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Abstract of Thesis 	- 

The standard model of knowledge and belief attributes to agents the ability 

to reason perfectly in classical logic. This is known as the problem of logical 

omniscience and, in accordance with the requirements of their contexts of use, 

has led to the development of a number of alternative epistemic logics. Some 

of these alternatives can, like the standard model, be regarded as presenting for 

discussion and analysis in a base language a system of reasoning, or consequence 

relation: the relation under which beliefs are closed. Adopting this perspective 

with regard to a useful four-valued logic, the resulting extension of the standard 

model is described and many technical points of comparison with the original 

model are given. 
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Chapter 1 

Introduction 

The classical approach to modelling epistemic notions by means of Kripke struc-

tures may be seen to assume a particular philosophical characterisation of how 

mental states are primarily to be understood, namely in the role they play in 

explaining rational action. Although the following interpretation is in no way 

forced upon this approach, it seems a natural one to make. To assume that an 

agent is rational is in part to attribute to him the ability to recognise with some 

degree of clarity the various possible outcomes of the alternative actions he is 

free to perform at any time: these possible states of the world are those that are 

conceivable or possible for the agent. Belief, for example, may then be taken to 

be a particular relation between these possible states of the world, relative to the 

agent in question, which picks out a subset of the set of all possible states and in 

which what is believed in fact holds true. In reasoning about actions that may 

be performed, only outcomes where his present beliefs are true are considered 

possible, and conversely, whatever is true in that set of possible worlds defines 

precisely the beliefs of the agent. The problem with this, of course, is that there 

are many things that will be true in those worlds appropriately related to the 

actual world which we would be reluctant to say that the rational agent must 

believe. For example, he would acknowledge that there may be sentences now 

true the truth of which remain unaffected by his actions or by his learning them, 

but which he does not know. This is known as the problem of logical omni- 

1 
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science, for this means of characterising epistemic states would appear to be 

forced to attribute to any agent the belief in and knowledge of all logically valid 

propositions, for these are true at all possible states of the world. Moreover, all 

classical logical equivalents of a given belief are also believed, and even worse, the 

agent's set of beliefs is closed under classical logical consequence. It appears that 

within this paradigm we must accept that this model of epistemic concepts in 

fact explains some ideal of rationality, perhaps that in terms of approximation to 

which we describe and understand the representational mental states of agents; 

or else we modify the model, perhaps with the aim of changing the ideal or, at 

the limit, perhaps with the aim of explaining the defining or minimal conditions 

of rational belief, the conditions which must hold for any ascription of rational 

belief to sentient beings to make sense. Most practitioners in the field can be 

seen as attempting the latter under some guise, though mainly from a different 

perspective. 

The last point is important to note, given the diversity of the possible uses 

of epistemic logic, so it is helpful to labour this point in order to avoid seeing 

rivalries between models where they do not in fact exist. Given a theory, we may 

wish to discuss new concepts or perhaps we may wish to avoid a consequence 

of the theory which is undesirable for our present purposes. For example, the 

context with which we are concerned may dictate that the terms of the origi-

nal theory behave differently here. We have the choice either of extending or 

revising the theory in places while retaining for the most part the methodolog-

ical assumptions it embodies, or of rejecting the old theory in a more radical 

sense and developing a new theory which accommodates the phenomena in the 

particular context we are interested in. Just why the consequence is undesirable 

depends on what we understand the theory to be for and affects the criteria for 

an effective revision: how we propose to use the theory contributes to determin-

ing whether the choice we make of revising the theory in a particular way or of 
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developing a new theory is the correct one. This debate does not take place at 

the level of models. 

Furthermore, to develop just such a new theory is not to deny the validity 

of the original one and its applicability to phenomena and contexts other than 

those to which ours is designed to apply: all that is denied is its adequacy to 

accommodate the new concepts with which our own model is concerned, which is 

only a rival to the original theory or its modifications to the extent that they may 

provide a conflicting interpretation of the terms of our theory as they behave in 

our context - or perhaps if they are proposed as a general unifying theory the 

terms of which apply across a number of contexts. Otherwise there is no common 

data with regard to which there could be conflicting interpretations. There are of 

course more general levels at which they could conflict: we could regard them as 

theories which model the same type of things through some abstraction from the 

particular phenomena represented (e.g., they are both epistemic theories) and 

then regard the two theories as providing different answers to the question of the 

nature of representation (e.g., of informational content). At this level epistemic 

theories are always comparable, but this is not usually the level at which the 

evaluation of a theory takes place. This is not of course to imply that different 

areas of application should happily co-exist in ignorance of each other: on the 

contrary, the similarities of the techniques used and the problems faced would 

tend to suggest that there are benefits to be had in methodological and technical 

comparisons which may illuminate the assumptions behind the theories and the 

choice of models. Indeed, developing a theory to avoid an unwanted consequence 

may reveal commonalities in these areas. We now look at some such contexts 

for epistemic logic. 

The methodological inadequacies of an ad hoc practical solution to an epis-

temic problem can throw into focus the questioning of an aspect of the original 

paradigm. Thus we may be interested in modelling some related epistemic con-

cepts, and then decide that this requires revision of the paradigmatic model of 
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epistemic concepts. Because of some such concerns we may in a philosophical 

mood regard the problem of modelling logical reasoning in some area of research 

as in part a problem of explaining how reasoning can be said to increase one's 

knowledge or beliefs given that the information contained in the end state of the 

reasoning process is in some sense already contained in the premises. An initial 

attempt to remedy the situation may simply reject the view that logical rela-

tions hold between the objects of belief, and so take a belief state to be simply 

a set of sentences each of which satisfies a belief predicate, perhaps closed under 

an incomplete set of deduction rules. This by itself is no solution to the prob-

lem, for although we can now quantify the beliefs in a number of belief states 

and so compare their size we have lost the ability to model reasoning, as well 

as the potential to explain how non-syntactic contextual factors contribute to 

determining the content of the attitudes. In most applications of epistemic logic 

these would deem the theory inadequate, throwing into focus the paradigm's 

model of reasoning and our philosophical interpretation of it. 

For example Vardi', principally within the field of the study of distributed 

systems in computer science, proposes a semantic analogue of this approach 

which takes a belief state to be a set of propositions which satisfies certain clo-

sure conditions, specified according to the reasoning abilities to be modelled. 

The interest of workers in computer science in epistemic logics is natural when 

multiple agents are accommodated in the formal model, for then it seems nat-

ural to attempt to characterise the state of knowledge which results after an 

agent receives information, in particular given certain assumptions on the na-

ture of the information and the medium of communication. In this context the 

logic models the information one part of a communication system has as well 

as the information the whole system has, for example under the assumption 

'Fagin and Vardi 1985, Vardi 1985, Fagin and Vardi 1986 and Vardi 1986. A fuller 

description of the logic below is to be found in chapter 2. 
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that communications do not always arrive, or are not always transmitted on 

time. In Vardi's proposal, however, there are these differences from much of the 

other work in the field which uses something like Kripke structures: although 

possible worlds are still fundamental notions, there is an assignment to agents 

of collections of sets of these which is functional rather than relational, with 

the consequence that epistemic notions are no longer seen as founded on the 

philosophical picture outlined above. Instead propositions rather than states of 

the world are fundamental to this epistemic theory, thus diverging in its philo-

sophical presuppositions from the interpretation of Kripke structures outlined 

above, although there is no need to regard them as rivals at the level of their 

primary intended interpretations. The result, however, is a technically flexible 

and semantically straightforward schema, which he demonstrates may serve as 

a companion to Kripke structures in modelling various epistemic states. It can 

model more refined notions of reasoning than the traditional approach, lacking 

the assumptions of closure under consequence and knowledge of all validities2. 

Even reasoning moves such as adjunction and A-elimination are not valid in 

all epistemic structures. The carrier set of the, aforementioned Kripke structure 

is a set of what he calls knowledge structures, the conditions on the construction 

of which are dictated by the intended purpose of the model. Very roughly, 

the construction of a world proceeds by distinguishing levels of construction 

according to the depth of embedding of operators in formulas that are assigned 

to agents at that level. 

Level 0 is an assignment of classical truth values to atomic formulas; level 1 

is an assignment to each agent of a collection of sets of 0-ary worlds, the set of 

propositions believed by the agents; level 2 assigns the agents sets of sets of 1-ary 

worlds, what the agents believe they (or others) believe, and so on. Conditions 

on the construction capture reasoning; e.g. if we require that the collection of 

2Vardi 1986, in particular, discusses modal systems weaker than K. 
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sets of worlds assigned form a filter in p (W)), W being the set of worlds at 

the previous level of construction, this determines the modal logic K. 

Restrictions on the construction of the modal world straightforwardly allow 

for the representation of logics weaker than K, but no weaker than E3: in other 

words, logical equivalents cannot be distinguished, but there is no equivalent of 

closure under consequence or the rule of necessitation, and most other rules of 

inference can be allowed to fail. The joint knowledge and the common know!-

edge of a number of agents can also be modelled in this way, which is of great 

importance in his chosen application of analysing distributed systems4. 

Relations on a Kripke structure which is a set of epistemic worlds can be used 

to compare states of knowledge, or to circumscribe the state of knowledge of an 

individual: i.e. to express concepts such as "knowing more than" or "all a knows 

is a"'. Thus knowledge worlds (belief worlds) and Kripke structures complement 

each other in that knowledge worlds model agents' states of knowledge whereas 

Kripke structures can be used to model collections of knowledge states: taking 

the relation for each agent on the structure to be set inclusion, for example, 

allows new epistemic concepts such as "knowing more than" to be modelled. 

a knows at least as much in knowledge structure f as he does in knowledge 

structure g if for each level of assignment in f and g, what a is assigned in f is 

set-theoretically contained in what a is assigned in g. So a has in g at least all the 

possibilities he has in f, and possibly more, and f is a possible state for a in g. 

3The Kripke semantics for systems below K is very different and no longer so straight-

forward. Though see Blok and Kohler 1983 for some positive results. The names of the 

logics may be found in Chellas 1980. 

4  A in Fagin and Vardi 1986. There is also however some philosophical interest in 

this question e.g. Humberstone 1985. 

5See Vardi 1985. 
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If the epistemic axioms are reasonably strong then, as Vardi proves, there is the 

an equivalence between determining the truth of epistemic formulas by looking 

at the 'internal' semantics of the knowledge world and looking at the knowledge 

structures that are possible for the agent at that world: a knows that a at g 1ff 

a is true at all states f possible for a at g. Other relations may also be definable 

between knowledge worlds, for example to model knowledge acquisition through 

communication6. 

The main concerns of this research are thus essentially practical, the choice 

of the particular model of the attitudes being motivated by the specific technical 

task at hand, and the motivation for the whole method being its flexibility in 

this regard; though we have noted that this is not without philosophical conse-

quence for its theory of content. And the divorce effected between the objects of 

agents' beliefs and how they reason with them - between the descriptive and the 

normative - serves to highlight for us the question of the relative status of these 

two aspects of an epistemic logic. His main motivation, however, is brought out 

by his argument in its favour and against Kripke structures. Conceptually, he 

argues, a possible world is a primitive notion which means different things in 

different uses of possible world semantics:, in dynamic logic it may be a pro-

gramme state, whereas in temporal logic it may be a point in time, and then 

Kripke structures are tailored according to the intuitive understanding of what 

the possible worlds are supposed to be. Finally axioms are found to describe 

the structure. In epistemic logics, Vardi maintains, things are different: first 

the axioms are selected, and then the structures are tailored to fit the axioms. 

And since in this application it is not clear what a possible world is, he asks 

how we can construct the appropriate Kripke structure without understanding 

its basic constituents. In accordance with this analysis, he advocates explicitly 

building complex structures to correspond to single worlds in Kripke structures, 

6Fagin and Vardi 1986. 
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according to the specific application in mind - he describes the 'internal seman-

tics' of each Kripke world. This is possible because in this particular context of 

use of epistemic logic it makes sense to ascribe belief without ascribing powers 

of reasoning - other than, as should be noted well, the technically residual abil-

ity given by closure under logical equivalence in the classical base logic. So the 

abandonment of inbuilt normative assumptions - not of the particular norm of 

classical consequence, but of normativity itself - inevitably means that a rela-

tional Kripke-type structure cannot be used to model this form of belief, given 

that these structures carry such assumptions. 

We now briefly mention an example of a perhaps more philosophically moti-

vated alternative to standard techniques of modelling the attitudes in a particular 

application of epistemic logic in a context which demands a more radical rejec-

tion of these. It does not directly address the problem of logical omniscience 

but it illustrates that more abstract objections to the paradigmatic model are 

possible. This is Rosenschein's attempt to remain neutral with regard to the 

nature of representation in artificial intelligence and robotics, in a way in which 

he views other workers as having singularly failed to do'. He thus disputes the 

philosophical presuppositions of other epistemic theories rather than their 'local' 

explanatory adequacy with respect to the task at hand. Clearly inspired by work 

in situation theory he asks what it really means for a machine to know that a, or 

to satisfy the axioms of our model-theoretic semantics, and rejects the classical 

AT approach based on interpreted symbolic structures. Classically, he argues, 

the state of the machine is seen as encoding symbolic data objects for which the 

designer provides some particular interpretation mapping its parts to parts of 

the world. These data structures are knowledge representation structures solely 

in virtue of the assignment of content provided by the intended interpretation 

function the designer has in mind. Instead, he argues, we need to know how the 

7Rosenschein 1986 and Rosenschein 1987. 
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actual world corresponds to our abstract model to understand what it means 

for computers to know and act. And so, rejecting the idea that the ascription 

of knowledge depends upon the attitude of a designer, Rosenschein's work is 

based on the assumption that knowledge is an objective property of the way the 

machine is embedded in the world, and so is characterisable in terms of objective 

correlations that hold between machine states and world states. The results of 

his work on 'situated automata' show that the systematic assignment of propo-

sitional content to computational states does not require the assumption that 

these are prestructured as interpreted linguistic entities. 

Returning the problem of logical omniscience, another computational area 

which has given rise to epistemic logics with principled limitations on the per-

mitted inferences is the search for a representation language to sanction seman-

tically the generation of knowledge from knowledge in a knowledge-base query 

system. Because of the data-base environment where the main aim is generating 

rather than discussing knowledge, an explicit modal operator is often taken to 

superfluous on this approach, and so there is no immediate demand for the nest-

ing of epistemic concepts. The rejection of closure under consequence is quite 

differently motivated here from in some other applications of epistemic logics, 

and so a successful solution may differ from other solutions that have been pro-

posed 

ro

posed since there are different criteria that it must meet. What is required here 

is a means of avoiding all forms of classical logical omniscience to allow for fast 

though perhaps limited reasoning, but without simply making arbitrary restric-

tions on the syntactic deduction rules; the semantics of models doing the latter 

tend simply to reflect the inference process as it proceeds, and so to include syn-

tactic entities in their structure, rather than dictating what correct inferences 

should be on the basis of truth and falsity. In this setting there are reasons for 

avoiding omniscience over and above that of plausibility: if closure under modus 

ponens is allowed in a knowledge representation utility then the computational 

demands of a query would in many cases be practically intractable, and closure 
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under classical logical equivalence is far too coarse-grained to be informative in 

the typically domain-specific applications of the logic. In addition, however there 

is also a requirement to avoid the inference from any sentence to a tautology, 

as well as "ex falso quodlibet", the inference from a contradiction to anything. 

For instance, to allow EFQ would allow the semantics to sanction as correct any 

response of the knowledge-base to a query if at the time it is storing inconsistent 

information. The alternative method of detecting and removing contradictions 

before a response, or perhaps after a data-base update, is much harder compu-

tationally than using an error-tolerant logic, which limits the impact of those 

errors to sentences that are naturally related to the erroneous information. 

These considerations strongly suggest the use of a form of relevance logic, and 

a number of authors have advocated the use of a form of tautological entailment 

in epistemic logic, motivating this choice from its advantages within the field 

of knowledge representation in artificial intelligence. The methods by which 

the above constraints are achieved and which distinguish this approach from the 

classical models of epistemic logic are as follows. In classical possible worlds 

semantics there is in effect only one contradictory proposition because there is 

only one function which takes each world to false, and similarly, there is only one 

logically valid proposition. So all contradictions are true in the same worlds - 

namely in none - and all tautologies are true in the same worlds - in all of them, 

since the worlds are complete. In relevance logic, however, different tautologies 

are taken to describe different situations and so it is possible for one to be true 

without another being so; the same of course goes for different contradictions 

being false at different (unrealisable) situations. This suggests four-valued se- 

8See in particular Levesque 1984, Lakemeyer 1987, Patel-Schneider 1985 and Lake-

meyer 1986, which are examined in chapter 3. Thistlewaite, Meyer and McRobbie 1986 

contains references to uses of relevance logic in theorem-proving and data-base manage-

ment, where it is used to partition large data-bases into deductively relevant parts. 
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tups, or partial situations9, where sentences may receive the values 0, {1}, {O} 

or {i, O}, and so may, in one common presentation of this logic, be viewed not as 

a function but rather as a relation of sentences, situations and the set {1, 0110 . 

Then given that a truth-functional sentence entails another if the consequent 

is true whenever the antecedent is, and the antecedent is false whenever the 

consequent is, 'ex falso quodlibet' does not hold because there are valuations in 

which the contradictory antecedent receives the value 1 whereas the consequent 

does not: for example, if a has the value 11, O} in a given situation, then a A -'a 

will not, as it turns out, entail any sentence with the value {O} there. Moreover 

modus ponens no longer holds once we stipulate that there is no intrinsic rela-

tion between the truth value of a sentence and that of its negation, so agents are 

not logically omniscient. The existence of efficient and decidable algorithms for 

determining whether tautological entailments hold makes these variations of rel-

evance logic suitable for knowledge representation systems due to its speed and 

its coherent semantics. Levesque'1  presents a propositional logic of this form 

with non-embeddable operators for both active or explicit belief, and for tacit or 

implicit belief, the latter taken to be the classical logical consequences of explicit 

belief which are determined by any complete and consistent extensions of the 

9Partial possible worlds are not a new phenomenon and have also been motivated 

in other ways, for example the model sets of Hintikka 1962, and, as examples of more 

recent examples, Humberstone 1981, and van Benthem 1985 and 1986. 

10This is not of course the only means of developing the semantics of relevance logic 

within a possible worlds framework; indeed, something along the lines of Fine 1986 could 

meet the required conditions with greater conceptual parsimony and without adopting 

partial situations in this sense. For the use of restrictions on realizability functions in 

a semantic treatment of relevance logic for data-base query systems see Mitchell and 

O'Donnell 1986. 

"Levesque 1984. 
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partial worlds in question; Lakemeyer'2  extends this to allow the embedding of 

operators. Patel-Schneider'3  extends Levesque's logic to the first-order case with 

an intuitionistic reading of the quantifiers, and with a decidable algorithm for 

determining tautological entailment through a skolemisation result for sentences 

in prenex normal form. But unlike Levesque's logic, it does not contain any 

operators, and so avoids the intricacies of scoping that might otherwise have 

arisen. Lakemeyer, however, has built upon this work on tautological entailment 

and has developed a first-order logic with a similar decidability result but which 

addresses the problems of quantifying in with operators for both explicit and 

implicit belief. Explicit belief is suitably weak, but preserves the distinction 

between 'knowing that' and 'knowing what' in a reasonably intuitive manner. 

The position adopted here is that, whatever the practical or philosophical 

purpose of an epistemic logic, it is often an important methodological point to 

take into account the most basic system of reasoning it attributes to agents. We 

maintain that it is right to put the axioms before the structure of the model, but 

not in the narrow sense whereby sometimes, given the widespread acceptance of 

Kripke structures, debate was circumscribed to arguing about axiomatic issues of 

secondary importance, such as just which forms of introspective reasoning were 

legitimate. This will not be our concern: rather, that basic underlying system 

of reasoning should be given proper consideration before choosing how to model 

belief; and once such a system is chosen, we should be able to accommodate 

axiom systems within the resulting logic as freely as is possible in classical modal 

logic. 

The methodological point is important if we want to avoid the problem of 

classical logical omniscience, and so adopting this perspective with respect to 

12Lakemeyer 1987. 

13 Patel-Schneider 1985. 
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one particular idealisation of limited reasoning, the second half of the thesis ex-

amines models appropriate for a range of belief logics based of the four-valued 

inference system mentioned above. These include Kripke structures as a subsys-

tem. Before that however, we describe a number of other logics avoiding Kripke 

structures which may be used to avoid problems of logical omniscience, including 

syntactic approaches which, whatever their philosophical credibility, risk incon-

sistency; then we examine and reinterpret within our methodological framework 

some logics which do use such structures and so where reasoning may be seen to 

play an important role. 



Chapter 2 

Solutions To The Problem Of Logical 

Omniscience I 

In recent years there has been a great deal of interest in the formal study of 

epistemology, and many treatments have been proposed in the attempt to find 

a satisfactory treatment within a logical framework of the notions of knowledge 

and belief. Once the preserve of the philosophical community, interest in these 

concepts and their formal analysis has spread to other fields such as artificial in-

telligence and computer science where their interpretation and application have 

thrown up issues not previously discussed within this field of study. In spite 

of this diversification many important concerns remain common to researchers 

across these fields, and an examination of the attempted solutions to techni-

cal problems which arise in confronting formally the main conceptual issues in 

reasoning about knowledge would feature many of the interesting logics in the 

literature on formal epistemology. This is what we propose to do in this chapter 

with regard to the problem of logical omniscience. Thus, while the choice of 

model may, given its interpretation and ambitions, respect such issues as just 

what are the introspective and reasoning abilities of an individual, or what is 

the relation between knowledge and action, and perhaps also characterise the de 

re/de dicto distinctions and the problems of quantifying in and identity state-

ments, these requirements are balanced by certain other conceptual constraints 

14 
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arising out of the mathematical implications of the standard models. A treat-

ment that is both consistent and credible as a model of a human agent has been 

found to be less straightforward than it might appear, and much of the work in 

this field might be seen as attempting to meet both these criteria. While the 

Lob-Montague results haunt the approach which treats the objects of knowledge 

as sentences, those who see the attitudes as relations between agents and propo-

sitions must, avoid or explain the likely result that the agent's knowledge and 

beliefs are closed under logical consequence. Methods of remedying or alleviat-

ing these problems therefore serves as a useful classificatory device in describing 

attempts to model and reason about the knowledge or beliefs of agents, and for 

that reason will be used here to present the main types of theories as well as 

some of the methods of analysis that are to be found in this field of research. 

2.1 The Standard Model 

It is a commonplace that the study of knowledge and belief could not be carried 

out within an extensional language such as standard first-order logic. Since Frege 

it has been known that the intersubstitutability salve veritate of co-referring 

terms within these contexts does not generally hold, so epistemic and doxas-

tic logic cannot be adequately carried out in traditional extensional first-order 

logic as it stands. The propositional operators of classical logic, being truth-

functional, can be understood solely in terms of their truth tables, but the op-

erators 'knows' and 'believes' cannot be understood in this way. A natural 

assumption at the beginning of the study of models for knowledge and belief was 

to treat these notions as modal operators on propositions, so permitting a non-

truth-functional semantics. At the time of Hintikka's Knowledge and Belief', 

1Hintikka 1962. 
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the first extensive treatment of the subject, formal modal logic had progressed 

from its purely syntactic beginnings with Lewis to the model-theoretic tradition 

initiated by Carnap. Modal'model theory developed from unordered sets of state-

descriptions together with a valuation function from pairs of state-descriptions 

and atomic propositions to truth values, into a more structured model contain-

ing in addition a binary relation on the set of possible worlds, as introduced by 

Kripke2. We present here Hintikka's propositional logics of knowledge and be-

lief which adopted this framework and was the first such model in the semantic 

tradition of modelling these notions. 

The idea that Hintikka starts with is that, given a set of propositional vari-

ables, a (partial) description of a state of affairs is to consist of a model set, 

or a downwardly saturated set of sentences. A downwardly saturated set A of 

sentences is one which satisfies the following syntactic conditions, where a and 

/3 are arbitrary formulae of the language. 

(Cl) IfaEi then -'a.& 

If aA@ E A then aEA and 3 E A. 

Ifav/3EithenaELor/3Ei. 

If -'-'a E A then a E A. 

If(aA/3)E 	then -'aEor -'/3 Ei. 

If -i(a V /3) E A then -'a E L and -'/3 E E. 

The connectives D and may be understood in terns of these: a D /3 is defined 

as -'a V ,8, and a /3 is defined as (a D /3) A (/3 D a). 

2Bull and Segerberg 1984 contains a history of this development. 
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To embed a set r0  of sentences into a downwardly saturated set i& of sen-

tences is (possibly) to add a number of formulae to r0  to obtain E' c A, a 

set of sentences which satisfies the above conditions. A' need not be maximally 

consistent and so need not contain a literal of every sentence of the language: 

literals are atomic formulae and their negations. Without (Cl) these conditions 

together form an effective procedure. The presence of (Cl), the consistency con-

dition, ensures that a set of sentences is inconsistent if and only if it cannot be 

embedded into a model set, so the possibility of such an embedding tells us that 

there is nothing incompatible with this set of sentences to be found in the model 

set. This is intuitive, since the consistency of F0  just is the possibility of a state 

of affairs where all its members are true, and this is the case if and only if there 

is a consistent description of such a state which contains all members of F0. 

The extension to modal logic requires new conditions for K and for B, where 

K and B are propositional operators meaning "a knows that" or "a believes 

that", where subscripted by a. These conditions must be in harmony with the 

idea that the consistency of a set of sentences is the possibility of embedding 

it in a model set, even where this set contains sentences such as K0cE and Baa. 

Hintikka's idea here is not to make these new rules conditions on the construction 

of a model set, which would be to make the notion extensional, but rather 

to define them by invoking the idea of a set 11 of downwardly saturated sets 

of sentences, together with a binary alternativeness or accessibility relation Ra  

defined over this set for each agent a. An agent knows a if a is true in all 

alternative states of affairs he considers possible, or, to adopt Hintikka's rather 

idealistic terminology, the extent of a's information is to be such that he can 

restrict his attention to a particular subset of the set of model sets. This structure 

of model sets is called a model system, and it is within the model system that 

Hintikka introduces his conditions on epistemic operators. First he defines the 

operators Pa  and Ca  meaning 'it is possible, for all a knows, that' and 'it is 

compatible with everything a believes that' respectively. In what follows we 
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shall give the rules for knowledge and its related concept; exact counterparts for 

belief may be formulated simply by substituting the operators in the definitions. 

The conditions that Hintikka gives are as follows: 

(C.P) If Paa E A and if A belongs to a model system 0, then there is in 1 at 

least one epistemic a-alternative iY to A such that a E L. 

(C.-'K) If 'Kaa E A, then Pa-'a E E. 

(C.'P) If 'Pea e A, then Ka-'a E L. 

To capture knowledge we add to these conditions: 

(C.K1) If Kaa E A and if L is an epistemic alternative to t (with respect to 

a) in some model system, then a E . 

- 	(C.refl) The alternativeness relations Ra  are reflexive. 

(C.tran.$) The alternativeness relations are transitive. 

If we substitute B for K and C for P in (C.P), (C.K) and (C.P) we get (C.C'), 

(C.B) and (C.C), the corresponding conditions on belief. Hintikka's notion of 

belief is captured by adding the following combination of conditions to these 

three rules: 

3A relation R is reflexive if (x, x) E R for all x; is euclidean if (y, z) E R whenever 

(x)  y) E R and (x, z) E R; is transitive if (x, z) € R whenever (x, y) E R and (y, z) E R. 

Another common move is to make the relation serial: for each x in the model system or 

frame, there is some y in the system such that (x, y) E R. This last condition ensures 

the soundness of -iK(false), where false is a propositional constant false everywhere. 

true is the constant defined by -'false. It is expressed in Hintikka's semantics by (C.b*) 

below. 
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(C.B*) If Baa E A and if 	an doxastic alternative to A (with respect to a) in 

some model system, then a E . 

(C.trans) as above. 

(C.b) If Baa E E in the model system 1, then there is in fl at least one doxastic 

alternative * to A (with respect to a) such that a E i. 

What is happening here is similar to what happens in many more familiar 

logics of knowledge and belief based on Kripke structures: to make more precise 

what is intended we may place conditions on the alternativeness relation. For 

example we may want to ensure that everything that the agent knows is true. 

To do this the actual state of affairs must always be considered by the agent 

as an alternative, and so the alternativeness relation is always reflexive. This 

is the effect of (C.refl). The corresponding constraint on model sets is that 

if K0a E i then a E L. Similarly, to require that agents always know what 

they know or believe what they believe - to allow them positive introspection 

- amounts to requiring that the ancestral of the alternativeness relation, the 

accessibility relation, be transitive, and so through (C.trans) if K0a E L then 

KaKaa E A. The model system condition required here is one that Hintikka calls 

(C.KK*):  if Ka E A and i' is an a-alternative to A then Kaa E &. And if we 

were to award them negative introspection, knowledge of what they don't know, 

and so allow ignorance to lead in a non-monotonic fashion to knowledge through 

introspection, this would be achieved by making the relation euclidean,with a 

condition to the effect that if -'Kacx e A then Ka 'Kaa E E. In the case of the 

single agent, the cumulative effect of adding these constraints to the arbitrary 

relation of K, the smallest normal logic, are known respectively as T, S4 and 

S5. 

As should be clear, the relational semantics of Hintikka's model systems can 

be given an equivalent formulation within the more familiar Kripke semantics, 
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which has since become one of the most common possible worlds tools for rea-

soning about knowledge and belief. Both can be regarded as a labelled and 

directed graph, with possible worlds treated as primitive notions as its nodes, 

a fact sometimes useful in matters relating to decision procedures; and both 

are possible worlds theories which, in the present context, model knowledge and 

belief as a relation between conceivable states of affairs. Worlds are not possi-

ble 8impliciter, but rather are possible only relative to other worlds: the worlds 

possible relative to a given world are simply a subset of the set of all possible 

worlds. 

2.1.1 The Problem Of Logical Omniscience 

There is however an unpleasant consequence of capturing in this way an agent's 

knowledge at a world relationally as those sentences true in all the worlds he 

thinks possible. If this set of alternative worlds uniquely determines an agent's 

knowledge at a world, then we face the family of problems known as the problem 

of logical omniscience. An agent is logically omniscient if whenever he believes 

all the formulae in a set E and E logically implies the formula a, then the agent 

also believes a. Before looking at the most general case of the problem, we note 

that one example of how this might happen in some particular epistemic logic 

is where a is true under no assumptions and so is a valid sentence of the logic. 

This first case is brought about by the fact that a logically true sentence is one 

that is true in all logically possible worlds. Therefore all such sentences will be 

true in every member of every subset of these worlds, and so true in all worlds 

thought possible by any agent at any world, under the assumption that these 

worlds thought possible are sentence complete. All agents, then, know all the 

valid formulae, and clearly this problem also applies to belief if we capture that 

notion in the same manner. This first case is clearly unintuitive, but also equally 

damaging is following situation, perhaps the problem which has most concerned 

the epistemic logician favouring propositional theories: that agents are perfect 
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reasoners in classical logic, unable to know and belief anything without being 

fully aware of its consequences. This generalisation of the previous result is 

brought about by the fact that if agent a knows a and if a logically implies /3 - 

or if a knows that a j /3 - then a must also know P. If a knows a then a is true 

in all worlds he considers possible, and if a j 3 is logically true then, as above, 

it is true in the same set of worlds. So /3 is true in all the worlds considered 

possible by a, and by definition of knowledge, a knows P. The two aspects 

of the problem mentioned are not co-extensive: in a partial semantics such as 

Hintikka's epistemic logic an alternative model set need only be downwardly 

saturated and not maximally consistent or sentence complete, and so the agent 

need not believe all valid formulae. But within a Hintikka-type model system, 

where knowledge is defined as truth in all alternatives, an agent's beliefs and 

knowledge are closed under consequence as the following proof shows. First 

assume that K0a e A and K0(a 3 /3) E : then in all alternatives both a and 

-'a V /3 are true. If /3 were not true in one of these alternatives then both -'a and 

a would be true there, which is impossible. So f3 is true in all alternatives and 

SO Kafi E A. No rules peculiar to the analysis of belief have been used, so by 

using the analogous conditions for belief a parallel argument would demonstrate 

that this form of omniscience holds for belief as well, and so agents know and 

believe all logical consequences of their knowledge and beliefs. There are, besides 

these results, corollaries to the problem of logical omniscience to the effect that 

agents cannot distinguish between logically equivalent formulae - they cannot 

have different epistemic attitudes to two logically equivalent sentences - and if 

an agent believes both a formula and its negation, then he cannot but have the 

reasoning ability to put these facts together and so he believes every formula, 

since a contradiction may entail anything. 

These unintuitive consequences of this possible worlds approach to modelling 

propositional attitudes are calamitous if we intend our models to be to some de-

gree faithful to our intuitions about these concepts. The history of science, for 



Chapter 2. Solutions To The Problem Of Logical Omniscience I 	22 

example, reveals that much effort has gone into working out the implications of 

sets of axioms; there was no shortcut available which involved simply believing 

those axioms. The problems caused by consequential closure reveal that this 

type of model as it stands cannot deliver an account of the epistemic attitudes 

capable of giving a plausible account of the knowledge and beliefs of agents 

which, as in the case of humans, have limited reasoning capabilities. And since 

to divorce knowledge from reasoning about the world and about one's knowledge 

itself would be almost completely uninformative, a solution to this problem is 

necessary to any epistemic logic which takes 'knows' and 'believes' to be propo-

sitional operators. 

At this point, of course, one could reject the propositional attitude approach 

and advocate a model where knowledge is instead a relation between agents 

and sentences. If we take 'knows' to be a first-order predicate of terms that 

are names of sentences, then it will no longer be a built-in feature of our logic 

that agents are logically omniscient; there is nothing intrinsic to the naming 

process which guarantees any reasoning ability. There are nevertheless methods 

of dealing with the .problem which retain the semantic approach to knowledge 

and belief where these are seen as relations between agents and propositions - 

the terminology does not refer exclusively to models based on Hintikka/Kripke-

style possible worlds semantics, or even on possible worlds semantics. We now 

mention some logics which tackle the problem of logical omniscience within this 

broad tradition. 

2.1.2 Reinterpreting The Operator 

Perhaps the simplest idea is to re-interpret the meaning of the operator. Al-

though the model is basically similar, for example, to that which Hintikka 

presents and so has the property of consequential closure, this situation is made 

acceptable by the claim that what is intended is not in fact a model of the 
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knowledge or the beliefs of human agents with their cognitive and computa-

tional limitations and their restricted faculties of reasoning. Thus one may take 

oneself to be modelling the ideally rational agent with unlimited reasoning abil-

ities and thus obviate any requirement that the model respect human powers 

of reasoning, and so be credible as a model of human agents. This idealisation 

lends itself to easy logical analysis at the expense of being unrealistic for human 

agents. Alternatively we may say, with Moore" that inferring that Kf3  from 

K0a and Ka(a D 0) should be treated as a default rule. The fact that some-

thing follows from a's knowledge is seen as a justification for concluding that 

a knows it, although this is a defeasible conclusion on which doubt may later 

be cast. A third strategy, first proposed by Levesque5  and later taken up by 

Halpern and Moses' distinguishes between implicit and explicit belief, reinter-

preting the operator as implicit belief. What is implicitly believed by an agent is 

what the world would be like if what he believed were true, and so closure under 

implication is appropriate to this concept. What distinguishes these proposals 

from other approaches which re-interpret the meaning of the operator, however, 

is that our everyday concept of belief is not ignored, but is incorporated into the 

model by different means. The technical means to this end is the introduction of 

inconsistent and incomplete worlds into the semantics. The type of approach of 

which this is an instance will be examined in greater detail in the next chapter. 

We shall only mention briefly Hintikka's own, rather different proposal for 

impossible worlds, given that it is best understood within the context of his game-

theoretical 

ame

theoretical semantics. It borrows from Rantala7  the idea of a kind of model, an 

4Moore 1985. 

5Levesque 1984. 

6Halpern and Moses 1985. 

7Rantala 1975. 
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urn model, the domains of which may change during investigation. These are 

to be the impossible worlds where some logically false sentences may be true. 

Invariant urn models, or invariant worlds, are those that are logically possible. 

But some worlds change so invidiously that, given one's logical abilities, they may 

appear invariant, and so be epistemically possible. This is just as Hintikka's 

argument for impossible worlds requires. It is unclear, however, whether the 

intuition behind the nature of these impossible worlds is quite so coherent or 

compelling outside game-theoretical semantics, for the dynamic way in which 

truth definitions are given within that theory is precisely what allows for the 

possibility of defining changing models. Outside the theory that intuitive step is 

not available: there is no generally plausible motivation for impossible worlds 8, 

and the interpretation of possible worlds semantics which underlies Hintikka's 

argument for allowing impossible worlds does not have general currency. 

2.1.3 Non-Relational Modal Structures 

There is a line of thought amongst some propositional attitude theorists which 

discerns the cause of the problem of logical omniscience to lie in the way in 

which epistemic notions are captured within Hintikka's or Kripke's relational 

possible worlds semantics, and so requires the rejection of this treatment as an 

important ingredient of a solution to the problem. A case in point is the view of 

Cresswell9  whereby propositional attitudes do not satisfy modal conditions, and 

so take logically different objects from operators such as "it is necessary that". 

Thomason, on the other hand, puts forward an interesting proposal which treats 

the proposition as a primitive notion - rather than as a set of possible worlds - in 

'Although there have of course been other definitions of impossible worlds; see, for 

example Rescher and Brandon 1979. 

9Cresswell 1985. 
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fact as a basic type in a modification of Montague's intensional logic'0  but where 

logically equivalent sentences need no longer express the same proposition. There 

are, however, less radical alterations to the traditional theories of knowledge and 

belief which remain within the framework of modal logic. We now describe an 

alternative modification of a theory of Montague which retains intensions as 

the objects of propositional attitudes by capturing Hintikka's possible worlds 

semantics in a set-theoretical rather than a graph-theoretical way. Since it uses 

a possible worlds theory agents inevitably believe all those sentences with the 

same intension as a, if they believe a, but since the modal structure used is not 

that of relational semantics we can avoid all other cases of the closure of the 

agent's beliefs under logical consequence, while in addition allowing a great deal 

of sensitivity in modelling reasoning. 

Models for epistemic logic'1  are to be based on neighbourhood or Scott-

Montague semantics for modal logic, as first outlined by Montague" for the 

purpose of interpreting what he called pragmatic languages. With each world 

W E W is associated a set of propositions for each agent, which are to be the 

propositions believed by the agent at that world. Where P is the finite set of 

atomic formulae, we want to partition the language based on it into equivalence 

classes defined by semantic equivalence such that each sentence in a particular 

equivalence class will have the same intension. With this in mind the function 

H : 	2W  assigns to each atomic formula its intension, or the intension 

of its equivalence class, which is a subset of W. An agent's beliefs at a world 

10See e.g. Montague 1970, 'Montague 1973 or Gallin 1975 for an exposition of Inten-

sional Logic. 

"See e.g. Fagin and-Vardi 1985, Vardi 1985, Vardi 1986. 

12 Montague 1968. See also Chellas 1980, chapter 7, where they are known as minimal 

models. 
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are simply a collection of intensions, where intensions are subsets of W, and 

so a function N : A x W - 
22w' introduced for this purpose can be seen as 

assigning, to each agent a E A, the set of agents, a set of intensions at each 

world. Thus a Scott-Montague model is to be a triple <W, N, H > where W is 

a non-empty set and N and II are functions as defined above. The atomic case 

for the definition of satisfaction is M, w = p1  if w E 11(p), where p, is atomic, 

and the induction steps for the non-atomic formulae are the usual ones for the 

classical propositional connectives. Taking B. to be the epistemic operator "a 

believes that", the modal case is defined by 

M,w = B0cx if {u I M,u  I= a} E N(a, w). 

That is, B6a is satisfied in w if the intension of a is a neighbourhood of w for a. 

So at each world agents are assigned a collection of intensions, the belief set of the 

agent at that world. Since it is not a set of worlds which the agent thinks possible 

that determines what he believes - as is the case in relational models of epistemic 

notions - one form of logical omniscience is avoided: modes of reasoning are not 

built into the underlying frame until axioms for these are chosen to constrain 

in some way the construction of the frame. Agents still believe semantically 

equivalent formulae but they need not believe all valid formulae because no 

assumptions are made about the nature of belief. If B6a and a semantically 

implies /3, then it need not be the case that B61i For if {u I M, u = a} E N(a, w), 

for the latter to be the case at some world w, {u I M,u = 31 would have to 

belong to N(a, w). But the members of N(a, w) are a collection of intensions 

for which no means has been described of how to produce new intensions out 

of the sets of worlds that make up the members of this collection, and we need 

such a procedure if we are to add {u I M, u 1= f3} to N(a, w). Of course if 

{u I M, u = a} = {u I M, u = /3} then {u I M, u = 13} is already in N(a, w), 

for this is the case where a and /3 are semantically equivalent. But in the more 

general case, it might be that for all u such that M, u = a it happened that 

M, u = P. But /3 may also be true at worlds outside {u I M, u = a} and in this 
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way fail to be in N(a, w). We have, then, the basis of a possible worlds theory for 

modelling epistemic notions founded - as it must be - on the notion of there being 

many possible states of affairs, but which, unlike Hintikka's theory, does not 

model belief as a relation between these states of affairs. Rejecting that model of 

epistemic notions leads naturally to a rejection of the philosophical interpretation 

Hintikka grafts onto it - although this interpretation is in no way obligatory for 

users of Kripke models - as well as permitting ipso facto an alternative role 

for possible states of affairs within epistemic logic, one that is informative with 

respect to the task at hand. In other words, we are free to choose the structure of 

these basic elements in the model, tailoring them, as we wish, to the requirements 

of the particular epistemic notion being modelled. According to this view, in 

modelling belief states we want our worlds to be recognizably belief worlds. The 

idea, then, is to modify the basic Scott-Montague semantics through outlining a 

construction process for W, rather than treating its elements as primitive notions. 

This should also alleviate the one problem with logical omniscience that remains 

by weakening the relation of semantic equivalence, since this is determined by 

the choice of W. In fact, it will be as weak as logical equivalence. 

We now outline the semantics for epistemic logic presented by Vardi and 

others which is based on these insights. Assuming fixed sets P of atomic formulae 

and A of agents, they first proceed to define belief worlds, before relating these 

to the full belief structure, which is to be based on the Scott-Montague semantics 

extended to multiple modalities. Worlds are defined constructively to have not 

only truth assignments to the atomic formulae but also functions associating 

with each agent sets of propositions for each depth of embedding at which they 

may have beliefs. If John believes that Mary believes a, this will be reported at 

worlds with depth no less than two. Informally, any instance of the first level 

of construction is called a 1-ary world and tells us about 'nature'; it does not 

tell us about knowledge or belief. These worlds have the form <fo > having a 

single function fo  from the atomic formulae of the language to the truth values. 
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If we suppose that the language has only one atomic formula pi then there are 

two possible 1-ary worlds since there are two possible assignments fo(p) = 1 

and f(p1) = 0 to the two truth values. The two worlds would then be < fo > 

and < f> or more perspicaciously, <j > and < 	The next level tells us 

about each agent's knowledge or beliefs about nature: a function fi  assigns to 

each agent a collection of sets of 1-ary worlds. Since in the example we only have 

two such worlds, <p, > and < -pi  >, agents may be assigned the propositions 

{p1}, {-pi), {p1, -p} and 0. In the case of knowledge, for example, this would 

mean that the agent knows that p1, knows that not p, does not know whether 

p, or 'knows' some contradictory formula. Combining the particular functions 

Jo and  f give the 2-ary world < fo, Ii >: for example, such a world might be 

< p, (Bob -+ {p, -'p}, Chris -+ {pi}) >, where p1  is true, Chris believes it and 

Bob does not believe or disbelieve it. At the next level we are told about the 

agents' beliefs about their own and other agents' beliefs, this time assigning to 

each agent a collection of sets of 2-ary worlds of the form < fo, fi >; this process 

may be continued to further levels. More formally, an 0-th order assignment is 

defined to be a truth assignment fo : P - {1,O} to the atomic formulae. <Jo> 

is a unary world, since its length is 1, consisting of just the one function. For 

the purpose of induction assume that k-ary worlds of the form < fo.... J-i > 

have been defined, and let Wk be the set of all k-ary worlds. Then a k-th order 

assignment is a function Jk : A -' 22  , associating with each agent a set of 

propositions, where each of these is a set of k-ary worlds. < fo, . . Jk > is a 

(k + 1)-ary world. Carrying out this process of construction to the limit gives 

us infinitary worlds: J =< Jo, fl , J2,... > is an infinitary world if each of its 

prefixes < Jo,.. . Jk-i > is a k-ary world. W,, is the set of all infinitary worlds, 

and W is the set of all worlds. 

W gives the set of all possible belief worlds, and thus is what is required as 

part of the Scott-Montague semantics. We can, however, restrict our attention 

to a subclass of W, but before seeing how, there are a number of restrictions on 
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the construction process to be outlined. One such restriction is obligatory, since 

it ensures the compatibility of a function extending a world with the functions 

preceding it. That is, an agent's higher-order beliefs should extend his lower 

order beliefs with the result that, if we were to remove the last level of construc-

tion from the set of propositions at any given level, we should be left with the 

propositions of the previous level (It should be noted that this is very different 

from the converse: to ensure that the set of (k - 1)-level propositions assigned to 

any agent were prefixes of any k-level propositions assigned to that agent would 

make the logic normal, which we do not necessarily want). The restriction that 

Vardi imposes is as follows: 

fk_1(a) = {chop(X) I X E fk(a)}, for each a E A, 

where for X C Wk, chop(X) is the set 

{<fo,...fk_2 >I<fO,...fk_2,fk_1>EX}. 

Agents clearly have little reasoning power as things stand, which leaves us 

free to choose how much they should have. The following are examples of the 

constraints that may be put on the construction of belief worlds, some of which 

mirror the constraints put on the accessibility relation in Kripke semantics, which 

allow the worlds to be tailored to various modes of reasoning. 

Baa D BaBaa. For all k > 1, if X E fk(a)  then {< 90,.. . g, >1  X E 

gk(a)} e fk+1(a). 

-Baa D Ba Baa. For all k > 1, if X V fk(a) then {< go,.. . g, >1 X 10 

gk(a)} E fk+1(a). 

Ba(a A i3) 3 Baa. For all k > 1, if X c V C Wk and X e fk(a), then 

YEfk(a). 

4. Baa A Ba13  3 Ba(a A 0). For all k > 1, whenever X, V E fk(a) then also 

X n Y E fk(a). 
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Ii' 

B,tfl1. For all k > 1, Wk_1 E fk(a). 

'Ba fa1se. For all k > 1, 0 V fk(a). 

Knowledge. <fo,.. . 	>e X, for all X E fk(a). 

If 3 and 4 hold the logic is called a quasi-filter. If, further, 5 holds, the 

associated model contains the unit and so is a filter; the class of filters determine 

the smallest normal system K. It is clearly useful that K is not generally valid 

in a class of these models. A sound and complete axiomatisation is achieved 

through all substitution instances of propositional tautologies and the inference 

that B0 a B0 /3 from a 13. 

Finitary belief worlds satisfy formulae as follows: 

1. <Jo, . . . fk > = p., where pi  is atomic, if fo() = 1. 

2.<fo,...fk>I= -1aiff<fo,...fk> & a 

3.<fo,...fk>=aA 3 iff<fo .... fk>=a  and  <fo  .... fl, >=fl. 

4. <fo,...fk>=Baaifk>1 and {wIwEWkandw=a}Efk(a). 

Because of the restriction on the construction of belief worlds which ensures 

that an agent's higher order beliefs are an extension of his lower order beliefs, 

determining satisfaction requires inspection only of a long enough prefix of the 

world. With the following definition: 

depth(a) = 0 if a contains no B-operator. 

depth(-a) = depth(a). 

depth(a A 3) = max{depth(a), depth(/3)}. 

depth(B0(a)) = 1 + depth(a). 
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Then where depth(a) = k and r > k, < fa,.. .f,. >= a if < fo,. . .f,c 

Now we are almost ready to choose the set W of worlds for the Scott-Montague 

semantics. First, satisfaction for infinitary worlds is defined: where fe,, =< 

fo,fi,... >, f1 = a if < fo, . . . fk  >= a, where depth (a) = k. Then it is shown 

that worlds can be extended conservatively. Worlds are said to be equivalent if 

they satisfy exactly the same formulae; and for every k-ary world < fa,.. . fk_1> 

there is an equivalent k + 1-ary world < ía,. . . ík-1, ík > which satisfies the same 

formulae. So it suffices in the model to consider W,,, the set of infinitary worlds. 

To this effect define prefixk (X) as {< fo, . . . f-i >1< fo,. . . fkl, fk,... >e X}; 

define N(a,w), for. all a E A, as 

{X I X C W and prefix(X) E fk(a),  for all k > O}. 

Then where the intension of p1  is 11(p1) = {w I w = p1}, the appropriate belief 

structure is the Scott-Montague model M =< W,, N, 11 >. 

By working through the cases in the definition of satisfaction for the semantics 

it is easy to see that M,f = a if f = a for any formula a and world f, and 

so the choice of W has the effect of making semantic equivalence identical to 

logical equivalence. Although agents cannot distinguish between semantically 

equivalent sentences, this is about the best we can achieve within a classical 

possible worlds framework. Vardi argues for the greater expressive power of 

this semantics over Kripke semantics 13, especially with regard to its modelling 

of both reasoning and context. Further concepts are explored by working out 

the exact correspondence he proves between the two: belief structures model 

particular possible worlds, while Kripke structures model collections of these 

possible worlds. Substitutivity of equivalents within epistemic contexts, however 

remains a problem here, but this seems inevitable for any propositional attitude 

13M well as previous references, see also Fagin and Vardi 1986 for an example of its 

use in modelling information and communication in distributed systems. 
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theory which models epistemic notion by sets of propositions, where these are 

sets of possible worlds. 

2.2 	Syntactical Theories Of The Attitudes 

The other main tradition within the field of epistemic logic may be charac-

terised by its treatment of the attitudes as predicates of sentences, a suggestion 

of which Quine was one of the most committed of the original advocates since it 

accommodates the modalities within a version of first-order logic. Such systems 

remain first-order in their quantificational form because it is not really sentences 

but rather names of sentences which are assigned to the extension of the epis-

temic predicate; and for this reason they are also known as quotational theories. 

If such a programme were feasible then its advantages would be obvious, for 

non-extensional contexts would no longer be a problem and within first-order 

logic with identity a solution to many of the philosophical problems concerning 

belief statements would be at hand. However the Lob-Montague results, later 

extended by Thomason, threaten many of these approaches with inconsistency, 

and so oblige their advocates to first diagnose then circumvent the cause of the 

problems. The results, which are in effect an extension of Tarski's theorem on 

the non-definability of a truth predicate, proceed by constructing an equivalent 

of the paradoxically self-referential Liar sentence within a syntactical treatment 

of modality. The paradoxical result Montague"' following an earlier result by 

L5b'5, arrives at is the following. First let T be a first order theory which is an 

14 Montague 1963 

'5L6b 1955. 
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extension of Q(ö),  Robinson's arithmetic" relativised to the formula 8 whose only 

free variable is u17. Assuming some standard godelisation scheme, Let < a > 

stand for the numeral in Q(ö)  denoting the Gödel number of the sentence a. Then 

suppose for some one place predicate of expressions K, and for all formulae a 

and /3 of T, the following conditions hold: 

FT K(< a>) D a. 

FT (K(< a)) A K(< a D,8 >)) 3 K(< 

FT K(< a >), if a is a theorem of logic. 

FT K(< K(< a>) D a >). 

Then T is inconsistent. 

The proof involves the construction of a self-referential sentence of the form 

a = K(< x 3 -a >), where x is a single axiom for Q(S).  Details may be found 

in the original paper. Montague concludes that: 

"if necessity is to be treated syntactically, that is, as a predicate of 

sentences... then virtually all of modal logic... must be sacrificed." 

"See, for example, Tarski, Mostowski and Robinson 1953, or Boolos and Jeffrey 1980, 

chapter 14, for the theory Q. 

17a(ö), the relativisation of a to 8, is defined recursively as follows: a(6) is a; (-ia)(6) is 

-ia(6); (a D )3)(6)  is a(6) D /3(6),  and similarly for the other sentential connectives; (Va)(6) 

is Vu(8(u) D a(6)), and (3a)(6) is 3u(8(u) A a(0). T(6), the relativisation of the theory 

T to 8, is that theory whose constants are the union of those of T and those occurring 

in 8, and whose valid sentences are the logical consequences within this language of the 

set of sentences 	where a is a valid sentence of T. The crucial properties of Q are 

that it is finitely axiomatisable and permits the representation of all one-place recursive 

functions of natural numbers. 
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Since inspection shows that epistemic logics of idealised knowledge share the 

same axiomatic structure as those of necessity, it would seem that these also yield 

a contradiction when knowledge is represented syntactically in this way within 

a language rich enough to permit gödelisation. And undoubtedly, any general 

approach to epistemic logic should be able to handle idealised knowledge. 

Thomason 18  shows that the result can be extended to languages without the 

first axiom, and so it is not the close tie between knowledge and truth which is 

the cause of the paradoxical result. Since condition (Ki) (at least) distinguishes 

between knowledge and belief, if it can be shown that logics of idealised belief 

lead to similar paradoxes then the contention that knowledge is somehow not 

a "purely psychological" concept since it involves the notion of truth could not 

then be used to sidestep the application of the results to certain psychologically 

motivated semantic theories". Let T be a theory as above, but suppose instead 

that the following conditions hold for all formulae a and /3 and for some one-place 

predicate of expressions B: 

FT B(< a>) D B(< B(< a>) >). 

FT (B(<a>)AB(<aD/3>))DB(</3>). 

FT B(< a >), if a is a theorem of logic. 

FT B(< B(< a>) D a >). 

Then by a proof similar to Montague's, for all formulae a, FT B(< x > 

) D B(< a >), where x is as above, through the construction of a paradoxical 

18Thomason 1980. 

19Thomason regards the theories of those such as Fodor 1978, Jackendoff 1976 and 

Katz 1977 as being rather programmatic examples of this type of theory. 
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sentence of the form c = (x D B(< -'a >)). So although T is not inconsistent, 

the belief of an apparently harmless tautology as well as -iB(< a >) for any 

a would render T inconsistent. It would appear that idealised doxastic logic 

cannot coherently represent belief as a predicate of sentences. 

2.2..1 The Consequences For Theory 

Responses to the paradoxes from those theorists who wish to maintain the syn-

tactical treatment of epistemic logic must all somehow obstruct the possibility 

of constructing a fixed point sentence for any formula in the language. It would 

however be useful for this approach first to establish just which feature of syntac-

tic theories is responsible for the paradoxes, for then not only would a solution 

be simpler to find but we would also be able to determine more precisely which 

theories are at risk from these results if some arithmetic machinery is added to 

them. Unfortunately the identification of the culpable feature is a matter of 

some controversy. Thomason regards the Lob-Montague results as putting strict 

limitations on the cognitively orientated semantic theories that are popular in 

cognitive psychology and linguistics 20, since these theories make certain assump-

tions which he regards as parallel to those at the root cause of the paradoxical 

results. The semantic representation of these theories comprise a recursive set of 

structures, allowing complex representations to be composed in a combinatorial 

fashion via certain principles from the basic constituents of representation. Since 

the ideal user of language is able to store the interpretation of his language, this 

must be explained by the existence of a recursive relation between a sentence 

and its semantic representation. If we suppose that the language contains the 

necessary arithmetical syntax and axioms to contain Robinson's arithmetic, and 

conditions 1 4 are met, then belief cannot be a predicate of the semantics 

20See previous footnote. 
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representations of sentences because this predicate can be converted into a pred-

icate of sentences and the paradox ensues. So Thomason regards the paradox 

as threatening not only those syntactic theories where the epistemic predicate is 

satisfied by sentences of the same language - which is the way in which Montague 

first presented it - but rather to have the more general implication of threatening 

with inconsistency any theory which takes epistemic notions to be predicates on 

representations structured in this way, whether or not the theory identifies the 

objects of the attitudes with sentences of its own language. 

2.2.2 An Alternative Diagnosis 

The claim that the recursive character of the representations that are the objects 

of the attitudes is the reason why these theories4re vulnerable to the paradox 

is strongly disputed by Asher and Kamp21, who gue that the problem is more 

widespread. Although there are some situations where it is an essential element 

in the derivation of the paradox, they argue, there are many cases where the 

paradox goes through without this assumption. All that is required to force it 

through is the ability to define a predicate - related to the epistemic predicate of 

propositions - on Gödel numbers of sentences, which satisfies the four epistemic 

principles of Montague or Thomason. The aspects of a theory that are relevant 

to this ability are whether it can represent the relation which holds between a 

proposition and a sentence expressing that proposition; the nature of the struc-

ture of its propositions, and whether the theory has the machinery to talk about 

this structure; and the form in which the epistemic principles are expressed. To 

illustrate, they suppose that the axioms of Q are added to the valid sentences 

of Montague's system of intensional logic, and demonstrate that the presence in 

the language of the sentence forming operator leads to paradox: 

21Asher and Kamp 1986. 
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"Let H be some particular gödelization relation - i.e. n stands in 

the relation H to sentence t/i if n is the Gödel number according to 

some chosen gödelization scheme of t/'. This relation determines a 

second relation C between numbers and propositions which holds 

between n and p if n is the Gôdel number of a sentence which 

expresses p. Semantically this relation is completely defined; i.e. 

its extension is fully determined in each of the models of this ex-

tended system of IL. It might therefore seem harmless to add to the 

given system a binary predicate to represent this relation; and to 

adopt as new axioms such intuitively valid sentences as a) G(n, ), 

where n is the n-th numeral and n is the Gödel number of &. b) 

(Vu)(Sen(u) D (!p)G(u,p)), where 'Sen' is the arithmetical predi-

cate which is satisfied by just those numbers which are Gödel num- 

bers of sentences, and c) (Vp)(C(n,p) D ( 	t/i)), where n and t' 

are as under a). However this addition renders the system inconsis-

tent: for we can now define a 'truth' predicate T of Gödel numbers 

T(u) = (p) (G(u, p) and p) for which we can easily show that T(n) is 

valid whenever n is the Gödel number of ip. The inconsistency then 

follows in the usual way." ppi33-134. 

So the impossibility of representing within IL - Montague's intensional logic 

- a semantically well-defined relation is independent of any assumptions about 

an attitudinal predicate, but the addition of C may be blocked in weaker sys-

tems by the presence of such a predicate governed by the usual epistemic prin-

ciples: if we could define an attitudinal predicate B' of numbers as B'(n) = 

(p)(G(n,p) and B(p)) and show that the principles governing B also  hold for 

B', then the contradiction would go through. In these cases it is not the recur-

siveness assumption that is critical, but rather the ability of the theory to relate 

the syntactic structure of its own sentences to whatever it assumes to be the 

objects of the attitudes. It appears that a framework for avoiding the paradox 
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may be open to the advocates of syntactical theories, which takes the form of 

excluding the machinery which permits a relation of this type, perhaps via a 

strategy parallelling some solution to the Liar paradox, its extensional cousin. 

2.2.3 Restricting The Syntax 

A practical approach to avoiding the paradox is to prevent the construction of 

the fixed point in the derivation of the contradiction by restricting the extent to 

which the language can be used to talk about its own syntax, and so avoiding 

self-reference. One such proposal, from des Rivières and Levesque 22, is of some 

interest since it creates the foundations of a syntactic treatment of modality 

by identifying and then placing restrictions on another mainstay of Montague's 

proof. Then they are able to define a consistency-preserving translation function 

from modal languages to 'classical' first-order languages with the modal opera, 

tor reinterpreted as a syntactic predicate. Part of such a process must involve 

the translation of modal schemata such as D a D a into L(< a >) 	a, the 

corresponding schema of what they call the classical language, and the strat-

egy is to restrict the syntactic domain of the target language over which the 

schematic sentence letter should range. Sentences which are of the form 3xL(x), 

for example, have no equivalent in the modal language and so should not be 

seen as belonging to the set of sentences in the classical language over which, 

the schematic letters may range in the translation process. The range of such a 

translation function on sentences of the modal language would be only a proper 

subset of the classical language, so any correct translation of a modal schema 

must be one whose schematic letters range over just this subset. Sentences be-

longing to this subset are called regular, and this restriction to regular sentences 

22des Rivières and Levesque 1986. 
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blocks the application of the Lob-Montague results to the logics based on the 

associated translation. 

Sketching their results briefly, they define an embedding as a translation func-

tion which maps atomic formulae to themselves, distributes over the connectives 

and quantifiers of first-order logic and leaves unchanged the free variables of the 

source formula. A particular embedding of the formulae of the modal language 

L( 0) in the formulae of the classical language L(C) is then defined in such as way 

that the mapping preserves derivability: first, • is defined to be a 1 - 1 embed-

ding ofL(o) in L(C) which has the property (Da)' = L(< & >,xi,x2  ...x)23  

where (x1, . . . x,) are the ordered free variables of the formula a, and the set of 

regular formulae is defined to be L(D)*. Then it is shown that for all formulae 

a E L(CD) , and sets of formulae r c L(D), letting r = { 8 1 0 E }, if 

the translation function . : L(Li) -* L(C) is such that for every 1' ç 

r F- a if r F-  & then for all r C L([]), r is consistent if T is consistent. 

They further prove that satisfiability and theoremhood can be preserved by a 

particular embedding of L(o) In L(C), and so any consistent set of sentences in 

the modal language can be reduced in this way to a consistent set of sentences 

of the classical language, where a syntactical predicate takes the place of the 

modal operator. An attempt to push through the Lob-Montague results on this 

language now fails: if we augment it, as before, with Robinson's arithmetic and 

the four schemata of Montague's or Thomason's proof, holding only for regular 

sentences, a counterexample to the theorem can be found. The construction of 

a fixed point sentence such as Thomason's a = (x D B(< -'a >)) is not possible 

23The subscript n varies according to the number of free variables in the formula 

being predicated. Quine 1979 shows how such a family of predicate symbols may be 

reduced to a single 2-place symbol Le  taking as its second argument a finite sequence 

of variable-value pairings such that this becomes (Da)' = Le  (< & >,((< xi >,xi),(< 

X2 >, X2),.. . (< Xn >, xc))). Such matters help in constructing a finite axiomatisation. 
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because it is not regular, and the restriction to regular sentences fails to provide 

axioms that apply to a. This strategy of restricting the range of formulae the 

names of which are allowed to satisfy the syntactical modal predicate is thus a 

good illustration of the Lob-Montague results, delimiting more clearly the prop-

erties of theories which are dangerously self-referential. Inconsistency does seem 

to have been avoided in a first order formalisation of modality, and a tractable 

alternative to intensional logic may appear closer. But the reason why only a 

subset of the formulae of the language can be fully described as such - although 

all the formulae have encoding terms, for many of these this cannot be made 

explicit - has not really been properly motivated. The fact that this saves the 

theory from contradiction may justify the strategy from a practical perspective, 

but it does not explain why a contradiction would arise were we to talk about 

any of the sentences other than the regular ones. A plausible motivation is still 

required, which would involve explaining this curious and unintuitive fact, for 

why this particular subdivision of the language avoids a contradiction, but it is 

difficult to see why things should be so. 

2.2.4 Truth Value Gaps 

Given the standard treatment of truth as a predicate of sentences and the effort 

that has gone into developing theories to deal with the Liar paradox" it would 

not be surprising should similar treatments of syntactical theories of the attitudes 

provide a means of blocking the Lob-Montague results. A number of new theories 

of truth have been developed in the past few years through dissatisfaction with 

the unintuitive restrictiveness of Tarski's 'hierarchy of languages' approach, and 

these suggest that parallel, though more complicated, treatments of the attitudes 

may be promising. Thus one such method might involve simply carrying over 

14A useful collection of essays dealing with this subject is to be found in Martin 1984. 
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the model of truth and using it along with some notion of belief in the definition 

of knowledge. Tarski envisaged the separation of paradoxical sentences from 

non-problematic ones to lie in making truth language-external through a stage-

by-stage construction of a hierarchy of languages, none of which could contain 

the means to predicate truth of its own sentences. L0  is defined to be the usual 

language of first order predicate calculus, but with the means of discussing its 

own syntax and without its own truth predicate. A metalanguage L1  for L0  is the 

next stage, and in L1  we define the predicate true1, applying to sentences in L0. 

The process of construction is iterated to give the sequence {L0 , L1 , L2  .. .. } of 

languages each with a truth predicate for the preceding language. Thus sentences 

such as 'ci is true,,' may belong to the extension of true,,+ j, but must fall outside 

the extension of true,,, assuming that c contains no predicate true,,, for any 

m>n. 

Kripke25, amongst others, has argued against an implicit subscript in our 

ordinary usage of the concept and against the possibility of a unique assignment 

of levels to certain general statements involving truth. Moreover, assignment 

of levels on a sentence-by-sentence basis is not possible in cases where the sen-

tences refer to other sentences: Kripke's example is the situation where Dean 

asserts "All of Nixon's utterances about Watergate are false" and Nixon says 

"Everything Dean says about Watergate is false". It is impossible consistently 

to assign intrinsic levels simultaneously to these two sentences on Tarski's ap-

proach. These and other reasons led Kripke to develop an alternative theory 

of truth which retains something of the stage-by-stage process but with a sin-

gle concept of truth, and which gives up the distinguishing classical principle of 

logical bivalence. Instead of having a series of different truth predicates, each 

defined at different stages and totally defined over the whole domain, there is 

to be one truth predicate which is given a progressively richer interpretation as 

25Kripke 1975. 
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we proceed to higher stages until the process saturates, and then we can distin-

guish between paradoxical and what he calls grounded sentences. To allow the 

truth values of sentences to be undecided at stages in the evaluation process, 

a semantical scheme that permits partially defined predicates is required, and 

Kripke opts for Kleene's strong three-valued logic26. Given a non-empty domain 

D and an interpretation function I, -a is true (false) if a is false (true), and 

undefined if a is undefined. The truth of a disjunction requires the truth of 

at least one disjunct; it is false if both of its disjuncts are false, and is other-

wise undefined. The other truth functions may be defined in terms of these. 

3xP(x) is true if P(x) is true for some assignment by I of an element of D to 

x; false if P(x) is false for all such assignments to x, and undefined otherwise. 

VxP(x) is defined as -ix--iP(x). Let M =< D,I> be a model for a first-order 

language L, the variables ranging over D and n-ary predicates interpreted by 

totally defined n-ary relations on D. M is assumed to be fixed throughout the 

following definitions, and L is assumed to be enriched with some coding scheme 

allowing it to express its own syntax. L is then extended to include the par-

tially defined monadic predicate T interpreted by the pair of sets (UV), for 

U, V C D and U fl V = 0. U is the extension of T and V is the anti-extension of 

T. Let ic be the valuation scheme for sentences in a model M + (U, V), and let 

ICM(< U, V >) =< U', V' > where U' (V') is the set of sentences true (false) in 

the model M + (U, V) according to SCM. Say that <U', V'> extends < U, V>, 

or < U, V ><< U', V' >, 1ff U ç U' and V C V', and that ic is monotonic if 

,CM(< U,V>) ~5 ,c(< U',V'>) if < U,V ><< U',V'>. Since Kleene's strong 

three-valued logic will be a monotonic operation on <, then although previously 

undefined sentences may receive a definite truth value in the process to be out-

lined, and so extend the interpretation of T, once a truth value is established it 

never changes or becomes undefined. In other words, < U, V > < ICM(< U, V >), 

26Kleene 1952; section 64 
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and so 'tM  is an increasing function. We begin with the interpretation of truth 

as <0,0>. Applying ic to M + (0,0) gives a set U of codes of sentences that are 

true in M + (0, 0), and a set V of codes of sentences that are false in M + (0,0) or 

are not codes of sentences in M + (0,0); and so at stage one we are to evaluate 

sentences in M + (UV), for here the interpretation of the truth predicate is 

< U, V > (= cM(< 0,0 >)). At the next stage the interpretation of the truth 

predicate is ICM(ICM(< 0,0 >)), and so on. Kripke proves that if this operation 

is performed often enough, perhaps transfinitely many times 27, there exists a 

minimal fixed point ICM(< U, V>) =< U, V > of 'CM,  a point such that for any 

fixed point < U', V' > of 'CM, < U, V ><< U', V' >. Here we are no longer 

able to assign truth values to any more of the statements, no matter how many 

more applications of ICM we perform. A sentence a is grounded in a model M 

for L if for the minimal fixed point < U, V> of KM , a E U U V; otherwise it is 

paradoxical. In particular the Liar sentence is paradoxical. 

Using this construction it is now possible to define knowledge as true belief in 

such a way that the paradoxical knowledge sentences turn out to be ungrounded. 

To avoid Thomason's results, the concept of belief used to define knowledge must 

not satisfy some axiom of idealised belief, and so we reject the fourth axiom 

Ba  (B0a D a). This resolution of the paradox therefore centres on the role of 

truth in the definition of knowledge, taking for granted the fact that the syntactic 

predicate 'believes' is always a well-defined relation between agents and codes of 

sentences, and does not lead to inconsistency. K(a, < a>) is then defined to be 

true at a stage in the construction if B(a, < a >) and a is in the extension of 

T at the previous stage; it is false if B(a, < a >) is false or if a is false at the 

27At limit ordinals one takes the union of all sentences declared true or false at previous 

levels, so 1M  is a continuous function, and remains increasing. Such functions are called 

normal functions, and it is well known that all normal functions have arbitrarily large 

fixed points. 
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previous stage; and otherwise it is undefined. This construction is monotonic, 

and it eventually results in a fixed point for truth as well as for the set of what is 

known by any agent. The result is a model for knowledge where the paradoxical 

sentences are ungrounded. 

2.2.5 A Classical Solution 

A more sophisticated adaptation of a strategy for handling the Liar paradox 

has been proposed, one which also casts doubts on (B4) but may allow for its 

reinstatement in a weak sense. Asher and Kamp choose to adopt the method of 

Herzberger28  and Gupta 29, and present their analysis within a traditional possi-

ble worlds framework. Put simply, the extensions of the predicate, according to 

this method, are classical rather than three-valued, and the stage-by-stage pro-

cess that leads to the model of truth or belief is characterised in a quite different 

way to Kripke's strategy. Whereas Kripke used a cumulative procedure which 

assumed, according to Gupta, that truth had an application procedure associ-

ated with it which determined its extension in the world and then increased this 

through iteration, Gupta characterises the concept by a different procedure. It 

is not a cumulative procedure but rather a process of revision which underlies 

the concept; a rule allowing us to improve on any given proposal for the exten-

sion of truth by coming up with better candidates, rather than just bigger ones. 

Preservation of the genuine improvements brought about by repeated applica-

tions of the procedure is achieved by collecting through a stability property at 

limit ordinals the initial extension along with those sentences that eventually 

stop fluctuating in and out of the extension as we proceed through the previous 

stages of revision, subtracting from these those sentences that eventually never 

28Herzberger 1982 

29Gupta 1982. 
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feature in any improvement. This decision is not final: at higher limit ordinals 

this collection of the effects of these improvements may turn out to be illusory, 

but in favourable conditions it can be shown that the revisions stabilise at a fixed 

point. Moreover this fixed point is the same no matter what initial extension 

was chosen - the arbitrary character of this set is made irrelevant by the revision 

rule. 

This is the general method adopted by Asher and Kamp. Simplifying, their 

models for a first order language L with a one-place predicate B, interpreted 

as 'believes that' for a single agent, are of the form M =< W, D, [ ],R >: W 

is a non-empty set of worlds; D assigns to each world w a non-empty set, the 

universe of w - in fact M has a fixed universe, the universe of each of its worlds 

is the same; I  assigns to each non-logical constant of L a classical extension at 

each world. For all W, W I E W and each individual constant c, [c] = [c]t, and, 

moreover, every sentence is in the fixed universe of M. They note that this fairly 

traditional-looking model allows for two methods of determining the truth value 

of Ba at a world w: Ba is true in M at vi if < a >E [B]M,; or alternatively, 

if a is true at all vi' such that RWW'. If these two methods are equivalent, the 

L-model is called coherent, but there are many models where this is not the case; 

the definitions can conflict, and then there is a problem about evaluating belief 

sentences. The method Asher and Kamp adopt is to evaluate sentences using 

the extension of the belief predicate. First, given a model M, they define for 

each ordinal -y the model M1, where M =< Wm, DM, RM, F ] >, and where 

[Q] = [Q]M for all non-logical constants Q other than B. Then: 

[B]=[B]. 

[B]' = {a I Vv(Rwv = [a]M 	1)). 

For a limit ordinal y = X, [B] = {a I 	~ AV'y'(ö -y' < A = a E 
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A model structure is a model in which B has not been interpreted. A model 

structure is called essentially incoherent if no coherent model can be formed from 

it. These clauses for B are the direct intensional analogue of Gupta's stability 

property of his revision procedure for collecting stably true sentences at limit 

ordinals, except for one thing: the initial extension of 'B is minimised in this 

definition, whereas Gupta's included its analogue in its definition. 

Whether a model M becomes coherent after revision depends on three factors: 

the initial extension [B]°  ; the constraints on RM , and the forms of self-reference 

that are realised in M. Concentrating on the results of most relevance here, the 

following assignments to the constants a and r are the self-referential sentences 

to be considered: [aIM = -B(o) and [TIM = B(r). Let <M be the transitive 

closure of the relation holding between two constants c and d if c names in 

M a sentence containing d. Then M is said to be non-self-referential if <M is 

well founded. Given these definitions, the following propositions hold: if M is a 

non-self-referential model structure, then 

There is an intension [B] such that the model obtained by adding [B] to 

M is coherent; 

For any model obtained from M by adding intensions for B, there is a 'y 

such that M1  is coherent. 

And secondly, if we suppose that a model, is coherent and its relation is transi-

tive, and also reflexive on its range30, then all the instances of the axioms 1 - 4 

of Thomason's proof are true at all worlds in that model. These results are 

interesting with regard to how certain constraints can result in coherent models 

which contain a degree of self-reference. In a model structure M which contains 

T but no other form of self-reference, it can be shown that if R is transitive and 

301f xRy then yRy. 
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reflexive on its range, then any model obtained from M will be coherent after 

one revision. Without these assumptions on R, the model structure does not 

determine the truth value of r, for this cannot here be determined without refer-

ence to the initial extension of B. What is required is an appropriate choice for 

[B]. It appears, then, that the axioms of idealised belief may be accommodated 

in a logic which contains a benign form of self-reference, although there remain 

important questions to be answered about the logic 31. Noting that models with 

vicious self-reference of the form of the sentence a start out incoherent and re-

main so upon revision, Asher and Kamp tentatively define a sort of stability 

which they can achieve, and this allows axioms 1-3 to turn out valid, but yields 

counterinstances to 4. First they note the result that, for each L-model M there 

is a least ordinal y such that 

For each w E WM and each sentence a, a E [B], if V'y' ~ 
'rny, 

a e 

and 

There is an ordinal 'y' such that for any bl, b2 > , if there is a e <'y' and 

some 71, 72 such that b, = -y'7r1 + e and b2 = '1'7r2 + C, then for all w E Wm, 

[B] 	= [B] 12 . 

Excluded from [B] , are those sentences a such that a [B]7 , for all -Y' > ' 

— the anti-extension of B at w — as well as those that fluctuate in and out of 

[B]: those whose status never gets settled. The result captures the fact that 

the revision process becomes cyclical after -y with a fixed period. M1 is called 

a metastable model, and the idea is to identify the valid sentences with those 

true in all metastable models. Making this assumption and constraining R to 

be transitive in the metastable model M, then all instances of axioms 1 - 3 

are true at all worlds in Wm,. With further constraints 4 can be falsified. But 

"The definition of logical validity is a case in point: see below. 
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constructing a partial model, perhaps using Kleene valuations, for the extension 

and anti-extension of B in M 1, those sentences that continue to fluctuate after 'y 

would not be assigned a truth value, and this allows a weak kind of reinstatement 

of the schema 4; the valid sentences could simply be identified as those that never 

come out false in any of these partial models associated with the metastable 

models, and this schema will never be false since it always lacks a truth value 

there. 

2.2.6 Conclusions 

This demonstration of how all four axiomatic schema may be reinstated in a 

logic where belief is a predicate of sentences, but where the semantics is partial 

and self-reference permitted, shows how little has to be given up to avoid the 

Lob-Montague results - the absolute validity of the fourth axiom 32. Given the 

logical framework used, it is an unavoidable consequence that logical validity 

must somehow be redefined: for example, it is not clear whether the notion 

of truth at all worlds in all models should include incoherent models, nor is 

it obvious how to motivate any particular choice of a distinguished subset of 

models. The strategy of modelling the structure of solutions to the problems 

revealed by the Lob-Montague results on those techniques already developed to 

circumvent the Liar paradox is nevertheless a programme that promises to bear 

fruit. It remains the case that to treat semantic representations as syntactic 

objects leads, given certain assumptions, to a proof that the knowledge and 

beliefs of the ideal agent are inconsistent. And still, the assumptions opposed 

by Thomason, which regard the semantics so described as a theory of ideal 

semantic éompetence where this is presented as being in a psychological state 

which is the end process of systematic translation and calculation, are in need of 

32And, for reasons not gone into here, Tarski's convention T. 
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urgent revision, in particular with regard to their close identification of theories 

of meaning with the ideal agent's semantic competence. The Lob-Montague 

results continue to press home this philosophical point in spite of these technical 

changes which issue in a consistent theory. 

There are many further issues within this field and areas of application for 

the models which we can only briefly mention. Some of the semantical theories, 

for example, have been given concrete interpretations as models of distributed 

systems. These consist of a set of processors connected by a communication 

network, the state of each processor being in part a function of its initial state 

and the messages it has received. By taking worlds in, for instance, a Kripke 

structure to be descriptions of the states of all processors at some particular 

time, the relation may then be defined for a processor i as holding between 

worlds if i is described as being in the same state in those worlds. Here the 

worlds of the Kripke structure are given a clear interpretation and the epistemic 

properties being modelled in this application might quite naturally include logical 

omniscience. So in this setting semantic possible worlds theories are very well 

suited to an analysis of reasoning and it is not difficult to find interpretations 

for more complex epistemic concepts which may also be applied in interpreting 

human reasoning. Common knowledge and mutual belief have a straightforward 

semantics in most of these propositional theories, and Vardi has shown how to 

accommodate within a Scott-Montague semantics comparative judgements of the 

knowledge states of an agent, as well as limits on his knowledge. Interpretations 

can be given to statements such as "I know more today than I did yesterday" and 

"I know that a, and that's all I know". Other issues we have not discussed include 

the work in artificial intelligence that has gone into exploring how knowledge 

affects action, where it is being recognised that finding models for agents who 

have partial knowledge of the problem domain and do not know all the axioms 

of the system will be necessary if agents are to have recognisably human powers 

of reasoning. Here care must be taken with regard to consequential closure in 
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the theory, be it syntactic or semantic. And there are also problems that arise 

in characterising the state of knowledge of an agent after receiving information, 

especially if the communication medium allows the transmission of statements 

about knowledge. 

These are just some of the ways in which it is possible to develop the epis-

temic logics presented here. Another obvious and superficially straightforward 

development is to extend the semantic theories to accommodate-quantifiers. This 

move, however, introduces to the subject a host of new conceptual desiderata 

and, especially in the case of intensional theories, technical complications which 

would have demanded a lengthy separate treatment which space precludes. Iden-

tity and quantificational inference rules for quantified epistemic logic introduce 

questions, just to begin with, about what sort of entities are to be quantified over, 

and how to handle non-rigid terms and world-relative domains33. But having the 

means to express in a technically sound manner plausible forms of propositional 

reasoning promises to provide some useful conceptual and technical groundwork, 

as well as to give rise to a large and varied number of interpretations which are 

of worth in themselves. 

33Garson 1984 gives a flavour of the kind of problems to be encountered in quantified 

modal logic even without worrying about problems such as logical omniscience; we 

sample some of these problems in chapter 3. 



Chapter 3 

Solutions To The Problem Of Logical 

Omniscience II 

In this chapter are outlined several logics of belief, mainly designed for the spec-

ification of knowledge representation systems, which are based on modal logics 

and which, we argue, at least implicitly give logically motivated accounts of de-

ductive reasoning in their attempts to avoid some of the problems of logical 

omniscience. Recall that these problems, traditionally inherent in epistemic log-

ics, are that all valid formulae are believed, all the classical logical consequences 

of what is believed are also believed, and belief is closed under modus ponens 

in the sense that if a and a /3 are believed, so is /3. The thesis is that there 

are two identifiable logical tasks in providing a logic of belief with this objective. 

The first is to provide the logical principles of reasoning by means of which are 

generated the beliefs that a fairly rational agent must have, given certain oth-

ers. This logic defining the valid argument schemata in reasoning shall be called 

the logic of commitment. Secondly, a language with a semantics which respects 

the logic of commitment must be provided in which the agent's beliefs can be 

exhibited, discussed, analysed logically for what they actually entail, and com-

pared with what is actually the case. The first task works with what are known 

as the explicit beliefs of the agent, whereas the second objectifies this concept, 

and further introduces the concepts of implicit belief anuth. The first four 

51 
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logics presented are semantic accounts which may be regarded as recognising the 

importance of the first of these logical tasks; they make use of inconsistent and 

incomplete situations, using truth and falsity support relations in evaluating the 

sentences of the ground level language where beliefs are exhibited. With these, 

the objective occasioning the importance of the first task is that of a good com-

putational performance in the intended knowledge base application of the logic, 

especially for sentences of the form Ba D B13 -.B being the doxastic operator - 

where the consequences of a body of facts stored in a knowledge representation 

system must be retrieved in a reasonable amount of time. These requirements 

explain the emphasis on normalisation theorems for a and 8, and the choice of 

relevance logic entailments between these normal forms which can be checked 

to hold be means of a simple and efficient decision procedure. This restriction 

to a proof-theoretic subsystem of classical logic is motivated in this context by 

the consideration that to retrieve the consequences of a body of facts stored in 

a knowledge representation system in a reasonable amount of time requires a 

weakening of the powerful deductive capabilities of classical logic in favour of 

the decidability and computational tractability of inference. The choice of this 

particular subsystem guarantees error-tolerance: that is, it ensures that the se-

mantics does not sanction as correct any answer whatsoever to a query when 

the database contains contradictions, thus avoiding the intractable alternative 

of processing the whole database to eliminate contradictions before every query. 

Explicitly including a belief operator for explicit belief in the logic allows the no-

tion of implicit belief to be modelled as long as there is also provided a definition 

of what it is for a situation or a world to be classical - that is, to be consistent 

and complete. Beliefs can then be analysed by means of classical logic, and it 

is straightforward to extend the logic to allow it to talk about non-epistemic 

truths. An aspect of this move essential for its success is the possibility of a clas-

sical definition of validity for modal as well as propositional formulae. Allowing 

embedding of operators further permits introspective reasoning, but given their 

intended use this aspect of the logics is widely ignored. The final logics also 
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attempt to use explicit belief to avoid logical omniscience, but in two-valued 

systems which use a formal notion of awareness: it is shown how an important 

fragment of the first of these can be given a more revealing treatment when 

its semantics are standardised with those of the other logics; the chapter ends 

with a suggestion of a more semantically natural interpretation of the concept 

of awareness used in the second logic, which has a strongly syntactic flavour. 

The general emphasis in these logics is on which beliefs must follow, given 

certain others - in other words on the logic of commitment for belief - given the 

fact that fairly straightforward deductions must correspond to the implications 

validated by the consequence relation for the logic of commitment. Thesishood 

is a far less important notion for logics of belief than is deducibility, or entail-

ment - even if there are things which everybody knows, these are less interesting 

and less susceptible to logical treatment than is how they are known, that is the 

inference process by which new truths are discovered from old. This indicates 

one of the reasons why the usual conception of a logic of belief is not already 

realised in classical logic: if we took the material conditional to objectify the 

correct notion of inferential reasoning, then the deduction theorem would make 

dangerous connections between these two notions which a logic of belief ought 

to keep at a reasonable distance from each other. It should not in general be 

possible to use the material conditional as an object language correlate for the re-

lation of consequence in the theory of deductive inference, where this is intended 

as a logic of commitment for belief. Thus epistemological considerations force a 

non-extensional characterisation of the deductive system here in the sense that 

its correct deductions cannot be characterised by, or in some sense reduced to, 

the set of formulae it validates: this set cannot serve as a criterion of identity, 

contrary to the case in classical systems of deduction. The aim should be to 

discover a weaker consequence relation and then most importantly, somehow to 

embed this metalinguistic relation into a classical or other base logic, so exhibit-

ing the valid forms of reasoning. For if this were not possible we could not use 
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the logic for the purposes in mind - the discussion of knowledge characterised as 

generated by this relation - for the relation would be flanked by either mentioned 

sentences or metavariables. This problem is of course not a new one; and since 

nearly all of the logics that are examined below can be seen, whether or not by 

design, as injecting a consequence relation into a classical object language, it is 

worth looking at the ideas underlying this procedure. 

C. I. Lewis wanted his theory of strict implication to be a theory of deductive 

inference, where the implicative connective was flanked by 'unanalysed' propo-

sitional variables -rather than by mentioned sentences or metavariables. Even if 

history judges that Lewis's analysis of deductive inference was faulty and that 

the concept is better handled by Gentzen's idea of conditional assertion, written 

F-, Lewis's approach is nevertheless still workable when corrected by Gentzen's 

analysis'. 

Leading up to the idea of using the relation F- of Gentzen's conditional as-

sertion as the implicative connective, the letters flanking I- remain unanalysed 

propositional variables when it is allowed that they are potential bearers of truth 

values; that is, when we have in mind some set of intended valuations V from the 

language into a set of truth values, in terms of which the relation I- is defined. 

In the general case, any set of truth values is permissible, and it need not be 

assumed either that variables always receive a value or that they receive a unique 

value. Given a particular definition with respect to some chosen set V, the prop-

erties of I- may then be given in terms of true metalinguistic statements known 

as inference rules, these being true - or, perhaps more generally, designated - 

with respect to the choice of V. If a set of rules adequately axiomatises I- in the 

sense that all other valid rules can be proved from them, then this provides the 

'Scott 1971 is a very clear defence, against Quine, of this point of view, and on 

which much of the following relies. See especially his argument that any suggestion of 

use/mention conflation in the construction outlined below can be effectively countered. 
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basis for a general theory of deductive inference conceived as a metalinguistic 

activity. There is no prohibition on simultaneously defining two or more dif-

ferent consequence relations which meet the above specifications, although the 

metalanguage may have to state in which ways they relate to each other, and for 

theoretical simplicity as well as notational convenience this will nearly always 

require that there be one theory in terms of which others are defined. Given this, 

and instead of formalising the metalanguage, the Lewis approach is, pace Quine, 

to inject part of it back into the object language by means of non-Boolean oper-

ators, which are usually but not always unary: the language is extended so that 

it can itself reflect the permissible deductive inferences, according to the chosen 

relation F-. When the language is extended by the new syntax, there follows a 

second construction process whereby valuations are extended and the new oper-

ators are interpreted with reference to the values received by the operand under 

some (not necessarily proper) subset of the set of all the new valuations. At 

this stage there are many critical and subtle alternatives available. In the cases 

examined below, the syntax and, semantics taken to be most convenient for the 

resulting system are those of modal logic, the formal calculus invented by Lewis 

for very similar purposes. And while of course Lewis's calculus has been devel-

oped into an extremely rich and productive area of semantic and philosophical 

research, it is possible to see the apparent innovations proposed in these cases as 

being merely the syntactic side-effects of grafting a chosen metalinguistic theory 

of consequence onto a classical language. The awkwardness of the models in 

their definition of validity certainly suggests this. And if this is so, the main 

source of value in studying them may be from the perspective that regards them 

as viable epistemological instances of a promising and more general approach 

to the disparate applications within this field of research; at the very least the 

simplicity of the higher level analysis provides a unified means of making sense 

of their various lower level complexities. If a logic of belief is seen in this way as 

built around a theory of reasoning, then the demands of both computational and 

conceptual motivations for avoiding logical omniscience could probably both be 
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equally be satisfied, without serious loss of expressive power. As will be seen, 

the definition of belief could arise out of objectifying the semantics of a conse-

quence relation chosen either for its syntactic association with proof-theoretic 

restrictions on the use of assumptions in a valid piece of reasoning, or because 

it modelled semantically the way in which the conceptual repertoire of an agent 

constrains his inferential abilities. These features of reasoning would then show 

up in the consequent definitions of belief, but the easiest point of comparison 

- and the most important given that they are designed to avoid logical omni-

science - would be in terms of the consequence relation. This approach plays 

down the essential value of non-Boolean operators in understanding (as opposed 

to expressing) epistemic concepts, and so does not guarantee the meaningfulness 

of iterated beliefs, so these are for the most part omitted from this discussion. 

3.1 Propositional Logics 

Loosely following Barwise and Perry 2, Levesque3  replaces possible worlds with 

situations, which are partial in the sense that they support not only the truth 

or falsity of sentences, but may support both of these or neither of them. In this 

way he can be seen to be building on the idea inherent in Hintikka that model 

sets need not be maximally consistent, but he goes further and abandons the 

constraint of downward saturation - and even that of consistency - which, as we 

saw, induces a form of logical omniscience in Hintikka's model systems. Explicit 

belief is to be identified with sets of situations rather than sets of possible worlds, 

where in Levesque's terminology a possible world is a complete situation, a situ-

ation which supports either the truth or falsity of every primitive formula, but 

2Barwise and Perry 1983. 

3Levesque 1984. 
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never both. He uses situations rather than possible worlds because {a, a D /31 

and {cr, a D #,,6} are true in exactly the same downwardly saturated possible 

worlds and so are semantically equivalent; belief would then be closed under im-

plication and we have succumbed to one of the problems of logical omniscience. 

Identifying belief with sets of incomplete situations rather than sets of complete 

possible worlds is the method Levesque adopts to circumvent this problem, for 

sentences not relevant to what is explicitly believed, perhaps including tautolo-

gies, need not be assigned a truth value in partial situations. His logic is limited 

to one agent and does not allow for the embedding of operators. It defines the 

set L of formulae from the standard connectives A, V and -i, as well as the unary 

modal operators B and L, standing for, respectively, explicit and implicit belief. 

Non-atomic formulae are formed from the set P of atomic formulas in the usual 

way, except that only formulae without a B or an L can occur within the scope 

of a B or an L. Levesque's model is a structure M =< S, B, T, F > where S 

is a set of situations, 0 i4 B CS are the situations considered possible, and T 

and F are functions from P to 2. T(p1) (respectively F(A)) are the situations 

which support the truth (falsity) of p.  Some comments on these structures are 

in order. Typically modal logics use a relational semantics based on the notion 

of a Kripke frame, where a binary relation R is defined over the universe S to be 

used in the valuation clause for sentences containing the modal operator, in such 

a way that the truth at some s E S of a modal formula depends in some way 

on the truth of the embedded formula at members of the set {t I sRt}. There 

are however two features of Levesque's logic which allow the set B to suffice. 

No embedding of operators is allowed, and so we may simply associate a set of 

situations with each situation: this restriction stipulates that there will be no 

need to look further at the set of situations associated with each member of that 

set. And since, in addition, the situations believed possible at all s E S are 

taken to to comprise the same set, it is technically sufficient to use the one set 

B c S instead of a relation. If meta-beliefs were allowed into the logic without 

changing the model structures and a relational notation were introduced, then 
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for any s the set {t I sRt} of situations believed possible at s would always 

be the whole of the set B; the restriction of R to {t I sRt} would then be an 

equivalence relation, which is the characteristic feature of the modal logic weak 

S5. For future reference, this logic is obtained by adding to the minimal normal 

modal logic K the axiom schemes Ba D BBa, -'Ba D B-'Ba, and -'B(false), 

where false is the false propositional constant. It is sound and complete for 

transitive, Euclidean and serial Kripke frames. This is in fact the preferred set 

of constraints on the relational models given later in this chapter. 

To illustrate some features of the logic which will arise from its use of the 

two assignment functions, it may be helpful to look at one way in which the 

usual notion of a proposition might be expressed here. It clearly cannot be a 

function from the set S of situations to {T, F}, the set of truth values: there 

is no requirement that for any s and p, s must belong to one and only one of 

T(p1) or F(p1), and since the proposition determined by any function associated 

with p1  would take situations to unique truth values, this is too restrictive a 

notion to give what is required. Moreover, sentences may receive no value at 

situations. This may suggest that the range of the function should instead be 
2{T,F'}, allowing in addition for the assignment of both truth values and no truth 

value to sentences, but as it stands this approach is slightly misleading in this 

context, although it is easier to work with and so will be the perspective we adopt. 

It does however disguise the fact that if a sentence is assigned both-T-and-F (one 

of the four truth values), then it is both T and F (two of the other truth values). 

The point is that as things stand the functional approach creates four distinct 

truth values - the members of 2{T,F} - whereas, at least from the perspective of 

these models, only two are required: the classical values without their classical 

assumptions of disjointness and exhaustiveness. One natural approach which 

satisfies these criteria is to see a proposition pi  as being a relation between the 

set S of situations and the set {T, F}, to be represented by the value pair, or as 
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it is technically known the polarity (T(p1),F(p1))4. This fits in neatly with the 

idea that the support relation H for models to be defined below may be thought 

of as a three place relation between situations, formulae and truth values, in 

which pairs of situations and formulae need not be related to a unique truth 

value: thus ambivaluation, or two clauses for each connective, is used in this 

definition, and this is heuristically useful in explaining why logical omniscience 

fails. 

A possible world s is defined to be a situation s such that s E •T(p1) or 

s E F(p), but not both, for every pi e P. A situation s is compatible with a 

situation s' if they agree wherever a is defined, that is: 

Ifs E T(p), then a' E T(p1), for all pi  E F, and 

if a E F(p), then a' E F(p1), for all pi E P. 

In particular, a possible world will be compatible with a situation if every sen-

tence whose truth is supported by the situation comes out true in the possible 

world, and every sentence whose falsity is supported comes out false. We may 

now see possible worlds as the limiting case of situations where these are consis-

tent and every sentence has a truth value. Some other logics which use similar 

semantic techniques exploit the fact that situation are partially ordered by the 

compatibility relation, which describes stable improvements in the specification 

of values associated with situations, in order to define a classical semantics. 

Under certain other assumptions the classical worlds compatible with a situa-

tion may be defined as the related complete value specifications, but this more 

4This idea has appeared in a number of places; the references most appropriate in 

this context are perhaps Blarney 1986, in his analysis of the work of Barwise and Perry, 

and, especially, Dunn 1976 and 1986. It is in fact technically equivalent to the method 

that will eventually be adopted here, so elaboration is not mathematically necessary. 
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constructive-looking definition is not jossible here: because of the possibility 

of inconsistent situations not every situation has a classical completion, so the 

definition here is less elegant. Levesque's application of the notion of compat-

ibility is used in the following definition, which will be used to define implicit 

belief. W (B) is the set of all possible worlds with which some situation in B is 

compatible; that is, the set of all those maximally consistent situations which 

agree with some situation in B wherever that situation is defined. Finally the 

support relations I=r, I=F c S x L are defined, given a model M, as follows: 

S 	p ifs E T(p1 ) 

'9 T CVf3 ifs HT  aors =T  3 

S =r aA/3 ifs =T  a and S 

'9 T -'a if S 	a 

S 	Pi if s E F(p1) 

' =F aV 3 if S 	a and S F /3 

S I=F aA/3iffs F  aors 1/3 

S 	if S 	a 

S =T  Ba if for all d E B, 5' I=T a 	s l=F Ba if s VT Ba 

sr La if for all s'EW(B),s' I=Ta s=F La ifs V=T La 

Given a model M, a is true at a situation s if s 	a. a is valid - 	a - if for 

any M =< S, B, T, F > and any s E W(S) - any possible world - a is true at 

s. So although truth is defined for all situations, when checking for validity only 

complete situations or possible worlds are considered, and so all classically valid 

propositional sentences come out valid in Levesque's logic. Thus although the 

truth of pi  V -'nj  may not be supported by some situation in a model this does not 

affect its validity: the notion of partial situations turns out to be redundant in 

this respect. Belief is defined as truth in all members of B, and in the definition 

of failure to believe a connection is introduced between the truth and the falsity 

of these modal sentences so that Ba V -'Ba is valid for all a. There are however 

models which reject Ba V B,o: and models which accept Ba A B-ia, so the logic 

of commitment of the agent is very different from its external characterisation, 

the classical logic in which it has been embedded. The meta-theoretical nature 

of the B operator that this seems to suggest will be further considered below. 

To establish whether some formula is implicitly believed is to determine whether 
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it holds in all members of W(B): as noted above, this involves disregarding 

inconsistent members of B and blowing up the rest to Henkin sets, and has 

the effect of introducing as truths common to all t E W(B) all propositional 

tautologies and all classical consequences of the formulae true in all s E B. 

It can be shown that = Ba D La - if a sentence is a logical consequence 

of what is explicitly believed then it is implicitly believed - and implicit belief 

is closed under implication and all valid formulas are implicitly believed. But 

necessary truths which may not logically valid are also implicitly believed, so 

there may be sentences true in the correct set of worlds which are not in fact 

implied, by what is explicitly believed. In other words the following hold in the 

logic: 

If = a then = La; 

(La A (a D /3)) D L/3, where a D /3 is 'a classically valid formula; 

(La A L(a j j3)) 3 L3. 

This is not, however, the case with explicit belief. Ba A B(a D j3) A -iBf3 is 

satisfiable, and so explicit belief is not closed under implication; and -iB(a A -Ia) 

is satisfiable, so valid sentences need not be believed. Moreover, {Ba, -B(cx A 

(/3 V -i3))} is satisfiable, so classical logical equivalents to a belief need not be 

believed. These are possible because, through the use of partial situations the 

agent may not be aware of the concept involved: there may be some situation 

relevant to evaluating the sentence which supports neither the truth not the 

falsity of a. 

The tactic. of allowing non-classical or impossible worlds into the semantics 

has had some philosphical defence in the literature, and may be wanted here. 

For while (Ba A B(a 3 8)) 3 B/3 is not valid in his logic, (Ba A B(a 3 /3)) 3 

B(/3 V (a A -ia)) is valid, so closure of beliefs under implication is avoided at the 

cost of allowing the agent to believe possible some incoherent situation - one that 
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is a member of T (pt)  n F (P1),  for some atomic formula p.  This ploy is also used by 

others, such as Cresswell5, Hintikka6  and Rescher and Brandon" to avoid logical 

omniscience; to choose just one of these advocates, Hintikka argues for it as 

follows. Hintikka's philosophical interpretation of the situation in possible world 

semantics, whereby what an agent a knows in a world is uniquely determined by 

a set of "epistemic a-alternatives" to that world is an idealistic one. The set of 

worlds presupposed in talking of a's knowledge constitute the restriction of a's 

attention to a subset of all possible contingencies, as dictated by the amount of 

information he has, and as allowed by his logical and conceptual abilities, as far 

as he can determine. It is not all those situations in which a set of sentences is 

true, but rather the epistemic alternatives are delimited by those contingencies 

he envisages to be possibly true. Some contingency may look possible to him, and 

therefore not be eliminated by him due to any doubts, even though it contains 

an unseen contradiction. His failure to eliminate this from consideration makes 

it a legitimate member of the set of epistemic a-alternatives since it is indeed 

an epistemic alternative, given the amount of information he has. To suppose 

that every epistemic alternative to a given world must be logically possible is 

to presuppose that an agent is able to eliminate merely apparent possibilities, 

and this assumes logical omniscience on his part. a D 3 is valid if it holds in all 

members of a subset of possible worlds - all those that are not 'impossible possible 

worlds'. But the operator is defined in terms of all worlds that are epistemic 

alternatives to the world at which it is being evaluated, and these alternatives 

may be drawn from the wider set of all possible worlds, whether they are logically 

possible or impossible. Epistemic possibility applies to a larger class of worlds 

5Cresswell 1973. 

6Hintikka 1975. See chapter 2. 

7Rescher and Brandon 1979. 
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than does logical possibility, and so to, admit as epistemically possible worlds 

which are in fact not logically possible can now block the inference from the 

logically true a D /3 to Ka D Kaf3. K013 may be false while Kaa is true as 

the following counterexample shows: if -'Kj3 is true at w then there is some 

epistemic alternative w' where -i/3 holds, and supposing K0a to be true in all 

epistemic alternatives, a is true in particular in w'. Now if a D j3 is logically 

true it is true in all logically possible worlds, but w', where a and -'/3 are true, 

may not be logically possible even though it is epistemically possible, so the 

counterexample is not inconsistent. 

Returning to Levesque's logic, The fact that valid propositional formulae 

need not be true everywhere suggests that were we to look for the notion of 

logical consequence inherent in these model structures, it may not coincide with 

that of propositional logic. That is, if we introduce a two place relation = on 

propositional formulae with the intended meaning that a /3 if for any s E S 

and any pair <T, F> of valuation functions, whenever a is true at some s E S 

so is /3 and whenever /3 is false so is a, then this will not turn out to be a classical 

consequence relation; indeed, validities and semantic consequences turn out to 

have different logical bases, and an examination of the latter is an informative 

method of seeing how the semantics have been tailored to meet the requirements 

of the logic of commitment. An alternative way of describing what is required 

to determine the relation is as something to tell us how to determine the theory 

of a situation, taken as a set of formulae, in the same way that a classical 

consequence relation tells us something about the propositional fragment of the 

theory of a Kripke world. The other validities of the logic indicate the nature of 

this consequence relation. First note that the restriction to W(S) in determining 

the validity of formulae. which contain only truth functions of modal formulae is 

not strictly necessary: their valuation in any situation whatsoever refers only to 

the sets B and W(B), so they will be true in all s E W(S) if and only if they 

are true in all s E S. Their location is only one of convenience, since that is 
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where the non-modal validities are true, and so the sense in which a formula of the 

language is true in a model appears to involve two distinct methods of evaluation, 

only one of which entails its truth at all situations in the model. For example, 

Ba J Bp if for all structures < S,B,T,F >, Vt E B(t I=T a = t I=T 13); 

and so by definition of the operator B, s I=T Ba D B/3 for all models M and 

all s e S. Validities of this form are true at all situations in all models, and 

so would appear to point the way to the natural notion of consequence in the 

model, the idea that /3 is a consequence of a if every pair <T, F> which make 

a true also make /3 true. Indeed, if Ba D Bf3 is a valid formula, then for any 

structure M =< S, B, T, F > and any s E S, if s l=T a then s I=T /3 and if 

s =F  /3 then s 	a. This is the natural consequence relation of the model 

given its use of inconsistent and incomplete situations. This parallel would of 

course break down if iterations were permitted in the logic: for then there would, 

for example, be no consequence relation corresponding to B(Ba D B/3) D Ba 

since this would illegitimately have to relate a propositional formula and another 

relation. Thus the ban on iteration is further evidence for the thought that valid 

formulae of the form Ba j B13 are in fact intended to reflect a pre-existing 

relation on the set of formulae, the natural consequence relation of the models. 

It is also of some interest, as well as further support for this view, that simple 

set-theoretic relations among the collection of propositions or value pairs of the 

form (T(a), F(a)) can equally be used to represent semantic behaviour of modal 

formulae of the type in question - technically, it can be shown that these set-

theoretic operations together with the set of all polarities in any ring of subsets of 

S form what is called a field of polarities, and that every de Morgan lattice, which 

is the characteristic algebra for the logic of commitment, is isomorphic to a field of 

polarities. The least natural part of the logic - that which requires most tinkering 

with the model structures - is the means by which classical logic is recovered from 

this framework in order to define implicit belief and propositional validity. A 

parallel definition of classical consequence by means of La D Lf3 would not throw 

any light on the structure of situations in the model. By way of example of its 
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theoretical naturalness, it is straightforward to verify that it is reflexive and 

transitive; that contraposition holds - if a H /3 then -3  = -ia; and that a = /3 

if a a A /3 and a A# [--  a if /1= a V /3 and a V,6 1= /3. Some consideration 

of this relation in fact shows that sentences of the form Ba D Bf3 are valid if 

a - 	/3 is valid in the logic E1 de  of first degree entailment in relevance logic, so 

this logic completely characterises this fragment, the logic of commitment for 

belief8. The a and /3 may be put into normal form just as in classical logic 

since this logic shares the axioms for commutativity, associativity, distributivity, 

double negation and the De Morgan laws; we shall see later why these properties 

are indispensable for Levesque's purposes. Also all exilicit  beliefs are implicitly 

believed, and implicit belief is closed under classical modus ponens. Inconsistent 

beliefs are permitted since an opinion on some part of the world need have no 

relation to its negation. This is illustrated by an example showing that explicit 

belief is not closed under modus ponens. Suppose that Ba and B(-a V /3): this 

is satisfied by the model where for all s E B S =T  aA (-aVf3). But this does not 

mean that s =T  /3 for this sentence may be true at some s such that s =7'  a and 

1=F a but s =T /3. It is also of note that if a is a classically valid propositional 

formula and if B(p V —pi)  for every propositional variable pi occurring in a, 

then Ba. B(p1  V -ip) may be regarded as stating that the reasoner is 'aware' 

of p1. This assumption induces belief in all valid statements, but does not rule 

'The deductive system may be found in many places, for example Anderson and 

Belnap 1975. Proof-theoretic characterisations of this relation and other relevance en-

tailment relations exist in the literature: Dunn 1976 gives a simple and informative 

proof-theoretic restriction which matches entailment in this logic; Prawitz 1965 ch. 7 

does the same for another relevance logic, Church's theory of weak implication (Church 

1951); the Al calculus yields the relevance logic R (see, for example, Helman 1977), and 

additional restrictions on abstractions can give proof systems for other relevance logics, 

as in Mitchell and O'Donnell 1986. We give a sequent calculus formulation in chapter 

4. 
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out belief in unsatisfiable statements or lack of closure under implication: as we 

have seen, these are due to the presence of incoherent rather than incomplete 

situations. 

The technical comment which is now sketched without proof reinforces the 

point that it is the logic under which explicit belief is closed that is really impor-

tant in this modal logic: disregarding the operator L, the theory of any model M 

can be given a non-modal characterisation. The reader would miss little concep-

tually if he omitted the following paragraph, but the definitions of the technical 

terms mentioned in this aside may be found in the later chapters. 

First, suppose that the language is based on -i  propositional variables, and 

note that in any model M there are eight different 'values' that a formula may 

have depending on whether or not it is true, whether or not it is believed and 

whether or not its negation is believed. Let 2 be the two element characteris-

tic algebra for classical logic: the corresponding characteristic algebra for the 

relevance logic under which belief is closed in all models M is the four element 

algebra 4 with universe {O, a = a, b = -b, i} such that a A b = 0 and a V b = 1. 

Where F2  is the Lindenbaum algebra of this logic, for any model M define a ho- 

" 
hm momorphism F2 --+ 2 x 4 as follows: where ir• for i E {1, 2} are the projections 

IfMt=a then iri ohM([a])=1. 

If M = Ba then 7r2  o hM([a]) e {a, 11. 

If'M = B-ia then 7r2  o hM([cx]) E {a,0}. 

Then it is straightforward to check that hM  is a well-defined surjective homomor-

phism and that the converses of the above conditions also hold. Conversely, any 

surjective F2 --* 2 x 4 determines a model M" with universe the prime filters 

of F. A prime filter F is in B if for each [a] E F we have 7r2  o hM([a]) E {a, 1}; 

T(p1 ) is the set IF I [pd] EF} and F(p) is the set IF I [-'] e F}. Given these 

two constructions and some such h, we then have hM" = h. 
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3.2 Iterated Beliefs 

Obvious extensions of this logic include allowing the embedding of modal oper-

ators, or introducing quantifiers into the language. This last task first requires 

extending the relevance logic under which beliefs are closed with the introduc-

tion of quantifiers. We now outline three such attempts, all of which were done 

with the same computational intention as Levesque, and so can be regarded as 

emphasising the logic of commitment. 

Lakemeyer9  conservatively extends this logic to permit embeddings, thus pre-

serving as valid all the axioms in Levesque's logic. In context, this extension to 

accommodate meta-reasoning permits, for example, the logic to model planning 

actions. The decision procedure for determining entailments also extends that 

of Levesque, so to illuminate this context it will be described below. It also 

illustrates some of the complexities involved when attempting to accommodate 

both axioms governing iterated beliefs and a logic of commitment with a fast 

decision procedure in a logic. Certain obvious changes to Levesque's logic are 

necessary: accessibility relations are required, rather than simply a set of situ-

ations thought possible, and these are also used in the definition of a possible 

world. There are two different relations for evaluating positive and negative be-

liefs but which coincide from the point of view of a possible world, and implicit 

belief is defined by means of the possible worlds accessible rather than those 

compatible with the world of evaluation. It is also of note that the operator L 

cannot occur within the scope of the operator B because L is to be viewed as 

a purely external characterisation of an agent's beliefs and what follows from 

them. 

9Lakemeyer 1987. 
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Lakemeyer's models for his language BLK based on the modal logic K are 

tuples M =< S, T, F, R, R > . S, T and F are as in Levesque's logic, and 

conditions on the binary relations R and R first require the definition of a 

classical situation or, as it is called here, a world. w 6 S is a world if and only if 

w 6 T(p1) if w V F(p1) for all atomic formulae p,  and 

for all s C S, wRs if wRs. 

The relations of a BLK-model are then constrained by the following versions of 

the transitivity and Euclidean relations, where w1  and w2  are worlds and s is .a 

situation: 

if w1Rw2  and w2Rs then w1Rs. 

if w1Rw2  and w1Rs then w2Rs. 

Only the clauses for the epistemic operators are different in BLK: 

s =T  Ba if for all t, if sRt then t T  a. 

S =p. Ba if for some t, sRt and t VT a. 

s =T  La if for all worlds w, if sRw then w 	a. 

S HFLaiffs VT La. 

As in Levesque's logic, validity is defined as truth in all models and all worlds, 

and without nested modal operators BLK reduces to that logic. In particular, 

it also has the feature that closure of explicit belief under modus ponens fails 

only where some inconsistent situation is considered possible. Although from the 

point of view of the (classical) worlds the accessibility relation is constrained, 

outside these classical worlds no relational structure is specified - there is no 

transitivity and so no introspective reasoning with explicit belief. To extend 

BLK to allow for this requires more than making R transitive, for this leaves 

negative beliefs untouched: for example, BBcx D BBBa would be valid, whereas 
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B-'BBa D B-'Ba could fail. R and R are suitably related by also imposing 

the mixed transitivity condition that for all s,t, u E S, if sRt and tRu, then 

sRu. This logic he calls BL4, and like BLK it is sound and complete. Even 

this extension is not too powerful, however, as is shown by the satisfiability of 

Moore's paradoxical sentence B(a A -'Ba). 

3.3 Variable-Sharing Decision Procedures 

These logics are intended to serve as the external and autonomous model-theoretic 

semantics for knowledge representation systems, independent of the syntax of a 

particular implementation; they are the means by which the stored syntactic 

expressions of the system can be regarded as facts or putative facts, and all the 

operations it can perform on these correspond exactly to semantic procedures in 

the logic, for example logical consequence, and so are characterised exactly by 

the logic. When this is achieved the response of the system with a set of stored 

expressions to the input of an expression can be understood as an answer to a 

query on the basis of the facts it believes: where KB is the conjunction of the 

stored facts and a is the query, the procedure leading to the answer corresponds 

to = BKB D Ba. One way in which to make the knowledge-base system effi-

cient is to provide it with a syntactic decision procedure in exact correspondence 

with implications of this form, and the equivalence of = BKB D Ba to the 

entailment relation KB -* a in our form of relevance logic provides just such 

a procedure. Let £(a) stand for the set of literals of the propositional formula 

a. Then where a is in disjunctive normal form, and ,8 is in conjunctive normal 

form, Anderson and Belnap's'°  decision procedure for determining whether a 

'0Anderson and Belnap 1975. 
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entails /3 in this logic is as follows: where a = a1 V. .. v an and /3 = #, A . . . A/3m, 

a-3/3iff for all i, 1<i<n, and all j, 1<j:5m,C(aj)flC(01)0. 

In computational practice, conversion of formulas into two different normal 

forms is not desirable, especially in view of the following similar decision proce-

dure for this entailment which is effectively equivalent. If a and 3 are both in 

conjunctive normal form and a = a1 A ... A a,, and /3 = /3 A .. . A /3rn, then 

a —3/3 if for all j, 1 < j :~ m, there is some i, 1 < i < nwith £(aj) c £(i3 ). 

This is the decision procedure used by Levesque", and extended by Lakemeyer. 

A high priority of Lakemeyer's extension of this logic to accommodate meta, 

reasoning, if not its raison d'être, is the retention of this algorithm in a modified 

form. Obviously this first requires a different normal form to cope with the 

presence of belief operators; this he calls extended conjunctive normal form, 

or ECNF, and is an analogue of one used by Dunn 12 in connection with the 

relevance logic E1 : a is called an extended clause if a is of the form a1 V. .. V a,,, 

where each ai is a literal or is of the form Bp or -'B/3, where /3 is an extended 

clause. A sentence a is then said to be in ECNF if a is of the form a1 A. .. A a,,, 

where for each t, 1 < j < n, ai is an extended clause. Every formula of the 

language can be converted into ECNF. The key to the algorithm is essentially 

the following straightforward result: where a and 3 are extended clauses of the 

form 

a1 V ... VaklV Bak V ... VBa1_1 V -'Ba1V ...V -'Barn_i 

'In his logic H Ba j B/3 if and only if a entails /3 in this logic, so where KB, the 

knowledge base, and a, the query, are in conjunctive normal form, the computation 

= BKB i Ba has a tractable 0(1 KB j, 1 a I) algorithm, taking only time proportional 

to the product of the sizes of KB and a. 

12See Dunn 1986. 
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and 

01  ...vf3,,_1  v BO. v ... vB/30_1  v-B30 v ... v -'B/3_1  

respectively, then = Ba D BO if and only if 

For all i, 1 I < k, there is some j, 1 < j < n such that a, = 

for all i, k < I <1, there is some j, n <j < o such that = Ba, 3 Bf31; and 

for all i, 1 < I < m, there is some j, o < j <p such that = B/31  D Baj. 

This can be immediately extended to a corollary about formulas in ECNF: 
where a=aiA ... Aan  andf3=8iA ... A/3m  are in ECNF, then =BaDB/3 

if and only if for each fli  there is some a such that = Ba, D B#1. Assuming 

that formulas are in normal form, as with Levesque's logic the same complexity 

result can be shown to hold both in BLK and BL4 as was found for Levesque's 

logic. 

3.4 Quantification 

The first extension of these ideas to a similarly decidable first-order language to 

be considered does not attempt to embed the consequence relation into a base 

classical language: the sentences are simply considered as believed sentences, 

as if there were a suppressed B indicating this fact before each of them. This 

inevitably leads to a loss of expressive power, for since the inferential process 

of reasoning cannot be expressed in the language it cannot be characterised 

externally and so, for example, compared with the actual state of affairs. The 

logic that is given is nothing more than what we have been calling the logic of 

commitment for belief. Features of this logic are retained in the second logic of 

belief considered here, which attempts the process of objectification by injecting 

this logic of commitment into the classical language: the operators required for 
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this purpose introduce the familiar semantic obligation to provide answers to 

question about the relation between de re and de dicto expressions. 

Patel-Schneider 13 extends Levesque's logic to the first order case in the fol-

lowing way. A situation s now consists of a non-empty set D, the domain of the 

situation, mappings f9 and t8 from n-ary predicate letters P, into n-ary relations 

on D and the mapping h from n-placed function letters into functions from D' 

to D. Where d e D, x is a variable and v a variable map into D, v(x/d) is 

defined by v(x/d)(y) = d, if y = x, and v(x/d)(y) = v(y) otherwise. Given a 

situation s and a variable map v, a mapping v from terms into the domain of s 

is defined as: 

v(x) = v(x) if x is a variable; 

v (fn (t1,.. .t)) = (h(f,j)(v(ti),. . .v;(t)) otherwise.. 

For the base case, the support relations are defined by 

.,V ~_-T P(t1 .... t) iff (v8*(t1),.. . ;(t)) e t 8 (P) 

8, V HF P(t1.... t) iff (v;(t1),.. . v;(t)) e f3(P) 

where s is a situation, v is a variable map into the domain of s, F,,, is a predicate 

letter and t j is a term. These are extended to the truth functions in the following 

way: 

8, V 	a V /3 if s, V 1T a or s, v I=T /3 	S,.V =F a V /3 ifs, V 	a and s, V F /3 

S, V =T a A /3 ifs, v 	a and s, V T /3 8, V 	a A ,8 iff s, V 1F a or s, v F /3 

s,v kT -'a 1ff s,v 	a 	 s,v HP -'a if s,v 	a 

So the meaning of the connectives is familiar from the other logics. Patel-

Schneider then considers perhaps the most natural definitions for the quantifiers, 

13Patel-Schneider 1985. 
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which result in first-order analogues of Levesque's situations: 

S,V I=T Vxaiff for all dED, s,v(x/d) F=Ta. 

S,V =j' Vxa if for some d ED, s,v(x/d) =p a. 

,v =r  3xa if for some d E D, s,v(z/d) =7' a-

s, v s,v I=F 3xa if for all d ED, s,v(x/d) t=p a. 

But he discovers that a decidable entailment algorithm is not available if Pa V Pb 

entails axPx, so to block this inference the classical assumption of the material 

equivalence of the existential quantifier and an infinite disjunction should not be 

carried over into this logic, although it is plausible to suppose that the former 

should entail the latter. The same of course applies to universal quantification 

and infinite conjunction. This inequality can be effected without altering the 

form of the truth definition, but by changing certain assumptions underlying 

that definition. What is required is to allow for the possibility that the infinite 

disjunction of instantiations of 3xPx be true at a situation without axPx itself 

being true, while of course still permitting the existential generalisation inference 

from Pa to 3xPx. To clarify the problem first consider for a situation the 

theory that is the set of quantifier-free formulae holding true at the situation. 

As with Levesque's logic, the theory thus identified is prime, but it is just this 

property, given existential generalisation, that enables the inference from the 

infinite conjunction to the existential, and so effectively identifies the two. So 

the first step in separating the two notions is to follow Levesque and abandon 

the assumption that the formulae believed at a situation form a prime theory. 

The second step is to reintroduce a restricted form of V -elimination in order 

to re-identify the two notions in precisely the cases where a theory containing 

an infinite disjunction also happens to contain at least one of its disjuncts, for 

then existential generalisation applies. Note that a theory contains one of these 

disjuncts just in case every one of its prime extensions in the same domain also 

contains it, so the separation of infinite disjunction and the existential quantifier 

can be effected if we no longer assume that the theories of the situations with 

respect to which we evaluate are prime, and if quantification introduces reference 
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to prime extensions of those non-prime theories. Both these conditions are met if 

formulae are evaluated with respect to sets of situations, which is exactly parallel 

to Levesque's treatment of belief, and the truth of an existential 3xPx at that set 

of situations requires the truth of Pn1  in all of the situations, for some element n 

of the common domain. A consequence of Patel-Schneider's decidable solution 

to this problem, and a point of diversion from Levesque, is that the theory of 

a point of evaluation in a model can no longer be seen as the intersection of its 

prime extensions: for example, applying his truth definition for the existential 

to each member of a set of situations (the set S in each of these applications 

of the rule is of course a singleton set) could result in axPx being true in each 

situation without it being true at the set of these14. 

So Patel-Schneider extends this definition to a support relation with respect 

to sets S of compatible situations. A compatible set of situations is a set of 

situations with the same domain and the same mapping of function letters to 

functions; they differ only in their assignments of truth and falsity. For S such 

a set, the definition is now changed -to 

S, v HT  a iff for all s E S, s, V 	a 

S, V 	a if for all .s E S, s, v 	a 

where a is quantifier-free. Quantified sentences are interpreted as follows: 

S,v h=T  Vxa if for all  ED, S,v(x/d) =' a. 

S,v F=F  Vxa if for some dE D, S,v(x/d) I=F  a. 

S,v =T  xa if for some d E D, S,v(x/d) I=r a. 

S,v =F  xa if for all d ED, S,v(x/d) I=F a. 

"'This property is however retained in Fine 1988, a first-order extension of Fine 1974 

emphasising generality in modelling relevance logics rather that decidability, where, 

very roughly, the relevant equivalence of quantification and disjunction or conjunction 

is avoided by defining it by means of the properties of an arbitrary individual outside 

the domain of point of evaluation. 
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Thus for the truth of an existential 3xa to be supported in a set S of situa-

tions there must be some element d of the common domain D such that a(x/d) 

has true support in every situation in S. Lakemeyer calls this global existential 

quantification. Although the semantics here is defined only on prenex form for-

mulae, there is a similar one allowing for formulae of arbitrary complexity which 

possesses a powerful normalisation theorem to return to this state of affairs. 

The definition of entailment in the logic of tautological entailment states that 

a -+ /3 if /3 is true whenever a is and a is false whenever 3 is. In the logics 

considered above these two conditions have coincided for the analogous notion in 

belief logics, but in Patel-Schneider's logic this breaks down, forcing a decision 

about how the first-order extension of tautological entailment is to be defined. 

In Patel-Schneider's logic he chooses to define entailment by the first condition, 

which he calls t-entailment, written —; the alternatives are the second condi-

tion, or f-entailment (-'j ), and both conditions, or tf-entailment (—+). These 

are some features of the different definitions, when taken as relations between 

sentences of the above logic: 

VxPx - Pa 	Pa -+ ±cPx 

VxPx— t PaAPb PaVPb-/---*xPx 

VxPx /- Pa A Pb Pa V Pb —) f  3xPx 

VxPx -/---PaAPb PaVPb/—xPx 

Given Patel-Schneider's intentions for the logic f-entailment and t-entailment 

are preferable to tf-entailment because they are stronger, but t-entailment is 

preferable to f-entailment because the inferences it allows are more appropriate 

for knowledge representation. Moreover, the type of reasoning in the invalid 

inference Pa V Pb 71 _, xPx is a form of reasoning from cases of a kind not 

generally valid in relevance logics, which would, if allowed in the logic, prevent 

the creation of an entailment algorithm along similar lines to those for proposi-

tional first degree entailments. Since both the knowledge base application and 
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the existence of such an algorithm rate high in his priorities, Patel-Schneider 

opts to use -'. 

The decidable algorithm for determining entailment in this logic rests on a 

Skolemisation theorem. Let a53  be a with all existentially quantified variables 

Skolemised and let fis,  be /3 with all universals Skolemised. Then for all three 

versions of entailment, a - 3 if a93 - flsv. The following theorem, which 

strongly echoes the tautological entailment theorem for the propositional case, 

then holds: 

Let a and ,8 are sentences in Skolemised prenex conjunctive normal form: that 

is, a=Vz, ... zi(ai A ... Aa j) and /3=1, ... xm(fl1A...A/3n).  Then a— t /3 
if there exists a substitution 0 for x1,.. . X, such that for each /3, there exists 

some a and some substitution for z1,.. . z such that a1i,b c /3,0 (where a1 b 

and /3,0 are treated as sets of literals). 

Then an algorithm can be found to show that t-entailment is decidable. Let 

a and /3 be as above. For each aj  and /3, compute a set of most general sub-

stitutions 0,, such that for 0 E 0,,, a'O C /3,0. For each element of 0,, define 

a new substitution by systematically replacing the variables z1,. .. zk   by others 

occurring nowhere else. Let 4',, be this new set and let Ti = U,<1<1 4,,,. Then 

a - /3 if there is some substitution 0 which is the most general unifier of 

some {, I Oi E W,}. Although the worst case behaviour of this algorithm is 

exponential in the size of a and /3 it will always terminate and will be quite fast 

in normal conditions'5. 

15See, for example, Apt and van Emden 1982 for a theoretical examination of the 

semantics of logic programming languages which use such methods. 
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3.5 Embedding The Logic 

The clause for the interpretation of existential quantification, which is essen-

tial for the decidability of Patel-Schneider's. logic and captures a 'relevant' or 

constructive mode of reasoning, is retained in a modified form by Lakemeyer'6  

in an extension of Levesque's logic to first-order logic which, contain operators 

for explicit and implicit belief, but which does not allow nested beliefs. In this 

context, however, the treatment of quantification must be modified to bring out 

the distinction between rigid and non-rigid designators by sometimes allowing 

that in different members of the belief set - as in Levesque's logic, the non-

relationally specified set of situations with respect to which belief formulae are 

evaluated - different individuals may satisfy a given existential, and, again fol-

lowing Levesque, by taking into account the way things are in the 'actual' world 

in the interpretation of logical connectives and quantifiers not within the scope 

of B or L. P atel- Schneider's logic of commitment avoided such considerations, 

but as soon as a belief operator is explicitly introduced, the logic must be able to 

handle formulae that do not lie within its scope and also specify the conditions 

under which they are classically valid: as in Levesque's logic, an actual situation 

is required for these purposes, while the conditions enabling global existential 

quantification need be satisfied only when the existential is within the scope of 

an explicit belief operator. For example, Pa V Pb J 3xPx should turn out to be 

valid since the existential quantifier is not within the scope of a modal operator. 

The language L consists of a set of variables V, a set of explicitly represented 

parameters or rigid designators N, and function and predicate symbols, as well 

as the modal operators B and L. A term is either a variable, a rigid designator 

or a function symbol whose arguments are themselves terms. A closed term is a 

16Lakemeyer 1986 
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term not containing any variables, and the set of closed terms is denoted T. The 

set N is also used as the fixed universe of discourse in all models. An atomic 

formula is a predicate symbol with terms as arguments. Given the atomic for-

mulae, the logical connectives , V and the existential quantifier 3 as well as the 

modal operator symbols B and L, we can generate all the well-formed formulae 

of L by using the standard formation rules and equivalences. 

The next three definitions introduce the key idea of the logic, to be exploited 

in the definition of explicit and implicit belief, which is an intermediate stage 

in valuations and in the realisation of terms in a model. They can be regarded 

as meeting in a novel fashion the adequacy conditions for a quantified inten-

sional logic, concerned with what should determines the range of the quantifiers: 

namely that each situation should have a domain of individuals over which the 

quantifiers are to range, and that one and the same individual can be identified 

across situations. Distinctive features of Lakemeyer's solution are that, unlike 

most other such logics, this is achieved without admitting identity to the syntax 

of the language, thus sidestepping the other issues that this would have intro-

duced; and that, as will become apparent, because of the use of closed terms 

in their definition the quantifiers cannot be categorised absolutely as either ob-

jectual or conceptual, as is usually possible with such logics. The logic is also 

committed to the view that there are no situations in which distinct parameters 

refer to the same thing, but that different situations may have different domains 

of actual individuals; on the other hand, every term of the language is defined in 

every situation. Let II = {v I v : V -+ T} be the set of variable maps; for ii E N 

v(x/n) is the variable map identical to v except that x gets mapped to n, and 

note that for convenience it is assumed that, as in Patel-Schneider's logic, the 

domain of a variable map is extended to include terms and sequences of terms 

in the obvious way, assigning values to the variables in them. The individuals 

that serve as the values of bound variables are terms rather than parameters, 

and so in all contexts the terms are crucial to the logic of the quantifiers: fur- 
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ther work is required to ensure that the domain of extensional quantifiers is 

objectual. Also let 8 = { 	: H x V - T} be the set of choice functions, 

which are to take care of the dependencies on the leading quantifiers in belief 

sentences, given the interpretation of quantification below. In formulae of the 

form B2xa an individual global to the entire belief set is picked with respect 

to which the rest of the formula is evaluated. Closed terms which are not rigid 

designators can be picked, so the individual of which some property is believed 

to hold need not in fact refer to the same object in all situations of the belief 

set, and so the belief set need not be compatible in the sense of Patel-Schneider, 

since this requirement only makes sense where de re beliefs cannot be expressed. 

But since the domain of quantification is to be the set of terms, and all terms 

have some meaning in every situation, P atel- Schneider's prerequisite for global 

existential quantification is in fact met. So since terms can be seen as denoting 

locally existing individuals, there is a cognitive means of identification of these 

individuals across situations which does not require that they are actually the 

same individual. To ensure both that this is possible and that the interpretation 

of axBa is intuitively correct, an aspect of a situation concerning the reference 

of terms is introduced, with respect to which members of a belief set may differ. 

Whereas in Patel-Schneider's logic the elements of the belief set differed only in 

the interpretation of predicates, here the meaning of terms is also defined to be 

situation relative. So 8 is introduced as a coreference relation mapping every 

closed term into a rigid designator, its meaning with respect to the situation 

s. The following are properties of 	it is an equivalence relation; no two rigid 

designators corefer, and so actual individuals cannot split or merge across al-

ternatives; every closed term has a coreferring rigid designator - there are no 

non-referring terms - and the relation is preserved by uniform substitutions in 

a formula. Note that 0-place function symbols, which are in the range of choice 

functions, are interpreted as non-rigid designators according to the above defi-

nitions. Now it can be seen how this can be used in conjunction with the notion 

of a choice function so that 2xBa is interpreted intuitively. In sentences of the 
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form 3xBa the function chooses a term during the interpretation of B, that is 

while evaluating with respect to the actual situation; it is then required in the 

truth clause for B not that the the term but that the meaning of that term in 

the actual situation has the stated property in every member of the belief set, 

and so the reference of that term is global to the entire set, and in each member 

of the set the property holds of that same object. v8  is the variable map such 

that -v 8 (x) = n, where n e N and n =8  v(x). Where T8  and F8  are the mappings 

associated with s by which the predicate letters are interpreted, a situation s is 

a triple < T8, F8, 	and the collection of all situations is S. 

Thus Patel-Schneider's logic differs technically from this one in a number of 

ways. For example, here there is the ability to convert the values of variables 

into rigid designators in the context of explicit or implicit belief; sentences are 

evaluated with respect to a belief set consisting of arbitrary first-order situations 

and distinguished 'actual' situation; and variables may be interpreted as closed 

terms rather than rigid designators. Before the truth definitions, he defines, 

following Levesque, the set W (s) of possible worlds compatible with a situation s. 

W(s) is the set of situations s' E S such that for every k-tuple < ni, . . . tk >E N  

and every k-ary predicate F, 

<n1,. . k > is in exactly one of IT" (P), F8'(P)}, 

if < n1  . . . n1  >E T8 (P) then <n1  . . . k >E T8'(P), 

if < n1  . . . k >E F8 (P) then <n1  . . . k >E F'(P) and 

W(S), the set of possible worlds, is the union of all W(s) for s e S. Then where 

U C S is arbitrary, s E 5, and a' is as a except with the obvious precautionary 
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renaming of variables, the support clauses are defined as follows: 

U, S, v 	a if 3e E B such that U, e, 8, V =r a' 

U, 8, v 	a if E] e E B such that U, e, 8, V HF  cx' 

U,,s,v =T  P(t1  .. . . t,) 1ff v(tl  .... tk ) E T' (P) 

U,,s,v =p P(t1  .. . . t,) if v(ti  .... tk) E Fs (P) 

U,,s,v=r -1aiffU,e,s,v=Fa 

U,.,s,v =p -'a if U,,s,v =T  a 

U,.,s,v 1=7' aV/3 if U,E,s,v 1=7' aor U,e,s,v HTP 

U,,s,v 1=F  aV/3iffU,E,s,v HF  a and U,,s,V 1=F /3 

U,,s,v 1=T 3 xa if U,,s,v (XI  (v,x)) 1=T  a 

U,.,s,v F=FxaiffVtETU,,s,v(x/t))  Hp  

U,e,s,V1=TBaiff'E 8 Vs'  ESU,e',s',V3I=Ta 

U,,s,v =FBaiffU,,s,VVTBa 

U,,s,v 1=T  La if Vs' EW(S) 3el  E 8 U, el, s',v3 1=T a 

U,e,s,v l=FLaffU,,s,v KT La 

A formula a is then said to be valid (1= a) if for all U C S, all s E S and all 

V E II, U, s, v 	a. 

If the language is restricted to its quantifier-free sentences, and as a conse- 

quence variable maps and choice functions become redundant, and 	remains 

unexploited, then what we have is Levesque's logic of explicit and implicit belief; 

the set U in the truth definition is of course the set B of a Levesque model. 

But the features of the contained propositional fragment carry over to the full 

first-order case, for the following are some theorems of the logic: implicit belief is 

closed under modus ponens, all valid first-order formulae are implicitly believed, 

and every explicit belief is also implicitly believed. Also, where az/a (a(z/)) is 

the formula obtained from a by replacing all occurrences of the free variable x 
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by the closed term a (by the rigid designator n), 

= xBa D Bxcz and = xLa D Laxa; 

= B&M D 3xBot and = LC?" D axLa; 

= Baz/( D Bxcx and = La,/a D Lxa; 

= BVza D VxBa and = LVza D VxLa; 

VxLa D LVza. 

It can also be shown that there are formulae a and non-rigid terms a such that 

V-- Bcx/0  D L3xa, that 	Baxcr D axBcx and that 	Lxa 	axLa; that 

explicit belief is not closed under modus ponens, and that there is no universal 

generalisation for explicit belief ( VxBcz D BVxa). There is also a decidability 

result for the logic of commitment - that is for entailments of the form Ba D B13 

- very similar, not surprisingly, to that of Patel-Schneider, where a and ,8 are in 

normal form. 

3.6 Classical Logics 

Fagin and Halpern 17  propose a different logic based on Levesque's distinction be-

tween explicit and implicit belief, and which also accommodates multiple agents 

and embedding of beliefs, which they call a logic of general awareness. As in 

Levesque's logic, implicit beliefs are represented within a possible worlds seman-

tics and these are all the logical consequences of an agent's explicit beliefs. But 

in order to capture resource-bounded reasoning, which Levesque's logic did not 

do in its semantic treatment of explicit belief, they first introduce an awareness 

operator into a standard Kripke structure which is syntactic in nature. Aj(s) 

is the set of sentences of which agent i is aware at world s, and an awareness 

operator is defined as holding precisely for members of this set. So while implicit 

17Fagin and Halpern 1988. 
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belief in a proposition at a world is defined as the truth of that proposition at all 

accessible worlds, explicit belief is defined by this semantics restricted to those 

sentences permitted by awareness at the world of 'evaluation. Agents are thus in 

a sense perfect reasoners, logically omniscient restricted to an arbitrary syntactic 

class of sentences. But agents do not explicitly believe all valid formulas: it will 

turn out that -B (p1  V -p1) is satisfiable since perhaps (pi V -pi) A. (s). And 

Bp1  A B(p5  D p,j A -'B1pk  is satisfiable since, although aware of pi  D ph,  agent i 

may not be aware of Ph - there is no necessary restriction on the syntactic filter 

that it be closed under subformulas. This introduction of a syntactic element 

to the model does, however, seem to give rise to a too fine-grained notion of 

belief: Ma A 3) is not equivalent to B(8 A a) - it is possible that only one of 

these sentences may be in the awareness set - and so the order in which the con-

juncts appear is made semantically significant. This inclusion within the model 

structure of explicit sets of sentences may, like previous similar attempts 18  avoid 

the essentially semantic problem of logical omniscience, but such an injection 

of syntax makes the arbitrary seem significant. There do appear to be a large 

number of restrictions which may be put on the awareness set: we may stipulate 

that a A /3 E Ai  (s) if /3 A a E Ai  (s); or a E Ai  (s) if -a E Ai  (s); or if a E Ai  (s)

then A1a E A.(s), where the Ai  in Aa is the operator defined by the predi-

cate A. But such ad hoc restrictions leave no essential role to possible world 

semantiès in analysing belief, for no explanatory condition on the structure of 

the accessibility relation is associated with these moves - the semantics of belief 

is given by ad hoc restrictions on the syntax which neither are motivated by 

the semantics nor correspond formally to it. The attempt to marry semantic 

and syntactic approaches to belief would appear in this case to have resulted in 

a sentential semantics'9. However, for the two important versions of awareness 

18 e.g. Konolige 1983 and Moore and Hendrix 1979. 

9See Konolige 1986 for arguments to this effect. 
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now examined, the logic of commitment is able to provide an endorsement of the 

logics. 

Fagin and Halpern's propositional "logic of awareness" dispenses with partial 

and incoherent situations in order better to accommodate nesting of explicit and 

implicit beliefs. Multiple agents are also allowed into the logic, and they also 

make use of awareness operators in the definition of explicit belief. These will a!-

low some of the effects of partial situations into the logic, but come into play only 

in the context of explicit belief. So in contrast to the previous logics examined 

which did precisely the reverse, the classical structure of a possible world is taken 

as the fundamental tool, relative to which different partial situations and so ex-

plicit belief may be defined. Models are Kripke structures with a set of classical 

worlds, a truth assignment to the finite set of atomic formulae for each world, 

a serial, transitive and Euclidean relations for each agent as well as a function 

Ai for each agent i which associates with each world the set of atomic formulae 

of which i is aware at that world. As before, there is a special propositional 

constant true, and a model is a structure M. = (S, ir, A,,.. . A, R1,. . . R,); S 

is a set of worlds, ir a truth assignment to the values {O, 1) for each word, R 

a serial, transitive and Euclidean relation on S, and Ai  a function associating 

with each world a set of atomic formulae, those of which i is aware at that world. 

Then the support relations and the truth definition are as follows: where I1  is a 
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subset of 0, the set of all atomic formulae 

M, s i=; true 

M, s true 

M, 	T true 

M, s4 pi  iff7r(s,pi) = 1 and Pi E W 

M,s 	p1  1ff ir(s,pi) = O and pa  6W 

M,s = pi  iffir(s,pi) = 1 

M,s -i iffM,s 	a 

M, s 	-'a if M, s 	a 
ri 

M I S H -'a if M' s K a 

M, sa V /3 if M, s 	a or M, s =4 /3 

M, s 	a V /3 if M, s 	a and M, s 	/3 

M,s =aV/3iffM,s =aorM,s =,8 

M, sBa if M, t 	flA(8) a for all t, sRjt 

M, sB1 a if M, t 	8)  a for some t, sR1t 

M, s j= B1 a if M, s 	B1a 

M,sL1aiffM,t 4 afor ailt, sR1t 

M,s 	La iffM,t 	a for some t, sR1-t 

M,s = B1a iffM,sBa 

The definition of validity is then standard. Implicit belief satisfies the axioms 

of weak S5, and all valid formulae and all the logical consequences of one's beliefs 

are believed. As in Levesque's logic, -iB(a V -'a) is satisfiable, and a D /3 does 

not entail Ba D B/3; also, if a is a classical theorem, then = A,a D Ba, 

where Aa is an abbreviation for the conjunction of B.(p1  V -ip5) for all atomic 

formulae p, that appear in a. Fagin and Halpern prove a theorem to the effect 

that any sentence a containing operators B1  is equivalent to another sentence a* 

in which Bi  occurs only in the context B(p1  V -ip1). In effect then, explicit belief 

is definable in terms of implicit belief and awareness Also Ba D B (a V /3) is 

valid - it does not matter whether 8 e A (s), for any s. This suggests a different 
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intuitive reading for awareness from their logic presented later, where this is 

not valid. Unlike Levesque, however, inconsistent beliefs are not allowed and an 

agent's set of beliefs are closed under implication. So logical omniscience in this 

sense fails only because of lack of awareness of some proposition on the part of 

the agent. 

Also valid in this logic is the axiom BL1cr 	Ba, so i explicitly believes 

that he implicitly believes a exactly if he explicitly believes it. This suggests 

that La should perhaps be read as "a is a (classical) logical consequence of 

what i believes" rather than an as external characterisation of i's beliefs. A. 

notable feature of the logic is the fact that though -iA1a (i.e. -B1(a V -a)) is 

of course satisfiable, sentences of this form cannot be the object of some agent's 

belief, since -iB1 B1(a V -icr) is a theorem of the logic. Lack of awareness in an 

agent cannot be recognised by others or by himself. Other features of the logic 

involving embedded operators are not immediately apparent: the only complete 

axiomatisation that Fagin and Halpern have found is the axioms of weak S5 

together with a 	a, where * is as in the theorem mentioned above, and this is 

not highly informative with regard to the relations between the operators. 

Fagin and Halpern tell us that beliefs are closed under classical implication, 

but this is only so in the sense that if Ba and B(a D /3) then B/3, where the 

awareness of the conclusion is implicit in the premises. It would be interesting to 

discover the logic of commitment for explicit belief in this logic, the consequence 

relation under which beliefs are closed, and perhaps also a workable deductive 

system to match this logic. This would tell us when Bf3  could be inferred from 

Ba without the use of B(a D /3), and so would have a similar status to that of 

first degree entailment in Levesque's logic. From here on we drop the proposi-

tional constant from the language. Much of the interest comes from the, way in 

which this illustrates the concept of awareness by pushing it into the background 

logic, and also allowing us to see a logic of awareness and explicit belief as aris-

ing in a sense from a normal modal logic of implicit belief simply by changing 



Chapter 3. Solutions To The Problem Of Logical Omniscience II 	87 

the underlying propositional logic while retaining the definition of modality. If 

formulae < a,# > were in this relation then for all models M and all situations 

S, if M, $Ba then M, s 	B1/3, so requiring that the logic of commitment 

treat the partial states of Fagin and Halpern's logic rather than the complete 

possible worlds they use to define validities. There are some features of Fagin 

and Halpern's logic that dictate aspects of the consequence relation that is to 

be defined: for example, there can be no validities, since there are no formulae 

a such that Ba is true in all models, and the role of awareness in the defini-

tion of belief requires that the propositional letters of the conclusion of a logical 

consequence are in some systematic way dependent on those of the premises. 

For simplicity the logic is restricted to depth one beliefs and multiple agents as 

well as the modal operator L are ignored. Although much of what makes the 

logic interesting is subsequently passed over, its basic concepts should be better 

illustrated in this way. 

What is required is a relation which tells us what follows from a given belief, 

relative to an arbitrary model and partial, situation. Since belief in a formula 

is defined as its having true support in each member of the set of accessible 

situations, evaluated relative to a set of propositional letters of which the agent 

is aware, the problem can be reduced to discovering a consequence relation for 

sentences holding true at situations, which are partial with respect to this aware-

ness set. For if we have a relation 1=K  such that a HK  fJ if for all M, s, IJI,  if 

M, s 	a then M, $ =4 /3, then belief is closed under this relation. if a I=K /3 

and As 14 B1a then M, t 	nA(s) a for all t such that (s, t) E R1, and so 

M,t a)  ,8 for all t such that (s, t) E R, that is M,s 14 B/3. This also 

gives the biggest relation with this property, since it makes the minimal require-

ment of preservation of truth at situations. 

The relation =K  is, trivially, a consequence relation for sentences holding 

true at situations in Fagin and Halpern's logic, but this is hardly illuminating. 

It is however not difficult to see which logic it resembles. Since we are here 
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concerned with partial and consistent situations the relations1=4 and 4 in the 

truth definition can also be seen as partial truth assignments, where W is the set 

of sentence letters on which these are defined, and total refinements - that is, 

completely specified extensions - of which are classical assignments, correspond-

ing to the classical relation = in the truth clauses. From the perspective which 

saw meta-beliefs as important, it was much easier to take classical assignments as 

basic and define belief in terms of partial sub-assignments of these, rather than 

to do things the other way round as in the logics previously examined. But to 

illustrate the restriction of their logic under consideration here which disregards 

truth and embedded and implicit beliefs, it is best to revert to regarding partial 

situations as the fundamental tool of the logic. Once it is recognised that 1=4 
and =together form a consistent but partial truth assignment to the formulae 

of the language, it is readily seen that according to Fagin and Halpern's truth 

definitions for the connectives this truth assignment is a partial valuation from 

the propositional language into {1, O}, the interpretation of the connectives being 

the partial n-ary functions from {i, O}' to {1, O} given in the matrix for Kleene's 

strong three-valued logic. Since it is the logic of the positive commitment for 

belief, and so the relation I=T, that is at issue, the consequence relation under 

which belief is closed is the rather unrestrictive one which requires only preser-

vation of truth from premises to conclusion: t-entailment, in P atel- Schneider's 

terminology. Unlike classical logic, if it is also required that some premise must 

be false whenever the conclusion is, then this would define a different conse-

quence relation. So if =K  is defined as, for F a set of sentences, 1' =jç 8 if for 

all M,s,W, if M,s =T  a for all a E  then M,s 1=7' /3, then F =K  /3 if every 

partial assignment from the propositional letters into 11, o} - extended to com-

plex formulae according to Kleene's strong three-valued system - which assigns 1 

to each a E F, also assigns 1 to P. There are no tautologies: dually, no sentences 

/3 such that 0 =K P. For example we have 0 V=K a V -a. This corresponds to 

the fact that in Fagin and Halpern's logic no formulae are always believed. In 

their logic, however, beliefs are closed under classical implication in the sense 
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explained above: this can be seen as correct because =K  respects disjunctive 

syllogism and so 3 is a logical consequence of a and a D 3 according to =K•  It 

is also easy to check that for all a and /3, a A -'a =x  /3, since all assignments 

are consistent; this explains why contradictory sets of beliefs are not possible. 

There is a natural deduction system S such that /3 is a sentence deducible 

from the set of sentences F by means of the rules of S 1ff r HK P. Some care 

is needed in setting up S, given that logical consequence is defined with respect 

only to preservation of truth from antecedent to consequent, and not preservation 

of falsity from consequent to antecedent. So reductio ad absurdam cannot form 

part of the system, for if a contradiction is derivable from a it need not be false. 

Also, since a HK  a but not -=K  a D a, the fact that /3 is derivable from a should 

not allow us to deduce that a D fl is true. As has already been argued, this is a 

desirable feature in a logic of belief. The rules for S, which is the propositional 

fragment of a system of Kearns 20, are as follows: 

a/aV/3 	13/aV/3 

a v 	 a,-'a/3 

(aVf3)/-'/3 

-'a, -'/3/-'(a V /3) 

FaI means that the bracketed hypothesis 3 from which 'y was derived has been 

cancelled. a1 ,. . . a/3 is a theorem of S if /3 is the conclusion of a proof tree 

whose uncancelled assumptions are among a1 ,.. . a. This may be written as 

a1,. .. an Fs  P. The proof of the strong completeness of I=K  with 'respect to 

this system may be found in Kearns 1979; it uses the standard technique due to 

Lindenbaum. 

20Kearns 1979. 
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S can now be seen as the deductive system that gives the positive logic of 

commitment for explicit belief for this fragment of Fagin and Halpern's logic 

which does not allow embedding of operators. With this restriction in place we 

have at hand a concise means of expressing the difference between the logics 

of explicit and implicit belief. Consider the characterisation of minimal normal 

modal logics as those closed under the rule K: 

from ar ,. . . a,, I- /3 infer Ba1.... Ba,, I- B/i, 

where n > 0. Then where H is consequence in classical propositional logic, the 

operator B defines the logic of commitment for Fagin and Halpern's implicit 

belief operator and completely characterises their system without embeddings 

permitted; where F- is read as our chosen notion of consequence for Kleene's 

three-valued logic, the same is done for the notion of explicit belief. This per-

spective on awareness as a change in the propositional logic underlying a unitary 

modal definition might break down if applied in the same fashion as an alter-

native description to the multiple modalities of the rest of Fagin and Halpern's 

logic, but nevertheless it appears to offer an interesting generalisation of their 

awareness operator, and to suggest a very natural progression to a first-order lan-

guage, where awareness of objects would seem to have a straightforward formal 

counterpart in Kleene's semantics for predicate logic. 

The main feature of their second general proposal, called the logic of general 

awareness, is a syntactic awareness function for each agent which assigns to it 

at each world an arbitrary set of formulae which need not be primitive. No 

structure at all is assumed for this set. Then where M is as before except for 
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this change to A, the truth definition is: 

M, s = true 

M,s =p, iffir(s,p) = 1 

M,s= -'cxiffM,sV=a 

M,s l=aVf3iffM,s I=aorM,s 

M,s =A1aiffaEA1(s) 

M,s = La iffM,t = a for alit such that (8, t) E R1  

M,s = B8 a iffa E Ai (s) andM,t 1= afor alit such that (s,t) ER1  

Li  is again the classical belief operator, and explicit beliefs are the restriction 

of implicit beliefs those that are also in the awareness set, and so given the 

appropriate relational conditions on frames, the logic may be axiomatised by 

the axioms of weak S5 together with Ba La A Aa. Any interest in the logic 

must come in the restriction placed on the awareness function, and Fagin and 

Halpern suggest several. Order of presentation of conjuncts in a conjunction may 

not matter, so an axiom could be added to this effect; other examples include 

closing off under subformulae, and restricting the set to any sentences generated 

from a set of atomic formulae. If awareness is closed under subformulae, however, 

then explicit belief is closed under implication. Agents themselves may be put 

into or left out of awareness sets with the result that some others may not be 

aware of any sentences that mentioned them, and to ensure that agents know 

precisely which formulae they are aware of we require that if (s, t) E R1  then 

Ai(s) = A1 (t). In this case, B•a A ABa D B1B1 a, so positive introspection 

holds for explicit belief if an agent is aware of the belief in question. 

We conclude this chapter by looking at one of the more systematic proposals 

made in this context, a logic of 'general awareness' where explicit belief is the 

restriction of implicit belief to the upward closure of a set of atomic sentences, 

those of which the agent is 'aware' at a world. Although the authors note that its 

theorems closely resemble those of Levesque's logic of explicit and implicit belief 

and despite the fact that it is one of the more plausible of their proposals from 
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the point of view of human beliefs, it compares unfavourably with it because of 

its syntactic flavour. This is not irreparable, for there already exist as standard 

techniques in logics of analytic implication semantic models for dealing with 

issues similar to those that arise when the notion of awareness is introduced into 

a logic of explicit belief21. In fact, the logic of commitment induced here by this 

type of awareness belongs to an existing class of relevance logics which differ from 

Levesque's in a number of ways: in particular, lack of awareness apart, agents are 

logically omniscient in the classical sense, and of course agents do not consider 

possible inconsistent situations. To emphasise this alternative perspective, we 

now give the alternative models as well as the axiomatisation for which they can 

be checked to be complete. The point is that the models standardly given for 

the logic under which belief is closed can be used to illuminate the models for 

this logic of awareness. 

A model is a tuple M = (W, I, U, -y, ir, R1,. .. R,, A1,. . . A1,) such that where 

P is the set of atomic formulae of the language the language L, W is a non-empty 

set; for each w E W, I,,., is a non-empty set; for each w E W, U,, is an associative, 

commutative and idempotent operation on I; for each w E W, y,, is a function 

from P into I; ir and R are as above; and A, c P for each i and for each 

w E W. It is also a condition that whenever (W, V) E A. then (I,,, , 	extends extends 

- can be embedded in - (I,u,'y), and Ai,. c A1,. 

For each semilattice (I, u,,) 	with a, b e I,,,, 	is defined by a < b iff 

au,, b = b. 	may then be extended to all formulae such that where £ (a), the set 

of sentence letters occurring in a, is {pi,.. .pn}, -y, (a) = I (pi)u.. .0-y(p). 

Then relative to a model M = is defined as above, except that 

w = Aa iff'y(a) !~ i'(AA,). 

21Dunn 1972, Urquhart 1973, Deutsch 1984 and Fine 1986, for example, use models 

very similar to the one below. 
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The axioms of the logic are all classical propositional tautologies; for the 

L-operator the axioms of the modal logic weak S5, and the following axioms 

concerning B. B,a B1a', where a' is got from a by the associativity, commu-

tativity and, distribution rules for the connectives A and V; and 

B1-'(aA /3) B1(-iaV -'3) B.-i(aV /3) B1(-aA -'/3) 

B1  -'--'a Ba 	 Ba A Bf3 B.(a A 3) 

B1(aV(/3A-'/3)) DB1 cz 

Essentially, these axioms simply state that the relevance logic of analytical im-

plication is the logic of commitment. For example, the last axiom above ensures 

that belief is closed under modus ponens, and also if a is a propositional tautol-

ogy, then A1 a D Ba. From this it can be seen that this logic provides another 

example of an epistemic logic best seen as representing the consequence relation 

under which belief is closed. 



Chapter 4 

Frames And Algebras 

4.1 Frames 

Previously we saw two different approaches to weakening epistemic logic in order 

to avoid attributing to agents the ability to reason perfectly in classical logic: the 

descriptive approaches of chapter 2, which permitted the attribution of beliefs 

to agents without the simultaneous attribution of reasoning ability; and the 

normative approaches argued for in chapter 3, which maintained but weakened 

the reasoning ability of agents. For these logics we saw the value of viewing 

their logics of commitment as a consequence relation, whether or not this was 

intended in the construction of the logic. Adopting this perspective we shall now 

develop four-valued modal logic, based on the well-known four-valued logic used 

by Levesque and Lakemeyer, but shall take a more standard approach towards 

the subject - in particular with regard to the definition of validity, and by making 

use of the notion of frame. 

The relational constraints in Lakemeyer's models depend on the presence 

of valuations, because these are required to identify the classical worlds of the 

models, which in turn are used to define the relational constraints. Similarly, 

validity is defined by means of classical worlds, and there is no useful concept 

of a frame - a model without valuations. Here we choose to revert to the more 

standard picture in which the frame is a fundamental notion and where all worlds 

are used in defining validity; also, the operator for implicit belief - which was 

94 
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defined by means of classical worlds - is dropped. However, we add to frames' 

a relation * which allows a valuation-free definition of a classical world and so, 

if wished, a means of recovering the restrictive definition of validity and the 

operator for implicit belief. At the end of this section this definition of validity 

will be introduced temporarily to compare Lakemeyer's models with our own. 

For the remainder of the thesis we work out the semantics for the modal logic 

determined by adding the rule K to four-valued logic, noting the similarities and 

differences with the classical case. In other words, we consider the most general 

basic four-valued modal logic F-K and all its extensions: the value of some of 

these extensions has been noted, but a picture of the more general semantics for 

modelling both these and classical modal logic has not yet been drawn. This 

is what we now do. First are introduced the relational semantics for our four-

valued modal logic, which will be based on the usual notion of Kripke frames; 

as has been seen, these are well suited to modelling normative conceptions of 

belief. The intuitive idea on which these semantic structures are based is that we 

are given a set of possible worlds between which certain relations of accessibility 

hold. Given a fixed world x, the worlds accessible from x are those "considered 

epistemically possible" at x; and a proposition is believed at x if it is true in all 

worlds considered possible at x. 

The classical definition of Kripke frames, and of models based on these, is 

designed to have the following effect on this intuitive picture. Possible worlds 

are classical worlds: the formulae true at a world are closed under classical 

entailment, with the result that for any formula a of the language, exactly one 

member of the set {a, -lcr} is true there. This applies equally to modal formulae, 

allowing the belief in a at a world to be defined as the truth of a in all accessible 

worlds, and disbelieving a to be defined simply as the failure to believe a. 

To adapt the same intuitive idea to a semantic structure for four-valued modal 

logic, where the truth of the negation of a formula is not defined as the failure 

of that formula to be true, changes are required in the classical definitions. The 
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formulae true at a world are to be closed under four-valued entailment - they 

form a theory in this weaker logic. The change to the classical picture is that we 

can no longer insist that a V -'a is true at each world and no longer insist that 

a A -'a fails to be true at each world. Letting a be a modal formula, this change 

forces a dissociation between the definitions of disbelief and failure to believe, 

and so an additional accessibility relation is required, by means of which beliefs 

are falsified. This will allow propositions to be both believed and disbelieved, 

and further, the epistemic agent is able to contemplate the failure on his part 

to have one of these attitudes towards a proposition. For example, we can allow 

the agent truthfully to profess his agnosticism on a given matter and to have 

inconsistent beliefs, but we force him to believe that he either has a given belief 

or he fails to have it. 

These considerations give rise to the following formal definition of a frame for 

four-valued modal logic; the exact relation of these frames to four-valued logic 

will be given at the end of this section. 

Definition 1 A frame is a structure C =< X, *, R>, where X is a non-empty 

set, R is an arbitrary binary relation over X, and * is a functional and symmetric 

binary relation on X. 	 0 

X may be regarded as a set of worlds, and R as the relation used to verify what 

is believed. We write the unique y such that x * y as x; observe that x = x. 

Intuitively, whatever is true at x fails to be false at x, and so conversely if -'a is 

true at x then its negation should fail to be false at xPt.  In other words, since 

= xand -'-'a = a, a is true at xif and only if-'a is not true at x. If  = 

it is natural to call x a classical world, given this intended role of *. 

Finally we define R' over X by xR'y if xRy. This relation will be used to 

define disbelief in a formula: it gives the worlds used to check whether a belief is 

false. In a classical world it can be seen that these are precisely the same worlds 

that are used to verify belief, which is what is wanted to maintain bivalence 
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there, but in general this is not the case. The classical worlds will not here be 

given the privileged role they were assigned in chapter 3, but this could of course 

be introduced at will, given that they are defined. 

Given a denumerable set {pi I I e I} of propositional variables, the formulae 

of the modal language are defined in the following way. 

Definition 2 The formulae of the language are: 

1. Propositional variables are formulae; 

£. If a and /3 are formulae then so are a V /3, a A /3, -'a, 0 a and Oa; 

3. Nothing else is a formula. 	 U 

The natural interpretation of the modal operators D and Q are: 

0 a : believes a; 

-'0 a : disbelieves a; 

a : fails to believe a; 

Oa 	fails to disbelieve a. 

This choice of interpretation for the modal operators is arbitrary in the sense 

that in the most general logic their technical behaviour is identical - 0 and 

may be interchanged there in there natural interpretation. Given a frame 

C =< X, *, R> and Z C X let —Z denote the complement of Z and Z denote 

{x* I x E Z}. 

Definition 3 A valuation v on the frame C =< X, *, R > is a mapping from 

the propositional variables {pi I i e I} to P(X), the powerset of X, which extends 

to other formulae by 

1. v(-a) = —(v(a)) 
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2. v(aV/3) =v(a)Uv(13) 

S. v(aA/9) =v(a)flv(13) 

v(Da)={xEXjVy(xRy=yEv(a))} 

v(Oa) = {x E X I Vy(xR'y = y e v(a))} 	 0 

A world x E X is said to satisfy a in the model < C,v> if x E v(a). This 

is written as C, v, x = a. A model < C, v > satisfies a , or C, v 	a if for 

all x E X we have CI V I   x 	a. Where the context is clear, this is sometimes 

abbreviated to x a. And a is valid in a frame C if for all valuations v on C 

we have C,v = a. This is written as C = a. In the usual manner /= is used to 

denote the failure of these concepts. It is important to see that it follows from the 

definitions that C,v,x = -'a if C,v,xt K a, and C,v,x = a if C,v,x 	-'a. 

For example, it can be shown that for an arbitrary frame C, 0 a V - Q a is 

valid in C. Let v be any valuation on C and let x E X. Then C, v, x = 0 aV-iOa 

if C,v,x = Da or C,v,x =-' Q a if Vy(xRy = y = a) or 	Oa, that is 

ay(xR'y and y a). If the first disjunct fails, then y(xRy and y a) and so 

x*Rly, so the second disjunct is true. It can be shown similarly that Oa V -'0 a 

is valid in all frames. As another useful example, let < C, v > be an arbitrary 

frame model. Then 

Theorem 4 C,v = Da 1ff C,v Qa. 

Proof. Suppose C,v V= Oa because C,v,x K Oa with xR'y and y a. 

But then xRy, so 	0 a and C, v K D a. The converse clearly holds by a 

similar proof. 	 0 

Corollary 5 C = -' 0 a 1ff C = 0 a; if C = 0 a then C 	-1  0 a; if 

CJ=Qa then C-,Qa. 	 0 
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The classical notion of frame morphism or p-morphism is here extended to 

these frames. 

Definition 6 Given frames C1  =< X, *, R > and C2  =< Y, *, S > a frame 

morphism C1  - C2  is a mapping f : X i-+ Y such that: 

If xRx' then f(x)Sf(x'); 

f(x) = 1(x) 

If f(x)Sy then 2x' E X with xRx' and 1(x') = y. 

Given a frame morphism C1  4  C2 , clauses 1 and 3 also hold for the relations 

R' and S'. This is because, treating * as a relation, R' can be regarded as the 

relational composition of * with R, and these properties both hold for * and R. 

This point is important because it shows that any validity preserving properties 

of frame morphisms regarding the operator 0 also hold for 0. 

A frame morphism is injective if it is injective as a function - if x 54 y implies 

that 1(x) 54 1(y) - and surjective if surjective as a function: if for all y E Y 

there is some x E X with f(x) = y. If it is both injective and surjective then 

it is an isomorphism. If C1  -4 C2  is an isomorphism, then so is its inverse, 

and C1  and C2  are said to be isomorphic: from a logical point of view they are 

indistinguishable. If C1  - C2  is injective then C1  is isomorphic to the subframe 

1(C1) of C2; and if C1  -4 C2  is surjective then C2  is a p-morphic image of C1 . 

It is often convenient to regard a frame that is isomorphic to a subframe of C2  

as though it were that subframe, though it should always be borne in mind that 

strictly the former notion applies. 

Let C1  -4 C2  be injective. Then the image of f is what is often known 

as a generated subframe of C2, because the conditions for a frame morphism 

guarantee that the image 1(C1) of f is a subset of C2  closed under the join of 

the relations *, S and S'. For 1(x) in C2, any path from 1(x) in relations from 
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these three is also a path from x in the corresponding relations of C1  if, for 

x' E X we regard x' and f(x') as the same elements. 

Theorem 7 If C 1  4 C2  is injective and C2 = a then C1  = a. 

Proof. Let C1  and C2  be as above. For a valuation v on C1  with C1, v, x a 

let v' be any valuation such that for all p, and for all x' E X C1, v, x' = Pi if 

C2, v', 1(x') 1= p,. Clearly such a valuation v' exists. Then C2, v', 1(x) = a so 

C2,a. 	 U 

Now let C1  -4 C2  be surjective and let v be a valuation on C2. Then where 

I '(Z) =d.f {z I 1(x) E Z}, define a valuation v' on C1  by V'(pj) = I 
This is indeed a valuation: clearly for Z, Z' E Y we have f(Z fl Z') = 

f'(Z) n f 4(Z') and f'(Z U Z') = f'(Z) U f'(Z'). Defining C3  =def 

{y E Y I 'c/z(yRz = z e Z)}, then f'(DZ) c of'(Z) is a restatement of the 

first part, and of'(Z) C f'(oZ) is a restatement of the third part, of the 

definition of frame morphism; so f'(DZ) = Df(Z). Finally, f -'(--Z) = 

—f'(Z). This shows v' to be a valuation on C1  with C1,v',x = a 

if C 2,v,f(x) =a. 

Theorem 8 If C 1  -4 C 2  is surjective and C1 = a then C2 = a. 

Proof. Suppose C2  a because C2, v, y a. Then with v' as above C1, v', x 

a, where 1(x) = y. 	 ILE 

For {C1  I i E I} a collection of frames with C1  =< X1 , *, R >, their disjoint 

union E•EJ Ci is the frame < >1i X, *, R > where E1€1 X1  = {(XI') I x E X, i E 

I}, (x,i)R(x',j) if i = j and xR.x', and (x, i) 	(x*, i). Then for f1  (x) = (x, i), 

fj  it is straightforward to check that C, - > jEJ C is an injective frame morphism. 

Theorem 9 If for all i E I Ci I=  a, then >JjEI Ci = a. 
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Proof. Suppose E1EI  C 	a because >1E1  C, v, (x,j)K a; then v restricted 

to C, is a valuation on C•, so C,, v, x K  a. 

These preservation results are all classical results which transfer directly to 

four-valued frames. There is another preservation result, as well as a further 

conditional one concerning canonical extensions, which will be given in chapter 

Before turning to algebraic models for the logic, we shall close this section by 

making explicit the four-valued logic on which our modal logic is based, as well 

as the comparison between this logic and that of Lakemeyer's outlined in the 

previous section. The four values of the four-valued logic we are using may be 

named T, F, TF and *; or only-true, only-false, lIoth-true-and-false and neither-

true-nor-false respectively. The last value should not of course be confused with 

the frame relation. 

The truth-functional behaviour of the connectives with regard to these values 

is as follows: in the four element truth-function lattice with * A TF = F and 

* V TF = T, the connective A is meet, the connective V is join and -' is the 

involution with fixed points at * and TF. These are monotonic connectives: in 

the degree-of-definedness lattice I with T A F = * and T V F = TF, the truth 

function defined by each of these n-ary connectives is a monotonic function from 

TtoT. 

In a model, the value v(s, a) of a formula a at a world s is T if s a and 

s 	-'a, Fifs K a and s = -'a, TFifs = a and s 	-'a, and * ifs 	a 

and s K -'a. If we define the non-monotonic truth function u by u(T) = T, 

u(F) = F, u(TF) = * and u(*) = TF, then it is easy to see that in all models 

v(s, a) = u(v(s, a)). This truth function u could be defined by using the frame 

relation * to define a modal operator in the usual way, but as we have seen it is 

not really modal in character. To add this to the language would be equivalent to 

adding a classical negation: if u is also the language connective defined modally 
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by *, then we have s a ifs = u(-,a). So this will not be done here, although 

models appropriate for this extension are considered in the final chapter. 

It is routine to check that the propositional logic defined by our frames is 

indeed this four-valued logic. For example, if v(s, a) = TF and v(s, 3) = *, then 

v(s,aAO) = F: clearly s K aAfi because s /3; but also s J= -i(aA/3), because 

-'a and so s* 	a, implying that s 	aA/3 and so  1= -i(aA/3). So, 

by definition, v(s, a A /3) = F. That this is also the underlying four-valued logic 

we saw in the previous chapter is most easily seen by treating the values T, F, 

TF and * as sets {T}, {F}, IT, F} and 0, and then noting that the definition 

of satisfaction for each of the proposition connectives there corresponds to the 

truth functions above. 

To compare our structures with those of Lakemeyer with respect to their 

common language we will, as noted at the beginning of the 'Chapter deal only with 

models and will temporarily use the restricted, classical definition of validity. 

First with any of Lakemeyer's BLK modelsM =< W, T, F, R, R > we associate 

another such model M' which has the same logic. This model M' is then easily 

shown to have the same logic as one of our own models. A converse association is 

even easier to demonstrate. Let C C W be the classical worlds of the model M - 

those w e W such that for all pt,  w e T(p1) if w F(p1). Augment W to W' by 

adding fresh worlds w for each w E W—C, so letting W' = WU{w I w e W—C}. 

Augment the valuation pair < T, F > to cover these new worlds by setting 

W* E T(p1) if w F(p) and w E F(p1) if w V T(p,). Finally, augment R 

and R by wRv if wRv and w*R_v  if wRy. Let this extended model be M', 

and note that for no v E W' and w E W' -  W do we have vRw or vRw: 

in particular, identifying the worlds of M naturally with worlds in M', it can 

be seen that the two models share precisely the same classical worlds; that in 

both cases each of these is related to precisely the same set of worlds; and their 

valuations coincide for the worlds W. So the worlds W' - W are superfluous in 
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the 'definition of validity. From this it follows that M' has the same logic as its 

submodel M. 

Obviously, M' was constructed to look like one of our own four-valued models. 

Define the frame operation * by (w) = w and for w E C, w = w. 'Then because 

R and R coincide at classical worlds in Lakemeyer's models, and because of 

the way we defined R and R in M', we clearly have wRy if wRv; so C =< 

W', *, R> is a frame in which R coincides with our defined relation R'. Then 

we define a valuation v on this frame by v(pi) = T(p1): the way in which T 

and F were extended to M' shows that F(p1) = — v(pi)* , and so, given that 

the relational structure is the same in the two models, we have M', w 	a if 

C, v, w = a for any a in the common language. It follows that any BLK model 

determines one of our models with the same logic. 

The converse is clear: for any frame C =< W, *, R > such that all w E W 

with w' = w satisfy the relational constraints imposed on classical worlds in 

BLK models, and for any valuation v on C, a BLK model with the same logic as 

<C, v > may be defined: use the underlying birelational structure < W, R, R'>, 

together with the valuations defined by T(p) = v(p1) and F(p1) = 

Verification is then immediate, showing that Lakemeyer's models may in this 

way be put in logical correspondence with that class of our models satisfying the 

appropriate relational constraints. 

4.2 Algebras 

Definition 10 A modal algebra A is a structure < A,A,V,-i,u,,0,1> of type 

<2,2,1,1,1,0,0> where for a,b,EA 

< Al  A, V,0,1 > is a bounded distributive lattice; 

-'(a A b) = -'a V -'b, -'(a V b) = -'a A -'b and -'-'a = a; 
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zi(a A b) = ha A vb, vi = 1 and va V -a = 1; 

iz(a A b) = j.a A jib, il = 1 and jia V -'va = 1. 	 0 

Note that we also have -'0 1 and -11 = 0, va A -,La = 0 and jia A -'va = 0. 

As usual we sometimes write a-< b for a A b = a. Associated with each formula 

a of the language in n propositional variables is an n-ary polynomial function 
pa on any modal algebra A: 0 is interpreted as I' and () is interpreted as p, 

and the other connectives get the obvious interpretations. If this function is 

constantly equal to 1 for any sequence of elements of the algebra as arguments, 

then a is valid in A, or A f= a. Viewing pa  as a term ta,  this is equivalent to 

requiring that the algebra satisfies the identity ta = 1. 

Recall that in algebra a mapping A1  - A2  from the universe A1  of A1  to the 

universe A2  of A2  is a homomorphism if it preserves the operations: if a1, .. . a 

are in A and w is an n-ary operation derived from those of the signature, then 

a,)) = w(h(a j),. . . h(a,)) An isomorphism is defined to be an injec-

tive and surjective homomorphism, and similarly to frames, isomorphic struc- 

tures are algebraically indistinguishable. If A1  -+ 
h 	i A2  s injective, then A1  is 

isomorphic to a subalge bra of A2  - sometimes it is convenient to regard it as in 

fact a subalgebra; and if it is surjective then A2  is a homomorphic image of A1 . 

For a class K of algebras, S(K) is the class of algebras isomorphic to subalgebras 

of members of K, and H(K) is the class of algebras isomorphic to homomorphic 

images of members of K. 

Theorem 11 If A1  - h + A 2  is injective and A2 = a then A1 = a. 

Proof. We may regard the universe A1  as a subset of A2, and this is closed 

there under the operations of A2. So suppose that for some a with n propo-

sitional variables and for some a1,.. . an  C A1  ç A2  we have pa(ai,... a,) 5k 1. 

But then pa(ai,. . . a,) e A1  and h is injective, so pa(ai.... a,) 54 1 in A2. That 

is, A2 a. 	 13 
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h Theorem 12 If A1  — p A2  is 8ur3ectzve and A1 = a then A2 = a. 

Proof. If the antecedent holds then for any a1.... an  cA1 , p'(a1,... a,) = 1. 

Choose any b1, . . . b, c A2  with h(a.j) = b. Then because h(1) = 1, 

h(pa(ai,.. . 	= p' (h(a1),. . . h(a,)) = 1. 

So p'(bi,.. . b,) = 1. 	 FEI 

For algebras {Aj  I I E I} define their product Jj jEj  A, to be the algebra 

with universe the cartesian product fuEl  A1  of the universes A1, and with op-

erations defined pointwise: for n-ary operator w and a1,. . . an  E fie,  A•, define 

w(ai, . . . an) (i) to be w(ai(i),.. . a,,(i)). 

Theorem 13 If {A1  I I E I} are such that for all i E I, A = a; then we have 

fuEl A1  = a. 

Proof. If pa  isn-ary and a1,...a E f $EJAI, then for all i E Ipa(ai(I),. . .a,,(i)) = 

1. So for all i pa(ai.... an) (i) = 1, then pa(ai,.. . a,) = 1 and fiEI Au = a. 0 

If K is a class of algebras then P(K) is the class consisting of those algebras 

isomorphic to products of algebras in K. A class of algebras closed under H, 

S and P is called a variety, and the smallest variety containing a class K of 

algebras was shown by Tarski to be HSP(K). From a theorem by Birkhoff, it 

is known that varieties are precisely equational classes: for any variety V there 

is a set of identities such that V is the class of all algebras satisfying all of them; 

and conversely the class of all algebras satisfying a given set of identities is a 

variety. 
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al- a; 

aH$Ai iffah8 and aF-y; 

aVflF--y iffal- and /3l--y; 

-'-'a -IF- a; 

a I- /3 implies -'/3 I- -'a. 

In addition to these we also require axioms to the effect that V and A are com-

mutative and associative and that they distribute over one another. The rules 

- oI, -oE, -'CI  and QE allow the derivations of I- DaV-'Qa, F- Cay -m El a, 

o a A -1  Q a F- and Oct A -10 a I-. For example, I- 0 a V -' 0 a can be shown 

to result from o a F- o a by successive applications of -' 01, Vu, Exchange, 

V12 and then a contraction. The other theorems are shown similarly. Moreover, 

without further axioms added to F-K, this is all that these four rules can prove by 

themselves, since they simply say that certain formulae act as classical negations 

of each other - compare the sequent rules for classical negation. Finally the rules 

K° and K0  have the same properties as in classical modal logic: 

0(aA/3) -IF- 0aA0f3 and F- Da if F- a; and Q(aAfl) -IF- OaAOI3 and F- Ca if F- a. 

As in the classical case this formulation is equivalent to the sequent calculus 

formulation. So, comparing this axiomatisation to the equations used to define 

algebras, informally we have shown: 

Theorem 14 The algebraic semantics is sound and complete for F-K. 	0 

We will usually think of a modal logic L as a set of formulae, called axioms, 

closed under the substitution of formulae and closed under the rules of F-K, but 

formally we must use sequents in place of these formulae. Thus all axioms of F-K  

are included in L. Choosing to present a logic as a set of formulae rather than a 
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set of sequents would allow us to describe only one propositional extension of F-K , 

namely that given by I- av-ia which is classical modal logic. It might be thought 

that this also fails to describe the extension given by the sequent a  -ia F- to give 

a three-valued base to the logic; but having recast the system with the rule that 

a F-,8 implies -'/3 F- -'a, the presence of modal theorems shows this extension to 

be the same as that by F- a V. -'a. In fact, a three-valued modal logic is given 

by adding the sequent a A -'a F- /3 V -/3, which has no formula equivalent; but 

in most cases the axiom presentation is a convenient shorthand. This blunter 

approach will generally be adopted because these propositional matters are not 

our concern here; but because of the above example, and because in general there 

are no propositional theorems, we must take note of the sequent formulation in 

showing completeness below. 

The collection of all modal logics ordered by inclusion is a lattice, with meet 

in this lattice being intersection - the classical modal logics are a sublattice of 

this lattice. If E is a set of formulae, let V(s) be the class of modal algebras 

determined by E: the algebras in which all formulae of E are valid. Now it is 

easily shown that a F- /3 if a A /3 HF- a, so for a set of sequents E, V(E) is 

defined to be the class of all algebras A such that A = ta = to for a and /3 such 

that a -IF- /3 e E. The sequent a -IF- 3 is then said to be valid in an algebra 

if it satisfies this equation. Either way V (E) is an equational class and so, by 

Birkhoff's theorem, a variety. Now for an algebra A let L(A) be the logic of A, 

the sequents valid in A. Because a modal algebra is closed under the rules of 

F-K, L(A) is indeed a logic. Extending this definition to a class C of algebras, 

let L(C) = fl{L(A) I A E C), which is a logic, because logics are closed under 

arbitrary intersection. Clearly, varieties determine logics. 

Now every variety is defined by equations, and every equation is of the form 

tc, = t, for a,/3 formulae in the modal language: let A = t a = t, for every 

a -II- /3 E E - then it is not difficult to check that A E V(E). It follows that 

every variety is of the form V(s) for some set of sequents E. Now let L' be the 
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smallest logic containing E and let A E V(E). Then E C L(A) so LE  C L(A); 

that is, all the sequents of E are valid in A. So A E V(L). The converse 

is trivial: if A E V(LE)  then A E V()). Consequently E and LE  determine 

the same variety, so V is a surjective mapping from modal logics to varieties of 

modal algebras. 

Let L be a logic; then so is L(V(L)). But V(L) is the equational class 

determined by the sequents of L, so every sequent of L is valid in each A E V (L), 

which means that these are valid in L(V(L)) = fl{L(A) I A E V(L)}. To show 

that the reverse inclusion holds, it is shown that if a I- /3 is not in L, then it is not 

valid in any Lindenbaum algebra of L, which is in V(L); and then a F- /3 is not 

in fl{L(A)  I A E V(L)} = L(V(L)). Assume that the language has some fixed 

infinite set of propositional variables: a logic then induces an equivalence relation 

on its formulae given by HF-. For a given logic L, let [a] be the equivalence class 

of a according to this relation, and let the universe of the Lindenbaum algebra 

AL be the set of all such equivalence classes. Define the algebraic operations by 

[a] A [/3] = [a A /3], [a] V [/3] = [a V )3], -i[a] = [-a], v[a] = [[]a], [a] = [Ca], 

0 = [cJaA-Qa] and 1 = [[Iav-'Oa]. This is well-defined, because if [a] = [y] 

and so a -IF- -, the logic shows that aA/3 HF- yA/3, aVf3 -IF- -y V,8 etc. So 

nothing depends on the the choice of a' E [a], and AL  is a modal algebra with 

a HF-L  /3 if [a] 

That a HF- /3 E L if A' = ta = 0 is then shown in the standard way. Let or 

be a uniform substitution of variables for formulae: o,  (a) is the result of replacing 

each variable pi  in a by Oj, where a(p1) = Oi. Now we know already that the 

valid equivalences of L are closed under the application of any such substitution 

to all formulae in that equivalence, so a -IF- /3 if Va(a(a) HF- o(/3)). Let pa  be the 

term function of a. In other words, for a sequence d = (ai, a2,...) of elements of 

the algebra, if a is a variable p1  then p(  d) = a; if w is a n-ary connective and 

a = w(,81.... #,,) then we have p" (d) = w(p'(a) .. . . p'(a)), where w is here the 

operation in the algebra corresponding to the language connective. 
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Let V-  be the sequence ([p0],  [p1],...) in AL.  Also define a(ii) to be the sequence 

([a(po)], [a(pi)] .... ). Clearly every sequence of elements of AL  is of the form a(ii) 

for some a. Given the construction of A' an easy induction on the length of 

formulae shows that pc(i-) = [ a]. The proof is little more than a restatement of 

the definition of pa  Also, by considering the definition of or and of a(i3, it can be 

seen that p(')( v-) pa(a(iY)).  So it follows that [a(a)] = P°( 4(i3). So altogether 

is can be seen that a + /3 E L if Va(a(a) -II- a(/3) E L) if Va([a(a)] = [a(/3)]) 

1ff Va(pc(a) = pa(s)) 1ff Va(pa(a(ii) = p5(a(i7))) if pa = V. But this is just to 

say that A" [= a -11- /3 as promised. So we have shown that L = L(V(L)); as a 

mapping, V has an inverse L. Finally, suppose that L c L'; then any algebraic 

model for L' is also a model for L, that is, V(L') C V(L). This shows that 

the lattice of modal logics is anti-isomorphic to the lattice of varieties of modal 

algebras. 

4.4 A Representation Theorem 

The following structure is in places similar to one of Goldblatt1, which is based 

on a construction by Priestley 2, so parts of the following proof may be found 

there. These are reproduced here for completeness and intelligibility. 

We begin with some definitions. Given a set X, a topology T on X is a 

set of subsets of X containing 0 and X and closed under finite intersection and 

arbitrary union: that is, if U, V E T, then U fl V E 1, and if { U1  I i E I} c T, 

then U$EJ  U1  E T. < X, I > is then called a topological space. A base for I is 

a subset B C I such that for every U E 1, U is the union of elements of B. A 

1Goldblatt 1989. 

2Priestley 1970. 



Chapter 4. Frames And Algebras 	 111 

subbase for I is a subset C C I the finite intersections of which form a base. If 

U E I then U is called open and —U closed; if U is both open and closed then it 

is clopen. A subset U ç Xis compact if for any {Vi lie I} 9 I with U C U$EJVi 

then there is a finite J c I with U ç UJEJV. Any such {V1  I i C I} ç T is 

called an open cover of U. A space < X, I > is compact if X is. Note that 

if < X, T > is compact then any closed U c X is compact: for if U c UIEI V, 

with each V1  open and with U closed, then —U is open and —U U U1EI  V, = X. 

Since X is compact we have some finite J C I with —U U UEJ IT, = X, and so 

UcUIEJV. 

Given a partial ordering < on a set X, a cone Y C X is an upward closed 

subset of X: that is, if y C V and y < z then z e Y. A cocone is a subset 

the complement of which is a cone: it is a downward closed set. An ordered 

topological space < X,:5, I > consists of a topological space < X, T > and a 

partial ordering < X, <>. An ordered topological space is totally order separated 

if for any x, y e X, whenever x y then there is some clopen cone Y with x C V 

and y V V. If, in addition, an ordered topological space is compact, then it is 

called a Priestley space. 

Theorem 15 If < X, <, I > is a Priestley space then the clopen cones and 

their complements form a subbase. 

Proof. We have to show that every open set U is the union of finite intersections 

of clopen cones and their complements. So let U be open and let x C U. Then 

—U is closed and so it is compact. For y E —U, we show that there is a V, with 

y C V, and x V Vi,, such that either V or -Vy  is a clopen cone. Now either 

x 	y or y x. If y x then by total order separation there is a clopen cone 

containing y but not z: call it V,. if x y but y < x, then again we can find 

a clopen cone containing x but not y, so its complement contains y but not x: 

let this complement be Vi,. So {V I y V U} is an open cover of —U, which is 

compact and so has finite subcover, say —U C V U ... U V,. So Vi, 1 < i < n 
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we have xE—V 1,soxE—V,1 fl ... fl—V, cU. U is of course the union of its 

elements, so U is the union of finite intersections of the set of clopen cones and 

their complements. 	 . 

Now if < X,*,R> is a frame let Rx = {y I xRy}, and for Z C X let 

PR(Z) = {y I Vz(yRz = z e Z)}. 

12R' is defined similarly. Then 

Definition 16 A modal space is a structure < X, <, *, R, T > such that 

< X, <, I > is a Priestley space; 

<X,*,R,> isaframe; 

x < y = Y* < x*; 

if x < y z and yRw, then xRw and zRw; 

If U is a clopen cone then U' and VR(U) are clopen; 

For any x E X, —Rx is a union of clopen cocones. 	 D 

A modal space without the topology, or with the discrete topology, is called an 

ordered frame. Observe that if U is a clopen cone then vR(U) is in fact a clopen 

cone. For suppose x < y; if y VR(U) then z(yRz and z V U). But then by 

4 we have not xRz so x VR(U). Similarly it can be shown that VR(U) is also 

a clopen cocone if U is a clopen cone. Property 4 also holds for R': for if yR'w 

and x < y < z then yRw and z < y1 !~ x, so by 4 xRw and zRw; that 

is xR'w and zR'w. It can also be seen that jzRs(U) is clopen if U is a clopen 

cone: x E pR'(U) 1ff Vy(xR'y = y E U) if Vy(xRy = y E U) if x E VR(U) if 

x E (uR(U)). So since if U is clopen I/R(U) is clopen and so is (VR(U))*, by 5., 

we have ILR'(U) is clopen. 
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Because z < y = y < x, if Z is a cone then Z is a cocone and —Z is a 

cone. So if Z is a clopen cone, then so is —Z, since Z is clopen. We now show 

Theorem iT If C =< X, <, *, R, T> is a modal space, let 

C+ =< cl(X),n,u,-1,vR, Rs,O,X>, 

where cl(X) are the clopen cones of C and for U E cl(X), -iU = —Ui. Then C 

is a modal algebra. 

Proof. cl(X) was shown immediately above to be closed under -i,  Vj and /1R'. 

Let U,V e cl(X); then UuV and U n V are clearly cones. Since clopen elements 

are closed under finite intersection and union we have U U V, U fl V E cl(X). 

0, X E cl(X) because for any clopen U, —U is clopen and thus so are U U —U, 

U  —U; clearly they are cones. Distributivity follows from the obvious fact that 

U and n distribute over one another, and it is clear that 1'R  (X) = AR' (X) = X, 

as required by the definition of the modal operators. The other requirements 

are: 

L/R(UflV) =vR(U)flz'R(V). In general we have A C B n C iff A C B and 

A ç C, so x E VR(U fl V) if Rx C U and Rx c V if x E VR(U) n LIR(V). 

The clause for ILRS is similar. 

UR(U)  U -1,Rs(U) = X. Note that for x E X, x  -AR,  (U) if x V (12R1 (U))t  

if xt 0 ILRS(U); so to show that xt e /RI(U) implies that x E vR(U). But 

we saw above that (IZRS(U)) = vR(U). From this it can also be seen that 

PR' (U) u 'lIR(U) = X- 

-'-'U = U. x E -'-U if x E —(—Ut)t if x V (—Ut)t if z 	(_Ut) iff 

X* E Ut if x E U. 

-,(UnV) = -UU -V. x  -'(UnV) iffx(UflV)t iffx v UtflVt if 

x 	—(Ut fl Vt) = —Ut U —Vt, that is, if x E -'U U -'V. 
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5. -'(U U V) = -'U fl -'V is proved similarly. 

The aim is to show that every modal algebra can be represented in this way as 

the clopen cones of a modal space. So let A =< A, A, V, -i,  ii, Al 0,1 > be any 

modal algebra. A subset {1} c F  A is afilter if for any a,bE A. a A b E F 

if a e F and b e F. It is a proper filter if 0 V F, and is a prime filter if it is 

proper and for any a,b C F, aV be F if a CF orb CF. Let XA be the set 

of prime filters of A, and for Fe XA let Ft =def  {a cAl -'a V F}. Ft is  

prime filter, because a V b C Ft if (aVb) = -'aA -'b V F if -'a V F or -'b F, 

because F is a filter, if a C Ft or b E Ft. Ft is proper, for if 0 C Ft then 

-'0 = 1 V F, which is contrary to the assumption that F is a prime filter and 

therefore proper. Further define the relation R on XA by FRG if v-' (F) ç G, 

where zf'(F) =def  {a I va E F}. Because v(a A b) = va A Lb and vi = 1, it can 

be seen that v'(F) is a filter. A relation R may be defined similarly. Finally, 

for aEA,let rA(a) =df{FEXA IaEF}. 

For reference we now state without proof a version of the classic Birkhoff-

Stone prime filter theorem for lattices, which will often be used below. 

Theorem 18 Let F, C ç A be such that for all finite sets I, J with I c F and 

J c C we have A I  V J. Then there is a prime filter H with F c H and 

HnG=O. 	 0 

Now let A be a modal algebra. Define A+  to be < XA, C,*,RP,T > where 

is the inclusion relation on the prime filters XA, * and R are defined as above, 

and I is given by declaring {rA(a), —rA(a) I a e A} to be a subbase. Observe 

that every element of the subbase is clopen. Then A+ will turn out to be a 

modal space. First it is shown that 

Theorem 19 A+ is an ordered frame and a Priestley space. 

Proof. We verify the appropriate criteria and some of those defining a modal 

space; 
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L. Ftt = F, because a E Ftt 1ff -'a V F if -'-'a = a E F. So * is symmetric. 

To show that A+  is a frame it must still be shown that FRG if FRG. 

If L -'(F) ç C and a E '(F), then /ta E P and so -'na V F. But since 

1 = va V -'za E F and F is prime we have va E F; so a E V-1(F) and so 

a E G. The converse is shown similarly, using the fact that ILa V -va E Ft, 

which is prime. 

For part 3 of the definition it must be shown that F C C 	Gt ç Ft. 

Suppose F ç C and a E Ct. Then -'a C so -'a V F so a E Ft 

Let H C F C W and FRG. Then v'(H) Cii-'(F) C C, so HRV G. To 

show H'RV G, let a E v -1(H'). Then va E H', and because H' is proper, 

O=vaA-ijiaH'so--ipa iZ H'. So-'/taF, and because vaV-'jiaEF 

and F is prime we have va E F. So a E v'(F) ç C, showing that 

C. So part 4 is satisfied. 

A is totally order-separated. For if F 54 C then there is some a E A with 

aEF and aG. S0FErA(a) and CrA(a). 

A+ is compact. By a theorem known as Alexander's Lemma, we need only 

show that every subbasic cover of XA has finite subcover, so first we verify 

this lemma. Suppose that X is a topological space with subbase B such 

that every subbasic cover of X has finite subcover, and let 8 be an arbitrary 

cover of X. Suppose, for contradiction that 8 has no finite subcover. Then 

for any finite n and U1,... U, e 8, we have -U1  fl ... fl -U,, 	0, and 

so {-U I U E 81 can be extended to a prime filter F - an ultrafilter - 

over X. Now suppose that there is no x E X such that for any open U 

with x E U we also have U E F. Then for each x E X there is a basic 

open set W. with x E W and W V F. Now for some B1, . . . Bm  E B, 

Wz  = Bifl ... flBm; also, WZ  F, -W,uW e F and so because F is 

prime, W = B1  U ... U Bm  e F. Again using primeness, we have 
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—B1 EF, say. But xEW=B1 fl ... flB,sozEB1  and B,Fsince 

—B1  E F. This shows that for each x E X we may assume that W is 

in fact subbasic. So {W I x E X} is a subbasic cover of X with finite 

subcover, say {W I x E K}. So V{W I z E K} = X e F, which is prime, 

so for some x e K we must have W E F, contradicting the supposition 

about W: so there is indeed some x E X such that any open U with x E U 

has U e F. Now B covers X, so for this x there is some U E B with z E U: 

by definition of F we have —U e F but consideration of this x shows that 

U E F. So their meet 0 is also in F. But we assumed that F was proper, 

so B does indeed have a finite subcover. 

So let B be such a subbasic cover of XA,  and let V = {a I —rA(a) e B} 

and Z = {a I rA(a) E B}. Suppose that for finite I C Y and J C Z we 

haveAl<VJ. Let FEfl{rA(a)IaEI};  then  VaEl(aeF),s0AIEF 
because I is finite and F is a filter. Since Al <— V J, then V J E F, and J 

is finite and F is prime so for some b E J we have b E F; that is F E TA (b). 

So F E U{rA(a) I a E J}. This shows that for finite I ç Y,J ç Z, 

Al < V J implies fl{rA(a)  I a El) c U{rA(a) I a E J}. 

Now if B has no finite subcover, this means that for any I ç Y, J c Z, 

U{—rA(a) IaEI}uU{rA(a) IaeJ}XA, 

and so 

fl{rA(a) I a E I} g U{rA(a) I a E J). 

and so, by the above, A I V.J. Applying the prime filter theorem, there 

is some FE XA with Y C F and FflZ= 0. Because  C F, for any 

a E V we have FE rA(a), and so F V —rA(a). Because F n Z = 0, for any 

b E Z we have F V rA(b).  But then this F is a counterexample to the fact 

that B is a cover of XA.  So B does have a finite subcover. This, together 

with total order-separation, shows that A+  is a Priestley space. 	0 
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This leaves the last two clauses in the definition of modal space to be verified. 

Theorem 20 —REF is a union of clopen cocones. 

Proof. Let C E —RF. Then not FRC so v-1(F) g C. Then for some a E A, 

ua E F and a V C, and consequently C E —rA(a), which is a clopen cocone. 

Denote this clopen cocone by J'4. But  XG = —rA(a) is disjoint from RF: for if 

H € —rA(a) then a V H and so v'(F) 9 H; then not FRH and so H V RF. 

So for any C e —RF, we have {G} C XG  C —RF. But MG  is a clopen cocone, 

and therefore —REF = U{.Wc I C E —RF} is a union of clopen cocones. 	D 

To complete the proof that A is a modal space, it must still be shown that 

if U is a clopen cone then U and vR(U) are clopen. But first we show that 

rA is an isomorphism, and so that every modal algebra can be regarded as the 

clopen cones of a modal space. That is, we show that A 	(A+)+. In the 

course of this proof, the final property for modal spaces will be demonstrated 

to hold of A. By definition of prime filter we have rA(0) = 0 and rA(1) = 

XA. Furthermore,  rA(a A b) = rA(a) A rA(b) because the elements of XA are 

filters, and rA(a V b) = rA(a) V r(b) because they are prime filters. We have 

rA(-'a) = -'rA(a) because F E -'rA(a) if F (rA(a)) if F 	rA(a) if a V F* 

if -'a E F if F E rA(-la). And rA(va) = vR(rA(a)), because F E vR(rA(a)) 

if VG E XA(FRC = C E rA(a)) if VG E XA(u 1(F) 9 C a E C) if 

a e v 1(G). This last step is by the prime filter theorem. One direction is 

obvious; but if a v'(F), then we can extend zc'(F) to a prime filter C with 

a V C. So we have an equivalence. But a e v'(F) if va E F if F E rA(z'a). 

The proof that r (/2a) = /LRS (rA(a)) is similar. So rA is a homomorphism. 

Now we show that rA  is injective. Suppose a, b E A and a 54 b with a b, 

say. Then by the prime filter theorem we have some F E XA with a E F and 

b V F. So F e rA(a) and F V rA(b), so rA(a) 54 rA(b). 

Also rA  is surjective. The crucial point of the topology is to allow this part 

of the proof to go through. Let U be a clopen cone of A with C U. Because 
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U is a cone, For any F E U we have F C, and so for some ap E A we have 

ap E F and aF V C. This means that F e rA(aF) and C iZ rA(aF).  Now 

rA(aF) is open, so {rA(aF)  I F E U} is an open cover of U. But U is closed, 

and therefore compact, so for some finite J C U, {rA(aF) I F E J} covers U. 

Let ac = V{aF I F E J}. Because C is prime, J is finite and for each aF with 

F E J we have aF io C, we may conclude that aG io C; that is, C rA(aa). 

But U C rA(aG): {rA(aF)  I F E J} covers U, and so if aF e H e U, say, then 

aG E H E U because H is a filter. So —U = U{—rA(aG) I C E —U}. Because 

U is clopen, —U is closed and therefore compact, which means that for some 

finite K c —U, —U = U{ —rA(aG) I C e K}. So U = fl{rA(aG) I C e K} 

which is equal to rA(A{aG  I G E K}), because rA is a homomorphism. Clearly 

Mac I C E K} E A, so rA is surjective. This completes the proof of 

Theorem 21 A (A) 

Because rA is surjective, if U E cl(X) then U = rA(a), say. But in showing 

that rA is a homomorphism, we saw that rA(-la) = 	so —U is a clopen 

cone, being in the image of rA, so U is clopen. That UR(U) is clopen if U is also 

follows from the fact that rA is a surjective homomorphism. So finally we have 

Theorem 22 A+ is a modal space. 	 FRI 

A dual theorem can now be given which shows the equivalence of C and (C+)+  

for any modal space C. First however, the notion of an ordered frame morphism 

and a topological space morphism must be defined. An ordered frame morphism 

is defined as a frame morphism except that the final clause for frame morphism 

is changed to 

3. If f(x)Sy then x' E X with xRz' and 1(x') ( y; 

and in addition we require that 

x<y=f(x):5f(y). 
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This change to the definition of frame morphism is not in fact used in the fol-

lowing theorem, but it is the natural notion of ordered frame morphism, and we 

shall encounter it later. 

A continuous mapping f between topologies is one such that if V is open 

then so is f -1(V). A homeornorphism is a injective and surjective continuous 

mapping f such that its inverse f is also continuous: that is, if U is open 

then so is 1(U). This is a property that can be checked by considering only 

the subbases of the topology. A modü space morphism is then defined to be a 

continuous ordered frame morphism. So for C =< X,:5, *,R, I > and x E X, 

let rc(x) =def {Y E cl(X) I x E Y}. Clearly rc is a mapping because it is 

easily seen that rc(x)  is a prime filter of C. Now the appropriate definition of 

isomorphism required here is that rc is a homeomorphism, and both it and its 

inverse are ordered frame morphisms. 

Theorem 23 C is isomorphic to (C)+. 

Proof. The conditions to be shown are: 

rc is injective. This follows from the fact that rc is injective as a partial 

ordering morphism. If x < y and x E U e cl(X), then because U is a cone 

we have y E U and so rc (x) ç rc (y). If x y then total order-separation 

gives U e cl(X) with x e U and y V U, and so rc(x) SK rc(y).  So x < y 

if rc(x) 9 rc(y).  But then because < is anti-symmetric if x 	y then 

rc(x) rc(y). 

rc is surjective. Again the key idea is to exploit the compactness of modal 

spaces. Let F be an element of (C+)+, that is a prime filter of clopen cones 

of C, and suppose that rc is not surjective: that for all x E X we have 

rc(x) j4 F. This means that for all x we can find a clopen cone Y with 

either 

(i) x E Y and i; F or 
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(ii) x Y, and Y e F. 

Choosing such a Y for each x E X, let 

8 = {Y I (i) holds } U{—Y I (ii) holds } 

Then 8 is an open cover of X, and using the compactness of C it has a 

finite sub cover, say 

—YV. } 

and so 

fl{Y1 I 1  <i:5n}cU{YJ 1 irn} 

But for each Yy,, we have Y,, E F; and so because F is a filter, fl{Y,, 11 <—

j:5 

—

j< n} E F. And by the above inclusion, U{FZI  11 < i < m} E F. But F 

is prime, so for some i < rt, Y, E F. But this contradicts the fact that Y,, 

satisfies (i). So rc is an isomorphism of partial orderings. 

rc(x) = (rc (x))*. Let V be a clopen cone in C. Then Y e (rc(x)) ff 

rc(x) iff_Y* V rc(x) iffx V —Y iffx E Y* iffx*  E V iffY E rc (x*). 

Suppose xRy. Let Y be a clopen cone with UR(Y) E rc(x): then x E VR(Y) 

so Vz(xRz . z e Y). In particular xRy so y e V. This shows that 

V E rc(y);  so v 1(rC(x)) c rc(y) which means that rc(x)RVRrC(y). 

Suppose not xRy. Then y Rx soy E —Rx. But —Rx is a unions of clopen 

cocones, so there is a clopen cocone V with y E V and Rx fl V = 0. Conse-

quently, —V E cl(X) and Rx C —Y; so Vy(xRy = y e —Y), which means 

that x e UR( —V) and so VR( —Y) E rc(x).  But y E V implies that y V —Y, 

and so —V V rc(y).  So —Y is a counterexample to' v 1(rc(x)) 9 rc(y) 

and it has been shown that not rc(x)RVRrC(y).  So xRy if rc(x)RV rc(y), 

which is sufficient to show that both rc and its inverse satisfy the condi-

tions imposed on the relations in an ordered frame morphism, so we have 
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an ordered frame isomorphism. The clause for R' may be shown similarly 

or may be deduced from the proofs above concerning R and *. 

6. rc is a homeomorphism. Let U be in the subbase of (C)+: then recalling 

the definition of its subbase, U is either rc+ (Y) or —rc+ (Y) for some V E 

cl(X). Spelling out what this means, U is either IF E X+ I V E F} 

or its complement. Now we have shown earlier in this section that C+ 

((C)+), so if U is of the form IF e X+ I V E F}, then r'(U) = V 

which is open; and if U is of the form 

—{FEXc+IYEF}={FEXc+IYF} 

then rc  (x) E U if V rc  (x) if x V. So r'(U) = —V. But V E cl(X), 

so —Y is open. For the other direction use the fact that the clopen cones 

and their complements form a subbase for the the topology on C. Let U 

be a clopen cone in C: then 

rc (U) = {rc (x)x  U) = {rc (x) I U E rc(x)}. 

Because rc is surjective, every F E X+ is of the form rc (x) for some x E X. 

So r(U) = IF E X+ I U E F}: the union of a set of elements belonging 

to the declared subbase of (C+)+, so rc  (U) is open, being the union of open 

sets. Similarly, for U a clopen cone, 

rc( —U)={rc(x) Ix'U}={rc(x) IUrc(x)}= 

IF e Xc+ I U V F} = —rc(U), 

which again is the union of a set of elements in the declared subbase, and 

so is open. So rc is a homeomorphism. 	 1 	 0 

So any modal space can be represented as the prime filters of a modal algebra. 
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4.5 More About Duality 

The operations 	and 	still make sense when only the underlying ordered 

frame or the underlying frame of a a modal space is considered. In defining A+ 

the topology, or both the topology and the ordering, are forgotten. And for C 

an ordered frame or a frame, C+  is defined by taking its universe to be c(X) I 

the cones of the universe X of C. if < is discrete, and so C is a frame, then the 

universe turns out to be P(X), the powerset of the universe of C. Clearly by 

the foregoing proofs, c (X) is closed under the algebraic operations defined for 

C+ with C a modal space, and so C+  is in each of these cases a modal algebra. 

The definitions of ( )+ and  ( )+ are now extended to algebraic homomor-

phisms and ordered frame morphisms respectively. 

Theorem 24 For ordered frames C1  =< X, <, *, R> and C2  =< Y, , *, S > 

with C1  -'C2  and Z E c(Y), define f(Z) = I 	= {x e X I 1(x) E Z}. 

Then C -+ C is a hornomorphzsm. 

Proof. It is well known that f is a mapping and that it is a bounded 

distributive lattice homomorphism. So we need only check that f+ preserves 

- and vs. First f'(-iZ) = -f -'(Z), for x E f'(-iZ) if x E f'(—Z') if 

1(x) E Z*  if 1(x) 11 Z if f(x*) = f(x)* Z 1ff x 	f(Z) if x V (f -'(Z))*  

if x E —(f'(Z)) = -f(Z). And also f(vsZ) = vRf(Z): for suppose 

x E f' (vs Z) and xRy. Because f is an ordered frame morphism, f(x)Sf(y); 

and x E f'(vs Z) implies that Vz e Y(f(x)Sy = z E Z), so 1(y) E Z and 

y E f'(Z) . y was arbitrary, so x e vRf'(Z). Conversely, let x E vRf'(Z) 

and f(x)Sy. Then 3w with xRw and 1(w) < y. But x E vRf'(Z)  implies 

that w E I '(Z), so 1(w) E Z which is a cone so y E Z. This show that 

Vy(f(x)Sy = y e Z), so 1(x) E vs(Z)  and x E f'(vsZ). 	 U 

Theorem 25 If f is surjective then f  is injective. 
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Proof. Let Z, Z' E c(Y) with, say, y E Z, y Z'. Because f is surjective 

there is some x E X with 1(x) = y. So x E f'(Z) and x f'(Z'). So Z 

implies that f(Z) 0 f(Z'). 	 0 

Now let A1  - A2  be a homomorphism between modal algebras. For F E XA2  

a prime filter of A2, define h+  (F) =h-'(F) = {x e A I h(x) E F}. Then 

Theorem 26 A2+  A +  is an ordered frame morphism. 

Proof. We check: 

h is a mapping: F E XA2  is prime and h(a V b) = h(a) V h(b), so a V b E 

h-1(F) if a E h-1(F) or b E h-'(F). Also, 1 E h'(l) and 1 E F, and 

h(0) = 0 and 0 F, so h'(F) is a prime filter. 

F C C = h+(F) C h+(C) is obvious: if h(a) E F and F c G then 

h(a) E C. 

h+(F*) = (h+(F)). a E h_l(F*)  1ff h(a) E {-ib I b F} if -h(a) 	F 

1ff h(-ia) V F if a e {-a I h(a) V F}, which is { ,a I a 	h-'(F)} = 

(h(F)). 

If FRV2 G then h+(F)R 1 h+ (G). Let zij'(F) 	C and suppose that a E 

vj'(h'(F)). Then via e h'(F) so u2h(a) = h(via) E F. This means 

that h(a) E v'(F) so h(a) E G and a E h(C). So we have shown that 

ç h+(C), as required. 

If h+(F)R 1 H then there is a G E XA2  with FR 2C and h+(C) c H. 

Consider h(—H). h(—H) is closed under finite joins, because if a, b E —H 

then a V b E —H because H is prime, so h(a V b) = h(a) V h(b) E h(—H). 

Moreover v'(F) is closed under finite meets because z.'2(a A b) = v2(a) A 

v2(b). Since u2 (1) E F it is in fact a filter. Let I and J be finite subsets 

of v'(F) and h(—H) respectively, and suppose that Al < V J. Then 
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Al E u'(F) and VJ E h(—H); also VJ E L/'(F) because t.ç'(F) is a 

filter. Now since h+(F)R.1 H this means that if h(v1b) E F then b E H; 

so if b V H then h(vib) = u2h(b) V F. For some b' E —H we have 

h(b') = V J, and so by the above v2  V J V F, that is V J V i.ç'(F), which 

is a contradiction. Given that there are no such finite subsets I and J, we 

can apply the prime filter theorem and extend z'' (F) to a prime filter G 

which is disjoint from h(—H). Since vç1(F) 9 C we have FR.2G; and if 

h(a) E C then h(a) V h(—H), so a V —H and a E H. This shows that 

h-1  (C) = h (C) c H as required, completing the proof that h is a frame 

morphism. 	 Li 

Theorem 27' If A1  - A2  is injective then A2+  A is surjective. 

Proof. Let F be a prime filter of A1. Because his injective h(F)nh(—F) = 0. 

As in the previous proof it can be checked that the conditions of the prime filter 

theorem are satisfied for h(F) and h(—F), and so h(F) can be extended to a prime 

filter C of A2  disjoint from h(—F). This disjointness show that h(G) = F. Li 

. 	. 	. 	 . Theorem 28 If A1  -* h A2  is surjective 'then A2+ - 	*s injective. 

Proof. If F and C are distinct prime filters of A2, say with 6 E F, b V G, 

then because h is surjective we have some a E A with h(a) = 6. So h(a) E F 

and h(a) V C; that is h+(F) 54 h+(C). 	 LN 

There is one obvious omission here: it has not been shown that if f is an 

injective ordered frame morphism then f+ is surjective. This is in fact false, and 

a counterexample will be given in the next chapter. A property of f which is 

stronger than injectivity, that x < y if 1(x) < f(y), ensures that f is surjective, 

however. First, note that 

3And so theorem 2.3.1(3) of Goldblatt 1989 is wrong. As another counterexample, 

let the frames Ci  for i E {1, 2} have common universe {x,x}, empty relations and < 
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Theorem 29 If A1 - A2 is surjective, then x < y if h (x) !~ h (y). 

Proof. With F and C prime filters of A2 and F g C, let b E F and b V C. 

Then because h is surjective there is some a E A1 with h(a) = b. So h(a) E F 

and h(a) V C, implying that h(F) g h'(C). The other direction is obvious: 

if h-1 (F) g h'(C), because h is surjective we have some a E A1 with h(a) E F 

and h(a)C,soFC. 	 0 

Theorem 30 Let C1 L C2 be such that x < y if 1(x) < f(y). Then f is 

surjective. 

Proof. Let U be a cone of C1 and let V be the least cone of C2 containing 

{f (x) I x e U}: that is, y E V if 3x E U 1(x) ç y. Now f(V) = {x e 

Cl I 1(x) E V}: we show that f(V) = U. First suppose that x E U. Then 

1(x) :!~ 1(x), so 1(x) E V and XE f(V). Next let x E f(V). So 1(x) E V and 

there is some x' e U with 1(x') < f(x). But then by hypothesis x' < x, and U 

is a cone so x E U. 

So in particular this is true for (discrete) frames. As a corollary of these 

theorems, in the area of ordered frames we have 

Corollary 31 If h is a surjective (injective) homomorphism, then so is (h). 

EM 

Now if the topology is put back on A1+ and A2 it can be shown that h is 

a continuous ordered frame morphism. All that is left to check is the following: 

discrete on C1 but with in addition x 	on C2. Then where C1 L C2 is the identity 

mapping on the universe, f is an injective ordered frame morphism, but {x} E Ct is a 

cone not in the image of f+. 
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Theorem 32 If U is a subbasic open set in A1 , then h 1(U) is open in A2 . 

We know that U is of the form rAl(a) or —rAl(a), for some a E A. In the first 

case 

h 1(rA1 (a)) = {G E XA2 I h+  (G) E rA1 (a)} = {G E XA2 I a E h 1(C)} 

but 

{G E XA2  I a E h'(G)} = {G E XA2  I h(a) E G} = rA2 (h(a)) 

which belongs to the subbase of A2  and so is open. On the other hand, 

h 1(—rA1 (a)) = {G E XA2  I h(G) V rA1 (a)} = 

{C e XA2  I h(a) V G} = —rA2 (h(a)), 

which again is open, being in the subbase. So h is a continuous mapping. 0 

The formal correspondence between modal algebras and modal spaces is ex-

pressed in the following, rather informal, way. A category is a set 0 of objects 

together with a set of arrows, each of which has a specified domain and codomain 

in 0. These arrows are closed under composition, denoted o, and for each object 

a E 0 the identity arrow la  from a to itself exists. Composition and identity are 

required to have the usual properties. 

A functor I from a category C to a category D maps objects to objects 

and arrows to arrows in such a way that for objects a and composible arrows 

b L c 4 d we have Y(la) = 17(a) and J(g o 1) = 1(g) o 1(f). In particular, 

the identity functor on a category maps all objects and arrows to themselves. 

Where D*P is the category with the same objects as D but with the directions 

of the arrows reversed, a contravariant functor from C to D is a functor from 

C to D°". It is obvious that AS, modal spaces with continous ordered frame 

morphisms, and .MA, modal algebras with homomorphisms are categories, and 

it has been shown above that ( )+ and ( )+ are contravariant functors in their 
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respective directions between them. It can now be seen that (( )+)+ and (()+)+ 

are in a sense the same things as the identity functors on the categories .M A and 

MS. If, with MacLane4, we regard a functor of giving a picture of one category 

in another, then a comparison of, say lj - the identity functor on MA - and 

(( )) reveals that they give the same picture of MA in MA. We have seen 

that this is true of the objects of the two categories: for any A E MA and any 

C e MS we have isomorphisms TA : (A) . (A+) and rc : (C) (C)+. As for 

the morphisms, what is left to be shown technically for any g with A -4 B to 

give the corresponding notion of being to all intents and purposes 'the same', is 

that TB o g = (g+)+ o r. But this has been demonstrated above: 

(g+) o rA(a) = (gf({F E XA I a E F}) = {G E XB I a E g+ (G)} = 

{C E XB I g(a) E G} = rB(g(a)) = TB 0 g(a). 

And for modal spaces it must be shown that if C - V, then rp o f = (f)+ ° rc. 

And again, where X are the worlds of C and Y are the worlds of V, 

(f) o  rc(x) = (f)({U E cl(X) I x e U)) = {V E cl(Y) I x E f(V)} = 

{V E cl(Y) I 1(x) E V) = rp(f(x)) = Tp o 1(x). 

At the level of frames, or even ordered frames, where there is no topology to 

guarantee that TA and rc  are surjective, there is no such theorem. But ()+ and 

()+ are very useful constructions. We concentrate on frames. 

Theorem 33 If A a then A+  K a. 

Proof. If A K t' '= 1 because for a1,. . . a,, E A and the assignment p '-+ a, 

pa(ai,. . . a,) 	1, then the frame valuation v(pi) = TA(a) on A+  is such that 

V(a)XA+. 	 D 

4MacLane 1971. 
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Theorem 34 For C a frame, C = a 1ff C = a. 

Proof. If C, v, x a, then v may be regarded as an assignment of values to 

the formulae in the universe P (X) of C+.  Given how the operations on C+ were 

defined, this assignment to the arguments of the polynomial pa  is not equal to 

1. The converse is also obvious: C+  K a, then the counterexample assignment 

to the universe P(X) of C is a frame valuation v for C with v(a) 54 1. 	0 

This shows that C and C have the same logic. 

Corollary 35 The class of all frames has the same logic as the class of all modal 

algebras, namely 

Proof. By the above equivalence, or by noting that L(A) = L(S(A)) and 

every algebra is a subalgebra of a powerset algebra C+:  let C be the unordered 

frame A+. The proof that rA is an injective homomorphism, for A+ a modal 

space, does not depend on the topology or the ordering. 	 0 

Just as in classical modal logic there is a distinction between the more natural 

model of a Kripke frame and the notion of a general frame, which has a tighter 

connection to the logic, here a three stage gradation emerges. Modal spaces, of 

course correspond precisely to the algebraic models; and ordered frames have 

a looser correspondence. (( )+)+ and (fl+)+  no longer result in isomorphisms 

rA and rc on objects, but they are still contravariant functors. The ordering, 

however, serves no purpose other that a technical one: it is there because the 

prime filters of a modal algebra need not be discrete under the inclusion ordering, 

and this relation on prime filters was needed in some of the previous proofs. It 

has, however, little to do with the intended purpose of frames as model structures 

for the given modal language. For that reason I find it more natural to deal only 

with discretely ordered frames, or simply frames. This move naturally loses some 

of the foregoing theorems, but the main motivation is one of naturalness. 
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First of all, we maintain all of the results proved for ordered frames involving 
()+, since these did not involve the ordering: this is still a functor from frames 

to algebras. And A+  is still a frame. But ( ) is not a functor, because for a 

homomorphism h, h+ need not be a frame morphism: this requires that 

If f(x)Sy then x' E X with zRz' and 1(x') = y 

whereas we could only show that h+ satisfied 

If h+(x)Sy then 3x' E X with xRx' and h+  (x') :5 y. 

In general, the prime filters of a modal algebra are not discretely 'ordered: con-

sider, for example any modal algebra based on the three element chain . with 

o < a < 1 and -Ia = a: say, with va = 0. But if they are discretely ordered on 

the codomain of h+, for example for C+ - B with C a discrete frame, then h+  

is indeed an ordered frame morphism for the two above requirements are then 

equivalent. This particular example works because let F, C be prime in C with 

F C C, a E C and a V F. Since this is a complemented algebra, —a exists 

and a V —a E F which is prime and does not contain a, so —a E F C C. But 

then a A —a = 0 E C, which is not the case. So the prime filters are discretely 

ordered. Another exception is the case where A - B is injective, when again 

h+ is a frame morphism. Consider again part 5 of theorem 26: then because 

h(H) n h(—H) = 0 it is readily seen that these two subsets of B satisfy the 

premise of the prime filter theorem - regard A as a subalgebra of B, then this 

follows from the fact that H and —H in A clearly satisfy this condition. 

Both complemented algebras and powerset algebras C+  will play an impor-

tant part in the study of four-valued modal logics. This is partly due to the 

fact that the properties of ( )+ and ( ) that still hold for frames are sufficient 

to characterise various properties of classes of frames in terms of properties of 

varieties of modal algebras. 



Chapter 5 

Incomplete Logics 

5.1 Preliminary Results And Definitions 

The lattice of modal logics was seen to be anti-isomorphic to the lattice of vari-

eties of modal algebras. The mappings used in showing this can be meaningfully 

transferred to classes of frames in order to see how the frame-based semantics 

fares in modelling logics. So for a frame C define the logic of C L(C) to be 

{a I C = a}, and for a class of frames K define L(K) = fl{L(C) I C E K). 

These are logics, given that all frames are models for 1K  and logics are closed 

under intersection. Conversely, say that a frame C is a frame for the logic L if 

all theorems of L are valid in C: then let F(L) be the class of all such frames. 

In showing completeness for modal algebras it was seen that L = L(V(L)) for 

all logics L, and we have already seen that F-K= L(F(I-K )). When, for a modal 

logic L we have L = L(F(L)), then L is a complete logic; otherwise it is incom-

plete. Eventually we shall exhibit many incomplete non-classical modal logics. 

Incomplete logics are logics which are not determined by a class of frames: for 

if L = L(F(L)), then L is determined by the class F(L). For the reverse im-

plication, note that we always have L C L(F(L)); and if for a class of frames 

K we have L L(K) and a L, then for some C E K, C a. But clearly 

K C F(L(K)), so C E F(L(K)) = F(L) and thus a V L(F(L)). As an example 

the reader may wish to verify that the two distinct logics determined by the 

130 
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axioms a V 0 - 0 a and a V 0- () a are both true in precisely the same, easily 

defined class of frames. 

Now for a variety V of modal algebras, let F(V) be the class of frames 

{C I C e V}. Then because C and C have the same logics, F(V(L)) = F(L): 

that is, if V = V(L) is the class of all L-algebras, then F(V) is the class of 

all L-frames. Now there is an algebraic definition of completeness: a logic L 

is complete 1ff L = L(F(L)), but because C and C have the same logics, 

L(F(L)) = L(F(L)), and so by Birkhoff's theorem L(F(L)) = L(V(F(L))). 

So L is complete if L = L(V(F(L))). But because V is an anti-isomorphism 

from logics to varieties of algebras, this is equivalent to V(L) = V(L(V(F(L)))): 

by algebraic completeness this equation becomes V(L) = V(F(L)). So L is 

complete if F(L) generates the variety V(L). So a variety can be defined to be 

complete if V = V(F(V)): this is natural, because then we have L is complete 

if V(L) is complete. 

On the way to another characterisation of completeness we can now collect 

some properties of F(V), for V a variety, which hold in general for non-classical 

discrete frames. 

Theorem 36 Let {C1 I i E I} be a class of frames. Then (jEJ ç)+ fl•1 CII-. 

Proof. Each C, !4 > 	C is injective, so each (>1E1 C)+
ft 

~ C7 is  surjective, 

with 17(Y) = {x I (x,j) E Y}. Now define MEI CX L H1EIC by f(Y)(j) = 

17(Y) = {x (x, j) e Y}. Then f is surjective because if W E fl j C with 

W(j) = W, e C,, then W = f(U1EJ f, (W)): that is, index the elements of W 

then take their union - then f removes the indices. And f is injective because if 

1(V) = 1(W), then Vie I(f(V)(i) = f(W)(i)), so Vie I({x I (x,i) V} = {x 

(x) i) E W}); and so (x,i) e V 1ff (x,i) E W, so V = W. 	 0 

Given the appropriate definition of disjoint union for ordered frames, it is 

clear that f1 has the property x < y 1ff f5 (x) <f(y), and so this proof could be 

extended to ordered frames. 
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Theorem 37 Let V be a variety. Then F(V) is closed under subframes, p-

morphic images, disjoint unions, and if (C) E F(V) then C E F(V). In 

other words, we now restate the three preservation theorems given in the previous 

chapter and add the promised fourth one. 

Proof. In turn: 

If C E V and D L C is an injective frame morphism, then C 	D 

is a surjective homomorphism. But V is a variety and so is closed under 

homomorphic images, so D E V and D E F(V). 

If C E V and C L D is an surjective frame morphism, then D 

is a injective homomorphism. But V is a variety and so is closed under 

subalgebras, so D E V and D E F(V). 

If I Ct I i E I} c V, then because V is closed under products, (>IEJ CO 
Hj C E V, 50 iEI C, E F(V). 

If (C)+  E F(V) then ((C)+) E V. But rc+ : C — ((C)+) is 

injective and V is closed under subalgebras, so C E V and C E F(V). ii 

Recall some definitions and theorems from universal algebra which will be useful 

in the exploration of modal logics. An algebra A is a subdirect product of the 
hoh algebras {A1  z E I} if there is an injective A —' fuEl A 	 ,r such that A —p A 

is surjective for all i E I, where f'EJ  A - Ai  is the projection map with 

ir,(a) = a(i). h is then called a subdirect embedding. An algebra A is subdirectly 

irreducible if for every subdirect embedding A - fuEl Ai  there is some j E I 

with ir• o h and isomorphism. Now it is known that every algebra is a subdirect 

product of subdirectly irreducible algebras, so these will be important in look-

ing at varieties of modal algebras. For this reason we give a useful equivalent 

characterisation of subdirect irreducibility. A congruence on an algebra A is an 



Chapter 5. Incomplete Logics 	 133 

equivalence relation 0 on its universe on its universe A such that for any n-ary op-

erator w of A, if a0b1, for 1 <i < n and a,, b1  E A then w(ai  .... a)0w(bi,. ..b). 

Under inclusion, the set Con(A) of all congruences on A form a lattice; indeed, 

if A is a modal algebra, then Con(A) is a distributive lattice. This follows from 

the fact that the lattice of congruences on a lattice is distributive, and modal 

algebra congruences are also lattice congruences. There are two distinguished 

congruences on any algebra: A is such that aEb if a = b; and V is such that for 

all a,b E A, aVb. 

We now state the equivalent formulation of subdirect irreducibility. 

Theorem 38 A is subdirectly irreducible if the set. Con(A)\{A} has a least 

element. 	 0 

If K is a class of modal algebras let K51  denote the subdirectly irreducible 

algebras in K. Then because every algebra is a subdirect product of subdirectly 

irreducible algebras, every variety is generated by its subdirectly irreducible 

algebras: V = V(V51). 

For f Ai I i E I) a family of algebras, an ultrafilter U on I is a prime filter of 

P (I). Then U defines a congruence on Hi Ai  given by aOUb  if {i E I I a(i) = 

b(i) } e U. The quotient of rjic,Ai  by 0U,  with elements the 	equivalence 

classes is written flsEJ AI /U and is called an ultraproduct of {A1 I i E I}. If for 

each i E I, A, = A we sometimes write instead A'/U and call it an ultrapower of 

A. For a class of algebras K, Pu(K) is the class of all ultraproducts of algebras 

in K. A theorem of Log of use here is that if a sentence in the first order language 

adequate to talk about algebras is true of all JAj I i E I} then is is true of any 

ultraproduct fuEl  A/U. 

Next are presented without proof some useful theorems which apply to our 

modal algebras. It was noted previously that for a class of algebras K, V (K) = 

HSP(K); now given that all modal algebras have distributive congruence lat-

tices, we have 
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Theorem 39 (Jónsson) If a modal algebra A is subdirectly irreducible in V (K), 

then A E HSPu(K). 

But given that we also have 

Theorem 40 If flEJ A/U is an ultraproduct with A1 e {B1.... B,} for each 

i E I, and for each j, 1 < j :5 n the universe of B, finite, then for some 

1 <j !~ Ti, ME, A;/U B, 

then 

Corollary 41 If A is subdirectly irreducible in V({A1,. . . A}) with each A1 

finite, then A E HS({A1,. ..A}). 	 Li 

Corollary 42 For A1, A2 finite subdirectly irreducible algebras, V(A1) = V(A2) 

iffA1 A2. 	 D 

Corollary 43 If V and V' are varieties of modal algebras and V V V' is their 

sum in the lattice of varieties, then (V V V')51 = V51 U V 1. 	 Li 

To illustrate some of these concepts, we now prove a claim of the previous 

chapter and give an example of an injective ordered frame morphism f such that 

f 	is not surjective. In fact we show more: a morphism g is epi if for any h, h' 

with h o g = h' o g we have h = h'. Then surjective homomorphisms are all epi. 

However, we have 

Theorem 44 It is possible that an ordered frame morphism f is injective but 

f is not even epi. 

Proof. We use a frame C1 which does not admit a compact topology: let C1 

be the frame with universeC = I... - 3,-2,-1,1,2,3 . . .}, n = —n, the empty 
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relations and the discrete ordering - 	coincides with =. Let C2  differ from 

C1  only in that its ordering < is the partial ordering given by the left-to-right 

presentation of the universe above. It should be obvious that these are indeed 

ordered frames. Define the ordered frame morphism C1  L C2  to be the obvious 

identity mapping on the universe. Then f is an injective and surjective ordered 

frame morphism. 

If F is the frame with two-element universe {x, x}, the empty relations and 

the discrete ordering, then C1  is a disjoint union of copies of F; and where N 

are the natural numbers, we have Ct= HnEN F+. By considering the cones of 

C2, it is not difficult to see thatf(Ct)  is a chain in C+1 . 

Consider now the filter C of cofinite subsets of N and the quotient HnEN  F/G 

with for X, V E MIEN F, XOGY  1ff In I X fl In, *} = Y fl {n, *}} is cofinite in 

N. This is indeed a congruence, and its restriction to f+ (C +) is a three-element 

algebra 3+  with 0 < a = a < 1 and vO = 1. For if X, Y are cones of C2  other 

than 0 and C, then they are of the form {rn I n < m}, for some n E C. Let 

X = {m I n < m} and V = {rn I n' < m}; and let p be the <-greatest of the set 

{±n, ±n'}. Then X and Y have the same intersection with the set {p', —p'} for 

any p' > p - that is, at a cofinite number of indices. So X and V are congruent. 

From here, it is easy to show that this restriction of the congruence is indeed 

isomorphic to 3+ 

Now 3+  has no non-isomorphic non-trivial homomorphic images, so to show 

that f is not epi it is enough to find congruences 0 54 0' on HnEN F with 0' < 
V) < V, 0G < 	< V and HflENF /?1' H flENF/b'. This will then provide 

distinct homomorphisms from Ct to the quotient.which agree on f(Cfl, thus 

showing that f is not epi. 

But this is easily done: F is finite and so isomorphic to any of its ultrapow-

ers, so we need only find distinct ultrafilters over N containing G, thus providing 

distinct quotient morphisms to the same algebra Ft Let e, o c N be the even 

and odd numbers respectively. Clearly {e} is separated from C, so C can be 
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extended to an ultrafliter U over N not containing e and so containing its com-

plement o. Similarly, let U' be an ultrafilter extending C which contains e and 

not o. Then to complete the proof it remains to be shown that U and U' define 

different congruences O' and 0U'  on HnEN F+. But considering N as an element 

of this algebra, we have eO'O and eOtTN  because, respectively, o E U and e E U'; 

however OOUN  fails, and therefore so does eOUN.  So 0U  and O'  are distinct 

congruences. 	 0 

The same example illustrates another negative result: 

Theorem 45 If f is an injective ordered frame morphism, then (1 +)+ need not 

be injective. 

Proof. Consider the prime filter C\{O} of C in the example above, consist-

ing of all the non-empty cones of C2, as well as f(C\{O}) in Ct which is easily 

seen to be closed under finite meets C\{O} is easily seen to be the greatest prime 

filter of C, so any prime filter U of Ct containing f(C\{O}) will be mapped 

by (f) to C\{O}. So if two such prime filters can be found, then (f)+ is not 

injective. So let e' = {n,—n E C In is even} and o' = {n,—n E C I ii is odd }. 

Then because every element of f+(Ct\{O}) contains both even and odd num-

bers, and so for x e f+(C\{O}),  x e' and x o', the prime filter theorem may 

be applied to this set in connection with both {e'} and {o'}. As in the previous 

proof, it can be seen that the two resulting prime filters must be distinct. 	D 

The notion of subdirect irreducibility can be related to frames. If C =< 

X, *, R> is a frame and x E X, let C =< X, *, R > be the smallest subframe 

of C containing x. Then we have the injective frame morphism C 	C, and 

so the surjective homomorphism C+ -41  C, for each x E X. Now we show 

that C+ - flZExC, given by h(Z)(x) = f(Z) is injective, for any x E X 

and ZcX. Now f(Z)=ZnX;soifYZ  with  weY  and  wZ, 

say, then w e Y fl X, but w ij Z n Xe,, so f (Y) i4 f (Z). This means that 

h(Y)(w) h(Z)(w), so h(Y) 54 h(Z). So h is a subdirect embedding. 
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To show that h represents C as a subdirect product of subdirectly irre-

ducible algebras, it must be shown that C is subdirectly irreducible. First, 

simply for the purpose of illumination of certain important algebras, let x be 

such that Vy E X(xRy or xR'y = y = x or y = x*). Then X = {x,x}. Either 

x = 	or x x. If x = x then the underlying non-modal algebra of C is the 

Boolean algebra 2 with X = {0, 11. If uO = 1, then this algebra is known as 

2, and if zi0 = 0 then it is called 2. Clearly both are subdirectly irreducible, 

the only congruences being A and V. Now suppose that x 54 x. Then the 

underlying non-modal algebra of C is 4, with universe {a, b,0, 11 and a  b = 0, 

a V b = 1, -'a = a and -b = b. 4 is characteristic in the study of the non-modal 

part of the logic in the same way as 2 is characteristic in the study of classical 

propositional logic. As will be seen later, there are 10 non-isomorphic modal 

algebras based on 4, and all are subdirectly irreducible because A and V are the 

only congruences on 4: if aOb then (a A b)O(b A b) = b, and (a V b)O(b V b) = b. 

So OOb and bOl so 001 - that is 0 = V. And if aOl, say, then -iaO--il so aOO and 

again 0 = V. So V is the only congruence other that A. But for the general 

case, let 0 Li be a congruence on C+.  Because  C+  is a powerset algebra it is 

complemented, and congruences on complemented algebras have the following 

properties. Recall that we denote the complement of V by —Y and further that 

Vt = {t I y e Y}. Also let Y +Z =def  (—Vu Z) n (Y U —Z). None of these 

are operations on modal algebras, but if an algebra is complemented, then 

Lemma 46 If YOZ then —YO - Z. 

Proof. Let YOZ. Then —ZO - Z so (V fl —Z)O(Z fl —Z) = 0. Also —YO - Y, 

so (—V u (V n —Z))0(—Y u 0) = —Y, and using distributivity and the fact that 

V U —Y = 1, we have (—V u —Z)O - V. Interchanging V and Z in the above 

gives (—V u —Z)O - Z, so (—V U —Z)O(—Y n —Z). And in distributive lattices 

this is the case precisely whenever —YO - Z. 	 U 

Lemma 47 If YOZ then YtOZ8. 
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Proof. If YOZ then -'YO-Z and --iYO - -Z. But --'Z = - - = Z, and 

similarly for Y, so YOZ. 

Lemma 48 YOZ 1ff (Y + Z)01. 

Proof. YOZ if (YnZ)O(YuZ), so ((Y+Z)u(YnZ))O((Y+Z)u(YuZ)). But 

for a, b complemented, it is straightforward to work out that (a+b) A (aVb) = aAb 

and (a + b) V (a V b) = 1: a + b is the relative complement of a V b in the interval 

[aAb, 1]. This shows that (Y+Z)O1. If (Y+Z)O1 then ((YuZ)n(Y+Z))O((YU 

Z) n 1), that is (V fl Z)O(Y U Z) so YOZ. 	 U 

Theorem 49 C is subdirectly irreducible. 

Proof. Let 0 54 i be a congruence on C with YOZ and V Z. By the 

above lemma and the fact that 0 54 A we have (Y + Z)01 and V + Z 54 1, 

that is V ± Z C X,. Let ,c vary over {uR, !R', *}; then for any n we have 

(ici  .. . ,c,(Y + Z))01. The cases of VR and /LR' are clear, and that of * follows 

from the above lemma and the fact that 1* = 1 because X is closed under *. But 

on the other hand for some n we must have c1  • c(V+Z) <X\{x}. For if not, 

then where.Si  is the frame relation defining ,c, for any path x = y1S1  . . . S,y, = y 

of length n in C we have y E V + Z. But since V + Z C X this contradicts the 

construction of C,. So let (#c . . . ic(Y + Z))01 and ic . . ic(V + Z) <X,\{x}. 

Then 

X,\{x} = (ic1  . . . ic(V + Z) V X,\{x})0(1 V X,\{x}) = 1 

So letting O(X\{z},1)  be the least congruence 0 such that X,\{x}01, it has been 

shown that any congruence other than A is contained in 0(x1\{z},1).  So the set 

Con(C)/{L} has a minimum element and so C is subdirectly irreducible. U 

Corollary 50 For any variety V, if C E V is a powerset algebra then there 

are subdirectly irreducible {Ct I i E I} C V such that C e V is a subdirect 

product of JCt I i E I). 	 0 
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It was seen earlier that a variety V is complete if it is generated by F(V) = 

{C I C E V}. Now for any class of algebras K we have SPSP(K) = SP(K) 

and it has just been shown that F(V) c SP(F(V) 1) so for a complete variety 

V 2  

V = HSP(F(v)+) ç HSPSP(F(V) J) = V(F(V) 1). 

And obviously F(V) 1  c V so V(F(v) 1) c  V, and V(F(V) 1) = V. In other 

words, 

Theorem 51 A variety is complete if it is generated by its subdirectly irreducible 

powerset algebras. 	 0 

5.2 A Variety With 2 0  Non-Classical Covers 

An example of a complete variety is that defined by the axiom I- a V -a. Its 

algebras satisfy the equation a V -la = 1, and the two modal operators turn out 

to be identical. For modal algebras satisfy va V -la = 1 and va A -'pta = 0, and 

adding a V -la = 1 gives va V -'ha = 1 and va A -'va = 0. But complements 

are unique in distributive lattices, so -va = -i/La and so va = pta. This is the 

variety of classical modal algebras, and the frames determined by this axiom are 

precisely those such that for all worlds x, x = f. This change forces the collapse 

R = R', since xRy if x = ztR'y. Subvarieties of this variety are those that 

we are not in particular interested in, since these have been studied in depth 

elsewhere. Some of that study has been heuristically useful, however, in looking 

at the rest of the lattice of varieties, and our example is placed at the edge of 

this sublattice of varieties; 
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Thus, we will adapt an example of Blok' to show that there are 2° incomplete 

non-classical modal logics: more work is required here though, because many of 

the proof techniques used there fail in the weaker non-classical semantics, so this 

serves as an illustration of those methods of proof required. First, however, the 

example will be put to a different use. Here the reader is advised that, for much 

of the following, understanding requires some intimacy with the frames. 

Let N be the natural numbers and for M C N define AM to be the algebra of 

finite and cofinite subsets of the universe of the frame DM =< N, *, R > defined 

by 

m-1=n, 

mRniff m+1<n 

or m ii and m M; 

and Vn e N, n* = n. It is easy to check that AM is a modal algebra with, 

for Z E AM, vZ being 0 if Z is finite and being cofinite if Z is cofinite. Then 

define the variety K0  = V({AM I M c N)). It can be seen that K0  determines 

a classical modal logic. 

Now for a, a*  V N, a 54 a and M C N\{1, 2,31, define BM to be the algebra 

of finite and cofinite subsets of the frame CM =< N U {a, a*}, *, R > with 

m - 1 = n, 

m+1<n, 

rnRniff m=n and mM, 

m = 1 and n = a 

or m = a and n = 3; 

and Vn e N, n' = ,-j. As usual, xR'y if xRy: for example, we have 1R'a 

and aR'3. BM is indeed a modal algebra: the finite and cofinite subsets of 

BM = N U {a, a} are clearly closed under U and fl, and for V E BM, y* is finite 

1Blok 1980. 



Chapter 5. Incomplete Logics 	 141 

if, Y is finite and cofinite if Y is cofinite; so if Y is finite then -Y = -Y" is 

cofinite, and if Y is cofinite then -iY is finite. If Y C N is finite then it is easily 

seen that v(Y U {a, a*}) c {a, a} and /2(Y U {a, a*}) c {a, a} and so are finite. 

This shows ziZ, jtZ to be finite for any finite Z E BM. And if Y E BM is cofinite, 

then for some n, 1" = [n,00) C Y. But [n+ 1,00) C Y' C vY, and [n+ 1,00) 

is cofinite so i'Y is cofinite. The same can be shown for 1LY, so BM is a modal 

algebra. 

Theorem 52 BM has no proper subalgebras. 

Proof. We show that BM is the least subalgebra of BM containing 0: in other 

words that BM is 0-generated. First, we have -0 = 11  ziO = {a}, 1LO = {a} and 

-iv-iuO = {i}. Now, letting 

n times 
zi'(a) =def 	(a) 

and defining f similarly, for any n > 1 it can be seen that 

-wO A -'jtO A v'-w0 = N\11.... n}. 

So given that the complement of V-wO is 	v 1-'u0, it is not difficult to see 

that for any ii > 2 

{n} = -ivO A -AO A v''-w0 A 

For any x E N U {a, a} let x be the element {x} in BM. Then for any finite 

Z E BM, Z = V{ x, I i E I} for some finite I, and so is in the least subalgebra of 

BM. And if Z is cofinite then it can be expressed as the complement of a finite 

element: because -'va is the complement of pa, and -pa is the complement of 

Lia, it can be seen, for example, that -'vaA1ttb is the complement of jiaV-wb, and 

-wa V jib is the complement of j.a A -yb. Continuing this process on the term 

which is equal to the complement of Z gives a term for Z, so all cofinite elements 

are also in the least subalgebra of BM. So BM has no proper subalgebras. D 
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Let n E N\{1,2,3}. Then - = _{}* = _{*} = —{n}. So -'j is the 

complement of n. It can be shown that n E ii-{n} if n is R-irreflexive, so 

-'nVv--'n= 1 iffnis irreflexive: that is, ifnEM. SoBM =-,nVv--1fl= 1 if 

n EM, and also BM 1= -' V -w-'r = 1 if n M. So if M 54 N, then there is 

an equation valid in BM and not in BN,  and vice versa, so V(Bfrj) V(B,1], 

and BM V(ByJ, BN V V(B j). 

Theorem 53 BM is subdirectly irreducible, for any M C N\{1,2,3}. 

Proof. Because BM is complemented, If 0 	we may assume that for some 

a E BM, aOl and a < 1. So —aOO and 0 < —a. Because if 0 < b < c and OOc 

then OOb, we may assume that either for some n, nOO; or aOO or a00. Take each 

of the possibilities in turn: 

nOO. {n}00 so -i{n}01 and zi-i{n}01, and given that —z'-'n = -,IL-1!1we 

have -ijz--iO0. But it can be checked that for any n, the frame element 1 

is not in v-i{n}, so 1 E —v-i{n} = -ijz--1{n} and so 0 <j < -iz-in. From 

which we have 100. 

aOO. That is to say jtOOO. Given that 7-AO = -'vO, we have -wOOl and so 

v000: in other words, a00. So 

a00. In other words u000 and so -'vOOl and jt-wOOl. So 1 = -iv--wO = 

—iz --ivOO, and 100. 

So 0(1 0) is contained in any congruence 0 j4 A, showing that BM is subdirectly 

irreducible. 

A cover of an element a is a lattice is an element b with a < b and for any 

c with a < c < b then c = a or c = b. This is written as a -< b. It will now be 

shown that for any M c N\{1,2,3}, K0  -< K0  V V(BM), and-  that K0  has 2° 

covers. It should be clear that K0  < K0  V V(BM), because K0  satisfies vO = 0, 
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whereas V(B) does not, and so K0  V V(Bg) does not. The tactic of the proof 

is to show that if A e (K0  V V(BM))s1, then A E K0  or BM E S(A). For then 

if K0  < V <K0  V Bm  there is some A E Vsj with A K0; then BM e S(A), so 

BM E Vs1 and thus V(BM)  <V and K0  V V(Bg) <V, contrary to assumption. 

So let A be a subdirectly irreducible algebra in V (BMJ.  A E (K0)51  U 

so if A E (K0)51, then the above already is satisfied. Assume then 

that A E HSPU (V(BM )): then we must have some A1, A2, I and U with 

A1  = Bj/U, A2  -+ A injective and A2  - A surjective. Then either h is 

injective or it is not. First suppose that it is. Then A is isomorphic to a 

subalgebra of A1. Now consider the least subalgebra of A1, that generated by the 

element 0. But mapping each x E BM to /U in A1, where Vi E I((i) = x), is 

an embedding: mapping x to Y in B is clearly an injective homomorphism, but 

because BM v-z.'O = 1, by Log's theorem this also fails in A1. So BM\{1}/U  54 

i/U, and taking complements, {1}/U fl/U. By the previous theorem, this 

shows the homomorphism to be injective. Because BM is generated by 0, this 

mapping makes BM isomorphic to the least subalgebra of A1, which is also the 

least subalgebra of A A2. this shows that BM E S(A). 

Otherwise, h is not injective. The plan for this stage of the proof as follows. 

First we establish some first-order properties of BM.  Because of Log's theorem 

on ultraproducts, all of these will be true of A1; and because a universal sentence 

true of an algebra is also true of all of its subalgebras, the universal sentences 

will be true of A2. This is an argument which will be used frequently throughout 

this chapter. Then it is shown that the fact that h is not injective means that A 

is a classical modal algebra, and is in fact a subalgebra of a homomorphic image 

A1/0 of A1. These facts will allow us to show that A1/0 is also a homomorphic 

image of AM'/U  and so that A E K0. First of all the first-order properties, 

which are not difficult to check by inspecting BM and the frame by means of 

which it was defined. 

Theorem 54 The following properties hold true of BM: 
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Apart from the top element 1, {a} is the only x E BM such that Ax = x. So let 

A(x) abbreviate x i4 1 A jtx = x. Then 

BM 1= !xA(x). 

Apart from 1, {a} is the only x E BM such that ux = x. Letting A* (x) abbreviate 

x54 1 A ux = x, we have 

BM 1= !xA(x). 

Asserting that complements exist is in general a V2-property, but for any x E BM 

we can determine its complement given its relation to the elements {a} and {a*}. 

if {a, a} < z, then -'z is the complement of z: 

BM =VxVyVz(A(x) A A*( y ) A ( x  < z) A(y :5 z) = ( zA -iz = O)A(zV -'z = 1)). 

. If {a, a} A z = 0, then -'z is the complement of z: 

BM I=VxVyVz(A(x) AA*(y) A (x z) A (y z) = (zA -lz = 0) A (zV -z= 1)). 

In the two remaining cases we have either: 

5. the complement of z is _,{a*} A  ({a*} V -'z): 

BM 1= VxVyVz(A(x) A A* (y) A (x < z) A (y z) 

(z A (-y A (y V -lz)) = 0) A (z V (-y A (y V -z)) = 1)). 

or the complement of z is -i{a} A ({a} V -'z): 

B=VzVyVz(A(x)AA*(y)A(xz)A(y<z)  = 

(z A (-1x A (x V -z)) = 0) A (z V ( -1x A (x V 	= 1)). 

Proof. These can be seen by inspection. 	 NJ 

So A1  satifies these properties, and so is complemented; also, A2  satisfies the 

universal properties among them. But now we have 
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Theorem 55 A2  is complemented. 

Proof. Rewrite the first two sentences above, decomposing each into an exis-

tential sentence expressing existence and a universal sentence expressing unique-

ness. Then the universal sentences hold in A2  because it is true of A1. But 

it was seen earlier that BM is isomorphic' to the least subalgebra of A1  and so 

of A2. So the existential sentences hold in A2, given that they hold in one of 

its subalgebras. This shows that A2  has unique elements U" and u" such that 

A(u") and A(u"). Then each element of A2  matches precisely one of the four 

mutually exclusive antecedent of the last four universal sentences, and this gives 

its complement. 	 EM 

Where convenient, u° and U" will also name the corresponding elements in 

A1  and BM,  which should not cause confusion given the subalgebra connection 

between them. Now it is shown that since h is not injective, it collapses the 

distinctions between v and jz, and between negation and complementation. 

Theorem 56 For all z E A2, h(vz) = h(/Az), and h( ,z) = h(—z). 

Proof. It is easy to see that in BM, vz and pz differ, if at all, only with 

respect to containing {a} and {a}, and that each must contain at least one of 

these. This justifies 

BM  1= VxVyVz(A(x) A A* (y) = (y V 	= (x V vz)) 

So for all z e A2  we have u" V ,az = u° V vz, and consequently if h(u°) = 

h(u") = 0 then h(vz) = h(jiz). Also, by considering the first-order sentences 

above giving complements, it can be seen that if h(u°) = h(u") = 0, then for 

any z E A2  we have h( ,z) = h(—z). Another property of BM is that apart from 

1, BM\{a} = --lu" is the only element x with ux = lix = 1; and excluding these 

two elements, for any other x we have ux < BM\{1} = zi-iu". So 

BM  = VxVyVz(A(x) A A* (y) A (z -'x) A (z 54 1) = (vz < 
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Clearly A1  and A2  also satisfy these • properties. Now because A2  is comple-

mented and h is surjective but not injective there is some z E A2  with z 54 1 and 

h(z) = 1. Suppose z _iUa. Then vz < IIUa by. the above, and given that 

h(vz) = vh(z) = 1, then h(zi_,u(1) = 1. Otherwise z = -'u°  and so h(ua) = 0. 

But Ua  and -'u° are complements in A2, and given this together with the fact 

that h(u") = 0 it follows that h(ua) = 1 and so again that h(vut1) = 1. Now 

regarding z'-iu° E A2  as an element of BM,  it is u-tiM = BM\{1}, And from 

this it can be seen that BM, and so A1  and A2, satisfies the inequality 

A ,.uv2(viut) < -'u° A 

This may be rewritten as an equation in the modal language, which then is true 

in V(BMJ.  But given that h(v-iu') = 1, we have h(v3(v-'u) A/W2(v-iu) = 1 

and so h(_iva A _,Ua) = 1; thus h(ua) = h(u) = 0. So h eliminates any 

distinction between complement and negation and between uz and Az: in other 

words, h(vz) = h(jiz). 	 D 

In general in algebra we have SH(A) C HS (A), and the reverse inclusion also 

holds for classical modal algebras A. This reverse inclusion HS(A) ç SH(A) is 

known as the congruence extension property, and in general it fails for our modal 

algebras. At this stage of the proof we can, however, extend the congruence on 

A2  given by h to a congruence on A1  by means of the next theorem. 

Let F be a filter in a complemented modal algebra A. If for any a E F then 

--'a E F, then F is called strongly -i-consistent; and if for any a E F we have 

va E F then F is called v-open. If 1L-open is defined similarly, it can be seen 

that any strongly negation consistent u-open filter is also 11-open, given that 

--'va = /ua; so we need only talk about strongly -i-consistent filters being open. 

Theorem 57 Let F be a strongly -i-consistent open filter in a complemented 

modal algebra A, and define OF  by aO"b if a + b E F. Then OF  is a congruence 
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Proof. Some cases are familiar from the theory of Boolean algebras. Of these, 

only the fact that OF  is an equivalence relation will be given as illustration. 

1. OF  is an equivalence relation. It is easy to see that OF  is reflexive and 

symmetric, given that for all a E A a + a = 1 E F, and that a + b = b + a, 

so if a + b E F then b + a E F. To show transitivity it is shown that 

a+c = (a+b) +(b+c). For then if a+b,b+c E F, then (a+b) A(b+c) 

is also in F because F is a filter; and so is (a + b) + (b + c), because 

(a+b) A (b + c) :5 (a + b) + (b + c). Now, 

—(a+b) V (b+c) 

= (aA —b) V (—aAb) V ((—bVc) A (by —c)) 

= ((a A —b) V (—a A b) v —b v c) A 

((aA —b) V(—aAb)VbV—c) 

= ((a A —b) V —a V —b v c) A 

((—aAb) VaVbV —c) 

= (—a V —b V c) A (a V b V —c) 

And similarly we have 

(a+b)V—(b+c) =(aV—bV—c)A(—avbvc). 

So 
(a+ b) + (b + c) 

= (—aV —b V c) A (a V by —c) A 

(aV—bV—c)A(—avbvc) 

= (bV(aV—c))A(—bV(aV—c))A 

(bV(—aVc))A(bV (—avc)) 

= (aV—c)A(—avc) 

= a+c. 

2. If aO'b then _,aOF_,b.  Suppose a + b E F; then because F is strongly 

consistent --i(a + b) E F. But it can be seen that ---1(a + b) = -a + -ib: 
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this could be proved in the mechanical fashion of the previous proof, or as 

follows. We know that (a+b)A(aVb) =aAband (a+b)V(aVb) = 1; and 

given that (-ia+-b)A(-aV-b) = -aA--ib and (-'a+-ib)V(-aV--b) = 1, by 

negating we also have -i(-ia+-ib)A(aAb) = 0 and -i(--ia+--ib)V(aAb) aVb. 

So 

= 	 +-ib)A(avb))A(a+b) 

= -i(--ia+--ib)A((aVb)A(a+b)) 

= 	 +-b)A(aAb) 

=0 

It can be similarly shown that -1(--ia+ -b) V (a+ b) = 1. By negating these 

two conclusions we then have the desired result that ---'(a + b) = -'a + -'b. 

3. If aO"b then vaoFvb. If a+b E F then because F is open v(a+b) E F. Now 

by definition of +: (aAb) < (a+b) and so (va Avb) = v(aAb) <zi(a+b); 

and also (va A tib) < (va + zib) and (va + vb) V (va V tib) = 1. It follows 

that (va A z,b) :5 ((va + ub) A (v(a + b))). Now 

v(a + b) A (va V ub) 

= (v(a+b)A va) V(v(a+b)Avb) 

= v((a+b)Aa)Vv((a+b)Ab) 

But ((a+b)Aa) = ((a+b)Ab) = (aAb),sov(a+b)A(uavzib) = (v(aAb)) = 

(va A ub). Using these facts we then have 

v(a +b) 

= v(a +b)A1 

= v(a +b)A((va+vb)V (va Vvb)) 

= (v(a + b) A (va + z,b)) V (v(a + b) A (va V z,b)) 

= (v(a+b)A (Oa --vb))V (va Avb) 

= v(a + b) A (va + vb). 

So v(a+b) :!~ (va +vb), and since u(a+b) e F it follows that ua--vb E F. 
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The case for it is similar, and the cases for A and V are standard. So O' is a 

congruence on A. 	 D 

For 0 a congruence on a complemented algebra A it is straightforward to 

check that 1/0, the congruence class of 1, is a strongly -i-consistent and open 

filter of A. So we have 

Theorem 58 If A is a complemented algebra, then 0 '- 1/0 is a one-one map 

from congruences on A to strongly --consistent and open filters of A. 

Proof. It has been shown that the map is onto. But we saw earlier that aOb 

if a + bOl in complemented algebras. This shows that 1/0 determines 0. 	D 

We now return to the main proof. Regarding A2  as a subalgebra of A1, and 

letting 0 be the congruence determined by h, 0 extends to A1  by 

a0biffcEA2(h(c)=1 A c<a+b) 

0 is indeed a congruence since it is easily checked that 

{a e A1  I 3c E A2(h(c) = 1 A c < a)} 

is strongly -i-consistent and open: if c < a then -'a < -'c so --ic < --'a. And if 

h(c) = 1 then h( ,c) = 0 so h(---ic) = 1. Thus if c <a with h(c) = 1 we also have 

--'c < --'a with h(---ic) = 1. As for being open, if h(c) = 1 and c < a, then 

h(va) = 1 and ua < tic. Finally it is easy to show that the restriction of 0 on A2  

to A1  is in fact the congruence determined by h, and so that mapping h(a) E A 

to a/0 E A2 /0 is an injective homomorphism. Consequently A E SH(A2). 

Let h' be the homomorphism extending h which maps elements of A1  to their 

0-congruence class. Regarding u° and u0  as elements of A1  we have h(ua) = 

h(u0) = 0, so by previous considerations A1  is a classical modal algebra. Now 

recall that A1  = Bk/U and let A' = AM'/U, where U is the same ultrafilter on 

the same index I. Then each element in A' may in a natural way be regarded 

as an element of A1, and using the same name for them these let A' 4 A1/0 be 

- defined by g(x) = h'(x): then 
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Theorem 59 g is a surjectivc homomorphism. 

Proof. This will be seen to follow essentially from the one fact. 

It should be clear that the clauses for 0, A and V hold, since 0 E A1  is an 

element of A', and if x, y E A1  are also elements of A', then so are x A y 

and x V y. 

g(1) = 1. Now 1 E A' corresponds to the U-equivalence class of the 

constant function BM\{a, a*} = iUa A _Ua  in A1. But we have already 

seen that h'(u') = W(ua*) = 0 and so h'(iu') = hI(_,u*) = 1. This 

shows that h' maps the U-equivalence class of BM\{a, a*} to 1 in A1 /0, so 

g(1) = 1. 

g(vx) = vg(x). This follows from the fact that for Z C AM, vZ in AM 

and vZ in BM differ only in that vZ in BM may contain a or a*.  The 

fact that h' eliminates the distinction at the level of the ultrapowers by 

mapping BM\{a, a*}/U  to 1 allows this clause to go through. 

g(-ix) = -lg(x). As this algebraic operation on the ultrapowers is defined 

in terms of its working on the algebras AM and BM, and h' has eliminated 

any distinction between negation in AM, which was complementation over 

its universe N == BM \{a, a} and negation in BM, this is true. 

g is surjective. Take z E A1 /0, say z = y/O. Recall that _,Ua  A _,Ut  is the 

element of BM which at all indices is the element {N}, then 

h'(z A 	A _iva U)) = h'(z) A h'(-iu0  A _iva*/U) = h'(z) A 1= h'(z). 

But clearly z A (_iUa  A -,u°/U) is an element of A', and g then maps it to 

Yb. 	 U 

So if h is not injective, then A E K0  because since A' E Pu (A) we have 

A' E K0 , and also A E SH(A') C HS(A'). So A E V(AM ) c K0 . This 

completes the proof of 
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Theorem 60 KO-<KOVV(BMJ. 	 0 

And since we have also shown that if M 54 N then BN V(B frj) and BM 

V(B), with each BN being subdirectly irreducible, it follows that 

Theorem 61 K0  has 20 covers. 	 0 

5.3 	Examples Of Incomplete Varieties 

V(BM) will be shown to be incomplete, to which end some more properties of 

BM are established. First let Vx abbreviate x A Lix A jix. V acts like a modal 

operator, with Vi = 1 and V(x A y) = Vx A Vy. Also, let the definition be 

extended by letting it be more fully defined as Vox = x; and for n > 1 

V'x = V''x A VV'-'X A 

Then clearly 

Theorem 62 BM = Vx < x. 	 0 

And in BM we also have 

Theorem 63 V2x = 0 1ff x is finite. 

Proof. The if part of the proof follows from these easily established cases, 

where x is finite: 

If {a,a} x then Vx=0; 

If {a, a*} = x then Vx = 0; 

If {a, a*} x and 3 E xthen Vx = {a, a*};  

If {a, a*}  c x and 3 x then Vx = 0. 
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For the other direction suppo'e x is not finite: then it is cofinite. For the 

cases where N c x, we have V{N} = N\{1} and V2  {NJ = N\{1, 21, so V2z 

is cofinite. Otherwise, for some n we have n V z and [n + 1, oo) C x. But 
V2 [n + 1,00) = [n + 3,00), so again V2x is cofinite. 	 0 

Together with the fact that Vx is cofinite if x is, this justifies - 

Corollary 64 BM = Vz( V 2x > 0 =>, -'V2--'V2x = 1). 	 0 

Below we shall use the instance 

BM = Vx(V 4x > 0 -'V2-'V4x = 1). 

Now if x C N is coinitial in N, say x = [n,00), then Vx = [n + 1,00) is also 

coinitial in N and {Vmx  I m < oo} is an infinite descending chain. In fact we 

have 

Theorem 65 {V4x I x E BM} is linearly ordered. 

Proof. We show that V4x is either 1 = BM, BM\{a*}, coinitial in N, or 

0: this is clearly a linearly ordered set. If x is finite then V4x = V 2x = 0, as 

was seen above, if x = BM\{a}, then Vx = x so V4x = x. Now suppose 

that x = BM\{n}. if n > 3 then Vx is either la, a*} U {n} U [n + 2,00) or 

la, a*} U [n + 2,00), depending on whether or not n E M; but because aR3, 

a* R'3, nRn+ 1, and 3,n+1 Vx, in either case we have V2 x = [n+3,00), and 

so V4 x = [n +5,00) is coinitial in N. For n < 3, it is not too difficult to see that 

V3(BM\{1}) = V 2(BM\{2}) = V(BM\{3}) = [5,00). Finally, if x = BM\{a}, 

then Vx = BM\{1}, so V 4x = [5,00). Now, every cofinite subset of BM is a 

finite meet of these cases and the linearly ordered set described above is obviously 

closed under meet. This, together with the fact that V4  (x A y) = (V4 x A V4y), 

completes the proof. 

It can also be seen that 
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Theorem 66 BM = -'V 2-,V3x A V2(-'V3x V V4x) < V6z. 

Proof. If x is finite then ,V2-'V3x = 0, and if x = 1 then V6z = 1, so the 

inequation holds for these cases. Otherwise, suppose x 54 BM\{a}  is cofinite and 

V3z = [n + 1, oo). This covers the cases of x = N and of those x such that for 

some n, n V x. Then consideration of the previous proof shows that n> 3, and 

we have V6x = [n+4,00) and -'V3xVV4x = BM\{n+1}. So V 2(-'V3xVV4x) = 

[n + 4, oo), and again the inequation holds. As for x =. BM\{a}, it turns out 

that -'V3x V V'x = BM\{a*,4} and that V2(-iV3x V Vx) = V6x = [7, oo). If 

x = BM\{a*}, then Vx = x and -'x < x show that it goes through. 	0 

Let A _ C E V(Bg)si with Al  E Pu(By), A2  - A injective and 

A 2  -* A surjective. Now 2 E V(BM) since mapping cofinite subsets of BM to 

1 and finite subsets to 0 is a surjective homomorphism, and 	V (Ba) since 

BM=v0A ILO =0 and 2+ &v0Aj0=O. The next step is to show that there 

is no other such A. 

So suppose A is as above and A it 2. Now the universe of A must have 

more that two elements, so it may be assumed that there is some x E A with 

< x < 1. But there is more that we know about A. Because {V4x I x E BM} 
is linearly ordered in BM,  for by now familiar reasons so are {V4x I x E All 

and {V4x I  x E A21. But this is also the case for {V4x I x E Al, since 

{V4x I x e A) = {h(V4x) I x E A21. Next, 

BM 1= -'V2--'V 4 x V -'V2-'V 4-'x = 1 

for if x is cofinite then -'V4x is finite; so V2-iV4x = 0 and -,V2-iV4x = 1. 

Otherwise x is finite so -ix is cofinite and -iV2--iV4-ix = 1. So this equation 

must also be true in A. This means that for x E A with 0 < x < 1 either 

< V4x or 0 < V4-ix; for otherwise -'V2-'V 4x = -,V2-,V 4-ix = 0, violating 

the equation. So we may assume without loss of generality that 0 < V4x. Also, 

we may assume that the complement of V4x, which exists since A C+,  is 
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in fact -iV4x. For suppose this does not hold of x: considering again the set 

{V4z I x E BM},  this fails to be true only of BM\{a*},  so 

BM = Vx(V4x V -iV4x 54  1. = x = 

So this holds in A1  and A2. And for h(v) = x, we have h(V4v) = V4   and 

h(V 4v V -'V4v) = V4x V -'V4x 1. So V4v V -'V4v 54  1 and v = -iO. But then 

consider --tx in A. It is easy to see that 0 < --'x < 1: if not, then x = 1 or 

x = 0. Also, h(/.L0) = -ix, and -wO is the complement of jzO, so h(-wO) = --'x. 

It can then easily be shown that V4-wO V ,V4--ivO is valid in BM and so in 

V (BM),  proving that the negation of V4  - -lx is its complement. So we assume 

in what follows that we have chosen x, 0 <x < 1, with this property. 

We know that 0 < V4x < x < 1 and V4xV -'V4x = 1. Since BM 1= Vx(V4x> 
0 =:>, -'V2-iV4x = 1), this also-  holds in the ultraproduct A1, and, since it is a 

universal sentence, in its subalgebra A2. Let v,w E A2  be such that h(v) = x 

and w = V4v; so h(w) = V4 x. Then h(w) 54 0, so w 0 and by this universal 

sentence -iV 2-iw = 1, so h(-iV 2-iw) = 1. Now we show that 

Theorem 67 V5x < V4x. 

Proof. Clearly we have V5x < V4x, so suppose for contradiction that V5x = 

V4 x. Then because h(-iV 2-iw) = 1, it follows that 

A V2(-iw V VW)) = h(V 2(-'w V VW)). 

And if V5x = V4x, then h(Vw) = h(w), and since V4x V -V4x = 1 we have 

-'h(w) V h(Vw) = 1 and consequently V22 (-ih(w) V h(Vw)) 1. But 

V VW)) = V22 (-ih(w) V h(Vw)) = 1, 

and as an instance of a valid theorem of the variety we have 

A V2(-'V4v V V5v) < V7v, 
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so 

-iV2-,w A V2(-'w V VW) <V3w. 

And since h(V2 (-'w V VW)) = 1 and h(-'V2-'w) = 1, we must have h(V3w) = 1. 

But V3w < w so h(w) 1, contrary to the assumption that h(w) = Vx < 1. 

This shows that V5x < Vx. 	 U 

From this it follows that Vx < Vx. Now it is shown that 

Theorem 68 V8x 54 0. 

Proof. We know that 

,V2--'V8x V -iV2 --iV4-iV4x = 1, 

and that {V4x I x E A) is linearly ordered. If Vx = 0, then ,V2--iV8x = 0, 

so to satisfy the above equation we must have V4-'V4x 0  0. And by the linear 

ordering we have 

V4-'V4x < V4x or V4x < V4-'V4x. 

We have seen that V4xV -V4x = 1, and so by negating, V4xA -'V4x = 0; also we 

have V4-'V4x < -V'x. Suppose the first disjunct is true, that is V4-iV4x < V4x. 

Then 0 j4 V4-V4x < V4   A -iV4x, contradicting V4   A -V4x = 0. So suppose 

that the second disjunct holds. But then 

0 < V4x < V4-'V4z < -V4x, 

which again contradicts V4   A -iV4x = 0. 

This shows that V8x 0, and so that {V4"x I n < oo} is an infinite de-

scending chain. It is a subset of {V4x I x e A}\10}, of which it contains a 

co-initial subset, according to this downward ordering. Also negation coincides 

with complementation for every V4t2x:  if -'x = —x then -iVx = —Vx, for 

= (-1x V -ux V -"x) = (—x V —jtx V —ux) = —Vx. 
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Let C be this anti-chain {V4'x I n < oo} in A C. Also let A be a limit 

ordinal indexing a coinitial subset of C: that is, we have {a,. I r < )i} coinitial in 

C with a,.2 <a,.1 if r1 <r2 <A. Because C+ is a powerset algebra, 

z = V{ar A -'a,.+i I r < A and r is even} 

exists; it can also be seen that a,. A -'a,.+i 54 0 since —a,. = -'a,. < -'a,.+i. 

Theorem 69 Let a be odd and r be even. Then a0 A -'a0+, A a,. A -ia,.+i = 0. 

Proof. For suppose a<r: then a<a+1<r<r+1,a,.+i<a,.<a0+i<a0 

and -'a0 < -'a0+i < -'a,. < -ia,.+1. Because a,. A -'a,. = 0, this means that 

a,. A -'a0,+1 = 0. For r <a the proof is similar. 	 [1 

Because this is a powerset algebra this shows that for a odd a0 A -ia0+i ~4 z, 

since 

a0 A -'a0+i A V{ar A a,.+i I r < A,r even} = 

V {a0 A -ia0+i A a,. A a,.+i I r < A,r even} = 0. 

Also, -'z = —z. Because A is a powerset algebra and for each r < A, -'a,. = —a,., 

= —a,. and so a = a,.. Similarly we have (-ia,.) = -'a,., this means that —(a,.)  

and because the meet of any two complemented elements is also complemented, 

in particular we have (a,. A ia,.+l )* = a,. A -'a,.+i. So 

V{a,. A -'a,.+i I r <A and r is even} 

= —(V{a,. A -'a,.+i I r < A and r is even}) 

= —(V{(a,. A -'a,.+,)J r < A and r is even}) 

= —(V{a,. A -'a,.+i I r < A and r is even}) 

Suppose V4z 0: obviously we have V4z e {V4x I x E Al, so let a be odd 

with a0 < V4 z. But then 

a0 A -'ao+i <V4z < z, 
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which we saw to be false, so V4z = 0. Similarly it is shown that V4-'z = 0: 

otherwise, take even a with a0  < V4-'z E C. Then 

0 	a0  A -'a0+i < V1-iz < -z, 

which is again a contradiction, since a0 A-1a0+i < z = --z. So V4z = V 4-'z = 0, 

contradicting the valid equation ,V'--,V4z V -'V2-'V4--iz = 1. 

So the only algebra of the form C in V(BM)  is 2. Because, for example, 

= vO = 0 unlike BM,  V() V(B), thus V(B) is not generated by its 

powerset algebras, and 

Theorem 70 V(B frj) is incomplete. 	 0 

Corollary 71 There are 2H0 distinct logics, all valid in exactly the same frames. 

Proof. These are the logics L(V(BM )), for each M ç N\{1,2,3}. 	0 

As a further example we have the following corollary. 

Corollary 72 If a logic L contains -i/ta V a, then there are 2H0  logics satisfied 

by the same class of frames as L. 

Proof. First, if V is non-trivial and V J= -'j.a V a it can be seen that 2 E V: 

for any A E V we have A = j0 = 0 - and therefore also A = vO = 0 - so 2 is the 

least subalgebra of A, and so is in V. Also, for any M C N\{1, 2, 3}, BM V V 

since BM -ijta V a. This shows that {V V V(B) I M C N\{1,2,3}} are 2° 

distinct varieties. The only subdirectly irreducible powerset algebra in V(BM) 

is 2, which is also in V, so all the subdirectly irreducible powerset algebras of 

V V V(B) are in V. Since any C is a subdirect product of some Ict I I E I}, 

this shows that F(V V V(B)) = F(V) and so F(L(V V V(BM))) = F(L(V)), 

completing the proof. 	 0 



Chapter 6 

The Lattice Of Modal Logics 

6.1 Logics Based On 4 

In the previous chapter it was seen how a particular feature of the lattice of 

classical modal logics could be generalised to the whole lattice of four-valued 

modal logics, and that fewer logical techniques were available in the proof because 

of the relative weakness of the corresponding algebras. Now, in concentrating 

on the top of the lattice of four-valued modal logics, we show some important 

differences between the two lattices and at the same time illustrate conditions 

which enable the return of these powerful, rather atypical, logical properties as 

an example of their usefulness. More tangible examples will be given than in the 

previous chapter. 

The Boolean algebra 2 has many familiar logical and algebraic properties, 

amongst which is the fact that it is characteristic for classical logic: a formula is 

classically valid just in case it is valid in 2- or equivalently, the variety of Boolean 

algebras is generated by 2. The two possible modal algebras based on 2, which 

we called 2 and 2, also have a privileged position in classical modal logic: 

any consistent classical modal logic is contained in the logic of one of these two 

algebras. Algebraically, this means that any non-trivial classical variety contains 

V(2) or V(2). For if A is a classical modal algebra and vO = 0, then its least 

subalgebra is 2, so V (2) <V (A). Otherwise jO = vO > 0: then it is not difficult 

to see that [iiO), is a strongly -i-consistent and open filter defining a congruence 

158 
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on A the quotient of which is isomorphic to r. This shows that 2 E V (A) 

and V(r)  :5 V(A). Consideration of what this says about A+  illustrates a 

similar result concerning the frames corresponding to 2 and 2+:  the R-reflexive 

one point frame and the R-irreflexive one point frame respectively. If C is a 

classical frame such that for all x e C there is some y E C with xRy, the one 

point reflexive frame can be seen to be a p-morphic image of C. Otherwise, 

there is some x E C with no y such that xRy. Then because C is classical we 

have x = z and so C, the subframe generated by x, can be seen to have only 

z in its universe. Clearly C is irreflexive. Now since if A is finite we have that 

V(A)51  C HS (A), and also 2 	, it is clear that - ignoring trivial algebras - 

V()s1 = {} and V()sj = {}, and so V() 54 V(2'). Together, this shows 

that 2 and 2 define distinct Post complete logics: that is, logics which are 

maximally consistent. Equivalently, the varieties they generate are atoms in the 

lattice of varieties - they cover the bottom element. And because every classical 

variety contains either 2 or 2+,  these are the only classical Post complete logics. 

This situation prompts several natural questions about four-valued modal logic 

in general. 

It was mentioned earlier that the four element algebra 4 is characteristic for 

the propositional part of four-valued modal logic: V(4) is the class of algebraic 

models for this logic. So it would be interesting to look at the modal algebras 

based on 4, not least to see whether any play a role similar to that played by the 

modal algebras based on 2 in classical modal logic. Recall that 4 is the algebra 

with universe la, b,O, i} satisfying the equations a A b = 0, a V b = 1, -'a = a 

and -tb = b, and 3 is the three-element subalgebra of 4 containing, say, a. There 

are in fact, up to isomorphism, ten possible modal algebras based on 4, which 
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we name as follows. 

ziO=1 S1  

i'a=l; z'b=b S2  

vO=b 	zia=b; vb=1 S3  

va=b; vb=b S4  

va=a; iib=b S5  

va=b; vb=a S6  

z'a=l; ub=0 S7  
L100 

va=b; z'b=0 S8  

,ia=a; ub=0 S9  

va=0; ub=0 S10  

Each algebra Si is isomorphic to .F for a frame F, with a two element universe 

IX, x} and x 54 x. With x and x' as names and not variables, such frames may 

be given by taking the following as a full specification of the R-relation on this 

universe: 
xRx 	in F2 , F4, F6 , F7, F8 , F9, Flo; 

iRx* in F3,F4,F5 ,F8,Flo; 

x Rx in F5 , F7 , F8 , F9 , F10; 

XRX in F6,F9,Flo. 

Thus, for example, F1  has R and so also R' empty. Any other two-element 

frame with x x is p-morphically equivalent to one of these ten frames. It is 

straightforward but tedious to check that these propositions are true, and that 

these algebras are the only modal algebras based on 4. It is easier to see that 

there are three algebras based on 3: let them be named as follows. 3+  has 

vO = 1; otherwise zi0 = 0, and in this case 31  is the algebra with va = 0, and 

2 is the algebra with va = 1. Finally, for convenience the variety of trivial 

algebras, those satisfying 0 = 1, is denoted .T. 

It has already been noted that the algebras Si  are simple, that is have only 

two congruences, and so are subdirectly irreducible: and using the fact that for 
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finite A we have V(A)sj ç HS (A), it can be shown that the following covering 

relations hold between the varieties they generate. 

-< V() -< V() - V(S1) 

-< {V(S2), V(S3), V(S4)} 

-< V() -< {V(S5), V(S6), V(31), V()} 

-.< {V (S8), V(S9), V(S10)} 

v V(32) -< V(S7) 

For example, S2  determines a Post complete four-valued modal logic because it 

only has one subalgebra, namely itself, and one non-trivial homomorphic im-

age, given by the identity mapping onto itself, so discounting trivial algebras 

V(S2) 51  = {S2}. The other covering relations are determined similarly: since all 

these two-, three- and four-element algebras are simple - none has a non-trivial 

homomorphic image not isomorphic to itself - so only the subalgebra relation 

need be considered. Then it is not difficult to see that the above covering rela-

tions between varieties correspond to the subalgebra relations on their generating 

algebras. 

It is of great practical and theoretical use to have a characterisation of the 

congruences of algebras in a given class, a description of Con (A) in terms of some 

internal characteristics of A. Thus for Boolean algebras the relation between 

congruences and filters is well known, and for classical modal algebras we have 

seen that open filters play this role. This followed from our characterisation of 

congruences on complemented modal algebras, the utility of which was illustrated 

in the previous chapter. So there arises the question of whether such a useful 

characterisation is forthcoming for four-valued modal algebras in general. The 

answer, as far as we have been able to discern, is in the negative, but probing 

towards a characterisation illuminates the algebras in other ways. 

One obvious approach is through the following theorem concerning V(4), 

which defines the underlying non-modal four-valued logic. For F a prime filter 
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of A E V(4), define a(F) to be {a e A I -'a V F} - this is easily seen to be a 

prime filter too. Then 

Theorem 73 Any set II of prime filters of A E V(4) closed under ci defines a 

congruence 0 on A, given by aft iffVF e IT, a E F 1ff be F. 

Proof. This is obviously an equivalence relation, so suppose that F E II, aOb 

and cOd. Then aAcEFiffaEF and cEFiffbEF and dEFiffbAdEF. 

Also, using the fact that F is prime we have a V c E F if a CF or c  F 1ff be F 

or d C F if b V d E F. Finally, -'a E F if a a(F) if b a(F) if -b E F. 0 

The idea then might be to mesh this theorem in some way with the approach 

to modal algebras by adding clauses to the definition of II to account for the 

modal operators. But the obvious options involving - and v-openness only 

seem to work for the algebras of sublogics where axioms, are imposed to fit the 

definition; The modal algebras based on 4, taking their two prime filters {a, 11 

and {b, 1}, provide counterexamples to most of the attempts. As an example of 

a localised characterisation of congruences, Loureiro' has shown that in V(S10 ) 

any congruence 0 may be characterised by the prime filters containing {a I aOl}, 

and that any family of prime filters the intersection of which is an open filter 

determines a congruence. To see why this is possible, observe that the crucial 

validities of V(S10) are Ax = ux, x  -'ux = 1 and x A -'ux = x A -'x. These allow 

the inference from a e F if b E F to va E F if vb E F as follows. Suppose 

the former and let va E F; then -va V a(F), and because a(F) is prime and 

a V -'va E a(F) we have a E a(F) and so b E a(F). Because -va 

also a A -va = a A -'a ij a(F), giving -'a iZ a(F) and so -'b a(F). But then 

b A -ib = b A -ivb a(F) and b e a(F); so -yb a(F) and jib e F. Therefore 

it would seem that such a set of axioms proves to be essential in extending this 

use of such a family of prime filters to a system of four-valued modal logic. 

1Loureiro 1985. 
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So the algebras appear too weak to support any general internal characteri-

sation; if the congruence extension property were applicable, for example, there 

might be a fruitful approach to the problem using the fact that for any algebra 

A, (A+)+ is complemented and so its congruences are characterisable. In the 

next chapter we look at something along those lines, but we begin this chapter 

by showing that principal congruences can be defined for the varieties of nearly 

all of the above algebras based on 4, congruences of the form O(ab).  This, it 

should be recalled, is the least congruence ,i such that at&b. 

The following generalises a proof by Loureiro which covered only V (S10), 

algebras which she called tetravalent modal algebras. The greatest difference is 

the fact that V(S10) has in effect only one modal operator whereas, of course, 

we have in general two. S1  is the only algebra based on 4 to be omitted from 

the following proof, which therefore pertains to any algebra in V({S2,.. . Sio}). 

The result follows from the fact that this is a so-called discriminator variety. 

Definition 74 A discriminator term t for an algebra A is a term representing 

the ternary function 

t(a,b,c) = 
	a ifab 

(C ifa=b 

If a set K of algebras has a common discriminator term, then V(K) is a dis- 

criminator variety. 	 0 

This is an extremely powerful notion, entailing many more properties than shall 

be examined here, but first it must be shown that 52,.. . S10  have a common 

discriminator term. 

First define d(x) = (zix A --x) V (x A -1v-1x). Also let A0  = x, and for 

n > 1, A"x = vA"x A zA''x. A1x will be written as Ax. Then we have 

Theorem 75 For x E Si, 2 < i < 10, 

d(x) = 
1 iffz=1 

0 otherwise. 
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Proof. The four possible cases are as follows. 

x = 1. Then because 11 v1 = 1, we have d(1) = -,AOV -'vO = -SO. But 

since in S2.... S10  it can be seen that z0 = 0, we have d(1) = 1. 

z = 0. -p--iO = -'v-iO = 0, so d(0) = 0. 

x = a. There are the following subcases. 

If va = 1, then va = pa = v ,a = p,a = 1. So d(a) = (1 AO) v(1AO) = 

0. 

If va = a, then va = v-'a = a and pa = p-ia = b, so d(a) = 

(aA-'b)V(aA--ib)=OVO=O. 

If va = b, then va = v,a = b and pa = p-ia = a, so d(a) = 

(bA-'a)V(bA-ia)=OVO=O. 

If va = 0, then va = v ,a = pa = p,a = 0, so d(a) = (0A1)v(0A1) = 

0. 

4. The case for x = b is exactly the same as for x = a. 	 0 

Now define xfy to be the term (d(xAy)V-id(xVy))A(d(-ixA-iy)V-id(-ixV ,y)). 

Then we can show 

Theorem 76 Let x, y E Si, 2 < i < 10. Then 

xfy = 
1 ifx=y 

0 otherwise. 

Proof. x f x = (d(x) V -id(x)) A (d(-ix) V -id(-ix)). For z = 1 this is (1 V 

0)A(Ovl)=1;ifx=O this is(0v1)A(1v0)=1; and ifx=aorx=b 

then this is (0 V 1) A (0 V 1) = 1. On the other hand suppose that x 	y. 

Because, as is easily seen, x f y = -lx f -iy, the only cases that need to be 

checked are 0 f 1, a f 1, b f 1 and a t b. Covering the first three cases, we have 
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x  1 = d(x) A -d(-x) following straightforwardly from the definition; but if x 54 1 

we know that d(x) = 0, and so d(x) A -d(-x) = 0, proving these three cases. 

Finally, to show that at b = 0 first observe that a A b = -iaA-ib = 0 and d(0) = 0. 

So at b = -id(a V b) A -id(-ia V -ib) = -id(1) = 0, and the last case holds. 	0 

Finally define t(x, y, z) = ((x t y) A z) V (-(x t v) A x). 

Theorem 77 t is a common discriminator term for the algebras S2,... S10. 

Proof. Let x = Y. Then t(x,y,z) = (1 Az) V (0 Ax) = z. Otherwise x 

and so t(x,y,z) = (0 Az) V (1 Ax) = x. 	 of 

A result about discriminator varieties concerning principal congruences which 

is of interest 'here is as follows. Any A E V({S2.... So}) is a subdirect prod-

uct of subdirectly irreducible algebras. V({S2.... Sio})si consists of S2.... S10  

themselves and their subalgebras based on 2 and 3 which were given above. The 

discriminator term t is clearly also a discriminator term for these subalgebras, 

so we may regard the subdirect representation of A as in fact presenting A as 

a subalgebra of a product of algebras for which t is a discriminator term. With 

this in mind it can be shown that 

Theorem 78 Let A E V({S2,. . . S 0 }) be given as a subdirect product of {B1 I 
i E I} where each B1  is a subalgebra of some S, 2 < j :5 10, and let a, b, c, d E A. 

Then 

°(a,b) = {< c,d >1 Vi E I (a(i) = b(i) =>. c(i) = d(i))}. 

Proof. It is straightforward to check that the righthand side is a congruence 

containing < a,b >. So suppose that Vi E I(a(i) = b(i) = c(i) = d(i)). Also, 

define s(a,b,c,d) = t(t(a,b,c),t(a,b,d),d). s is known as a switching term, and 

it is not difficult to see that in B 

s(a,b,c,d) = 
	c ifa=b 

d ifab. 
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Now obviously we have < s(a, a, c, d), s(a, b, c, d) >E O(a,b),  so we need only show 

that s(a, a, c, d) = c and s(a, b, c, d) = d. The first is obvious, given the definition 

of .s and the fact that t is a discriminator term for B: for any i, s(a, a, c, d)(i) = 

s(a(i),a(i),c(i),d(i)) = c(i). For the second, at any i either a(i) 54 b(i) or a(i) = 

6(i). If a(i) 54 b(i) then by definition of s and the fact that t is a discriminator 

term for Bi  we have s(a,b,c,d)(i) = s(a(i),b(i),c(i),d(i)) = d(i), as required. 

Otherwise a(i) = b(i) and so by hypothesis c(i) 	= d(i); so s(a,b,c,d)(i) = 
s(a(i), b(i), c(i), d(i)) = c(i) = d(i). This shows that < c,d >E O(a,b),  completing 

the proof. 

This leads to another general characterisation of principal congruences in 

discriminator varieties. 

Theorem 79 Let A, a, b, c, d be as above. Then < c, d >E O(a,b)  if t(a, b, c) = 

t(a,b, d). 

Proof. The 'if' part of the proof is obvious: assuming that t(a,b,c) = t(a,b,d), 

if a = b then c = d since t is a discriminator term, and so < c,d >E 0(,,b)-

Otherwise suppose that t(a, b, c) = t(a, b, d), a 5 4 b and aOb. Then 

c = t(a,a,c)Ot(a,b,c) = t(a,b,d)Ot(a,a,d) = d. 

For the other direction suppose for contradiction that < c, d >E O(a,b)  and 

t(a, b, c) 	t(a, b, d) because, say, t(a, b, c) (i) 	t(a, b, d) (i). So t is a discriminator 

term for Bi  and t(a(i),b(i),c(i)) j4 t(a(i), b(i), d(i)). Now, either a(i) 	b(i) or 

a(i) = b(i). But if a(i) 	b(i) then t(a(i),b(i),c(i)) = t(a(i),b(i),d(i)) = a(i), 

contradicting the hypothesis; and if a(i) = b(i) we have t(a(i),b(i),c(i)) = c(i) 

and t(a(i), b(i), d(i)) = d(i), and so c(i) 54 d(i). But by hypothesis < c,d >E O(ab) 

and so Vi(a(i) = b(i) =. c(i) = d(i)); but this implies that a(i) 	b(i), again 

contradicting the hypothesis. 

By considering the generating algebras and previous proofs it is immediate 

that in V({S2 ,.. . S10 }) a f b and -i(a f b) are complements, and the equation 
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/(a j b) = at b is valid. This means that for A E V({S2,.. . S10}) and at b e A, 

[afb) is a strongly --consistent and open filter if A is complemented. Even if A is 

not complemented, such filters can be seen to characterise principal congruences. 

Theorem 80 Let A E V({S2.... S o }) and a,b 6 A. Then 0(,b) = 0(atb,1)• 

Proof. 

< a b, 1 >6 O(a,b).  We show that t(a, b, a b) = t(a, b, 1). 

t(a,b,atb) = (afbAafb)v(-i(atb)Aa) = (atbAl)v(-'(afb)Aa) = t(a,b,1). 

< a, b >6 °(atbl)•  Giving A its subdirect representation by subalgebras 

{B, I i e I} of S1,2 <j < 10, this follows from the fact that if (at b)(i) = 1 

then a(i) = b(i). For suppose that a(i) 0 b(i): then (afb)(i) = a(i) tb(i) = 

05. 	 IR 

This shows that any principal congruence may be characterised by an explicit 

filter of the form [a t b). Since V({S2,. . . S o}) is a discriminator variety it 

is endowed with many strong properties, amongst which are the useful ones 

possessed by classical modal algebras such as the congruence extension property 

and congruence-permutability: 

{< a, b >1 3c aOc and cob} is the join of the congruences 0 and çb. 

A variety in which every algebra is congruence-distributive and congruence-

permutable is known as an arithmetical variety, and this is one of the conse-

quences the subdirectly irreducible algebras possessing a common discriminator 

term. 
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62 Post Complete Logics 

Now we further illustrate the fact that logics based on 4 and its subalgebras 

do not play the same important role played by the logics based on 2 in classical 

modal logic by showing that there are varieties which do not contain any of these 

algebras. This follows from the fact that there are at least No  Post complete 

logics, which are now explicitly described. For n > 2, define a frame F,, as 

follows. 

Definition 81 F,., is the frame with universe {1,1,2,. ..n} with 1 	1, and 

with * defined by (1*)* = 1 and for m 	{1, 1*1, m* = m. The relations are 

given by letting R be the set {< m,m+ 1 >,< m+ 1,m >1 1 < m < n}. 	0 

Note that nothing is R-accessible from V. It is now shown that V(F) is an 

atom in the lattice of varieties, and so that L(F,fl is a Post complete logic. 

Theorem 82 F has no proper subalgebras. 

Proof. This is shown in the by now familiar fashion: we construct a 0-ary 

term rn for each {m} E F. Let 1 = jtO and V = vO. It is easily seen that these 

satisfy the requirements. Also, let 2 = -'v-wO: then 2 = {2} can be checked to 

be true, because 2 is the only element of the frame from which 1 is R-accessible 

and -'vO = —{1}. Form > 2 we have m+ 1 = -w-irrA -'m —1: in the typical 

case -iv-im is {m - 1,m + 1} and -'m - 1 is —{m - 11; and for the atypical 

case of m = 2 the equation can also be seen to hold, for then -'. = —111 
and -'zi--2 = {1, 3}. This shows that F is 0-generated, and so has no proper 

subalgebras. 	 FE- 

Theorem 83 F is simple. 
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Proof. Suppose otherwise, say because A < 0 < V. Then surely for some 

co-atom x of F we have xOl. If z = -'p0 then j000 and —AO = -wO so -'vOOl. 

So it may be assumed that x is of the form Ft\{m},  for some m < n and 

m 	1*.  And if xOl, then we have t"x01. But for all j :5 n there is an R-path 

in fewer that n steps from j to m; and 1 has an n-step path with an initial 

R'-step followed by n - 1 R-steps. So Lx = 0 and 001 so 0 = V. This shows 

that F is simple. 

Corollary 84 Apart from the one-element algebra, V(F)s1  = {F}. 	13 

And so 

Corollary 85 V(F,) is an atom in the lattice of modal varieties. 	0 

If an axiomatic expression of the differences between between the varieties V(F,fl 

for n < w is wanted, first introduce a falsity constant I =tI.  Dpi A - Q pi to 

the language and let rn equally denote the sentence whose translation is this 

algebraic term. Then by considering the proof that F is simple it is not too 

difficult to see that F = rn if n < m and F = -'rn V -lu-Ira + 1 if n> m. 

So F 	-irn V -,v-,m + 1 if m n providing, for each of F 	F, a theorem 

valid there but not in the other. Familiarity with classical modal logic might 

initially have led one to believe that the frames must collapse onto some other 

frames such as the one point reflexive frame, but the fact that 1 1*  and that 

nothing is R-accessible from 1*  prevents this happening. It only seems odd 

because if a classical frame contains more than one element and every element in 

the frame generates the whole frame, then it has the one point reflexive frame as 

a p-morphic image. This need not be the case for frames for four-valued modal 

logic. Such familiarity should not, however, have tempted one to think that after 

introducing this constant for falsity we can obtain the essentially classical result 

that for any variable free formula a, either a or -'a is a theorem of any Post 

complete logic: negation plays a very different role here. 
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A trivial consequence of the above is the following theorem. 

Theorem 86 For any natural number n there are No  logics with precisely n Post 

complete extensions. 

Proof. There are No  ways of choosing n of the varieties {V (F,+,) I n <w}. For 

each distinct choice take the join of those varieties; then the fact that (VVV')51  = 

V51  U V 1  shows that the joins of distinct choices are themselves distinct. 	0 

We now show that any finite join of elements of {V(F,) I n < w} is a 

discriminator variety and so, given the concomitant properties, we describe an 

extremely well behaved sublattice of the lattice of modal logics. The method 

of construction of the discriminator term is of necessity different to that used 

in the previous section. This time the key is to show that complementation 

is expressible as a term, and to exploit the fact that the complement of a set 

of frame elements differs from its negation, if at all, only with regard to their 

containing 1 or V. Define 

d" (x) = tAm-'x A -'/um-'x; d(x) = vAm-'x A -wAm--'x. 

Then for XE F with n < m, as was seen in the proof that F is simple, 

if x 1 

otherwise. 

So we have 

Theorem 87 Let x E F and n < m. Then 

J
O iffx=0 

d' (x) = 
ILO 	

M
otherwise. 

J
o iffx=0 

d-  (x) = '7' 	

1/0 otherwise. 
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Proof. This follows from the above, together with the facts that x 0 1ff 

-ix 36 1 and that in F,+, we have AO < -'j0 and z'O < -wO. 

Corollary 88 With x, m and n as above, 

lo iffzi0x 
d(xAzi0) = II j.0 otherwise. 

0 iffi0x 
dm(XA/20) = S 

( vO otherwise. 

01 

This allows us to find an expression for the complement of x. Consideration of 

the frame F show that intuitively this may be given as removing {1, 11 from 

-ix; then adding to this 1 if 1 	x; and 1*  if V V x. And because 1 iZ x 1ff 

zi0 < -ix and 1*  V x if z0 < -ix, we have 

Theorem 89 For x E F and n < rn, the complement of x is 

-(x V vx V x) V d(-ix A uO) V d(-i x A ILO). 

And extending to a number of algebras: 

Theorem 90 For any finite  set {F,.. . F} there is a common term expressing 

complement. 

Proof. Use dO and d, where m= V{ k1  11 <i < n}. 	 EM 

This means that the complementation operation - is definable in the variety 

V({F.... F}); and consequently so is +. Now + is associative - (x + y) + z = 

x + (y + z); and also we have x + x = 1 and x + 1 = x. So the ternary term 

m(x)  y, z) :--def.  x + y + z is what is known as a Mal'cev term for the variety 
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V({F,. . . F}). This simply means that the variety satisfies the equations 

m(x, x, y) = y and m(x, y, y) = x; but it is known from universal algebra that a 

variety has a Mal'cev term 1ff it is congruence-permutable. And since all varieties 

of modal algebras are congruence-distributive, it follows that 

Theorem 91 Any finite join of the varieties {V(F) I n < wJ is arithmetical. 

U 

Theoretically, it is known that if A is finite and simple and V(A) is arithmetical, 

then V(A) is a discriminator variety; so this may be applied to V(F). But the 

explicit construction of a discriminator term can be used to show that finite joins 

of such varieties are themselves discriminator varieties. As with the construction 

of a complementation term, we use m = V{k1 1 1 < j < n} for the variety 

V({F,...F}). As we have seen, for x E F /Y"x = 0 if x 54 1, Lx = 1 

otherwise; and also x + y = 1 if x = y. This shows that 

Theorem 92 

t(x, y, z) def.  (Am(x + y) A z) V (-iim(x + y) A x) 

is a common discriminator term for {F,. . . , F}. 	 0 

So finite joins of {F I n <w} are also discriminator varieties. It is readily seen 

that in any algebra A in this variety < c, d >E O(a,b),  if Am(a + b) :5 c + d. 

But we have already defined a term for complement, so A is complemented and 

this use of the discriminator term to characterise principal congruences lacks 

the import of that in the previous section; it could have been deduced rather 

straightforwardly using the characterisation of congruences in complemented al-

gebras. This does however differ from the general case because here we have a 

term for complement, and so an explicit description of the filter. 
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6.3 Splitting The Lattice 

Continuing to concentrate on describing the bottom part of the lattice of modal 

logics, in this section we describe and axiomatise an infinite chain of logics which 

are said to split the lattice, and use the examples to illustrate more general 

properties of logics. A pair < a, b > of elements of a lattice L are known as a 

splitting pair if a b, and for any c E L either a < c or c < b. Any splitting pair 

is uniquely determined by either of its components, so we may call an algebra A 

a splitting algebra if there is a variety V' such that < V (A), V' > is a splitting 

pair for the lattice of varieties of modal logics. For example, at the beginning 

of the chapter we in effect saw that 2 is a splitting algebra for the subvariety 

of classical modal logics: if 2 	V(B), then 2 E V(B). But there is a least 

classical logic with with L() as its only Post complete extension, which is defined 

algebraically by the equations -vO = 1 and x V -lx = 1. Any classical variety 

not satisfying -tM = 1 contains 2, from which the result readily follows. V() 

will also be seen to split the lattice of varieties of modal algebras in general, but 

the second component of the splitting pair is different to that in the classical 

case. 

For n > 1 define a frame Gn  in the following way. 

Definition 93 G is the frame with universe {i, ... n,V.... (n - 1)*}:  so for 

m < ti we have (m*)* = m and m 	m. However, we stipulate that n = n. 

The relations are defined by having mRm + 1, for m < n. 	 El 

So for any frame element x other than ti, x either has a unique R-successor or 

has a unique R'-successor, but not both. In the usual fashion, it can be shown 

that 

Theorem 94 G is 0-generated. 
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Proof. AO = {1,...n— 1,n} and uO = {1,...(n— 1)*,n},  so A0 = {n}. It 

is straightforward to show that 

mOA..,m_loAUO = {((n+1)—m)} and Lm0A,1m_10A,L0 = {( n+1)—m}, 

completing the proof. 	 0 

And furthermore 

Theorem 95 G is subdireetly irreducible. 

Proof. Take any 0 54 A on G: then for some atom {m} with m < n we surely 

have {m}00 - because {m*}00  if --'{m} = {m}00, this assumption is justified. 

So —{m}01 and um_l(_{m})01.  But it is easy to see that vm_l(_{m}) = —{i}, 

and so 0({i},o) < 0. 	 70 

This proof in fact shows that if {m}00 in C, then for any j m we also 

have {j}00. Also it can be shown that for n> 1, G/0({i },o) 

Corollary 96 Con(G) is an n+ 1 element chain: the quotients of congruences 

other than t and V are isomorphic to the algebras {G 	1 < m < n}. Thus 

because G has no proper subalgebras, V(G)sj  = {G 	1 	m< n} and 

L(Gt) = L(2) is the only Post complete extension of L(G). Indeed, the only 

consistent extensions of L(G) are the logics {L(G) m n}. 	 0 

Now because for varieties V and {W1  I i E I} we have 

(Vv AWi)s1  V51U fl (W1)51  
iEI 	 iEI 

the distributivity of this set representation can be used to show that in general 

VVAWI= A(Vv). 
iEI 	IEI 

The dual theorem with meet and join interchanged need not hold, however, and 

V< V(G) provides a good counterexample: its logic has more than one Post 
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complete extension. To see this first consider fl< G, which clearly belongs to 

this variety. Let AO in fl< G be the element which is constantly LO at each 

n, andO( Q,o) be the least congruence such that LOOO; the reader may check that 

O(o,o) 54 V. The result follows from 

Theorem 97 

S2  E S([J G/O(o,o)). 
n<w 

Proof. First observe that in each G the following equations can be verified 

to hold: 

uO V AO = 1. This is because'vO = {1,. .. (n - 1)*, n} and jtO = 11,. . . n}. 

v20 = -iv20 V LO This is clear if v20 = 1, for then also A20 = 1. 

Otherwise v20 = {i,. . . (n - 1),n} U In - 11, -iv20 = (1*.... (n - 2)} 

and &O = {(n - i),n,n - 1}, from which the equation can be seen to 

hold. 

jjiO = vzO = jzvO = 1. These equations are immediate. 

So they are also valid in rIn<w  G+ /0(A0,0). But here we also have AOAvO = 0, and 

so, given 1 above, AO and vO are Boolean complements, from which it follows 

that -ivO = ziO and -iji0 = j0. Note that because the algebra is non-trivial, 

this means that these two elements must be distinct from 0 and 1 and so also 

distinct from one another. Now consider v20 = -iv20 V &O Because LO = 0 

we also have i 20 = 0, so v20 = i 20. But in any algebra we have vO < v20 

and -'v20 < -ivo;  so here uO <v20 < -wO. But -wO = vO so v20 = A. This 

shows that the four elements {0, vO, 0, 1} are closed under all the operations: 

but inspection shows that this least subalgebra is isomorphic to S2, completing 

the proof. 	 IN 

This shows that 52 E V< V(G), and so V(S2) :5V<  V(G); while for 

each n, V(S2) A V(G) = j', and so V < (V(S2) A V(G)) = 
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We now assume familiarity with the notion of a free algebra, and for con-

venience introduce a constant J for falsity into the language - say, I 

Op, A - Q p,. Its algebraic interpretation is obviously the bottom element 0. 

There can be constructed what is known as a finite presentation of GI in 0 vari-

ables in the variety of modal algebras. Firstly, because G is finite and V(G) 

is congruence-distributive, it is known that there is guaranteed to be amongst 

the valid variable-free equations of G a finite subset of these from which all 

the others may be derived. And because each element of the algebra is comple-

mented and there is a constant for each element, we may presume that each such 

equation x = y is rewritten as (x + y) A (-ix + -y) = 1. Since there are only a 

finite number of such terms (x + y) A (-1x + -iy), their conjunction is also a term: 

let &+ be the sentence of the modal language which corresponds in the natural 

way to this term. Now, ö+ defines a variety in the obvious way - the algebras 

in which it is valid - and G is isomorphic to the free algebra in 0 variables in 

this variety: there are no variable-free validities of G which are not derivable 

from 6+, using the rules of the basic logic K•  So G can in effect be regarded 

as the Lindenbaum algebra in the variable-free language for the logic given by 

extending K  by the axiom 5+. Or algebraically, if ö+ denotes the 0-ary term 

that is the translation of 5G'  and if FFK  (0) is the free four-valued modal algebra 

on 0 generators, then 

Because we are presenting G in a complete variety - the variety of all modal 

algebras - there is an obvious equivalence between what is said of 5+ and what 

is said of 

Recalling the definition of Vx, it is not too difficult to see that it could 

equally well be defined as V°x = x, and V'x = V''x A ix. We shall be free 

in using the notation A and V to abbreviate both algebraic operators and the 

corresponding language connectives. Now in any algebra we have 

Theorem 98 --'V"öc-f. 
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Proof. First, --,S+ = 	Because -I5+ is a 0-ary or variable-free term it 

has a complement; and using the facts that --(aAb) = --iaA--ib, --i(a+b) = 

-'a + -'b and that -'a + -'b was stipulated to be a conjunct of 5G if a + b was 

one, this result then follows. In general, for n > 1 we have ---'x = 'x: this 

is because --'z'z = li z and --'tz = vz, and vz is a conjunct of L"x just in case 

Az is. The result then follows from the fact that 

= 5G A 	A ... A Löc+. 

FEW 

Corollary 99 1 K 	V 

Proof. This is the corresponding sequent, and the logic is complete. 	0 

The same property obviously holds of LY0 - that is, --i'2O = i0 - and so 

of the meet _IG+ —def. LOAVfiG+. Also define 'y+ similarly as the conjunction 

An  A 

This shows half of 

Theorem 100 In any 0-generated modal algebra A, ['y+) is a strongly 

consistent and open filter. 

Proof. Clearly all complements exist in A. ['y+) is strongly -'-consistent 

because if -y+ < a then '7+ = --'- 	< --'a. To show that [-yA is also 

open it suffices to show that 'YG+ _< YG• Now, 

= 	A 	A ... A 	A 

and because 0 < 5G implies that L'J'0 < /2ö+, it follows that 
U 	 U 

L?y+ > A''0 A LSG+ A... A 

and so 

'1G ~ n+10 A öG+ A A5G+ A ... A 
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And finally, because LJ1+lO > LO we have 

Ly+ ~ L0 A 	A LöG+ A ... A A'ö + = n 	 n 	n 	 n 

Now let + denote the equation corresponding to 1+ < n_1; again let 

be the corresponding sequent 'y+ F- An-'-L. If we wished, this could have 

been rewritten as an equivalent axiom. c± is not valid in G because G = y0+ 

but G 	.L. "' Indeed, by considering again the proof that G is subdirectly 

irreducible it can be seen that the smallest non-identity congruence is in fact 

Now recall that V(EG+) is the variety of algebras in which EG± is 

valid. We now show 

Theorem 101 <V(G), V(G+) > splits the lattice of varieties. 	 - 

Proof. Let A be any algebra such that A 	±, and let A0 be its least 

subalgebra: given that + contains no variables we also have A0 e+, and so 

An-10 in A0. Because A0 is 0-generated it is complemented; and because 

fryc+) is a strongly -i-consistent and open filter of A0 this defines a congruence 

ip on A0. So for a E A0 we have a1 1ff 'YG <a: this means that A0/ 	I+ 

but A0/& 	Now given the definition of 'Y we have A0/& = ö+; 

and AO /O is 0-generated and G is the free 0-generated algebra in the variety 

determined by 5; so we have a homomorphism G L A0/0. Now if f were 

not injective, then because the least non-identity congruence on G is O(n-10,1) 

we would have f(A' 1o) = 1. But this implies that AO/O 1= t"'I, which is 

not the case; so f is injective. This shows that G E SHS(A) ç HSS(A) = 

HS(A). In fact, G is a homomorphic image of the least subalgebra of A. 

Now suppose for a family of varieties {V1 I i E I} we have V(G) VEI V. 

Because G is subdirectly irreducible there are algebras {B1 I j E J} c u{v1 I 
i e I} such that G E HSPu({B1 I j E J}): say B E Pu({B1 I i E J}) 

and G e HS(B). Then because subalgebras and surjective homomorphisms 
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preserve the validity of formulae and because G 	we may conclude that 

B 	and so for some j E J, with, say, k E I and B, E Vk, Bj K EG+. But 

then G E HS (B1), and so V(G) :5V(B1) <Vk. This shows that 

V(G) :~ V{V V is a variety and V(G) V}. 

And if a variety V' is such that V(G) V', then clearly V' < V{V I V(G) 

V}; so < V(G),v{V V(G) V} > is a splitting pair. Now if A E V{V I 

V(G) V} then V(A) :5 V{V I V(G) V}: suppose for contradiction that 

also A 	Gn+. Then G E HS(A) so V(G) :5 V(A); but this implies that 

V(G) :5V{V I V(G) 	V}, which is false. So A 1= Ea+ if A E V{V I 

V(G) V}, and <V(G),VfrG+) > is a splitting pair. 	 0 

So the varieties {V(G) 1 1 < n < w} form an infinite chain of splitting 

elements for the lattice of modal logics. Note that there is no constraint that if 

A 1= + then A is classical, so the second component of the splitting determined 

by Ct is different to that for the classical sublattice, even though Ct is itself 

classical: it is simply determined by the equation AO = 0. 

These examples will now be used to illustrate another feature that varieties 

may possess, namely canonicity: a variety V is said to be canonical if it is 

generated by complemented algebras, and if A E V then (A+) E V, where A 

is the ordered frame. It may in fact be shown that this is equivalent to requiring 

the second condition to hold only of complemented frames in V and so avoiding 

any reference to ordered frames. This follows fairly quickly from the fact that 

if A E HS(B) then (A) 	HS((B+)). The converse of second part of the 

definition has already been seen to hold in general, but this direction is not in 

general true. It will be shown by axiomatising the logics determined by these 

varieties, and showing that this axiomatisation corresponds to certain first-order 

conditions on the relations of a frame, conditions which pick out precisely the 

frames for the logic. The result then follows in a standard way. 

For L(G) = L(C) consider the axioms 
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D±VQ±; 

-'LLVaV --'a; 

-'0(aVf3)V0aVfl/3; 

An 1.  

The proposal is that these four sentences axiomatise the logic L(G). As with 

n = 1, there may of course be some redundancy. So letting L be the logic 

determined by the axioms for an arbitrary n, we want to show that L = L(G). 

Note that for all frames C, valuations v and worlds x E C we have C, v, x 

I, and further consider the following frame conditions, where variables range 

over worlds. 

Vx -'(dy  xRy A 3z xR'z); 

Vx (-iay xRy A -iz xR'z = x = 

VxVyVz (xRy A xRz = y = z); 

91 

VY1 . . . Vy, ((yiRy2  . . . 

V 

V y1 R'y2  . . . y_ 1R'y) = -' az yRz A -1z' yR'z'). 

The antecedent of 4 is intended to be the disjunction of the 2' possible n - 1-

step paths in the two relations R and R'. Let K be the class of frames C for 

which all four of these conditions are satisfied for the same ii. as was chosen for 

the proposed axiomatisation. 

Theorem 102 For any frame C, C E K if C = L. 
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Proof. We show that a frame satisfies one of these numbered conditions just 

in case it satisfies the frame condition of the same number, from which the result 

follows. For the first axiom observe first that for any frame C and world x E C, 

C,x = DI if -y xRy and C,x = 01 if -az xR'z - there is no need to take 

account of valuations. So C,x = DI V QI 1ff -'dy xRy or -'az xR'z. This 

shows that C = DI V 01 1ff Vx -i(3y xRy A 3z xR'z). 

For axiom 2, it can be seen along lines similar to the above that C -i1 if 

z E C such that -'dy  xRy and -'az xR'z. So C = -'J. V aV -'a just in case for 

all valuations v and worlds x, if -iy xRy and -az xR'z then C, v, x a V -a. 

But the consequent is true of x just in case x is classical - that is, x = 	- 

otherwise a valuation v with v(a) = {x} would provide a counterexample. And 

this is just what the frame condition states. 

C, v, x 	- 0 (a V /3) if C, v, x 	0 (a V /3), so axiom 3 is valid in F 

just in case for any such valuation v and world x C,v,x )= 0 (a V 3) implies 

that C, v, x = Da or C, v, x = 0/3. If this is true of C then there cannot be 

X, y,  z E C with xRy, xRz and y 54 z: for then the valuation v with v(a) = {y} 

and v(/3) = {z} would provide a counterexample at x. So the corresponding 

frame condition then holds. For the other direction suppose, assuming some 

valuation v, that x = D(a V /3) but x 	Da and x 	0/3, with these failing 

because xRy, xRz and y a and z /3. But since x = 0 (a V /3) we have - 
y 	a V /3 and so y = /3; but z /3 50 y z, contradicting the frame condition. 

Let ( range over n-element sequents of connectives from the set { 0, 0): 

then axiom 4 is valid on a frame C just in case C J= 11"I for all Il". Now 

associate with 11 an n-tuple 9" of relations by substituting 0 for R and 0 for 

R'. CK fln-L if for some 1' and some x E C, x, !V'I. Letting 	be the 

corresponding n-tuple < S1, . . . S, > with each Si E {R, R'), this can easily be 

seen to be so just in case there are elements x = Yi.... y1,, z E C and a path 

X = y1S1 y2 ... y,,Sz. But the frame condition 4 fails just in case there is some 
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such path with final step R or R', and clearly S is one of these relations; so the 

axiom does define the frame condition. 	 0 

Now we show that 

Theorem 103 L(C) = L. 

Proof. First we show that L c L(C). From the above result this can be 

seen to follow if C, E K. It has already been shown that the first axiom holds 

in C and therefore in G; so Gn  satisfies the first frame condition. For the 

second condition, the only world x in Gn  of which the antecedent is true is n, 

and as required n is classical. The third condition is obviously fulfilled, because 

for m < n we only have mRm + 1. And the fourth condition may be confirmed 

by observing that the longest paths in Gn  are the two unique ones between 1 and 

n, and between V and n, and these are the only ii - 1-step paths. In both cases 

substituting the element n for the variable yn  in the consequent of this fourth 

sentence shows it to be satisfied; so the frame Gn  satisfies the condition. 

For the other direction let C E K be arbitrary and consider the subdirect 

representation by means of point-generated subframes C+ HXEC C. Then if 

it can be shown that for an arbitrary x E C, C E V(G), the result *ill follow. 

This is because then L(C) 9 L(C) for each x e X, and so L(G) c L(C) and 

L(G) c flCEK L(C) = L. 

So it need only be shown that if C E K is generated by a single frame 

element x E C, then C E V(G). Now the fact that such a frame C satisfies 

the fourth frame condition means that for some m < n and Si  E {R, R'} there 

is an m - 1-step path x = yS ... S-ly = z originating in x, and that there 

are no such paths of greater length. But we also know that there are no paths 

in the frame longer than this one: if there were, it could not originate in some 

Yi. If it originated in y  with first step yi* Rui or yR'u, then we have yR'u1  

or y•Ru1 , so this too cannot be the case. And if it originates in u, with, say, 
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yR'u,, and first step uRu1, then we have yRuR'u5. Continuing this process, 

we cover all elements of the point-generated frame C. Now it is readily seen 

that frame condition 3 also holds if R is replaced by R', so together they show 

that this path does not bifurcate; thus it is the only m - 1-step path originating 

in x. Because C is point-generated condition 3 also then implies that for each 

y E C there is some i < m with either y = yi or = y,. Now 2 tells us that the 

endpoint z is classical, but it is also the unique classical world in C. For if there 

were another one z' = z' then we would have z' = y1 , for some i < m - but this 

contradicts condition 1, which implies that classical worlds have no R-successors 

and no R'-successors. So for i 0 m we have y 	and apart from the classical 

world ym  these are the only worlds in C. So define f to be the p-morphism from 

C to Cm induced by 

f(ym) = m; f(y) = 
 I i* 

if y1Ry 

if yR'y + . 

Both this and its inverse are readily seen to be p-morphisms, so G is isomorphic 

to C by the mapping ft But rn < n, so C E V(G) and C E V(G). 0 

Because the logic L of G is also the logic of a class of frames defined by a 

set of first-order sentences, it follows that A e V(C) if (A+) E V(G). Only 

the left to right implication need be shown. From model theory it is known that 

if C is a frame for this logic, then so is any elementary extension of C; and 

(C+)+  can be shown to be a p-morphic.image of a suitably saturated elementary 

extension of C: we give a quick outline of the proof. 

Theorem 104 For any frame C, there is an elementary extension Ct of C with 

a surjective p-morphism C --+ (C)+. 

Proof. Let C' be the first-order structure just as C except that in addition it 

has one-place relational constants Y for each subset Y of the universe X of C. 

Then by model theory it is known that there exists an w-saturated elementary 
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extension of C1  of C', which will be sufficient for our purposes. To show what 

this means, let L be the first-order language with constants for the relations of 

the frame as well as {Y I Y c X}; furthermore for each xi E X let z, be an 

individual constant denoting x, and for Z c X let Lz  be the augmentation of 

L by the constants {z, I xi E Z}. Then C1  has the property that' if for any 

finite Z c X and any set F of LZformulae,  if any finite F0  ç r is satisfiable in 

(0, {Li I x1  E Z}) - in other words if F is finitely satisfiable there - then so is 1' 

itself. 

Given this elementary extension, define a by a(x) = {Y c X I Y(x)), and 

note that the following-first-order sentences of L are true in C' and therefore 

also in C1: 

VxX(x). 

-i3xØ(x). 

Vx(Y fl Z(x) 	Y(x) A Z(x)). 

Vx(Y U Z(x) 	Y(x) V Z(x)). 

-'x(Y(x) A—Y(x)). 

Vx(Y(x) V—Y(x)). 

Vx(Y(x) 4='Y(x)). 

1 - 4 show that a(x) is a prime filter of C and so that a is well-defined; and 

5 - 7 show that in C1, x E L if x _y*,  so that a(x) = a(x), given the 

definition of * in (C)+. 

To show that a is surjective, let C be a prime filter of C and let F be the 

set of sentences 

{(x) I Y e C} U {-(x) I Y c X andY V C}. 
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The - here of course belongs to the first-order language L. Then it can be seen 

that r is finitely satisfiable in C': take any finite subsets I c C and J C —G of 

C+ and consider 

{Y(x) I Y e I} U {-'Y(z) I Y e J}. 

Because C is prime, fl I  U J, and so there is some y Eni suchthatyv U J. 

So y satisfies the above set of sentences for C'. This shows that I' is finitely 

satisfiable in C' and so also in C; but C is w-saturated, so r is satisfiable in 

C, say by x. Then a(x) = C. 

To show that if xRy then a(x)Ra(y), observe that if Y ç X and VR(Y) E 

a(x), then we have x e VR(Y). But it is easy to show that in C', and so in C1, 

we have 

Vz(VR(Y)(x) A xRz == Y(z)) 

true. But because vR(Y)(x) and xRy, it then follows that Y(y), showing that 

Y E c(y) and a(x)Ra(y). 

For the final condition on a p-morphism, suppose that a(z)RG and let r = 

{y} U {Y(y) I Y E G}. If there were some y e CI which satisfied F, then we 

would have C C a(y); but clearly prime filters are discretely ordered in C so 

we would have C = a(y). So to complete the proof it need only be demonstrated 

thai 1' is satisfied in Cl. So take arbitrary Y E C. Then —Y V C and given that 

a(x)RG we have x V VR(—Y)  and so CI satisfies the open sentence -VR(-Y)(Z). 

But it is easy to see that in C' and so in C1  the sentence 

Vz(—VR(—Y)(z) ==>- 3z'(zRz'AY(z'))) 

is true, and so {y,Y(y)} is satisfiable in C1  for arbitrary Y E C. To show 

that F is satisfiable there it need only be shown to be finitely satisfiable, so for 

arbitrary {Y1 ,. . . Y,} C C let F0  be the set {y,Yi(y),. . .Y,(y)}. But if we 

let Y denote their (finite) intersection, we have Y E C since C is a filter; and 

using the first part of the proof we know that {y, (y) } is satisfied by some 
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element y E C. This same element shows that T0 is itself satisfied, completing 

the proof. 	 0 

Now suppose that A E V(G). Then A E HS(C) for some C E K which 

is a disjoint union of G, which in turn implies that (A+) e 

But (C) E K so ((C)+) e V(G), implying that (A~) E V(G). This 

completes the proof of 

Theorem 105 A E V(G) 1ff (A+) e V(G). 	 0 

Because V(C) is obviously generated by complemented algebras, we have 

thus shown this variety to be canonical. A standard model-theoretic argument 

shows that the splitting variety V (EG+) is also canonical, for the frames not in 

K also form a basic elementary class. Thus we have an alternative description 

of the splitting pairs by means of their corresponding frames. 



Chapter 7 

Complemented Algebras 

7.1 The Relation Between Algebras And Com- 

plemented Algebras 

In this chapter modal algebras in general are compared with the complemented 

modal algebras which have been seen to have stronger algebraic properties. In 

particular, it is shown that any modal algebra has a free complemented com-

pletion into which it can be embedded, and some properties and consequences 

of this result are explored, especially with regard to areas in which comple-

mentation has proved useful. There is a parallel in the theory of distributive 

lattices, where any distributive lattice L can be embedded into a complemented 

distributive lattice L' which it generates, if complementation is regarded as an 

operation. This L' is said to to be free with respect to this property; moreover, 

V is uniquely determined, and any congruence on L has a unique extension to a 

congruence on L'. L' is said to be R-generated by L, because L generates it as a 

ring. Here we explore the extent to which these results extend with the addition 

of -, and the modal operators. 

Recall that .M A is the category of modal algebras and homomorphisms, and 

further let .MA be the category the objects of which are modal algebras B with 

a further unary operation - such that for b E B, b V —b = 1 and b A —b = 0; 

the morphisms are again algebraic homomorphisms. With any B E .MA we can 

187 
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naturally associate a modal algebra 9(B) E MA which has the same universe 

with the operations A, V, -i, ii, jz, 0 and 1 acting on it in exactly the same way, but 

which 'forgets' that - is an operation. It should be clear that the modal algebras 

isomorphic to some such 9(B), for B E MA, are precisely the complemented 

modal algebras: clearly 9(B) is complemented, and if A E MA is complemented 

then it admits a complementation operation, which if added then forgotten leaves 

A unchanged. And if for B1, B2  C )4A and B1  - B2  a homomorphism, 

9(B1) 	9(B2) is defined to be the same function from the universe B1  to the 

universe B2, then it is immediate that 9f is a homomorphism and 9 satisfies 

the conditions for being a functor from MA to MA: that 91B = 19(B) and 

9(g o 1) = 9g o 91. The main aim here is to show that something similar is 

possible in the other direction: to associate with every A C MA some 1(A) e 

MA which is natural in a sense which will shortly be made technically precise, 

and which has the following property: homomorphisms from A to 9(B) are 

in one-to-one correspondence with those from 97(A) to 9(B), and there is a 

homomorphism A !4  91(A) which in a sense pairs them off: for any A - 9(B) 

there is a unique homomorphism 91(A) -- 9(B) with I = 1' ° 'lÀ; also, 1' 
determines f in a similar fashion. Thus if A is complemented, we should have 

91(A) A and 7A  the identity isomorphism. In the general case r will turn 

out to be injective, and so the above property will provide a limited form of the 

congruence extension property. 

In the following, for reasons of clarity technical definitions will be kept to the 

minimum required to demonstrate what we want, but the liberty will occasion-

ally be taken of referring to theorems and concepts which have not been fully 

explained. MacLane' is a useful reference if these are wanted: only the central 

notions will be repeated here. Thus an adjunction between categories is defined 

in the following way. 

1MacLane 1971. 
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Definition 106 If I and A are categories, then an adjunction from I to A is 

a triple 

<i,.9,'>: I - A 

where Y: X — A and .9 : A —p I are functor8 and go is a function assigning to 

each pair z E I and a E A a bijection 40.,a  from morphism8 {f I 1(x) -f+  a) in 

A to morphisms {g I x L ,9(a)} in I, such that go has the following property: 

take any x' -4 x in I and a -+ a' in A, thus giving the diagrams 

1(x) —
Tg 

 1(x) I 	h 

g 
X' --x-cof-.9(a)---+,9(a). 

Then we have 

co(f o Ig) = gof o g and go(h o 1) = 9h o gof. 

This holds just in case the inverse go of go has the same property: that is, for 
k any such g, h and for x --+ .9(a) 

go'(k o g) = go 1k o Ig and go'(9h o k) = h o go'k 

FEW 

I is called a left adjoint for 9, and  .9 is a a right adjoint for I. These are 

unique if they exist. The aim now is to prove the existence of a left adjoint 

to the forgetful functor .9 : MA —+ )viA by appealing to a theorem called the 

Freyd Adjoint Functor Theorem, the premises of which will now be shown to be 

satisfied in our case. 

To show the first of these conditions, recall that products in algebra are 

universal in the sense that if for algebras A' and JAi I i e I) there are homo-

morphisms A' -!+ A, then there is a unique homomorphism A' - fuEl Ai  such 

that for each i E I fi  = 7ri o f, where 7ri  is the projection mapping from fuEl  A 

to A: f is defined by f (a) (i) = f (a). This shows that the categories .M A and 
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.MA have (small) products in a category-theoretical sense, this7 being an in-

stance of the more general phenomenon of a limit; and a category possessing all 

(reasonable) limits is called small-complete. Another limit is that of an equaliser, 

which in this case is as follows: given a pair of homomorphisms f, g : Al  - A2, 

it consists of an algebra A' and a homomorphism A' -4 A1  with the property 

that foe = goe, and such that if  - A1  and f o h = go  then there is a unique 

homomorphism B - A' with e o h' = h. These limits also always exist in both 

.MA and MA-, for A' can be defined to be the subalgebra of A1  with universe 

{a E A I f(a) = g(a)}. This set is clearly closed under the operations of A1; and 

if h is as above, then for b E B define h'(b) = h(b). h(b) E B, because if not then 

by definition of B we have f o h(b) 0 g o h(b), contrary to the assumption that 

f o h = g o h. So the image of h is contained in B and h' is a homomorphism. 

To show a category small-complete it suffices to show that it has products and 

equalisers; having identified and shown the existence of these, we have shown 

that )vtA and IvtA are small complete - they have all limits. 

The second thing to show is that 9 preserves these limits, which for our 

purposes we may take to mean that in the case of products, if {Bj I I E I) are 

in .MA then 

9(11B1) 	(B1); 
iEI 	iEI 

and for equalisers, if B -4 B1  is the equaliser of the pair f, g : B1  -+ B2, then §e 

is the equaliser of the pair 9f, 9g. The first case is easy to see, for if {A1 I I E I) 

is a set of complemented modal algebras and a E fluE!  A1, then the complement 

of a is the element a' such that for each i E I a'(i) is the complement of a(i). So 

complement exists in the product and may be defined pointwise, showing that 

the product of the algebras {B1 I I E I} with 9(B1) = A - which are unique 

up to isomorphism - is isomorphic to the result of adding a complementation 

operation to ILEI  A1. As for preservation of equalisers, observe that these were 

defined set-theoretically in the same way in both categories IvtA and .MA: then 

the fact that for B e .MA, B and 9(B) have the same universe proves that 9 
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preserves equalisers. From this it follows that 9 preserves all small limits, or is 

COflt:nUOU8. 

To demonstrate that the third and final condition holds, a further definition 

is required. For any A E .MA the category (A I 9) is defined to have as objects 

pairs < f,B > with B E .MA and A L 9(B) in .MA; and if A - 9(B) 

and A - 9(B') then a morphism < f,B >_h<  f l, B' > in (A .j. 9) is a 

homomorphism B - B' in .MA such that f' = 9h o f. Now pick out certain 

objects of (A . 9) by defining 

Definition 107 A L 9(B) is said to span B if there is no proper - that is, 

non-isomorphic - injective B' - B in .MA such that f factors through 9(B') 

9(B). Abbreviating, f simply spans if it spans B. 	 0 

In our case, the definition implies that if f spans B, then the image of the 

homomorphism f, regarded as a subset of B rather than of 9(B), generates B. 

For if not then the least subalgebra B' of B containing the image of f would be 

a proper subalgebra of B, contradicting the definition. This also shows why for 

any < f,B >E (A I 9), there is some < f',B' >e (A . 9) such that f' spans 

and f factors through 1': the least subalgebra of B containing the image of f 

provides the required B', while for a E A, 1' is defined as f'(a) = 1(a). 

The set' of objects < f, B >e (A I 9) such that f spans satisfy what is 

called the solution set condition for the category (A I 9), which is the last 

of the conditions to be shown given which Freyd's Adjoint Functor Theorem 

shows the existence of a left adjoint to 9. In the abstract, what is happening 

2For reasons not gone into here, this assumption is legitimate. Essentially, choose one 

from each isomorphism class; then the number of such objects is limited by the fact that 

the size of the universe of these algebras B is manageably constrained, being generated 

by the universe of A. 
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here is that, given that .MA has all limits and these are preserved by 9, these 

limits induce limits in (A J. ,9); then the presence of the solution set is used 

to show that (A J 9) has an initial object - a pair < f, B > through which 
I any A — .9(B) may be factored. The left adjoint then maps A to this algebra 

B. More specifically, these limits are induced in the following way. Suppose 

that { < f, B, > I i E I} is such that { f1 I I E I} are the homomorphisms 

from A which span. Then fuEl < f1, B1 > is < f, ME, Bi >, where for a E A 

f(a)(i) = f(a). Because 

.9(11B1) 11,9(B1), 
sEI 	iEI 

this is well-defined. Let B be the least subalgebra of fuEl  B, containing {f (a) I 
a E A}, where these are regarded as being in the universe of flEI  Bi  rather than 

that of ,9(f,EJB,).  Then defining A 2+ .9(B) by g(a) = 1(a), <g,B> can be 

seen to be initial. For suppose <g',B' >E (A I 9) and for < h, B1  >E (A .19) 

B — B' is the embedding in B' of its leastsubalgebra containing {g'(a) I a E A}. 

Then h spans, and it is not too difficult to see that, where i is the obvious injective 

morphism, the composite of the arrows 

<g,B >---< f,flB, >--< h,B1 > k < g',B'>, 
sEt 

is indeed a morphism in (A 9), showing that <g, B> is initial. The functor I 

then takes A to this algebra B E .MA, and we have an adjunction < I,9,>: 

.MA -k  .MA: abbreviate 97(A) to t7A and let 77A  be the homomorphism from 

A to t7A given by the above construction. Then if 1(A) L B, let çof be defined 

as 91 ° 'lÀ. This completes the proof of the existence of a left adjoint. 

We already know some things about 'lA.  By the construction of t7A, if 

complementation is regarded as an operation then A generates t7A. Also, the 

homomorphism 'lÀ  from A to i7A, is injective: consider the injective A L (A+), 

where A+  is as usual the discrete frame. We know that (A+)+ is complemented, 

so for some B e .MA we have 9(B) (A+)t Because <'lA,  1(A) > is initial, 

the injective mapping f must factor through 'lÀ:  for some g: 1(A) —+ B we have 
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f = 990tA, and so t7A  must be injective. Also, it can be seen that for B E )vtA, 

B 	1,9(B): .9(B) is closed under complementation, so the description of 7,9(B) 

as a subalgebra generated by the elements of .9(B) including complementation 

as an operation obviously does not expand the universe of 9(B). 

More can also be said about the relation between MA and MA-. For ho-

momorphisms f, g: B1  -4B2  in MA, the definition of the functor 9 shows 

that f 	g implies that 9f 54 9g: that is to say, ,9 is faithful. But 9 also 

has the property that if 9(B1) - 9(B2 ) is a homomorphism in MA, then there 

is some B1  4 B2  with 9f = h: in other words, 9 is full. This is true be-

cause any homomorphism between modal algebras respects complements, where 

these exist: if the complement of a is a', then h(a A a') = h(a) A h(a') = 0 and 

h(a V a') = h(a) V h(a') = 1, so h(a') is the complement of h(a). So with f 

defined as the same function from B1  to B2, we have 91 = h. Because 9 is full 

and faithful, this means that for A E MA and B E .MA, 9 is a bijection from 

{f I 1(A) 4 B} to {g I 71A 4 9(B)). But because of the adjunction there 

is also a bijection cOAB  from {f I 1(A) 4 B} to {g I A 4 9(B)). Putting 

these two facts together, any homomorphism A - 9(B) has a unique extension 
hi 

iA - 9(B): h' is the unique homomorphism such that h' o 17A =  h.3  It is 

not too difficult to see that this extension !i is in fact 9 1h. Technically, we 

have in fact shown that because 9 is full and faithful, MA is equivalentto a 

subcategory of MA - the image of .M A - under 9. These of course are simply 

the complemented modal algebras, and the parallel adjunction is given be the 

composite functor 91 together with the inclusion of complemented modal alge-

bras in modal algebras in general. Moreover, this is what is called a reflective 

subcategory: with 1 the reflector, the adjunction gives a reflection of MA in its 

complemented subcategory. To sum up so far: 

'And so 17A  is epi, although in general it is not surjective. 
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Theorem 108 MA is adjoint to MA-  by < Y,9,ço >: MA —s  MA-. 9 is 

full and faithful, making .MA equivalent to a reflective subcategory of .MA, the 

complemented modal algebras. Also, any A E MA is a subalgebra of 91(A) = 

t7A, which it generates if complementation is regarded as an operation. 	0 

Incidentally, it can also be shown that 9 has a right adjoint, although this 

is not as interesting here as its left adjoint. It will, however, be encountered 

again at the end of the chapter. For A E MA define the algebra 1(A) in 

MA to be the result of adding a complementation operation to the greatest 

complemented subalgebra of A. This subalgebra exists, and its universe is the 

set of all complemented elements in the universe of A, because 

Theorem 109 If A E MA and {ai,. . . aj C A are complemented then so is 

a,), where w is an n-ary operator derived from the operators of A. 

Proof. It suffices to check each of the primitive operators in turn. First we 

have --'a1  = - - a1: ai  A —a1  = 0, so -(a1 A —a1) = -'a1  V - - a1  = 1; and 

ai  V —a1  = 1, so -'(a1  V —a1) = -Ia1 A -i  - a1  = 0. Also, —(aj A a') = —a1  V —a1: 

that a1  A a j  A (—a1  V —a,) = 0 can be seen by using the distribution of A over V, 

and the other distribution rule shows that their join is the element 1. The fact 

that —(a1  V a') = —a1  A —a1  is shown similarly to this, and it is obvious that va1  

and .ta1  are complemented. 	 0 

So all the complemented elements of A form a subalgebra of A: obviously this 

is the greatest complemented subalgebra of A. For a homomorphism A1  L A2  

in MA define )If simply to be the restriction of the underlying function of f to 

the complemented elements of its domain - the universe of 1 (A1). The image of 

)lf is contained in the universe of X(A2), because this image is complemented: 

for al  e A1  complemented, then the complement of 1(a,) is f(—aI ). Given this 

definition of )lf as the restriction of f to the complemented elements, it is almost 

immediate that )lf is a homomorphism, M 1 = 'MA and X(g of) = 1g o Xf, and 

so X is a functor from MA to MA. 
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Theorem 110 There is an adjunction < 9,N,go'>: .MA - .MA. 

Proof. We show that for any algebras A E MA and B E M .4, there is a 

bijection from {f I 9(B) -4 Al to {g I B 2+ M(A)J. Now obviously B )19(B) 

- 9(B) is complemented, so B, 9(B) and N9(B) all have the same universe; 

the isomorphism then follows from the way in which the functors were defined. 

Letting , be this isomorphism, for a homomorphism 9(B) 4 A ' is defined 

to be NJ o i: Clearly this a homomorphism from B to N(A). And if 1' f 

they must differ only in the complemented subuniverse of A, so ço'f' ço'f. It 

is surjective as a mapping because for any B 4 N(A), the same function on 

the universe of B to the perhaps expanded universe of A is readily seen to be a 

homomorphism from 9(B) to A which ' maps back to g. Spelling out the final 

conditions for an adjunction given our definition of ', it can be seen that they 

are satisfied once it is shown that for B1  -4 B2  in .M.4, N9g o 	= 	o g. 

But this is easy to see, especially since 	and 	are isomorphisms. 	0. 

Abbreviate 9N (A) to EA. This time for any 9(B) 4 A we are given what 

might be called a unique restriction 9co'f of f to the subalgebra EA of A; 

and conversely any homomorphism 9(B) -4 EA has a unique extension to A. 

The awkwardness of the locution illustrates the fact that this was already obvi-

ous, however, with the same function defining the other homomorphism in each 

case. Now because the complemented modal algebras form a subcategory of .M.4, 

equivalent to .M A, the inclusion and e also form an adjoint pair: technically, 

this means that in addition to being a reflective subcategory, 

Theorem 111 The complemented modal algebras in .MA form a co-reflective 

subcategory of .MA. 	 0 

The functor e - or in a parallel fashion N - may be called a co-reflector. 
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7.2 Their Congruences 

Before examining whether these results can illuminate congruences in any way, 

we need the next theorem, which explains why YIA is called the complemented 

algebra freely generated by A. 

Theorem 112 Suppose that for A e .MA and B E .MA there is an injeetive 

A - ,(B) which spans. Then there is a surjective homomorphism f' from t7A 

onto ,9(B). 

Proof. Let f' be the unique homomorphism such that P O 17A = f: that is, 

P = , ço'f. We show that f' is surjective. So let b be any element in the 

universe of (B), and also regard it as an element of B. Because the image-

of 

mage

of f generates B, there is some n-ary operator w, and some a1,.. . a, E A 

such that b = w(f(ai),.. . f(a,)), where -.w is derived from the operators of 

B. Thus w may involve the operation of complementation. Now tA is also 

complemented and generated in the above sense by A; so we may consider 

the elements tlA(al), . . . '1A(a) in 17A as elements of 1(A), find the element 

C = w(t7A(al),.. . t(an)) there, and then regard c as being in iA. Now because 

,g is full and faithful, f' preserves the operation c4.: 

P(C) = f ' (w(TlA(al), . . . '?.(a))) = w(f' o 77A(a,).... f' o 77A(an)). 

But P O 71A = f, SO 

f'(c) = w(f(ai), .. . f(a)) = b, 

showing that 1' is surjective. 

If A L (B) is surjective then obviously f', the unique extension of f to 

t7A is also surjective: this follows from the facts that f 0  'lA = f and  17A is in- 

jective. Thus the congruences on A with a complemented quotient have unique 
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extensions to congruences on iA. It is then natural to ask if this extends to 

arbitrary congruences on a modal algebra A, especially since we have already 

characterised the congruences of i7A because this algebra is complemented. For 

then the congruences of the arbitrary algebra A would have a useful charac-

terisation. The answer to the question is no, but the approach is not wholly 

uninformative: 

Theorem 113 If 0 is an arbitrary congruence on a modal algebra A E )4A, 

then there is a least congruence on tA the restriction of which to A is 0. 	0 

This will follow from the next two theorems. First it is shown that there does 

exist such a congruence, for we know this much more more about extending 

surjective homomorphisms: 

Theorem 114 If A1  4 A is surjective then so is 	of). 

Proof. We assume that surjective f defines the congruence 0, in the sense 

that for a, b E A1, a0b if 1(a) = 1(b). Then because 77A2  15 injective, 0 is also 

defined by 77A2  o f. Let  f' abbreviate 9co1(7A2  o 1)' the unique extension of 

71A2 o f to i7A,. Obviously we have P O 77A1 = 77A2  Of ,  so  f' o 77A1 also defines 0. 

Now factor f' as ios, where t7A1  -4 A' is the surjective mapping of 17A1  onto its 

image under f' given by s(a) = f'(a) for a E A1; A' -4 77A2  is then given by the 

subalgebra connection between the two algebras. Any .MA-homomorphism can 

be factored in this way into a surjective one followed by an injective one. Note 

that, as has already been seen, because t7A1  is a complemented modal algebra, 

so is its homomorphic image A'. Since we have f' = los, also f'07 1  ZOSO7 1 , 

SO i o s o 77A, also defines 0; and because i is injective so does s o 77A1  : A1  - A'. 

But this means that the image of A1  under s o 17A, is isomorphic to A2  because 

A2  is isomorphic to the quotient A1/0. So let A2  -t A' be the embedding; thus, 

k o f is a surjective-injective factorisation of s o 71A1 and s o 17A = k o f. Now we 

show that 77A2 = bk. Because kof = s°nAj we also have iokof = 
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but los = f', so iolcof = f ' o -7A1; and f °T1A1 = 11A2 of, so iokof = 17A2 of. 

But the fact that f is surjective then implies that i o k = 17A2. And because q 3  

spans, i cannot be a proper injective morphism: A' and t7A2  are complemented 

algebras and 9 is full, so for some .MA -homomorphism j we have g j = i. And 

if 9j were properly injective then 5 would also be properly injective, since it is 

the same function. So i must be an isomorphism. Finally, because 1' = i o s, i is 

an isomorphism and s is surjective, this means that f' is surjective, completing 

the proof. 	 0 

Corollary 115 For any congruence U on A E .MA there is a congruence 0' on 

77A, the restriction of which to A is 0. 	 0 

Theorem 116 For any congruence 0 on A E )vtA there is a smallest congruence 

on t7A which extends 0. 

Proof. This is obvious in the abstract: at least one congruence extending 

o exists, so simply take the intersection of all those congruences extending 0. 

But a more direct method of proof will tell us more about this congruence, 

so let 0, f and  f' be as in the previous proof. Because the quotient of any 

congruence on t7A1  is complemented, we may assume that any such congruence 

0' the restriction of which to A is 0 is given by a homomorphism onto 9(B), 

for some B E ..MA. So let i7A1  4 9(B) be such a surjective homomorphism 

defining 0', the restriction of which to A1  defines 0 there in this way. To prove• 

the theorem it suffices to show that there is a surjective homomorphism from 

t7A2  onto 9(B). For then the congruence defined by f' will be contained in 

0', and so will be the least such congruence, given that 0' was arbitrary. Now 

because the restriction of 0' to A1  is 0, as was seen in the previous proof this 

means that A2  is isomorphic to a subalgebra of 9(B): the morphism g o 

can be factored through f and an injective A2  - 9(B) with g o 77A1 = h o f. 

Let h' abbreviate 9çoh: so h' 0  77A, = h and h' is a homomorphism from iA2 



Chapter 7. Complemented Algebras 	 199 

to .9(B). We now show that h is surjective, as required by the proof. Take 

any element b E .9(B): then for some a E iA1  we have g(a) = b. But because 

the set {,7A,(a) I ai E All generates t7A1  as a .MA-algebra, we may assume 

that there is some n-ary operator w derived from the primitive operators of the 

.MA-algebras, and some {a1.... a} C A such that 

9(cI(77A1 (al),.. .r,AL(afl))) = b. 

But it has been seen that g preserves w, so 

b = 4.'(9 0 1A1 (a1),. . .g 0 flAi(an)). 

Now go?7 1  = hof, and because h= h'o?7A2  also  9 0 17 1  = h'orA2 of. But 

7A2 0f=f'077A sogo7 A1  =h'of'oflA1, and 

b = w(h' 0 1,0  71A1(al),. . . h' of' 0 77A1(an)). 

But ?7A2  is complemented, so w(f'onAi(al);. . . , f'o,(a,)) exists in its universe 

and h' preserves w; thus 

h'(w(f'o, A1(al),...,f'o, A1(a fl))) = 

and so h'is surjective. 	 101 

If 0 is a congruence on A, denote by £ (0) its least extension to i7A; and for 

0' a congruence on iA let .R(0) be its restriction to A. Then by the proof of the 

last theorem we have 

Corollary 117 i(A/0) 7A/e(0). 

It can now be shown that a precise characterisation of the congruences of A 

cannot be achieved by exploiting in this manner our previous characterisation of 

the congruences of ijA. 

Theorem 118 It is possible that for distinct congruences 0 and 0' on tA, nev-

ertheless R(0) = 



Chapter 7. Complemented Algebras 	 200 

Proof. This can be proved by producing a simple counterexample. Let A be 

the four element modal algebra with 0 < a < -'a < 1, va = 0 and u-'a = 1. 

Also, where 4 and 2 are as previously described, consider their product 4 x 2 

together with the mapping from A to 4 x 2 given by 

0 i—'<0,0>; a—'< a,0 >; -'a----'<a,1>; 1 i—)<1,1>. 

We now define two modal algebras B1  and B2  on 4 x 2 by specifying the modal-

ities. 

	

fIn B1, vx 	
<1,1> ifxE {< a,1 >,< 1,1 >}; 

= <0,0> otherwise. 

<l,l>ifxe{<a,1>,<1,1>}; 

	

In B2 , Vx 	<0,1>ifxe{<0,1>,<b,1>}; 

<0,0> otherwise. 

Let g1  and 92  be the mappings into B1  and B2  respectively given above: then it is 

easy to see B1  and B2  are both modal algebras and that g1  and 92  are both modal 

homomorphisms. The algebras B1  and B2  are complemented since 4 x 2 is, and 

with complementation as an operation, they are generated by the subalgebra A: 

we have < b2 0 >= -gj(-'a), < b,1 >= -gj(a), < 1,0 >= g(a) V — g1(-la) and 

< 0,1 >= g(-a) A -g1(a). In fact, both g1  and 92  span. Neither B1  nor B2  

is a homomorphic image of the other - consider what to do with the element 

< 0,1 >e B2  in attempting to construct a surjective homomorphism in either 

direction - which means that t7A is not isomorphic to either of these algebras: if it 

were isomorphic to B1  say, this implies that there is a surjective homomorphism 

f from t7A B1  to B2  with I O?1A = g, which is false. So now we have surjective 

homomorphisms f, from 77A to B, with 1, 07/A = g, and these cannot be injective 

since g1  and 92  span. This means that the congruences they determine on 

are not equal to the identity congruence and are distinct; but fi °71A = gi and g 

is injective, so the restriction of both g1  and 92  to A is the identity congruence 

EonA. 	 D 

0 
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Not surprisingly, eA cannot be used either. Again, an example proves the 

point. 

Theorem 119 Distinct congruence 0 and 0' on A can have the same restriction 

to EA. 

Proof. Let A be the six-element algebra with 0, 1, a = -'a, b = -ib, a A b and 

a V b all distinct; and for all x e A, vx = 1. Then the only complemented 

members of A are 0 and 1, so EA 	and its only congruences are A and V. 

But the congruence 0(avb,1)  on A is distinct from both A and V: A/O(avb,1) S1 . 

So 0(avb,1)  54L, but both have the same restriction to EA, namely L. 	D 

The relation between Con(A) and Con(77A) can be described more formally 

in the following way. A lattice L may be regarded as a category with objects 

the elements of its universe L; and for a, b E L with a —+ b a morphism if a < b. 

Regarding Con(A) and Con(tA) in this way, we have 

Theorem 120 <e, >: Con(A) - Con(i7A), with RE = 1Con(A). 

Proof. It is easy to see that e and £ are monotone - they preserve the 

lattice ordering. That ,R.f = 1COn(A) is clear from the above discussion, as is 

SR. < lcofl(,,A): we saw that for 0 e Con(A), (0) = A{.R'(0)}, so if for 

'çl.' E Con(7A) we have R(tI) = 0, then 0 E .R'(0) and so e.() 	t. Then 

for 0 E Con(A) and 0 e Con(A), it follows that (0) 5 t if 0 < .R(1i): for if 

(0) <1i then £(0) <(0). But 0 < R(0) so 0 < £(1i). The other direction 

is similar, using the fact that R(i) <&. This shows the adjunction exists. 0 

From this it follows by general theory that 6 is injective and preserves ar-

bitrary sups, and £ is surjective and preserves arbitrary infs, although it was 

already fairly obvious in the context. 

It is now shown that whatever description of filters is arrived at, it is not 

enough to characterise congruences: the filter 1/0 need not determine 0. For A a 
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modal algebra, let Flit (A) be the lattice under inclusion of {1/0 1 0 E Con(A)}. 

As we have seen, Filt(t7A) is precisely the lattice of strongly -'-consistent and 

open filters of tIA, and Fiit(iA) Con(tA). For 1/0 e Fiit(A), let C(1/0) = 

1/6 (0). This is the least strongly --consistent and open filter of ?JA containing 

{T1A(a) I a e 1/0}. In the other direction, for 1/0 E Filt(t7A) let .M(1/) = 

1/(): regarding A as a subalgebra of iA, we have .M(1/&) = 1/0 fl A. Then 

it can easily be shown that 

Theorem 121 <C, .M >: Fiit(A) - Fiit(A), with MC = lFIlt(A)• 	0 

Because of the isomorphism Filt(A) Con(tA) we may regard this as an 

adjunction <C, M >: Filt(A) - Con(iA). Then even though the direction of 

the two adjunctions we have do not match naturally, we are still able to compose 

them in the following way: 

Theorem 122 <RC, ME >: Fiit(A) - Con(A), with MC = lFllt(A)• 

Proof. First, it can be seen that .M (0) = 1/0: for a E A, with a also regarded 

as an element of 77A, aOl if ae(0)1 if a e 1/e(0); and MC = 	so this is 

so if a E 1/E(0)nA = ME (0). Also, RC(F) is the least congruence 0 E Con(A) 

with i/O = F: C(F) is the smallest congruence 0 on ijA such that for all a E F, 

a01; and .MC(F) = F, so aC(F)l if a e F, which means that its restriction to 

A is the smallest on A with this property. This shows that M £C 

and the fact that C(1/0) is the smallest congruence with 1/t/ = 1/0, means 

that R CM < lCon(A). Together, these complete the proof of the adjunction. El 

It can now be seen that even if the congruences of t7A can be used to provide 

a characterisation of Con(A), then this does not mean that for 0 E Con(A), 

1/0 determines 0, as happens if A tA. It is easier to see that the converse is 

also true: the fact that it may happen that Fiit(A) Con(A) does not mean 

that congruences on A have a unique extension to iA. A case in point is the 

four element algebra A above with 0 < a < -'a < 1: the three congruences 
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are determined by the sets {o, a, -'a, 1), {-ia, 1} and {i}, and these are the only 

possible restrictions to A of strongly -'-consistent and open filters on iA since 

these are the only filters of A. Yet it was shown that distinct congruences on 

,1A had the same restriction to A. 

To complete the proof that neither equivalence entails the other, 

Theorem 123 It is possible that Con(A) 	Con(A), and yet that for 0 e 

Con(A), 1/0 does not determine 0. 

Proof. Consider again the six-element algebra A given above with universe 

01  1, a = -la, b = -'b, a A b and a V b. Now, iA happens to be the sixteen element 

algebra S1  x S1: there is more than one embedding of A in S1  x S1, so fix T)A 

to be the homomorphism determined by f7A (a) =< a, a> and 77A  (b) =< a, b> - 

the latter a and b name the elements of the universe of S given in the previous 

chapter. A has four congruences, namely A,  V,  0(,b)  and 0(oVb,1),  so i7A has at 

least four: the extensions of these congruences. But these are in fact the only 

congruences on Y7A, as consideration of the strongly --consistent and open filters 

of tA shows: 

e (O(a,b)) = 0(I7A(c),17A(b)) = 0(tlA(o)+7A(b),i) = 

and for e(0(avb,i)), since 1A(a V b) =< a,1 > and -- < a,1 >=< b,1 >, the 

least strongly -i-consistent and open filter containing 7A(a V b) must contain 

7A(a V b) A --'7A(a  V b) =< 0,1 >. So e(o(vb,1)) = °(<o,i>,i). Because both 

< 1,0 >=< 1,0 > and --' <0,1 >=< 0,1 > the filters in the two cases 

are the principal filters generated by < 1,0> and <0, 1>. Given how negation 

was defined on S,  apart form these two filters there are no strongly -i-consistent 

filters other that the whole universe i7A containing either of these. Such filters 

contain an element c just in case they also contain c A --ic, and the only elements 

of this form in S1  x S are < 1, 1 >, < 1,0>, <0,1> and <0,0>. But the 

intersection of these filters is the filter {i}, so these are the only four congruences 
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on t7A, and Con(A) Con(iA). Thus A and O(o,b)  provide the counterexample 

showing that Con(A) FiIt(A), even though Con(A) Con(A). 	0 

A trivial but almost useless characterisation of Con(A) is possible, and was 

implicit in the adjunctions described. Let a strongly --consistent and open filter 

F in i7A be called A-generated if it is the least such filter containing {a + b 

a+b e F and a, b e A}. Then such filters are in one-one correspondence with the 

congruences of A. This follows from the fact that, because C is a left adjoint and 

so preserves sups, using the correspondence between Con(tjA) and Fi1t(iA) we 

have 

E(0) = C(V{O(a,b) I aOb}) = V{C(0 a,b) I aOb} = V{(0 0+b,1) I aOb}. 

7.3 Their Logics 

We conclude with a brief word on one of the more global connections that arises 

from the connection between modal algebras and complemented modal algebras, 

namely the relation between their logics. In frames, let the complementation 

operation be understood in the obvious way, with C, v, x —a if C, v, x a. 

The usual classical sequent rules for complement may then be added to the 

logic of MA to give the logic of )vtA, and the relations between frames for 

this logic and algebras in ..MA can be worked out in just the way previously 

done for the algebras of .MA. For example for C+  a .MA-algebra and a a 

formula of the extended language of .MA, we again have C = a if C+ = a: so 

the same algebraic characterisation of complete varieties will apply to varieties 

.MA-algebras. 

With this in mind, let L'() and Lv()  denote the lattices of varieties of 

MA-algebras and of varieties of .MA-algebras respectively. Also, for K ç  MA 

let X(K) abbreviate {M (A) I A E K}; and for K' C .MA let 9(K') abbreviate 
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{ .9(B) I B E K'}. We sometimes write V.9(K') for V (9 (K')), the smallest .M A-

variety containing 9(K'): other such omissions of brackets should not give rise 

to ambiguity. Then we have the following result. 

Theorem 124 <V9,X >: L'() 

Proof. Obviously for W C L" 1 we have V(,9(W)) E L"(), and if 

W < W' then .9(W) C ,9(W') and so V(,9(W)) !~ V(9(W')), showing that V9 

is a functor. To show that 1 is a mapping from 	to Lv() it must be 

shown that for V E L'('), ).1(V) is a .MA -variety. Now we have seen that 1 is 

a right adjoint and so preserves limits: that is 

X(11 A1) llx(Ad. 
IEI 	IEI 

Given the definition of I (A1) this can be seen to be so because a C flEJ Ai is 

complemented precisely if for all i C I, a(i) is complemented in A1. Then because 

varieties are obviously closed under products, if B C HSP'(V)) then B C 

HS(X(V)). Now because .9 is the forgetful functor it is easy to see that for any 

MAt-homomorphism g we have g injective 1ff .9g is injective, and g is surjective 

if 9g is surjective. So if B is a subalgebra of I (A) then .9(B) is a sub algebra 

of 9I (A) = eA, which as we saw is in turn a subalgebra of A. Varieties are 

closed under subalgebras, so if B C S(X(V)) then )I.9(B) B C E(V). It may 

be shown in a similar fashion that if B C H(X(V)) then B C (M (V)), completing 

the proof that )1(V) is a .MA-variety. Clearly if V < V' then M(V) 	I(V'), so 

X is a functor between the two lattices. To prove the adjunction, suppose that 

W C 	and V e 	Then if V(.9(W)) < V and B C W, we have 

BX.9(B)eX(V(9(W))),soW< X(V(.9(W)))< 1(V). And ifW < .W(V), 

note that ,91(V) = e(V) are the complemented algebras in V, so V(e(V)) V; 

so V(9(W)) <V((V)) < V. 

If V C 	is complete, then it is generated by its powerset algebras and 

so V = V(E(V)): this shows that complete logics 'admit complementation as 
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a rule'. If complement is added to the language, then closing a complete logic 

under its rules does not provide any new theorems in the original language. 

This shows that the modal part of these logics can be presented and discussed 

in a base language of classical logic, as recommended by our methodology. In 

general, however, we do not have V = V((V)). Nor do we have, for all W E 

Lv4), W = 1(V(9(W))): this fails essentially because of the failure in .MA 

of the congruence extension property. To arrive at a reflective or co-reflective 

subcategory relation, as was done above with )t4A and .MA, it is necessary to 

weaken slightly the classes of algebras by introducing the definition of a quasi-

variety. This move is parallel to the logical move required to interpret .MA -logics 

as .MA-logics by introducing certain easily determined higher-order axioms, or 

rules. 

Definition 125 A quasi-variety is a class of algebras closed under S, F, Pu 

and isomorphism, and containing a trivial algebra. 	 0 

Let 	and qv(.M.4j  be the lattices of quasi-varieties of MA-algebras and 

.MA-algebras respectively. We are interested in extending X.: 

to V1 : Lqv(.MA)  . 	 but there are also adjunctions involv- 

ing 	of which those involving 	and the above functor may be 

seen as restrictions. 

Theorem 126 Let V E L1'" 1  and Q e "(1•  Then the following rela-

tions hold: 

<.1, )1 	>: 	 qV(A) with .W(X'(Q)) = 

<VX,' >: qv.4) - 	withVI('(V)) = V; 

<S9, I >: qvMAj 	qVMA) with X(S9(Q)) = 

<S,,VI >: L'() 	qV(A) with V.1(S,9(V)) = V. 
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Proof. For the first adjunction, it should be clear that 1 and )I preserve 

the lattice ordering; to see that they are mappings, it must be shown that, for 

Q E qVMA) and R E L9v MA)  1-1(Q) and X(R) are quasi-varieties. It has 

already been shown that 1 (fuEl  A) fuEl (A1), and so these classes are closed 

under products. To see that both are closed under ultraproducts, it is enough to 

show that )1(HIEI  Ai /U) [I, 1(A1)/U. First, using the subalgebra relations 

A, it is straightforward to verify that the natural mapping 

ll(Ad/U --' (llu/) 
IEI 	 IEI 

is a well-defined injective homomorphism - this may be more easily seen by 

considering the equivalent 

9(11X(A1)/U) -' 
IEI 	 iEl 

since 9 (HEJ N (Ai)/U)  HEI  A1  / U is a complemented subalgebra of fl$El  A1  /U. 

To show that h is surjective, it is enough to show that if a/U E fuEl AI /U is 

complemented, then for some complemented a' E HIEI A, a/U = a'/U. So let 

a/U E fuEl  A/U have a complement b/ U, and note that in any algebra c and d 

are complements just in case (c V d) A (-'c V -id) = 1. From this it follows that 

J = {i e I I (a(i) V b(i)) A (­a(i) V -ib(i)) = 11 e U, and that for each i E J, a(i) 

is complemented. Defining a' such that a'(i) = a(i) for i E J, and a(i) = 1, say, 

otherwise, a' is complemented and a'/U = a/U. So regarding a' as an element 

of fuEl  I(A1), we have h(a'/U) = a/U. So h is an isomorphism and '(Q) and 

X(R) are closed under ultraproducts. 

It remains to show that they are closed under subalgebras. To show this 

true of 1'(Q), let X(A) E Q and let B be a subalgebra of A. Then any 

complemented element of B may also be regarded as a complemented element of 

A, so eB is a subalgebra of eA; but / and 1e are identical morphisms, so 

is a subalgebra of E(A). Also, Q is closed under subalgebras, so 1(B) E Q. To 

show that )I(R) is closed under subalgebras, let B be a subalgebra of I(A) for 
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some A E R: then clearly 9(B) is a subalgebra of EA. But R is closed under 

subalgebras 50 9(B) E R; and E9(B) = B, so B E X(R). 

To complete the proof of the first adjunction, the fact that for B e Q, also 

B = E9(B) e Q shows that Q < )1(1-1(Q)). The other direction is equally 

obvious: if B e E()1'(Q)), then B = I(A), for some A E )1'(Q): but this just 

means that )1(A) = B E Q, proving the first adjunction. Given that varieties 

are quasi-varieties, the second adjunction now follows almost immediately; note 

that here and in the fourth adjunction V1 may be simplified to Hi. 

All that really needs to be shown for the third part of the proof is that 

59 is a mapping and that for Q e 	1(S9(Q)) = Q. But given that 

9(fl$ EIAI) fl. 9(A1) and 9(HIEJ A/U)  fl 9(A1)/U are immediate, it 

is not difficult to see that 59 is a mapping. For the second part, the fact that 

)19(A) = A shows that Q :5 i(S9(Q)), so for the other direction let B E Q 

and A = X (B'), where B' is a subalgebra of 9(B). But then eB' is a subalgebra 

of 19(B) = B and so )l(EB') = I(B') = A is a subalgebra of 19(B) = B: but 

Q is closed under subalgebras, so A E Q, showing the third adjunction. The 

fourth then follows from this in a straightforward manner. 	 D 

We now close as promised by hinting at the change of logical direction im-

plicit in the above. The theorem shows that L'( 4 ) partitions qVMA)  into 

intervals [59(V), 1'(V)], for V e L1' 41, each quasi-variety in which has the 

same complemented algebras. The embedding given by the fourth adjunction, 

however, provided the more logically natural representation of 	within 

qv(-MA) First note that every defining identity of a variety of .MA -algebras 

is of the form ta = 1, for some formula a in the language of MA-. Then an 

easy induction shows that for any such a we may assume that all occurrences 

of the connective - have narrowest scope: the proof uses the fact that it dis-

tributes over the other propositional connectives, and the facts that —Ax = -'vx 

and —ux = -jtx. This gives the 'essential' occurrences of the complementation 

connective in a. An .MA -formula a in n variables in this way determines a 
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MA-formula a' in n + k variables, where for each of the k pairs {p;, —pi} occur-

ring essentially in a afresh variable pli  is substituted for —pi  in a. Suppose for 

simplicity this happened in the argument places 1, . . . k, and so the result is the 

.M A-formula a' in the variables 	. p,,, p... . ,', }. These argument places can 

then in a sense be abstracted to define the conditional identity - or quasi-identity 
- q(a) by 

A (x1 Vy1)A(—ix1 V --iy1)=1 == 
1<i<k 

Quasi-identities bear to quasi-varieties the relation that identities bear to 

varieties, and it is not too difficult to see that a variety V E L1' 	defined 

by the theorems {a, I i E I} is equivalently defined by- the quasi-identities 
{t(a') I i E I}. From this it can be shown that the same set of quasi-identities 

defines the quasi-variety S,9 (V). So MA--logics can be represented within the 

language and models appropriate to .MA, these logics being defined by allowing 

as proper assumptions the rules - rather than simple axioms - determined by the 

quasi-identities. In this way the relation between the logics of the two languages 

is represented in a uniform, extended proof system corresponding to the move 

to quasi-varieties, but further examination of these issues would mean straying 

outside the domain of the study of models for four-valued logic. 
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