�c restrictions on the internal structure of a

knowledge base. It appears, however, that a computational design can be achieved by `compiling'

incoming information into some normal form rather than leaving it in the form of arbitrarily

complex formulas. This is the case, for instance, in Belnap's KS which can be considered as a

paradigm for knowledge systems.

The concept of a KS constitutes a useful framework for the classi�cation and comparison

of various computational systems and formalisms like, e.g., relational and deductive databases,

logic programs and other rule-based systems. It is more general than that of a logic (i.e. a

consequence relation). A standard logic can be viewed as a special kind of KS. On the other

hand, by de�ning the inference and update operations procedurally, KSs can serve as the basis for

the operational de�nition of logics. For instance, by appropriate settings of certain `parameters'

in the system of disjunctive factbases one can obtain three-valued and classical logic, in addition

to Belnap's four-valued logic.

In knowledge representation, two di�erent notions of falsity arise in a natural way. Certain

facts are implicitly false by default by being not veri�ed in any intended model of the knowledge

base. Others are explicitly false by virtue of a direct proof of their falsity, corresponding to

their falsi�cation in all intended models. These two kinds of falsity in knowledge representation

are captured by the two negations, called weak and strong, of partial logic. In the monotonic

1This distinction was already proposed in [Lev84] where the resp. operations were called ASK and TELL.

2

base system of partial logic, weak negation corresponds to classical negation by virtue of a

straightforward translation of partial logic into classical logic which is discussed in [HJW96].

In the nonmonotonic re�nements of partial logic based on (para-)minimal and stable reasoning,

weak negation corresponds to negation-as-failure, and hence can be used to express local Closed-

World Assumptions, default rules, and the like.

Both relational and deductive database systems can be considered as computational paradigms

of real world knowledge systems. They implement a form of nonmonotonic reasoning caused

by the use of negation-as-failure refering to default-implicit negative information. On the other

hand, relational and deductive databases, as well as normal logic programs, are not capable

of representing and processing explicit negative information. This shortcoming has led to the

extension of logic programming by adding a second negation (in addition to negation-as-failure)

as proposed independently in [GL90, GL91] and in [PW90, Wag91]. We call the general concept

of an operator expressing default-implicit negative information in the style of negation-as-failure

weak negation, and denote it by `�', while the concept of an operator expressing explicit negative
information will be called strong negation, denoted by `�'. Our concept of a vivid knowledge

system (VKS) is a two-fold generalization:

1. it extends already known logics, such as Belnap's 4-valued or Nelson's constructive logic,2

by adding weak negation, and

2. it extends already known knowledge systems, such as relational or deductive database

systems, by adding strong negation.

In the framework of a VKS, a speci�c meaning is assigned to the Closed-World Assumption: if

the Closed-World Assumption holds for a predicate, its weak negation implies its strong negation,

in other words, an atomic sentence formed with such a predicate is already false if it is false by

default.

In real world knowledge bases like, for instance, relational or deductive databases, it is

essential to be able to infer negative information by means of minimal (resp. stable) reasoning,

i.e. drawing inferences on the basis of minimal (resp. stable) models. Relational databases, being

�nite sets of tables the rows of which represent atomic sentences, have traditionally been viewed

as �nite models. On this account, answering a query F is rather based on the model relation,

M� j= F , whereM� is the �nite interpretation corresponding to the database �, and not on an

inference relation. However, especially with respect to the generalization of relational databases

(e.g. in order to allow for incomplete information), it seems to be more adequate to regard a

relational database as a set of atomic sentences A�, and to infer a query F whenever it holds

in the unique minimal model of A�, i.e.

A� ` F :, Min(Mod(A�)) � Mod(F),M� j= F

While minimal models are adequate for de�nite extensional knowledge bases (such as factbases),

a re�nement of the notion of minimality, called paraminimality, is needed to capture the inclu-

siveness of disjunctive knowledge.

2See [Bel77], resp. [AN84].

3

1.1 Preliminaries

A signature � = hRel ;ExRel ;Consti consists of a set of relation symbols Rel, a set ExRel � Rel

of exact relation symbols, and a set of constant symbols Const.3

We consider the following logical functors: conjunction (^), disjunction (_), strong negation
(�), weak negation (alias negation-as-failure, denoted by �), exclusive disjunction (j), and
the truth constant 1; relation symbols are denoted by p; q; r; : : :; constant symbols by c; d; : : :;

and variables by x; y; : : :. Quanti�ers, 9 and 8, are only incidentally considered. If F is a

set of logical functors, L(�;F) denotes the corresponding set of wellformed formulas. L(�) =

L(�; �;�;^; j;_) is the smallest set containing the atomic formulas of �, and being closed with

respect to the following condition: if F;G 2 L(�), then f�F; �F ; F ^G; F _G; F jGg � L(�).

With respect to a signature � we de�ne the following sublanguages: At(�) = L(�; ;), the
set of all atomic sentences (also called atoms); Lit(�) = L(�; �), the set of all literals; and

XLit(�) = Lit(�)[f�l : l 2 Lit(�)g, the set of all extended literals. We shall frequently omit the

reference to a speci�c signature, and simply write L instead of L(�). We introduce the following

convention: when L is a set of sentences, Lx denotes the corresponding set of formulas.

An atom a 2 At is called proper, if a 6= 1. We use a; b; : : :, l; k; : : :, e; f; : : :, and F;G;H; : : :

as metavariables for atoms, literals, extended literals and well-formed formulas, respectively.

With each negation a complement operation for the resp. type of literal is associated: ~a = �a
and g�a = a, l = �l and �l = l. These complements are also de�ned for sets of resp. literals

L � Lit, and E � XLit: eL = f~l : l 2 Lg, resp. E = fe : e 2 Eg. We distinguish between the

positive and negative elements of E � XLit by writing E+ := E \ Lit and E� := fl : �l 2 Eg.
If X is a set of sets, then Fin(X) denotes its restriction to �nite elements. If Y is an ordered

set, then Min(Y) denotes the set of all minimal elements of Y , i.e. Min(Y) = fX 2 Y j :9X 0 2
Y : X 0 < Xg

Let L � L(�) be a nonempty language. An operation C : 2L ! 2L is called an inference

operation. The corresponding inference relation ` is de�ned by X ` F i� F 2 C(X). An

inference operation (relation) is called a consequence operation (relation) if it satis�es Inclusion

(Re
exivity), Idempotence (Transitivity), and Monotony.

A model-theoretic system hL; I ; j=i is determined by a language L, a set I whose elements are
called interpretations and amodel relation j=� I�L between interpretations and formulas. With

every model-theoretic system hL; I ; j=i, we can associate a model operator ModI, a consequence

operation CI, and a consequence relation j=I in the following way. Let X � L, then the

associated model operator is de�ned as ModI(X) = fI 2 I : I j= Xg, where I j= X i� for

every F 2 X : I j= F . The associated consequence operation is de�ned by CI(X) = fF 2 L :

ModI(X) � ModI(F)g, and �nally X j=I F i� F 2 CI(X).

An inference operation C is called correct, resp. complete, with respect to the model-theoretic

system hL; I ; j=i i� C(X) � CI(X), resp. C(X) = CI(X).

1.2 Partial Logics with Two Kinds of Negation

De�nition 1 (Interpretation) Let � = hRel ;ExRel ;Consti be a signature. A partial Her-

brand �-interpretation I consists of:

3For the sake of simplicity we shall not consider functional terms but only variables and constants; therefore,

we de�ne signatures without function symbols leading to a �nite Herbrand universe.

4

1. A set U , the universe or domain of I which is equal to the set of constant symbols, U =

Const ;

2. an assignment cI = c to every constant symbol c 2 Const;

3. an assignment of a pair hrI ; ~rIi to every relation symbol r 2 Rel such that

rI [~rI � Ua(r);

and in the special case of an exact relation symbol r 2 ExRel ,

rI [~rI = Ua(r);

where a(r) denotes the arity of r.

In the sequel we shall also simply say 'interpretation' instead of 'partial Herbrand interpretation'.

The class of all partial Herbrand �-interpretations is denoted by I4(�). We de�ne the classes

of coherent, of total, and of total coherent (or 2-valued) interpretations by

Ic(�) = fI 2 I4(�) : r
I \ ~rI = ; for all r 2 Relg

It(�) = fI 2 I4(�) : r
I [~rI = Ua(r) for all r 2 Relg

I2(�) = Ic(�) \ It(�)

The model relation j=� I4(�)�L(�; �;�;^;_; j;9;8) between an interpretation and a sentence

is de�ned inductively as follows.

De�nition 2 (Model Relation) 1. I j= r(c1; : : : ; cm) i� hc1; : : : ; cmi 2 r
I.

I j= �r(c1; : : : ; cm) i� hc1; : : : ; cmi 2 ~rI.

2. I j= F ^G i� I j= F and I j= G.

3. I j= F _G i� I j= F or I j= G.

4. I j= 9xF (x) i� I j= F (c) for some c 2 Const.

5. I j= 8xF (x) i� I j= F (c) for all c 2 Const.

6. I j= �F i� I 6j= F .

All other cases of compound formulas are handled by the following DeMorgan-style rewrite rules:

� (F ^G) �! �F _ �G � (F _G) �! �F ^ �G
� 9xF (x) �! 8x�F (x) � 8xF (x) �! 9x�F (x)
��F �! F � �F �! F

and the de�nition for exclusive disjunction:

F jG �! (F ^ �G) _ (G ^ �F)

in the sense that for every rewrite rule LHS �! RHS , we de�ne I j= LHS i� I j= RHS .

Mod� denotes the model operator associated with the system hL(�); I�; j=i, and j=� denotes
the resp. consequence relation, for � = 4; c; t; 2, i.e.

X j=� F i� Mod�(X) � Mod�(F)

5

De�nition 3 (Diagram) The diagram of I 2 I4(�) is de�ned as DI = fl 2 Lit(�) : I j= lg.

Observation 1 Partial Herbrand interpretations can be identi�ed with their diagrams, i.e.

there is a one-to-one correspondence between I4(�) and 2Lit(�).

De�nition 4 (Extension) Let I and I 0 be two interpretations. We say that I 0 extends I,
symbolically I � I 0, if DI � DI0 .

De�nition 5 (Minimal Models) For F 2 L(�) � X, and � = 4; c, we de�ne Modm� (X) =

Min(Mod�(X)), and X j=m
� F i� Modm� (X) � Mod�(F).

Observation 2 An interpretation is the unique minimal model of its diagram: for � = 4; c,

and for every I 2 I�(�), Modm� (DI) = fIg, and consequently, I j= F i� DI j=
m
� F .

Formulas of partial logic (with two kinds of negation) can be normalized in the same manner as

those of classical logic. For this purpose, we introduce DNS(F), the disjunctive normal set of a

formula F , which is de�ned as follows:

DNS(1) = f;g
DNS(e) = ffegg
DNS(F ^G) = fE [D : E 2 DNS(F); D 2 DNS(G)g
DNS(F _G) = DNS(F) [DNS(G)

All other cases of compound formulas can be handled by the above and the following DeMorgan-

style rewrite rules:

�(F _G) �! �F ^ �G �(F ^G) �! �F _ �G
��(F _G) �! ��F _ ��G ��(F ^G) �! ��F ^ ��G
���F �! �F �� F �! F

���F �! �F

The disjunctive normal form of a formula G 2 L(�;�;^;_) is obtained as

DNF(G) =
_

E2DNS(G)

^
E

Observation 3 Let F 2 L(�;^;_). Then,

1. Modm4 (F) � DNS(F).

2. DNS(F) � Mod4(F).

2 Knowledge Systems

Before presenting the formal de�nitions, we start with a semi-formal discusssion of the basic con-

cepts to be introduced, notably: knowledge base, query, inference, answer, information ordering,

input and update.

In general, a knowledge base (KB) can consist of any kind of data structures capable of

representing knowledge, e.g. a set, or multiset, or sequence, of (logical) expressions, or a directed

6

graph, etc. For the sake of simplicity, we shall assume that a KB is a set of expressions from

a representation language. Only certain formulas may make sense for representing knowledge,

that is, there will be a speci�c representation language LRepr, and a KB will be a (usually �nite)

collection of elements of LRepr, possibly constrained in some way determined by the set LKB of

all admissible KBs: KB 2 LKB � 2LRepr . Likewise, since not every formula may be appropriate

as a sensible query, the set of admissible queries is speci�ed by LQuery.

The basic scenario of a knowledge system (KS) consists of two operations: an inference

operation processing queries posed to the KB, and an update operation processing inputs entered

by users or by other (e.g. sensoric) information suppliers. A KS restricts the admissible inputs

to elements of a speci�c input language LInput, and an update is performed by processing the

input formula in an appropriate way in order to assimilate its information content into the KB.

Since it appears reasonable to require that any information entered to a KB can be queried

afterwards, we shall assume that LInput � LQuery.

De�nition 6 (Knowledge System) An abstract knowledge system K is a quintuple:4

K = hLKB; `; LQuery; Upd; LInput i

where the inference relation ` � LKB�LQuery, together with the update operation Upd : LKB �
LInput ! LKB, satisfy for any X 2 LKB,

(KS1) X ` 1, and Upd(X; 1) = X.

(KS2) LInput � LQuery.

(KS3) Upd(X;F) ` F , for any F 2 LInput which is consistent with X.5

If elements of LKB are �nite sets (resp. structures), K is called �nitary. In the sequel, we shall

sometimes simply write `KB' in formal expressions standing for an arbitrary knowledge base

X 2 LKB. An inference operation C is de�ned as usual:

C(KB) = fF 2 LQuery : KB ` Fg

Also, an answer operation taking a knowledge base and an open query formula, and providing

the corresponding set of valid answers, can be de�ned in terms of the inference relation.

De�nition 7 (Answer Operation) If KB is de�nite,6 an answer to an open query formula

F (x) is a tuple, and the set of all answers is a relation:

Ans(KB; F (x)) = ft : KB ` F (t)g

4The formulation of a KS in terms of query and input processing was already implicitly present in Belnap's

[1977] view of a KS. In [Lev84] it was proposed as a `functional approach to knowledge representation'. In [Wag94]

the concept of knowledge systems was further extended and used as an integrating framework for knowledge

representation and logic programming.
5According to some notion of consistency associated with the abstract knowledge system. E.g., one might

want to exclude contradictory pieces of information from this re
exivity principle: Upd(f�pg; p) 6` p. We shall

not discuss this issue in the present paper, however.
6KB is called de�nite if KB ` F _G implies that either KB ` F , or KB ` G, where ` is a constructive inference

relation (see below).

7

where x is a variable (tuple) and t a constant (tuple). In general, however, an answer may

be inde�nite, i.e. a minimal set of possible answer substitutions corresponding to a minimal

disjunctive consequence:

Ans(KB; F (x)) = Min(fT : KB `
_
fF (t) : t 2 Tgg)

Not all open query formulas can be answered sensibly. We therefore require that queries are

evaluable.7 Answers to evaluable queries on the basis of de�nite KBs may be computed by

means of relational algebra operations, such as projection, selection, set di�erence, union, and

join. For instance,

Ans(KB; F (x; y) ^G(y; z)) = Ans(KB; F (x; y)) 1 Ans(KB; G(y; z))

In many cases, it is useful to be able to update by a set of inputs and we `overload' the symbol

Upd to denote also this more general update operation

Upd : LKB � 2LInput ! LKB

which has to be de�ned in such a way that for any �niteA � LInput, Upd(KB; A) = Upd(KB;
V
A).

We sometimes write KB+F as an abbreviation of Upd(KB; F), resp. KB�F as an abbreviation

of Upd(KB;�F).

Example 1 (Factbases) A KB consisting of ground literals (viewed as positive and negative

facts) is called a factbase. For instance, the factbase

X1 = fr(S); r(P); s(S);�s(L);�s(T); m(P;L); m(T; S)g

may represent the information that Susan and Peter are residents, Susan is a smoker, Linda

and Tom are nonsmokers, Peter is married with Linda, and Tom is married with Susan.

As a kind of natural deduction from positive and negative facts an inference relation ` between
a factbase X � Lit and a sentence is de�ned in the following way:8

(` a) X ` a if a 2 X
(` �a) X ` �a if �a 2 X
(` �l) X ` �l if l 62 X
(` ^) X ` F ^G if X ` F & X ` G
(` _) X ` F _G if X ` F or X ` G
(` j) X ` F jG if X ` F ^�G or X ` G ^�F
(` 9) X ` 9xF (x) if X ` F (c) for some constant c

For instance, one might ask X1 \who is married with a non-resident ?",

Ans(X1; 9y[m(x; y) ^ �r(y)]) = fhP ig

answered by \Peter", or \who is married with a nonsmoker ?",

Ans(X1; 9y[m(x; y) ^ �s(y)]) = fhP ig

7See [vGT91] for the notion of evaluable, resp. domain-independent, formulas.
8This inductive de�nition is completed by the DeMorgan-style rewrite rules listed in section 1.2.

8

also answered by \Peter". The only updates we consider are insertions, Upd(X; l) := X [flg,
of literals. For K � Lit, we have Upd(X;K) = X [K. The knowledge system of factbases is

then de�ned as

F := h 2Lit; `; L(�;�;^;_; j;9); Upd; Lit i

The restricted system where weak negation and exclusive disjunction are excluded from the query

language, LQuery = L(�;^;_), is denoted by F+.

It is easy to check that KS1, KS2 and KS3 hold.

Observation 4 The inference relation of F captures model-based reasoning, resp. minimal

reasoning on the basis of de�nite knowledge, in partial logic. Every factbase corresponds to the

diagram of a partial Herbrand model, and for every F 2 L(�;�;^;_; j;9) and every I 2 I4, it
holds that DI ` F i� I j= F , and consequently, for every X � Lit,

X ` F i� X j=m
4 F

where j=m
4 denotes entailment based on 4-valued minimal models (see de�nition 5).

Whenever we deal with both kinds of negation, the strong negation � is the principal negation

operator (expressing explicit falsity), and the weak negation � is an auxiliary negation operator

(used, e.g., to express the CWA, see below). Sometimes we shall also make use of the symbol

: standing either for classical negation (which di�ers from both � and �), or for an arbitrary

negation.

2.1 Regular Knowledge Systems

In order to compare knowledge bases in terms of their information content we assume that there

is an information, or knowledge ordering � between KBs such that

KB1 � KB2 if KB2 contains at least as much information as KB1.

The information ordering should be de�ned in terms of the structural components of knowledge

bases and not in terms of higher-level notions (like derivability).9 The informationally empty

KB will be denoted by 0. By de�nition, 0 � X for all X 2 LKB, i.e. 0 is the least element of

hLKB;�i.
In general, more information does not mean more consequences. In other words: answers

are not necessarily preserved under growth of information. Queries, for which this is the case,

are called persistent.

De�nition 8 (Persistent Queries) A closed, resp. open, query formula F is called persis-

tent if 8X1;X2 2 LKB : X1 ` F) X2 ` F , resp. Ans(X1; F) � Ans(X2; F), whenever

X1 � X2. If all F 2 LQuery are persistent, the KS and its inference relation ` are called per-

sistent. The set of all persistent query formulas is denoted by LPersQ. An operator of the query

language is called persistent, if every query formed with it and with persistent subformulas is

again persistent.

9The usual way to compare the information content of two KBs in standard logic, namely by means of checking

the inclusion of consequences: KB1 � KB2 if C(KB1) � C(KB2), does not work in a nonmonotonic setting.

9

De�nition 9 (Ampliative Inputs) An input formula F is called (i) ampliative10 if KB �
Upd(KB; F), or (ii) reductive if KB � Upd(KB; F). A KS and its update operation Upd are

called ampliative, if all inputs F 2 LInput are ampliative. The set of all ampliative input formulas

is denoted by LAmpI.

A certain subset LUnit � LInput designates those elementary expressions which will be called

information units, e.g. atoms, literals, or weighted (resp. labelled, or annotated) atoms, and

the like. An information unit represents an elementary piece of information with a positive

information content. A knowledge base may contain contradictory pieces of information, and we

assume that all inconsistent information units contained in X 2 LKB are collected by Inc(X) �
LUnit.

De�nition 10 (Regular KS) A knowledge system K is called regular, if there is a preorder

hLKB;�; 0i with least element 0, a designated set LUnit � LInput, and an operation Inc : LKB !
2LUnit, such that

(KS4) Unit inputs increase the information content (at least if they are consistent): X � X + u,

for any X 2 LKB, and for any u 2 LUnit, such that u 62 Inc(X), and Inc(X+u) � Inc(X).

(KS5) The information ordering is compatible with ampliative update and persistent inference:

for all X1;X2 2 LKB,

X1 � X2 i� 8F 2 LAmpI8G 2 LPersQ : X1 + F ` G) X2 + F ` G

(KS6) Ampliative inputs are persistent queries: LAmpI = LPersQ \ LInput.

(KS7) Consistent Inference: for any X 2 LKB, and any F 2 LInput, X ` F implies Inc(X+F) �
Inc(X).

A regular KS will be represented as a 9-tuple

h 0; �; LKB; `; LQuery; Upd; LInput; Inc; LUnit i

De�nition 11 (Consistency)

1. KB is called consistent, if Inc(KB) = ;.

2. F 2 LInput is called consistent, if Inc(0 + F) = ;.

3. F 2 LInput is called consistent within X 2 LKB, if

(a) F is consistent, and

(b) Inc(X + F) � Inc(X) (requiring that F does not increase the inconsistency of X),

and

(c) for every u 2 Inc(X), 0 + F � u ` F (requiring that the information of F is not

already inconsistent in X).

10The name is adopted from [Bel77].

10

Example 2 (Standard Logics) A standard logic (such as classical, or intuitionistic, logic),

given by a language L and a consequence relation `� 2L � L, resp. by the corrresponding

consequence operation C, can be viewed as an in�nitary knowledge system

h ;; �; fX 2 2L : X = C(X)g; `; L; Upd; L; Inc; L i

where 1) a KB is a deductively closed set of formulas, 2) the knowledge ordering is set inclusion,

3) update by F is the addition of F and subsequent closure, i.e. Upd(X;F) = C(X [fFg),11

4) the query, unit and input languages are all equal to L, and 5) Inc(X) = ; if X 6= L, and

Inc(X) = X otherwise. KS1{KS7 hold, more or less, trivially. Notice, however, that it is not

clear whether a standard logic corresponds to a sensible �nitary knowledge system, because set

inclusion is no longer an adequate knowledge ordering if KBs are not deductively closed (KS5 is

violated).

Example 3 (Factbases) The knowledge system of factbases is also regular:

F := h ;; �; 2Lit; `; L(�;�;^;_; j;9); Upd; Lit; Inc; Lit i

where Inc(X) = X \ eX . We have to show that KS4{KS6 hold. Proof: it is obvious that KS4

holds. Since LAmpI = Lit, and LPersQ = L(�;^;_), KS5 follows by straightforward induction

on the complexity of queries (it corresponds to the permanence principle of partial logic). KS6

and KS7 are again obvious. 2

2.2 Formal Properties of Knowledge Systems

2.2.1 Basic Properties of Inference and Update

De�nition 12 (Constructive Inference) Let L � Lit be an arbitrary set of literals, and

dLe := Upd(0; L). Then ` is called constructive if it satis�es (i) constructible truth, and (ii)

constructible falsity, i.e. both of the following conditions: for any F;G 2 LQuery: (i) dLe ` F _G
implies dLe ` F or dLe ` G; (ii) dLe ` � (F ^G) implies dLe ` �F or dLe ` �G.

The property of constructive inference guarantees that, on the basis of de�nite knowledge, query

formulas are decomposable. Obviously, the �rst condition (of constructible truth) excludes the

possibility of certain disjunctive tautologies such as the classical tertium non datur, whereas its

negative counterpart excludes, for instance, the dual principle of contradiction.

The next property (due to Urbas [Urb90]) excludes the possibility of trivial inferences, i.e.

non-tautological inferences which are solely based on the form of a KB and a query and not on

their content. For example, fs(L);�s(L)g ` m(P; S) is such a trivial inference which is valid in

classical logic, i.e. from contradictory information on Linda being a smoker, we may infer that

Peter is married with Susan, and thus we would get (in�nitely many) unsensible answers to any

query. This is clearly undesirable in a knowledge system.

De�nition 13 (Tautology) F 2 LQuery is called a tautology in a knowledge system, if

X ` F for all X 2 LKB.

11Notice that this corresponds to the AGM expansion of `belief sets', see [G�ar88].

11

De�nition 14 (Non-Explosive Inference) An inference relation ` is called non-explosive

if for every non-tautology F 2 LQuery, and for every knowledge base X > 0, there is a variant

F 0 of F (obtained by uniform substitution of propositional constituents) such that X 6` F 0.

While most standard logics allow for trivial inferences, their positive fragments and certain

paraconsistent logics, such as Belnap's [Bel77] four-valued, or Nelson's [AN84] paraconsistent

constructive logic, are non-explosive.

The following important property guarantees the freedom of knowledge base evolution.

De�nition 15 (Input Completeness) A KS is called input complete if

8X1;X2 2 LKB 9A � LInput : X2 = Upd(X1; A)

Observation 5 A KS is input complete i� KBs are both input constructible and input de-

structible, i.e. both of the following conditions hold:

(i) 8X 2 LKB 9A � LInput : X = Upd(0; A)

(ii) 8X 2 LKB 9A � LInput : Upd(X;A) = 0

Further formal properties of knowledge systems are discussed in [Wag94b].

2.2.2 Nonmonotonicity

The following de�nition captures the idea that a system is considered monotonic if all conse-

quences of a KB are preserved after it is updated by some new piece of information.

De�nition 16 (Monotonicity) A KS is called monotonic if for all X 2 LKB, and all F 2
LInput, we have C(X) � C(Upd(X;F)).

Though fundamental in the theory of consequence operations due to Tarski, this is too strong a

requirement for knowledge systems in general.

There are two `parameters' on which Monotonicity depends: the update operation may be

ampliative or not, and the inference relation may be persistent or not.

Observation 6 A KS is monotonic if it is ampliative and persistent.12

Proof: For any X 2 LKB, and any F 2 LInput, we get X � Upd(X;F) by Ampliative Update,

and consequently C(X) � C(Upd(X;F)), by Persistent Inference. 2

Practical systems will be nonmonotonic since they will allow for non-persistent queries (by

means of negation-as-failure) and for non-ampliative updates (by means of deletion, resp. con-

traction).

12Or, rather exotically, if all inputs are reductive and all queries are `antipersistent', i.e. preserved under

information decrease. It is still an open problem, whether { or under which conditions { the converse holds.

12

2.3 Vivid Knowledge Systems

The idea of vividness as a design principle for knowledge systems was �rst proposed by Levesque

in [Lev86]. However, while for Levesque the main issue was to have complete information, we

have generalized and rede�ned the notion of vividness based on two fundamental principles:

cognitive adequacy and computational feasibility.13

De�nition 17 (VKS) A knowledge system K is called a vivid knowledge system (VKS), if

it is a conservative extension of A, the system of relational databases, i.e. if there are mappings

f : 2At ! LKB, and g : L(�;^;_;9) ! LQuery, such that for any relational database X � At,

any input F 2 At [At, and any query G 2 L(�;^;_;9),

Upd(X;F) ` G i� Upd(X̂; F̂) ` Ĝ

where we abbreviate X̂ = f(X), F̂ = g(F), and Ĝ = g(G).

It is easy to check that F , the system of factbases, is a VKS.

We distinguish between positive and general knowledge systems. In a positive KS, such

as A, only positive knowledge is represented. In a general vivid knowledge system we have

two kinds of negation: in addition to the weak negation (being able to express default-implicit

negative information in the style of negation-as-failure), there is a second negation (called strong)

expressing explicit falsity.

It is desirable for a KS to be robust towards any possible update. This includes inputs which

are inconsistent with the current knowledge base. Such inputs may be erroneous, but it might

be as well the case that the new input is correct, and some old piece of information in the KB

is erroneous or outdated. In any case, it seems important that the main functions of a KS are

not corrupted by inconsistent inputs. Thus, a sophisticated inconsistency handling mechanism

might prevent that both a query formula and its negation can ever be inferred from a KB even

if the KB contains contradictory information.

De�nition 18 (Inherently Consistent Inference) An inference relation ` is called in-

herently consistent with respect to a negation operator :, if for every X 2 LKB and every

F 2 LQuery, it is never the case that X ` :F and X ` F .

Notice that this holds trivially if we make the restriction that LKB admits only of consistent

KBs. But such a restriction is not realistic. We shall assume, therefore, that LKB also contains

inconsistent KBs. In this case, inference in classical logic is not inherently consistent. In fact,

Inherently Consistent Inference is violated by any negation satisfying the classical explosion

principle ex contradictione sequitur quodlibet, fF;:Fg ` G. But it is also violated by those

paraconsistent logics where contradictions are derivable, fF;:Fg ` F ^:F , such as in Belnap's

4-valued logic.

Observation 7 Inference in F is inherently consistent wrt weak negation:

8X 2 2Lit8F 2 L(�;�;^;_) : X 6` F ^ �F

13This is further discussed in [Wag94].

13

Although we do not make it a strict requirement, it seems desirable for a KS that the following

coherence14 property, relating weak with strong negation, holds.

De�nition 19 (Negation Coherence) A knowledge system with weak and strong negation

satis�es Negation Coherence, if for any consistent X 2 LKB, and any F 2 LQuery, X ` �F
whenever X ` �F .

De�nition 20 (Minimal Change) 15 Let u 2 LUnit be any information unit. We say that

Upd satis�es the principle of Minimal Change if it satis�es both Minimal Change for Unit

Expansion and for Unit Contraction. For any X;X 0 2 LKB, and any u 2 LUnit, such that u is

consistent with X, we require the following:

(Minimal Change for Unit Expansion) X + u := Upd(X;u) is the least extension of X such

that u can be inferred, expressed by the conditions (+1) and (+2):

(+1) X + u � X

(+2) X 0 � X & X 0 ` u) X + u � X 0

(Minimal Change for Unit Contraction) X � u := Upd(X;�u) is the greatest reduction of X

such that �u can be inferred, expressed by (�1) and (�2):

(�1) X � u � X

(�2) X 0 � X & X 0 ` �u) X � u � X 0

2.4 A Further Example: Deductive Factbases

A deductive factbase is a pair hX;Ri consisting of a factbase X and a set R of range-restricted

rules, called deduction rules. A non-ground rule r = l F may be formed with any conclusion

formula l 2 Litx, and any premise formula F 2 Lx(�;�;^;_; j;9), such that 1) Free(l) �
Free(F), and 2) F is evaluable. The set of such rules which are called range-restricted is denoted

by R(Lit L(�;�;^;_; j;9)).
For a non-ground rule r = l(x) F (x), its application to a fact base X is de�ned by

r(X) := Upd(X; fl(c) : c 2 Const & X ` F (c)g)

In the basic setting, deduction rules are not a�ected by updates, i.e. only `extensional' predicates

may be updated:

Updd(hX;Ri; l) = hUpd(X; l); Ri

But deduction rules help to answer queries:

hX;Ri `d F i� R(X) ` F

where we assume that R(X) � Lit is the unique intended deductive closure of X under R,

according to the following de�nition.

14The name is adopted from [PA92].
15This principle was already proposed in [Bel77] under the name of minimal mutilation. It is also one of the

fundamental principles of AGM-style belief revision, see e.g. [G�ar88].

14

De�nition 21 (Deductive Closure) A factbase Z 2 2Lit is called a deductive closure of a

deductive factbase hX;Ri, if

1. Z is closed under R, i.e. r(Z) = Z for all r 2 R, and

2. Z is supported, i.e. Z = rn � : : :�r1(X), for some sequence of ground rules (ri)1�i�n � [R],

and

3. Z � X, i.e. Z contains all `facts' from X.

where [R] denotes the instantiation of R. If all rules in R have persistent premise formulas,

there is a unique minimal closure of a factbase X under R which is naturally the intended one.

It can be computed by successively detaching applicable rules until all rules are satis�ed. If R

contains rules with non-persistent premise formulas, there may be several minimal closures, and

not all of them might be intended.16

Example 4 In the factbase X1 from example 1, we cannot infer that Peter is not married with

Susan because the CWA does not hold for married. However, one could argue, that since both

Peter and Susan are residents, it should su�ce that there is no record of their marriage in the

local KB in order to conclude that they really are not married. This can be expressed by the

following deduction rule

r1 = �m(x; y) r(x) ^ r(y) ^�m(x; y)

which yields the deductive factbase hX1; fr1gi. We obtain the inference

hX1; fr1gi ` �m(P; S)

since the unique intended closure of X1 under fr1g, r1(X1), contains �m(P; S):

r1(X1) = X1 [f�m(S; P); �m(P; S)g

Formally, the system of deductive factbases is de�ned as

DF := h h;; ;i; �d; 2
Lit � 2R(Lit L(�;�;^;_;j;9)); `d; L(�;�;^;_; j;9); Updd; Lit; Incd; Lit i

The knowledge ordering of deductive factbases �d is de�ned by

hX;Ri �d hX
0; R0i :() 8l 2 Lit : R(Upd(X; l)) � R0(Upd(X 0; l))

The inconsistency measure Incd is de�ned by Incd(hX;Ri) = Inc(R(X)).

16In general, the intended closures are selected from the set of all closures by means of an appropriate preference

criterion, such as the stability of rule application as in the stable closure semantics of [Wag94b].

15

3 Belnap's Epistemic States

A KS, according to Belnap, answers queries by invoking some inference mechanism, and it

accepts input from a variety of sources by using an appropriate update mechanism. In such

circumstances inconsistency threatens. Mr. X tells the KS that A while Mrs. Y tells it that

�A. Or, in a di�erent environment, an automatic measurement yields that m > 0:3 while the

subsequent con�rmation attempt yields that m < 0:3.

What is the KS to do ?

Possibility 1: Refuse to accept inconsistent information. However: this is unfair either to Mr.

X or to Mrs. Y. Also, contradictions may not lie on the surface.

Possibility 2: Revise current beliefs in the presence of contradictions. However: it seems to

be di�cult to determine the proper revision policy doing justice to both Mr. X and Mrs.

Y, and it seems to be even more di�cult to mechanize it in a satisfactory way.

Possibility 3: Just accept contradictions and report them exactly as they were told, so the

user can make up her mind.

Belnap advocates possibility 3, but emphasizes that even if the ultimate goal is possibility 2, i.e.

revision, possibility 3 is a good �rst step towards that goal.

In order to be able to process arbitrary input formulas F 2 L(�;^;_), an epistemic state

has to consist of a set of possible situation descriptions (corresponding to partial interpretations,

called `set-ups' by Belnap). Thus, an epistemic state Y is a subset of 2Lit, and the elements of

Y represent di�erent epistemic alternatives. For instance, if we know that Susan is a nonsmoker

and that Peter is married either with Linda or with Susan, we get the following epistemic state:

Y1 = ff�s(S); m(P;L)g; f�s(S);m(P; S)gg

3.1 Formalization

Following Belnap, yet formulated in a di�erent way, inputs to an epistemic state are processed

as follows:

UpdB(Y; l) = fX [flg : X 2 Y g

UpdB(Y; F ^G) = UpdB(UpdB(Y; F); G)

UpdB(Y; F _G) = UpdB(Y; F) [UpdB(Y;G)

All other cases of compound formulas are treated by DeMorgan-style rewriting (see the rewrite

rules above). Notice that UpdB may create inconsistent situation descriptions even if there are

consistent alternatives. It seems, however, more appropriate to discard inconsistent situation

descriptions if they are not minimally inconsistent,17 i.e. if there are alternatives with `less

inconsistency'. For this purpose we de�ne

Cons(Y) := fX 2 Y jX \ eX = ;g

MInc(Y) := fX 2 Y j :9Z 2 Y : (Z \ eZ) � (X \ eX)g

17The principle of minimal inconsistency was proposed in [Pri89].

16

The �rst operator, Cons, accepts only consistent situation descriptions, while the second one,

MInc, accepts all situation descriptions which are minimally inconsistent. If an epistemic state

Y is consistent, i.e. if it contains at least one consistent epistemic alternative, then Cons(Y) =

MInc(Y). We can now de�ne

Updex(Y; F) := Cons(UpdB(Y; F))

Updmi(Y; F) := MInc(UpdB(Y; F))

Updex does not accept inconsistent inputs at all. It implements the ex contradictione sequitur

quodlibet (ECSQ) principle of classical logic by discarding all inconsistent epistemic alternatives.

A good compromise between the hypersensitive inconsistency handling mechanism of Updex
and the too liberal UpdB is the principle of minimal inconsistency proposed in [Pri89], and

implemented by Updmi.

A query formula F 2 L(�;^;_) can be inferred from an epstemic state Y if it can be inferred

from every possible situation description X 2 Y :

Y ` F :() for all X 2 Y : X ` F;

where X ` F is the inference relation of F+.

The process of information growth can be captured by the following notion of informational

extension. An epistemic state Y 0 is called an (informational) extension of Y , symbolically

Y � Y 0, if every epistemic alternative in Y 0 extends one in Y :

De�nition 22 (Information Ordering) Y � Y 0 :() 8X 0 2 Y 0 9X 2 Y : X � X 0

This ordering, used in [Bel77], was also suggested in domain theory for the semantics of parallel

processes (see [Plo76, Smy78]), and is sometimes called `Smyth ordering'.

Observation 8 h22
Lit

;�i is a preorder with least element 0 := f;g.

Notice that while fLitg is informationally larger than any non-empty epistemic state Y � 2Lit,

the empty epistemic state is still larger:

Y � fLitg < fg

The elementary pieces of information in epistemic states are disjunctions of literals l1 _ : : :_ lm.
The set of all such disjunctions is denoted by Lit_. The inconsistency operation IncB now

collects all de�nite and inde�nite contradictions:

IncB(Y) := f
_
L : L 2 Min(fK � Lit j 8X 2 Y 9l 2 K : l 2 X \ eXg) g

De�nition 23 (Belnap's KS)

B := h f;g; �; 22
Lit

; `; L(�;^;_); UpdB ; L(�;^;_); IncB ; Lit
_ i

is called Belnap's KS. Besides B, we also de�ne

Bmi with LKB = fY 2 22
Lit

: Y = MInc(Y)g, and Updmi, and

17

Bex with LKB = fY 2 22
Lit

: Y = Cons(Y)g and Updex.

We have to show that KS1{KS6 are satis�ed.

KS1 and KS2 are obvious.

KS3: Re
exivity is proved by induction on input formulas. Clearly, Upd(Y; l) ` l, since l is added
to every element of Y . For conjunctive inputs we obtain Upd(Y; F ^G) = (Y + F) +G ` G, by
the induction hypothesis, and since B is persistent and ampliative (see the resp. observations

below), it follows from Y + F ` F that (Y + F) +G ` F , and hence (Y + F) +G ` F ^G. For
disjunctive inputs, Upd(Y; F _G) = (Y + F) [(Y +G) ` F _G, since for every X 2 (Y + F),

it holds by the induction hypothesis that X ` F , hence X ` F _ G, and similarly for every

X 2 (Y +G).

KS4: easy to check.

KS5: It su�ces to show that Y1 � Y2 i� C(Y1) � C(Y2). The ())-part, i.e. Persistent Inference,

is proved below. We show the contraposition of the (()-part. Assume Y1 6� Y2, i.e. 9X2 2
Y28X1 2 Y19l 2 X1 �X2. Let X

0
2 be such an element of Y2. Then we can construct a formula

F =
W
fl 2 Lit j 9X1 2 Y1 : l 2 X1 �X 02g, for which Y1 ` F , but Y2 6` F .

KS6: Follows immediately from the fact that B is persistent and ampliative (see the resp.

observations below). 2

Observation 9 Only the minimal elements of an epistemic state count: C(Y) = C(Min(Y)).

Proof: In F+, for X;X 0 � Lit it holds that C(X) � C(X 0) whenever X � X 0. Consequently,

C(Y) =
\
fC(X) : X 2 Y g =

\
fC(X) : X 2Min(Y)g 2

Observation 10 (Persistent Inference) In B, ` is persistent, i.e. if Y1 � Y2 then Y2 ` F
whenever Y1 ` F for all F 2 L(�;^;_).

Proof: Let Y1 � Y2. Then,

C(Y1) =
\
fC(X1) jX1 2 Y1g

�
\
fC(X1) jX1 2 Y1 & 9X2 2 Y2 : X1 � X2g

�
\
fC(X2) jX2 2 Y2 & 9X1 2 Y1 : X1 � X2g

=
\
fC(X2) jX2 2 Y2g

= C(Y2) 2

Observation 11 (Ampliative Update) Y � UpdB(Y; F) � Updmi(Y; F) � Updex(Y; F)

Proof: It su�ces to show that Y � UpdB(Y; F) by straightforward induction on the complexity

of F . 2

Claim 1 B, Bmi and Bex satisfy Monotonicity, i.e. C(Y) � C(Upd(Y; F)).

Proof: The assertion follows as a corollary from the two previous observations and observation

6. 2

18

3.2 Relation to Standard Logics

Recall that DNS(F) denotes the disjunctive normal set corresponding to the disjunctive normal

form of F .

Observation 12

1. UpdB(Y; F) = fX [K : X 2 Y;K 2 DNS(F)g.

2. UpdB(0; F) = DNS(F).

Proof: See [Wag94]. This observation implies that Contraction and Permutation hold in B.

Claim 2 (Four-Valued Logic) Let X 2 Fin(2L(�;^;_)), and F 2 L(�;^;_), then

X j=4 F i� UpdB(0;X) ` F

Proof: From the previous observation it follows that Modm4 (X) � UpdB(0;X) � Mod4(X).

This, together with the fact that j=4 is determined by minimal models, i.e.

Modm4 (F) � Mod4(G)) Mod4(F) � Mod4(G)

yields the assertion. 2

Claim 3 (Three-Valued Logic) Recall that standard (= Kleene's strong) 3-valued propo-

sitional logic corresponds to j=c.

X j=c F i� Updex(0;X) ` F

and moreover, if X is consistent, then

X j=c F i� Updmi(0;X) ` F

Proof: If X is not consistent, i.e. it does not have a coherent model, then Updex(0;X) = fg,
and the assertion holds trivially. Otherwise every minimal coherent model of X corresponds to

a consistent element of UpdB(0;X), and

Modmc (X) � Updex(0;X) = Updmi(0;X) � Modc(X)

This, together with the fact that j=c restricted to L(�;^;_) is determined by minimal models,

i.e.

Modmc (X) � Modc(F)) Modc(X) � Modc(F)

yields the assertion. 2

Claim 4 (Classical Logic) Let X;F be as before, let At(X;F) denote the set of all atoms

occuring in X and F , and j=2 denote classical propositional logic. Then,

X j=2 F i� Updex(Updex(0;X); fa _ �a : a 2 At(X;F)g) ` F

19

3.3 Problems with Belnap's KS

We brie
y discuss three problems with B.

3.3.1 No Unique Representation

In B, epistemic states are not unique representations: C(Y) = C(Y 0) does not imply that

Y = Y 0. For instance,

C(ffpgg) = C(ffpg; fp; qgg)

A possible remedy consists of admitting only minimal situation descriptions as elements of an

epistemic state. An epistemic state Y is called canonical if Y = Min(Y). We denote the set of

all canonical elements of a set of epistemic states Y � 22
Lit

by Can(Y).
We obtain the following system:

B
m := h f;g; �; Can(22

Lit

); `; L(�;^;_); UpdmB ; Lit; L(�;^;_) i

where UpdmB (Y; F) := Min(UpdB(Y; F)). The collection of all canonical epistemic states forms

a lattice, as was shown in [KM93].

Observation 13 hCan(22
Lit

); �i is a lattice order. Meet and join can be de�ned by Y1uY2 =
Min(Y1 [Y2), and Y1 t Y2 = Min(fX1 [X2 : X1 2 Y1; X2 2 Y2g).

3.3.2 No Disjunctive Syllogism

For instance,

UpdB(0; (p _ q) ^ �p) = ffp;�pg; fq;�pgg 6` q

Notice that the resulting epistemic state contains an inconsistent situation description although

there is a consistent epistemic alternative.

The Disjunctive Syllogism holds in Bex, where all inconsistent epistemic alternatives are

discarded. In this system, however, if Y ` l then Upd(Y; ~l) = fg yields an `exploded' KB in the

sense that everything follows from fg, i.e. Bex is explosive. A good compromise seems to be

Bmi which is both non-explosive and satis�es the Disjunctive Syllogism.

Example 5 If we have the above Y1, and we then learn that Susan or Linda smokes, the

following update is performed in Bmi:

Y2 := Updmi(Y1; s(S) _ s(L))
= MInc(ffs(S);�s(S);m(P;L)g; fs(S);�s(S);m(P; S)g;

fs(L);�s(S);m(P;L)g; fs(L);�s(S);m(P; S)gg)
= f fs(L);m(P;L);�s(S)g; fs(L);m(P; S);�s(S)g g
` s(L)

3.3.3 No Input Completeness

Finite epistemic states are input constructible in B, i.e.

8Y 2 Fin(2Fin(2
Lit))9F 2 LInput : Y = UpdB(0; F)

but since they are not input destructible, B does not satisfy Input Completeness.

20

4 Disjunctive Factbases

In a similar way as we have extended the monotonic system F
+ to obtain Belnap's monotonic

disjunctive KS in section 3, we now want to extend the nonmonotonic system F to obtain a

nonmonotonic disjunctive KS. However, such an extension is not straightforward for at least two

reasons. First, if we would simply extend the query language of B by adding weak negation,

lemmas would be no longer compatible. This is easy to see. Consider the following example:

ffpgg ` p _ q
but UpdB(ffpgg; p _ q) = ffpg; fp; qgg 6` �q
while ffpgg ` �q 2

Consequently, we should rather choose Bm as the basis of our extension, since

UpdmB (ffpgg; p _ q) = ffpgg

But then we get another problem: disjunctive information would be always exclusive in the

sense that UpdmB (0; p _ q) ` �p _ �q. And this is clearly undesirable. To remedy the problem,

we have to use another notion of minimality called paraminimality in [HJW96]. We �rst de�ne

MinX(Y) = fX
0 2 Min(Y) : X 0 � Xg, and by means of it an operator collecting all paraminimal

elements:

PMin(Y) = fX 2 Y j :9X 0 2 Y : X 0 < X & MinX0(Y) = MinX(Y)g

An ordered set Y is called paracanonical if Y = PMin(Y). The set of all paracanonical elements

of a set of ordered sets Y is denoted by PCan(Y).

Disjunctive factbases are paracanonical epistemic states. For Y 2 PCan(22
Lit

), and F 2
L(�;�;^;_; j;9), inference is de�ned elementwise:

Y ` F :() for all X 2 Y : X ` F

where X ` F is inference in F . For example,

Y1 ` �s(S) ^ [m(P;L) jm(P; S)]

The information ordering between disjunctive factbases Y1; Y2 � 2Lit is the same ordering as

in B. Likewise, information units and the inconsistency operation are the same. Inputs are

processed as follows:

(Ul) UpdB(Y; l) = fX [flg : X 2 Y g
(U^) UpdB(Y; F ^G) = UpdB(UpdB(Y; F); G)

(U_) UpdB(Y; F _G) = PMin(UpdB(Y; F) [UpdB(Y;G) [UpdB(Y; F ^G))

We de�ne the same additional update operations Updmi, and Updex, as inB. The only di�erence

with respect to update inB is the de�nition (U_) for disjunctive inputs which renders disjunctive
information now explicitly inclusive.

De�nition 24 (Disjunctive Factbases) The system of disjunctive factbases is de�ned as

VBF := h f;g; �; PCan(22
Lit

); `; L(�;�;^;_; j); UpdB; L(�;^;_); IncB ; Lit
_ i

VmiF and VexF are formed from VBF in the same way as Bmi and Bex are formed from B.

21

We have to show that VBF , VexF and VmiF satisfy the KS postulates. KS1, KS2 and

KS4 are obvious. KS3 (Re
exivity), KS5 (Knowledge Ordering Adequacy), and KS6 (Amplia-

tive=Persistent) are proved in the same way as for B, now using

LPersQ = LAmpI = LInput = L(�;^;_) 2

Notice that by the addition of weak negation and exclusive disjunction, inference in disjunctive

factbases is no longer persistent.

Conjecture 1 Disjunctive factbases capture paraminimal reasoning in partial logic. Let X

be a �nite subset of L(�;^;_), and F 2 L(�;�;^;_; j). Then,

X j=pm
4 F i� UpdB(0;X) ` F

where X j=pm
4 F is de�ned as PMin(Mod4(X)) � Mod4(F).

Observation 14 VBF violates the principle of Negation Coherence: if, e.g., Y = ff�p; qg;
fp;�pgg, then Y ` �p, but Y 6` �p. On the other hand, Coherence holds in VmiF and in VexF .

Observation 15 VmiF is non-explosive and negation coherent. It has (a restricted form of)

the Disjunctive Syllogism. E.g.,

Updmi(0; (p _ q) ^ �p) = ffq;�pgg ` q, while

Updmi(ff�qgg; (p _ q) ^ �p) = ffp;�p;�qg; f�p; q;�qgg 6` q

This example also shows that neither Permutation nor Update Monotonicity hold in VmiF .

Observation 16 Only VmiF is a vivid knowledge system. VexF is not vivid since it is explo-

sive, VBF is not vivid since it violates Negation Coherence.

Claim 5 (Collapse of weak and strong negation) Let Y 2 Cons(PCan(22
Lit

)), and a 2
At. Then, whenever Y ` a _ �a, weak and strong negation coincide for a in VmiF and VexF :

Y ` �a i� Y ` �a

Proof: Since Y is consistent, all X 2 Y are consistent, and consequently, a _ �a is derivable

from Y i� either a 2 X or �a 2 X for all X 2 Y , subsuming three cases:

1. If all X 2 Y contain a, then neither Y ` �a nor Y ` �a.

2. If all X 2 Y contain �a, then both Y ` �a and Y ` �a.

3. Otherwise some X 2 Y contain a, and all others contain �a, hence Y 6` �a, and Y 6` �a.
2

Notice that this does not hold in VBF

Claim 6 A disjunctive factbase is a unique representation, i.e. in V�F (for � = B;mi; ex),

it holds that C(Y) = C(Y 0) implies Y = Y 0.

Proof: In [Wag94], the Unique Representation property was shown for arbitrary Y � 2Lit (the

reason for it is the availability of weak negation in the query language). 2

22

F
+

F B Bex Bmi VBF VexF VmiF

Contraction
p p p p p p p p

Permutation
p p p p p p

Update Monotonicity
p p p p p p

Cumulativity
p p p p p

? ? ?

Monotonicity
p p p p

Unique Representation
p p p p p

non-explosive
p p p p p p

Negation Coherence �
p

� � �
p p

Disjunctive Syllogism � �
p p p p

Table 1: Formal properties of some basic knowledge systems (� denotes not applicable, ? denotes

open problem).

5 Exact Predicates and the Closed-World Assumption

In knowledge systems, three kinds of predicates can be distinguished. The �rst distinction,

proposed by K�orner in [K�or66], re
ects the fact that many predicates (especially in empirical

domains) have truth value gaps: neither p(c) nor �p(c) has to be the case for speci�c instances
of such inexact predicates, like, e.g., color attributes which can in some cases not be determined

because of vagueness.

Other predicates, e.g. from legal or theoretical domains, are exact, and we then have, for

instance, m(S) _ �m(S) and prime(277 � 1) _ �prime(277 � 1), stating that Sophia is either

married or unmarried and that 277 � 1 is either a prime or a non-prime number. Only exact

predicates can be totally represented in a knowledge base. Therefore, only exact predicates can

be subject to the Closed-World Asssumption.

As in relational database theory, we distinguish between the schema � and the instance,

resp. state, X 2 LKB of a vivid knowledge base. The schema determines the language of a KB,

i.e. the available predicates (relation symbols) together with their domains and their epistemic

category (exact or inexact). Since, in general, not all predicates are subject to the Closed-World

Assumption (CWA), the schema also stipulates those relation symbols for which the CWA will

be assumed. Finally, the schema contains a set of integrity constraints, i.e. closed query formulas

which have to be satis�ed by any evolving state of an associated knowledge base.18

De�nition 25 (VKB Schema) A vivid knowledge base schema is a quadruple

hRel; ExRel; CWRel; IC i

consisting of a set Rel of relation schemas, a set ExRel � Rel of exact relation symbols, a set

CWRel � ExRel of CWA relation symbols, and a set IC � LQuery of integrity constraints.

De�nition 26 For a schema � = hRel; ExRel; CWRel; IC i, we say that Y is a knowledge

base over �, denoted Y : �, if

1. Y contains only predicates from Rel, such that the resp. domain constraints are satis�ed.

18We shall not discuss integrity constraints in this paper.

23

2. For any F 2 IC, Y ` F .

De�nition 27 (Closed-World Assumption) For vivid knowledge bases Y : �, we have

the following additional inference rule for inferring negative conclusions,19

Y `� �p(c) if p 2 CWRel & Y `� �p(c)

together with the corresponding extension of update,

Upd�(Y;�p(c)) = Upd�(Y;�p(c)) if p 2 CWRel

Notice that this CWA inference rule refers to both the state and the schema, i.e. it leads to

an extension of the basic inference relation ` de�ned by the underlying KS. The connection

between them can be expressed by means of the CWA closure:

CWA(Y) := Upd(Y; f�p(c) : p 2 CWRel & c 2 Const & KB `� �p(c)g)

Obviously, we have Y `� F i� CWA(Y) ` F .

Example 6 (The CWA in Factbases) While we cannot assume the CWA for empirical

predicates like smoker, we should also not assume it for the relation married in some local KB

since people may get married all over the world, and thus married will not be totaly represented

in a local KB. We may assume the CWA, however, for a predicate like resident, simply because

all residents of a city are registered in the local KB of that city. Thus, from the factbase

X3 = f�s(S); m(P;L); r(P); r(S)g

over a schema with CWRel = frg, we may infer that Peter is married with a non-resident,

Ans(CWA(X3);m(x; y) ^ �r(y)) = fhP;Lig

but neither that he is married with a nonsmoker,

Ans(CWA(X3);m(x; y) ^ �s(y)) = ;

nor that he is not married with Susan, CWA(X3) 6` �m(P; S).

De�nition 28 (Schema-Based Inference) A query F is inferable from a disjunctive fact-

base Y : � if it can be derived from the closure of Y with respect to ExRel and CWRel. Formally,

Y `� F :() Exact(Y) ` F

where

Exact(Y) = Upd(CWA(Y); fp(c) _ �p(c) : p 2 ExRel� CWRel & c 2 Constg)

19The Closed-World Assumption, in a less general form, was originally proposed in [Rei78]. Notice that our

form of the CWA relates explicit with default-implicit falsity, i.e. strong with weak negation: an atomic sentence

formed with a totaly represented predicate is (explicitly) false if it is false by default, i.e. its strong negation holds

if its weak negation does.

24

Notice that in KBs of de�nite knowledge systems, like factbases, it is not possible to declare

exact predicates not subject to the CWA. Therefore, in de�nite knowledge systems, ExRel =

CWRel.

Observation 17 For a schema � = hRel; ExRel; CWRel; IC i, and a knowledge base Y over

�, it holds that

1. for any exact predicate p 2 ExRel , and any constant c from its domain, the resp. instance

of the tertium non datur holds: Y ` p(c) _ �p(c);

2. if q 2 CWRel, then Y does not contain any inde�nite information on q, i.e. Y ` q(c), or
Y ` �q(c).

Inputs leading to the violation of integrity constraints have to be rejected. The update operation

for disjunctive factbases has to be modi�ed accordingly.

De�nition 29 (Schema-Based Update)

Upd�� (Y; F) = fX 2 Upd�(Y; F) : X ` ICg

where � = B;mi; ex.

6 Reasoning with Three Kinds of Predicates

Only certain exact predicates can be totally represented in a KB. Totally represented exact

predicates are subject to the CWA. For example, the local KB of some city knows all residents

of the city, i.e. the CWA holds for resident, but it does not have complete information of every

resident whether (s)he is married or not because (s)he might have married in another city and

this information is not present. Consequently, the CWA does not apply to married in this KB.

The CWA helps to reduce disjunctive complexity which is exponential in the number of exact

non-CWA predicates: if n is the number of unknown ground atoms which can be formed by

means of predicates declared as exact but not subject to the CWA by a VKB, then the VKB

contains 2n possible situation descriptions.

We illustrate these distinctions with an example. Let m; r; s; l denote the predicates married,

resident, smoker and is looking at, and let M;P; S stand for the individuals Mary, Peter and

Susan. Let

Y = ffm(M); r(M); s(M); �m(S); �s(S); l(M;P); l(P; S)gg

be a disjunctive factbase over the schema � = hfm; r; s; lg; fm; rg; frg; ;i. The interesting

queries we can ask Y and the resp. answers are:

1. Does a married person look at an unmarried one ? Yes, but Y does not know who, either

Mary at Peter, or Peter at Susan:

Y `� 9x; y : l(x; y) ^m(x) ^ �m(y)

Ans(Y; l(x; y) ^m(x) ^ �m(y)) = ffhM;P i; hP; Sigg

25

2. Does a resident look at a non-resident ? Yes, Mary at Peter.

Ans(Y; l(x; y) ^ r(x) ^ �r(y)) = ffhM;P igg

since Y `� �r(P) if Y ` �r(P).

3. Does a smoker look at a nonsmoker ? No. Y is completely ignorant about Peter being

a smoker or not: neither is he a smoker, nor is he a nonsmoker, nor is he a smoker or

nonsmoker (he might be neither):

Ans(Y; l(x; y) ^ s(x) ^ �s(y)) = ;

Notice that the explicit tertium-non-datur completion of Y wrt ExRel would yield 23 = 8 possible

situation descriptions, which are reduced to 21 = 2 by the CWA declaration of resident.20

7 A General Construction of Disjunctive Knowledge Systems

We now generalize the previous discussion of speci�c disjunctive knowledge systems. Let

K = h 0; �; LKB; `; LQuery; Upd; LInput; Inc; LUnit i

We shall inductively de�ne the extension of K to a disjunctive knowledge system VK,21 with

VK = h 0_; �_; L
_
KB; `_; L

_
Query; Upd

_
mi; L

_
Input; Inc_; L

_
Unit i

A disjunctive knowledge base Y 2 L_KB consists of a set of KBs, each one describing a possible

situation, i.e. L_KB � 2LKB , and the elements of Y represent di�erent epistemic alternatives. The

knowledge ordering is de�ned as

Y �_ Y
0 :() 8X 0 2 Y 0 9X 2 Y : X � X 0

implying that 0_ := f0g. Only paracanonical elements of 2LKB will be accepted as KBs, i.e.

L_KB = PCan(2LKB).

A query formula F 2 L_Query can be inferred from Y if it can be inferred from every possible

situation description X 2 Y :

Y `_ F :() for all X 2 Y : X ` F;

i.e. L_Query = LQuery.

Inputs to a disjunctive knowledge base Y are processed in the following way:

Upd_B(Y; u) = fUpd(X;u) : X 2 Y g for u 2 LUnit

Upd_B(Y; F ^G) = Upd_B(Upd
_
B(Y; F); G)

Upd_B(Y; F _G) = PMin(Upd_B(Y; F) [Upd
_
B(Y;G) [Upd

_
B(Y; F ^G))

20Without the CWA there are 3 tertium non datur disjunctions formed with m(P), r(S), and r(P), while with

the CWA there is only one such disjunction: m(P) _ �m(P).
21V stands for disjunction.

26

All other cases of compound formulas are treated by DeMorgan-style rewriting. We de�ne two

further update operations:

Cons(Y) := fX 2 Y j Inc(X) = ;g

MInc(Y) := fX 2 Y j :9X 0 2 Y : Inc(X 0) � Inc(X)g

Upd_ex(Y; F) := Cons(Upd_B(Y; F))

Upd_mi(Y; F) := MInc(Upd_B(Y; F))

The elementary pieces of information in disjunctive KBs are disjunctions of information units

u1 _ : : : _ um. The set of all such disjunctions is denoted by L_Unit. The inconsistency operation

Inc_ collects all contradictory disjunctions of elements from LUnit:

Inc_(Y) := f
_
U : U 2 Min(fU 0 � LUnit j 8X 2 Y 9u 2 U

0 : u 2 Inc(X)g) g

We obtain the following systems:

VBK = h f0g; �_; PCan(2
LKB); `_; LQuery; Upd

_
B ; L(�;^;_); Inc_; L

_
Unit i

and VexK and VmiK as before.

8 A Case Study: Disjunctive Deductive Factbases

Using the above construction we can form V�DF , � = B;mi; ex, the system of disjunctive

deductive factbases (DDFB). A DDFB is a paracanonical set of deductive factbases.

Example 7 Y7 = fhX1; R1i; : : : ; hX7; R7i g, where

i Xi Ri

1 fpg fr �(p ^ q)g

2 fqg f�p �(p ^ q)g

3 fqg fr �(p ^ q)g

4 fqg f�p �(p ^ q); r �(p ^ q)g

5 fp; qg f�p �(p ^ q)g

6 fp; qg fr �(p ^ q)g

7 fp; qg f�p �(p ^ q); r �(p ^ q)g

is a DDFB. In VexDF , we obtain e.g. Y7 ` �p _ r _ q.

Observation 18 An extended disjunctive logic program (EDLP) can be transformed into a

DDFB.

Proof: An EDLP consists of rules of the form H B, where H � Lit, and B � XLit. Starting

from the empty DDFB, Y0 = h;; ;i, we successively `compile' all the EDLP rules Hi Bi,

i = 1; : : : ;m, into the resp. DDFB;

Yi = PMin(f� [f
_
G Big : � 2 Yi�1 & G � Hig) 2

This is similar to the `split database' procedure of [Sak89]. Notice, however, that by our PMin-

normalization, we do not get the problem of non-cumulativity whereas adding a disjunctive

lemma may change the set of `possible models'.

27

Example 7 (continued) The DDFB from the previous example is the result of compiling

the EDLP �7 = fp _ q; �p _ r �(p ^ q)g.

Conjecture 2 The answer set semantics [GL91] of an extended disjunctive logic program �

can be captured by discarding all nonminimal elements of the corresponding DDFB Y�: every

answer set of � corresponds to a stable closure of some element of Min(Y�).

For instance, the stable closures of Min(Y7) are fp; rg, fq;�pg, and fq; rg which are exactly the

answer sets of �7.

9 Conclusion

The system of disjunctive factbases which captures the inference relation based on paraminimal

models is the paradigm for disjunctive knowledge systems. We have shown that there is an

underlying general construction of disjunctive knowledge systems which can be applied to all

kinds of de�nite base systems.

References

[AN84] A. Almukdad and D. Nelson: Constructible Falsity and Inexact Predicates, JSL 49:1 (1984),
231{233.

[Bel77] N.D. Belnap: A Useful Four-valued Logic, in G. Epstein and J.M. Dunn (Eds.), Modern Uses of

Many-valued Logic, Reidel 1977, 8{37.

[Gab85] D. Gabbay: Theoretical Foundations for Nonmonotonic Reasoning in Expert Systems, in K.R.
Apt (Ed.), Proc. NATO Advanced Study Institute on Logics and Models of Concurrent Systems,
Springer Verlag, 1985, 439{457.

[G�ar88] P. G�ardenfors: Knowledge in Flux, MIT Press, Cambridge, 1988.

[vGT91] A. van Gelder and R.W. Topor: Safety and Translation of Relational Calculus Queries, ACM
Transactions on Database Systems 16:2 (1991), 235{278.

[GL90] M. Gelfond and V. Lifschitz: Logic Programs with Classical Negation, Proc. ICLP 1990, MIT
Press, 1990.

[GL91] M. Gelfond and V. Lifschitz: Classical Negation in Logic Programs and Disjunctive Databases,
J. New Generation Computing 9 (1991), 365{385.

[HJW96] H. Herre, J. Jaspars and G. Wagner: Partial Logics with Two Kinds of Negation as a Foundation
for Knowledge-Based Reasoning, in D. Gabbay and H. Wansing (Eds.), What is Negation?, Kluwer,
1996.

[KM93] Y. Kaluzkuy and A.Y. Muravetsky: A Knowledge Representation Based on the Belnap's Four-
Valued Logic, J. of Applied Non-Classical Logics 3:2 (1993), 189{203.

[K�or66] S. K�orner: Experience and Theory, Kegan Paul, London, 1966.

[Lev84] H.J. Levesque: Foundations of a Functional Approach to Knowledge Representation, AI 23:2,
1984, 155-212.

28

[Lev86] H.J. Levesque: Making Believers out of Computers, AI 30 (1986), 81-107.

[LMR92] J. Lobo, J. Minker and A. Rajasekar: Foundations of Disjunctive Logic Programming, MIT
Press, 1992.

[Min82] J. Minker: On Inde�nite Databases and the Closed-World Assumption, Proc. of CADE-82, 1982,
292{308.

[PW90] D. Pearce and G. Wagner: Reasoning with Negative Information I { Strong Negation in Logic
Programs, LWI Technical Report, Freie Universit�at Berlin, 1989. Also in L. Haaparanta, M. Kusch and
I. Niiniluoto (Eds.), Language, Knowledge, and Intentionality, Acta Philosophica Fennica 49, 1990.

[PA92] L.M. Pereira and J.J. Alferes: Wellfounded Semantics for Logic Programs with Explicit Negation,
Proc. ECAI'92, Wiley, 1992.

[Plo76] G.D. Plotkin: A Powerdomain Construction, SIAM J. Comp. 5:3 (1976), 452{487.

[Pri89] G. Priest: Reasoning about Truth, AI 39 (1989), 231{244.

[Rei78] R. Reiter: On Closed-World Databases, in J. Minker and H. Gallaire (Eds.): Logic and Databases,
Plenum Press, 1978.

[RT88] K.A. Ross and R.W. Topor: Inferring Negative Information from Disjunctive Databases, J. Au-
tomated Reasoning 4:2 (1988), 397{424.

[Sak89] C. Sakama: Possible Model Semantics for Disjunctive Databases, Proc. 1st Int. Conf. on Deduc-

tive and Object-Oriented Databases (DOOD'89), North-Holland, 1989.

[Smy78] M. Smyth: Powerdomains, J. Comp. Syst. Sci. 16:1 (1978), 23{36.

[Urb90] I. Urbas: Paraconsistency, Studies in Soviet Thought 39 (1990), Kluwer, 343{354.

[Wag91] G. Wagner: Logic Programming with Strong Negation and Inexact Predicates, J. Logic and

Computation 1:6 (1991), 835{859.

[Wag94] G. Wagner: Vivid Logic { Knowledged-Based Reasoning with Two Kinds of Negation, Springer
Lecture Notes in Arti�cial Intelligence 764, 1994.

[Wag94b] G. Wagner: Disjunctive, Deductive and Active Knowledge Bases, LWI Report 22/1994,
Freie Universit�at Berlin; available as ddakbs.dvi.gz, resp. ddakbs.ps.gz, via ftp from
ftp.inf.fu-berlin.de in the directory /pub/reports/wagner (notice that the �le has to be `gun-
zip'ed).

29

