
Theoretical Computer Science 78 (1991) 189-216 
North-Holland 

• 

189 

• 
ro rammln in tree-va ue o Ie 

J.P. Delahaye and V. Thibau 
L.I.F.L., U.A.-C.N.R.S. No. 369, BA T. M3, Universite des Sciences et Techniques de Lille 
Flandres Artois, 59655 Villeneuve d'Ascq Cedex, France 

Abstract 

Delahaye, J.P and V. Thibau, Programming in three-valued logic, Theoretical Computer Science 
78 (1991) 189-216. 

The aim of this paper is to propose a logical and algebraic theory which seems well-suited to 
logic programs with negation and deductive databases. This theory has similar properties to those 
of Prolog theory limited to programs with Horn clauses and thus can be considered as an extension 
of the usual theory. This parallel with logic programming without negation lies in the introduction 
of a third truth value (Indefinite) and of a new non-monotonic implication connective. Our 
proposition is different from the other ways of introducing a third truth value already used in 
Logic Programming and databases but it is somehow related to some of them, especially to 
Fitting's theory. We introduce a "consequence" operator associated with a logic program with 
negation which extends the operator of Apt and Van Emden. In the case of a consistent program, 
the post-fix points of this operator are the models of the program as they are usually. This operator 
is related to Fitting's one, the relation being obtained by completing the program. We finally give 
an operational semantics for a program with negation by the obtention of a three-valued interpreter 
from a bivalued one. 

Introduction 

When treating negation in logic programming, many problems must be faced and 
attempts to solve them may be sorted out more or less according to their faithfulness 
to negation as failure, which is the negation really used in Prolog [4, 10, 14, 22, 
23]. It does not seem possible to stay close to Prolog while having an easy axiomatical 
semantics: we are not sure to find a sound and complete semantics for negation as 
failure. A negation other than negation as failure is also used in expert systems 
working in forwards chaining. 

The theory we propose here is quite general and can be applied to both Logic 
Programming and this negation. It has good theoretical and algebraic properties 
similar to those obtained in logic programming with negation. The parallel lies in 
the introduction of a third truth value, Indefinite and a new non-monotonic implica­
tion connective denoted by -+. We thus obtain a very simple way of treating negation 

0304-3975/91/$03.50 © 1991 Elsevier Science Publishers B.V. (North-Holland) 



190 l.P. Delahaye, V. Thibau 

and a purely axiomatic reading of a program is then possible: we are now able to 
program by writing axioms and the specification of a program becomes the program 
itself. 

Although the deductions obtained in three-valued logic may be too weak (we do 
not sometimes deduce enough logical consequences of a program), this logic is 
natural for cases of partial information and it has already been used for a long time 
in Artificial Intelligence [3,26], We have concentrated on the denotational semantics 
of a logic program with negation by introducing an operator associated with logic 
programs with negation, whose post-fixpoints are exactly the models of the program 
itself when it is consistent. The least fixpoint of this operator will then be the least 
model of the program. We also study the relations between our operator, Fitting's 
one and Apt and Van Emden's one for the case of programs without negation . 

• Finally, we try to study the operational semantics of a program with negation. 
First, we have the result that all the ground literals being the logical three-valued 
consequences of a program without negation are exactly the result of the computation 
of forward chaining. We also give algorithms which compute the smallest model of 
a program by obtaining a three-valued interpreter from a bivalued one. 

In this paper, we restrict ourselves to Herbrand interpretations and we do not 
study completely all the properties of this three-valued logic. For a more general 
theory, and particularly the completeness of this three-valued logic, and the 
expressivity of the connectives of the language, see [24]. 

The introduction of a third truth value and a new non-monotonic connective can 
be justified as follows: it is used to give another expressivity to a rule with negation: 
as soon as a negation is introduced in the body of a rule, we obtain 

which is logically equivalent to any clause 

As we know that every first order axioms system may be written with a set of 
clauses, the question of writing a program as a set of rules is then raised. Two 
answers may be given. The first one is to keep a set of rules to generalize the 
SLD-resolution to the SLDNF-resolution, since it is an efficient mechanism. The 
completeness of the SLDNF-resolution, far from being easy, has already been 
obtained for special kinds of programs, for instance the hierarchical programs. The 
second one, which is our answer, is to give a different expressivity to such a formula 
(A ~ A., ... , Ab lB., ... "Bq ) by the introduction of a third truth value and a 
new non-monotonic connective. 

Many studies have used this approach and in the next section, we attempt to give 
a general survey of the research in order to compare it with our own research. It 
will enable us to give the relations between our implication connective and operator 
and Fitting's equivalence connective and operator. 



Programming in three-valued logic 191 

Survey of research 

Fitting [7, 8, 9] uses three-valued logic for logic programming, which actuaIly 
means not giving a truth value to any ground atom. In his paper [7], Fitting introduces 
a third truth value f (Indefinite). He is interested only in programs with positive 

rules like 

where A is an atom and B; are formulas using the symbols (A, V, I). He defines 
the truth values of IF, FAG, F v G, 3x F, V x G, in the same way as they are defined 
here. There is no implication connective, but only an equivalence connective :! 

defined by: 

X == Y is True iff X and Y have the same truth value, False otherwise. 

His connective == will correspond to our strong equivalence connective, «~. A 
model of a P program is a Herbrand model of its completion Comp( P) in which 
equality is interpreted by syntactical equality. The completion of a program is 

obtained normally [4, 14] by replacing each rule 

by 

p(X I , • •• , xn) ~ 3YI ••• 3Yk (XI = II A .•• A Xn = In A 8 1 " ••• A Bm) 

where YI, •.• ,Yk are the variables of II, .•• , In and of B I , ••• , Bm • 

If D; denotes the formula: 3YI ••• 3Yk (XI = II A .•• " Xn = In A B I ,,· •• A 8 m ), the 
completion of P is obtained first by putting alI the rules having their heads built 
on the same predicate symbol together, in the following way: 

and secondly by adding to the P program, IP(X I , • •• , xn) where p is a predicate 
symbol of P without being in any head of its rules. Fitting is interested in the 
semantical interpretation of a program as fixpoints of operators. His order on the 
set of three-valued Herbrand interpretations is the set inclusion which corresponds 
to the order f ~ F, f ~ Ton {T, F, I}. With each three-valued Herbrand interpretation 
i, is associated the mapping tv" defined from the set of the language formulas to 
the set {T, F, f}, its image on a formula being the truth value of the formula with 
respect to i. His operator F pr is defined by its image on a three-valued Herbrand 

interpretation by 

Fpr(i) = {ato Ithere is a ground instance ato ~ B I , ••• , Bm of a rule of Pr 
such that tV,(B I , ... , Bm) = T} 

u {,ato I for alI ground instance ato ~ B 10 ••• , Bm of Pr we have 
tv,(B I , •• • , Bm) = F}. 



192 J. P. Delahaye, V. Thibau 

This operator is monotonic and the fixpoints of FPr are exactly the models of the 
completion of Pro As a union of partial models is not necessarily a three-valued 
interpretation, the set of the three-valued interpretations is no longer a complete 
lattice but only a semi-complete one: the intersection of two three-valued Herbrand 
interpretations is still a three-valued Herbrand interpretation and a consistent union 
of two three-valued Herbrand interpretations is a three-valued Herbrand interpreta­
tion. The mapping FPr has a least fixpoint which is also the least model of comp(P) 
and does not have any greatest fixpoint but only several maximal ones. There are 
thus two ways of defining the semantics of a logic program: 
• the least fixpoint of Fpro 

• the optimal fixpoint of FPr which is the greatest fixpoint less or equal to the 
intersection of all the maximal fixpoints and which is also the greatest consistent 
fixpoint. 
Our theory is close to Fitting's but we give a new interpretation of the connective 

-+ and define the notion of Herbrand model of Pr without using its completion: the 
specification of a program will thus be the program itself. We can express its 
connective == with our implication connective, the negation and the conjunction 
symbol; we can obtain FPr from our mapping TPr by completing our program. 

Lassez [13] also uses a three-valued logic. The programs considered have only 
Horn clauses: A +- AI, ... , An. His implication connective is Lukasiewicz's one, and 
has the following truth table: 

A -+ B is not True 
if A gets the truth value T and B gets the truth value I (A -+ B 

gets the truth value 1), 
if A gets the truth value T and B gets the truth value F (A -+ B 

gets the truth value F), 
If A gets the truth value I and B gets the truth value F (A -+ B 

gets the truth value I). 
A -+ B gets the truth value T otherwise. 

The formula P -+ Q is not logically equivalent to the formula ,p v Q, if P and Q 
have the truth value I for instance. His order on {T, F, I} corresponds to the set 
inclusion order on the set of the three-valued Herbrand interpretations (I:S;; F, I:s;; T). 

The operator T associated with a logic program P is defined in the following way 
(a Herbrand interpretation being considered as an application from the set of ground 
formulas to {T, F. I}): 
• if there is a ground instance of a rule of P with A in its head, A+- BI , ..• , Bn, 

such that I(BI ,,· .. "Bn) = T, then T(f)(A) = T, 

• if, for every ground instance of P with A 
BI , ... , Bn,f(BI " ... " Bn) = F, then T(f)(A) = I(A), 

• 
10 its head, 

• if, for every ground instance of P with A in its head, A+- B\o ... , Bn,f(BI/\· .. /\ 
Bn) # V, and if there is a ground instance of a rule of P with A in its head, 
A+- B\o . .. , Bn, such that f(B I 1\ ••• /\ Bn) = I, then T(f)(A) = glb( T,I(A». 



Programming in three-valued logic 193 

The fixpoints of T are exactly the models of P. For this operator, the two notions 
of optimal fixpoint and least fixpoint are the same. This especially comes from the 
fact that the interpretation constantly equal to True, is always a model of a program 
with Horn clauses. It follows that neither the least model nor the optimal model of 
a program (which are both included in the maximal interpretation constantly equal 
to True), take the truth value False. The negative information, which results from 
the completed program, is not really represented in this semantics model. So this 
semantics does not seem well-suited to logic programming with negation. 

Mycroft [18] also uses three-valued logic. However, the clauses considered are 
definite program clauses, in order to show that a many valued logic is better suited 
to the SLD-resolution. He introduces the same operator as Apt and Van Emden 
[28]. The truth tables of the connectives ", and v are the same as the ones we use. 
He does not introduce any implication connective. The three-valued part of his 
paper is essentially contained in Fitting's paper. 

Kunen [11] uses three-valued logic only for programs with positive rules. His 
work is very close to Fitting's because he considers the completion of a program 
and has the same operator. According to him, the semantics of a logic P program, 
is not the least fixpoint of the operator T but Tjw, which is not always a model of 
P. From our point of view, a good semantics should be expressed in terms of axioms 

and models. 
Finally, przymusinski [19, 20], has a new vision on three-valued logic. In [19], 

he introduces three truth values and an order on {T, F, n, F ~ I ~ T which does 
not correspond to the set inclusion order on the set of the Herbrand three-valued 
interpretations. A Herbrand interpretation .1 is given by two sets of ground atoms: 
f!7 and $, without saying that g ('\ $ = 0, which allows a ground atom to have two 
truth values. In this context, negation is no longer monotonic while in our theory, 
the monotonicity of negation enables us to extend the monotony property, which 
has many consequences. His implication connective, although it never gets the truth 
value Indefinite (I), is not the same as ours. It is defined by 

tV,(A ~ B) = T iff tv;(B) ~tv;(A), tv;(A ~ B) = F otherwise. 

Our implication connective gets the truth value True more often than this one 
and it follows that we will have more models in our theory. The logic programs he 
considered are definite ones with only positive rules (A +- LI , ... , Ln , A is an atom 
and L, are literals). The operator associated with each program is built on two 
levels; this operator is monotonic and its least fixpoint is the least model of P. Our 
operator is built in a much more simple way, as an extension of Apt and Van 
Emden's. However, the models obtained with his implication connective are models 

for us too. 
Manna and Shamir [16, 17], have developed a theory of optimal fixpoints for 

any monotonic functional defined on a set of partial functions. This theory may 
interest us because the three-valued Herbrand interpretations we consider, may be 



194 l.P. Delahaye, V. Thibau 

considered as partial functions from the set of the ground atoms to the set {T, F} 
(not being defined where they get the truth value Indefinite). We adapt what could 
have been done for partial functions to three-valued logic. However, we do not 
develop this notion in this paper (see [24]). 

Another development of three-valued logic for logic programming seems possible 
[5, 24]. We try to present some aspects of it in this paper. 

1. An extension or the bivalued logic for programs with negation 

We first recall the properties obtained for logic programs without negation. 
L is a logical language with the connectives fI, v, ~, ~, i, and the quantifiers 

V, 3. The set Her(L) denotes the set of all the ground literals (atoms or negations 
of an atom) not containing the equality predicate, her(L) being the set of the positive 
ground literals and iher(L) the negative ones, the set UNI(L) is the set of all the 
ground terms. These notations are available for every language L, even when the 
language is extended. 

When studying programs without negation with rules like ato ~ for where the 
formula for uses the symbols 'd, 3, fI, v, we use the notion of bivalued Herbrand 
interpretations. The set 2her

( L) of all the bivalued Herbrand interpretations, which 
is the set of all the subsets of her(L), is ordered by the set inclusion. This order 
corresponds to the order induced by F~ T on the set of the functions from For(L) 
to {T, F}, with the correspondence "': 2her

( L) ~ {Functions from For( L) to {T, FH, 
such that ",(i)=tv, (where tv;(for) denotes the truth value of a formula for of 
For(L), defined for an atom ato by tv,(ato) = True if atoE i. False otherwise, and 
extended as usual for any formula for). 

The first important property we will have to extend is a monotony property. If 
F(L) denotes the set of formulas making the body of a rule of a program without 
negation (using the symbols 'd, 3, fI, v), the mapping 4J: 2her

(L) ~ {Functions from 
F(L) to {T, FH, such that 4J(i)=tv,/ F(L) is monotonic for the set inclusion order 
on 2her

(L) and the order induced by F~ T on the functions from F(L) to {T, F}. It 
means that if the formula for makes the body of a rule of a program without negation, 
i.e. is a formula using the symbols V, 3, fI, v, then 

; c;;.j implies that tv, (for) ~ tvJ(for). 

This monotony property is important because of the following consequences: 
• From this monotony property and the truth table of the implication connective 

(=», follows the intersection model property: an intersection of Herbrand models 
of a program is still a model of this program . 

• From this monotony property, it follows that the Apt and Van Emden "con­
sequence" operator denoted by Bpr. which associates the interpretation BPr(i) = 

{ato E her( L) I there is a ground instance of a rule of Pr, ato ~ for such that 
tv,(for) = True} with each bivalued interpretation i, is monotonic. The operator 



Programming in three-valued logic 195 

BPr being monotonic, it admits a least fixpoint according to the Birkhoff-Tarski 
theorem, which is equal to Bprja for some a ordinal [1] (where Bprja is defined 
as usual by transfinite induction with BprjO = 0) . 

• As by the truth table of the implication connective (~), the postfixpoints of this 
operator are exactly the models of a program [2], with the monotony of Hpr and 
[2], we obtain that Bprja s:;; i, for each i model of a Pr program, by transfinite 

induction [3]. 
• From [1] and [3], we are now able to deduce that the least fixpoint of Hl'r is the 

least model of Pr [14]. We thus have a denotational semantics for a program 
without negation which is the least fixpoint of the operator being associated with 
it. Moreover this least fixpoint is Bl'rjw when the program is definite. 
As soon as we introduce negation, even only in the body of a rule, the intersection 

model property is no longer true. For example, if Pr is the following program, where 
p, q, r are predicate symbols and f a function symbol: 

q(x) +- p(x), r(x) 

q(f(x» +- p(x), ,rex) 

p(x)+-. 

If we want to study programs having rules with negation, like lit +- for where lit 
is a literal and the formula for uses the symbols V, 3, ", v, " ~, ~, we would 
like to extend the monotony property to the formulas making the body of a rule of 
such programs. This is why we introduce a third truth value Indefinite and we 
associate the notion of three-valued interpretation with this truth value. To make 
the parallel easier with the bivalued case, we will define a bivalued Herbrand 
interpretation as a peculiar case of a three-valued one. 

Definition 1.1. A three-valued interpretation is a consistent subset i of the set Her(L), 

that is: 

Vato E her(L), ato E i implies that ,ato ~ i. 

The set of all the three-valued Herbrand interpretations is denoted by IHT(L). 
A bivalued Herbrand interpretation is a three-valued complete one, that is: 

Vato E her(L), ato E i or ,ato E i. 

The set of all the bivalued Herbrand interpretations is denoted by IHB( L). 

To come back to the usual definition, we use the mapping pos: IHB(L)-+2her
!L), 

i'" i (1 her(L), which associates its positive part with a Herbrand bivalued interpreta­
tion. The corresponding order on IHB(L) is i ~j iff pos(i) s:;; pos(j). 

Remark 1.2. We may consider a three-valued Herbrand interpretation as a partial 
interpretation, assuming that if ato and ,ato do not belong to i, then ato does not 
get a truth value belonging to {T, F} but tv;(ato) = I. 



196 l.P. Delahaye. V. Thibau 

We now introduce the truth value of the connectives A, V, -',~,~, and the 
quantifiers V, 3, taking the truth value Indefinite into account. We will then be able 
to extend the monotony property to the formulas making the body of the rules of 
the studied programs. So, in the following definition, we give the truth tables of the 
connectives A, v, -',~,~, and more generally the truth value of a formula of a 

logical language (using the connectives A, v, -',~, ~ and the quantifiers '<i,3). 

Definition 1.3. We define the truth values of A, v, -',~, ~ (considered as applica­
tions from {T, F, l}2 (or {T, F, l}) to {T, F, I}). The truth tables of A and v are the 
following: 

v T F I 

T T T T 
F T F I 
I T I I 

A T 

T T 
F F 

I I 

F I 

F I 
F F 
F I 

The truth value of -, is defined by -, T = F, -,F = T, -,1 = I, and the truth value 
of p~ Q is defined as usual by the truth value of -,P v Q, and the truth value of 
P~Q by the truth value of (P~Q) A (Q~P). 

(i) We then define the truth value tv, with respect to a three-valued i Herbrand 
interpretation of a closed formula f using the connectives A, v, -',~,~, and the 
quantifiers V, 3, inductively by the following: 

• If f = ato E her(L), tv,(f) = T iff ato E i, F iff -,ato E i, Indefinite otherwise. 
• If f = (t = u), (where t and u are two ground terms of the language) tv, (f) = T 

iff t and u are syntactically identical, False otherwise. 
• If f=-,g, or (gyh) where yE{A, v,~,~}, the truth value of f is defined as 

usual with the truth tables above. 
• If f= Vx g, tv,(f) = T iff for every t element of UNI(L), tv,(g(t)) = T, F iff there 

is a t element of UNI(L), tv,(g(t)) = F, Indefinite otherwise. 
• The same if f = 3x g. 

(ii) Iff is not closed, tv,(f) =tv,(Vf) where Vf is the universal closure of f 

With this third truth value, we are now able to extend the monotony property to 
the formulas making the body of the rules of a three-valued program (a program 
having rules like lit+- for, with the formula for using the symbols A, v, I,~,~, '<i, 3). 
If For(L) is the set of the formulas of the language using the symbols 
A, v, -,,~,~, V, 3, then we have the following proposition. 

Proposition 1.4. The maping l/J: IHT(L) ~ {Functions from For(L) to {T, F, In, such 

that l/J(i) =tv, is monotonic with respect to the set inclusion order on IHT(L) and the 
order induced by I.:; T, I.:; F on the set of the functions from For(L) to {T, F, I}. 



Programming in three-valued logic 197 

Proof. We have to show that if the formula for uses the symbols II, v, I,~,~, V, 3, 
j ~j implies that tv, (for) ~tvJ(for)- By induction on for. 0 

Remark 1.5. This monotony property means that if the formula for uses the symbols 
II, v, I,~,~, V, 3, having the truth value of some of its atoms unknown 
(Indefinite), its truth value cannot change (from True to False or the converse) but 
only gets a well-known truth value (True or False). 

We have extended the monotony property to For( L) by introducing a new truth 
value Indefinite. Since, even with this new truth value I, the formula f~ g gets the 
same truth value as the formula -1jv g in any Herbrand interpretation, and since 
we do not yet have the intersection models property with rules like lit¢::for, we are 
now going to extend the logical language L by adding a new implication connective 
to it. It is neither Lukasiewicz nor Kleene's one, but is denoted by -+, in order to 
give another expressivity to the implication connective as we said in the introduction. 

Definition 1.6. If f and g are two ground formulas, for any Herbrand interpre-
• • tabon I, 

tv,(f -+ g) = F iff tv, (f) = T and tv,(g) ¥ T 

and tVj(f -+ g) = T otherwise. 

f ~ g is logically equivalent to g -+ j 

Remark 1.7. This connective is called non-monotonic: 
(a) considered as an application from {T, F, 1)2 to {T, F, !}, with the order induced 

by I ~ F, I ~ T, on these sets, we do not have -+ (I, F) ~ -+ (T, F) although (I, F) ~ 
(T, F), since -+(1, F) = T while -+(T, F) = F. 

(b) if we include in For(L), the formulas using the connective -+, the mapping 
4>: IHT(L) -+ {Functions from For(L) to {T, P,!}}, such that cPU) = tv, is no longer 

• monotontc. 
One of the reasons for the choice of -+ is the completeness of the logic obtained. 

We have proved [24] that there is a formal system such that: 
• if A is a formula of propositional calculus using the symbols I, -+, we have an 

equivalence between "A is a theorem of this formal system" and "A is a 

tautology"; 
• we have another completeness theorem in propositional calculus for any formula 

using the symbols I, -+, II, and in predicate calculus for any formula using the 
symbols I, -+, and the existential quantifier 3 as well. 
The last completeness theorem enables us to ensure that the set of tautologies of 

this logic in predicate calculus is recursively enumerable. We have also proved that 
it is not recursive [24]. 

At this step of the extension of the truth values and the language, we are now 
able to get the model intersection property for a Pr program having rules like lit ~ for, 
if lit is a literal and the formula for uses the symbols II, v, I,~,~, V, 3. We first 
give the definitions of weak and strong three-valued Herbrand model of a program 
with negation in the following definition. 



198 J.P. Delahaye, V. Thibau 

Definition 1.8. A Herbrand interpretation i of IHT(L) is a strong (resp. weak) model 
of a set Ax of formulas of a logical language L if for each formula for of Ax, we 
have tv;(for) = True (resp.,c False). If a set Ax has a strong (resp. weak) model, 
then Ax is strongly (resp. weakly) consistent. 

Remark 1.9. The empty set is not necessarily a weak model of any formula: for 

example, 

A formula does not necessarily have a weak model: for example, 

-+ (q(x .. ... , Xn ) A -,q(X .. ... , xn ». 
In the following, we will only use the notion of strong model, to be called model, 
since it is actually the same notion as the notion of weak model for the programs 
we study. 

We then have the following intersection model property. 

Proposition 1.10. An intersection of three-valued Herbrand models of a program with 
negation is still a three-valued Herbrand model of this program. Consequently, for a 
consistent program, its least Herbrand model denoted by Itm(Pr) is the intersection of 
all its Herbrand models. 

Proof. Pr is a set of rules like lit +- for, with lit being a literal and the formula for 
using the symbols 3, V, A, V, -',=>,~. Let (ie)eEE be a family of Herbrand three­
valued models of Pro If i = neE E (ie), we must show that, for every ground instance, 
lit+- for of any rule of Pr, tv;(Iit+- for) = True. The only case to check is when 
tv;(for) = True according to the truth table of -+. tV,(for) = True implies tv"(for) = 
True, for each i., by the monotony property, since the formula for uses the symbols 
3, V, A, V, -', =>, ~ and i ~ ie. As ie is a model of Pr tv· (lit) = True, for each ie, , " 
that means lit E ie for each i., because lit is a literal and it follows that lit E i = 

nee E (ie), and so tv,Oit) = True, which implies that tv,Oit +- for) = True. 
So the least Herbrand three-valued model of a consistent program with negation 

is the intersection of all its Herbrand models. 0 

We now want to characterize this least Herbrand model as a least fixpoint of an 
operator associated with a program with negation. For this, we carryon with the 
extension of the bivalued case by extending the consequence operator of Apt and 
Van Emden to a consequence operator for a three-valued program. Since negation 
is allowed also in the head of the rules of a program, programs may not be consistent. 



Programming in three-valued logic 199 

For instance, the following Pr program does not have any three-valued model: 

This is why even if we allow negation in the head of the rules, programs with 
only positive rules, will playa peculiar part as in the theory of Fitting. To palliate 
the case of inconsistency of a Pr program, we add an element to the set I HT( L), 

which we call Contra in the following way. 

Definition 1.11. The set IHJ"(L) denotes the set IHT(L) u {Contra} and the order 
on IHJ"(L) is the order on IHT(L) extended by i c;; Contra for each i element of 
IHT(L). 

We are now able to define the "consequence" operator which is associated with 

a Pr program with negation. 

Definition 1.12. Tpr : IHJ"(L) ~ IHJ"(L), 

Tpr(i) = {lit E Her(L) I there is a ground instance lit ~ for 
of a rule of Pr such that tv;(for) = True} 

if this set does not include an atom and its negation; 

Tpr( i) = Contra otherwise; 

Tpr(Contra) = Contra. 

This operator provides a denotational semantics of a Pr program as the following 

theorem states. 

Theorem 1.13. (1) TPr is monotonic and has a least fixpoint denoted by lfp( Tpr). 
(2) Pr is consistent ¢:> Ifp( Tpr) :;e Contra. In this case: 
(a) an interpretation i E IHT(L) is a model of Pr¢:> Tpr(i) c;; i. 
(b) Ifp( Tpr) = Itm(Pr) = (\ (models of Pr). 

Proof. (1) If i E IHJ"(L), i c;; Contra and Tpr(i) c;; Contra = Tpr(Contra). Let i and 
j be two elements of IHT(L). i c;;j implies that tv;(for) ~ tv) (for) if the formula for 
uses only the symbols 3, V, ", v, I,~, ¢:>, which is the case for any formula making 
the body of a rule of Pro TPr is thus monotonic. TPr has a least fixpoint because 



200 J. P. Delahaye. V. Thibau 

IHT""(L) satisfies the Birkhoff-Tarski conditions, since the empty set 0 is its bottom 
element and any totally ordered set {la, a E A} of IHT""(L) has a lub (lowest upper 
bound) which is Contra if there is a E A such that Ia = Contra and UaEA la, 

otherwise. 
(2) To show that Pr is consistent if lfp( Tpr) ~ Contra, we show that: 
(a) if i E IHT(L) is such that Tpr(i) ~ i, then i is a model of Pr. 

Let lit +- for be a ground instance of a rule of Pr. Let us show that tv,(lit+- for) = True, 
if i E IHT(L) is such that Tpr(i) ~ i. The only case to check is when tv,(for) = True. 
As i E IHT(L) and Tpr(i) ~ i, Tpr(i) ~ Contra and lit E Tpr(i) by the definition of Tpr · 
So lit E i and tV,(lit) = True. 

(b) If iE IHT(L) is a model of Pr, then TPr(i)~ i. 
We have tv/Oit +- for) = True, for every ground instance of such a rule of Pr. If 
lit E Tpr( i), then there is a ground instance lit +- for of a rule of Pr such that 
tv,(for) = True. Then tv/Oit) = True and lit E i. 

(c) If i E IHT( L) is a model of Pr, then Tpri a£;:: i, for any ordinal a. 

By transfinite induction, a = 0, TpriO = 0. If a is a successor ordinal, Tpr( T Pria -1) ~ 
T Pr(i), by monotony of Tpr and induction, and Tpr(i) ~ i according to (b). If a is 
a limit ordinal, TPrt a = lub{ Tpri /3, /3 < a} ~ i, by induction. As lfp( T Pr) = Tprt a, for 
an ordinal a, Ifp( Tpr) ~ i, for any i model of Pro 

If Pr is consistent, there is i E IHT(L) such that i is a model of Pr and lfp( Tpr) ~ i 
so lfp( Tpr) ~ Contra. Conversely, if lfp( Tpr) ~ Contra, lfp( T Pr) E IHT(L) and 
Tpr(lfp( Tpr» ~ lfp( T pr) so lfp( Tpr) is a model of Pr which is consistent. We have 
shown that lfp( Tpr) is a model of Pr when it is ~Contra. As we have lfp( Tpr) ~ i, 
for any i model of Pr, when Pr is consistent, lfp( Tpr) = Itm(Pr) = n (models of Pr), 
according to Proposition 1.4. 0 

Remark 1.14. We have also studied the notion of optimal model (optimal post­
fixpoint) which provides a denotational semantics other than the least fixpoint. Since 
the set of three-value Herbrand interpretations is not a complete lattice, we do not 
have a biggest model but only several maximal ones. The intersection of all these 
models is called the optimal model, which coincides with the biggest consistent 
model. For more details, see [24]. 

In the following proposition, we know exactly the a ordinal such that Tpria = 

lfp( Tpr ) in the case when Pr is a definite program having rules like lit +-lit l , •.. ,litn' 
where lit is a literal without the equality predicate and the lit, are literals. 

Proposition 1.15. (a) If Pr is a three-valued definite program, then Tpr is continuous. 
TPr is not continuous for every Pro 

(b) If Pr is a three-valued definite program, then Itm(Pr) = lfp( Tpr) = Tpriw. 



Programming in three-valued logic 201 

Proof. (a) Let X be a directed subset ('tIx, Y E X, 3z E X such that x'" z and y ... z) 
of IHT(L), where L is the language intended by Pro 

lit E Tpr(Iub(X» ~ lit ~ lit l II litz II ... II litn is a ground instance of a rule of 
Pr such that tVIUb(X)(litl II Jit2 II' •• II litn) = True (Iub(X) 

is the least upper bound of X) 

lit ~ lit l II litz II ••• II litn is a ground instance of a rule of 
Pr such that Vi = 1, 2, ... , n, lit, E lub(X) 

~ lit ~ lit l II lih II •.• II litn is a ground instance of a rule of 
Pr such that 31 E X 'tIi = 1,2, ... , n, lit, E I because X 
is a directed subset of IHT(L) 

~ 3 I E X such that lit ~ lit l II litz II ..• II litn is a ground 
instance of a rule of Pr such that tVl(litl II litz II' •• II 
litn) = True 

~ 3 I E X such that lit E Tpr(l) 

¢:> litE lub(Tpr(X». 

Tpr(lub(X» = Contra ~ ato ~ lit l II litz II' •• II litn and jato ~ lit; II ••• A lit~ 
there are two ground instances of a rule of Pr such 

that: 'tIi = 1, 2, ... , n, tVlub(X)(Iit.) = True and 'tIj = 

1,2, ... , p, tVlub(X)(litj) = True 

31 E X such that ato E Tpr( 1) and jato E Tpr( I) since 
X is directed 

~ 31 E X such that Tpr(l) = Contra 

~ lub( Tpr(X» = Contra. 

(b) follows immediately from (a). 0 

Remark 1.16. When Pr has some quantifier and some function symbol, TPr is not 
generally continuous. For instance let Pr be 

P(a) ~ 'tIxQ(x) 

Q(a)~ 

Q(f(x» ~ Q(x). 

Let 

10=0; II ={Q(a)}; Iz={Q(a), Q(f(a»}; ... ; In = In_IU{QUn-l(a»}. 

We thus have an increasing sequence of three-valued Herbrand interpretations. 

n~O n~O 

Tpr(ln) = In+1 

U Tpr(In) = U In. 
n ;;>- 0 n ;;>- 0 



202 J. P. Delahaye. V. Thibau 

If Pr is a program without any quantifier, then it can be transformed into a definite 
program as we will see in the following, and since we will have Tpr= Tpr', TPr will 
be continuous. 

If Pr is a program without any function symbol, then every increasing sequence 
of interpretations is stationary and there is no problem of continuity. 

In the next section, we study the relations between our "consequence" operator, 
the Apt and Van Emden's one for programs without negation, and Fitting's operator 
for programs with only positive rules. To make this last link, we will need to introduce 
two notions of ,-completion and ~-completion. 

2. The relations between our operator, Apt and Van Emden and Fitting's operators 

We recall here the definition of the "consequence" operator of Apt and Van 
Emden in our formalism. 

Definition 2.1. If Pr is a bivalued program without negation, having rules like 
ato ..... for, where ato is an atom and for a formula using the symbols V, 3, A, V, then 
we associate the following operator with Pr: B pr : IHB(L)~ IHB(L), defined by 

Bpr(i) = pos-l{atoE her(L) I there is a ground instance ato ..... for 
of a rule of Pr such that tv; (for) = True}. 

Remark 2.2. We know that BPr is monotonic, for the order i,,;;. j ¢::> pos(i) ~ pos(j). 
It follows that Bpr has a least fixpoint which is also the least bivalued Herbrand 
model of Pr, since the models of Pr are exactly the post-fix points of B pr and the 
least fixpoint of a monotonic operator is its least post-fixpoint (by transfinite 
induction, Bprta ~ i, for every i model of Pr and every a ordinal). 

The following proposition makes the link between our operator and the operator 
of Apt and Van Emden when Pr is a program having rules like ato ..... for, where the 
formula for uses the symbols V, 3, A, V. 

Proposition 2.3 
(a) Bpr = pOs-l 0 TPr 0 pOS 
(b) Ifp(Bpr) = pos-l(Ifp( Tpr» = Ibm(Pr) = pos-l(Itm(Pr». 

Proof. (a) Use the fact that if the formula for uses the symbols V, 3, A, v, then 
tV,(for) = True ¢::> tvpos(,)(for) = True, by induction on the formula for. 

(b) Show that Bprt a = pos -I( T Pr t a), by transfinite induction, with (a). 0 

We are now going to study the relations between our operator and Fitting's one 
for programs having positive rules. In order to make these relations easier, we need 
the two notions of ,-completion and of ~-completion of a program. To make these 



Programming in three-valued logic 203 

two completions, we introduce the normal form of a program. Finally to make the 
logical link between a program and its normal form, we need to introduce the notion 
of three-valued Herbrand tautology and equivalence. 

Before that we carryon with the extension of the logical language. We can see 
that the formula 1 -+ g and the formula ,g -+ -V do not have the same truth value 
in any Herbrand interpretation; for instance if j is an interpretation such that 
tv;(f) = I and tv;(g) = F. This is why, instead of having only one connective 
equivalence associated with -+ as in the bivalued case (¢», we have two equivalence 
connectives according to the following definition. 

Definition 2.4. We define the two equivalence connective E. and +- -+ by, if 1 and 
g are two ground formulas: 

(1) tv,(fE.g)=True ifftv;(f)=tv,(g), tV,(fE.g)=False otherwise. 
(2) tv,(f+- -+ g) = True iff [tv, (f) = True¢>tv,(g) = True], 

tv, (I +- -+ g) = False otherwise. 

Remark 2.S. The first formula 1 E • g has the same truth value as the formula: 

in any Herbrand interpretation. In fact, the connective E • is exactly the connective 
== of Fitting. 

The second formula 1 +- -+ g has the same truth value as the formula: 

in any Herbrand interpretation. 

Definition 2.6. (a) A formula 1 of a logical language L is a Herbrand three-valued 
tautology if it is True in any Herbrand interpretation, which means that tv,('Vj) = 
True for every Herbrand interpretation i. We denote the fact that 1 is a Herbrand 

tautology by FTH f 
(b) Two formulas 1 and g of a logical language containing E. are logically 

Herbrand equivalent iff 1 E • g is a Herbrand three-valued tautology. We denote the 
fact that 1 and g are logically Herbrand equivalent by 1 =TH g. 

Remark 2.7. To say that FTHI E. g is stronger than saying that 1 and g have the 
same truth value in any Herbrand interpretation. FTH 1 E) g implies that 1 and g 
have the same truth value in any Herbrand interpretation but the converse is false 
except when 1 and g are closed formulas of the language. 

We could have defined these notions more generally, for every three-valued 
interpretation, for the general case, see [24]. The following examples, which we 
need for making the logical link between a program and its normal form, are true 
in every three-valued interpretation. 



204 1. P. Delahaye, V. Thibau 

2.1. Examples of logical three-valued equivalences 

A=>B =TH -,B=>-,A, A¢:>B =TH (A=>B) /\ (B=>A), 

A=>B =TH -,A vB, 

A /\ (B v C) =TH (A /\ B) v (A " C), 

A v (B v C) =TH (A v B) v C, 

-,(A v B) =TH -,A /\ -,B, 

(A v B) ~ C =TH (A ~ C) /\ (B ~ C), 

A ~ (B /\ C) =TH (A ~ B) /\ (A ~ C), 

"'Ix (P /\ Q) =TH ("'Ix P) /\ ("'Ix Q), 

-,(Vx P) =TH (3x -,P), 

A v (B /\ C) =TH (A v B) /\ (A v C), 

A /\ (B /\ C) =TH (A /\ B) /\ C, 

-,(A /\ B) =TH -,A v -,B, 

(A/\ B)~ C =TH A~ (B~ C), 

A~ (B v C) =TH (A~ B) v (A~ C), 

3x (P v Q) =TH (3x P) v (3x Q), 

-,(3x P) =TH ("'Ix -,P), 

"'Ix (P~ Q) =TH (3x P) ~ Q if x is not a free variable of Q, 

3x (P~ Q) =TH ("'Ix P)~ Q if x is not a free variable of Q. 

Remark 2.8. In propositional calculus, we have studied more generally the 
expressivity of the connectives in three-valued logic. This can be helpful to conceive 
languages based on rules for expert systems which contain other connectives than 

~, -', v. For this, see [24]. 

We need the notion of the universal closure of a set of formulas of the language 
for the following. 

Definition 2.9. If Ax is a set of formulas of a logical language L, then the formula 
V Ax denotes the conjunction of all the universal closures of the formulas of Ax. 

Before defining the normal form of a program, we can associate a definite program 
with a program without any quantifier, according to the following proposition. 

Proposition 2.10. If Pr is a three-valued program without any quantifier, having rules 
like lit +- for where the formula for uses the symbols -', /\, v, =>, ¢:>, there is a definite 
Pr' program such that VPr =TH VPr'. 

Proof. This uses the two-valued classical transformations. If any formula for uses 
the symbols -', /\, v, =>, ¢:>, then it is logically equivalent to a formula in disjunctive 
normal form (a disjunction of conjunctions of literals). Pr is a set of rules like 
lit+-for, and we then use the fact that (A v B)~ C =TH (A~ B) /\ (A~ C) and 
"'Ix (A(x) /\ B(x)) =TH "'Ix A(x) /\ "'Ix B(x). 0 

Remark 2.11. This logical equivalence is not only true in a Herbrand interpretation, 
but in every three-valued interpretation. This proposition solves the problem of 
continuity for a program without any quantifier because it can easily be proved 
that, if Pr' is the definite program associated with Pr, T Pr = T Pr" 



Programming in three-valued logic 205 

We are now going to define the normal form of a pack of rules having their head 
built on the same predicate symbol in order to complete a program with negation 
in two ways. 

Definition 2.12. Let r), r2, ... , r m be m positive rules with their head literals built 
on the same predicate symbol p; ri:p(li.I,li.2, ... ,I,.n)+-for,; for i=l, ... ,m. The 
normal form of the pack (rl' r2,"" rln ) is the rule 

P(XI, X2,' .. , xn) +- for; v' .. v for:" 

where for; denotes the ground formula 

3YI .. ·3yp (XI = li,I'" .. " Xn = I"n" for,) 

where y), .. . , YP are the free variables of for" 1,,1,1,.2,"" I"n and XI, . . " Xn are 
some variables different from the YJ' 

We define the normal form of a pack of rules with a negative literal in their heads 
built on the same symbol of predicate p in the same way, 

We can give the logical relation between a program and its normal form with the 

following proposition. 

Proposition 2.13. If r is the rule obtained from the normal form of the pack 

(r 10 r2, ... , r m), we have 

V r = TH V r I " ••• " V r m' 

Proof. Let ri be p( ti,), 1,,2, ... , li,n) +- for, with YI,"" Yp the free variables of 
for" Ii,), li,2, ... , I"n. Since for; does not have any free variable, we have 

Vr =TH Vx) VX2 ... VXn (p(x), X2, ... , xn) +- for; v ... v for:"). 

Since (A) v A2 v' , . v An) ~ B =TH (AI ~ B)" ... /\ (An ~ B) and "Ix (A(x) /\ B(x» 
=TH ("Ix A(x) /\ "Ix B(x» we have 

VX)VX2' .. VXn (p(x), X2, ... , xn) +- for; v' .. v for:") =TH 

VX)VX2' .. VXn (p(Xt, X2,"" xn) +- forD,,· .. 

/\ VXtVX2' .. VXn (p(x l , X2,"" xn) +- for:"). 

By using the fact that 3x A(x) ~ B =TH "Ix (A(x) ~ B) if X is not a free variable of 

B, we have 

VXt" ,Vxn (p(Xt, ..• ,xn)+-for:)""'TH 

"Ix) •.• VXn VYt ..• Vyp (p(xt , .. . , xn) +- (Xt = 1,.1/\ ... /\ Xn = li,n /\ fort». 
At this step of the demonstration, all the logical equivalences used are True in every 
three-valued interpretation and "'" could be used instead of ""'TH' From now on the 
logical equivalences used in the rest of the proof become true only in the interpreta-



206 J. P. Delahaye, V. Thibau 

tions where the equality predicate is interpreted by syntactical equality. In such an 
interpretation and particularly in any Herbrand interpretation, we have 

VX I ' "VXnVYI" ·VYp(p(x ..... ,xn) 

+- (XI = ti,l A ••• A Xn = ti,n A fori» =TH 

VYI'" VYp(P(t"I,"" t,.n)+-for,). (1) 

As the formulas 

+- (XI = t,.1 " ••• " xn = t"n " for;}) 
and 

f2 = VYI ... VyP (P(ti.I , . .. , t"n) +- for;) 

are closed, to show (1) we only have to show that fl and f2 have the same truth 
value in any Herbrand interpretation (which would be more generally true in an 
interpretation where the equality predicate is interpreted by syntactical equality). 

As the formulasfl andf2 never take the truth value Indefinite (because the implication 
connective ~ never takes the truth value Indefinite), we only have to show that 
tV,(fI) = True iff tVi(f2) = True. 

tV,(fI) = True iff 

Vt l ••• Vtn Vu\ ... VUp E UNI(L)n+p 

[Vj E {I, ... , n}, t, = ti.j(u ..... , up) and 
tV,(for,(ul," ., up» = True 

implies tVi(P(tI,"" tn» = True]. 

tV,(f2) = True iff 

VUI' .. VUp E UNI(LY [tv,(for,(u\, ... , up» = True implies 
tv,(p(ti,l(u l , ... , up), ... , t'.n(u ..... ' up») 
= True]. 

It is then clear that tV,(fI) = True iff tv;(f2) = True. 0 

Proposition 2.14. If Pr is a three-valued program and Pr' is its normal form, we have 
VPr =TH VPr'. 

Proof. Easy with Proposition 2.13. 0 

We are now able to define the two kinds of completion of a program. 

2.2. Completions of rules and programs 

Definition 2.15. Let (rl , r2, ... , r m) be a pack of rules with, in their head, a positive 
literal built on the same predicate symbol p. The ....,-completion rule of the pack 



(,), '2, ... , 'm) is the rule 

,lit ~ ,for 

Programming in three-valued logic 

where lit ~ for is the normal form of the pack (r l , r2, ... , , m). 

The -+-completion rule of the pack (rl, r2, ... , rm) is the rule: 

lit-+ for 

207 

where lit ~ for is the normal form of the pack ('" r2, ... , , m). This is not a three­

valued rule in general. 
We do the same for the packs of negative rules by using the fact that 

"ato = TH ato. 

Definition 2.16. The ,-completion of a three-valued Pr program with only positive 
rules is the program obtained from Pr by first replacing all the packs of rules by 
their normal forms and adding the ,-completion of these packs and secondly by 
adding to the Pr program 'P(XI,' .. , xn) where p is a predicate symbol of Pr without 
being in any head of its rules. We denote this new program by 

Comp(" Pr). 

The same for the -+-completion of Pr, denoted by 

Comp( -+, Pr). 

Example 2.17. We give an example of ,-completion which allows us to define the 
predicate odd (by the negation of the predicate even); but as we allow the negation 
in the programs, we could have defined it without this mechanism. Let Pr be the 

program 

r) : even(ze) 

'2: even(fo(fo(x))) ~ even(x). 

The normal form of'l and '2 is r: even(y) +- 3x (y = ze v (y = fo(fo(x» 1\ even(x»). 
The ,-completion of Pr is the program obtain by adding to r the rule 

,even(y) +- Vx (,(y = ze) 1\ (,(y = fo(fo(x») v ,even(x»). 

We could have defined the ,-even predicate without using the mechanism of 

completion by 

,even(fo(y» +- even(y). 

Remark 2.1S. If Pr is a bivalued program with the rules ato ~ for, with the formula 
for using the symbols V, 3, 1\, v, then we have only one completion because 
VComp("Pr)=BVComp(=>,Pr), since we have ,B=>,A=BA=>B (j=Bg 
means that the formula f~g is a bivalued tautology, which means True in every 
bivalued interpretation). 



208 J. P. Delahaye. V. Thibau 

The completion of a program Pr having positive rules in the way of Fitting is the 
-+-completed of the ,-completed of our program. Since the formula A ~ B is logically 
equivalent to (A-+B)I\(B-+A)I\(,A-+,B)I\(,B-+,A), and Fitting completes 
his program by putting the pack of rules built on the same predicate p in their heads 
in normal form. The normal form of the pack (rlt r2 , ••• , rm) built on the predicate 
p is the rule 

where for: denotes the ground formula 

3YI ... 3yp (XI = ti,ll\' . '1\ Xn = t"n 1\ fori) 

and ri is the rule p(tt,I>"" ti•n ) +- for,; i = 1, ... , m and YI>"" YP are the free 
variables of forj, tj,I,"" t j.n and XI, ..• ,Xn are variables different from the Y)' 

We are now able to make the relation between our "consequence" operator and 
Fitting's operator. To make this relation, we first give the definition of the operator 
of Fitting in our formalism: 

Definition 2.19. The following operator introduced by Fitting [7] is defined only 
for programs with positive rules and denoted F pr . F pr : IHT(L) -+ IHT(L), is such that: 

Fpr(i) = {atolthere is a ground instance ato+-for 
of a rule of Pr such that tVi(for) = True} 

u {,ato I for every ground instance ato+- for of Pr, tVj(for) = False}. 

The following proposition gives the relations between our operator and Fitting's 
one. 

Proposition 2.20. (1) Tcomp(.,Prl = F pr . 
(2) (a) A three-valued Herbrand interpretation i is a model of Comp(" Pr) 

iff Fpr(i) ~ i. 
(b) A three-valued Herbrand interpretation i is a model of Comp( -+, Comp( I, Pr» 

iff FPr(i) = i. 

(3) Ifp(Fpr) = Itm(Comp( -+, Comp(" Pr») = Itm(Comp(" Pr». 

Proof. (1) TComp( •. Prl = F pr . We first show that if Pr' is the normal form of Pr, then 
we have TPr = T Pr'. Let Pr be a three-valued program. If Pr' is its normal form, then 
VPr =TH VPr' (Proposition 2.14). Let (at, ... , an) E UNI(L)" such that 
lit(a\o ... , an) E Tpr(i). Then there is (tl>' .. , tp ) E UNI(L)P such that 



Programming in three-valued logic 209 

is a ground instance of Pr with tVi(for,(tlo ... ,Ip» = True. This ground instance 
comes from a rule of Pr like 

lit(I"I(YI,"', Yp)"", 1"n(YI,'" ,yp» ~ fori(YI,"', Yp) 

So 

Iit(x l " •• , xn) ~ V (3YI .. , 3Yp(xl = I"I(YI," , , Yp) , 
" • , ." Xn = li,n(YI,' . " Yp)" for,(YI,' " , Yp») 

is a rule of Pr', normal form of Pr and there is a ground instance of this rule 

lit(al,"" an) ~ V (3YI . , . 3Yp(al = I',I(YI,"', Yp) 
• , 

such that 

since there is (110 , --, Ip) E UNI(LY such that aJ = t"j(t lo __ ., tp ) and 
tv, (fori(tt> ,." Ip» = True. So lit(a lo ,." an) E Tpr,(i), 

In the same way, Iit( al> ' . , , an) E Tpr,(i) implies that lit( alo ' , . , an) E Tpr( i). 

Iit(a l ,. __ ,an )ETpr(i) ~ Iit(ah·--,an )ETPr'(i)· (.) 

So Tpr(i) = Tpr,(i), since the case TPr(i) = Contra comes from (.). So TPr= TPr,. 

Secondly, we prove that TComph,Prl(i) ¥: Contra if i E IHT(L). (That comes from 
the fact that there is only one rule with a given predicate symbol in its head in the 
program Comp(" Pr», Comp(" Pr) is obtained by adding to the rules of the 
normal form of Pr like 

ato(XI,"" xn) ~ V (3YI ' , . 3Yp(xl = 1,,1'" , ," Xn = li,n" fori» 
• , 

the rules 

,ato(xlo , , .. , Xn) ~ I V (3YI •.. 3Yp(xl = 1,,1" • , ." xn = I"n "for,» . 
• , 

If there is (al,"', an) E UNI(L)n such that ato( a I, ... , an) E TComp(-"prl(i) and 
lato(a)" .. , an) E Tcomp(-"pr)(i), then, if 

for' = V (3YI ... 3Yp(ol = Ii. 1 " • , • "an = li,n "fori», 
• , 

we both have tv, (for') = True and False which is impossible, 



• 

210 l.P. De/ahaye, V. Thibau 

For the literals 'P(X" ... , xn) where P is a predicate symbol of Pr without being 
in any head of its rules, we cannot have both a ground instance of p(x\, ... , xn) 
and its negation in TComp("Pr)(i) since p does not appear in the head of a rule of Pro 

Finally, we are now able to prove that TComp("pr)(i) = FPr(i). 
TComp(-"Pr)( i) = {lit E Her( L) I there is a ground instance lit +- for of Comp( I, Pr) 

such that tvj(for) = True} if this set does not contain an atom and its negation, 

Tcomp(-,.P,)(i) = Contra otherwise. 
F Pr( i) = {ato E her( L) I there is a ground instance ato +- for of Pr such that tv i ( for) = 

True} u {,ato E her(L) I for each ground instance ato +- for of Pr, tv, (for) = False} = 

Tp,(i)u {,ato E ,her(L) I for each ground instance ato+-for of Pr, tv;(for) = False} 
because Pr has only positive rules. Let lit E TComp("Pr)( i). Either lit = ato and lit E 
Tp,,( i) = Tp,(i), so lit E F p,( i); or lit = ,ato( a" ... , an) E Tcomp( -.,P,)(i) . 
• Either for some (a\, ... , an) E UNI(L)n and some ground instance of 

Comp(-" Pr): 

such that tVj(for') = False, with for' = Vi (3y, ... 3Yp(a, = Ij"(Y,, . .. , yp) A ••• A 

an = 1;,n(YI, , .. , Yp) 1\ forj(Y" ... , Yp»)). So Vi = 1, .. " m and V(UI,"" up) E 
UNI(L)P, if a, = li"(U,, ... , up), for every j = 1, ... , n, then tv,(for,(u\" .. , up» = 

false. Let ato( ai, ... , an) be the head of a ground instance of a rule of Pr; it 
comes from 

ato(t",(y" ... , yp), ... , t"n(Y" ... , Yp» +-forj(Y" ... , yp). 

Let (u" .. " up) E UNI(LY be such that tj,/u" ... , up) = a" for every j = 1, ... , n. 
Then tVj(for,(u" ... , up» = False, since tVj(for') = False; so lit = 

,ato(a" ... , an) E Fp,(i). 

• Or ,ato(a" ... ,an)E Tcomp(-"p,)(i), because ato is a predicate symbol of Pr 
without being in any head of its rules. Then ,ato( a \ , ... , an) E 

{,ato E Iher(L) I for each ground instance ato +- for of Pr, tv, (for) = False} since 
there is no ground instance ato +- for of Pr, and ,ato( a" .. , , an) E F p,( i), 

Conversely, if lit E F pr( i), then either lit E Tpr(i) = Tp,'( i) s Tcomp("pr)( i), or lit = 
lato( a, , ... , an) for some (a 1 , ••• , an) E UNI( L)"; then for every ground instance 

ato(lj,I(U"", , up), . .. , Ij,n(u", .. , up» +- for,(u" ... , up) 

such that I"j( u" ... , up) = aj, for every j = 1, ... , n, we have tv,(for;( u\, ... , up» = 

False; so tv,(V, (3y, ... 3Yp(a l = I;,I(YI," ., Yp) A' •• 1\ an = Ij,n(YI'" ., Yp) A 

for, (y" ... , Yp»» = False and ,ato( a" ... , an) E Tcomp(-"p,)( i). If ato is not in any 
head of a rule of Pr, then lato(x" ... , xn) E Comp(" Pr) and every ground instance 
of ,ato(x" ... , xn) belongs to {Iato E Iher( L) I for each ground instance ato +- for 
of Pr, tv,(for) = False} s Fpr(i) and to Tcomp(-"Pr)(i). 

We then get the result (2a) by Theorem 1.13(2a), because i E IHT(L) is a model 

of Pr iff Tp,(i) s i. As TComp("Pr) = F p" we have that a three-valued Herbrand 
interpretation i is a model of Comp( I, Pr) ¢:> TComp(-"Pr)( i) ~ i ¢:> F Pr( i) ~ i. 



Programming in three-valued logic 211 

Result (2b) may be proved in two ways: 
• The first way using Fitting's argument saying that i is a model of Pr (which means 

a model of its completion) iff i is a fixpoint of FPr and using that the Fitting's 
completion of a Pr program is the ~-completion of the I-completion of a program 
in our way, we then obtain that a three-valued Herbrand interpretation i is a 
model of Comp(~, Comp(" Pr))~ Fpr(i) = i . 

• The second way will be seen as a result of the following Proposition 2.21. 
(3) Ifp(Fpr) = Itm(Comp(~, Comp(" Pr))) is a consequence of (2b). Ifp(Fpr) = 

Itm(Comp(l, Pr)) is a consequence of (2a) and of the fact that FI>ria ~ i for each 
model i of Comp(" Pr) for each ordinal a, by transfinite induction. 0 

We end this section by a proposition which enables us to prove the result (2a) 

of the previous proposition. 

Proposition 2.21. If Pr is consistent, then Comp(~, Pr) is consistent and we have 
(1) An interpretation i E IHT(L) is a three-valued model of Comp(~, Pr)~ 

Tpr( i) = i. 
(2) Itm(Pr) = Itm(Comp(~, Pr)) = lfp( Tpr). 

Proof. We first remark that (2) is partly a consequence of (l): Itm( Comp( ~, Pr) = 

Ifp( T pr) and secondly a consequence of Theorem 1.13: Ifp( T pr ) = Itm(Pr). We also 
remark that (2b) of Proposition 2.20 may be proved with (1) of this proposition: 

F pr( i) = i ~ Tcomp(-"pr)(i) = i (Proposition 2.20( 1)) 

~ i is a model of Comp( ~, Comp( I, Pr)) 

(by (1) of the Proposition 2.21). 

We just have to show (1): 

i ¥- Contra and Tpr(i) = i ~ i is a model of Comp(~, Pr). 

That will also prove that if Pr is consistent, then Comp(~, Pr) is also consistent 
since if Pr is consistent then lfp( T Pr) ¥- Contra according to Proposition 1.4 and 
lfp( Tpr) is then also a model of Comp(~, Pr) too. 

(i) Tpr(i) = i=>i is a model of Comp(~, Pr). Let r be a rule of Comp(~, Pr). 

• Either r is like 

lit~ for 

and r is a rule of Pr', the normal form of Pro Since Tpr(i) = Tpr·(i), T pr·(;) ~ i; 
hence i is a model of Pr' and finally tv,(1it~for) = True . 

• Or r is like 

lit ~ for. 

We have to show that tVi(lit~ for) = True for every ground instance of r; r is like 

lit(x l , ... , x")~ V (3YI ... 3Yp(x1 = ti,I(Yh"" Yp) , 

1\' •• 1\ Xn = t,.n(Yt, .. " Yp) 1\ for,(Yt, ... , Yp))). 



212 l.P. Delahaye, V. Thibau 

If (I" •• • , In) E UNI(L)n then 

lit(t" ... , tn)~ V (3y, ... 3Yp(t, = tj.,(y" ... ,Yp) , 

" ... " tn = t"n(Y',"" Yp)" for,(y" ... , Yp))) 

is a ground instance of r. The only case to check is when tVj(lit(t" ... , tn)) = True. 
Since i ~ Tpr(i) = Tpr·(i), tV,(lit(t" ... , tn)) = True implies that lit(t" ... , tn) E Tpr·(i)· 
So there is a ground instance: 

lit(t" .. " tn) ~ V (3y, ... 3Yp(t, = t",(y" ... ,yp) 
I 

" ... " tn = t"n(Y" .. . , Yp)" forj(Y,,' .. ,Yp))) 

of a rule of Pr' such that tV,(for') = True with 

for' = V (3y, ... 3Yp(t, = tj.,(y" ... ,Yp) , 

" ... " tn = tj.n(y" ... , Yp)" forj(Y".··, Yp)))· 

So tv;(lit(t" ... , tn) ~ for') = True. 
(ii) Conversely if i is a model of Comp(~, Pr), then i -:fi Contra and Tpr(i) = i. 

If i is a model of Comp( ~, Pr) then i is a model of Pr' if Pr' is the normal form of 
Pr and a model of Pr since VPr =TH VPr'. So Tpr(i) ~ i and i -:fi Contra. Besides that, 
tv;(lit~ for') = True for every ground instance lit~ for' of a rule of Comp(~, Pr). 
So if litE i, tv;(for') = True and litE Tpr.(i) = Tpr(i) since there is a ground instance: 

lit ~ for' 

of Pr' such that tv;(for') = True and Tpr·(i) -:fi Contra. So i ~ TPr(i). 
If Pr is consistent, lfp( Tpr) -:fi Contra is a model of Comp( ~, Pr) which is consistent 

too. 0 

In the next section, we study the operational semantics of a program: we show 
how to get a three-valued interpreter from a bivalued one. 

3. Interpreters 

The meaning of a program is given by its least model. We now search for algorithms 
that compute that smallest model or give informations on it. 

We thus define three kinds of interpreters: 
• the ground answer interpreters: which answer if a ground atom (resp. literal) 

belongs to Ibm(Pr) (resp.1tm(Pr)); 
• the open answer interpreters: which answer, for a given atom (resp. literal) with 

variables, ato(x" ... , xn ), (resp. lit(x" ... , xn )), a sequence of substitutions 



Programming in three-valued logic 213 

81 ,82 ,- •• , such that all the ground instances of 8;(ato(xl,""Xn » (resp. 
8;(lit(x., ... , xn))) are exactly the ground instances of ato(xl , ... , xn) (resp. 
Jit(XI,"" xn» which are in Ibm(Pr) (resp. Itm(Pr»; 

• the saturating interpreters: which give a finite representation of Ibm(Pr) (resp. 

Itm(Pr». 

Remark 3.1. It is easy to transform a three-valued interpreter for a bivalued program 
into a bivalued interpreter for this program since Ibm(Pr) = pos-l(ltm(Pr» (Proposi­

tion 2.3). 

Remark 3.2. It is interesting to see how to get a three-valued interpreter from a 
bivalued one. We first transform a three-valued program into a bivalued one with 

the following transformations: 
Let Pr be a three-valued program on a first order logical language L. u( L) is the 

first order logical language obtained from L by adding to it, not-P, for each predicate 
symbol P of L. Let u(Pr) be the bivalued program on u(L) obtained from Pr with 

the following transformations: 
(1) We remove ¢:> and ~ by using 

A~B ==TH (-,A v B), 

A ~ B ==TH (A 1\ B) v (-,A 1\ -,B). 

(2) We put the connective -, just before the atoms by using 

-,(A v B) == TH (-,A 1\ -,B), 

-,(A 1\ B) ==TH (-,A v -,B), 

-,('v'x A(x» ==TH 3x (-,A(x», 

-,(3x A(x» ==TH 'v'x (-,A(x», 

-,-,A == TH A. 

(3) We replace all the -,ato by not-ato. 

Definition 3.3. If i E IHT(L), then u( i) = pos(i) u {not-pC t .. ... , tn ) I-,p(t I, ••• , tn ) E 

i}. The interpretation O'(i) belongs to IHT(O'(L». 0' is a bijection between IHT(L) 

and pos(IHB(O'(L». 

We can get a three-valued interpreter from a bivalued one with the following 

theorem: 

Theorem 3.4. If Pr is a consistent three-valued program, then 

Itm(Pr) = O'-I(pos(lbm(O'(Pr»». 

Proof. We show by a transfinite induction that 0'( TPria) = pos(Bu(Prlia) for every 
a ordinal. As Itm(Pr) = Tpria and Ibm(O'(Pr» = B"(Prlif3, we have the result by 



214 1. P. Delahaye, V. Thibau 

taking the greatest ordinal. We show that, 

Vi E IHT(L), u( Tpr(i» = (pos 0 Bu(Pr) 0 pOS-I)(u(i». 

We use the fact that Bu(Pr) = pOS-1 0 Tu(Pr) 0 pos since u(Pr) is a bivalued program, 
according to Proposition 2.3. So we have to show that u(Tpr(i» = T(J'(pr)(u(i». 

u(Tpr(i»=pos(Tpr(i»u{not-p(t., ... ,tn) such that ,p(t., ... ,UETPr(i)}. 

T(J'(pr)(u(i»={atoEu(L)lthere is a ground instance ato+-for of u(Pr) such that 
tVU(I)(for) = True}. If litEu(Tpr(i», either lit=ato with atoE TPr(i) or lit = not-ato 
with ,atoE Tpr(i) and we have the result because tVu(I)(u(for»=True~tvi(for)= 
True. We then have u( Tprja) = pos(Bo-(Pr)ja) for every ordinal a, by transfinite 
induction: a = 0, TprjO = 0 = pos(0). 

If a is a successor ordinal, then 

u( Tpr( T Prj a -1) 

= (pos 0 B u ( Prj 0 pOS-I)( u( Tprja -1) (according to (*» 
= (pos 0 Bo-( Prj 0 pos -I )(pos( Bu(Pr)j a -1) by induction 

= pos(Bu(Pr)ja). 

If a is a limit ordinal, then 

u(TPrja) = u(1ub{Tprjp, P < a}) 

= u(1ub{pos( Bu(Pr) t P), P < a}) by induction; 

we have lub{pos(i), iE I} = pos(\ub{i, iE I}); so u(TPrja) = pos(Bu(pr)ja). 

So u(1tm(Pr» = pos(1bm(u(Pr») and ltm(Pr) = u-'(pos(1bm(u(Pr»». 0 

Example 3.S. Let Pr be the following program where A, B, C, D are ground atoms: 

A 

C+-A 

,D+-,B, C 

E +- C, ,D. 

Then u(Pr) is 

A 

not-B+-

not-D +- not-B, C 

E +- C, not-D, 

Ibm(u(Pr» = {A, not-B, C, not-D, E, ,not-A, ,not-C, ,not-E, ,B, ,D}, 

pos(1bm(u(Pr))) = {A, not-B, C, not-D, E}, 

u-'(pos(lbm(u(Pr)))) = {A, ,B, C, ,D, E} = Itm(Pr). 



Programming in three-valued logic 215 

By purely syntactical operations on interpretations and programs, every bivalued 
interpreter may be transformed into a three-valued one_ This has been done for 
Prolog interpreters [6] and is actually a classical method used for expert systems 
working in forward chaining_ 

References 

[1] K. Apt and M. Van Emden, Contribution to the theory of logic programming, l. ACM 29(3) (1982) 

841-842. 
[2] M. Ben Jacob and M. Fitting, Stratified and three-valued logic programming semantics, in: R.A. 

Kowalski and A. Bowen, eds., Proc. Fifth International Conference and Sympo.~ium on Logic Program­
ming (MIT Press, Cambridge, MA, 1988) 1055-1069. 

[3] N.D. Belnap, Modern Uses of Multi-valued Logic (Reidel, Dordrecht, 1977). 
[4] K.L. Clark, Negation as failure, in: Gallaire and Minker, eds., Logic and Databases (Plenum Press, 

New York, 1978) 293-324. 
[5] J.P. Delahaye, Programmation en logique trivaluee, Publication interne I.T. No. liS, Universite 

des Sciences et Techniques de Lille, 1987. 
[6] J.P. Delahaye and P. Mathieu, Logique partielle et Prolog, Seminaire de programmation logique 

de Tregastel, 1989. 
[6a] J.P. Delahaye and V. Thibau, The optimal model of a logic program with negation, lelia 1990, to 

appear in Lecture Notes in Computer Science (Springer, Berlin). 
[7] M. Fitting, A Kripke-Kleene semantic for logic programs, l. Logic Programming 4 (1985) 295-312. 
[8] M. Fitting, Notes on the mathematical aspects of Kripke's theory of truth, Notre Dame l. Formal 

Logic 27(1) (1986) 75-88. 
[9] M. Fitting, Partial models and logic programming, Theoret. Comput. Sci. 48 (1986) 229-255. 

[10] D.M. Gabay and J. Sergot, Negation as inconsistency, 1. Logic Programming I (1986) 1-35. 
[11] K. Kunen, Negation in logic programming, 1. Logic Programming 2 (1987) 289-308. 
[12] K. Kunen, Some remarks on the completed databases, in: R. Kowalski and K. Bowen, eds., Proc. 

Fifth InternatIOnal Conference on Logic Programming (MIT Press, Cambridge, MA, 1988) 978-992. 
[13] J.L. Lassez and M.J. Maher, Optimal fixpoints of logic programs, Theoret. Comput. Sci. 39 (1985) 

15-25. 
[14] J.W. Lloyd, Foundations of Logic Programming (Springer, Berlin, 2nd ed., 1987). 
[15] P. Mancarella, S. Martini and D. Pedreschi, Complete logic programs with domain-closure axiom, 

1. Logic Programming 5 (1988) 263-276. 
[16] Z. Manna and A. Shamir, The theoretical aspects of the optimal fixpoints, SIAM l. Comput. 5(3) 

(1976) 414-426. 
[17] Z. Manna and A. Shamir, The optimal approach to recursive programs, l. ACM 20(11) (1977) 

824-831. 
[18] A. Mycroft, Logic programs and many-valued logic, in: STACS 84, Lecture Notes in Computer 

Science 166 (Springer, Berlin, 1984) 274-286. 
[19] T. przymunsinski, Non monotonic formalisms and logic programming, in: Proc. ICLP '89 (1989) 

655-674. 
[20] T. przymunsinski, On the declarative semantics of deductive databases and logic programs, in: J. 

Minker, ed., Foundations of Deductive Databases and Logic Programming (Morgan Kaufman, Los 

Altos, 1988). 
[21] J.B. Rosser and A.R. Turquette, Many-valued Logic (North-Holland, Amsterdam, 1958). 
[22] J_C. Shepherdson, Negation in logic programming, in: J. Minker, ed., Foundations of Deductive 

Databases and Logic Programming (Morgan Kaufman, Los Altos, 1988) 19-87. 
[23] J.e. Shepherdson, A sound and complete semantics for negation as failure, Research Report. 
[24] Y. Thibau, Une logique trivaluee appliquee it la programmation logique, These de doctorat, 

Universite des Sciences et Techniques de Lille, 1990. 
[25] L. Thorne MacCarty, Fixedpoints semantics, 1. Logic Programming S (1988) 3-31. 



216 J. P. Delahaye, V. Thibau 

[26] R. Turner, Logiques pour I' Intelligence Artificielle (Masson, Paris, 1987). 
[27] M.H. Van Emden, Quantitative deduction and its fixpoints theory, J. Logic Programming I (1986) 

37 -53. 
[28] M.H. Van Emden and R.A. Kowalski, The semantics of predicate logic as a programming language, 

J. ACM 23 (1976) 733-742. 
[29] A. Van Gelder, Negation as failure using tight derivations, in: J. Minker, ed., Foundations of 

Deductive Databases and Logic Programming (Morgan Kaufman, Los Altos, 1988). 
[30] A. Yasuhara, Theory of Recursive Functions (Academic Press, New York, 1971). 




