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Abstract

Section 1: Philosophy, logic and constructivity

Philosophy, formal logic and the theory of computation all bear on problems in the
foundations of constructive mathematics. There are few places where these, often com¬

peting, disciplines converge more neatly than in the theory of realizability structures.

Uealizability applies recursion-theoretic concepts to give interpretations of constructivism
along lines suggested originally by Heyting and Kleene. The research reported in the
dissertation revives the original insights of Kleene—by which realizability structures are

viewed as models rather than proof-theoretic interpretations—to solve a major problem of
classification and to draw mathematical consequences from its solution.

Section 2: Intuitionism and recursion: the problem of classification

The internal structure of constructivism presents an interesting problem. Mathemat¬
ically, it is a problem of classification; for philosophy, it is one of conceptual organization.
Within the past seventy years, constructive mathematics has grown into a jungle of fully-
developed "constructivities," approaches to the mathematics of the calculable which range

from strict finitism through hyperarithmetic model theory. The problem we address is tax-
onomic: to sort through the jungle, set standards for classification and determine those
features which run through everything that is properly "constructive."

There are two notable approaches to constructivity; these must appear prominently in
any proposed classification. The most famous is Brouwer's intuitioniam. Intuitionism relies
on a complete constructivization of the basic mathematical objects and logical operations.
The other is classical recursive mathematics, as represented by the work of Dekker, My-
hill, and Nerode. Classical constructivists use standard logic in a mathematical universe
restricted to coded objects and recursive operations.
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The theorems of the dissertation give a precise answer to the classification problem for
intuitionism and classical constructivism. Between these realms arc connected semantically
through a model of intuitionistic set theory. The intuitionistic set theory IZF encompasses

all of the intuitionistic mathematics that does not involve choice sequences. (This includes
all the work of the Bishop school.) IZF has as a model a recursion-theoretic structure,

V(A7), based on Kleene realizability. Since realizability takes set variables to range over

"effective" objects, large parts of classical constructivism appear over the model as inter¬

preted subsystems of intuitionistic set theory. For example, the entire first-order classical

theory of recursive cardinals and ordinals comes out as an intuitionistic theory of cardinals
and ordinals under realizability. In brief, we prove that a satisfactory partial solution to
the classification problem exists; theories in classical recursive constructivism are identical,
under a natural interpretation, to intuitionistic theories. The interpretation is especially
satisfactory because it is not a Godel-style translation; the interpretation can be developed
so that it leaves the classical logical forms unchanged.

Section 3: Mathematical applications of the translation

The solution to the classification problem is a bridge capable of carrying two-way
mathematical traffic. In one direction, an identification of classical constructivism with in¬
tuitionism yields a certain elimination of recursion theory from the standard mathematical
theory of effective structures, leaving pure set theory and a bit of model theory. Not only
are the theorems of classical effective mathematics faithfully represented in intuitionistic
set theory, but also the arguments that provide proofs of those theorems. Via realizability,
one can find set-theoretic proofs of many effective results, and the set-theoretic proofs are
often more straightforward than their recursion-theoretic counterparts. The new proofs
are also more transparent, because they involve, rather than recursion theory plus set
theory, at most the set-theoretic "axioms" of effective mathematics.

Working the other way, many of the negative ("cannot be obtained recursively") re¬
sults of classical constructivism carry over immediately into strong independence results
from intuitionism. The theorems of Kalantari and Retzlaff on effective topology, for in¬

stance, turn into independence proofs concerning the structure of the usual topology on
the intuitionistic reals.

The realizability methods that shed so much light over recursive set theory can be
applied to "recursive theories" generally. We devote a chapter to verifying that the real¬
izability techniques can be used to good effect in the semantical foundations of computer
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science. The classical theory of effectively given computational domains a la Scott can

be subsumed into the Kleene realizability universe as a species of countable noneffective
domains. In this way, the theory of effective domains becomes a chapter (under interpre¬
tation) in an intuitionistic study of denotational semantics. We then show how the "extra
information" captured in the logical signs under realizability can be used to give proofs of
classical theorems about effective domains.

Section 4: Solutions to metamathematical problems

The realizability model for set theory is very tractible; in many ways, it resembles
a Boolean-valued universe. The tractibility is apparent in the solutions it offers to a

number of open problems in the metamathematics of constructivity. First, there is the
perennial problem of finding and delimiting in the wide constructive universe those features
that correspond to structures familiar from classical mathematics. In the realizability
model, it is easy to locate the collection of classical ordinals and to show that they form,
intuitionistically, a set rather than a proper class. Also, one interprets an argument of
Dekker and Myhill to prove that the classical powerset of the natural numbers contains at
least continuum-many distinct cardinals.

Second, a major tenet of Bishop's program for constructivity has been that con¬

structive mathematics is "numerical:" all the properties of constructive objects, including
the real numbers, can be represented as properties of the natural numbers. The realiz¬
ability model shows that Bishop's numericalization of mathematics can, in principle, be
accomplished. Every set over the model with decidable equality and every metric space is
enumerated by a collection of natural numbers.
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Introduction

CHAPTER 0

Section 1: Recursive mathematics and realizability

What we would now call "recursive mathematics" was in attendance at the birth of

recursion theory, although only in a very exclusionary way. If recursive mathematics is a

field of mathematics all of whose objects and all of whose basic morphisms are computable,
then the early undecidability results, for arithmetic and logical validity, can be viewed as

setting limits to that field, as long as computability is understood as recursivity. The
undecidability theorems tell us that certain mathematical operations are demonstrably
excluded from the realm of recursive mathematics. The undecidability theorems show
that functions which occur naturally in metamathematics, for instance, the characteristic
function of the set of arithmetic truths, are not computable by Turing machines. Were we

to look further on in the history, we would find even better examples of the exclusionary
force of undecidability theorems; the undecidability of the word problem for groups keeps
certain algebraic operations from falling within the limits of recursive mathematics.

Once undecidability results and the allied techniques for working with recursive func¬
tions had been discovered, it was natural to ask how much mathematics could be accom¬

plished within the limits and to wonder what its character might be. More precisely, one
asks, "If recursive mathematics directs primary attention to those domains which can be
coded numerically and to operations on the domains which are recursive, what sort of
mathematical theories can be developed within recursive mathematics?" Trivially, every
area of traditional mathematics has its computable aspects and these are readily "recur-
sivized." More significantly, the restriction to coded domains is not as severe as might at
first appear. Fields such as the rationals, the domains of polynomials with rational coeffi¬
cients and topologies with a countable base can be coded easily. Analysis on the recursive
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reals can be studied; a recursive real is a recursive sequence of rationals with a recursive
modulus of convergence function. A recursive real is, therefore, represented as the pair
whose first component is the machine index of the sequence and whose second is the index
of the modulus.

Any subset of w, the set-of natural numbers, is, in this sense, automatically coded and
set-theoretic operations on Pui, the powerset of ui, afford prime candidates for "recursive"

investigation. During the late 1950's, recursion theorists Myhill, Dekker, Nerode and others
initiated the systematic study of elementary set-theoretic operations on Pui as a branch of
recursive mathematics. The immediate goal of this research was to create, within recursive

mathematics, a recognizable analogue of Cantor's arithmetic on the (finite and infinite)
cardinals. Under the intended analogy, what takes the place of the class of sets is P(w)
itself. Taking the place of Cantor's notion of one-to-one correspondence is the notion of
partial recursive isomorphism. Sets A and B are partially recursive isomorphic (in symbols,
A B) if and only if there is a partial recursive function / which is one-to-one, defined
at least on A and taking A onto B. The recursive "cardinal numbers" are, then, the cz-

equivalence classes on P(w). These are called 'recursive equivalence types,' or 'RETs' for
short.

Realizability and recursive mathematics.

Our central thesis is twofold. First, we claim that the class of recursive equivalence
types is identical to a natural, set-theoretically defined collection of nonrecursive intuition-
istic cardinals in a model of full intuitionistic set theory. Second, we will prove that not
only is there an enlightening ontological correspondence but that it parallels and underlies
a perfect intertheoretical correspondence. The algebraic theory of the RETs turns out
to be identical, under interpretation, with the theory of the intuitionistic cardinals. The
interpretation is an extension to set theory of Kleene's number realizability for arithemtic.

The dual correspondence between RETs and cardinals allows for an economical two-
way interchange between classical recursive and intuitionistic mathematics. In one direc¬
tion, from intuitionistic mathematics to classical, one can determine precisely which of the
theorems of intuitionistic cardinal arithmetic go over unchanged onto the RETs. We will
show in detail how the basic results about RETs (as they were proved by Dekker and Myhill
in Recursive Equivalence Types (i960) ) arise as theorems of intuitionistic set theory
without any mention of recursion. In the opposite direction, there is an effective routine
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•for converting negative theorems about the recursive equivalence types into independence
results Tor any known constructive set theory.

Later in this chapter and in Chapter Five, we will elaborate on the exact details of the

correspondence and the techniques it underwrites. Meanwhile, we can indicate how all this
works out in some simple instances. Specifically, we will consider the Cantor-Schroeder-
Bernstein Theorem, the existence of Dedekind-finite cardinals and the cardinality of P(w).

Traditionally, the collection of RETs is called 'ST. On fl, operations of cardinal
addition and multiplication are defined in a natural way. One of the earliest negative results
about S2 was that partial recursive injection (/ partial recursive and one-to-one) is not
the appropriate analogue to set-theoretic injection within the recursive cardinal numbers.

Equivalently, one could say that the ordinary notion of subset is not the correct one for
recursive mathematics. What shows all this is the failure of a particular recursivization of
the Cantor-Schroeder-Bernstein theorem.

Myhill and Delcker proved that, where 'A < B' means that A is mapped into B by a

partial recursive injection,

(A < BAA < B) ->A^ B

is not generally true. For a counterexample, take A = w and B = K, the complement
of the "halting set." Dekker and Myhill discovered that a correct version of the Cantor-
Bernstein theorem comes from identifying RET injection with "recursively detachable
injection." A is mapped into B via a recursively detachable injection, in symbols A ^ B,
whenever A < B via a partial recursive / and the range of / is decidable as a subset of
B. With the ^ concept, Cantor-Bernstein goes through; it is provable that

(.A ;< BAB <A)^Ac±B

Under the correspondence mediated by realizability, fl becomes the collection of car¬
dinal numbers of the "w-stable" part of P(w). A set is to-stable just in case it is closed
under —' with respect to elements of ca. The "recursive" operations on fl turn into the
usual cardinal-theoretic operations on these w-stable cardinals. We call the collection of
w-stables 'P(w)si.'
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One can give a proof that the notion ^ of strong recursion-theoretic subset coincides
with a notion of strong subset familiar from the writings of the intuitionists. The intuition-
istic notion is that of "separated subset," as studied by both Brouv/er and Ileyting. With
this in hand, one easily devises a constructive proof of the Cantor-Schroeder-Bernstein
Theorem for the elements of P(w)s' under separated subsets. Also, one sees quickly that
the recursive failure of the strong version of the theorem (the one employing the ordinary
notion of subset) proves that the corresponding nonrecursive theorem is independent of
intuitionistic set theory.

1.1. Note. We see emerging, even at this elementary stage, a feature of recursive and of
constructive mathematics which is pervasive. The success of a "recursive" or "constructive"
analogue to a classical theory depends greatly on a correct choice of basic concepts. This
choice is often difficult and delicate; suitable concepts are not always those that come first,
or even second, to mind.

Before we go further, one should be cautioned about the equivocity of Will construc¬
tive contexts. In recursive mathematics, '12' is used, as above, to refer to the collection
of RETs. In discussions of intuitionistic set theory, '11' refers to P({0}), the collection of
intuitionistic propositions. Both of these notational practices are so deeply entrenched that
we were loathe to tamper with either. Instead, we will try to write around the problem
and in such a way that confusion would be difficult.

Since the late 19th Century onwards, there have been at least two definitions of "finite
set". The first, familiar from the writings of the logicists, takes finite sets to be sets of the
same cardinality as some natural number. According to the other definition, that proposed
by Dedekind, a set is finite if it has no subset of the same cardinality as ui. In classical
mathematics, it takes the axiom of dependent choice (DC) to prove that the two definitions
coincide in extension. In Cohen-forcing models where DC fails, finite and Dedekind finite
can come apart. Because they were aware that the relevant forms of DC fail in recursive
mathematics, Dekker and Myhill directed special attention to the subcollection of 11 made
up of isols. Isols are the RETs of isolated sets, those sets which contain no infinite recursive
subset, and, in the scheme of comparison with ordinary set theory, the isols play the role
of Dedekind finite sets.

1.2. Note. It is worth noting that the collapse of Dedekind finite into finite caused by
the onset of DC is irremediably classical. The presence of recursion theory in models of
intuitionistic mathematics preserves the distinction even under the inlluence of DC. g



Emil Post had already proved the existence of inGnite, isolated sets; therefore, the
recursive version of DC fails and the Gnite RETs are distinct from the isols. A is the

domain of isols, and, as an ideal in fi, is closed under the operations of RET arithmetic.
Cardinal arithmetic on A is in many ways similar to that on cv; for example, whenever X
is an isol, X + 1 > X. Unfortunately, the parallel between isolic and ordinary arithmetic
is not extensive; when X is an infinite isol, the sequence

X, X-1, X-2, ...

is not only infinite, but has no greatest lower bound in f2 !

It should now come as no surprise to discover, that, once embedded into the realiz-

ability model, the domain of isols is identical to the set of Dedekind-finite cardinals from

P(to)5f. Over the latter set, we will give constructive proofs for all the basic theorems of iso¬
lic arithmetic. The fact that the isols are not well-founded under their natural ordering can

also be internalized. An upshot of the internalization is a proof that the well-foundedness
of the natural order on the Dedekind-finites is independent of intuitionistic set theory.

Contrary to our experience with ordinary set theory, P(w) is by no means a meagre or

trivial domain for a recursive cardinal arithmetic. One might say that fl, even A, contains
recursive cardinals up to . But since the RETs are not linearly ordered by < (if X
is an infinite isol, then X and u are <-incomparable), it would be more appropriate to
express this fact by saying that A contains an A -chain of coi distinct isols. If we add the
continuum hypothesis to the external set theory, then the <-chain can be taken cofinal
in O.

This fact from classical mathematics is yet another negative result that reappears over

realizability in the guise of a constructive falsehood. As in classical set theory, an ordinal
of intuitionistic set theory is a transitive set of transitive sets. Under realizability, there
is an intuitionistic ordinal a that shares many of the properties of classical uq and yet
indexes an ct-sequence of distinct cardinals from P(w)s'.
Realizability and the extent of recursive mathematics.

The RETs are by no means the only, or even the premier, instances of systematic and
self-conscious recursive mathematics. Even in the lD50's, the study of recursive equivalence
types was but one segment of a discipline that was beginning to touch on every part of



classical mathematics. By that time, Frohlich and Shepherdson had already put recursion-
theoretic tools to work on problems in Geld theory. At the same time, Specker was

developing a recursive version of analysis and Lacombe was advancing the cause of recursive

topology.

Recently, Metakides and Nerode have encouraged the use of priority arguments in
recursive algebra; by employing Gnite-injury arguments, they refuted a recursive version
of Steinitz's Theorem. (Steinitz's Theorem is the claim that every algebraically closed field
has a transcendence base.) Kalantari and Retzlaff have also used priority arguments in
their work on recursive point-set topology. Research in recursive mathematics continues

apace up to the present day. A good idea of the scope and unity of the field can be got by
perusing the volume Crossley (1981), Aspects of Effective Algebra.

Of these recent developments, we have the time and the space to say very little.
In Chapter Eight, we show how realizability can be employed to give a nonrecursive,
constructive analogue to a result of Kalantari and Retzlaff. For at least two reasons, this
is not entirely satisfactory as it stands. First, the interest of the analogue will not be made
clear until much more work is done on realizability analogues from recursive topology.
Second, we have not shown how to internalize the priority method itself. We have carried
out this internalization on certain brands of priority arguments and have proved that they
correspond, under realizability, to (admittedly somewhat unusual) types of forcing. These
results will, we hope, appear later.

Our general feeling is that only limitations of space prohibit us here from extending
realizability methods into all fields of recursive mathematics. We trust that the future will
afford an opportunity for us to demonstrate that the extension is humanly possible and
can be carried out in a unitary way. In this introduction, we will draw a picture of each of
the elements that play a part in the subsumption of recursive mathematics to realizability.
We begin with intuitionism, and, in particular, with the intuitionism of Brouwer. After
that, we can describe a route via Heyting's interpretation from traditional intuitionism to

realizability. At the very end, there will be occasion to speak in more precise terms of
realizability for set theory and of the set theory itself.
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Section 2: Brouwer's intuitionism

If the demand for constructivity in mathematics is wholly characterized by an insis¬
tence that graspable mathematics be limited entirely to those portions of it that can be seen

as concerned with operations, proofs and deGnitions which are explicitly "computable",
there must be numerous species of constructivism. Among these are anthropologism, intu¬
itionism and finitism, which are familiar to the philosophical audience as divergent visions
of a more-or-less graspable mathematics. There is also recursive mathematics, a region of
"computable" mathematics under the sway of classical logic. Of these, the premier form
of constructivism is undeniably intuitionism.

Intuitionism as complete constructivization.

To give the essence of intuitionism its most compact expression, we might say that
intuitionism represents the complete constructivization of the mathematical and logical
activities. But without further explanation, this expression would be highly misleading.
For example, use of the word 'constructivization' may suggest that there is some brand of
mathematics which exists prior to intuitionism and upon which intuitionism is conceptually
dependent. It would be from this prior mathematics that intuitionistic mathematics arises
via acts of 'constructivization.1 We want to do everything we can to block such a suggestion.
As a matter of history, there was a mathematics prior to intuitionism and upon which it
was causally dependent for its appearance; this is the classical mathematics of the late 19th
Century. Within that mathematics were constructive tendencies, which we (in McCarty
(1983) ) styled 'classical constructivism.' For these portions of classical mathematics, the
statement of dependence, when read historically or methodologically, is accurate. At
the level of basic concepts, however, intuitionism is wholly autonomous. The intuitionist
needs to look neither to classical mathematics nor at classical constructivism for his basic

concepts or for the inspirations requisite to develop an intuitionistic mathematics. Rather,
intuitionism is, from its very foundation, a free-standing mathematical edifice.

Intuitionism rests on a revolutionary semantico-mathematical idea: that the only sort
of fact in virtue of which a mathematical statement can be true is a fact about mathematical
constructions. Because this idea is so fundamental and because, once adopted, its effects
on mathematics are so pervasive, the process of constructivization need be autonomous;
intuitionistic mathematics and logic cannot be developed as an offshoot of any mathematics
not informed by this idea. It would, therefore, have been more accurate to say that the
essence of intuitionism is the mathematics that comes from complete constructivization.



This process of constructivization is, in intuitionism, complete because, ultimately, the
interpretation of any bit of intuitionistically-intelligible mathematical language is to be
given entirely in terms, of constructions. The preferred intuitionistic interpretation of the
statements of a mathematical language is molecular rather than, say, contextual. Hence,
this talk of constructrrization applies even to the logical signs. The sense of an intuitionistic
logical sign is embodied in a grasp of operations on constructions, primarily, on those
constructions which are constructive proofs.

For the moment, all we need say about constructions (above and beyond the superficial
feature already noted, that they are allied to explicit calculation) is that constructions are

mathematical operations which satisfy a recognition condition on their being given. A
construction is completely and correctly given only if it can be recognized as such. The
very paradigm of a nontrivial construction is, therefore, the Euclidean Algorithm. Here is
an operation, which, on any two natural numbers (each of which is, in the intuitionist's
metaphysic, itself a construction), calculates and outputs the number which is the greatest
common divisor of the original inputs. The procedure of Euclid is an explicit calculation
in terms of the inputs, and satisfies the recognition condition. Whenever the procedure is
carried out on a number pair, the result is recognizably the requisite divisor.

Recognition, decidability and Benacerraf.

Notice that the recognition condition, as stated above, is not equivalent to the decid¬
ability of intuitionistic proof. There are those (e.g. Kreisel) who insist that truly construc¬
tive notions, like the intuitionistic proof predicate, be decidable. To the author, such an

insistence is both ill-motivated and inessential to a correct interpretation of intuitionism.
There are several metamathematical facts which should encourage one to look favorably
on the idea that the intuitionistic truth predicate for arithmetic would have to be nonar-

ithmetic. Among these is the fact that the realizability predicate is nonarithmetic. Also,
whatever the complexity of the intuitionistic truth predicate, it seems that the classical
truth predicate should be one-one reducible to it via Godel-Gentzen stabilization.

As a digression, we would like to comment on a suggestion of Scott Weinstein. In his
recent The intended interpretation of intuitionistic logic (1983), Weinstein suggests that,
if the intuitionistic proof predicate is decidable, then intuitionism evades "Benacerraf's
problem." In Mathematical truth (1973), Benacevraf argued that classical mathematics, as
he would prefer to understand it, cannot be both scmantically and epistemically tractible.
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According to Benacerraf, mathematics (or any form of discourse, it would seem) is scman-
tically tractible only if one can give a Tarski-style truth theory for it. It is epistcmically
tractible only if one can sketch some causal account of how we could have knowledge of the
objects of the theory, as picked out by the base clauses of the truth definition. Apparently,
Weinstein believes that the intuitionists rescue us from Benacerraf's difhculty by giving
mathematics a semantics according to which mathematical knowledge is epistemologically
tractible, that is, a semantics that makes it clear how we come to have the knowledge of
abstract objects over which the semantics interprets mathematical utterance. The basic
idea seems to be that, while the intuitionistic interpretation of arithmetic will support
a Tarksian truth theory, mathematical knowledge is still open to those of us who speak
"intuitionese" because knowledge flows from proof and the proof predicate is decidable.

Weinstein's response to Benacerraf is not open to us as we desire to remain agnostic
about decidability. Even so, there seems to be very little reason to make heavy weather
with Benacerraf's objections, even for classical mathematics. We can simply refuse outright
to become entangled in the conceptual bind Benacerraf has constructed, a clash between
Tarskian semantics and causal theories of reference. There are any number of reasons
for thinking that the causal theory (or anything like it) cannot apply to the references
made in mathematics. The very cogency of the causal theory requires that one be able,
in principle, to grasp the references of terms in ways which are distinct from grasping the
sentences we wish to interpret as containing those terms. In the case of mathematics, this
seems impossible. To take just one example, there seems to be no grasping set-theoretic
quantification by means independent of the sentences in which such quantification occurs.
Abstract sets cannot, "by their very nature," be presented to someone in isolation from
one or another mathematical statement in which reference to them occurs.

Constructive existence and logic.

Of course, we cannot leave the central semantical idea of constructivism, that even
mathematical facts are constructions, just like that. Jts relative unfamiliarity, together
with its importance for logic and mathematics, demand for it a more extensive exploration
and illumination. We prefer to do this by way of its application to logic and by means of
a mild "rationalization" of the early history of intuitionism.

There were, in the late 19th Century, vague and, it seems to us, overly metaphysical
"constructivisms." Among these was the classical constructivism of Kronecker and Holder*
We would not want to date the beginning of full constructivism with these mathematicians.



We would prefer to point to the early 20th Century, particularly, to the reaction of certain
Paris mathematicians to Zermelo's "proof" of the Well-ordering Theorem. The members
of the Paris school, later referred to by Ileyting as 'semi-intuitionists,' adopted the idea
of "constructive existence" as a conceptual rallying point. On the basis of that idea, the

semi-intuitionists, headed by Poincare, Borel and Lebesgue, rejected Zermelo's work and
his proof.

The semi-intuitionists held that a pure existential conclusion 3x <fi(x) is mathemat¬
ically correct only if it is, in its proof, constructive. A mathematician profferring an

existential conclusion as constructive must be able to provide an explicit construction of
an object a and a proof that Patently, Zermelo was unable to give such a "correct"
proof of the Well-ordering Theorem; he could offer no set-theoretical recipe which demon¬
strably defines a well-ordering on the reals. Hence, in the eyes of the semi-intuitionists,
Zermelo's proof was part of an ill-fated metaphysics rather than a piece of mathematics.

Constructive existence, as it stood behind the semi-intuitionistic critique, was taken
over entirely by the intuitionists. In fact, a penchant for constructive existence proofs seems

to be a part of the basic methodology of most forms of non-intuitionistic constructivism.
It would, therefore, be worth examining the idea as applied to a simple example.

7r(n) is a property of natural numbers defined as follows. First, in the expansion of
ir, we will say that a sequence of consecutive decimal digits forms a "7-7 string" iff it is a

sequence consisting entirely of '7's and is seven decimal places long. Also, we will want to
say that lst(m) holds of a natural number m just in case, at the mth place in 7r's expansion,
there begins the first 7-7 string in the expansion. Then, the predicate ir(n) is defined by

For a classical mathematician unattracted by constructive existence, the route to the con¬

clusion 3n 7r(n) is direct and free of obstacles. He might reason as follows: there is either
a 7-7 string in the expansion of it or none ever appears. In the first case, there is some

place m at which the earliest such string appears. Take n = m + 1, and 7r(n). On the
other hand, if there is no such string, vr(0) holds. Therefore, in any case, 3?i 7r(«).

As a matter of mathematical fact, this proof is demonstrably nonconstructive. At
the time of writing, it is unknown whether or not 7r contains a 7-7 string in its decimal
expansion. There is no construction, therefore, of a natural number p that can come

. . , — m + 1 and lst(m)
7r(n)

if there is any 7-7 string
if otherwise



equipped with a proof that 7r(p). If there were such a construction, we could remedy our

ignorance on the subject of the distribution of '7's in the expansion of 7r by performing a

trivial check. To see whether there is a 7-7 string, we need only look to see whether p is 0.

The recognition condition on constructions blocks a seemingly attractive objection
to our use of this particular "nonconstructive" proof. Someone might say that the very

definition of it(n), together with the proof of 3x ir(x), yields up a trivial construction of a
p such that Jr(p). Therefore, the proof is not really nonconstructive. One can merely take
p to be that natural number which is m + 1 when lst(m), if there is a 7-7 string, and is
0 otherwise. This kind of response is to be rejected. If taken seriously, it would trivialize
the requirement that a construction is given only when it is recognizably correct. In this
case, the only route to recognizing that the purported construction of p successfully picks
out a natural number is a circular one. To recognize the construction of p as correct would
require us to have already accepted some nonconstructive proof of 3n ir(n) like the one

sketched above.

A demand for constructive existence proofs is indeed characteristic of a wide range of
possible positions in the constructivistic spectrum, among them, intuitionism. (Notably,
the recursive mathematician, as a classical mathematician, makes no such demand.) By
contrast with that of the intuitionist, however, the attitude of the semi-intuitionist seems to
incur considerable internal tension, if not incoherence.To see this, first recall that the scmi-
intuitionists were, on the whole, unabashedly classical mathematicians. The suitability
of classical logic to mathematical use was not called by them into serious question. We
would argue that a call for constructive existence imposes other demands on the shape of
acceptable mathematics, and that perhaps the likeliest way to meet these demands is to
go along with the intuitionists in tailoring classical logic to fit constructive needs. Hence,
the Parisians must have felt that their attitude toward existence could be held in isolation
from the rest of mathematics and its traditional logic. Arguably, such an isolation cannot
be maintained.

An argument to the conclusion that constructive existence infects classical logic is
best set out in terms of the sample "nonconstructive existence" proof. In the passage to
constructivism, one wants to retain at least the external form of the classical account of
validity; this is especially true of the semi-intuitionists, who desired to retain ev£n the
content of the classical account. In particular, one wants to continue to hold that an
inference r (— ^ is valid whenever the truth of the premises T insures the truth of the



conclusion <j>. If, from the nonconstructive proof of 3n 7r(n), the conclusion is rejected,
then it is incumbent on the purveyor of constructive existence either to reject one of the

premises of the "proof" or to refuse one of its primitive inferences. In the case of our proof,
the inferential steps are so simple as to be beyond question. As is familiar, the intuitionist

prefers to take issue witlvthe first premise, that either there is some 7-7 string in 7r's
expansion or there is none. In general, the intuitionist will object to many instances of the
classical tertium non datur (TND). It is also incumbent on the semi-intuitionist to make
some such rejection and it seems that a rejection of the instance of TND is indicated.
It is the failure of the semi-intuitionist to make, or even to see the need for, such a

rejection that makes their position unstable. The proponent of "constructive existence"
will not reasonably be able to isolate the interpretation of existential quantification which
he prefers from principles of logic which do not involve 3n , not, at least, if he wishes to
retain a notion of validity recognizable as such.

The likeliest course of action is to refrain from adopting TND as a universally valid
principle of logic. It would not be wholly inaccurate to conceive of the advent of intuition-
ism, in the early writings of L.E.J. Brouwer, as contemporaneous with a perception that
the call for constructive existence proofs cannot be isolated from logic, and, hence, that
severe conceptual strains lie within semi-intuitionism. The rejection of TND for mathe¬
matical contexts was the immediate instigation of Brouwer's "programme:" the critique of
classical mathematics and the development ab initio of a form of mathematics independent
of TND.

The move in Brouwer's thought that goes directly from the rejection of TND to a

fullscale transformation of classical mathematics would surely give offense to contempo¬

rary philosophical sensibilities. The rejection of TND seems, at least from the foregoing
presentation, a relatively unprincipled expedient. One rejects TND to get out of trouble.
And it is not at all clear how far the trouble extends. One should ask "Once we are

convinced that 'constructive existence' imposes constraints on logic, how can we proceed
into constructive mathematics with any confidence before we have circumscribed in some

way the effects of those constraints?" In asking this question, one is asking after, first,
a collection of logical principles which are intuitively constructive, and, second, after a

means for assessing the constructive acceptability of putative principles.

Both these requests could be satisfied by the provision of a formal semantics that
accords with the constructivist insight. Such semantics would be a "survey" of the effects



of the basic ideas of constructivism on all the logical signs. With respect to this semantics,
one can assess the constructive correctness of various principles. One might even hope to

use the semantics as a means to axiomatizing a specifically intuitionistic logic.

Brouwer was, however, both in personal preference and in doctrine, wholly opposed
to the idea that formal semantics and axiomatization afford a necessary prolegomena to
constructivization. Brouwer conceived of intuitionism in a way vastly different from that in
which one would naturally think of it today. Intuitionism was seen by its founder as an (or
even the only) appropriate response to the pressing problem of certainty in mathematics.

Mathematics had been thought to be, among all the branches of human knowledge,
that which is most certain and immediate. The set-theoretical paradoxes had, according
to Brouwer, brought full classical mathematics down from its epistemic primacy. It was a

philosophical commonplace of the day, and one which Brouwer accepted, that the appear¬

ance of the paradoxes had shown that this assessment of classical mathematics had to be
withdrawn. For Brouwer, the logicistic diagnosis and response to the paradoxes represented
a double error. First, Brouwer saw the paradoxes as far removed from the "core" of mathe¬
matics, the mental activity of mathematical construction; this core of mathematics retains
its epistemic primacy. Second, the paradoxes are not totally irrelevant to mathematics,
however. They are symptoms, on this view, of the deep malaise of classical mathematics,
a malaise that had infected a great bulk of the subject. For Brouwer, therefore, it was one

mistake to follow Russell in thinking of the paradoxes as themselves a great problem for
mathematicians to solve and yet another, and compounding mistake, to try to begin again
the task of basing mathematics on the foundation of classical logic.

For Brouwer, the paradoxes would be harmless to a mathematics which is correctly
understood. The constructive core is immune to contradiction; hence, any mathemat¬
ics that retains full reliability must have a logic which is drawn out by reflection on the
core. Therefore, logicism, on Brouwer's view, could not possibly achieve the epistemo-
logical goals which it set itself. Brouwer's unimpreachable core was the mental activity
of mathematical construction, and any segment of classical mathematics which is ade¬
quately interpretable in terms of mentally accessible constructions is thereby reliable; the
interpretable mathematics can draw its certainty from that stored in the core. Under con-
structivistic interpretation, each graspable mathematical proposition p is to be understood
as the posing of a mathematical problem, or, better, as the supposition of a hypothetical
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construction, the accessibility of which gives a solution to the problem posed by p. Fa¬

mously, Brouwer rejected the validity of the classical TND because it is not universally
valid when so interpreted.

Brouwer was also convincedThat the ideas on the epistemology of arithmetic expressed
by Kant in the early parts of the Kritique were fundamentally correct. Brouwer's picture of
intuitionism, as the only correct mathematics, is attached to the transcendental framework
of the Kantian faculty of Anschauung. Somehow, Brouwer made the move from this vision
of constructive mathematics to the idea that the facts about constructions are always on

inner display. There is, however, no making the obtaining of any sophisticated constructive
mathematical fact coextensive with our inner awareness of it. Perhaps the idea that such
a coextensiveness is possible came from an implicit likening of the conceptual "field" of
constructive mathematics with the private visual field. Admittedly, the latter is a realm
in which factuality is coextensive with our awareness of it. Brouwer was unaware of the
dangers of encouraging an assimilation of conceptual items to visual ones. The sort of
dangers we have in mind are those apparent in the egregious errors of Humean empiricism.

It may have been on the basis of some such visual analogy that Brouwer rejected
formalization along with the (dubious) goals of the logicism of his day. He felt that
constructive mathematics needs no formal devices to underwrite its correctness, that any
construction, when correct, is obviously so. Therefore, no formalization was required to
block the gaps out of which certainty might leak. Brouwer was to continue in this anti-
formalistic bent throughout his long career. He would never admit the possibility that
formalization might bring with it other benefits.
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Section 3: Heyting's interpretation

It was Brouwer's student and, later, colleague, Arcnd Heyting, who first adopted a

reasonably comprehensive formal and semantical approach to intuitionism. Ileyting intro¬
duced and championed what is now recognized as the standard "proof-theoretic" inter¬
pretation of the intuitionistic logical signs. In Heyting's interpretation, the constructive
semantical idea manifests itself in the definition of constructive truth. The sort of con¬

struction in virtue of which a mathematical statement is true is a constructive proof.

Constructive proofs are, first and foremost, constructions. As such, constructive
proofs must satisfy the constraint on recognition. When the application of the constraint
is taken together with Heyting's definition of constructive truth, the result is a semantics
for intuitionism which is verification ist or "nonrealist." A verificationist semantics is to

be contrasted with the standard realist semantics, with which it breaks sharply. On the
realist conception, which comes to us from Frcge via Tarski, the understanding of a math¬
ematical proposition is analyzed in terms of a grasp- of its abstract "truth conditions". For
the realists, the truth conditions of p are, if you will, the "possible facts" so associated
with each proposition that, if any of these were to obtain, then p v/ould be true. The heart
of the realist vision is embodied in the idea that the relevant possible facts can obtain or

not in total independence of anyone's mathematical ability to discern the truth value of p.

This description of the conditions under which p holds is patently inapplicable to
Heyting's nonrealist semantics for intuitionism. If the condition under which a proposi¬
tion is true is the availability of a proof of tha.t proposition, then the intuitionistic truth
conditions of the proposition cannot obtain in a way wholly independent of our abilities
to see that it does. If p is proved, then it must be possible in principle for us to access the
proof of p and to assess its cogency.

A suspicion of circularity may lurk about this exposition of the intuitionistically pre¬
ferred semantics. It may seem that the very setting of the task of giving such a semantics
already presupposes the achievement of the task, and, hence, that proof-theoretic semantics
can give rise to no coherent account of "coming to understand" a mathematical proposi¬
tion. A grasp of a mathematical proposition p is here a grasp of its truth conditions, and
these are, in turn, given via a description of what it is to prove p. But how could one even
contemplate the proving of p as a possible task, if p is not, as yet, even understood? How
can one, in giving the basic explanation of the sense of p, speak of p as the conclusion of
intelligible proofs?



Anyone who asks such questions, we think, belies a misunderstanding of the working-
out of the constructivistic semantical idea. Knowing the constructive sense of p is not

something derivable from a preexistent knowledge of what it is to be given a direct proof
of p. Rather, that knowledge is -identical with it. Beyond specifying the proof conditions,
there need be nothing more that a constructivist must say about the sense of a mathe¬
matical proposition. In Heyting's unfolding of the constructivist idea, the possible circle is
cut by giving, simultaneously and recursively, specifications of the sense of p and of those
constructions which count as direct proofs of p. The clauses of Heyting's interpretation

provide the required specifications. What follows is a paraphrase, in contemporary terms,
of the original Heyting explanations.

Heyting's explanations of the connectives are usually illustrated for a first-order lan¬
guage of arithmetic which includes as primitives signs for addition, multiplication, succes¬
sor and zero, and we will follow suit. For n a natural number, ft is the numeral representing
n in the language. In the metalanguage, variables p and a range over constructions; the
application p(cr) is the construction output when the operation p is given a as argument.
The domain of constructions is assumed to be closed under a binary pairing operation and
the corresponding "unpairings", denoted ' po' and 'p\.'

The recursion works not by defining, as in Tarski's semantics, satisfaction as a property
of sentences with respect to sequences, but by defining constructive proof as a property
of sentences. In the clauses of the interpretation, we read 'n(p, </>)', as 'p is a constructive
proof of proposition <j>.'

3.1. Definition.

(1) n(p, <t> A -0) iff n(po, <A) and U(pi,ip)

(2) n(p, </> v</>) iff n(p0, <t>) or n(pi, v>)

(3) n(p, iff, for all <r, if n(a, <j>), then n(p(<r), 0 = 1)

(4) II(p, <j> —► i/<) iff, for all a, if H(cr, <j>), then n(p(tr), iji)

(5) n(p,3x 4) iff n(p0l</,(x/pr))

(6) ri(p,Vx <t>) iff, for all n,n(p(n), <f>(x/ n))

Finally, we say that a sentence cf> is intuitionistically true iff 3p n(p, tj>). J
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Don't be taken aback by the fact that (1) through (G) make no provision for atomic
statements. As is the case with Tarski's truth definition, the meanings of the signs that
enter into atomic statements have no bearing on the interpretation of the logical apparatus
but are specific to the universe of discourse. Since we have chosen arithmetic to illustrate

Heyting's work,'a specification of the proof conditions of the atomic statements, whictf are
polynomial equations, is straightforward, p is a proof of atomic <j> iff p is a combination of
the simple sums and products that we learned in grammar school to take as a verification
of the equation <j>.

The individual content of each clause of the interpretation can be motivated by exam¬

ining certain salient features of inferential practice with the basic semantical idea in mind.

(For more details, cf. McCarty (1983) ). Clause (3), for instance, describes the central
proof-theoretic grounds for a denial of <j>. It says that p shows </> to be constructively
false iff, whenever cr proves rj>, p, as a constructive function, takes a as an argument and
produces p(tr) as -a proof of '0 = 1.'

In much the same way, one can come to see each clause of the interpretation and
the entire truth definition as a plausible regimentation of what has here been touted as

the central idea of constructive semantics. In fine, Ileyting's interpretation is the very

semantical picture of complete constructivization. The only kinds of objects and the only
sorts of facts in virtue of which a statement of intuitionistic mathematics can be true are

constructions. Moreover, the "truthifying" facts are one and all accessible; whenever such
a fact obtains, we can recognize that it does so.

Logic and logicism.

From the Heyting interpretation, one sees immediately that Brouwer was right in
thinking that the very idea of "intuitionistic iogicism" is totally incoherent. (This is not
to say that Brouwer held this belief for the right reasons.) The success of any strand
of classical logicism depends upon the claim that the senses of the logical signs can be
grasped independently of and prior to any nontrivial bit of mathematics. This claim is
just flatly false for the intuitionistic logical signs. These signs can only be grasped if the
Heyting interpretation is grasped, and that is understood only on the basis of a prior
understanding of the constructions over which the metaparameters ol the interpretation
range. However, according to the intuitionist, the constructions are echt mathematical
items that are grasped, in part, by understanding the simple applicative algebra on them.
In a word, for the intuitionists, some mathematics must preceed all logic.
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Once first-order logic is formalized, one can see that there is a specifically intuitionistic

logic which is sound with respect to (a version of) Heyting's interpretation of the logical
constants. It would be seriously misleading to say that intuitionistic logic is just classical

logic minus TND or even cjiissical logic independent of TND. The line taken in some

of Brouwer's papers may have encouraged an idea like this. However, the presence of
various intermediate calculi show that intuitionistic logic is not adequately characterized

by "independence from TND." Not only does the intuitionistic logic lack , but it
is also independent of these classical laws:

—i—i0 —>• (f>

~'(~1 A -> i/>) —* (<A V V1)
->Vs <j> —> 3x —> <j>

Intuitionistic logic, at least on the coarsest measure of logical strength, is weaker than
the classical. Nonetheless, this form of weakness can be a virtue. It is a part of the plan
of our work to show exactly how this is and to exploit the virtues of intuitionistic logic
to complete a task which is fully specifiable within classical mathematics but of which
classical mathematics seems either wholly incapable or able to do only at considerable
mathematical expense.

Two aspects of intuitionism.

There are two important features or "faces" of intuitionism. One has already re¬

ceived considerable attention: the semantical tie to the basic constructivist idea given

by Heyting's interpretation. This feature alone gives to intuitionism a dimension wholly
absent from classical mathematics. The dimension is the "evidential" or proof-theoretic
one. Its mathematical manifestation is in the presence of "extra parameters;" by its very

interpretation, every statement of intuitionistic mathematics carries with it one or more

parameters ranging over the "evidence," the collection of possible proofs of the statement.

The other feature of intuitionism is one which has drawn more attention (and fire)
in the literature. This is intuitionism's liberality toward higher-order abstractions. Intu¬
itionism sets itself off from other flavors of philosophical constructivism in its ontologicaliy
liberal admission standards. The range of the intuitionistic quantifiers extends far beyond
those of the finitists and even of Bishop's "new constructivists." The traditional intu-
itionist is willing to quantify over choice sequences and over species, objects which, per



se, seem wholly nonconstructive. (One can think of species as the presentations, or inten¬
tional correlates, of predicative sets.) The incorporation into the constructivist universe
of sensible collections of "nonconstructions" was perhaps Brouwer's greatest contribution
to the subject. Unfortunately, it is one face of intuitionism which is too extensive to be
treated adequately in the pages of an introduction. For a detailed discussion of the ab¬
stractions of intuitionistic mathematics, we refer the reader to Troelstra (1983). This face
of intuitionism, the tolerance for abstraction, must be mentioned, because it is one which
we will need to exploit to the fullest in our dealings with set theory.

Our outlook, as schematized by realizability, relies on both features of intuitionism.
On the one hand, realizability is a nonstandard, although nonbizarre, model of Heyting's
explanation, and, as such, gives numerous insights into the discrete or "highly evidential"
aspects of intuitionism. At the same time, realizability's nonstandard account of the proof
relation extends beyond arithmetic to an understanding of full intuitionistic set theory.
Against this abstract higher-order backdrop, we can display the consequences for both
classical and constructive mathematics of adopting nonstandard set-theoretic principles.
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Section 4: Kleene realizabiiity

There have been several moments in the history of recursive mathematics when there
surfaced indications of the existence of some fairly large conceptual area that serves as an

interface between constructive and recursive mathematics. It had even been suggested, at
least in an offhand way, that the interface is semantical and that an open channnel lies in
the region of Kleene's recursive realizabiiity (cf. Kleene (1945)). Actually, the very status
of realizability for arithmetic is itself some kind of indication. It would not be wholly
inaccurate to say that arithmetic realizabiiity is a scheme for translating intuitionistic
arithmetic into a tiny fragment of recursive mathematics. But this is a very limited
indication of an interface that is remarkable in extent.

A vague and perhaps accidental suggestion of the whole connection occurred as early as

1968, in Kreisel's Zentralblatt review (1968) of J.N. Crossley's article Constructive Order
Types I. As a field within recursive mathematics, the study of the constructive order types

(or COTs) stands to the study of the classical ordinals much as RETs stands to Cantor's
cardinals. In his review, Kreisel opined (correctly, it turns out) that Crossley's theory of
COTs would lose its somewhat unnatural cast were it to arise, not as a subfield of classical
i

recursive mathematics, but as a relativization of some naturally-occurring theory of order.
Kreisel also argued that, whatever that natural theory of order might turn out to be, it
is unlikely to appear within classical mathematics. Kreisel believed (once again, correctly)
that the natural theory would be formalized in the intuitionistic predicate calculus. Finally,
the soundness of intuitionistic logic with respect to Kleene realizability was advanced by
Kreisel as rationale for this proposal.

In Chapter Five, Kreisel's suggestions will be filled out and shown to be accurate.
There we prove that the classical theory of fl is precisely a relativization plus a realizability
interpretation of a thoroughly natural theory of constructive cardinals. The latter theory
is one which could well have existed prior to and independently of that of Q. It is merely
a misfortune of history that it did not. Even though the realizability interpretation in
question is not that of arithmetic, but an extension of it to set theory, our progress will
be easier if we begin with arithmetic anyway.

Realizability for arithmetic.

If we think of Hcyting's interpretation of intuitionistic mathematics as a truth defini¬
tion akin to that provided for classical mathematics by Tarski, there come immediately to



mind two means to its Cull mathematical development. One approach is via an axiomatiza-
tion of a "standard interpretation" of the notion of construction. Here, one tries to embed

Heyting's work into an axiomatization of the theory of constructions, a formal theory of
the "mathematical springs" of the interpretation. The parallel in the case of Tarski is the

expression of the Tarski clauses within a standard set theory. Unfortunately, this idea,

applied to intuitionistic (or "Heyting") arithmetic, has proved more than a little difficult
in execution. The logical pitfalls which were exposed by the work of Kreisel and Goodman
are well known. In the face of the constructions' apparent resistance to straightforward
axiomatization, one might say that our intuitions are, as yet, insufficient to the task of
"filling out" Heyting's interpretation directly.

If the direct axiomatic path to our goal is temporarily blocked, the obvious alternative
is to try to score on an end run. By this, we mean that it is possible to exploit nonstan¬
dard interpretations of the clauses of the Heyting "truth definition." On this approach,
one looks about for a domain which is more tractible than that of the constructions and

yet has enough of the right structure to serve as a collection of "pseudoconstructions."
In 1941, S. C. Kleene discovered that the natural numbers, under the operation (e}(n)
of Turing application and with primitive recursive pairing (n,m), embodies enough of
the right structure. Fortunately, Kleene had already devoted much of the preceding ten
yearn to making this structure mathematically tractible. Kleenc interpreted Heyting arith¬
metic using these recursion theoretic constructs and called the resulting reinterpretation
of Heyting's clauses 'recursive realizability.' The earliest metamathematical applications
of realizability appeared in Kleene (1945).

Under Kleene's operations, U1 has enough of the "right structure" to act, in the eyes
of arithmetic, like the collection of constructions. Can we characterize the "rightness" of
this structure independently of Heyting's constructions? There are two answers to this
question, each one of which is correct. The first is a longer and more abstract answer;
the second is short and intuitively appealing. All of Chapter Two and the beginning of
Chapter Three supply the longer answer. There, we will point out that each structure
composed of "pseudoconstructions" participates in an abstract model-theoretic property;
they are one and all models of the axioms APP of "applicative systems."

There is no need to linger over APP and its models here; these things will receive full
treatment later. Instead, we prefer to concentrate on the second answer, which is a shortcut
route to realizability. If one accepts Church's Thesis, the idea of recursive rcalizability



comes effortlessly. First, one remarks that, since constructive proofs contain only a finite
amount of information, nothing will be lost by replacing proofs of atomic statements

of arithmetic with "codes." Think of the codes as Godel numbers of the elementary
computations that verify (or falsify) atomic statements. Then, a la Heyting, number-
theoretic pairs of codes represent constructive proofs of conjunctions, disjunctions and
existentials. A coded proof of the existential 3x(j> is a pair (n, m) where m codes a proof
that 0(n). What about proofs of —> and V statements? Constructively, these sorts of
proofs are operations carrying proofs into proofs. Once possible proofs of the antecedent
and consequent of (j) —► ip are coded, proofs of <f> —► ip emerge as effective operations on the
natural numbers. By Church's Thesis, the effective operations coincide with the general
recursive. Therefore, each proof of a conditional has as presentation an index e of a

recursive function (e}(x) such that, whenever n codes a proof of the antecedent, then
MM codes a proof of the consequent. The very same coding scheme applies, mutatii
mutandis, to give as presentations of proofs of V statements indices {e} such that, for any

n, (e}(n) "proves"

The precise representation of Kleene's idea is as a recursive definition.

4.1. Definition. Read R(n,<f>) as 'n (Kleene) realizes </>:'

(i) For atomic </>, R(n, <j>) iff </> is true

(ii) R(n, <f> VV>) iff either no = 0 and f2(ni, </>)
'

or -i no = 0 and

(iii) R{^>/\^)) iff .R(no,</>) and R(n±, i/j)

(iv) R(n, -i <j>) iff, for all m, -> R(m, <j>)

(v) R(n, tj> —> i/>) iff, for all m, if R{m, 0),then
{n}(m) is defined and f?({n}(m), ip)

(vi) R(n,3xtf>) iff R(ni, </>(x/no))

(vii) R(n,\/xtj>) iff, for all m, {n}(m) is defined
and jf?({n}(m), cj)[xjm))

<j> is (Kleene) realized iff 3n R(n, <j>).

I
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In general, R(n,<j>) is anything but recursive; the predicate (of n) /f(n,Vx (x = x)) is
already complete n!J. However, to realize "disjunction-elimination":

fa V q) ((p ((<7 -> r) -> r))

we need to determine recursively, for n such that R[n,p\J q), which of p or q is realized.
This explains the extra complications appearing on the righthand side oT our (ii), the clause
governing V- These decidability conditions enforce the requisite disjunctwise decidability
of realizability for V-statements.

Kleene's realizability interpretation, as applied to arithmetic, does demonstrable jus¬
tice to the senses of the logical signs, at least as they are expressed there. Kleene proved
that realizability is sound with respect to HA, first-order Heyting arithmetic. Kleene
proved that, for sentences <j>,

4.2. Theorem. If HA 1— <j>, then 3n R(n,tji).
4.3. Note. Although the high vantage of hindsight makes the transition, via coding, from
the Heyting interpretation to Kleene realizability seem extremely natural, our sketch of the
transition is neither historically nor psychologically correct. Kleene, in his Realizability: a

retrospective survey (1971), denied that Heyting's "proof interpretation," which was known
to him in the early forties, had exerted anything but a retarding effect on the genesis
of realizability. Actually, Kleene derived his principal inspirations from the writings of
Hilbert and Bernays. In particular, Kleene's thoughts were shaped by the finitist conception
of existential mathematical propositions as "incomplete communications." This, according
to Kleene, served as the major preformal intimation of realizability. g
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Section 5: Readability for set theory

By invoking two old ideas, one due to Poincare and the other suggested by some early
work of Brouwer, we can clear a conceptual path from arithmetic to readability for set

theory. Naturally, the path will take us through a partial explanation of what it is to
talk constructively about one particular conception of set. Poincare's contribution is just
that: a picture, painted in broad strokes, of a universe of abstract sets which is both
mathematically attractive and recognizably constructive. We will interpret early work of
Brouwer as a precedent for introducing an account of quantification over sets so conceived;
we call this notion of quantification 'generic.'

Abstract constructive sets.

In Mathematics and Science: Last Essays (1963), Poincare put forward a descrip¬
tion of a characteristically constructive notion of set. The notion includes the requirement
that a constructive set be given by a double specification. Presenting a set A constructively
is setting out, for constructions p and items a from some domain, the conditions under
which p proves that a E A. This stands in sharp contrast with the way in which sets are

presented in classical mathematics. There, a set is fully described in a single specification.
To describe a set A classically, one need provide only those abstract conditions on which
arbitrary a satisfies's £ A'. We put the requirements on a constructive set most succinctly
by saying that a constructive set can be pictured as a collection of pairs (p, a) such that
II(/>, a E A); taken together, all the evidence-item pairs given in specifying A comprise the
constructive membership conditions that define A.

This way of speaking about sets can easily be translated into realizability-theoretic
terms by an extension of the coding idea. For subsets of u>, the translation is especially
easy to work out; each constructive subset A of w can be represented as a "realizability
set" A , where A is a collection of number pairs (n,m). The idea behind this is familiar:
for (n, m) E A, we think of n as coding a proof that m E A. If we allow arbitrary iterations
of the powerset operation, this idea can even be extended by analogy to a full hierarchy
of realizability sets. A cumulative hierarchy of "pure" realizability sets is then generable.
Consider the following ordinal-recursive definition:

V(Kl)o = 0

V(Kl)a+l = P(io X ~V(Kl)a)



V(M)x =* U V(Kl)p
P<\

The universe of realizability sets, V(/G) [lKV stands for 'Klcene'), is the union of the
V(Kl)a's over all the ordinals a. More succinctly, V(/<7) is the least class closed under
the formation of pure realizability sets. It follows from the second of the above equations
that this succinct description is accurate; each a E V(/<7) is a collection of pairs (n, b)
that is most naturally thought of as a realizability version of a Poincare set. Think of the
first item of the pair as a coded proof, a bit of constructive information or a realizability
"witness" for the fact that the second element, 6, belongs to the set a. One might say that
the first place of each of the pairs is a repository for the values of the "extra parameters'
of which we spoke earlier. In this way, the "proof information" of the original Heyting
interpretation (or Kleene's coded version of it) can be given a mathematical place within
the very notion of set itself.

Genericity.

Once the basic notion of constructive set has been isolated, or, more formally, once

we circumscribe those constructions that can act as proofs of particular atomic statements
about sets, the only remaining task is that of giving a sensible account of quantification
over the universe of constructive sets itself.

Prior to the discovery of choice sequences, Brouwer favored a picture of the continuum
which was "wholistic" (cf. Troelstra (1982)). The primary focus in the picture of wholistic
reals was on the idea that there may be no constructive analysis of what it is to be an
individual real number qua real number. At some level, this means that there is no finer
detail to the intuitionistic notion of the collection of real numbers than that given by
some set of axioms for analysis, supplemented perhaps by examples of particular reals. We
might say that the wholistic picture is intended to display the grasp of "real number" as
no more than purely generic. Apparently, Brouwer adopted the generic picture in order
to skirt the apparent measure-theoretic consequences of seeing the reals as given, one and
all, by lawlike sequences of rationals. (The subject of lawlike sequences will appear again
in Section 7.)

From our present standpoint, we need elaborate no further Brouwer's idea of wholistic
real as a chapter in the history of intuitionistic mathematics. All we want to do here
is to use the idea to suggest two themes that point toward an intelligible account of
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quantisation over the collection of abstract Poincare sets. The first theme is negative; it

imposes tight strictures on the places at which information about a collection can come

into play in a proof. The second theme is compensatory and positive; it tells us where
certain information can be lodged.

The first theme is concerned with what might be called 'intuitionistic metaphysics.1
According to intuitionistic semantic ideology, our concept of a mathematical collection
must be fully captured in the explanations of the proofs of statements with quantifiers and

parameters restricted to members of that collection. This applies to the generic conception
as to any other. When our grasp of a collection is generic, then the objects of the collection
as objects of that very collection carry no mathematical information. When we remember
that, on the intuitionistic view, the only package in which mathematical information can

arrive is a proof, then we must say that, when a collection is generic, no member of the
collection has a presentation, an intensional aspect, that can make any difference to a

proof. This stricture applies, principally, to the interpretation of quantification over the
generic collection; it is in terms of the understanding of quantification that our concept of
the collection as collection comes strongly to the fore.

The second theme is that of axiomatization. If a domain is generically conceived, then
our positive mathematical knowledge of the structure on the domain can be taken up in a

grasp of a set of axioms describing that structure. This grasp is direct; it is not mediated
by a prior understanding of a certain class of proofs. This second theme cannot, however,
be independent of the first: under the notion of "presentationless" proof set out above,
the grasped axioms must be provable.

As applied to set theory, genericity is also explainable in terms of this duality be¬
tween quantification (proofs of quantifier statements) and axioms. Fundamentally, sets
are grasped directly in terms of a collection of axioms for set theory. (In our case, these
will be the axioms for IZF, intuitionistic Zermelo-Fraenkel.) Second, we understand quan¬
tification over the class of sets in such a way that it does not affect the informational
parameters of realizability sets. The generic notion of sets is most easily illustrated for
second-order arithmetic. Here, we say that we can understand axioms for a theory of
unbounded quantification over species on the natural numbers and that quantification over

species is nugatory in its proof-theoretic effects. Specifically, we will want to say that

R[n,WX <t>) iff, for all A,R(n, <t>[X/A\) and
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R(n, 3X <j>) iff, for some A, lt(n, </>[X/ Aj).

In these conditions, A designates the realizability set associated with a species A.
Clauses like these, which shunt set-theoretic quantification outside of the realizability oper¬

ator R, do give constructive sense to the "genericity" picture. First, in order to manipulate
the clauses mathematically, we need already to have grasped (in the language in which the
clauses are written) some bit of set-theoretic machinery; certainly, a set of axioms would
do. Second, one sees that set parameters are completely isolated from proof parameters.
Therelore, the only way in which one could prove an assertion about all sets is to prove it
in a wholly generic fashion, by using axioms for set theory, and in total ignorance of the

(metatheoretic) fact that various realizability sets might carry mathematically interesting
sorts of information ka the witnesses of their realizability elements.

5.1. Note. The cognoscenti will recognize the clauses just displayed as coincident with
those of "Kreisel-Troelstra realizability" for HAS, standard second-order intuitionistic
arithmetic. 3

When the "underlying matter" of the mathematics is the domain of abstract sets, the
form of genericity manifests itself in recursion clauses like these:

R(n, Vz d>) iff, for all realizability sets a, R(n, <f>{a))

R(n, 3x <j>) iff, for some realizability set a, R(n, <t>[a)).

One can tell a story analogous to that told above to explain why these clauses give construc¬
tive form to the idea of generic set as applied to abstract sets. As it affects presentations
and proofs, the genericity idea is clear from the first condition (that interpreting universal
quantification): a proof of a universal quantification is coded as a number n that serves,
uniformly, as a proof of any instance of the quantification. The proof is unaffected by
nny possible information about particular sets. What allows us to verify that universal
quantifications are provable is a grasp of axioms of set theory in the metatheory. With
those axioms, one can show (cf. Chapter Two) that all the axioms of the set theory are
provable.

With respect to sets, the gencricity idea can be expressed more concisely in terms
of a contrast between presentations of membership and presentations of scthood. The
notion of constructive set that comes from Poincare tells us that individual statements
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of membership do have presentations: these are the "codes," the first elements of the

pairs that comprize realizability sets. In contrast, the generic account of quantification
tells us' that no set has a presentation of sethood; by being told that some item is an

abstract set, we are being given no mathematical information. What supplies the requisite
mathematical information about the class of all sets is a collection of axioms of set theory.

5.2. Note. A tentative (but not altogether satisfactory) representation of the sorts of
proofs that give proof conditions for universally quantified set assertions is in terms of
"schematic" or "free variable" proofs about sets. In this case, a free variable proof makes
reference to sets only as unrestricted values of free set parameters. The free variable proof
is recognized as valid when it employs only constructively valid reasoning from the axioms
for sets and, otherwise, makes no reference to any structural analysis of sets. Simply put,
a free variable proof of a universal conclusion about sets is seen to be correct because
one can see that, regardless of the replacement of the free variables by terms for sets, the
conclusion of the proof remains correct, g

Although quantification over sets conceived generically has the effect of driving a

firm wedge between the notion of set quantification and echt constructive mathematical
information, there is no implication from this fact to the conclusion that this understanding
of 'set' has no appreciable mathematical consequences. In the realizability structure V(ifl),
one quickly finds that a strong uniformity holds between sets and natural numbers. V(ifl)
satisfies

Vx 3n <t>(x, n) —► 3n Vx n).

In the literature on models for constructive mathematics, the principle in question is con¬

ventionally called 'UP,' for 'Uniformity Principle.'

From a classical standpoint, the truth of UP can only be a source of bewilderment.
From a viewpoint on which constructive set quantification is generic, the truth of UP is
readily explicable. Remember that, on the generic approach, no two sets are (at least at the
level of the interpretation of quantification) distinguished by means of proof information.
Also, recall that the premier idee of realizability is that the members of (the domain of an
applicative structure on) u encapsvdate all there is to say about constructive proof, and
that, conversely, mathematical information about members of to is wholly taken up in talk
of constructive proof. Then, given that Vx 3n rj){x, n), we have an assignment of a natural



number to each member of V(/C/). If from the proof of this assertion, there were derivable

the means to assign two distinct natural numbers to two distinct sets, then we would possess

proof- ( or rcalizability-)theoretic means, at the level of set quantification, for distinguishing
between sets. By genericity, this is something that we cannot do. Consequently, a simple

analysis of the proof conditions of Vz 3n (f> shows that a proof of this can only occur by

way of assigning a single natural number uniformly to all sets. It follows that we have a

constructive proof of 3n Vz <f>{x,n).

5.3. Note. We make no pretense that the discussion of the above paragraph gives

anything other than a motivation, addressed to a classical audience, for the inevitability
of UP under readability. Constructive proofs of UP are forthcoming; see Chapter Three.
1

When the time comes, it will be clear that the truth of UP has some important
mathematical consequences. In Chapter Three, we give a direct proof of the fact that,
constructively, whenever a set A is nonempty, UP implies that the powerset of A is un-

subcountable. (A set B is subcountable whenever it can be enumerated by a subset of w;
for more details, see Section 6.)

Defining realizability for set theory.

Extensional realizability for set theory comes from fitting together the salient parts of
each of the preceeding sections: Poincare's notion of set, the Heyting-Kleene interpretation
of propositional connectives and the generic account of quantification over sets.

Let a, b, c and d stand for elements of V(jKZ) and let e, / and g range over cu.
We presuppose a primitive recursive pairing function on uj for which xq and x\ are the
unpairing functions. As usual, <{e}(^)' represents the result of applying the Turing machine
with index e to numeral n. In giving the interpretation, we assume that, whenever we write
an application term, it is defined. The language over which realizability is defined is that
of classical ZF augmented by names for the elements of Y(Kl).

Realizability is defined recursively on the subformula tree of </>] for assertions of atomic
form, it is defined by transfinite recursion on G« For sentences (j) of the augmented language,
read e ||— (j> as "e realizes </>."
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5.4. Definition.

e 0— a G b iff 3c ((eo, c) G 6 and ei ff— a = c)

e [)— a = b iff Vc, / ((/,c) G a implies that (eo}(/) If—c G h and
-f- (/, c) G b implies that (ei}(/) |f— c £ a)

e [|— 0A0 iff e0 ||— 0 and ex |f— -0

e f|— 0V0 iff either eo = 0 an<l ei U- 0 or

eo =A 0 and ej |j— 0
e || iff v/ (/ H— 0 implies that (e}(/) ff— 0)

«H~ ~-0 iff v/ -/H-0

e |j— Vz 0 iff Va e |f— 0(a)

e If— 310 iff 3a e |(— 0(a)

Wc say that V(/f/) satisfies 0 (in symbols, V(K/) f= 0) whenever 3n n ()— 0. g

The relative complexity of clauses [l] and [2] is required to guarantee that EXT, the
axiom of extensionality, is satisfied. Conditions [3] through [6] reprise Kleene's original
interpretation of the propositional connectives. [7] and [8], for the quantifiers, show that
the interpretation of constructive quantification over the class of sets is generic.

One should not conclude from all this that the adoption of genericit.y for sets amounts
to or entails the abdication of Heyting's and Kleene's insights into constructive quantifica¬
tion. On the latter two accounts, proof information has direct impact on the understanding
of quantification, and although this stands in contrast with generic quantification, it does
anything but exclude it. Rather, we might say that, given the realizability interpretation of
implication, genericity for the class of sets entails specificity for individual sets. It follows
from clauses [5] and [7] that, whenever quantification is restricted to a particular set, the
proof-theoretic characterization of the contents of the set plays a full Hcyting-Kleene role
in quantification over it. One can give a formal proof that, once schematic quantification
comes to interact with the realizability conditions on proofs of conditionals, the (realiz¬
ability form of the) Heyting interpretation reappears.

As an example, we can sketch such a proof in the case when quantification is restricted
to u. From the definition of |j—, we know that

n ||— Vz (x G u —> 0(x)) iff, for all a, n |j— (a € u> —» 0(a)).
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The right-hand side of this condition will hold only if, for all readability sets a and all
natural numbers m, we have that

if m D~ fl E w, then {n}(m) [J- <l>(a).

This clause has already a reasonable (albeit abstract) resemblance to the Ilcyting-Kleene
clauses for quantification, on which that the truth of a quantified formula is conditioned by
facts about constructive proof. However, the exigencies of V(/<7) allow one to go further
and bring these conditons into perfect accord with those of ICleene's original realizability
model. Later on, we will prove that there is, up to the realizability of =, a single internal
representative of w which we call '£7.' We will also prove that quantification restricted to
w is merely number-theoretic quantification. Roughly speaking, for any realizability set a,

m H~ a £ Cj iff a = m.

Knowing only this much, one can see that the last but one of the displayed equations
reduces to give the result that

n ||— Vi (i £ u —> <j>) iff, for all m, (n}(m) [[— </>(m).

It will follow from this, plus sundry details, that Vx£cj <t> is realizably true in set theory
just in case it is realizably true in the sense of Kleene. And this holds just in case
is "recursively true" in the sense of Heyting. Chapter Four contains a proof that this
correspondence is global: for 0 a sentence of arithmetic,

V(Kl) |= <)> iff 3n R(n, <j>).

Arithmetic sentences are realized over ~V[Kl) just in case they are realized in the original
Kleene sense. Hence, realizability for set theory is truly a generalization plus a "recur-
sivization" of the insights of Heyting.
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Section 6: Intuitionistic set theory

The reduced or lawlike continuum is the structure on the reals that derives from

an analysis of individual reals as completely presented by rule-governed sequences. This

conception stands at the ygry antipodes from that of the generic reals; here every real
number has a presentation which is given as a constructive rule which, in part, specifies a

sequence of rationals approximating the number. We believe that, before 1967, a majority
of constructivists would have accepted Brouwer's attitude toward the reduced continuum,
Brouwer held that the reduced continuum was, for measure-theoretic reasons, geometrically
inadequate as a picture of the reals, and that, for a constructive analysis to be at all
respectable as an analysis of the continuum, it would have to enlarge its vision to include
reals not given by laws.

In 1967, Errett Bishop's Foundations of Constructive Analysis appeared; there.
Bishop provided a development of a purely constructive analysis so successful that it forced
a thorough revaluation of Brouwer's attitude. Bishop showed how to elaborate, given only
the means of "lawlike analysis," a full constructive analysis, up through measure theory.
As prolegomena to his "New Constructivism," Bishop made an appeal to an informal con¬

structive set theory. As interpretation of that theory, Bishop adumbrated a concept of
set which is, in some respects, similar to that which we discovered in Poincare. More sig¬
nificantly, Bishop's reliance on a "constructive set theory" established a new foundational
task: the axiomatization of a set theory sufficient unto the needs of Bishop's analysis.

Beginning about 1971, a number of researchers, including Myhill, Feferman, Fried¬
man, Powell and Beeson, made detailed proposals on the form of the requisite set theory.
Records of the early investigations appear in Myhill (1973), Myhill (1975) and Friedman
(1973a). The strongest of the theories surveyed was the intuitionistic set theory IZF,
which derives from classical Zermelo-Fraenkel by modifying axioms in accord with some

extremely minimal constraints. Briefly, IZF results from ZF by dropping full AC, formu¬
lating Fraenkel's replacement axiom as a scheme of collection and putting foundation l»
the form of transfinite induction. Needless to say, the logic of IZF is the intuitionistl'
predicate logic of Heyting. (For an apologia for IZF and a discussion of the "minimal
constraints," see Chapter One.)

In particular, IZF is formulated in a single-sorted first-order language with G and
= as its only primitive nonlogical predicates. The axioms of IZF are all instances of (1)
through (8):



6.1. Axioms of IZF.

(1) Vx Vy (Vz (z g x <-► z g y) —► x = y) [EXT]

(2) Vx Vy 3z (x g z A y G z) [PAIR]

(3) Vx 3y Vz Vu g x (z g u —>z£j) [UN]

(4) Vx 3y Vz (z g y <-» (z g x A <£)) [SEP]

(5) Vx 3y Vz (Vu G z (u g x) —► z g y) [POW]

(6) 3x((3ugxVy yjf «)A Vy g x 3z g x y g z) [INF]

(7) Vx (Vy g x 3z » 3u Vy g x 3z g u (^) [COLL]

(8) Vx (Vy g x <^(y) —> i^) —► Vx <f> [IND]
I

In classical logic, the axioms of IZF are equivalent to those of traditional Zermelo-
Fraenkel as they are usually formulated. In intuitionistic logic, this equivalence fails; IZF
derives neither the the general law of excluded third nor the classical axiom of foundation.
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Section 7: On the internal mathematics of realizability, a preview

We have said that there must be a consonance between the two themes—axiomatic

and quantificationa!—that meld to form the generic conception of set. Under the account
of quantification, the axioms of the relevant theory must be correct. The soundness proof
for IZF with respect to extensional realizability shows that the consonance requirement is
satisfied. Just as Kleene proved that HA is sound with respect to his realizability, so we

can prove

7.1. Theorem. If IZF I- <j>, then V(Kl)

Proof. Here, Vic <j> is a universal closure of For complete details, consult Chapter Two.
This proof, just as Kleene's, proceeds by induction of the length of formal derivations in
IZF. a

From Section 1, we know that recursive mathematics as elaborated by Dekker, Myhill,
Crosslcy, Nerode, Eilentuck et al. bears a surprizingly close semantical relation to fields
of mathematics over ~V(Kl). All the notable subfields of recursive set theory, the theories
of RETs, isols, isolfc integers, COTs and losols are subtheories of pure nonrecursive set

theory over ~V(Kl). Moreover, the "realizability correlates" of each of these domains is
easily definable in the language of IZF over V(Kl). Even the theory of effectively given (eg)
information systems fits snugly into the same pattern. Under realizability, the external
category of eg systems is isomorphic to a category of noneffective information systems
internal to ~V(Kl). We might summarize this situation by saying that ~V{Kl) is truly a
universe for recursive mathematics.

The appropriateness of this summary is borne out in the "recursive" axioms that also
hold in ~V(Kl). (Some of these are proved using classical logic in the metatheory.)

7.2. Theorem. V(A/) ^MPaCTaAO" ADC.

MP is Markov's Principle:

Vx £ to (0 V <t>) —* (-" 3x £ to <f> —► 3x £ w <j>)

CT is Church's Thesis:

f £ (ui => w) —► 3e£ w Vx£ w 3y,u£ w (T(e, x,u) A U{u,y) /\ f(x) = y)
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T represents the Kleenc "T predicate" and U is the upshot function. CT says that every
total function from to into to is general recursive. AC" is the Axiom of Countable Choice:

VxEw 3t/G A 4>{x,y) —> 3/G(w=>A) ViGw <£(x, /(x)).

Finally, DC is the Principle of Dependent Choice:

Vx eA 3y eA 4>{x, y) - Vx G A 3/ G (w => A) (/(0) = x A Vx G w 0(/(x), /(x + 1))).

Even old-fashioned analysis in ~V(Kl) takes on a pleasant form. For one thing, the
category of realizability metric spaces is small:

7.3. Theorem. In ~V(Kl), every metric space is subcountable.

where a set is subcountable just in case it is enumerated by a subset of to.

Theorem 7.3 is, in fact, corollary to a far more general result: subcountability extends
to the cartesian closed category of sets that admit strict apartness.

7.4. Theorem. Every set admitting strict apartness is subcountable.

For nonempty sets in classical set theory, countability and subcountability coincide;
any nonempty set is enumerated by to just in case it is enumerated by a proper subset of to.
In intuitionistic set theory and even in some of its strong extensions, this equivalence may
fail. It is then possible for the notion of subcountability to take on an independent interest.
In V(Kl), the distinction between countability and subcountability is crucial and amounts
to the distinction between r.e. and arbitrary subsets of to. All subsets of (external) to

reappear in ~V(Kl) as (stable) subsets of to in ~V(Kl)\ each of these internal sets is trivially
subcountable. However, only the representatives of r.e. sets are countable.

We will think of Chapter Eight as, in part, a plea for the notion of subcountability.
In certain topological spaces it is trivially true that the "subcountable opens" of the space
form a Heyting algebra, but it is, in \{Kl), false that the countable opens do so.

The axiom of infinity is obviously true in V(A7), thanks to the fact that to has a
particularly salient internal representation as the realizability set to. For each n G to, let
n ~ •' rn G n}. Then,

to — {(n,n) :nGw)
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With respect to this internal version of w, V(A7) mediates a strict correspondence
between relations which are classically recursive and those which the intuitionist would
call 'decidable'.

7.5. Definition. A subset B of A is decidable on A iff Vi G A (x G B V z {£ B).

I

Since the intuitionistic law of excluded middle fails of universal validity, the assump¬

tion of decidability is a significant mathematical constraint on the structure of a set. It is

easily seen that a subset of the internal natural numbers in is decidable in ~V(Kl) just in
case, when viewed from without, it is recursive. To see this, assume that

V(A7) 1= Y C lJ is decidable.

By definition, this means that there is an index e such that e ||— Vx EU) (x £ Y V x Y).
By clauses [4] and [6] of 5.4, e decides, for each internal number n, which of n 6 Y or n 0 Y
holds. Specifically, we can assume without loss of generality that {e} is total, {e} : u —> 2
and ~V(Kl) (= n £ Y if (e}(ra) = 0 while ~V(Kl) j= n Y if {e}(n) = 1. Conversely, every
recursive set can be injected into V(Kl) as a decidable set. If (external) Y is recursive, just
"internalize" its characteristic function, cy, as a realizability set. Then, V(A7) cy :
£5 >—-> 2. Therefore, V(/C) |= Vigw (cy(x) = OVcj7 (x) = 1) and V(A7) |= (cy)_1(0)
is decidable.

V(Kl), therefore, faithfully manifests the mathematical duality we found inherent in
Brouwer's intuitionism. Not only does the internal mathematics of realizability provide a

setting for a full higher-order constructive theory of abstract sets, but, as we have seen, it
reflects internally many of the salient relations on the domain of proofs. When the domain
of proofs has been coded as a structure on w, the face that V(Kl) directs toward the proofs
is an expression of fragments of recursion theory.

7.6. Note. The internal "recursiveness" of V(Kl), as evidenced by the internal truth
of Church's Thesis, is bound up not so much with these fortuitous correspondences but,

rather, with a basic model-theoretic fact about realizability. This fact underlies both the
correspondences and Church's Thesis. Our version of this fact is called 'Kleene absolute¬
ness' and it is the claim that recursive relations on to are absolute over ~V(Kl). This means

that, if appropriately defined, the recursive relations are altered neither intensionally nor



extcnsioually by passage under the realizability operator. Chapter Four contains all the

pertinent details. 3

The face tilt V(/G) directs toward the domain of (coded) constructive proofs, the face
whose lineaments are recursive, is not that of a total stranger, even for the traditional
constructivist. Given the correspondences set out in the last paragraph, one sees that

simple unsolvability theorems of classical recursion theory can carry directly over into

independence results for IZF (plus whatever other principles hold over V(/C/)). In Chapter
Two, we apply this idea to calculate internal "realizability" versions of the halting problem
and to show that there is a discernible array of these versions that relate naturally to

Brouwer's method of weak counterexamples. The unsolvability of the halting problem,
once expressed over V(/ST/), is sufficient to capture, over V(/<7), all of Brouwer's traditional
weak counterexamples as strict falsehoods. Our method for capturing counterexamples
is completely uniform and applies not only to those weak counterexamples that reduce
a mathematical problem to the question of intuitionistic decidability, but also to those
that reduce a problem to intuitionistic testability. For a discussion of the method of weak
counterexamples, see McCarty (1983).
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Section 8: What is constructivism? A philosophical postscript

In constructivism, as elsewhere in philosophy, the phainomena seem, at first, mixed
and confusing. If we ignore finitism for a moment, intuitionistic and recursive mathematics
stand poles apart in the the world of "constructive" mathematics. Recursive mathematics
is obviously a form of constructivism, but, in comparison with the complete constructivism

represented by intuitionism, it seems skewed and fragmentary. It seems skewed because
the recursive mathematician does not constructivize his logic; recursive mathematics lives
under the sway of classical logic. It seems fragmentary because only certain features of
its objects have been constructivized, or better, "recursivized." If we remain solely on

the level of superficial comparison, we can only conclude that the term 'constructivist' as
applied to intuitionist and to recursive mathematician is maddeningly equivocal.

One should, however, never be overwhelmed by appearances. Our investigations show
that there is an underlying semantic structure, that embodied in realizability, common to
both forms of mathematics, intuitionistic and recursive. We have proved that recursive
mathematics must appear, on the semantic level, as constructive a mathematics as the
intuitionistic. We see various fields of recursive set theory as nothing more (nor less)
than nonstandard interpretations of natural theories in intuitionistic set theory. Recursive
mathematics is, therefore, a semantically disguised form of intuitionism.

Perhaps a few details are in order. For example, in Chapter Five is a proof that Q,
the first-order algebraic structure on the collection O of RETs, is embedded into V(Kl) in
such a way that both (l) and (2) hold:

'(1) Under realizability, U becomes exactly the structure given by the natural constructive
cardinal arithmetic on the to-stable elements of P(co). The embedding works so that the
"recursive" content of each of the relations and operations on n disappears into realiz¬
ability. In particular, partial recursive equivalence cs; in H is identified with pure cardinal
equivalence over V(A'l), and the partial recursive inclusion ^ becomes the notion of "sep¬
arable subset" familiar from the writings of Brouwer.

(2) More importantly, none of the first-order classical theory of 0 gets lost along the way.

(1) shows that this already holds for the atomic formulae of the relevant languages; (2)
shows that the result extends to arbitrary formulae. There is a simple, recursive translation
tr from the language Lq for Q into the language of IZF, such that, for each sentence </> of
Ln, <t>tT >s just what one would want to be the expression of the "nonrecursive" content of



(ii. Moreover, if classical logic is properly set up, tr can be taken to be invariant on the

logical constants of Lq. With </)tr properly defined, we can prove that

Q \=</> ittV(Kl) \=4>tr.

This assertion, which amounts to a kind of "isomorphism theorem" for realizability struc¬

tures, is understood and proved as a statement of classical mathematics.

It follows from the isomorphism theorems that recursive set theory is really a classical
mathematician's view of Kleene's recursivization of the Heyting interpretation. Once we

see Heyting through the eyes of Kleene, we have no difficulty in locating recursive math¬
ematics within a notion of constructivity that includes intuitionism, initial "appearances"
notwithstanding.

On methodological reduction.

There looms a potential misunderstanding that we hasten to dispel. Underlying these
theorems and all the attendant verbiage, there is no hidden suggestion that one should opt
either for a "reduction" of recursive mathematics or for a methodological elimination of
large parts of recursive constructivity in favor of interpreted intuitionistic mathematics.

This kind of elimination would serve only to eliminate a fair amount of the meta-
mathematical gains that accrue to our theorems. One is encouraged to remember that
isomorphism theorems like those above do their work in two directions and one of these is
from recursive mathematics into intuitionistic set theory. Via the isomorphisms, negative
results about the RETs, isols and isolic integers go directly and uniformly, without fuss
about the logic, into independence results for IZF. The reader will find a plethora of such
results proved in the final section of Chapter Five. We believe that the subject would be
greatly depleted should the possibility of such interaction be eliminated.

The status of the relation between analytic and synthetic geometry is paradigmatic for
the multiple relations between recursive mathematics and mathematics internal to V(iH).
There are two dualities associated with the name of Descartes and, luckily, one of them still
holds good. This is the duality between analytic and synthetic Euclidean geometries. Here
is a mathematical situation similar in form to that between recursive and intuitionistic
set theory, and' a situation that eschews reduction and grants working rights to eacfi of
the fields involved. Synthetic geometry remains to enliven algebraic relations with visual
imagery; the analytic geometry underwrites inter alia the transfer into Greek geometry
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of powerful algebraic methods. One need only reilect on the details of Lindeman's proof
of the impossibility of trisection to see the power of nonreductionism as it applies here.
We would prefer to view recursive and intuitionistic mathematics as living in a similar

symbiosis, one on which each is allowed to shed some nonreflected light onto the darker
side of the other. ~

8.1. Note. Mention should be made of a methodological fact which is not unconnected
with this discussion. Thanks to the isomorphism theorems, even the pure constructivist
can, at times, find classical proofs of both positive and negative results from recursive
mathematics extremely useful. The foundational work on RETs done by Dekker and Myhill

(1960) continually suggested to us proof methods which, although inspired by classical
recursion theory, suggest purely constructive results which otherwise might have been
missed. An attitude of nonreductionism leaves the classical theory of recursive cardinals
available to the constructivist as sort of exemplar. |

Intuitionism as a foundation.

Philosophers of mathematics are almost unanimous in their rejection of intuitionism,
not to mention constructivism generally, as a satisfactory answer to the "foundational
questions" of mathematics. (Admittedly, the sense of the word 'foundation' on which
some branch of logic or mathematics can be viewed as a foundation for the rest has always
been obscure to us. We would be loathe to offer any suggestion as to what this sense might

be.) Among the reasons given for the rejection, there is a clear statistical favorite. We
are referring to the oft-cited "weakness" of intuitionistic logic. In support of the charge
of weakness, most purveyors of the objection point to one or another of some highly
superficial "facts". One such "fact" is that cherished theorems of classical analysis, like
the intermediate value theorem, are not intuitionistically provable.

The theorems of the chapters to follow serve, in part, as a reply to this sort of ob¬
jection. Our results show just how superficial a collection of "facts" these nonderivability
results are. They also prove that, for classically specifiable enterprises like recursive mathe¬
matics, mathematics in constructive logic is in some ways superior to its classical analogue.

One straightforward, but limited, response to the objection is already available. The
response we have in mind rests on the Godel-Gentzen translations, not only of classical
into intuitionistic logic, but also of the classical into the intuitionistic set theory. (In
this regard, cf. Friedman (1973b) and Powell (1975).) The existence and character of



the translations do something to expose the superficiality of the facts cited above. The

existence of the translation shows that there is, for each theorem of classical analysis, a

uniformly-specifiable version of it that can be obtained among the hereditarily-stable sets
in a pure intuitionistic set theory.

Moreover, the uniform character of the translations and the fact that all the respec¬

tive entailments are preserved affords the intuitionist a plausible explanation of the relative
success of classical mathematics. To the "speaker" of intuitionistic set theory, classical set

theory works as well as it does because it has drawn its mathematical horizons within severe

limits. The classical mathematician restricts the available mathematical universe to those

sets which are in the image of the translation, the hereditarily stable sets. This limitation
advances the classical enterprise, but, at the same time, bars the classical mathematician
from investigating sets and notions that lie outside his limits. None of the results we ob¬
tain about recursive mathematics could be obtained directly over the hereditarily stable

fragment of the class of realizability sets. The class of hereditarily stable sets is precisely
that class on which the "proof parameter" of realizability is mathematically otiose. Hence,
in so restricting himself, the classical mathematician ignores the extra mathematical infor¬
mation which might be available to him if he were to reflect on the possible evidence for
mathematical claims. (See our discussion of the hereditarily stable sets in Chapter Three.)

Unfortunately, the Godel-Gentzen maneuver may not afford a final answer; it cer¬

tainly does not afford the most compelling answer. This is because the translation not
only "stabilizes" the mathematical subject matter but also some of the logical operations.
Hence, an anti-constructivist may have a reply open to him. He might argue that, once
logical operations like existential quantification have been stabilized, the basic concepts of
mathematics have themselves been altered. After stabilization, it seems that the notions of
fundamental concern to the mathematician: set, function and number, have been distorted
along with the logical forms of expression for them. The Godel translation of the notion
of set is not the full notion of set, the translation of the notion of (total) functions does
not necessarily coincide with the intuitionists' idea of function. Shortly put, it might be
said that the intuitionistic mathematician cannot, using this translation scheme, account
for classical mathematics as recognizable mathematics. Hence, it is only in a Pickwickian
sense that the intuitionist can "derive" all the theorems of classical set theory. If mathe¬
matics as a subject is identified by any of its perennial concerns, intuitionistic reconstrual



along Gbdel's lines will entail that, in intuitionistic eyes, classical mathematics ceases to
be mathematics.

The isomorphism theorems and their character offer to the pro-constructivist an im¬

pressive response to the "weakness" complaint. He can reply to the charge of weakness by

providing translation that alters neither the logic nor the basic mathematical "character"
of the fundamental concepts of classical recursive set theory. As we have seen, the elements
of recursive mathematics are captured over V(A7) without change in logical form; tr can be
defined so as to leave the force of the classical connectives unchanged. In the case of RETs

(and this applies equally elsewhere), the basic nature of the recursive cardinality concepts
is not obscured, but, we might claim, illuminated in the transition to 'V(Kl). The classical
recursive relation ~ of equivalence is seen as a restriction of pure cardinal equivalence
over V(/<7). Therefore, we can reply to our objectors by saying that significant portions
of classical mathematics can be incorporated into interpreted constructive mathematics
in a way that seems mathematically unimpeachable. Furthermore, all this is due to the
soundness of realizability, so, if it's weakness on the part of intuitionistic logic that permits
these kinds of interpretations, so be it.

From our standpoint, the mistake that lay in the charge of weakness is easily diag¬
nosed. The mistake derives from an insistence, on the part of the objector, in pressing
certain invidious comparisons between classical and intuitionistic theories. In light of the
isomorphism theorems, we would want to press alternative comparisons. Instead of pitting
classical against intuitionistic analysis, we would encourage a comparsion of intuitionistic
analysis with classical recursive analysis and of intuitionistic set theory with recursive set
theory. It seems to us that the usual style of comparison already takes one well along
the path to prejuding the issue against intuitionism and should be resisted at all costs.
That style of comparison can only seem fair when the extra resources of the intuitionistic
connectives, as understood by Heyting and captured (to some extent) in realizability, have
been ignored.

A final note. Superficial weakness in intuitionistic logic allows for a situation which
we call "axiomatic freedom." The freedom comes with the recognition of the fact that a

fully expressive set theory like IZF is consistent with mathematically useful but classically
false axioms of tremendous consequence. One need only mention Extended Church's The¬
sis, Brouwer's Theorem for number-theoretic functions and the "Brouwer Theorem" for
constructive information systems. Each of these is classically false yet true in ~V(Kl). At



the same time, each is of value and interest to the classical mathematician. Of these, we
will only have the opportunity to detail the classical consequences of axiomatic freedom
as they flow from the Drouwer Theorem for information systems. For that, we refer the
reader to Chapter Seven.
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Section 9: Prospectus

A synopsis of the ensuing chapters will round off our introduction. Chapter One is
a short course in and apologia for the intuitionistic set theory IZF. The short course is

largely of the "hands on" variety; the reader is confronted with a sampler of results from
that theory, together with their proofs. The choice of results is, in part, inspired by the
uses to which the set theory will later be put. Our primary concern is with the basic facts
provable in IZF about cardinals and Dedekind-finite cardinals from P(u>). The realizability
interpretation of these facts gives the basic facts about the RETs and isols.

Realizability makes a formal entrance in Chapter Two, where it appears in the very

general setting afforded by models of the APP axioms. The resultant "abstract" realiz¬
ability is called by us 'general extensional realizability;' the more apposite term, 'abstract
realizability,' has already been attached, in the literature, to other interpretations. Sadly,
we have little time to linger over realizability at so general a level and move quickly on

to the APP-model discovered by Kleene. The use of APP and the attendant realizability
is by no means an idle generalization. Were the investigative net spread no wider than
Kleene realizability, APP would still be the appropriate place to start. It turns out that
the proofs of the soundness theorems for intuitionistic logic and set theory with respect to

general realizability are not only much prettier than those ill recursive realizability, but
also, since the possible realizability witnesses are constrained only by APP, the proofs are

much less encumbered with extraneous details and are easier to "see."

Chapter Three is an extended discussion of the internal mathematics of set-theoretic
realizability. Perforce, this chapter is a patchwork of old and new. The realizability of
dependent choices, e.g., is very easy and has been known for many years. By contrast,
we have included some new results on the subcountability of metric spaces that solve
problems posed by Beeson. Chapter Four is a survey of metamathematical relations:
those between set theory and first-order arithmetic and between set-theory and second-
order arithmetic. We prove that Kleene's original realizability is the submodel of ~V(Kl)
obtained by restricting quantifiers to to and that Kreisel-Troelstra realizability for the
second-order arithmetic HAS is precisely the submodel of ~V(Kl) culled out by restricting
attention to to within P(to).

In Chapter Five, all material is completely new. It is here that we begin to draw the
picture of recursive set theory as a subtheory of "realizability set theory." The RETs,
isols and isolic integers are each treated as we have indicated above. Needless to say,
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Chapter Five is the mathematical centerpiece. Chapter Six is properly an appendix to

Chapter Five; only its length requires that it have independent standing. The root issue
of this chapter is a technical question internal to the workings of Chapter Five: "Is the
relativization of quantifiers from P(w) to P(w)si actually required in the working out of
the constructive versions of theories from recursive set theory? If so, why isn't it apparent
from the proofs in Chapter One?" Our answer to the first question is 'No' and takes the
form of yet another realizability interpretation, one in which the necessary relativization
has been discretely "hidden." The relativization of quantifiers is hidden in much the same

way as the recursive machinery of the external recursive mathematics had, in Chapter
Five, been hidden behind the realizability interpretations of the constructive logical signs.

Chapter Seven is a reasonably complete display of the advantages of .realizability for
the foundations of denotational semantics. Scott's notion of information system is shown to
have a natural constructive formulation, and, when that formulation is given a realizabil¬
ity interpretation, a "Brouwer's Theorem" holds for information systems. The Brouwer's
Theorem for information systems is the'statcmcnt that every set morphism between infor¬
mation systems is continuous and monotone. (This answers a question posed some time
ago by Dana Scott.) Realizability is also exploited to show how classical information about
effective indexing can be drawn painlessly out of constructive proofs. (This answers a
question about domains posed originally by Gordon Plotkin.)

If we think of Chapter Seven as a study in the applied topology of "realizability
mathematics," then Chapter Eight is a study in its pure topology. There, we offer a
brief but promising look into the relations between recursive point-set topology and its
constructive analogue. The modus operandi is much as it was with the RETs; we prove that
results obtained in a classical setting by Kalantari and Retzlaff coincide with intelligible
independence theorems concerning IZF.

Some general remarks.

(1) In Chapters One through Four, the logic of the object language (be it IZF or HA
or HAS) is uniformly intuitionistic. And, unless there is indication to the contrary, the
metalogic will be intuitionstic as well.

In the remaining Chapters (Five through Eight), the logic of the metalanguage will
be uniformly classical. After all, we are here hunting after relations between realizability
models and classical structures. The various object languages fall where they may. the
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logic of the theory of RETs is classical, but that of HAS3' is intuitionistic. The reader
must rely on contextual clues as a guide.

(2) Once in the realm of recursive realizability, we make full and repeated use of the
notational distinction (due, we believe, to Kleene) between "X" and "A" specifications of
functions. Whenever <j> is an applicative context, \x<j> denotes the function whose value
at each permissible argument y is i/>[x/y\. When <j> specifies a partial recursive number-
theoretic function, then Kxij> denotes the Godel number (or Turing machine index) of the
function \x<f>.

(3) Finally, we take the capital Greek letters '<£>', 'ft' and '0' as metavariables ranging
over the partial recursive number-theoretic functions.
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A Primer of Intuitiomstic Set Theory
CHAPTER 1

Section 1: Prefatory and historical remarks

The purpose of this chapter is to provide the reader with a brief but serviceable
introduction to constructive mathematics at the level of full set theory. On the approach
we prefer, we present (and try to motivate) the axioms, detail some samples of work
in the theory and illuminate the strengths and weaknesses of this form of intuitionistic
mathematics by reference to the metamathematical literature. All this is expressed in
continuous prose. Consequently, the details need form something of a potpourri-, formalized
mathematics and informal metamathematics are freely mixed; we trust that the reader will
make the necessary metatheoretic gesalt shifts along with us.

One of our not-so-ulterior motives will be to encourage the idea and to advance the
argument set out in Chapter Zero to the conclusion that there is no univocal response to
the question "Is constructive set theory weaker than its classical counterpart?" Should our
efforts fail and should the reader persist in thinking of constructive logic and mathematics
as too weak to serve any honest foundational purpose, we may yet hope for him to see
that, in certain quarters, weakness is a virtue.

Relatively widespread interest in constructive set theory dates back only to 1971. A
number of seminal papers in the field appeared in that year in the Cambridge Summer
School in Mathematical Logic, and were published by Springer in number 337 of their
Lecture Notes in Mathematics series. Foremost among these are Friedman (1973) and
Myhill (1973).

Chapter Zero contains a brief historical introduction to constructive set theories. Bee-
son (1979) makes a survey of the constructive set theories of current interest. In working
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out the details of this chapter, we have relied oo two excellent sources, Grayson (1978) and
Minio (1974). These works together serve as a recommendable guide to the rudiments of
mathematics within constructive set theories.

Section 2: Axioms and aetiologies

An aetiological account for IZF can begin with the classical set theory ZFC, which
is Zermelo-Fraenkel set theory plus Zermelo's axiom of choice. Needless to say, such an

account will be more heuristic than psychogenetic or historical and may even encourage a

certain misunderstanding. We do not mean to suggest that ZF is somehow conceptually

prior to IZF; one can find an independently intelligible concept of constructive set for
which IZF would, recognizably, provide a partial codification. It was one of the points of

Chapter Zero to argue that the hierarchies of pure Poincare or of realizability sets provide
such a concept. Rather, in beginning with ZF, we wish merely to move to the unfamiliar
from the familiar; the slightly nonstandard formulation of soirie of the IZF axioms, plus
the absence of AC, can be motivated by starting with classical set theory and applying a

simpleminded constraint.

We do not intend for anyone to think of this constraint as an indefeasible criterion
which any expressive constructive set theory must satisfy. Notoriously, attempts to set
limits on what is "constructively intelligible," just as with attempts to limit "scientific

intelligibility," have a poor track record. Rather, we want only to point out that, first

impressions notwithstanding, IZF represents a notion of set that comes naturally from
ZF by imposing a minimal amount of constructivization. IZF has the advantage that its
axioms can be introduced on the basis of a very general knowledge of constructivism rather
than only at the end of some lengthy analysis of the "constructive set" concept.

At the risk of tedium, we will commence with a review of the axioms of ZFC.

Axioms for classical ZF.

2.1. Classical ZFC. ZFC is a theory in the one-sorted predicate language Lzf with 6



and = as primitive binary predicates. The logic is classical and the axioms are as follows:

(1) Vz Vy (Va (2£i«z£j)-ti = j) [EXT]
(2) VzVj/3z (zgzAj/Sz) [PAIR]

(3) Vz 3y Vz Vu £z(z£u->zgt/) [UN]
(4) Vz3jVz(z£j<-»(z£zA </>)) [SEP]

(5) Vz 3y Vz (Vu £a(u£z)-ta£}) [POW]

(6) 3z ((3u 6 z Vj/ t/£s) A(Vy £ z 3z £ z y ez)) [INF]

(7) Vz (Vy E z 3!z <t>) —► 3u Vy 6 z 3a E u [REP]

(8) Vz (3y f Gi-► 3z E £ Vy E z V € x) [REG]

(9) Vz ((Vj/ G x 3z a G j) -» 3" Vy £ z 3!z (z£yAz£u)) [AC]
I

The axioms SEP and REP are really axiom-schemes. In SEP, <t> ranges over all the
formulae of the language not containing y free. Similarly, <f> in REP should not hai,e u

free. As always, 3\z<fr means that there is a unique z such that

A minimal constraint.

Proceeding naively, we should say that the first constraint any formal system must
satisfy in order to be counted as constructive is a purely formal one. The system has
to stay within the confines of intuitionistic logic. An axiom system for the intuitionistic
first-order predicate calculus will appear in the next chapter; for the present, it suffices to
say that intuitionistic logic is a segment of classical logic which is independent of tertium
non datur or TND:

0V-'<£

for arbitrary formulae (f>. (f> may, of course, include free parameters. (Cf. Chapter Zero or
McCarty (1983) for more information on intuitionistic logic.)

To be quite honest, the TND constraint is just too simpleminded to serve as sufficient
condition for the constructivity of a system, but, as a necessary condition, it has an obvious
justification. In most formalizations, classical logic is just what you get when you add TN
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to intuitionistic logic, and classical logic is not sound with respect to Heyting's concept of
intuitionistic entailment. Admittedly, the absence of TND is the grossest measure of the

constructivity of a system, but, for what are largely historical reasons, we light on it as an

expectation of intuitionistic set theory. We will take it as established that, for any system

5 in standard formalization to qualify as a system for intuitionistic set theory, the law of
excluded middle must be independent of S.

2.2. Note. Doubtless, the "criterion" for constructivity set out in the preceding paragraph
is too rough-and-ready. In actual fact, intuitionistic logic is neither necessary nor sufficient
for the constructivity of a system, or better, for the constructivity of the notions which the
system is intended to express. It is clearly not necessary: primitive recursive arithmetic
in classical logic is a perfectly reasonable constructive theory of natural numbers. On the
other hand, it is unquestionably the case that any number of the intermediate calculi fail
of direct and adequate constructive interpretation; to see this one need only reflect on the
system axiomatized by intuitionistic propositional calculus plus

(-■ P -»■ (9 V r)) -+ (-> p —► q) V(-> p —♦ r).

Hence, the TND constraint is not sufficient. |

In the case of full set theory, the way to satisfy the TND constraint is not the meta-

mathematically obvious one. One cannot, in attempting to satisfy the TND constraint,
merely do unto ZFC what is usually done unto PA in the move to HA. One cannot simply
exchange the classical logic of set theory for the intuitionistic. Myhill (1973) has shown
that this simple strategem is unavailable: the classical axiom of foundation, even in intu¬
itionistic logic, entails TND.

For the moment, let IZF be the theory axiomatized by (1) through (4) in intuitionistic
logic.

2.3. Note. A certain notion (and notation) is indigenous to discussions of intuitionistic
set theory. This is the notion of restricted singletons. For any set a and proposition ij>, the
set which contains a just in case <t> holds is a restricted singleton and is denoted '{a : <j>}'
With classical logic, a restricted singleton will reduce either to a singleton or to 0. In
strictly constructive contexts, such reductions are not obtainable; in fact, the reduction
procedure amounts to the adoption of TND. |



2.4. Proposition. IZF I— REG—»TND

Proof. Let x = (0 : <£}u{l}- Use REG to get z as an 6-minimal element of x. Then,
either z — 0 or z = 1. If the former, then <j>. If the latter, ->0 G x, and -> 0 follows. |

In order to satisfy the constraint and yet deal with this unfortunate result, we replace
REG by IND, its classically-equivalent "positivization:"

[IND] Vx (Vy G x rf>[y) —> <f>) —► Vx </>

Notice that we've begun to use the helpful bounded-quantifier abbreviations: 'Vi/ (y G x—>'
is abbreviated 'Vy G x.' The dual abbreviation for 3 contexts will also appear.

IND is, of course, the principle of transfinite induction on G- In classical set theory,
it is equivalent to REG, but, as the soundness theorem of Chapter Three will show, the
equivalence fails intuitionistically. The equivalence fails in intuitionistic set theory for
much the same reasons that, in the intuitionistic arithmetic HA, the arithmetical least
number principle is independent of the scheme of induction. To be convinced that IND is
a satisfactory replacement for REG in a constructive setting, i.e., that IND can do many

of the jobs assigned to REG, see Grayson (1975).

The TND constraint also mandates another change, as was shown in Diaconescu
(1975). Using 'IZF' as stipulated before the last proposition, one can prove that

2.5. Proposition. IZF |- AC—TND

Proof. Take x = {{0 : ^}U{1}, {0}U{1 : $}}, set a = {0}U{1 : <!>} and let b = {0 :
<^}U{1}. By AC, there is a "choice function" f on x which selects, from a and from b
respective elements of each. If /(o) = 1, then <j>] if f(b) = 0 then <j>. The only other
possibility is /(a) = 0 and f(b) = 1. In this case, f(a) /(&), so o ^ 6 and ~^i/> holds.
Therefore, the existence of the appropriate choice function implies TND. |

From a constructive standpoint, failure of full AC represents no substantial loss. The
only forms of choice which the Bishop-style constructivist ever needs are AC , choice
over the natural numbers, and RDC, relativized dependent choice. All these are obviously
consistent with IZF and, as we prove in Chapter Three, true in ~V(Kl) and independent of
TND. Moreover, Myhill has, in Myhill (1975), proffered general reasons for thinking that,
for situations which are extcnsional, AC is not constructively plausible.
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The modifications enjoined by adherence to the TND constraint yield a theory which is
"constructive" in a minimal sense and perfectly useful. (The system has even made several
appearances in the literature under the title 'ZFI.') However, we prefer to adopt a further
slight modification, one encouraged not by a constraint but by a state of noninformation.
This state attaches to forms of REP, the Fraenkel-Skolem Axiom ol Replacement. As is
familiar, in the presence of classical logic and REG, REP is equivalent in ZF to the axiom
scheme of collection, COLL:

Vx £ a3y<f>(x, y) —> 36Vx £ a3y £ b(j>[x, y)

Even intuitionistically, COLL implies REP. Unfortunately, although the converse implica¬
tion surely seems irredeemably classical, it is unknown whether REG can be eliminated and
whether COLL and REG are equivalent within an intuitionistic set theory. Hence, since
there are a number of places where COLL would be useful, and we don't know whether it
can be obtained constructively from REP, it is a matter of prudence to take COLL over

REP. In Chapter Three, we will prove that COLL does not entail TND.

Axioms for IZF.

What follows is the terminus of all this heuristic: the system IZF of intuitionistic set

theory. IZF is the deductive closure in Heyting's predicate calculus of the axioms:

2.6. Intuitionistic ZF.

(1) Vx Vy (Vz (z£i«2£s)-,i = s) [EXT]

(2) Vx Vy 3z (x £ z A y € z) [PAIR]

(3) Vx 3y Vz Vu £ x (z £ u —+ z £ y) [UN]

(4) Vx 3y Vz (z £ y «-> (z £ x A <P)) [SEP]

(5) Vx 3y Vz (Vu £ z (u £ x) —» z £ y) [POW]

(6) 3x ((3u £ x Vy t/j?ti)AVj£z3z£i ;y£z) [INF]

(7) Vx ((Vy £ x 3z </>) —► 3u Vy £ x 3z £ u 0 ) [COLL]

(8) Vx (Vy £ x 0(y) —► <j>) —> Vx <j> [IND]
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The satisfaction of the TND constraint goes very little distance (if any) to making
IZF palatable to a traditionally-minded constructivist. For one thing, IZF includes POW
and SEP, full powerset and full separation, rather than the more constructively acceptable
versions of those axioms, weak power set and A0-separation. A majority of constructivists
would likely object to POW and SEP on the grounds that they are impredicative or

even "wildly impredicative." It would be worth pausing momentarily to entertain these
objections and to point out the ways in which we might skirt them.

Remarks on impredicativity and powerset.

In our concessive moods, we might allow that a full dosage of powerset and separation
sends one into the realm of higher infinities and of impredicative specifications, a realm
which any right-thinking disciple of Brouwer should avoid. Our liberality is not, however,
a disguised attempt to rescue the contested principles from constructivist opprobrium,
but derives from the character of the task at hand. We are under no delusion that POW,
SEP and COLL are each somehow more constructive than weak powerset, predicative
separation and replacement, rather it is part of our project to derive independence results
for constructive systems and to do it economically. On the side of syntax, this means

that we should adopt theories which are the strongest conformable to the readability
structures. Such theories will always include POW and SEP, which we will prove in
Chapter Two. It is also worth noting that any known constructive set theory can be
embedded into IZF, so IZF is thoroughly economical from a metamathematical standpoint.

When in a more bellicose frame of mind, we try to dismiss forms of the argument
from impredicativity by severing the historical tie between it and constructivity. First,
there is, so far as we can see, no serious argument from premises justified by the basic
constructivist scheme to the conclusion that impredicativity is constructively unworthy.
Of course, impredicativity has been barred by fiat, but we do not take the pronouncements
on impredicativity by, e.g., Heyting, to count among the basic ideas of constructivity. In
fact, since Heyting's specification of the intuitionistic "proof conditions" of Vx^ and of
(/>—*■ ip are impredicative, there is a considerable price set on giving any general argument
to the conclusion that impredicativity is constructively unacceptable.

The very idea that there is something reprehensible about impredicativity per se goes
back to Poincare (cf. Poincare (1963)) and seems to be attached to a particular picture
of the constructive universe as an incomplete totality. According to Poincare s picture,
an incomplete totality is one which "grows over time as more members are added. On



the basis of this picture, Poincare objected to impredicative specifications because, when
the totality over which the specification takes place is incomplete, the reference of the

specification may shift over time. Strangely, Poincare insisted that logic is applicable only
to terms and predicates whose extensions will not change over time.

Independently of any rationale for holding such a peculiar view about logic, there is no

compulsion to adopt Poincare's vision of the mathematical universe as a domain expanding
over time. This is true even if we are strict constructivists; one can give a complete

presentation of the Heyting interpretation without having to rely on an assumption that
the membership of certain classes is time-dependent.

Next, on intuitionist thinking, all infinite domains, including the domain of natural
numbers, are incomplete. There is, however, no consequent demand that we look askance at
impredicative specifications of natural numbers; no intuitionist believes that "least number
such that" and "greatest number such that" contexts should be stricken from the rosters
of the sensible just because the natural numbers form an incomplete totality. Therefore,
there is no direct inference from incompleteness to the meaninglessness of impredicative
specifications.

One of the leading ideas of intuitionism is that the nature of a domain is not expressed
primarily in terms of a metaphysical portrait from which the properties of the domain
are "read off." Instead, if there is a portrait of a domain, it appears in the analysis of
quantification over the domain and in the quantificational principles which, consequent on
the analysis, either hold or fail there. The "incompleteness" of the natural numbers is
registered, in part, in the failure of the classical inference from to 3x -< <j>. There
seems to be no direct line from a reasoned approach to this failure to the condemnation
of impredicativity.

Finally, our account of quantification over ~V(Kl), the preferred generic understanding
of set quantifiers, leaves no jumping-off place for a Poincare-style attack on impredicativ¬
ity from a constructivist metaphysics. Generic quantification countenances impredicativity
without relinquishing any of the usual marks of "incompleteness." Moreover, the generic
understanding rescues us from an objection that could arise from one well-known tradi¬
tional account of the constructivist's grasp of an abstract set. (I believe that this account
can be found to underlie some of the remarks in Godel (1964).) On this way of thinking,
the constructivist's grasp of a particular set A must be mediated by or even consist entirely
in an understanding of a class abstract {i : <j>} such that A = {x : <f>}. The interpretation



of universal set quantification which would naturally be allied to this view is one that

takes proofs of Vx ijj to be intentional functions, which, for each possible class abstract

{x : <f>}, produce a proof of i/>(x/{x : This sort of semantical standpoint might well
be interpreted so as to prohibit impredicative instances of SEP. If A were defined via a

class abstract {x : <t>} containing unrestricted quantification, then a provision of the proof
conditions of x £ A would make reference to <j>, and hence, by the interpretation of V, to
the abstract {x : <f>} again. Therefore, a vicious circularity bars any attempt to compre¬

hend an impredicatively specified class. (We should point out that we do not believe that
an antipathy to impredicativity is mandated by such a stand on quantification. We are

sketching what we take to be a view which, historically, has been held.)

Generic quantification doesn't give this line a chance to get started. Sets enter into
proofs as "bare" sets; our constructive understanding of them is unmediated by abstracts.
This metaphysics of sets is allied to an account of set quantification involving functions
which are invariant under changes in the way we might elect to specify sets. Every proof
of a universal set quantification is completely schematic; the proof relies only on the
broad notion of set embodied in the axioms and ignores the possibility that sets might be
distinguished by presentations.

Personally, we have always been more than a little puzzled by "in principle" construc-
tivist objections to the powerset operation. We can well understand the force of certain
pragmatic considerations: the presence of full powerset often impedes metamatheinatical
progress. In fact, most of our Chapter Five can be seen as a demonstration that, over
V(AT1), the full powerset of u> is far too strange a place to be of much real mathematical
use. The success of the theories of RETs and of isols becomes, under the isomorphism
theorems, reason to restrict set-theoretic consideration to well-controlled segments of the
powerset like P(w)s', the collection of ui-stable subsets.

When it comes to the powerset axiom itself, a constructivist who allows variables to
range over arbitrary constructions could have very little to say by way of objection. Given
a set A, a constructive subset 5 of A is just an assignment, to each element a of A, of
the constructions which, if available, would prove that a £ S. In keeping with the basic
constructivist metaphysics, the assignment is just a constructive function from A into the
domain of constructive propositions. The powerset of A, then, is simply the function-type
containing all such functions. A constructivist who allows quantification over the domain
of all constructions and allows one to form function-types A=$ B for any A and B could



have objection neither to this idea of powerset nor to quantification over the powerset.

(Once we give our realizability models for IZF, you can see that this is, modulo a coding
with natural numbers, just the idea of powerset which we adopt.)

Finally, there is a technical point which can be made in favor of POW. In Myhill (1975),
Myhill explains how the admission of the full resources of POW allows a straightforward
approach to measure theory, an approach which permits quantification over all measurable
sets. Consequently, with POW, we need no circumlocutions to accomodate the foundations
of the classical theory of measure and integration.

A note on another formulation of IZF.

In passing, we remark that the IZF axioms receive an unnecessarily redundant formu¬
lation in Beeson's Constructive Formal Systems (1984), p.108. The axiom INF appears

with an extra clause, as follows:

3i(0 £ x A Vy £ x(y \j{y} 6 x) A Vs((0 G z A Vy G z{y U{y} G z)) —» x C z))

The extra clause makes explicit guarantee that the postulated infinite set x is the C-
least set hereditary with respect to 0 and successor. However, this guarantee is, for us,

unnecessary. Given that definition by recursion on well-founded relations is available in
our version of IZF, we can establish the existence of such a set by the procedure familiar
to classical set theorists and without the aid of Beeson's clause. For all the details, see

Grayson (1975).
On page 107 of the same manuscript, Beeson misassesses the strength of IZF. Beeson

writes "we cannot [in IZF] prove the existence of any functions, even of plus and times on
the integers." With POW and SEP, however, one easily demonstrates the existence and
functionality of any number of relations on u, among them the identity and the predecessor
functions. One can also use Frege's notion of hereditary set, plus induction, to define the
addition relation and to prove its totality and functionality.
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Section 3: Varieties of finitude and infinity

The remainder of this chapter is devoted to elucidating the inner workings of I&F.
Although we will not restrict expression to the purely formal, all our arguments are easily
formalizable in IZF. Also, we make selective mention of independence results which show
that various classical theorems cannot be reproduced directly in IZF. We make no promise
that all the independence results can be obtained constructively; the independence proofs
may well be classical. Acquaintance with the conventions and notation of informal set

theory is presupposed.

3.1. Definition. When used as notation for functional relations, ' —»,' 1 >—*■'
' -—^ take their familiar meanings:

(1) / A-* B iff / is a function from A into B

(2) / A --» B iff / is a function from A onto B

(3) / A —s- B iff / is a one-to-one function from A into B

(4) / A —» J! iff / is a one-to-one correspondence between A and B.

a

Essential distinctions.

Here is a list of the notions basic to an intuitionistic theory of cardinality:

3.2. Definition. Let w be the set of natural numbers. Let X be a set.

(1) X is strictly finite iff 3n £ w3/(/ : n >—*> X)

(2) X is finite iff 3ra £ w3/(/ : n —*> X)

(3) X is subfinite iff 3n £ uj3A C n3/(/ : A —» X)

(4) X is countable iff' 3/(/ : u —» X)

(5) X is subcountable iff 3A C ui3/(/ : A —» X)
(6) X is infinite iff 3/(/ : w >—> X)

(7)

1

X is Dedekind finite (or just D-finite) iff X is not infinite

A set is finite whenever it can be enumerated by the elements of a natural number.
It would be far too stringent to insist that the only finite sets are those in one-to-one
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correspondence with a natural number. Only discrete sets (vide infra) are finite in that
sense. Adopting such a notion of finiteness would, therefore, prohibit us from asserting,
when <j> is undecided, that the set {{0}, {0:0V -,0}} is finite. This would be highly coun¬

terintuitive. Naturally, a set is subfinite when it is enumerated by a subset of a finite set,

or, equivalently, by a subset of some number. The finite-subfinite distinction is necessary;

{0 : 0 V ~i 0} is trivially subfinite but, unless 0 is decided, it is not finite. The same sort
of examples encourage the parallel distinction between countable and subcountable.

Once we delve into recursive set theory, these distinctions will be of paramount im¬

portance. Within that framework, every subset of w is subcountable, but only the r.e.

sets are countable. In fact, the familiar nonempty r.e. sets of classical recursion theory
are precisely the countable sets of realizability set theory. Although the ideas of finite
and of D-finite sets are taken directly from traditional set theory, the distinction between
them parallels a crucial distinction in recursive set theory. This is the distinction between
isolated and nonisolated sets. (For details, see Chapters Three and Five.)

All these distinctions can be formulated as weak counterexamples. The weak coun¬

terexample procedure is a pervasive feature of intuitionstic practice; for an intuitive ex¬

planation, see McCarty (1983). For a discussion of the weak counterexample procedure in
the light of realizability, see Chapter Three.

3.3. Proposition.

(1) Vx (x is finite —>x is strictly finite) —>TND

(2) Vx(x is subfinite —> x is finite) —>TND

Proof. One can manipulate strange sets like {0 : 0V ^0} to get the appropriate coun¬

terexamples. For example, the set {0 : 0} is surely subfinite; were it to be finite, 0V~^
would have to hold. |

3.4. Definition. A set X is discrete iff equality is decidable on X:

Vx, y gX (i = yVx^}).

3.5. Proposition. If A is finite and discrete, then A is strictly finite.

Proof. Just use induction on ui. |
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It follows from this little proposition that every finite subset X of the natural numbers

has a unique cardinality, num(X), which is a natural number.

With a little help, we can even show that prima facie plausible and weaker connections
between these notions are intuitionistically unacceptable. Let MP stand for "Markov's

Principle:"
Vx £ w(iV f>) —► (""> -> 3x £ ui<t> —* 3x £ ui<j>)

Strictly speaking, MP is intuitionistically incorrect and is independent of IZF. However, if
we assume that MP holds in the metatheory, MP will hold in all the models we consider.

(MP can be given suitable justification if logical signs like 3 are interpreted over ui by
reference to search procedures carried out by Turing machines.)

The classical notion of nonempty set (like so many classical notions) splits up in
intuitionistic contexts. The strong intuitionistic notion of nonempty set is that of inhabited
set:

3.8. Definition. A set X is inhabited iff 3a a £ X |

3.7. Theorem.

(1) Vx((x is inhabited A x is subfinite) —► x is finite) —> TND

(2) MP—>(Vx((x is inhabited Ax is subcountable) —* x is countable ) —> TND)
Proof. For the first implication, consider x = {0}U{1 : f>}- x is an inhabited set and is
subfinite. If x is finite, then it is enumerated by 1 or by some n with n > 2. If the former,
then iji. If the latter, let / be an enumerating function. Either Vm < nf{m) = 0 or
3m < n/(m) = 1. If the former, then <f>. If the latter, <f>.

For the second statement; take x to be any inhabited subset of w. x is trivially
subcountable. If x is countable,

3/Vn £ w(ri £ x iff 3m/(m) = n).

If we apply MP to this last condition, v/e see that

Vn £ w(n £ x iff -1 ~< n £ x).

It follows that -i -i <j> —► <j> and that TND holds. |
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In traditional set theory, the presence of DC collapses any extensional distinction
between finite and D-finite sets. DC is the principle of dependent choices:

Vx £ S3y £ y) —> Vx £ S3/ : u —♦ S(/(0) = x A Vn £ u>0(/(n), f(n + 1))).

However, the collapse does not take place in IZF, even in the presence of DC. In fact, we

can add all our favorite choice principles: AC",X, PAx, and RDC, and stiil preserve the
distinction between finite and D-finite. In recursive set theory, the distinction is maintained
in the face of the choice principles by the presence of isolated sets of natural numbers.
When the time comes (Chapters Four and Five), we will explain all this in detail. Until
then, the following is a promissory note:

3.8. Proposition.

(1) Vx(x is infinite —is finite)

(2) IZF-t-DC \f-Wx C ui(->x is subfinite —>x is infinite)

(3) IZF+DC I/-Vx C u/(-ix is finite —*x is infinite)

Proof. The first statement is trivially true. The proof of the second will be apparent
from the theorems in Chapter Three on V(ifl). The third follows directly from the second.
I
i

Finite, subfinite, countable, subcountable.

In intuitionistic settings, there are a multitude of alternatives to the notion of finite
as we understand it. Minio (1974) contains a complete rundown. The definition of 'finite'
we prefer is unquestionably the most useful. For one thing, it's just what one needs to
formulate the idea of a "finite element" in an algebraic lattice. This sort of finiteness has
been studied in Kock, Mikkelson and Lecouturier (1975) and corresponds to what is there
called 'Kuratowski finiteness.'

Grayson has verified that finiteness has a number of pleasant properties. Here, we say
that the finite power of a set X is the collection of finite subsets of its powerset, P(X).

3.9. Proposition. Quotients, finite unions, products and finite powers of finite sets are

finite. All singletons are finite.

Proof. See Grayson (1978). g
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In general, the powcrset of a finite set is maddeningly uncountable. Within the rcaliz-

ability model, it is easily seen that the powerset of {0} is neither counted nor subcounted
by the natural numbers, by the reals, by N=>N, or by any reasonably "classical" ordinal.

Our notion of subfinite is the weakest of the finiteness concepts surveyed by Grayson
and Minio. Subfiniteness has some lovely closure properties of its own:

3.10. Proposition. Subsets, quotients, products and subfinite unions of subfinite sets
are subfinite. Every subset of a singleton set is subfinite.

Proof. See Grayson (1978). |

The next proposition does something to illuminate our nomenclature.

3.11. Theorem. A set is subfinite iff it is a subset of a finite set. In other words,
"subfinite" is precisely the closure of "finite" under subsets.

Proof. The implication from right to left is trivial. For the converse, assume that x is
subfinite. By definition,

3n3A C n3/(/ : A —» x)

Take / to be the extension of / such that, for m £ n, f (m) = (J{/(m) : m G A}, f
obviously extends f: if m £ A, then / = U{/(m)} — f{m)- Therefore, x C range(f) and
range{f) is finite. |

There are results for countable and subcountable sets that stand in perfect analogy
to the above.

3.12. Proposition. Quotients, finite unions and products of countable sets are count¬
able. Given ACU'X, countable unions of countable sets are countable. Every finite set is
countable.

Proof. Again, we refer the reader to Grayson (1978). |

AC"'X is the axiom of choice over the natural numbers:

Vngw 3i £X <j>{x,y)--»3/g(u=>T) Vngu f>(n, f(n)).

We will see that V{Kl) (=AC'"'X provided that ACW'X is assumed to hold in the ground
8

model.
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3.13. Proposition. Quotients, subsets, subfinite unions and products of subcountable
sets are subcountable. With AC4"'^, subcountable unions of subcountable sets are subcount¬
able. Every subfinite set is subcountable.

Proof. Again, we refer to Grayson (1978). |

Subcountability bears just the same sort of closure relation to countability that sub-
finiteness bears to finiteness:

3.14. Proposition. "Subcountable" is the closure of "countable" under subsets.

Proof. Just as for the finite-subfinite case, g
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Section 4: Cardinals from P(w)

P(w) is the powerset ofw, and the theory of cardinals of subsets of ut gives an inter¬
esting and well-controlled sample of what can be done with cardinal arithmetic in IZF.

Classically, the cardinals from P(w) would be anything but interesting, since there are

only Mo such cardinals: 0,1,2, Intuitionistically, there is plenty of room to work.
In Chapter Five, we prove that there are at least "wi" distinct cardinals in P(w). There
we will also explain the need for the scare quotes around 'ujj.'

4.1. Definition. Let A,B£ P(u>) and let { ,) be a primitive recursive number-theoretic
pairing operation.

(1) A is (cardinally) equivalent to B iff 3/(/ : A >—*» B). When A and B are

equivalent, we write B.

(2) A + B = {{0, n) : n £A} U{(1, m) : m £ B}

(3) AxB={(n,m) : n £ A A n £ B}

(4) A is a finite number (in symbols, N(A) ) iff A is strictly finite.

(5) A is (cardinally) less than B (in symbols, A < B) iff 3C £ P(w) A + C ~ B.

I

4.2. Note. In Chapter Zero, the symbol '^' was used to express the relation "cardinally
less than" in the form appropriate to recursion theory. Since this relation gets far more
play in our work than the usual order relation on cardinals, we will use the standard
symbol to denote it. |

With these relations and operations we can develop a reasonable intuitionistic arith¬
metic of cardinals on P(w):

4.3. Proposition.

(1) sa is an equivalence relation on P(w).

(2) As relations on P(tu), N and <f are congruences with respect to

(3) vis operations on P(w), + and X respect =a.

Proof. Trivial. |
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4.4. Definition. For sets A and B, A is a decidable subset of B iff

Viefl(ieAv-'ie4

i

In his Cambridge lectures (Brouwer (1981)), Brouwer used the term 'removable' for
our 'decidable.' The expression 'detachable' is also in common use. We will discover that,
as far as cardinal arithmetic is concerned, the removable or decidable subset relation is far
more important than the bare subset notion. In recursive set theory, it is with the relation
of decidable subset that a version of the Cantor-Bernstein Theorem is provable.

This result shows how the idea of decidable subset interacts with the basic notions:

4.5. Proposition. For A,B£ P(w)> A 5: & 'ff

3C E P(w)( C is a decidable subset of B and A pa C ).

Proof. Immediate. |

The arithmetic operations on cardinals from P(to) constitute a quite reasonable al¬
gebra of cardinals. The structure (P(u),+, <, pa) will prove to be a partially-ordered
commutative semigroup with refp, the refinement property.

4.6. Definition. A structure -p, <, pa) is a partially-ordered commutative semigroup
iff

(1) Pa is an equivalence relation on $, + respects p» and < is a Pa-congruence.

(2) + is commutative and (<&,+) is a semigroup with respect to pa.

(3) For a, b E a < b iff 3c E $(a + c pa 6).

(4) < is a partial order on <f> with respect to =a.

I

4.7. Theorem. {P{ui),+, <, Pa) is a partially-ordered commutative semigroup.

Proof. (1) through (3) are either too easy or have already been dealt with. To get (4),
one shows that < is (a) reflexive, (b) transitive and (c) anti-symmetric, (a) and (b) are
very easy but (c) presents something of a difficulty.
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(a) Since, for all A £ P(iu), A + 0 A, reflexivity follows from (3).

(b) Assume that A < B and B < C. According to (3), there are D and E such that
A + D B and B + E « C. It follows from (1) that (AtC) + £~C. Since P(w) is a

commutative semigroup under the operations, A + (D + E) ss C. Therefore, A < C.

(c) This proof is of a different magnitude entirely. Not only is it far and away more

involved than the others, but the result seems to depend essentially on the properties of
the natural numbers. Among other things, we need to make judicious use of the minimum

operator. Therefore, the procedure will not generalize to any set which is too different
from w. The proof to follow is a greatly abbreviated version of a proof of an analogous
result, due to Dekker and Myhill, for the domain of recursive equivalence types. It would
be enlightening for the reader to compare our work with that on pages 74 through 77 of
Dekker and Myhill (1960). In what sense this proof is a "version" of an "analogous" result
for the recursive equivalence types and in what sense the Dekker-Myhill proof allows of
systematic "abbreviation" will be revealed in the sequel, specifically, in Chapter Five.

The territory of our proof is subdivided into three lemmata:

4.8. Lemma. (u X B) + B 5=» w X B.

Proof. Trivial. I

4.9. Lemma. +

Proof. This is just a matter of concatenation of definitions plus a bit of the previous
lemma:

w X B < A =4 3C (u X +

=>A+ B « ((w X B) + C) + B

=4 (using (2)) A + B ((w X B) + B) + C

=4 (using preceding lemma) A + B ~ A
I

4.10. Lemma. A+flR:A=»uXfl A.

Proof. Let / : A >—A + B. For x £ A + B, define /" as



Here, ( )o is the first projection function relative to { , ) and ( )i is the second. From
its definition, /* : A + B —*> A + B. Now, for each x £ A, define fx by co-recursion:

r(o) = (o,x>

/>+!) = /*(/»)

Let <l>(i) hold of i just in case

fx{i)i e BAVj.k < iOV * - f(j), ^ r(fc)x).

Then, let

B* = {x G A : 3. < x + 2 4(i) A Vj < i fx(j) 1 < fx{0)i)}.

B" is a decidable subset of A. Therefore, if we can show that B* sa u X B, we are done.

To that end, construct a map g : B" —► co X B by setting, for x£fl",

9(x) = (f(x),rOr(x))>

where

/i(x) = fin < x + 2 (/f(n) 6 B)

t(x) = num({m < /r(x) : Vj'(m < j < /i(x) —>■ /I(m)1 > Z1^)!})

/rn stands for 'the least n such that'; 'num(A)' stands for the finite cardinality of
A. As the set in question is finite and decidable, and equality on it is decidable, the num

operator in the above clause succeeds in picking out a unique natural number. This follows
from the Proposition 3.5 of the last section.

Since / is bijective, so is g. To check that g is surjective, we consider a collection of
maps gb for b £ B and a map h. For b g B, set

9l(0) = (l,&>

gb(n + 1) = (0, f-l{gb{n)))
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And let

/2(n, 6) = /«n[mim({0 < i < m : Vj(0 < j < i-> gb{j)i < /(i),)}) = „].

p(n, b) is well-defined because, for each (n, 6) £ w x B,

p(0,h) = 0

p (n + 1, 6) < gb(n (n, i>))i + 2

Finally, set h((n, 6)) = g'(p (n, 6)) and check that pog = id Tw x B. id is the identity
function on A.

I

The antisymmetry of < follows directly from the last two lemmas:
a

A< BAB < A=*3C,P A + C ** BaB + D « A

=* A + (C + D) =» A

=> w X (C + D) < A

=> w X (7 < A

=» A s=» A + C » B
I

Antisymmetry for < on P(w) gives a weak version of the classical Cantor-Schroeder-
Bernstein theorem:

X < YAY <

The appellation 'weak' is correct because the < notion is, intuitively, stronger than the
classical notion of cardinal inclusion. For X to stand in the < relation with Y, X must be
equivalent to a decidable subset of Y, not just an arbitrary subset. The independence from
IZF of some "strong" versions of Cantor-Schroeder-Bernstein will be proved in Chapter
Five.
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We present one last definition and theorem about cardinal addition before we move

on.

4.11. Definition. A structure {<&,+ ~) has the refinement property (refp) iff for all
a, b,c, d 6 whenever a + b as c A d =t, then

3e1,e2) e3, e4 g $ a ks ei + e2 A 6 e3 + e4 A c « «i + e3 A <f «

I

4.12. Theorem. (P(ui),+, as) has refp.

Proof. Let f : A + B >—» C + D. Take

JSl = {n6A:/((0,»))1eC}

E2 = {n G A : /((0, n))4 6 D}

«s = {n6B:/((l,n))16C}

£4 = {r.€5:/((l,«))16D}
The theorem follows immediately. |

Once we know that (P(w), +, <, as) is a partially-ordered semigroup with refp, we
know that it has all manner of pleasant algebraic properties. For a listing of some of them,
one may consult pages 67 through 86 of Dekker and Myhill (1960).

The operation of multiplication on the RETs is also very pleasant.

4.13. Definition. For A, B g P(w), A \ B iff 3C AxC«B. |

4.14. Theorem.

(1) In (P(io), X, |, «*), X respects as and | is a congruence for as.

(2) (P(m), X, j, as) is (up to stability) a partially-ordered semigroup.
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(3) X distributes over +.

Proof. (1) and (2) are easy. By 'up to stability' in (2), we mean that the structure

(PM, X, |, would be an intuitionistic partially-ordered semigroup except for the in¬
trusion of a double negative, -i-t. In particular, the divisibility relation | is reflexive and
transitive, but only antisymmetric up to stability. It is intuitionistically the case that

VA, B e P(u)(A | B A B | A) - -ii A ss B.

To prove this, suppose that A \ B and B | A and make the assumption that
0

3x x G B V ~13z x £ B.

If the second disjunct holds, then A is also empty and A ss 0 B. If the first disjunct is
true, 3CBXC«A

Now, we make a second temporary assumption, that

3x i g C V -> 3x x 6 C.

Again, on the second disjunct, A is empty and A as 0 sa B. On the assumption of the
other disjunct, we can let y £ C and set D = C — {p}. Then,

A^Bx{D + {y})^BxD +BX{y}^BXD +B>B.

A symmetrical argument, starting from A | B, will show that B > A. Hence, under
the stated assumptions and since < is a partial order on P(w), we have that A « B.

It only remains to do away with the two assumptions. Granted, we cannot prove them
in intuitionistic logic, but we can prove their double negations. Therefore, we have, by
intuitionistic contraposition, that -'-iA B holds without qualification. It follows that |
is antisymmetric up to stability. |

For other properties of multiplication, the reader can consult the chapters on the
multiplication of recursive equivalence types in the Dekker and Myhill monograph.
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Section 5: D-finite cardinals

5.1. Definition. For A, B £ P(ai),

(1) A is Definite iff -> 3/3x(x £ A A / : A >—» A A Vi/ -> x = f{yj)

(2) A < B iff A < BA^A^e B

I

Our D*-finite is classically equivalent to Dedekind's original definition of finite set.
We want to show that, even intuitionistically, it is equivalent to what we call 'D-finite.'

5.2. Lemma. For A £ P(w), if f takes ui injectively into A, then there is a g such that
g also takes cj injectively into A and Rng(g) is a decidable subset of ui.

Proof. Given / : ui >—» A, simply define g so that

9(0) = /(0)
g(n + 1) = f{ny.g(n) < f(y))

To be sure that Dom(g) D u, we need only show that Vn3m n < f[m). One can easily
prove that by checking that Vn 3m<n + l n < /(m). Since g is strictly increasing,
Rng(g) is decidable. j

5.3. Theorem. For A £ P(ui), the following are equivalent:

(1) A is D*-finite

(2) A is D-finite

(S) VC £ P(tu)(C is inhabited —► A < A + C)

(4) A<A +1

Proof. (1)=»(2): By the lemma, if f : u >—s- A, then there is a g such that g : u >—*
A and Rng{g) is decidable. It follows that there is an h such that h : A >—» A and an %
such that x g Rng(h). If we take j to be

fx if x 0 Rng(g)
j[x) = <

I g(n +1) if X = g(n)

then we can get the requisite h as h = j \A.

(2)=>(3): Let C be inhabited and assume that A as A + C. Then, 3/ / : A+C >—»
A. Let a £ C. Consider g : u =—A, where
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ff(o) = /((!>«))

g(n + 1) = /((0, g(n)))

(3)=*(4): Trivial.

(4)=t(l): Assume that / : A >—» A and that x £ A such that Vy-^x = f(y). Define
g : w >—-> A so that

ff(0) = x

g(n + 1) = f[g{n))
Use the lemma to get an h with h : u> >—» A and Rng[h) decidable and then define

: A + 1 =■—» A:

if x0 = OAii i. Rng{h)
if xo = 0 A x\ — h(n)

if x0 — 1
3

5.4. Corollary. For A £ P(u), A is T)-finite iff A is D*-finite.
Proof. |

Arithmetic operations on the D-flnites.

Our ultimate goal is to demonstrate that, up to stability, realizability captures the
classical theory of isols as the theory of D finite sets and that, if constructive reasoning
is at all natural, working constructively over the realizability model gives the theory its
natural deductive structure. In so doing, we can make use of any of the principles that
hold with respect to realizability. MP is one of these principles; MP seems necessary to
the proof that the D-finite sets are closed under the operations of cardinal arithmetic.
5.5. Definition. For A £ P(w), A has the cancellation property iff

VB,C€PH(i+fl« A +C-P«C)
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5.6. Theorem (with MP). For A £ P(m), A is D-finite iff A has the cancellation
property.

Proof. If A has the cancellation property, then A < A + 1, so, by the previous theorem,
A is D-finite.

For each x £ B, one can use ui-recursion to define a function Fx : to —► A + C where

We want to show that, with MP, Fx(n) £ {1} X C for some n. To that end, assume
that Vn Fx(n) £ {0} X A. It follows directly that Fx : ui >—* A. Therefore, since A is
not infinite, the assumption is false and -> Vn Fx(n) £ {0} X A. Now, if MP is applied, we
obtain

Vi £ B3n Fx[n) £ {1} X C.

Take ju(x) = p.n.Fx(n) £ {1} X C and set, for x £ B,

h(x) = Fx(»(x)) x

To construct a function inverse to h, just work through this same routine again. It
follows from the availability of these constructions that B ?=» C. |

5.7. Corollary. The T)-finite sets are closed, under +.

Proof. g

The cancellation property for D-finite sets shows that a subtraction operation is well-
defined for those D-finite A and B such that A < B.

6.8. Definition. If A, B £ P(u>) and A and B are D-finite, C B — A iS A-{- C k* B. I

5.9. Corollary. Subtraction is, with respect to rs, well-defined.

Proof. |

On the other hand, assume that A is not infinite and that f : A + B >—» A + C.

F-(0) = /«!,*»

if Fx(n) £ {0} X A
if Fx(n) £{1}XC
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5.10. Note. The cognoscenti may well remark that a proof of the preceding results could
be obtained without the intrusion of MP if a stronger definition of D-finite were adopted.
Some such stronger definition might be

(1) X is D-finite iff V/((/ : w X) — 3n n Rng(f))

Unfortunately, this definition does not suit our purpose. We would like it to be the

case, classically, that, for any classical set X,

(2) X is isolated in V iff V(A7) |= 4>{X)

where X is the "internalization" (cf. Chapter Three) of X in V(X1), and <f> is the expression
of D-finiteness in IZF. However, if we adopt the right-hand side of (1) as our definition
of D-finite, no infinite set satisfies (2). To see this (although we get well ahead of the
story), assume that X is infinite and isolated and that Y(Kl) |= <j>[X). By the definition
of realizability, there is a partial recursive function g such that if {e} : w—>X, then g(e) =
num(Rng{e}). g is obviously extensional, but g is not the restriction of any continuous
operator. Therefore, the fulfillment of our desires with respect to a definition of D-finite
is blocked by the Myhill-Shepherdson theorem. |

To round out our incursion into the realm of the D-finite, we offer a proof that the
D-finite sets are closed under X • Our proof calls for the introduction of yet one more
notion of "finite set," that of bounded set. The boundedness concept does derive from
traditional intuitionism and is constructively useful; however, this proof is the only place
where it will feature in our work.

5.11. Definition. A set X is bounded iff 3m X C m. |

For collections of natural numbers, boundedness falls strictly between finiteness and
subfiniteness. Intuitionistically, every finite set of natural numbers is bounded, but not
conversely; some bounded sets are no more than subfinite. Every bounded set is subfinite,
but a simple realizability argument will show that the statement

VX £ P(tu)(X is subfinite —> X is bounded)

is independent of IZF.

With that out of the way, we can show that
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5.12. Theorem (with MP). The D-finite sets are closed under X.
Proof. Let A and B be D-finite. Assume that / : ui >—-> A X B. Take /o to be ( )o0/
and take Aq to be Rng(fo).

Claim: '1 ' Ao is bounded.

Assume, for contradiction's sake, that Ao is not bounded. Then, -i 3tnVi(x £ Ao ->
i < m). Since Ao is counted by /o, we can write this as -> 3mVi(/o(i) < m). By MP, we
have Vm3i(/o(i) > m). It follows that Ao is infinite, and so, a fortiori, is A. But A was
assumed to be D-finite. Therefore, the claim is correct.

Assume, for the sake of argument, that Ao actually is bounded. Define a map g on u

as follows:

9(0) = /(0)x

y(n + 1) = /(/ry.Vm < n +1 /(y)j ^ /(m)x)i

Under this latest assumption on Ao, we can prove that g is total. Assume that, for some

-i 3yVm < n + l/(y)x 7^ f(m) 1

Then, Vy3m < n + 1 /(y)i = f(m)i- It follows that B0 = Rng(( )x o /) is bounded.
Hence, Ao X Bg D Rr.g(f) is bounded. But this contradicts the assumption that / is
injective. Therefore,

-1 -1 3yVm < n + 1 /(y)x 7^ /(m) 1

Now, we use MP again to get

3yVm < n + 1 /(y)x 7^ f(m)i

It follows from this that g is total. Therefore, we have that g : ui >—> B and B is infinite.
Therefore, Ao is not bounded, in contradiction to the claim. |

5.13. Corollary. ( D-finite,+, <, rs) is a partially-ordered commutative semigroup
with refp and the cancellation properties.

Proof. |

5.14. Corollary. ( D-finite, X, |, ~) is, up to stability, a partially-ordered commutative
semigroup.

Proof. |
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Section 6: tu-stable P(w)
6.1. Definition. A set A £ P(cu) is ui-stable iff

Vn £u)(-^~'n£A—*n£ A).

P(u>)3' is the collection of all w-stable members of P(w). |

The results of Sections Three and Four show that there is a substantial cardinal

arithmetic on full P(w), provided that some care is taken in the formulation of definitions.
It is not at all difficult to check that those same results, with much the same proofs, hold
over the slightly more restrictive domain P(w)3'. Actually, one need verify little more than
this: that, when A and B are w-stable, so are the sets constructed from them by pairing
and by projection on their elements.

As Chapter Zero more than intimates, our concern with P(w)5', come Chapter Five,
will be considerable. P(w)3' is precisely the domain of a structure which, under realizabil-
ity, becomes the structure determined by the algebra on the recursive equivalence types.
With this identity of structure, the theorems of these sections turn into constructive proofs
of the fundamental properties of the RETs. These remarks likewise apply, mutatis mu¬

tandis, to the D-finites and to the isols.
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General Extensional RealizaLility

CHAPTER 2

Section 1: Prefatory and historical remarks

Kleene-style readabilities for set theory are nowise new. Our interpretation is the
immediate descendant of the interpretations of Friedman (1973a) and of Beeson (1979).
The idea of using models of APP came to us from a remark of Solomon Feferman in his

paper A language and axioms for explicit mathematics (1975). In our case, the ultimate
investigative goals-that of limning the exact logical relations between classical recursive
mathematics and constructive mathematics over V(iO)-influenced both the form of the
interpretation and our attitude toward it. Unlike the readabilities of Beeson, readability
over ~V{Kl) applies directly to extensional IZF; for what we wanted to do, we found it a

nuisance to interpret the extensional theory into the intensional before realizing. Also,
our interpretations are not designed with proof-theoretic ends in view, but are considered
model-theoretically. We think of readability structures in much the same way as one

thinks intuitively of Boolean-valued models. In fact, since our models work directly on the
extensional theories, our clauses for g and = bear a marked formal analogy to the correl¬
ative clauses over Boolean-valued universes. Incidentally, the "model-theoretic attitude"
is, we think, more in keeping with the attitudes expressed by Kleene in 1945 than the
'attitudes expressed in more recent work. The model-theoretic attitude adopted in Hyland
(1982) stands as an exception.

The form in which our readability appears was the product of a joint effort expended
in Oxford during Michaelmas term 1980. The effort had at least contingent connection with
Dana Scott's seminar Sheaves and logic. Among the many individuals who made notable
contributions, foremost were Guiseppe Rosolini, Simon Thompson and Dana Scott.
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As Chapter Zero suggests, general realizability is defined over a von Neumann-like

hierarchy, V(A), which is constructed with the aid of a model A of APP. We will refer to
the models of APP as applicative structures. As we will show, these structures arc precise
abstract representations of the minimal limits one would have to set on the structure of

the domain of constructions so that intuitionistic logic is sound with respect to the Heyting

interpretation.

Elements from the domain |A| of A serve as the readability witnesses. When a

sentence <j> is realized over V(A) by an element e of \A\, we will write e fj— <j>. There will be
no subscript attached to the 'fj—' sign to indicate its dependence on A. No confusions will

arise, since all the work in these chapters really goes on over no more than one realizability
structure at a time. Whenever 3e £ |A| e fj— </>, we write 'V(A) |= <j>.'

Section 2: Language, axioms and models of APP

Terms and pseudoterm3.

2.1. Delinition. The language Lapp is a first-order language with the usual logical signs
and with a ternary predicate, App(x,y,z), and equality, =, as primitives. The language has
an infinite collection of variables, denoted x, y, z, ..., and seven distinguished constants:
k, s, d, p, 1, r and 0. g

Economical presentation of the APP system requires the definition of the set PT of
pseudoterms and the correlative collection of pseudoformulae.

2.2. Definition. PT is defined by recursion on the strings of Lapp: the variables^and
constants of Lapp are members of PT and, whenever r and a £ PT, so is r(a). r(<r) is
an application term and we always parse application terms by associating to the left. All
formulae of Lapp are pseudoformulae, and, whenever r,a £ PT, so are r a and r J..
When (j> is a pseudoformula, so is </>[x/r], for each r £ PT. J

Each pseudoformula is a metalinguistic abbreviation for one of the official formulae
Lapp. Here are the abbreviations:
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2.3. Definition.

r = x if r is a variable or constant

3y,z (a ~ y /\0 ~ z A App(y, z, x)) if r = o(0)

r ~ a — Vx (r ~ x <-► or"~ x)

r | = 3x (r c=; x)

^[x/r] = 3x (r x A <t>)

I

Each pseudoformula has a definiens suggested by the notation for it. 'r(<7)' is (partial)
application; 'r means that r is defined or, equivalently, that r takes a value in models
for APP. We note that, if r is defined, so is every subterm of r. 'r 2=: a' means that r and
a are equal "whenever they are defined.

Axioms of APP.

It is in terms of pscudoformulae that the five axioms of APP are presented:

2.4. Axioms of APP.

(1) kxy I Akxy x

(2) s xy j. A s xyz ~ xz{yz)

(3) p xy I A1 x J A r x j A1 (p xy) ~ x A r (p xy) ~ y

(4) ((2 = 0) —> d uvx ^ u) A((x 7^ 0) —> d u»i ~ u)

(5) p xy ^ 0

When A is a model of APP, we write A (= APP. j

k and s are familiar items; they are the combinators that make for the combinatorial
completeness of every APP model (vide infra). Of course, partiality is allowed; the APP
axioms guarantee that k be total on |A|, but s may well be undefined on its arguments,
p makes for total pairing, while 1 and r are its left and right projections, respectively, d
gives definition-by-cases on 0. We insist that p nj 0; ultimately, this will insure the
realizability of one of the 'V-introduction' axioms of intuitionistic logic.
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Completeness and recursion.

Both the combinatorial completeness and the recursion theorem hold for models of

APP. These will make our work much easier when it comes to proving the realizability
soundness theorem for IZF. There is nothing original about either of the following theorems
or their proofs; they are standard results from combinatory logic.

2.5. Theorem (Combinatorial completeness). If r £ PT and x is any variable,
there is a pseudoterm Xx.r £ PT whose free variables do not include x and which is such
that APP (— (\x.r) J, A (Xx.r)x r.

Proof. Xx.r is defined by recursion (in the metatheory) on the applicative structure of
t:

(1) if r = x, Xx.r = s k k

(2) if r = y and Xx.r = ky

(3) if r = 0(a), Xx.r = s (Xx.0)(Xx.<r)

By axiom (1) of 2.4, skk skk does not have x free and skki c: kx(kx) ~ x.
Axiom (2) guarantees that, since k xy J., ky |. k y does not have x free and kyx ~ y. By
axiom (2) and structural induction, s (Xx.cr)(Xx.0) J, and does not contain x free. Also, we
know that

s(Xx.<r)(Xx.e) ~ (Xx.cr)x((Xx.0)x) x± <r$

I

Each pseudoterm o has a fixed-point under application. Moreover, for each model A
of APP, there is a single element of |A|, called V^', which computes a fixed-point for each
a.

2.6. Theorem (Recursion). There is a pseudoterm r®* £ PT such that

APP I— r®* J. A r ~ ^(r^cr)

Proof. Take r®x to be the pseudoterm

Xz.((Xy.a(yy))(Xy.z(yy))).
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Theorem 2.5 guarantees that this term exists and that it is defined. A simple calculation
shows that r^x gives the requisite fixed point:

rfix(7 ~ (Xj/.<T(yt/))(Xy.or(yy))
= <x((Xy.cr(yy))(Xy.£r(yy)))
~ <r(rfix<r)

I.

Finally, we prove a simple "double recursion" theorem, which will come into play
when we verify the substitutivity of identity over V(A).

2.7. Corollary (Double recursion). For 01,02 £ PT, there are ri,r2 £ PT such that

APP h ri ~ 01T1T2 A r2 — 02T1T2.

Proof. Consider the pseudoterm

\x. p (cr!(1 z)(r x))((T2(1 z)(r z)).

One application of the recursion theorem gives a term r3 such that

r3 — P (<n(lT3)(rT3))(<72(lv3)(r r3)).

Now, we simply set ri equal to lr3 and r2 equal to rr3 and the proof is complete. |
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Section 3: The general realizability structure

The notion of V(A), the cumulative realizability structure over A, is inspired by
the conceptual combination of two significant insights. The first is the semantical idea
behind realizability: the evidence for a statement of constructive mathematics is finite and

algorithmic and could well be encoded as the index of a Turing machine. This was Kleene's
idea and it dates back to the introduction of number realizability in Kleene (1945). (For a

nontechnical exposition of realizability and its relation to Heyting's fundamental work on

the interpretation of the logical signs of intuitionistic mathematics, see McCarty (1983) or
Chapter Zero.) The other idea came along much earlier and in the context of interpreting
classical set theory. This is the von Neumann-Mirimanoff-Zermelo picture of a hierarchical
universe of sets organized by the membership relation itself. The fundamental insight is
that the universe of mathematically significant sets is subsumed by the collection of sets on

which membership is well-founded and that the latter sets appear in a natural hierarchy
articulated by the ordinals.

For structures /V such that A |= APP, V(A) is a cumulative universe on the ordinals.
However, at each stage a, V(A)a + i is formed not by taking the collection of all subsets of
V(A)a as in the von Neumann universe, but by throwing in ail subsets of |A| X V(A)„. In
this way, each "realizability set" y of the universe is a collection of pairs (e, x) where x is
hereditarily a realizability set and (up to extensionality) e codes the evidence that i£ J.

3.1. Definition. For A [= APP,

V(A)„ = U P(|A| X V(A)p).
(3<a

V(A) = |J V(A)q.
a

i

3.2. Proposition. V(A) is cumulative: for (3 < a, ~V(A)p C V(A)a. 8
Proof. Immediate. |
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Section 4: Defining realizability

As is standard in setting up the machinery of Boolean- or of Ileyting-valued models,
we expand Lzf to a proper-class-sized language L^- has a distinct primitive constant
a for each a £ V(A); one can even think of the constants as the elements of V(A), used
autonymously. Lowercase Roman letters from the beginning of the alphabet will range

over V(A). Letters from the middle of the same alphabet, e, /', g, ..., denote members ol
|A|. This represents a minor change with respect to our previous usage. Up to this point,
x, y, z and their ilk have ranged over |A|. But since we don't want to confuse quantification
over |A| with formal quantification within Lapp, we have switched conventions. Needless
to say, there are never enough of the right letters to go round and subscripts will be used
to compensate. Realizability, ()—, is first defined only on sentences of L^.

sThe Definition of Realizability.

4.1. Definition.

(1) e H- a g 6 iff 3c (1 e, c) g b A r e |J— a = c

(2) e (j— a = b iff V/,d((/, d)£a—>le/|j— dgh
A(/, d) g b —> r ef [|- d g a)

(3) e (f- <t> A ip iff 1 e |(— <f> A r e |j— t/i

(4) e [J— <t> V r/> iff (le = 0Are[|— 0)v(ley^OAre(j— 0)

(5) e D— ~"i> iff v/ -/|M

(6) e |)— ij> —> V>iff V/ (/tM->(«/! A e/fht/0)

(7) e (f— Vz <j> iff Va e [)— <j>[x/a\

(8) e |j— 3x <t> iff 3o e U— 0[a:/a]

I

Clauses (1) and (2) certainly deviate from the obvious. The obvious thing would have
been to write clauses which directly express the notions which we touted as basic insights,
namely, that

e ))— a £ b iff (e, a) £ b and

e |j— a = 6 iff a = 6
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Unfortunately, this will not do if we wish to realize extensional IZF directly. The simple
clauses would work if we removed axiom EXT. Under the alternative definition of (j—, one
which replaces our (1) and (2) with the two clauses above, there would exist realizability
sets o,t £ V(A) Which are distinct, when viewed from outside V(j4), but which, on the
basic conception, contain the same elements "from the inside." Mofe precisely, on the
alternative, there would exist a and b such that, as sets, a and b may consist of distinct

pairs, and so are distinct sets from the metatheoretic viewpoint. However, there may still
be |A| elements e and / which interchange the evidence relative to a and b: e carries coded
proofs 9 of c £ a into proofs eg of c £ b and / does the same, but in reverse. If e and /
work for all c £ V(yl), then, as far as the coded evidence is concerned, a and b would be
the same realizability set. Our clause (2) guarantees that this situation will never arise;
sets which are identical in the way of realizability elements are always taken to be identical
realizability sets. Clause (1) then insures that membership in realizability sets is closed
under these identifications.

Clauses (3) through (6) express the realizability interpretation of propositional intu-
itionistic logic just as Kleene saw it in 1945. The last two clauses show that unbounded
set quantification is interpreted generically, as described in Chapter Zero. In the univer¬
sal case, we say that e is evidence that proves Vx <j> if and only if e represents a proof
schema that proves <j>(a) uniformly for all a £ V(yl). Think of the proof of <j>{a) as given by
"inserting" a into an argument place in the proof e. There is nothing about a schematic
proof that is keyed into either the structure or the presentations of individual a's. The
generic picture of higher-order quantification first took concrete form in the realizability
interpretation for second-order Heyting arithmetic provided by Kreisel and Troelstra and
expounded by Troelstra in his paper (1973b).
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Section 5: The soundness theorem for HPL

'HPL' stands for Heyting's predicate logic, the formal system which codifies the in-
tuitionistic logic we used in Chapter One. The axioms and rules of HPL are sound with

respect to realizability in the sense that the universal closures of each axiom is realized
and that, whenever a closure of the antecedent of a rule holds, then so do all the closures
of the rule's conclusion. Our presentation of HPL is axiomatic.

Heyting's predicate logic.

5.1. The axioms of HPL.

(1) <j> -+ (t/, -► <j>)

(2) [<j> -» (t/> -> x)) -* ((<t> -*■>!>)-*{4>-* x))

(3) <t>-+{Tp ->-(<t>ATp))

(4) (<f> A ■>!>)-+ <t>

(5) (ij>Aip)-+il>

(6) <j> -> (<£V V)

(7) V—V ^>)

(8) [<j> V VO -»((4> -+ x) ((-0 -»■ x) ->■ x))

(9) {</> —> 0) -> ((<£ -+ -> xf>) -> -> <j>)

(10) 0 —► 0 —* -0)

(11) Vz^-» 0[a:/y]

(12) <j>[x/y\ -> 3ac <j>

I

As usual, y must be free for x in <f> in axioms (11) and (12). <j>\x/y\ indicates the result
of substituting y for x uniformly throughout <j>.

There are three inference rules:

5.2. Inference rules.

[DET] <t>,<t> —* ip f—

[UG] 0 —> 0[a:/y] [-</>—► Vz V>
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[EI] <t>\x/y] —> 1j> \- 3x <)> ip

I

In UG and EI, y is free for x in <f> and occurs free in neither <j> nor ip.

Now we can state and prove the realizability soundness of HPL. 'V <(>' indicates
universal closure of <j>.

The soundness theorem for HPL.

5.3. . If HPL 1- <f>, then V(A) |= V<6.
Proof. The verification of realizability for the axioms and rules of HPL is straightfoi
ward; we restrict consideration to three examples. For the reader desiring further infoi
mation, a complete proof appears in the last chapter of Kleene's (1952a). The results (

Theorem 2.5 on combinatorial completeness will be used without explicit mention.

For Axiom (3): We show that g = \x\y.p xy ||— (3). Assume that e |j— <t>- Then, ge
and ge \y. p ey. Assume also that / [J— if'. Then, gef ~ p ef, which is defined, and, b
clause (3) of 4.1, p ef [)— (<j>Aip)-

For Axiom (8): This one is only slightly more taxing than the others. With h set equ;
to

,

\x\y\z. d (y(r x))(a(r x))(l i),
one can easily check that h |j— (8). Assume that e [f— tpVip- By (5) of 4.1, either le =
OAre \\-</> or le ^ OAre |-^. he I and he equals

\y\z. d (y(r e))(z(r e))(l e)
Next, assume that / [\- <j>—> x and 9 V1 -+ X■ Then, hefg | and hefg equals

d(/(r e))(9(re))(le)

Now we use the properties of d in APP. If le = 0 and re.[f— ^en hefg — /(re,
/(r e) | and /(re) [)— x- Similarly, if 1 e 0 and r e |j— r/>, then g{r e) f and it realizes x-

For [EI]: Assume that e []— Vy ftj>\x/y\ —► if))- One shows that there is an / G |A
such that /e |j— 3x <f> —> ip. Without loss of generality, we can assume that y is the onl;
variable free in <p\x/y\ —> if). From clause (7) of 4.1, we conclude that, for all a G V(A)
e ||— a] Now, we assume that g f|— 3x <p. Using clause (8) of 4.1, we can say tha
36 g H~ 4>\x/b\. Therefore, eg j and eg [f- ip. Altogether then, we see that c fj— 3x <f>-n,
and we can take the desired / to be s k k. I
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Section 6: Realizing the axioms of identity

In preparation for the full soundness theorem for IZF, we prove that readability is
sound for the identity axioms of La-

The identity axioms. ~

6.1. Axioms for identity.

(1) x = x

(2) x == y —> y = x

(3) (x = yAy = z)-*x = z

(4) (x — yAl/ £z)-+ x (E z

(5) (i = yA z£x)~* z£y

We will use 'ID' to refer to the set of closures of these axioms, g

The soundness proof for these axioms is only slightly more delicate than the proof of
the last theorem. Since readability for atomic statements has been defined recursively on

the membership relation, induction on the ordinals will be required. The work is easier if
we first take time out to prove two lemmas on the closure properties, under membership
and equality, of the levels in the V(A) hierarchy.

The closure lemma.

6.2. Lemma.

(1) 6 £ V(A)„ - 3/3 < a Vc (V(A) }= c £ 6 —► c £ V(A)„)

(2) (a £ V(A)a AV(A) |= a = 6) - 6 6 V(A)a

Proof. (1) and (2) are proved simultaneously by induction on the ordinals. Assume that,
for P < a,

(d G V(A)„ AV(A) (= c = d) -> c g V(A)^

Let b £ V(A)a. From the definition of V(A),

Bp < a such that b C |A| X V(A)^
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Let e |j— c £ b. By clause (1) of 4.1, the definition of realizability,

3d (1 e, d) £ 6 A r e ||— c — d

Since 6 C |Aj X V(A),9, d £ V(A)^, so, by assumption, c £ V(A)p and we have (1).
To prove (2), take a £ V(A)Q and suppose that e ^— a = b. Choose a /3 < a such that,

if V(A) |= c £ a, then c £ V(A)(3- Now, for any ~d £ V(A), if (fc, d) £ 6, then r ek |= d £ a.

Hence, d £ V(A)^. Therefore, b £ P(|A| X V(A),g) and /? < a, so b £ V(A)a. This gives
(2) for a £ V(A)a. j

The soundness theorem for identity.

6.3. Theorem (Soundness for identity). V(A) |=ID.
Proof. For Axiom (1): even this simple axiom calls for induction on the ordinals. The
proof will show that there is an i £ |A| such that, given the assumption that for all /? < a
and all 6 £ V(A)^, i ((— b = b, then i f|— a — a for a £ V(A)„. i is constructed using the
recursion theorem of 2.6.

First, use the recursion theorem to find an i £ |A| such that

p(Xj/.pyi)(Xi/.pyi)

Then, assume that for all fl < a and b £ V(A)^,i ||— b = b. If (/, 6) £ a, then I if — p fi,
which is defined and, since (/, 6) £ a and i |(— b = b, p fi (j— b £ a.

For Axiom (2): No induction is necessary here. Let g = \x. p (1 x)(r x). Intuitively,
g is given by the X-pseudoterm that interchanges the left and right members of any pair.
The check that g [)— (2) is easy.

For Axioms (3) and (4): Let ru ..., r6 £ PT be as follows:

n = r (1 (1 y)x)

ra = 1 (r y)

r3 = r (r (r y)x)

t4 = r (1 y)(l (r (r h)i))

Tf, = r2(l(l(lj/)i))
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Ta = P (1 y)(r (r 2/))

By the Lemma 2.7 on double recursion, there are |A|-elements e and / such that

e = Xy.p (r2J/ra))

/ = Xy.p(Xi.e(prir5))(Xx.e(pr3r4)).

There is a proof, by simultaneous ordinal-induction, that / [)—(3) and e |j—(4). For ease o

exposition, the proof is presented in two parts.

Part I: Assume that, for all f) < a and di £ V(A)^,

/ = d2)-d = d2.

On this assumption, we prove that, for c E V(A)a,

e [f- (a = b Ab £ c) —i> a £ c

Let h|j— a = b /\b £ c. Then 1 h [}— a = b and r h |{— 6 £ c. The latter implies that

3d (1 (r h), d) £ c A r (r h) (]—(> = £/

By the lemma 6.2 on the closure of V(A), we can assume that b £ ~V(A)p for some f) < c

Therefore, by the inductive assumption, f(ra[y/h]) ({— a = d and by 4.1,

p{Tz[ylh\)U{.Tt[ylh\)) (h ° e c.

Hence, we have that eh | and eh |j— a £ c.

This concludes Part I; we have shown that, for c E V(A)a,

e [(— (a = b A b £ c) —► a £ c.

Part II: With the result of Part I as assumption, we want to prove that, for b <

V(A)a,

/ D— (a = i>Af> = c)—> a = c
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Assume that h |j— a = b Ab = c and let (g, d) £ a. Then,

1(1

By clause (l) of the definition of realizability,

3t (1 (1 (1 h)g), i) £ 6 A T\ [y/h][x/g] |f- d = i

Then, t5 [y/h] [x/g\ [)— i £ c. By closure, we can assume that c £ V(A)a.
With e as in Part I,

z{p{n[y/h}\xlg]){T5[ylh}[xlg\)) [j- d £ c

A similar argument shows that, on the assumption that {g, d) £ c,

e(p(7-3[y/h\[xlg})[Tb[ylh][xlg\)) (f- d £ a.

Finally, with X-abstraction and pairing, we see that

/ H~ (a — bAb = c)-*a = c

This concludes Part II.

For Axiom (5): With e as in Part I of the preceding, set

g = Xx.e(p (r (r i)(l (1 Ji)(l (r x)))))

With the result of Part I, it is easy to check that g K—(5). |

6.4. Note. There are numerous times when we will have need for a fixed witness for
Vx x ~ x. We set aside the letter <i1 as notation for such a witness. Hence, whenever an

unannounced V suddenly appears in a proof, the reader can presume that the intrusive i
stands for this fixed witness. |
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Section 7: The soundness theorem for IZF

The last section is devoted to the only remaining task of this chapter—that of proving
the soundness of full IZF with respect to general realizability.

The soundness theorem for IZF.

7.1. . V(A) |= IZF

Proof. We treat the axioms in the order in which they were introduced in Chapter One
section 2, beginning with extensionality. Again, we fix i £ |A| such that i [J— Vz (z = z).

(1) [EXT] It is a simple matter to check that, with

e = Xy. p (Xz. 1 y(p xi))(\x. r y{p xi)),

e [}— EXT. The matter is so simple because we took pains to see that extensionality wa

"built into" the very definition of ||—.

(2) [PAIR] We need to guarantee the existence of an e 6 |A| such that

Va,6 3c e|f-ii6cAi£c.

Set e = p (p 0i)(p Of) and, for a, b g V(A), take c = {{0 , a), (0 ,6}}.

Since V(A) is cumulative (cf. Proposition 3.2), if a £ V(A)Q and b 6 V(A)^, then i

and b 6 V(A)y{Q+1)3+1}. Hence, for 7 = |J{« + 1, /3 + 1} + 1 ,c£ V(A)7. Trivially, then
e H- PAIR.

7.2. Note. If we wish to remain within a strictly constructive metatheory, we canno

make the simplifying assumption that Va,/3 (a £ /SVi? € aVa = /S). As Graysoi
has shown in his Heyting-valued models (1979), the assumption of trichotomy for ordinal
implies TND in IZF. In the same paper, Grayson describes a Kripke model for IZF 01

which ordinal trichotomy is demonstrably false. In the next chapter, we will prove no

only that ordinal trichotomy is both weakly and strongly false over V(A), but also that i
is consistent with IZF to assume that the collection of ordinals on which trichotomy hold
comprises a relatively small set. g

(3) [UN] Let e = Xz. p xi and let b — UnA(a), where, for each a £j V(A),

UnA(o) = {(e,c):s J-3i(c£zAi£a)}
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Because of part (1) of 6.2, the closure lemma, Un"4 is well-defined on V(A), and one can

quickly see that

e D— V6 Vc ((c £ 6 A 6 £ a) —i► c £ Un^fa)).

(4) [SEP] This time we need to find an e £ |A| such that

Va 36 Vc e [)— (c £ 6 <-+ (c £ a A <j>[x/c]))

We define the operator SepA(a, tf>) to be

{(e, c) : e (f- (c G a A <!>[x/c\)}.

The operator is well-defined on V(vl) for much the same reason that Un^(a) is.
Starting with the soundness of identity, (cf. 6.3), and using induction in the metalan¬

guage, one can prove that there is a j$ £ \A\ such that

U H~~ (2 £ a A <t>{x/z\ A2 = })-t(v£aA <t>\xly\)-

Take e = p p xi). Then

e H— c £ Sepj4(a, <j>) <-♦ (c £ a/\<t>[x/c}).

(5) [POWJ For a £ V(A)a, set

PA(a) = {{e,c):e[f-cCa}.

To see that P'4(a) is well-defined, assume that e |j— c C a. If (/, d) £ c, then p fi ()— d £ c
and e(p/i) ||— d £ a. By 3.2, part (1), there is a /3 < a such that for all / and d, if
if id) € c, then d £ V(yf)^. It follows that c £ V(A)0. Therefore, P"4(u) is well-defined and
takes V(vL)0 into V(yl)c,+1.

Finally, if e = \x. p xi, then e H— (c C a —► c £ P^(a)).
(6) [INF] Our favorite of the many representatives of w in V[.4) is ui, which is given

via a metatheoretic recursive injection of u> into V"[yl). For n £ w, set n + 1 = pnO and
set 7i = {(rn,m) : m £ n}. (Recall that 0 is already given—with the APP axioms.) Then,
we take w — {(n,n) : n £ tv}, and Io £ V(A)u,+i.
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To verify INF, note both that

0 = 0 G V(A) and p 0 i [)— 0 G u

and that

if g ()— c G ZJ, then 3n£u r g |j— c = n and 1 g — n.

It follows that p (1 g)i [)— n G n + 1, while

p 7i + 1 i [f— n + 1 € w and

n±A= p(p (1 g)) 0.

Therefore, if we fix j G |A| so that

j |f- x = y -*■ (y G z -* x G z), then

p (i(r s)(p (1 sM)(p (p (1 a) 0)i) H- (c G y A y e w).

(7) (COLLj Let g [)— Vi G n <j>. Then, for h ff— b G a, there is a c such that gh [)-
cp(b,c). Again, the closure lemma for V(A) proves that {(h,b) : h j)— 6 G n} E V(A). With
collection in the metatheory, there is a f) such that if h [j— b G a, then 3c G V(A)^ gh [)-

c).

Take d. — |A| X V(A)^; d G V(A)^+1. If e = XiXy. p (p 0 i)[xy), then e |)— COLL. To
see this, let

g [)— Vz G a 3y <j> and let h [f- b G o.

Then, egh = p(pOi)(gh), and there is a c such that gh |j— </>{b,c). We can assume that
(0 , c) G d. Hence, p 0 i |(— c G d.

(8) [IND] Since IND captures that aspect of the universe of sets that underlies definition
by recursion on G, one can safely predict that we will call on the second recursion theorem
for APP, 2.6, to construct an e G |A| to realize IND. To begin with, we assume that for
all a G V(A), g (j— Vy (y G a, —i► tj>[x/y\) —>■ <ji(a) and that, for all /3 < a and 6 G V(A)^,
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Take a £ V(yl)a. Then g [j— Vy [y £ a —* </>[x/y\) —> <j>(a) and, by closure, if h |j— b 6 a,

then 3/? < a b £ V(./l)£. Hence, e [)— <j>(b). Therefore,

Xx. k ex I)— Vy (y £ a —» c£[x/i/]) and

<7(\x. kex) [)— <^(a).

By the second recursion theorem, there is an / £ |A| that fixes j — j(Xx. kj/x), i.e.,

fj = g(\x. k (fj)x).

Then, with e = \g.fj, e |f— IND. g

8
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Section 8: Final remarks

(1) All the notions that went into constructing V(A) can be expressed in IZF, even

the recursive definition of fj— for atomic sentences. Therefore, if A is ZF-definable, we

can associate with each </> from Lzf a formula <^>H of Lzj-, the latter saying 'x realizes ^
with respect to A.' Also, all of the work that went into proving the soundness theorems is
constructive. It follows that, if IZF I— (A |=APP), then IZF I— (V(A) |= IZF).

(2) Anyone familiar with the Scott-Solovay approach to Boolean-valued models (cf.
Bell (1977) ) will have noticed the analogy between our construction of realizability over

V(A) and the construction of models of set theory over complete Boolean algebras. The
analogy can be made good mathematically within the category-theoretic framework pro¬

vided by the theory of triposes (cf. Pitts (1981) ).

(3) In the work reported here, Kleene (or "number") realizability for set theory will
afford the primary focus of interest. General extensional realizability, as we have defined
it in this chapter, is not, however, a useless generalization. For one thing, the soundness
theorem for IZF is "visually easier" when presented generally than when proved directly for
Kleene realizability. The use of combinators and lambda terms makes the abstract relations
between formulae and their realizers much more vivid. For another thing, the general

0 ...»

approach will allow one to apply APP-based realizability directly to other structures upon

the mere recognition that the structure in question provides a model of APP. We will have
very little opportunity to make these applications here; we hope that further writings will
fill this lacuna.
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Introducing Klcene Readability
CHAPTER 3

Section 1: Prefatory and historical remarks

Very few of the results of this chapter are wholly new; even fewer, we fear, are very

startling. At best, some of the proofs are new and some of the results are new (so far as we

know) for extensional intuitionistic set theory. The material on the Presentation Axiom
and the applications of uniformity and subcountability stand as exceptions; these things
are completely new.

The fact that this chapter is largely a reworking of the literature is in keeping with
its intention, want here to augment the work of Chapter One with an overview of set
theory under realizability. The reader will recall that, in Chapter Zero, we went to some

length to impress upon the reader the fact that intuitionism and realizability have two
faces. One face is turned toward the proof relation and is combinatorial in character; the
other addresses the realm of higher-order entities (sets, species, sequences and so forth).
This chapter is an introduction to the realizability investigation of the latter face.

Those results from this chapter that have appeared before in print can be found
(perhaps in slightly different forms) in Beeson (1979), Friedman (1973a) or Hyland (1982).
Everything here (both new and old) was known to the author prior to November 1981.

Section 2: The structure Kl

2.1. Definition.

(l) Let \x\y(x, y) be a primitive recursive pairing function from w X OJ into w such
that

Vx,y (x,y) 0.
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(2) Let Xx.xq and Xx.x! be total left and right unpairing operations with respect to

(x,y); for all x and y from w,

(x,y)o = i and (x,y)i = y.

(3) Let G be the function given by

G(x, y, z) = |
(y

and let

g = AxAyAzG(x, y, z).

1

2.2. Definition. Kl is the realization of Lapp in which the universe | Kl | is ui and
over which = from Lapp is interpreted as equality. App^'fx, y, z) is Turing machine
application:

App^'(x, y, z) iff z {z}(y).

The primitive constants of Lapp are interpreted over Kl as follows:

(1) k^' = AxAy.x

(2) sKl AxAyAz.{x}(z)({y}(z))

(3) pKl = AxAy(x, y)

(4) 1^' = kx.xq

(5) r^' = Ax.xi

(6) d*' = y

(7) 0Kl = 0.

I

All the recursion theory required to construct a Kleene-style number realizability
model for full IZF comes neatly packed into this little theorem:
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2.3. Theorem. A7|=App.

Proof. The classical s-m-n theorem proves that r^' is well-defined for each primitive
term r of Lapp- The reader can easily use the definitions from 2.1 to prove that the
interpreted constants have the properties required by the App axioms. |

Now, all of Chapter Two can be brought to bear on Kl. V(A/) is the universe of
realizability sets, as described in Chapter Zero, and IZF is interpreted soundly over it.

2.4. Theorem. V(A7) (=IZF.
Proof. See Theorem 7.1 of Chapter Two. |
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Section 3: Internalizing basic set theory

The natural first step in the investigation of set theory over ~V[Kl) is the isolation
of the basic constructs: singletons, pairing, successors and natural numbers. The
internal versions of each of these notions will run through and organize our treatment of
the subject.

3.1. Notation. We utilize the perspicuous "overbar" convention to distinguish between
the external and internal versions of each of the basic notions. For example, the favored
internal version of the natural numbers, w, is a realizability set named '<j'. Once we can

presume some facility in working between internal and external versions, much of the
"overbarring" will be omitted. Like any convenient notation, ours becomes cumbersome
when taken to extremes; in extremity, we simply drop the notation and put faith in the
reader's talents, g

Set-theoretic pairing.

3.2. Lemma. For a,b £ V(Kl), {a, 6} = {(0, a), (1, b)} is the internal unordered pair oj
a and b, i.e.,

\[Kl) f= x £ {a, b}*-*x = aVy = b.

There is a realizability witness for the above which is uniform in a and b.

Proof. Frogi the very definition of {a, 6}, we see that

e (j— c £ {a, 6} iff either eo = 0Aei (|— c — a or e0 = 1 Aer f{— c = 6.

The desired result then follows immediately from the clauses in the definition of [)— which
govern the interpretations of the symbols '£' and 'V'. |

3.3. Definition. For a £ V(Kl), {a} = {a, a}. |

3.4. Lemma. For a,bE V(iff),

M) = {{o, W), (i,

is the internal ordered pair of a and b, i.e.,

V(K7) [= x £ (a, 6) <-+ x = {a} V x = {a, 6} .
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There is a witness for the abdve which is independent of a and b.

Proof. This follows directly from the preceding lemma and from the realizability clauses
for '£' and 'V.' |

3.5. Lemma. For a, b £ ~V[Kl),

a U b = {((0, n),c) : (n, c) £ a} U{((1, rn),d) : (m, d) £ 6}

is the internal union of realiztlbility sets a and b. Again, a witness can be chosen which is

uniform over all a and b.

Proof, elj-jgolji implies that either there is an (n, c) £ a for which e0 = (0, "} while
el H~" 9 = c> or there is an (rh,d) £ b for which eg — (l,m) and ei (j— g = d. It follows
that

(e00i (eoii ei)} |f- g £ a Vg £ b.

Therefore, if h — Ae.(e0o, (eoi> el)), then

h [j— Vi (x £ a U b —i> x £ a V x £ b).

For the converse implication, let e |f- g £ a V g £ b. Then, either eo => 0 or eo = 1- If
e0 = 0,

3c (em, c) £ aAen f|— g = c.

Hence, {(eo, em), en) ||— g £ oU b. In case eo = 1, there is a parallel argument to the same
conclusion, j

w and w.

Now we can offer a natural internalization of a; and check that, in ~V[Kl), the inter¬
nalization has all the familiar properties of the set of natural numbers. Salient among the
possible internalizations of the natural number concept is the realizability set to:
3.6. Definition. For each n £ w, let

n = {(m,m) : m £ n}.
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Then set

u = {{n, n) : n £ u>}.

I

w is our candidate for internal ui, and, for each external n, n is its internal version.

3.7. . V(Kl) |= w =u.

Proof. It will suffice to show that, over Y[Kl), u is the C-minimum successor-hereditai
class that contains 0 as a member. In terms of the basic formalisms and of the interna

izations just constructed, we need to prove that

V(ffl) |=OguAVigu(zU {i} £ u) A((?i(0) A Vz (<j>[z) ->■ <f>(z U {2}))) —► Vx S a? <!>{■

Here, cf> is assumed to be a formula of the augmented language L

By definition, (0, i) [j— 0 £ to. The easiest way to verify that to is closed under intern
successors in is to prove two lemmas: the first is a lemma which characterize
quantification over to in terms of external recursive functions and the second reveals tl
accord between the internal and the external versions of successor.

3.8. Note. The following is a precise version of a characterization of readability fi
arithmetic which we accepted on informal grounds in Chapter Zero, g

3.9. Lemma. ~V(Kl) |= Vxgto (j> iff there is a total recursive {e} such that, for all'
{e}(n)H-0[x/n].
Proof. On the one hand, let e |j— Vx £ to <f> and take ti g u. By the definition of i
(n, i) ||— n £ Hi. Therefore, {e}((n, i)) J. and {e}((n, z')) |J— <f>[x/n\.

On the other hand, assume that there is a total recursive {e} such that, for all extern
n, {e}(n) [j— f>[x/n], Let g |j— a £ to; then, 31 fj— a = go. By the assumption on

{e}(?0) It- f>\xt So]- The realizability of the substitutivity of identity now gives the resul
I

3.10. Lemma. For each n, there is a realizer for

fzU {«} = n + 1
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which depends effectively on n.

Proof. Once one unpacks all the definitions of internal notions, it is a trivial matter to
see that the lemma holds. First, nU {«} is defined to be

{((0, m), m) : m 6 n} U{((1, 0), n)}.
8

(This is not, strictly speaking, true. We have assumed here that {n} is defined to be
{(0, n}}. This is not externally the same as our definition or singleton, but is easily seen to
be internally the same.)

n + 1 is defined to be

{{m, m) : m 6 n} U{(n, «)}.

One can now see that, given n, there is, in accord with the interpretation of '=,' an

effective procedure for interchanging realizability elements of the one set with those of the
other. Therefore, the lemma follows by the realizability of =. |

We return to the proof of theorem 3.7. Thanks to the lemmas, we see now that, to
prove that 57 is realizably closed under successor, it will suffice to provide a total index e
such that for all n,

{e}(n) [|— n + 1 £ 57.

But that's easy (after all, 57 was defined just to make these things easy); we take e —

An.(n +1, i).

Finally, we need the realizability of the fact that 57 is the least set hereditary with
respect to successor. Assume tht e [|— 0(0) and g [)— 0(a) —> 0(a U {a}) for all a 6 V(Ki).
Let j provide the witnessing guaranteed by the last lemma, i.e., there is a number ] such
that, for every n,

{/}(") = n + 1.

Let effect the substitutivity of identity:

k* H~ Ml/) A y = z) -> 0(z)
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Clearly, the desired realizer will be constructed by primitive recursion on these indices.
Define G(n) so that

G(0) = e

G(n + 1) = M<{g}(G(n)), »)■

Set h = An.G(n). A simple induction on external ai shows that, for all n, {h}(n) |)—
Since there is an effective routine which, given indices e and g, produces an index for h,
we are done. |

w, therefore, is an acceptable version of the set of natural numbers in V(Kl). There
are, of course, innumerable realizability sets in ~V(Kl) which are "w-like". Some of these
"crypto-w's" are actually equal to u in the model; the others are strange and wonderful
variants of u> that are highly useful for giving counterexamples and independence results.
An example of the former is the set u:

u = {(n + 1, n) : n £ cj}.

There is no question thatV(fG) |= u7 = cu; it is easy to transform witnesses for membership
in w into witnesses for membership in Jjj and vice versa.

Among the latter, sets which are "close to but not quite" oj are sets like u°:

ui° — {(0, n) : n £ w}.

As we shall see, ui° is a uniformity set, a set over which the relevant axiom of choice holds
with such a vengence that constant functions are the only number-theoretic functions
defined over it.

But cj° is even more remarkable than that. In V(Kl), uj C w° and oj° is an ordinal, but
ui ^ ui°. Also (and this is obvious) V(Kl) |= u io° A ui° ^ u. Therefore, the existence of
io° provides a simple proof that not only does trichotomy fail in the class of realizability
ordinals but'-that it can fail "way down" in the cumulative hierarchy. We note that, in
terms of ranks, trichotomy cannot fail for any sets lower down. Trichotomy is provable
in IZF for elements of ui. We will prove later in this chapter that the class of ordinals in

~V{Kl) on which trichotomy holds forms a (relatively small) set. In fact, every ordinal that
is sufficiently classical that trichomtomy holds of its elements is subcountable.
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There are also unusual variants of oj on which the axiom of choice^ fails. A sample of
this sort of phenomenon appears at the very end of Chapter Six.

Absoluteness for uJ.

In the next chapter, there will be extended discussion of the possibility and application
of various absoluteness properties for predicates defined over the natural numbers. For the

present, we need only prove the most basic of the absoluteness theorems. Eventually, these
turn out to be the simplest cases of some very general results. We give these cases now

because they will prove helpful in assessing the material of the present chapter.

3.11. Theorem. Equality and membership are realizability absolute for w. This means

that for all n, m £ uj,

V }= m = n iff~V{Kl) |= m — n and
V (= m 6 n iff~V[Kl) |= m £ n

Proof. On the appropriate definitions, the implications from left to right are obvious.
The converse implications require simultaneous induction on both types of statement.
Nevertheless, the requisite induction is very easy and we leave it to the trusty reader to
reconstruct a complete proof from the following judicious example.

If e )|— m £ n, then, by definition,

ei (f— m = eo and V f= eo £ n. .

By the induction hypothesis applied to equality statements, it follows that, in V, m is
really equal to eg. Therefore, V (= m £ n. |
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Section 4: Intuitionistic counterexamples

The Heyting universe.

One measure of the success of readability as an interpretation of intuitionism is

an assessment of the extent to which ~V(Kl) validates principles and methods that one

would find natural, as a strict intuitionist, to accept. One can put the same point in

model-theoretic terms by asking for a characterization of the structure-preserving relations
that obtain between the universe Y(Kl) of readability sets and the universe V(Ht) of
constructive sets.

If the constructivist were allowed the powerset operation and recursion on the class
of ordinals, he could specify a "standard model" for IZF within "Heyting's universe" of

proofs and constructions. This specification would proceed along lines identical to those
which serve to introduce V(Fff); the only real difference is that, in defining a "constructive
set," the first coordinates of the "elements" need not be just natural numbers but may be

arbitrary constructions. (We would like to argue that there is nothing among the basic
principles of constructive mathematics that bars the constructivist from the consideration
of powersets and ordinal recursion. For the present, we will insist on such consideration

only as a hypothetical.) We might call the resultant class model 'V(Ht)-,' it is conceived as

a von Neumann-style hierarchy built over the universe on which Heyting first interpreted
the intuitionistic logical signs. In Y(Ht), we could interpret the logical signs as usual and
give set quantification its generic interpretation. On a first impression, we can say that

V(iFf) is, in some sense, an "approximation" to Part of the goal of this chapter
will be to show to what extent this impression is not deceptive. We hope to exhibit those
features of ~V(Kl) that make it a reflection of Y(Ht).

First, we shall look to see how V(fff) reflects one of the pervasive features of work
over the method of weak counterexamples. We shall prove that V(ffl) "supports"
weak counterexamples. By "supports," we mean that, whenever IZF provides a weak
counterexample to a claim, realizability converts the counterexample argument into a proof
that the claim is (strongly) false over Y(Kl). Hence, weak counterexamples in IZF give
independence results and this fact follows directly from the soundness theorem.
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4.1. Theorem. If xj> is closed and if IZFl— i/> -+ Vx (<j> V <f>) !°r arbitrary <j> (or even foi
arbitrary number-theoretic E? <j>), thenV[Kl) [= ->rj> and ip is independent o/IZF.

Proof. The task is, obviously, to falsify the quantified tertium non datur. To that end,
we will define a readability set which acts as the V(/C/)-internal analogue of the halting
problem. If K represents the set of "solutions" to the halting problem:

EI = {n gw : {n}("H}>

let

K = {(n,n) : n g K}.

(Incidentally, this is a sample of a procedure for "injecting" sets from Y into V(ffl) that
will be central in obtaining our results about RETs and isols in Chapter Five.)

V(Kl), like V, is very generous in its admission standards, so there's no question but
that K is a readability set:

KEV{Kl).

We pause to prove some helpful lemmas:

4.2. Lemma. For all n g w, V[Kl) (= n £ K iff V (= n g K.
Proof. If n g K, then the definition of K shows that

(n,i) [f-ng K\

(Here, and elsewhere, i is taken to be a fixed reader for the first identity axiom: Vs x =

i.)

On the other hand, if e |J— n g K, then ej ()— n = So and eo € K. It follows from the
absoluteness of = over w that n g K. |

4.3. Lemma. V(fC/) (= Vn g w (3m g u T(n, n,m)«ngif).
Proof. T is given its usual expression in set theory. We will not prove this lemma now,
but will defer it until we can treat it in a more general context. At that time, we shall see
>t as an manifestation of the absoluteness phenomena. 3
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Now back to the main theorem. Assume that V(K7) j= ip. Then, by the assumption
of the theorem and the definition of readability for —

V(Kl)\=Vxeu>(x6K\/->xeK).

From the latter and the definition of |j— for V, it follows that there,'is a partial recursive
index g such that {g} is total, {g} : u> —> 2 and for each n,

either {g}(n) = 0 and ~V{Kl) f= n £ K

or {g}(n) = 1 and V(ifi) |=^n£lf.

By the last lemma, {g} solves the halting problem. But this is impossible. Hence,

v(w)t=-V-.

By the result of the second lemma, we see that a restriction to formulae (j> which are

number-theoretic will do: the lemma shows that the predicate x £ K is coextensive,
over ~V(Kl), with the "halting predicate," 3m T[x, x, m).

9

There is an easy corollary that should go almost without mention:

4.4. Corollary. TND is independent o/IZF

Proof. |

4.5. Remark. Since every detail of the preceding proof is fully constructive—including
the proof of the unsolvability of the halting problem—the method of weak counterexamples
is supported in V(Ffl) for the intuitionist and even for possible inhabitants of ~V(Kl).

We note that we can, at best, falsify quantified instances of TND over V(Kl). If the
logic of the ground model is classical, then all closed instances of TND hold over V(ffl)-
I

The conditions on this result clearly include all the weak counterexamples derived
in Chapter One and a majority of those which appear in the recent literature on IZF. It
follows that the assertions of full AC, the classical axiom of regularity, that successor la
not strictly increasing on the ordinals and that every ordinal is an aleph are all strongly
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false in ~V(I<1). (Cf. Grayson (1979) ) Also, it is false in V(Kl) that all inhabited subfinite
sets are finite and that all inhabited subcountable sets are countable. Wc constructed weak

counterexamples to these last claims in Chapter One.

Fleeing properties.

We can find support in V(Kl) for much more than these "higher order" counterexam¬

ples. ~V{Kl) can handle traditional intuitionistic counterexamples as devised by Brouwer
and Heyting, despite the fact that these counterexamples seemingly lack the generality
required by Theorem 4.1. The counterexamples to which we refer are not the strong coun¬

terexamples derived from the Continuity Principles nor those dependent on the "creative
subject," but the conceptually unencumbered counterexamples based on "fleeing proper¬

ties."

4.6. Definition. An number-theoretic predicate t/> is (expresses) a property fleeing in n

just in case ip is intuitionistically decidable on n

Vn ip(n) V Tp(n)

but it is unknown whether or not 3n V>(n). |

In the traditional literature, Goldbach's Conjecture or Fermat's Last Theorem often
provide material for the construction of fleeing properties. For instance, since the truth of
Goldbach's conjecture has yet to be decided, the predicate 'is even but is not the sum of
two primes' expresses a fleeing property. In "recursive mathematics," Kleene's T predicate
supplies the relevant fleeing properties. In particular, since the T predicate is p.r., we can
use the above lemmas, plus the intuitionists' "fleeing property" constructions, to obtain
over V(Kl) strong counterexamples to intuitionistically unacceptable statements of classical
analysis.

To be assured of the truth of this claim, it behooves one to sketch the traditional
counterexamples more carefully in general terms and then to pencil in the fine details
of one of the counterexamples—by way of a verification of the accuracy of the general
picture. Many of the "fleeing property" constructions proceed along the following lines,
let (f>(m, n) be a numerical predicate which is fleeing in n for every m. With A a species,
Vx £A is seen not to be constructively true because there is a construction that shows
that Vx £ A ty(x) entails

Vm (3n n) V 3n <£(m, n)).
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The construction is given by a function p{m) such that, for each m, p constructs a member
of the species A for which

>P(p(7n)) —> (3n <t>(m, n) V ~ 3n </>(m, n)).

Therefore,

Vx 6 A *P(x) —> Vm (3n <f>(m, n) V 3n <t>(m, n)).

Finally, on the assumption that n) truly expresses a property fleeing in n, there can

be no constructive proof of the consequent. Therefore, Vx £ A "I'(x) is not constructively
true.

If all the reasoning that went into deriving the counterexample is purely constructive,
that is, if the reasoning can be expressed and carried out in IZF, then realizability over

\[Kl) will convert the counterexample into a falsehood over ~V{Kl). To see this, we assume

that, once A and >F have been expressed in IZF,

IZF |- Vx 6 j4 >F(x) —>• Vm (3n 4>{m, n) V 3" n)).

Since no constraint was imposed on <f> other than that it be fleeing in n for every m, then
the expression of the halting problem in terms of the T predicate will do as well as

We might even say that the halting problem, expressed in terms of Kleene's T, specifies a

"recursively fleeing property-"

Therefore, we have that

IZF I- Vx € A ®(s) —♦ Vm (3n T(m,m,n)V -i 3« T(m, m, n))

Now, by the soundness theorem and the second lemma,

V(K1) (= Vx £A 4-(x) -.Vn(n6fv-n64

Previous considerations have shown that

V(ifl)|=-.Vn(nSFv-'neF).

Therefore,

-> Vx G A 'I'(x)
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and this weak counterexample is supported by V(Kl). Furthermore, if all "fleeing property

counterexamples can be made to fit this mould, all of these will be so supported.

4.7. Remark. It can also be shown that V(/(7) supports those "fleeing property" coui

terexamples that reduce the constructive truth statements Vx£A >k(i) to the testabilit
rather than to the decidability of <j>. We say that tj> is testable in n for every m iff it
intuitionistically the case that

Vm (-i 3n <f>{n,m) V -l 3n m)).

To show that testability counterexamples are supported as well, one need only point oi
that the very same considerations adduced above to prove that

V(Kl) (=-iVn(ngKV-'n6F)

also show that

V(Kl) |=Wn(-n£KV-Be?)

I

It remains only to prove that historical Brouwerian counterexamples can be so analyze
as to fit our paradigm. We limit ourselves to one example, Brouwer's counterexample to th
monotonic convergence theorem of analysis. Even though every lawlike Cauchy sequence <
reals converges to a lawlike real, it is (weakly) not the case that every bounded monoton:
lawlike sequence of reals converges.

Let <f>(m,ri) be a property fleeing in n for every m. For each m, we define a lawlil
sequence {x™}„ew of Cauchy reals where

{0 if -i 3p < n <t>(m,p)1 if 3p < n <j>(m,p)
Since the case distinction of the definition is p.r., {iJTlnGui '3 well-defined and lawlike fc
each m.

Now, assume that the convergence "theorem" holds: that, for each rn, there is an x
such that {x™} converges to x7™. By the basic properties of apartness on the reals, eithe

is apart from 0 or xm is apart from 1. If the first alternative holds, the definition c
convergence shows that 3n x™ = 1 or 3n <!>(n, m). On tne other hand, if x is actuall

115



apart from 1, then -i 3n a™ = 1 and -> 3n <j>(n, m). Therefore, there is a constructive
entailment from the classical convergence theorem to the conclusion that

Vm (3n <f>(n, m) V 3n <t>{n, m)).

This stands in contradiction with the assumption that f> is fleeing. Since one could use

this same procedure with <f> instantiated by any suitably "undecidable" p.r. predicate, the
intuitionists' actual procedure fits our description, and it is false over V(/f/) that every

bounded monotone sequence of reals converges.

4.8. Theorem. Each of the following statements is false over V[Kl):

the decidability of equality on the reals

the totality of the multiplicative inverse on the reals

the intermediate value theorem

the maximum theorem for continous functions on compact intervals

Proof. Brouwer and Heyting constructed "fleeing property" counterexamples to each of
these assertions and each can be treated just as we have treated the classical bounded
convergence theorem. |

A Note on the Brouwer-Kripke Schema.

Whilst on the subject of counterexamples, we would prefer to linger a moment over
the fate in V(JT/) of the strong "creative subject" counterexamples. In making this exami¬
nation, it will be convenient to anticipate a few of the developments of later sections from
this chapter and of sections from Chapter Four. Conventionally, the mathematical essence
of the creative subject is isolated in the form of BKS, the Brouwer-Kripke Schema. In its
most familiar form, the schema is

Vp 3/ £ (w =4 2) (p *-+ 3y g u f{y) = 1).

p is a variable ranging over fi, the species of constructive propositions. On the usual
identifications of CI with P({0}), and of the truth of a proposition with the habitation of
a subset of {0}, BKS becomes

ViC13/g(w=»2) (3p j£i«3y£w f{y) — 1).
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In this form, BKS fails over V(A7). Perhaps this is to be expected, because the logic;
signs are interpreted in V(K7) as recursive, rather than as constructive, operations anc

under such interpretation, the right side of the BKS biconditional is r.e. while the left sid

is arbitrary. To check this in detail, one can either work directly over ~V(Kl), or (and her
we anticipate) one can show that -.BKS follows from Church's Thesis, CT0, together wit
the Uniformity Principle, UPf!,u\ Both CT0 and UP0'" hold in ~V{Kl).
4.9. Proposition. V(A7) |=CT0A UPn,u'.
Proof. See the final sections of this chapter and the second section of the next, g

CTo is the claim that every total number-theoretic function is general recursivi
UP0'" is the nonclassical choice principle

Vx en 3y e 0 —► 3y s w Vx e n <t>.

4.10. Theorem. IZF I- (CT0 A UPn'w) — -BKS

Proof. Assume that BKS holds. From CTo, we know that

Vx C 1 3e e u (3y j £ i 3t/ g u (e}(y) = !)•

The Uniformity Principle allows one to interchange the leading quantifiers to get

3e e a; Vx C 1 (3y y £ x «-► 3y E w {e}(y) = 1).

This is clearly contradictory. Therefore, given the above proposition, that

V{Kl) (== CT0 A UPn,<",

we conclude that the creative subject method is not, at least in the straightforward way
available over V(Kl): V(Kl) j= -BKS. |

As we said, this result is predictable. However, a mildly restricted form of BKS doe
offer some service over V(A7). If BKS is restricted to certain numerical statements, thei
it characterizes (internally) the countable subsets of u and (externally) the nonempty r.e
sets. Let BKS'4 be the statement

Vx E w 3/ E (w => 2) (x E A«-+ 3y 6 }{y) = 1).
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For a complete proof of the characterization, we appeal to CTo and to AC"'". The
latter is the simple choice principle for the quantifier combination Vigor 3y£w :

Vigw 3y £ ui 4>(x, y) —t 3/ £ (hi => ui) Vx £ hi ^(z, f(x))-

We will prove later in this chapter that

4.11. Proposition. V(ifl) (=AC"'".
Proof. Vide infra. I

4.12. Theorem. In ~V(Kl), AC. hi is countable iff BKSA holds and A is inhabited.
Proof. In one direction, the proof is almost trivial. Let ACube countable and let /
count A, i.e., / : u —» A. For each igu, define fx as follows:

™-{: izt:
fx € (hi => 2) and 3y fx(y) = 1 iff x £ A. Therefore, BKS^1 holds.

For the converse, we begin with BKS"4 and apply CTo to get

Vx £ hi 3e £ hi (x £ A -M- 3y {e}(y) = 1).

If we use AC"'" and CTo again, then

3g G hi Vx £ hi (i £ A <-► 3y {{g}(z)}(y) = 1)
results. Finally, since A is assumed to be inhabited, we can fix a £ A and define / £ (w=tw)
so that

= if {fMXxi) = 1
la if o.w.

It is clear that / will count A. |

4.13. Remark. One closing comment about the role of BKS in V(Kl). In Minio (1974),
it is shown that, constructively, the statement

Vx (x is discrete —>-3y C hi (y is decidable A issj))

implies BKS. Therefore, the displayed statement fails over V(Kl). There is also a straight¬
forward argument to the negation of the displayed statement from CTo and a Uniformity
Principle for P(u>), UP*5'"''". UP*5'"'1" also holds in V(Kl).

This result should be contrasted with the fact (to be proved later in this chapter) that
every discrete set is subcountable. j
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Section 5: Axioms of choice; constructive methods

The ways in which readability handles choice principles is another intimation o

the close kinship that obtains between V(A/) and V(//f). The interpretation of the V:
quantifier combination over V(Ht) forces one to make a distinction between bases, specie;
over which a principle of choice holds, and nonbases, species over which it fails. Just th«
same kind of distinction must be made in ~V{Kl), for the same reasons and along the sami

lines. Moreover, in ~V[Kl), one can prove an interesting characterization theorem for thi
class of bases: every internalized realizability set is a base and an arbitrary set is a basi
iff it forms a retract of its own internalized realizability set.

Before launching into the technicalities of "internalized realizability sets," however
we want to go after easier quarry: an assessment (in V(A7)) of the more familiar choici
principles AC and DC.

Constructive choices.

Working even in a constructive ground model, one can show that, in V(Kl), uJ satisfie:
the u => u> axiom of choice, AC"'":

Vi£u 3t/ £ oj y) —♦ 3/ 6 (oj =* oj) Vx € oj <j>(x, f(x)).

5.1. Theorem. V(Kl) (= AC"'"
Proof. Assume that e realizes the antecedent of AC"'". From the above discussioi
(particularly Lemma 3.9), it is clear that this means that there is a total recursive {gj
such that for all n,

{ffo}(«) If- <t>(n,{gi}(n)).

In fact, g is calculable effectively from e and some (coded) information on the syntactica
features of <f>. Let be the following realizability collection of internal pairs:

{{".(«. {Si}("))) :n6w}.

It is now a simple matter to check that V(Kl) believes that g i is the required choici
function. We will give a proof that <f[ does the "choosing" and leave the proof of g\ i
functionality to the reader.
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By the Lemma 3.9, it will be enough to construct from g an h such that condition (A)
holds

(A) {A} is total and, for all n,

{h}(n) (j- 3y (y £ u A(n ,y) Egi A <t>[n, y)).

To that end, we note that for each n,

(1) ({gi}(").') H~{gi}(") e W,

(2) (n>«) (H (". {gi }(n)) € gT and
(3) {go}(") H— <t>(n , {gi}(«))-

Therefore, with

h = i), (n, i), {9o}M),

we know that h satisfied condition (A). g

From the above it follows immediately and constructively that-V(.K7) satisfies the
principle DC"" of dependent choices over the natural numbers.

5.2. Corollary. V{Kl) )= DC", where DC" is

Vx 6 to £ ui <f>{x, y) —•Vi£u3/6(u=>u) (/(0) = z AVx £ to 4>(f(x),f(x + 1)))).

Proof. In IZF, AC"'" implies DC". Grayson (1975) has already shown that definition by
recursion is as simple in IZF as it is in ZF. Assume that Vigu 3j£u the antecedent of
DC", holds. By AC"'", there is a choice function G. Now, we can define F by to-recursion:

F(0) = z

F{n +1) = G(F{n)).

z is any fixed element of to. An argument by induction shows that F is the sort of function
required for the consequent of DC" to hold. |

At this stage, the natural question to ask is "For what other realizability sets X
and Y can ACX'Y and DCX be proved to hold in ~V(Kl) by using constructive means
alone?" We are not in a position to provide a complete answer, but we can set boundary
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conditions on the correct answer by showing that, for X countable and discrete and fo

subcountable, it is provable in IZF that ~V(Kl) \= ACX,Y. We also show that, for count<
sets, discreteness and choice are equivalent.

5.3. Theorem.

(1) For X countable and discrete and for Y subcountable, X[Kl) |= AQX,Y.

(2) IZF f— For X countable, ACX,UJ holds just in case X is discrete.

Proof. Only a proof of (2) is required; a proof of (1) follows, in IZF, from a proof of
together with the fact that V(fsTl) |= AC"'".

If X is countable and holds, then there is an / that counts X, f : ui —^

and / splits over X: there is a g : X >—w such that g is a right inverse to /. Theref
for x and y from X,

x = y g(x) = g(y)

Then, since w is discrete, so is X.

On the other hand, if X is countable and discrete, we can split any counting / us
the minimum operator. Simply set

g{x) = fin (/(n) = x).

Use of the p-operator is allowed because discreteness makes the matrix f(n) = x decida
Clearly, g is a right inverse to /. \
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Section 6: Dependent choices and nonconstructive methods

With measured amounts of choice in the metatheory, we can prove that a general
choice axiom, AC",X, holds for the set of natural numbers in *V(Kl). AC1"'* is the principle

Vx £ u 3a.£X <p(x, y) 3/ £ (u =>X) Vx £ w /(x)).

This, in turn, is proved by showing that a related principle, DC*, is realizable. DC* is
the axiom of unrestricted dependent choice:

Vx €X 3y 6X 4>{x, y) - Vx €X 3/ 6 (w =»X) (/(0) = xAVx£u #/(x), /(x + 1)))).

6.1. Theorem. V(K1) (= DC*.
Proof. This proof exemplifies the simplest possible "externalization—internalization"
argument. The argument begins with the "externalization" of the realizability condition:
for membership in an internal set a and the expression of those conditions as a set a^~ ii
V, the "actual" world. The next step is to use a version of DC in V to prove an externa
choice theorem about a^-. Finally, we "internalize" the choice function from the externa
choice theorem and return to the confines of V(JCl) to check that the presence of thi
internalized function guarantees that DC holds in V(fiT/).

For a £ ~V(Kl), set a"- = {(n, b) : n |J— b £ a}. Now, a^- is a set in V and, in V, it b
assumed that DCa already holds. To apply this form of external dependent choice, w<

assume that the antecedent of DCa is realized by e:

e H~ Vx £ a 3y £ a <f>{x, y).

By the definition of [j—, we know that, for all n £ w and all b £ V(Kl), if (n, b) £ a^~, ther
{e}(n) I and there is a c £ ~V(Kl) such that

)

<{e}(n)o,c) £ a1*- and {e}(n)i [j- <6(6, c).

It will also be necessary to externalize the realizability-relation determined in "V{Klt
by <)>. Let be such that, externally,

<j>^~((n, b), (m, c)) holds iff m = {e}(n)o and {e}(n)i [j— <j>[b, c).
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Next, DC" is applied to a"- and </ft~ in the ground model. Fix g and d such that g

d£a. Then, (g, d) £ a"-. By external DC, there is an F such that

FevAFefu^o11"),
F(0) = (g, d) and

Vn <tfi-(F(n),F(n+ 1)).

Finally, we internalize F and prove that it supplies the function required for the tri
of internal DC. The appropriate internalization of F is F:

F = {«"> FMo)< (". F(n)i» : 71 6 "}•

Obviously, F belongs to V(Kl). It remains to check that F is internally a function fri
w into a and that, given a realizability witness for the antecedent of DC, F makes 1

consequent of DC realizable as well.

First, because of the properties of internal pairing in V(Ffl) (cf. Lemma 3.4), V(j
believes that F is a binary relation with domain w and range a subset of a and this ho
with a witness obtainable independently of e and g. To see that F is realizably function
assume that

h |f- (a, b) £ F and j [}- (a, 6) £ F .

Then,

hi H— (a, 6) = (h00,F(h00)i) and

ii (f— {«, c) = {joo,F(joo)l) ■

This holds strictly in virtue of the definition of F and of the |J— conditions on statemei
of membership.

From the absoluteness of £ and =onw (Theorem 3.11), we know that

hoo — joo and that F(h00)i = .F(;7oo)i-

Therefore, there is a partial recursive 0 such that Q(h,j) |(— b = c. 0 confirms that F
realizably functional.
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Next, to see that ~V[Kl) j— F C jj X a, let

hH-(^b)e F.

As above,

hi I- (a>'>) = (hoo, F(hoo)i) •

Therefore, {hoo,®} H~~ '®oo 6 5®, and, by the definition of F, hoi (I- F(hoa)i € a.

{{0, g), i) |— {0, d) £ F. Hence, Y(Kl) [= F (0) = d.

Finally, we have to check on the realizability of VxGto 0(F(x), F{x + 1)). Since,
all n, (F(n), F(n + 1)), we have for all n,

{e}{F(n)0)o = F(n + l)Q and

{e}(F(n)0)j rf(F(n)„F(n + l)x).

Define the number-theoretic function ^(n) so that

*(0) = g and
»P(n + 1) = {e}(<£(n))o

The classical s-m-n theorem shows that an index for "J1 is calculable from e and g. Th
one can use induction over ut to check that, for all n,

«"» *(")>, ®) H~ (". F(n)i) 6 F while

{e}(*(n))i [j- ^(Ffn)!, F(n + l)r).

This completes the proof.

Realizability for a general axiom of choice now follows directly from the realizabil
of DO* and the realizability soundness theorem for IZF.

6.2. Corollary. V(ifl) r=ACi-'a.

Proof. Let a be any set and let b = UmgM a*"- Then

IZF I- DC6 — AC1*''".
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w-retracts and bases.

We round out our discussion of the axiom of choice with a characterization of those

in V(X/) which are "w-retracts." The notion of w-retract is important for an understand
of ISys, an internal category of Scott information systems over which a Brouwer Theo
holds (cf. Chapter Seven). Happily, a countable set S is an w-retract just in case it
an axiom of choice that holds with respect to it and the latter holds just in case S has

"logical property" of discreteness. (The reader will recall that a set S is discrete provi
that equality on the set satisfies TND, i.e., it is intuitionistically true that Vx,y£S (:

for y V x 7^ y).)

Integral to our characterization is the idea of a base. A set is a base just in cast

axiom of choice holds over it:

6.3. Definition. A set X is a base iff, for all Y, every subset of X X Y which is tofca
X is uniformized by a function which is total on X. |

We will see, in the next subsection, that every internal realizability set is a base
that, up to retractions, the realizability sets are the only bases. If a set is a retract <
we say that it is an w-retract:

6.4. Definition. A set S is an w-retract whenever there are functions i : S 5 w

} j : w —»> S such that j o i = id§. 1

The following theorem characterizes the w-retracts. It is interesting to note that
seemingly "external" property of being a retract of w is equivalent (for countable sets
the "internal" or "logical" property of discreteness.

6.5. Proposition. V(/Sfl) f= For S countable, S is an uj-retract iff S is discrete iff»
a 6ase.

Proof. For S countable, it is easy to show that S is an w-retract iff S is a base; one n
only reference the fact that w is itself a base, which is what the last corollary showed.

If S is an w-retract, then there is an / such that / : S > ^ w. Therefore, since «
discrete, so is S. Conversely, if S is discrete and countable, then, for some /, / . w
Again, since S is discrete, minimization with respect to S is possible. Hence, the fund
9 ' S >—> w, where g(y) = fix.f(x) = y, is a right inverse tof. |
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For sets which are already subsets of u>, the characterization becomes quite neat. Th
is due to the fact that every subobject of ui inherits ui's discreteness.

6.6. Corollary. V(fF/) |= For S C u, S is countable iff S is an u-retract.

Proof. As we just said, every subobject of w is discrete. |

6.7. Corollary. V(K7) (= For S C to, BKSs holds iff S is an ui-retract.

Proof. See Theorem 4.12. g

We shall return to these topics when we come to treat information systems intuitio
istically in Chapter Seven.
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Section 7: The Presentation Axiom

The most general choice principle whose validity we assess over V(A7) is Aczel's
sentation Axiom, PAx (cf. Azcel (1982) ).

PAx is the assertion that every set is the functional image of a base:

Vz 3y 3/ (y is a base A / : y —x).

7.1. Remarks. (1) PAx is a weak form of choice: every set is a functional image
set over which a full choice principle holds. PAx is weak because V(K7) [=PAx will
that IZF+PAxI— AC fails. Also, V(A7) )=PAx shows that TND is independent of IZF
PAx.

(2) The proof of the following theorem is further confirmation of our assertion that
over ~V(Kl) mimics certain features of work over ~V(Ht). In ~V{Ht), choice will hold
sets which have a canonical proof function, where a constructive function G is a cano

proof function for a species X whenever G is total on X, and, for each y £ X, G{y
constructive proof that y £ X. Our proof of PAx shows that certain realizability sets
natural canonical proof functions "built-in". Hence, each of these is a base. Moreov
is easily seen that every set is a quotient of one of these sets. Intuitively, we can thii
the surjection that gives the quotient as "destroying" the kind of information contain*
the base that allows one to choose, over it, canonical proofs. |

7.2. Definition. For each a £ ~V(Kl), let a"- be

{(", (n,6)> : n [)-6 £ a}.

1

Here, 'a^~' is playing a slightly different role from that given it above; for e
realizability set a, a^~~ is the internalization of the realizability conditions for member
in a. In other words, a^~ is the reinternalization of the externalization of a (the a^~ ol
last section).

7.3. Proposition. a^~ £~V(Kl) whenever aS"V(Kl). t

Proof. This follows immediately from the closure lemma, G.2 of Chapter Two. |
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The collection of internal sets is the prospective internal class of bases. H
one must check that every set a is realizably the image of its a^-.
7.4. Lemma. There is a g such that, for all a £ ~V(Kl),

g |j— "a is an image of a"-.

Proof. Let

F = {(". «n. b). b)) ■ n H~ b € a}-

(1) Obviously, F is internally a relation and this i3 realized uniformly in a.

(2) If e [j— (6, c) £ F, then

ei Vr (b>c) = ((eo.d)>d)

where eo |f— £ a. Therefore, ~V(Kl) |=f C a^~~ X a and this holds uniformly in a.

(3) To see that F is total on a"-, let

Then, where eo |j— h £ a,

ei H~ (c, d) = <e0 , h).

It follows immediately that (eo, i) [j— ((eo , h), 6) £ F.

(4) For the functionality of F, let e ()— (b, c) £ F and let h [J— (b, d) £ F. Then, for
r,a £ V(Kl),

ei H~ (i, c) = ((e0 , r), r) and

hi H~ (b. d) = {(ho , s). s).

Given the properties of internal pairing, one easily constructs partial recursive © a

so that

0(e, h) [)— r = s and "I>(e, h) [j— c = d.
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(5) Finally, we check that F maps a"~ onto a in ~V(Kl). But this is trivial: if e |j-
then

(e,t) and (e,i) H-((e,6),6) gF.

I

There is also a straightforward proof that, in V(K7), the o^'s have the cai

proof functions mentioned earlier.

7.5. Lemma. There is an e such that, for all a £ ~V(Kl),

e fj— a^~ is a base.

Proof. Assume that

g (f- Vz £ a^~ 3y £ 6 <j>[x, y).

Let n and c be such that n [)— c £ a. Then, (n,i) [j— (n,c) £ a^~, and, for some <

V(Kl),

{?}((«, i»o H~ d £ b and

{s}((«.t»i H-<£((«.CM)-

Collection and choice over V are applied to this data to insure the existence of a fu
F such that, for all (n, c) such that n f|— c £ a,.

{?}((">'»o H~ F{{n,c)) £ b and

{?}(("> *))l H— 0«f», c), i^«n, c))).

Now, F is, as usual, internalized as F:

F = {(", ({n, c), F((n, c)))) : n |f- c £ a}.

One can use the same arguments as in the preceding lemma to show that, interna,
is a function and is a subset of a^~ X b. It remains only to show that there is un

witnessing for

Vx £ a"- 3y ((x, y) £ F A <A(z, y)).
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To that end, let e [J— (r, s) £ a"~. Then,

ei H-(r.s) = (eO>c)>

•where eo ()— c £ a. On the basis of these considerations, one sees that

{s}((eo.i»o H-" F{(eOi c» £ fc while

{s}«eOi»')) 1 H~ o , 6), F((e0, 6))).

From the definition of F,

«o H~ ((eo , 6), F((eo, 6») 6 F

and we are done. |

Together, the two lemmas 7.4 and 7.5 show that

7.6. Theorem. V(XI) f=PAx

Proof. g

Given PAx in V'(Kl), it is a simple matter to characterize those realizability sets
are bases under realizability. Recall that AC is equivalent to the statement that (

epimorphism splits. It turns out that any a £ ~V(Kl) is realizably a base iff the cano

map / : —» a splits over a. Along the way, it will also be shown that, over V
arbitrary a is a base just in case a is a base "with respect to cj."

7.7. Definition. A set X is a base with respect to ui iff, for all Y C X X ai whicl
total on X, Y is uniformizable. |

7.8. Theorem. Let f : o**- —» a be the canonical epimorphism. YIKI) [= "a
base" iff for some g, g : a >—a^~ and f o g = idl'a.

Proof. We work in IZF over V(Kl). If a is assumed to be a base, then there is a g
uniformizes the total relation

{(x, y) : x £ a /\y £ A /(y) = z}.

Clearly, g splits /.
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Conversely, assume that g splits the canonical / over a and that jCaXi
on a. Then,

Vz g a 3u £ x ((z, v) G y).

A fortiori, Vz g-a^- 3u g x ((/(z), v) g y). Since a^~ is a base in V(A7),

3FVzga^((/(z),F(z))gy).

Now, y splits /, so

3-f Vz g a ((/(y(z)), F(g(z))) g y) or
3F Vz g a ((z, ^(^(z))) g y).

Now, we set G = F o g, and recognize G as the desired choice function. |

7.9. Theorem. V(/ST/) J= a is a base iff a is a base with respect to u.

Proof. The implication from left to right is trivial. For the converse, assume tl
a base with respect to ui in V(Kl). If e [j— b g a, then e (j— {e,b) g a^~. Therefore,

~V[Kt) [= Vx g a 3y g w (y, x) g a11-".
a is a base with respect to oj, so, in ~V(Kl),

3F Vigo (F(x), a) g a^~.

Therefore, F splits / and a is a base. |

7.10. Remark. The relationship between these two theorems is a reflection, on a

scopic scale, of a feature of ~V[Kl) which is macroscopic (and to which we have ac

repeatedly). As we have said before, ~V[Kl) has a sort of Janus-like "double nature
of these natures provides a quite accurate meter of the state of set-theory over V(if
is V(A7)'s "higher order" side. We might say that the realizability universe is a nc
dard model" of Heyting's interpretation. To our eyes, this aspect is largely indepent
the fact that, in V(Kl), it is the collection of general recursive functions that goes
for the species of constructive functions. This fact underlies realizability s other r
the nature that is recursive mathematics.
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In the first theorem, we have an accurate reflection, in ~V{Kl), of a situation thai
exist in *V(Ht): for given a, the species y whose elements are of the form (p, x), w
proves that x £ a, is a base. Moreover, bases like this are so well-scattered in V(/fl
they "cover" all the other sets as functional images. This claim—that the first theo
an accurate reflection of the state of V(//t)—is fully justified because the proof of th
theorem is wholly constructive and employs none of the specifically recursion-the

underpinnings of V(ffl).

In contrast, the second of the above theorems (on bases with respect to w) parts
large measure of the recursive nature ofV(AI). This theorem holds only in virtue of tl
that, in the transition from ~V(Ht) to ~V(Kl), constructive proofs are replaced by n

number codes. Hence, the latter theorem tells us more about V(iO)'s abilities to
recursive mathematics than about its abilities to shed light on traditional intuitioni

Incidentally, reflections like these go a long way to explaining why to is so promi
base. It is easily seen that, as far as sets and functions are concerned, co is indistingui:
from :

Y{I<1) |= u « J1-.

In short, much of the prominence of u in V(fff) lies in the fact that w can be ide
with the canonical base over it. g

7.11. Note. One last remark concerning versions of the axiom of choice. It i
known that AC((w 4 u) =) u) is inconsistent with Church's Thesis in extensional
intuitionistic arithmetic in all finite types. The argument is quite simple and appe

Troelstra (1973a). Since the principles embodied in HA1" are easily interpretable inl
and Church's Thesis holds in V(Kl), we know that the axiom of choice does not hoi
the function space w =4 w. g
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Section 8: Uniformity and subcountability

Our next subject involves a logical property of the universe of realizability sets
is extraordinary from a classical standpoint, but perfectly ordinary in a constructive
work. We are referring to UP, the Uniformity Principle, which is expressed as an

scheme:

Vx 3n £ u ij> —► 3n £ cu Vx <j>.

For an informal discussion of uniformity, the reader can consult Chapter Zero. T
cussions of uniformity under realizability which appear in the literature are in Fri

(1973a) and in Troelstra (1973b).
8.1. Remark. In the latter reference, there is an intuitive "explanation" of the
ability of (a version of) UP which suggests that UP is correctly understood as the i

accompaniment of a certain concept of species. We will argue that UP should
derstood, primarily, as the natural accompaniment of the generic interpretation t
give to unbounded set quantification over ~V(Kl), and only secondarily as arising fr
"qualities" of realizability sets. This is in perfect accord with the basic insights of coi
tivism, on which the "metaphysical properties" of various species are captured prin
in the explanation of quantification over them. 1

Uniformity and realizability.

First, we will give the (elementary) proof that UP holds over ~V[Kl) and dr.
some of the immediate consequences of this fact. Later, there will be an opportu;
test realizability for more delicate versions of UP.

8.2. Theorem. V(Kl) )=UP.
Proof. Let e |j— Vx 3y [y £ X3/\<j>). Since quantification over Y(Kl) is generic
3y Eu <j> uniformly for all a 6 V(Kl). It follows that, uniformly in a, there is a b sue

ei |f- ^(o, b) and e0i — 6 = e55".

Therefore, there is a fixed g, mechanically calculable from e, such that, uniformly,

9i D— <t>{a,go)-

Hence, ((g0,i), gY) |j— 3n£u Vx </>. |
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The following corollary, albeit easy to prove, is a fair indication of stronger resul
come. Recall that 'fi' is a symbol for the species of constructive propositions. It is

that, for purposes of set theory, fi is readily identifiable with P({0}); the constru
function that takes proposition tj> into {0 : cf>} is obviously a natural bijection betweei
space of propositions and the powerset of the singleton.

8.3. Corollary. V(ffl) [= fi is not subcountable.

Proof. We work within IZF, taking UP as an assumption. If fi is subcountable, th<
a function / for which Vz g fi 3y£u ((/,i) 6 /. It follows that

Vz 3y£ui (y, z D{0}) g /.

Let UP fix such a y. Then, we consider x = 0 and z = {0} as possible values of / on

fixed y and derive a contradiction to the functionality of /. g

8.4. Corollary. V(Kl) \= If x is inhabited, then P(z) is not subcountable.

Proof. If x is inhabited, then 3y y £ x and, for such a y,

fi ~ P({y}) C P(z).

I

Since the conclusion of the last corollary ("not subcountable") is negative, wc
make a considerable improvement in the generality of this result:

8.5. Theorem. V(Kl) \= If x is nonempty, then P(z) is not subcountable.

Proof. In HPL, z is nonempty iff ->-> z is inhabited. Since "P(i) is not subcountab
a negative property, the result follows immediately by a judicious double negating o

premiss and conclusion of the preceding corollary. |

8.6. Remark. The first corollary presents the easiest proof we know of the fact, origi
proved by a kind of "effective diagonalization" in Myhill (1975), that strong constru
set theories are consistent with the claim "fi is not subcountable." In our termini

{vide infra), Myhill proved, in effect, that

IZF + CTo + AC1"'*" 1- fi is not subcountable.
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CTq is Church's Thesis for total number-theoretic functions. Myhill was aware t

and the axiom of choice over w are consistent with his constructive set theory CS

ally, Myhill had proved the stronger result that

IZF + (w => u) is subcountable + ACU)'X I— C2 is not subcountable

We have shown already that the relevant choice principle, ACW'X, holds in V(/f/)
later show that CTq and "(tu =* w) is subcountable" hold there also. Hence, all of
work is available over the realizability universe. For its succintness, however, one
prefer the proof via Uniformity. |

Before we move on to further refinements of UP, there is an obvious gener

and a further remark to be made.

8.7. Corollary. V(K1) |— If y is subcountable, then Vx 3z £ y <f) —i► 3z £ y Wx <

Proof. The proof of this fact is obvious and constructive from UP. g

8.8. Remark. This is the appropriate place to begin a reply to a philosophical <

and to mention a problem about our treatment of V(/C/). We are always tempt
in fact, we often succumb to the temptation) to refer to V(Kl) as a model or cla
of IZF. It has been objected (by Solomon Feferman, among others) that this rep:
serious transgression of the rules of usage among logicians. The idea behind this c
seems to be that interpretation over ~V(Kl) is a mere interpretation and that
interpretation of a language over a "real" model goes by the familiar Tarski recu
truth conditions.

It would go some distance in answering the objection to prove that "model!
the sense of the objection depends on one's point of view and, if one takes up a
within V(.ft7), the realizability interpretation is as good a model as one would can
Specifically, one would like to show that, internally, if truth is defined as realizab

T(^) iff 3e e U~~

then the familiar clauses of the Tarski scheme are provable. If the reader cares
writing out the Tarski clauses, he will find that UP and CTo go a long way toward o
this result. Unfortunately, the author has yet to find the time to discover a comple

I
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Unzerlegbarkeit.

Lapsing into metaphor, one could say that the readability of UP shows that, i
are at most (sub)countably many colors in your box, the only way to color all the
the ~V(Kl) universe is to make everything the same color! It is an immediate conse

of this that, at least internally, the readability universe cannot be colored with twc
unless the color scheme is monochromatic. The absence of nontrivial "two-coloring
been called 'unzerlegbarkeit.' Without the metaphor, a universe of sets is unzerle
UZ:

Vz (<j> V <j>) —)► Vz <j> V Vz <f>

holds over the universe.

In Brouwer's development of intuitionistic analysis as based on choice sequenc

reals are provably unzerlegbar. This happens thanks to the presence of strong con

principles for the reals. The most well known of the consequences of the continuity

pies is Brouwer's Theorem: every total real-valued function of a real variable is conti
Unrestricted UP is likewise a kind of strong continuity principle; it follows imme
from UP that every class function from the universe into u> is constant, and, henc
tinuous relative to ui's discrete topology.

8.9. Theorem. V(Jfl) |= UZ

Proof. Since {0,1} is subcountable, this is immediate from Corollary 8.7. |

Let z be any set; UZ^*' asserts that the unzerlegbarkeit property holds when <

fiers are restricted to P(z), the powerset of z. It is easily seen that UZP'X' is a const
consequence of UZ, so we have

8.10. Corollary. V(Kl) |= Vz UZ p(l).
Proof. The map y i-t yf|i is a surjective class function that takes the univer:

P(z). i

Characterizing uniformity.

There is a fine internal structure to the realizability sets over which uniformity
erties hold. It is this structure that now comes under examination. The result

examination will be a set-theoretic characterization of the "uniformity sets" as qu
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of sets which are stable. In the process, we will give a quite general form of the i

principle, which we call 'the extended uniformity princple' or EUP. For simil
from the tripos-theoretic setting, see Hyland (1982).

8.11. Definition. A set a £ ~V(Kl) is (realizably) uniform iff

V(ATf) f= Vx £ a 3n n) —> 3n Vx £ a n)

for all <)> in the extended language. |

8.12. Definition. A set a £ ~V(Kl) has fixed realizability iff there is a number
which "fixes" realizbility for a, i.e., there is a (j,n) such that

Vm Vi (m |j— b £ a —► 3c (n [j— c £ a /\{j}(zn) (|— 6 = c)).

8.13. Theorem. For a £ ~V(Kl), a is uniform iff a has fixed realizability.
Proof. (1) Assume, on the one hand, that e Vx£a 3n <f> and that a

realizability. Let n be the second component of the fixing pair. One can s

{«}(n)00 gives a number m that makes for uniformity. In other words, one can j
a witness for

V(iff) (= Vx £ a 0(z, fn)

is obtainable effectively from e and n.

(2) Assume that a is realizably uniform. Then, for some e £ w,

e D~ Vx £ a 3n <f> —► 3n Vz £ a <j>.

As before, the internalized realizability set for a, a^~, is a member of V(A/). Sir

~V(Kl) |= Vx £ a 3n (n, x) £ (ft~,

there is a j £ cu such that

/ [)— 3n Vx £ a (n, x) £ a"-.
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It follows that there is, calculable from j, an n such that for all m and all b from

m [j— b £ a -> {i}(m) |j— (n,o)Eah.

A fixing pair and a proof of the requisite fixing property is now derivable direc
this condition. ] ^

8.14. Definition. A set a £ V(/Ci) is (realizably) degenerate iff there is an n E
that, for all m and all b £ V(Kl), if m |j— b £ a, then n fl— b £ a. g

8.15. Lemma. A set a is degenerate iff it is realizably stable, i.e., iff

V(if/) }= Vx (-> -■ x £ a —♦ x £ a).

Proof. This is obvious, given classical logic and the realizability interpretatioi
I

The following theorem presents our attempt to characterize the realizability se

are uniform. We prove that uniformity holds over a set a just in case a is, in V(
image of a set which is stable.

8.16. Theorem. a £ V(ffl) is uniform iff

~V{Kl) )= 3y 3/ (y is stable A / : y —■» a).

Proof. (1) Given the right half of the biconditional, we will prove that a I
realizability. Assume that there are b, f, j such that 6, / £ 'V(Kl), j £ w and

j [j— 3/ (6 is stable A f ■ b —» a).

Let n be the number associated with the degeneracy of b, as guaranteed by Lemi
Now, if m ||— c £ a, then

V(Kl)\=3zeb f(z) = c.

So, for some d,

V{Kl)\=d<EbAf(d) = c.
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By degeneracy, n |j— d 6 b. Hence, tliere is a fixed e such that

(eo}(«) lh f{d) = c and {c, }(n) ||- /(d) = a.

Therefore, a has fixed realizability.

(2) For the converse, we give a straightforward construction of a stable set of

given a is a quotient. Let

aat — {(0, b) : 0 |]— "'"'iG ti}-

Clearly, asl E V(/C). Also, a'' is stable: for, if m |(— 6 6 a'1, then (by definitio

3c (mo,t) £ o'1 Ami ))— 6 = c.

It follows that there are p, q £ u such that p (f— c E a while q [f— b E a.

(0,i> H—6<=a".

Next, we construct the map /"*, where

/" = {(0, (b, b)) : 3n n |}~ b £ a}.

It is a simple matter to prove that

V(/fl) |= f" : a" —» a, and

this completes the proof. |

Extended Uniformity.

We offer the remark that, as far as uniformity is concerned, any subcot
would do as well as co:

8.17. Definition. A set a £ V(A7) is generally uniform iff, for all subcountab

Vx £ a 3z £ y z) —► 3z £ y Vx £ a z)

holds of a. g

8.18. Theorem. In ~V(Kl), we have

Vx (x is uniform iff x is generally uniform).
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Proof. Just work in IZF; the proof is elementary. |

All the ground has now been prepared for the most general uniformity
EUP. If x is a quotient of a stable y, we write 'qs(x,y).' With this understood, th
uniformity principle (EUP) is the assertion

Vx Vy (qs(x, y) —+ x is generally uniform ).

8.19. Theorem. V{Kl) |= EUP.

Proof. The readability of EUP follows directly from the preceding results.

8.20. Note. As we predicted earlier, the set

ui° = {{0,n) :n£u)

is a uniformity set. One can verify this in a few seconds by showing that w'
realizability. |

8.21. Remark. Were space and time to permit, one would like to investigate t

tions between EUP and a particularly memorable theorem from Troelstra (198(
to the statement and the proof of that theorem was the notion of "interpolati

species X is an interpolation set iff for each pair a and b of elements of X and e

sition p from fl, there is an "interpolant," an element c of X which is equal to
far as" p is true and equal to b "in so far as" p is false. Specifically, c is an i
for a and b relative to p iff p implies that a — c and —>p implies that b — c. £

interpolation set just in case, for every pair a, b of elements of X and for each j
p, there is a c £ X such that p implies that a = c while ->p implies that b = c.

that every powerset is an interpolation set: for sets a and b from P(x) and pro

an interpolant is easily defined; just set

c = {i£a:p} U{x £ b : -,p}.

With the notion of interpolation set, Troelstra proved that if a is an interpolati
if 6 is a set with apartness {vide infra), then every map from a into 6 is constan
a proof and a discussion of Troelstra's theorem in Greenleaf (1981). |
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8.22. Remark. To confirm our earlier remark that uniformity is to be close!
with the conception of set marked by generic quantification, one notes that
the version of realizability designed by the author which is based on set- or ,

Allied to this realizability is a conception of constructive set which is highly

Mathematically, nongenericity under E-realizability will be apparent from tl
quantification is highly sensitive to the set-recursive internal structure of the
sets. Sets are conceived as specific entities with graspable individual characl
the model given by E-recursion, UP is demonstrably false. |
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Section 9: Subcountability, apartness and metric spaces

We begin here much as we have in previous sections—by presenting an

acterization of those sets which satisfy some crucial set-theoretic property

the property of concern is subcountability.

9.1. Definition, a £ V(A7) is (realizably) separated iff there is a j £ w su<

6, c £ ~V(Kl), and all m,

if m []— b £ a and m ||— c £ a then {j}(rri) |j— 6 = c.

I

9.2. Lemma. a £ V(A7) is separated iff a is subcountable in~V(Kl).

Proof. Assume that a is realizably separated and consider

= {(n,(n,b)) : n [j— b g a}.

To show that a is subcountable, it will suffice to show that, internally, a"~
To that end, assume that m [j— {p,b) £ a^~ while n |j— (p,c) g a^~. Then, c

j given by the assumption of separation to show that b — c.

For the converse, assume that a is internally subcountable and that m
m [j— c € a- Since a is subcountable, there is a g 6 w and an internal functi

g H— Vx g a 3y £ u f(y) = x.

The conclusion is now immediate from the realizability properties of g, anc

ing" j can be obtained effectively from it. I

In his Sheaves and Logic Seminar, Michaelmas Term 1980, Dana Scott ]
tion: "Is it consistent with IZF to assume that the class of ordinals on wh

holds comprises a set, rather than a proper class?" Before the end of the sub
Term, Guiseppe Rosolini and the author had devised a version of the real
pretation over ~V(Kl), and had proved that, under that intepretation, IZF
with a claim that amounts to a positive reply to Scott's question.

9.3. Definition. A set z is an ordinal iff x is a transitive set of transitive

of ordinals is denoted 'Ord.' |
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9.4. Definition. An ordinal x is trichotomous (Tri(x)) iff

Vy, z £ x (y £ z V z £ y V z = y)

I

9.5. Lemma. IZFl— x £Ord is trichomotous only if x is discrete.

Proof. This is immediate from the axiom of foundation. For complete
Grayson (1979). |

9.6. Theorem. V(Kl) (= 3z C Ord Vy (y £ x <-► Tri(x)).
Proof. By the lemma, it is sufficient to show that, over V(ATi), every (
is subcountable. Given what has gone before, we only need show that if
~V(Kl), then x is separated.

Let e |j— "a is discrete" and take m such that m fj— b £ a while m [j— i

{e}((m, m)) [j— b = b\/ b b.

Since V(/fi) cannot force 6 6,

{e}((m, m))o = 0 and {e}«m, m))i H— 6 = 6.

By the same token,

{e}((m,m)) [)— a = 6Va ^ b,

so> {e}{{rni'm)) H~ o = b. Therefore, a is realizably separated and is subcoi

This result admits an obvious generalization. The fact that a is an ordir.
nothing special to the realizability calculation; any discrete set would hav<
Therefore, we can claim that

9.7. Corollary. *V(Kl) )= Every discrete set is subcountable.
Proof. |

9.8. Remark. (1) The theorem answers a question raised by Beeson
Beeson referred to the statement "Every discrete set is subcountable as
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asked whether SCDS is consistent with IZF. We can now say that SCDS is (

IZF (plus all manner of choice, continuity and effectivity theorems).

(2) Notice that SCDS is not specific to *V(Kl). Any model in which the A
modeled over the natural numbers realizes SCDS. Hence, every discrete set i
in the models given by the hyperarithmetic indices, indices of functions recu

degree, and so on. g

This kind of reasoning admits an even further generalization. There ii
here with discreteness that could not have been done with the weaker and,
more interesting, notion of apartness.

9.9. Definition. R C x X x is a (strict) apartness on x iff for all y and z

Vy, z £ X (y = z «-> -i R(y, z)) and Vtigz {R{y, z) —► (f?(y, i

9.10. Theorem. In ~V(Kl), every set with a strict apartness is subcounti

Proof. Suppose e |)—"7? is an apartness on a". We will show that, effect
separated. Assume that m (j— 6 G a and m ||— c £ a; assume also that n ||—
the definition of strict apartness, there is a partial recursive 0 such that

0(m, n, e) |j— R[b, c) V R(c, c).

It follows that 0(m, n, e)o = 0 and 0(m,7i,e)i [J— R(b, c). By the same toki

0(m, n, e) ()— R(b, b) V R[c, b).

Therefore, V(Kl) (= R(b, b). But this is a contradiction; hence, our origin
that R(b, c) is realized, is false.

We now have that 0 |J— -> R(b, c). It follows from the definition of s

that.V(Af) |= 6 = c, with witness computable from e. Therefore, every
apartness is realizably subcountable.

9.11. Remark. The following corollary settles another (not unrelated) qui
Beeson (1981). Beeson asked whether IZF might be consistent with SCMS, i
that every metric space has a subcountable basis. The realizability of SCi
corollary of the following (much stronger) theorem. |
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9.12. Corollary. In \{Kl), every metric space is subcountable.

Proof. It is easy to prove, in IZF, that the strict apartness on the reals i
metric space, a strict apartness relation.

9.13. Note. (1) As with SCDS, there is nothing special here about recurs
Any of the general readabilities that use natural numbers as indices wil
result.

(2) It is fairly obvious that the converse to SCDS fails over V{Kl): IZF
Thesis shows that (iv=>ui) is subcountable. Therefore, the considerations (
will show that (ui => uj) is subcountable in V(Kl). However, the undecidab:

{{n,m) : if {n} and {m} are total, then {n} = {m}}

reduces to the readability of the discreteness of (w => to):

Vx g (u> => u>) (z = y V x y).

Therefore, over ~V(Kl), we have both that every discrete set is subcountablc
is a nondiscrete subcountable set. Neither of these is, of course, provable i

ssumption,

apartness

ivith strict

l raised in

sumption
a simple
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Section 10: Injecting the classical sets

When one deals with Boolean-valued models, the classical ground moi

be injected into a Boolean-valued class structure built over it. The injec

familiar, takes the sets of the ground model and embeds them into the Bo
as sets whose "membership values" are constant. In almost the very same '

embedded into the readability universe V(KI); the relevant injection, z®!
recursion on membership. As the notation suggests, x®1 takes the entire cla
into the stable part of V(/fl).

10.1. Definition. For x £ V,

x" = {{0,y"):ye'x}.

In the Boolean-valued case, the appropriate injection turns out to

injection of class models. In the case of ~V(Kl), z'f will not give an isomorph
tinkers slightly with the logic; after all, the virtues of readability accrue tha
that readability conditions differ markedly from the truth-conditional int
the logical signs in the external world. Even so, the requisite tinkering is re

i and quite predictable. The sort of tinkering that has to be done results
that we call "isomorphism up to stability;" this sort of logical relation will

important) play when we begin to do internal recursive mathematics in Ch,

The first stage in plumbing the precise relations between logic over V
the image of x"' in ~V(Kl) is an assessment of the effect of the injection
statements. In this case, the effect is negligible.

10.2. Lemma. For a,b £ V,

v |= a e b iffV{Kl) h a®' 6 b"
V (= a = b iJJV(Kl) |= a" = b".

Proof. Each of the implications from left to right is trivial. As befits thf
z*f is defined, we prove the converse implication by a simultaneous transfin
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First, assume that e [j— a3i g fi3t. By definition, there is a d such that (
ej (j— a3' = d. By definition of x3t, d = g3t for some g from h. Hence, b;
hypothesis, a g 6 holds in V.

For the other statement, assume that ~V(Kl) [= a3t = b3t and let c

of a g V. Then, ~V(KI) (= c3t g a3i and V(f£I) f= c3t g b3'. If we us<

hypothesis, c g b will follow. |

Naturally, the next step is the provision of an internal set-theoretic c.

of the range of x3t in ~V(Kl). We note that Robin Grayson (1975) has
construction of transfinite closures can be carried out just as handily in IZ
with the same inductive effect: the transfinite closure of x is the C-least

containing x.

10.3. Definition. A set x is said to be hereditarily stable (hs) iff x is st
element of the transfinite closure of x is stable. |

We prove that the hereditarily stable sets of ~V(Kl) are precisely those
injections of classical sets.

10.4. Theorem. There is ojgu such that for all a g V(Kl), if e ()— hi
is u fig V such that

0}(e)0-a = 63

Proof. This is a straightforward application of Kleene's second recursion i
parallel with transfinite induction. To start the induction, assume that, for
e |(— hs(a). The inductive hypothesis gives us the following: there is a part
such that, if g ||— c £ a, then, for some d 6 V, H- c == dot.

Now, we can use collection over V to gather together all and only the
to readability elements of a. Call this set of d's 'a.' Then, we form the set

{(0, d3t) : d £ a}.

From the definition of aat and some simple facts, it follows immediatel;

V(Kl) HaCaat
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with witness calculable from j. For, if g |(— c £ a, then

(0'}(g),o) h-C e a".

To prove the converse inclusion, assume that g [j— c £ a'1. Then, by
clause governing membership, there is a d £ a such that

(0, d3t) S a" while gi (f- c = d".

It is a consequence of the conditions set on a that

0 |j— —i-ic £ a.

But, since V{Kl) |= hs(a), we have that ~V(Kl) |=t£o with witness calcu
The desired result now follows from one application of the second recurs!

We can now be quite precise about the logical relations between "V
lization", the image of st, in ~V(Kl). Let Ly be the language of IZF, ;

autonymous names for elements of V. We will define a translation (also c

takes sentences of Ly into sentences of L
10.5. Definition. The translation st is defined inductively as follows:

(a G b)" = (a" £ b") and (a = 6)st = (a" = b").

st is taken to commute with /^, V, ~1, and

(3x <f>)" = 3x (hs(x) A <A") while

(Vx <&)" = Vx (hs(x) <t>").

I

10.6. Theorem. For sentences d> of Ly,

V [= h P*.

Proof. The proof goes via a straightforward structural induction on 4

logic freely in the metatheory. Theorem 10.4 is required to handle the uni
case. |
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10.7. Remark. (1) To a great extent, this theorem anticipates the notion
up to stability" which we introduce and apply in Chapter Five. There, we
basic idea to display the logical relations between certain areas of recur;

he realizabili!) an(j najuraj subtheories of the theory of ~V[Kl).

(2) Since the image of st in ~V[Kl) coincides-{even internally) with the cla
stable sets, the classical universe reappears in V(Kl) as a portion of the
verse which is thoroughly uniform. Therefore, the class of hereditarily st

uniform, as is the image of each classical set. Since, to the intuitionist, th
are largely interesting pathologies, we might be moved to think of classi
something of a pathology itself. |

ble in e and j.
theorem. )

nd its "stabi-

tmented with

ed 'st') which

\

ng classical
.1 quantifier
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Section 11: Recursion, MP and IP

This is the point at which we begin to direct attention exclusively

V(K7) directs toward recursive mathematics. Our approach will be gra

with some very general (even trite) propositions. The first of these recorc

in V(.K7), sets which are decidable over uj (or sets which are sufficiently like
collections which are externally recursive. The second records a similar
between r.e. sets and sets which are internally countable. These constitut
primitive intimations of some of the absoluteness results from Chapter Ft

11.1. Proposition. V |= "S C w is recursive" iff~V(Kl) (= "S is decidi
there is an effective correspondence between recursive indices for external
of 'S is decidable.'

Proof. This is a trivial application of the realizability interpretation of

11.2. Proposition. V (= "S C ui is r.e. and nonempty" iff~V{Kl) |= '
Again, there is an effective map which interchanges canonical re indices for
for 'S is countable.'

Proof. Once again, this is immediate. |

Markov's Principle.

Markov's Principle (MP) is closely associated with the work of the s<

constructivists. For these mathematicians, the acceptance of MP is justifie
a classical conception of a universe of mathematical objects thought of as cc

of possible inputs for Turing machines. On the constructivist view of
intuitionists, however, MP is clearly false.

The version of MP most appropriate to our concerns is

Vn V ■" <f{n)) —♦ ("> 3n <t>(n) —+ 3n <t>{n))).

' The consistency of IZF with MP is confirmed by showing that

11.3. Theorem. V(Kl) )=MP.
Proof. For purposes of this proof, we suppose that V models classical h
that

(1) e H~ Vn (0(n) V <j>(n))
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and that
the face thai

,al' beginninj
g ||_ 3n ^ny

the fact thai,
coincide "with By classical logic in V, it follows from the latter that

orrespondenci
the initial and (2) 3m m ^ 3n

." Moreover,
and realiztn

I

is countable.'

and witnessei

Then, with r = )in.Q(e, n)o = 0,

©(e. r)i

Therefore, V(A7) |= MP. |

11.4. Note. • (1) A brief glance at the foregoing will reveal that we can
MP iffV(Kl) [= MP.

(2) For those familiar with realizability for arithmetic, the situation with
as no surprise. Troelstra (1971) showed that MP, together with the ex
Thesis ECTq, axiomatizes classical realizability in the follow sense.

HA+TND I- <j> iff HA+ECTo+MP I

I

Independence of Premisses.

Over ~V[Kl), we have a limited version of IP, the principle of independe

V1)-
151

It is a consequence of (1) that, for some partial recursive 0 and for each

0(e, n)o = 0 A ©(«, n)i H~ or

0(e, n)0 = lA 0(e, n)i |f- -■ <l>[n).

From (2), we know that there are p and q from u such that

P H- ^(9)-

>1 of Russian

the basis of

ting entirely
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Here, we presuppose that (j> is closed.

11.5. Theorem. V(Kl) |= IP

Proof. Again, V is taken to be classical. Assume that e |j— -> <f> —* 3z i/1-
<j>, 0 0— -■ <j> and {e}(0) ()— 3x <j>. Therefore, there is an a £ ~V{Kl) such

^{x/a\.

Hence, if <j> is not realized, {e}(0) is defined and, for some a from V(Ki

An.{e}(0) H- -*<f> -*i/)[x/a].

So, in this case, ~V(Kl) )= IP.

On the other hand, should rj> be realized, then ~^<f> is never realized, so

An.n IP.

1

Certain sharper versions of IP hold in ~V(Kl) in virtue of the same sort of
as those adduced in support of general IP. Consider the principle we call 'I

Vx By £u> ij>) ^ 3y £u> Vx (-< <j> —> r/>).

The following theorem is an application both of external classical logic
UP.

11.6. Theorem. V(ATI) |= IP".

Proof. First, assume that for some a £ V(ifl) and for some n,

n [}--"^[z/a].

In this case, the class {x : -> ^(z)} satisfies the conditions on a uniformity s

this may be a proper class over ~V(Kl), but the uniformity considerations can

accordingly.) Hence, IP" follows directly from uniformity.

On the other hand, assume that nothing serves as a witness for </>(
regardless of the value of x. In that case, the realizability of IP" is immedi
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11.7. Note. More restrictive versions of IP, in particular, those in wh
quantifier is restricted to ui and in which free variables of <f> are boundei

V(Kl). Consider the principle IP"'1", where the variables are so restrict

(-> <j> —► 3n iji) —► 3n (-i 1fi —up)

ipu,iu jg nQj. ayaijablg over V(A7). In effect, this has been proved bj
(1971). There, Troelstra notes that the triad consisting of Church's The:
is inconsistent with the intuitionistic first-order arithmetic HA.

Troelstra's argument can be paraphrased as follows: Let 'T(x, y, i
expression in HA of Kleene's T-predicate. In HA plus MP, we have that

Vx (-> -i 3y T{x, x, y) —> 3y T(x, x, y)).

Given IP"'"', it is a consequence of the above that

Vi 3y (-> -i 3y T(x, x, y) -* T(x, x, y)).

Church's Thesis now applies, and it provides a recursive number-theoret
for the quantifier combination Vx 3y . Therefore,

3u Vx [{u}(x) I a(3y T(x, x,y) *-* T(x, x, {u}(x)))j

holds. This outcome clearly flouts the (provable in HA) unsolvability of
lem.

(2) A close examination of the proof of the last theorem will convince tl
in the ground model will suffice to give IP in the realizability model. W
have that

V |= IP implies that ~V[Kl) f= IP.

A similar remark applies to IP". |
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Section 12: A final theorem

We close Chapter Three with a simple exercise on undecidability and
Considered as a sample of what can be done, the following theorem gives
claim that undecidability theorems from recursive mathematics can be ti

less mechanically, into independence theorems for IZF. The corollary ans1

posed by Dana Scott.

12.1. Theorem. *V(Kl) satisfies

—■ Vx g P(w) [x is decidable —>x is finite Vx is not finite).

Proof.

Let stand for the above statement, less its negation:

Vx gP(w) (x is decidable -*x is finite V x is not finite).

Assume that e |j— $. We assume externally that A C w is recursive and
characteristic function for A. Then, there is a primitive recursive 0 such 1

0(g) ))— A 6 P(w) and A is decidable.

As always, A = {{n,n) : n g A}. Given the readability conditions fo
{e}(0(g)) | and either

®(ei ff)o = 0 and ~V(Kl) f= A is finite or

^(e> 9)o 7^ 0 and V(A/) f= A is not finite.

It is easy to see that, if the former condition obtains, then A is externally i
the latter, A is externally infinite.

Therefore, Ag*f>(e, g)0 represents an effective procedure which, given
recursive characteristic function, determines whether or not the set assoi

function is finite. However, no such procedure can exist; the halting pr

reduced to the problem solved by Ag"I'(e, g). |

12.2. Corollary. " Vx£P(u) (x is decidable —>x is finite Vx is not j
pendent of IZF.

Proof. | .
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Absoluteness, Church's Thesis and Arithmetic

Section 1: Prefatory and historical remarks

The budget of results in this chapter lay buried in various dusty corne]

realizability "folklore." We believe that our compilation of this folkloi
elegant and that our proofs are the most efficient possible. It seems th
the realizability of Church's Thesis is new. Originality aside, all of these
proofs, were known to the author prior to November 1981.

Absoluteness, according to Sacks (1962), is to be considered the pr
traditional model theory. The primacy of absoluteness is nowise diminisl
to the nontraditional situation of V(Kl). Unsurprisingly, the sort of abs
V(iC/) supports is implicit in the work of Kleene and can be derived fr<
Troelstra. We call instances of these "realizability absoluteness" phenomen.
of "Kleene absoluteness."

Section 2: Kleene absoluteness

2.1. Note, (l) For this chapter, the symbols lmi and that ilk will be u:
but, one hopes, intelligibly. In the metatheoretic dialect as applied to arit
lm1 either range over the elements of a; in V or stand for the apposite fori
some system of arithmetic. The precise meaning should be clear from cont
to formal languages for set theory, lni and'm' become set-theoretic parai
over u/.

(2) For purposes of exposition in this chapter, we restrict discussion and exi
number-theoretic relations which are binary. The truth of our theorems a
of their proofs suffer no such restriction. |
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2.2. Definition. For n G ui, we take n to be the set-theoretic term which is c

used to denote n. Officially, n is defined by metatheoretic w-recursion:

5= 0

n + 1 = nU{S}

I

Our entree to Kleene absoluteness is by way of one of the oldest and m

ideas of mathematical logic, that of numeralwise representation in a form:
is well known, this idea carries a significant portion of the conceptual burc

Incompleteness Theorems.

2.3. Definition. Let R(m, n) be a number-theoretic predicate. A formula
language of ZF numeralwise represents R iff, for all m and n,

V (= R(m, n) IZF t— <j>(m , W) and
V |= -> R[m, n) => IZF h- <j>{m, W).

Trivially, if tj> numeralwise represents R, then <j> defines R over V.
the following proposition is a direct application of the coding techniques (e
function) that lie at the heart of Godel's approach to incompleteness.

2.4. Proposition. R is numeralwise represented iff R is recursive in V.

Proof. For complete details, the reader may consult any standard text for

logic. Shoenfield (1967) is an excellent source. |

Numeralwise representation establishes a scheme which associates with
relation a natural set-theoretic expression defining it.

2.5. Definition. For each recursive predicate R[m,n), let r/>rt(x,y) be a f
language of ZF which numeralwise represents \it. For the sake of definitene;
take ij>R to be the formula which would be constructed in the course of the s

of the last proposition. |
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We are now in a position to give an exceedingly simple proof of Klee
At bottom, the proof relies on little more than the soundness theorem for

ability. We note that this theorem extends and incorporates the results o

on the absoluteness of membership and equality statements on u in V(KI

2.6. Theorem (Kleene absoluteness). Let R(m, n) be recursive. T
en such that, ifW [= R(m,n), then {en}(m,n) [j— ^fl(m,n). Also, if~V[l
then V |= R[m, n).
Proof. Two moments of reflection will be enough to see that this is a dii
of the preceding proposition. One spends the first moment reflecting on t

proof of the soundess theorem for IZF is thoroughly effective. By this, we
is a uniform effective procedure which, given a (coded) proof of a sentence
axioms, produces an index such that |j— <j>. During the second mon
that there is a total index g such that, for each n, {<;}(«) |j— n = n. |

2.7. Corollary. When R is recursive, and m,n €

V 1= <t>R[m, n) iff V(Kl) f= , r

This last corollary should be compared with Theorem 3.11 of Chapte

legraduate

i recursive

ula of the

ne should

ard proof
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Section 3: Varieties of Church's Thesis

The proof that every number-theoretic function in V(A7) is general re

us, the primary application of Kleene absoluteness. The claim that, in som

context, every number-theoretic function is recursive is called (historical
notwithstanding) 'Church's Thesis.' In truth, one can consider any one ol
variants on Church's Thesis. Some of these deal with partial functions, some
on specific definable collections of sets, others, like "Weak Church's Thes
constructive connections between the contributory notions by interjecting

For a survey of.the variants, see Beeson (1979). We will assay the reali
of several variants in this section.

Church's Thesis and total functions.

At present, our interest lies in that form of the thesis that pertains to i

and which holds in ~V(Kl) without restriction. We refer to this form as 'CTo'
it as

Vn 3m <j>(n, m) —> 3e Vn 3m 3p (T(e, n,p) /\U(p, m) A <t>{n, m)).

We have expressed CTo as a strengthening of ACW,W; this is common in
models of IZF. T and U are set-theoretic predicates which numeralwise rep:

tively, Kleene's T and result-extraction predicates.

3.1. Theorem. V(ffl) (=CT0.

Proof. We already know that ACtJ'" holds constructively on ~V(Kl), so

by assuming that there is a total index g such that, for all n,

{9o}W H-9KMS1 }("))•

(<7i} is total in V. Hence, for each n, there is a least number-theoretic pr

that

V \=T[g1,n,p)AU(p,m).

Let h index a general recursive function which calculates such a least pa

Certainly, h can be found effectively from g.
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By absoluteness, there are indices ej- and ey such that, for all n.

{er(M(n)o) H-r(9i .»>Mn)o) and

WKWMo, {h}(n),) |f- , W(«)o).

Set j equal to

An.({/i}(n)0, {h}(n)i, {er}(ffi,n, {^}(«)o)< {et/}({M(n)o. {

Without question, j can be calculated from g, given er and ejj. Then, z

adjustment to j yields a witness for

Vn 3m 3p [T(e, n, p) A C/(p, m) A <t>(n, m)].

3.2. Remark, (l) Close attention to the essential details of the proof
shows that the proof can be constructivized without loss. Therefore, IZFt-

(2) The remarkable strength of CTq is, we think, not often recognized,
of CTo shows that, regardless of the higher-order or impredicative appaj

constructive proofs in IZF of the totality of a number-theoretic functioi
with full extensional IZF to assume that the function is recursive. Mo

tiveness of the soundness proof shows that there is a uniform method
constructive proof of totality directly into a machine table that compute

(3) The last point of (2) is worth underscoring. The effective character
theorem plus the realizability of CTo show that there is a single machin
vides "automatic programming" for all classically provable recursive fur
a single index which, given a constructive proof of the totality of a de
converts the proof into a program (in ALGOL, say) that computes the va
tion. This index will work for all classically provable recursive functioi
Kreisel-Friedman theorem: the classically provable and intuitionistically
sive functions coincide. The Kreisel-Friedman theorem is discussed in T
Hence, whenever a described function is known intuitionistically to be tot;
chanically computes an ALGOL program for it. Moreover, every classicall
function is known to have a description under which it is intuitionisticall
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Church's Thesis and partial functions.

Church's Thesis for partial functions does not fare nearly so well unde
In Chapter Six, we will describe a version of realizability under which a

Thesis holds. Full Church's Thesis is the claim that all partial functions ar

the meantime, we shall prove that full Church's Thesis, CTi, fails under re:
respect to ~V(Kl). In what follows, let F(w) be the collection comprised of
subsets of P(u; X w). CTi is the statement

V/ G F(w)3e Vn,m ({n, m) £ / <-► 3p (T(e, n, p) A U(p, m)).

3.3. Theorem. V(/fl) (= -CTj.
Proof. The halting problem is manifested extensionally in the set

K = {n : M(n)|}.

Let 'K' refer also to the (classically conceived) characteristic function of K
the characteristic function is 'classically conceived' is not to say that this pi

structive. We desire merely to mark the fact that the characteristic functio
confabulation which holds little intrinsic interest for the intuitionist. Th

mathematical fact about K which we require is that the two-place relati<

ing to K is functional.) As usual, 'K' denotes the straightforward interna
function K:

K = {(n, (n ,K(n))) : n G w}.

It is easy to confirm that V(/C/) (=KG F(w) and that, for arbitrary n,

(n,t> H-(n,iF(n)) G K ■

Now, we assume that V(Af) |=CT i. From this assumption and facts
K, we conclude that there is an index g and a number e such that

MM H~3P T{e,n,p)/\U{p,K(n)).

From the definition of realizability for 3x , we know that there is a j such

0'}(")o |f-r(e,n,{j}(n)i)Al/({y}(n)i ,K{n)).
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Let u be the external result-extraction function. With Kleene absoluten

relations, one can prove that

Xn.u({/}(n)i)

is equal to K. This conflicts with the unsoivability of the halting problen

V(Kl) |= -nCTr.

I

3.4. Remark. The above proof can be fully constructivized. |

Fundamentally, CTi fails because P(cu) is, under realizability, a nif
Most likely, the fact that P(ce) in V(ffl) is a uniformity set would alone sr
the reader of the difficulties lurking there. Since P(w) is so thoroughly
will contain functions whose domains are from a classical standpoint ano
a simple instance, the internal domain D of the function K is a subset oi
V(Kl), D u but Vn -> -<n £ D.

Partial functions and co-stability.

It is not terribly difficult to concoct a realizably correct version of full
further constraints on the possible domains of functional relations. Tf
impose here is that of co-stability. To recall notions introduced in Chapte
A of co is co-stable whenever

Vz£w(-i-ii£i-tz6 A).

The collection of co-stable sets is denoted 'P(co)at.' As will be apparent fro:
the concept of co-stability holds sway over the "reduction" of effective to
theory. The co-stable version of full Church's Thesis is CT2: for X an ele

Vn GX 3m m) —► 3e Vn £X 3m 3p (T(e,m,p)AU(p, n) A ^(n, m

3.5. Theorem. V(K7) |=CT2.
Proof. Assume that g (|— A £ P(co)s' and that

e |J— Vn £ A 3m <f>(n, m).
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Let A — {m : ~V(Kl) (= m £ A}. If m £ A, then 0 [{— -> -im £ A. g witnesses the fact that
A is internally w-stable. Hence, with

= {{»HK <»}(o),

$(m) |f- m £ A.

We also know that {e}("l>(m)) [|— 3n£u tj>(m,n). Set h = Xm.{e}(<l>(m))oo. It is a

straightforward calculation to confirm that a witness for

3e Vm £X 3n,p (T(e,m,p) A !7(p, n) A <j>{m, n)

is calculable from h. For this, we need to rely on Kleene absoluteness once again'. |

Church's Thesis: a final generalization.

As a corollary to the above, one can prove to be realizable a simple generalization
of Church's Thesis which first appeared in Hyland (1982). For this, we need a pair of
definitions and a lemma:

3.6. Definition. Let X be subcountable, and let X" C u be such that X" "counts" X,
i.e., X' is such that, for some /, / : X* —» X. X' is called a 'presentation' of X and
X' presents X via /. |

3.7. Definition. If X is subcountable and X* is a presentation of X which is w-stable,
then we will say that X* is a canonical presentation of X. |

3.8. Lemma. In V(X1), if X is subcountable, then X has a presentation which is
canonical.

Proof. Assume that, over V[Kl), X is subcountable, and Y presents X via function /.
Let X^~ be the internal realizability set corresponding to X,

X^~ = {(n, (n, a)) : n |f- a G X}.

The techniques of the last chapter suffice to prove that, since X is realizably subcountable,
then it is realizably separated and X^~ is a functional relation on V(Kl).

Now, set X = {("i") : 3a n ||— a E X}. Clearly, X is w-stable under realizability.
To complete the proof, it suffices to show that X is, in ~V(Kl), none other than Dom(X^~).
But this is straightforward. |
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Here is our final generalization of CT2:

3.9. Theorem. In 'V(Kl), if A and B are subcountable, and if h : A —> B, then for
any canonical ■presentations A' of A and B" of B and functions f : A' —» A and
g ■ B" —» B, there is a partial recursive function j which agrees with h and preserves

presentations. In other words, h is such that, for any n 6 A*,

h(f(n)) = s(j(n)).

Proof. This is a direct consequence of the definition of canonicity and of Theorem 3.5.
I

3.10. Note. (1) Admittedly, it is rather unhelpful, from the constructive standpoint, to
think of partial functions as single-valued relations on u X w. So conceived, the implicit
connection between computability and functionality disappears entirely. One could well
recapture the connection by internalizing the notion of partial function more carefully,
that is, by trying to express in set-theoretic terms a bit more of the intuition behind
constructive partial functions. One can reinstate the "Church's Thesis" connection by
insisting that a function which is partial on u is a countable two-place relation. There is
no difficulty in showing that, with this more constructive notion of partial function, every
partial function in ~V{Kl) is precisely a partial recursive function.

(2) This would, of course, be the natural place to enter into a discussion of abstract analysis
over V(Kl). We could show that Brouwer's Theorem,

Every function from the reals into the reals is continuous

holds over ~V[Kl). We would also want to realize generalizations of Brouwer's Theorem,
e.g., that every function from a complete metric space into a separable metric space is
continuous. Moreover, there is the work of Moschovakis (1964) on recursive metric spaces
and any complete discussion would show how Moschovakis' theorems can be viewed under
realizability on a natural class of constructive metric spaces.

Much of this material has already received a thorough treatment in the literature.
Besides, the goal of our work is the charting of the less-traveled portions of recursive
mathematics, RETs and isols. Consequently, we would prefer to push on to that and not
to wander into real analysis. For information on analysis, we refer the reader to Beeson
(1979) and Hyland (1982). g
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Section 4: Interpreting arithmetic and ICleene realizability

4.1. Definition. Heyting arithmetic, HA, is the formal system which is conventionally
accepted as the formalization of the first-order fragment of the intutionistic arithmetic.
The language of HA is a single-sorted predicate language with = as a logical sign and

with, for each n, infinitely-many function parameters /" of arity n. We abbreviate fjj
as 0 and /d as S, and take these as symbols for the zero element and for the successor

function, respectively. In this language, Heyting arithmetic is axiomatized as is Peano

arithmetic, using 0 and S, except that the underlying logic is generated not by CPL but

by HPL-. For each n, /" is to represent F", the i-th primitive recursive function of arity
n. In keeping with this idea, HA includes, for each /", an array of functions that give a

primitive recursive axiomatization of F". |

There is close accord between arithmetic as interpreted over ~V(Kl) and the original
realizability interpretation of Kleene (1945). For those who are au fait with the latter,
there have been plenty of indications that this is the case. See, for instance, Lemma 3.9 of
Chapter Three. For those who are not acquainted with Kleene's ideas, we provide a brief
resume.

Kleene realizability for arithmetic.

4.2. Definition. For sentences <f> of the language of HA and numbers n, we specify
recursively the arithmetic conditions under which n Kleene realizes <f>. For (this notion
of) Kleene realizability, we will write n ||—'1 <j> to distinguish it from its set-theoretic
generalization.

tf> atomic, n ||—'1 <f> iff n = 0 A </> is true [1]

n H-1 (MVO iff no [|—1 <f> and n\ [j—'1 1fi PI

n H-1 ("£ v v>) iff no = 0 and nr fl—'1 <j> or no 0 and ni [j—1 ip [3]

n (t-1 ~"f> iff, for all m, ->m [j—1 <j> M

n It-1 VO iff, for all m, if m [J—1 <j> then (n}(m) I)—1 rji [51

n (j—1 9n <f> iff m H-1 <f>[x/no\ [6]

n (j—'1 Vn <j> iff, for all m, (n}(m) [)— <f>[x/m\
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We refer to the structure of this interpretation as 'l(Kl)'; and we shall say that

1 (Kl) (= <f> iff 3n . n fj—1 0.

I

For a presentation of 1 (Kl) and of Kleene readability which is more heuristic, the
reader can consult McCarty (1983).

The soundness theorem for HA with respect to 1 (Kl) was proved by Kleene; an elegant
presentation of the proof appears in the final chapter of Kleene (1952a).
4.3. Theorem. HAl— <j> only if 1 (Kl) |= V <j>.

Proof. This can be proved directly as an arithmetic analogue of our soundness proof for
IZF with respect to ~V(Kl). Alternatively, we can first interpret HA into IZF and use the
latter soundness theorem. It is to the alternative that we direct our efforts. |

In his (1971), Troelstra proved that, when classical logic is allowed into the metatheory,
we can show that

4.4. Theorem. 1 (Kl) (= ECT0 AMP" A ->IP"'".

ECTo is the "Extended Church's Thesis" for arithmetic "almost negative"

4.5. Definition. An formula of the language of HA is almost negative (a.n.) iff V does
not appear in <j> and instances of 3n appear only as prefixed to atomic subformulae of <f>.
I

ECTo is expressed, for a.n., as

Vn (<j>(n) —> 3m tp(n,m)) —► 3e Vn (<^(n) —» 3m, p [T(e,n,p) A U(p,m) A ip(n,m)]).

MP1" is Markov's Principle for specifically arithmetic properties. Let <j>(n) be any
formula from the language for HA; MP" is the scheme

Vn (</>(n) V -1 </>(n)) —► (-> -> 3n <j>(n) —+ 3n 0(n)).

The reader will recall (from Chapter Three) that IP"'" is the independence of premises
principle with all quantifiers restricted to to:

(-i <j> —> 3n f>) —► 3n (-1 <f) —►
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The most obvious route to a proof of the last theorem is the direct one: we can chetl
that the realizability conditions set out above for [f—1 hold (or fail to hold) on the principle
in question. It would be more informative, however, to approach the theorem indirectlj
by way of a sketch of the logical relations between realizability over l(Kt) and that ove

V(Kl). The first step in the indirect route is, of course, a specification of an interpretatioi
of the language of HA into that of IZF.

Interpreting arithmetic into set theory.

4.6. Note. The theorems of this section and the next, if proved in all their gloriof!
detail, would become unbearably long. Rather than give detailed proofs, we will indicati
how the relevant proofs can be constructed from contributory lemmas. |

4.7. Definition. (1) Let x —>x be an injection of the variables from HA into the variable
of IZF.

(2) For each there is a p.r. function F™ to which /" "refers". We also take 'F™' tt
refer to the n + 1-place relation which is the graph of F". With this understood, we let foi
each /", be the set-theoretic formula (F")fj, given by the proof of the representability
theorem. (Cf. Definition 3.5)

(3) We will translate the terms of HA into IZF by associating with each term r an expression
r. If t — x and x is a variable, then t = x. For terms r = r2), r is

3yi,yzeu) (rTA^A^r(yi.V2)).

We assume that the variables yi and t/2 have been chosen to avoid clashes. |

4.8. Definition. With each formula <j> of the language of HA we associate a formula 5
of the language of IZF in the following way

(1) for 0 = (ri = r2), $ = Vy G ui (ff T2)

(2) the translation commutes with A,V,and —♦

(3) for <j> = ip, $ = 3x6w 4*

(4) for <j> = Vx \f>, = Vx $

I
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Now we can state the main result of the section:

4.9. Theorem. For sentences if> from the language of HA,

1 (Kl) (= iJJV(Kl) f= <t>.

Given the above, the proof of the main theorem is straightforward and relies entirely
on the proof of this stronger result:

4.10. Lemma. For each formula c/i(xt,x2) from the language of HA, there are partial
recursive indices e$ and gj, such that, for all mi,ra2,

if P If-"1 Hmthen {e^}(mi,m2,p) ||—<f>(mT, m^) and

if p ||- then {g^}(m1,m2,p) If-1 4>(ml,m2).

Proof. One uses Kleene absoluteness for the atomic case. The propositional connectives
are trivial. For the quantifiers, use Lemma 3.9 from Chapter Three, g

On the basis of the main theorem, it can now be concluded that Kleene realizability
has the properties discovered by Troelstra. To treat ECTo, we apply the

4.11. Lemma. If <j> is a.n., then ~V(Kl) |= "<& is io-stal>le."
Proof. In general, <J? defines over ~V(Kl) an n-place relation with n f 1; is w-stable'
means that

V(/fl) |= VX!,. .., In £ w (-> -1 ${xL, . . . , In) $(^1) • • • » *n))-

The lemma is proved by structural induction on the a.n. formulae of HA. The only possible
obstacle is the realizability of 3n ; for that, the realizability over ~V(Kl) of MP is required.
B

4.12. Corollary. 1 (Kl) |= ECT0 AMP" A -4P"'".
Proof. Given the lemma, the fact that ~V(Kl) f= CT2 suffices to show that 1 (Kl) f=
ECTo. One also notes that

V(KI) (= MP A -1 IP"'".

9
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It follows immediately from the main theorem that all of set-theory arithmetic in IZF
is Kleenc realized oven 1(Kl).'
4.13. Corollary. For <f> a sentence of the language of HA, if IZF I— <f, then 1 (Kl) |= <j>.

Proof. ]

We j:an now give our alternative proof of Kleene's soundness theorem for arithmetic,
Theorem 4.3 above.

4.14. Corollary. HAl— rj> only if 1 (Kl) J= Vn (/>.

Proof. The proof now comes from the main theorem, the realizability soundness theorem
for IZF and the remark that

whenever HA I— rj>, IZF 1— <F.

3

By the way, the former of the above corollaries, shows that,, inter alia, 1 (Kl) |=
Consis(HA).
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Section 5: Realizability for second-order arithmetic

5.1. Definition. Second-order Heyting arithmetic, HAS, is the accepted formalization of
intuitionistic arithmetic with variables over species. The language appropriate to HAS is
assumed to contain species variables for unary species only. This is no real restriction on

the expressiveness of the language, since the usual codings of number-theoretic tuples are

available. We also assume that, for each binary A C ui X w, there is a unary predicate
constant A in the language; these will be the only predicate constants. Finally, we assume

that the only well-formed formulae of the form X(r) for X a species variable or constant
are such that r is an individual variable or canonical numeral. In this language, HAS
has the same axiomatization as the corresponding version of full classical second-order
arithmetic. |

Kreisel-Troelstra realizability.

Kreisel-Troelstra realizability is the first of the realizability interpretations presented
in Troelstra (1973b). To our knowledge, this was the first time that intuitionistic quantifers
were given what we have called a "generic" interpretation.

For sentences O of the language of HAS and for natural numbers n, the second-
order conditions under which n realizes (j> in the sense of Kreisel and Troelstra are given
recursively. When n realizes <(>, we write 'n 2 <t>'

5.2. Definition.

<j> atomic first-order, n ()—2 <j> iff n = 0 A <t> is true M

The structure of this interpretation we call '2(XI)' and, for sentences </>, we say that

2(K[) [= <f> iff, for some n, n |(—12 <t>.

it <j> = A(m), n [}—2 <j> \
n H-2 3X <j>

n [f-2 VX <j>

°n V, A, 3n , Vn , [j—2 agrees with [}—'1

iff (n, m) 6 A [2]

iff for some A C u X u,n |j—2 ij>{X/A\ [3]

iff for all A C u X ui, n [)—2 tj>[X/A\ [4]
(5).

1
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Troelstra (1973b) contains a constructive proof that HAS is sound with respect to [f-2:
5.3. Theorem. HAS 1— </> only if 2(Kl) (= V <j>.

Proof. The standard proof proceeds by induction on the length of proofs from the
axioms of HAS. Our proof goes via realizability for IZF, as in the last section, and is the

subject of the following subsection.

Interpreting second-order arithmetic.

There is a translation </> e-+ <& from the language of HAS into that of which
we call 'LThe translation extends that of the last section and mediates the logical
transition from |j—2 to [)— and vice versa.

5.4. Definition. For each A C w X w, let A be

{«m,n),n) : (m,n) £ A}.

1

In the clauses below, we have prevented variable clashes explicitly by formulating IZF
with the usual variables x,y., z,... plus a disjoint set of new variables xx ,xY,..., one xx
for each second-order variables X of HAS.

5.5. Definition. With each formula <j> from the language of HAS, we associate a formula
<E> of hjQ so that, for <fr first-order, $ is just that given by the translation of Definition 4.8
from the preceding section and

[1] for <t> = H(n), $ = n £ xY

[2] for <f> = Y[x), $ = x £ xY

[3] for <j> — A(n), $ = n £ A

[4] for <j> = A(x), $ = x £ A

[5] for <j> = VX V, $ = Vz* £ P(w) 9

[6] for <t> = 3Xip,^ = 3xx £ P(w) >P.

I

With </> i—► $ as above, the following is easily provable.
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5.6. Theorem. For sentences </> of the language of HAS,

2(/C/) |= <t> iffV(Kl) 1= 4>.

Proof. As with readability |j—1, the theorem is a consequence of a more inclusive result
for arbitrary formulae:

5.7. Lemma. For each formula 0(x,X) of the language of HAS, there are partial
recursive indices e$ and g^, such that, for m6w and A C w X w,

if p )j—2 <j>(m,A), then {e^}(m, p) [)— Q(m,A) and

if p ||—4>(rn,A), then (g^K^iP) H~2

Proof. The proof of the lemma is by induction on the complexity of the formulae <j>.
For the quantifier cases of the induction, we require a lemma.

5.8. Lemma. There is a j £ u such that, for all e£u and b e V(Kl), if e^-be P(w),
then there is an A C u X oi such that {l}(c) If- b = A.

The theorem of Troelstra, Theorem 5.3, is an immediate consequence of a corollary
to Theorem 5.6.

5.9. Corollary. For sentences <j> of HAS, t/IZF I- <!>, then 2(Kl) |= <A.
EXT is the principle of "extensionality for species":

Vn,m ((XnAn = m) —>Xm).
UP2 is the Uniformity Principle as it would naturally by formulated in a second-order
language:

VX 3n <t> — 3n VX .f>.

In the same paper, (1973b), Troelstra also showed that
5.10. Theorem. 2{Kt) |= EXT A UP2.
Proof. The result is an immediate consequence of the Theorem 5.6 and the theorems of
Chapter Three. |

Finally, if we use the soundness theorem for IZF with respect to ~V(Kl), we can show
that all of set-theoretic second-order arithmetic is realized in the Kreisel Troelstra sen

We know, therefore, that 2(Kl) (= Consis(HAS).
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CHAPTERS
Realizab ility andRecursive Set Theory

Section 1: Prefatory and historical remarks

This chapter is the centerpiece of our work; as suggested by later sections of Chapter

Zero, its intention is twofold. First, we hope to exhibit what should now be an unsurprizing

correspondence: that the traditional classical objects and structures of recursive set theory

correspond exactly to certain nontraditional sets definable in pure set theory over V(ffl).
Despite the initial strangeness of V(Kl), the correspondence is perfectly natural; the rc-

alizability set in ~V(Kl) associated with a given "recursive" set from the classical universe
satisfies the condition one would obtain by removing from the classical definition of the
latter any explicit reference to recursion. Second, and more significantly, this ontological
congruence underlies a parallel congruence between theories in recursive mathematics and
subtheories of ~V(Kl). Just as the congruence in ontology marks a philosophical econ¬

omy, the congruence in theory promises a nonnegligible mathematical economy, not only
in mathematical formulations and proofs, but also in our conception of the resources of
constructivism. In particular, the latter correspondence tells us that proofs in pure con¬

structive set theory become, under interpretation, proofs in the classical development of
recursive mathematics and without slippage. By 'without slippage,' we mean that there is
no classical truth about recursive set theory that cannot, in principle, be recaptured over

V{Kl).

First, we will treat the correspondence between classical structures and realizability
sets. We prove that there is a natural injection x (-► x from the classical ground model V
into V(Kl) such that, if A is a member of any of the structures in the column on the left
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below, then A is an object which, over V(Kl), satisfies the respective description in the
column on the right:

recursive equivalence types cardinal numbers in P(u)s' '

isols D-finite cardinals in P(w)s'
isolic integers integers generated from D-finites

In moving from left to right between the columns, the recursion-theoretic content of
each classical notion is absorbed into the logical or set-theoretic aspects of the notion to its
right. In the right column, the recursion theory is confined entirely to the interpretation
of logic and set theory over V(Kl). A recursive equivalence type, for example, becomes a

Cantorean cardinal number over the w-stable subsets of P(w).

From their very conception, the isols have been thought of as the rough analogues,
relative to recursive correspondences, of the Dedekind finite cardinals of choice-free clas¬
sical set theory. Interpretation over V(A7) not only makes that this conception perfectly
correct, but also uncovers the precise mathematical facts upon which the idea rests. Once
the recursion theory is "built into" the interpretations of the logical signs, isols reappear

as Dedekind finite cardinals simpliciter.

For each of the cited correspondences, we prove that there is an isomorphism theorem
with the consequence that the classical first-order theory of each of the structures on the
left of the diagram is virtually identical to the V(Al)-elementary theory of its correspondent
on the right. By 'virtually,' we mean that no real adjustment need be made to go from
the classical theory to its realizability correlate. Universal quantification is the only logical
operation not srictly invariant under the translation, and, if one is willing to adopt a specific
understanding of V, even this difficulty is obviated. This shows that, e.g., although the
usual first-order structure of the isols fails to be a cardinal algebra in the classical sense,
it is precisely the cardinal algebra of a salient subset of P(w) within constructive logic.

This translation yields a simple and effective routine for passing between the relevant
theories; under translation, a theorem in pure set theory over V(KI) comes to express a
classical truth about, e.g., the isols. At the same time, any of the numerous "impossibility
results of recursive set theory go effectively into strong independence results for cardinal
arithmetic in IZF (not to mention IZF+MP+ECT0+AC"'X+EUP).
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A short sampler of possible independence results will be canvassed at the end of this

chapter. There, structure theorems on the "size" of the collection of RETs and Dedekind-
finites will be employed, under translation, to give results on the cardinality and internal

workings of P(w) in 'V(Kl). The reader may think of this last section as an answer to a

natural question, "Now that we know about the straightforward correspondences between
the first-order theories of recursion-theoretic and of realizability structures, what can we do
for the theorems about these structures which are not first-order expressible over them?"
After perusing the last section, the reader will see that the answer must be "Provided that
certain uniformity conditions hold, useful versions of these theorems carry also carry over

into V(A7)."

As we mentioned in section 4 of Chapter Zero, intimations of the existence of the
correspondences and translations have surfaced occasionally in the history of the subject,
most notably in the review (1968) of Kreisel. The remarks of Kreisel, together with
suggestions from Dana Scott, encouraged us to attempt the theorems of this chapter; all
the results documented here were obtained in January 1982.
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Section 2: Fundamental correspondences

Rather than rushing into the proofs of the most general results that govern the pos¬

sible correspondences between recursive and realizability mathematics, we prefer to work
straight through the correspondence theorems for a specific case. The case we have in mind
concerns the relation between fi, the collection of recursive equivalence types (RETs), and
the cardinals of co-stable P(co) in ~V(Kl). The mathematical materials needed to treat the
other cases, the isols and the isolic integers, can be extracted directly from this one.

It is interesting to note that the main ideas of the isomorphism theorem are, in essence,

the hereditary descendants of two old ideas which have been somewhat neglected in recent
work on realizability. The first old idea appears as a brief aside in the original realizability
paper, Kleene (1945). Kleene noted that, as far as propositional logic is concerned, the logic
of his realizability structure (when treated classically on the outside) is just classical logic
itself. In fact, although this was not noted by Kleene, this property of classical realizability
extends to the V-free fragment of classical predicate logic. This idea is heavily exploited
in the proof of our isomorphism theorem. The second idea is that of Kleene absoluteness:
there is an effective invariance theorem for the recursive predicates under rcalizability.

Stability.

It is worthwhile taking a moment to recall the definition of recursive equivalence type
a la Dekker and Myhill:

2.1. Definition.

In V, two subsets A and fl of u represent the same RET iff there is a partial recursive
function p such that A C Dom(p), p is injective and p takes A onto B. When A and B
represent the same RET, we write 'A --- B' and, when p is responsible for the relation,
'p:A~B.' |

There is an injection zhi from P(w) in V into P(to) in V(Kl) such that A B in V
iff ~V(Kl) f= A Rs B, where the latter relation, sw, is cardinal-theoretic equivalence. First,
we specify the injection, which is our old friend from Chapter Three:
2.2. Definition. For ACw,I= {{n, n) : n £ A}. I

Since V(Kl) is so liberal in its admission standards, it is obvious that, for every A,
6 V(ifl). For purposes at hand, we also need the more specific information that A

satisfies, in V{Kl), the conditions "A C to" and "A is to-stable."
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A short sampler of possible independence results will be canvassed at the end of this

chapter. There, structure theorems on the "size" of the collection of RETs and Dedekind-
Unites will be employed, under translation, to give results on the cardinality and internal
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As we mentioned in section 4 of Chapter Zero, intimations of the existence of the
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most notably in the review (1968) of Kreisel. The remarks of Kreisel, together with
suggestions from Dana Scott, encouraged us to attempt the theorems of this chapter; all
the results documented here were obtained in January 1982.

174



Section 2: Fundamental correspondences

Rather than rushing into the proofs of the most general results that govern the pos¬

sible correspondences between recursive and realizability mathematics, we prefer to work
straight through the correspondence theorems for a specific case. The case we have in mind
concerns the relation between 11, the collection of recursive equivalence types (RETs), and
the cardinals of co-stable P(w) in Y[Kl). The mathematical materials needed to treat the
other cases, the isols and the isolic integers, can be extracted directly from this one.

It is interesting to note that the main ideas of the isomorphism theorem are, in essence,

the hereditary descendants of two old ideas which have been somewhat neglected in recent
work on realizability. The first old idea appears as a brief aside in the original realizability
paper, Kleene (1945). Kleene noted that, as far as propositional logic is concerned, the logic
of his realizability structure (when treated classically on the outside) is just classical logic
itself. In fact, although this was not noted by Kleene, this property of classical realizability
extends to the V-free fragment of classical predicate logic. This idea is heavily exploited
in the proof of our isomorphism theorem. The second idea is that of Kleene absoluteness:
there is an effective invariance theorem for the recursive predicates under realizability.

Stability.

It is worthwhile taking a moment to recall the definition of recursive equivalence type
a la Dekker and Myhill:

2.1. Definition.

In V, two subsets A and B of lj represent the same RET iff there is a partial recursive
function p such that A C Dom(p), p is injective and p takes A onto B. When A and B
represent the same RET, we write 'A B' and, when p is responsible for the relation,
'p : A ==: B.' |

There is an injection x t—► x from P(tu) in V into P(tu) in V(Kl) such that A ~ B in V
iff Y(Kl) )= A rs B, where the latter relation, is cardinal-theoretic equivalence. First,
we specify the injection, which is our old friend from Chapter Three:
2.2. Definition. For A C u, A = {(n, n) : n £ A}. I

Since V(Kl) is so liberal in its admission standards, it is obvious that, for every A,
•A 6 V(Kl). For purposes at hand, we also need the more specific information that A
satisfies, in V(Kl), the conditions "A C w" and "A is w-stable."

175

I



I

2.3. Lemma.

(1) V(K7) |=AC5 and

(2) ~V{Kl) |= A G P(w)st.
Proof. Actually, the proof we give will be of a stronger result. We show that a realiz-
ability witness for each of the above statements is strictly uniform over all A G P(w).

(1) e |j— a G A only if ej ff— a — eb and e0 G A. Hence, e [j— a £ A implies that e [J— a 6®
Therefore, Ax.x [)-■ A C w.

(2) Assume that eo [)— a G £3 and e\ J-naGA Then,

eoi d- o = edo and 3m .m |f-aG A.

From the latter it follows that there is a witness m such that mi |j— a = fnb and mo gA.
Now, by the absoluteness of equality on w, mo = eoo and eoo G A. Consequently, eo i~
a G A and Ax.iq will realize that A is stable, fl

The cardinality correspondence.

2.4. Note. As is our practice, we fix ab initio an i£w to serve as a witness for self-
identity over ~V(Kl). g

It is a tedious business to check that ~V(Kl) mediates the predicted relations between
RETs and cardinals, so we have divided the work of the following lemma up into a series
of parts.

2.5. Lemma. A ~ B in V iffV{Kl) |= A 5.
Proof. In Part (1), we will prove the implication from left to right, and, in Tart (2), we
deal with the converse. Each part has, in turn, three subparts, (a), (b) and (c).

(1) Given p : A ~ B, we embed p into V(A1) as

p = {{n, (n, m)) : p(n) ~ m A n G A}.

It is no more than routine to check that, over V(A1), p is a single-valued relation. It only
remains to check that p is injcctivc and takes A onto B.
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(a) First, we check that V(Kl) |= VigA 3y E B {(x,y) E p)- We take an e such that
e ||_ a g A. Then, e, |f- a = efi and e0 E A. By the definition of p, we know that

(eo,») H~ («o . pM) € P and <p(e0), i) H" p(«o) € B.

Therefore,

((p(eo)i »>. (eo> «'» (H 3y £ B ({e£, p) £ p).

(b) Next, we see that ~V(Kl) |= p : A 5—*■ B. Assume that

h If- (a. c> € p A (6, c) € p.

From the definition of p, we know that

hoi (a,c) = (hoo ,p(h0o)) while/in H~ (&> c) = (hio ,p(^io)> •

By the properties of pairing and by the absoluteness of equality on tJ, /loo = ^iio- Hence,
a witness for a = b is obtainable effectively from h and from the fixed witness i.

(c) Finally, we can see that p is realizably onto B, i.e., that

V(JCi) f= Vx 6 B By E A «y, x) E p).

But this proof is really the same as that of (a). One need only use the partial recursive
inverse to p in place of p to carry information across the implication.

(a), (b) and (c) together show that if p : A = B, then V(Kl) |— A B. Just for
the record, we note that the witnesses calculated here depend only on an index for p and
neither on A nor on B.

(2) This time, we begin with the assumption that V(Ff/) |= A B. This means that there
is a witness for

3fE{A=>B)f:A =—»fl.

It follows that there are numbers e and g such that

e |f- Vi E A 3y £ B (x,y) E f and
S H- Vx E B 3y E A (y, x) E /•
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Now, we shift attention to V and set

e = {(«, {e}((n, i))00) : {e} i ({n, i))} and
9 = {<". {?}((". i»oo) : {?} I ({«. *))}•

e and g are partial recursive and one would like to prove that they can be "glued
together" in the appropriate way to define a p (in V) such that p : A~ B.

(a) The clauses of the definition of realizability that govern the components of the
statements realized by e and by g show that e is defined on A and g on B.

(b) One sees easily that, if n E A, then g e(n) = n: For n E A, (n,i) [j— n E A, so

36 {e}((n, t)) (f- 6 G B A (n , 6) g /.

Consequently,

{e}((n,i))oi 'H— b = e (n) and V(Kl) 1= (n ,e(n)) G /.

Now, working the same line (but in reverse) on the second statement, we obtain

(e («)> i) H— «(") £ B , and V{Kl) (= {ge (n), e (n)) g /. •

Since V(Kl) (= / is injective, n = ge(n).

(c) By parity of reasoning, for n E B, we have that eg(n) — n. Now, we know that!
is injective on (at least) all of A. Therefore,

e T {n : ge(n) ~ n}

is our candidate for p; it is a partial recursive function, it is injective and it takes A onto
B.

This completes the proof of part (2), and, together with part (1), it provides a proof
of the lemma. |

Operations on fl.

Now that we have in hand an exact correspondence between the atomic statements
over n and those over P(w)s^ in ~V(Kl), we proceed just as if we were to use the injection
x i-r i to prove that a classical isomorphism holds between the algebraic structure of
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the RETs and the cardinal algebra on P(u/)3'. The lemma above gives the basis of the
isomorphism; it shows that the injection preserves the relevant equality relations "on the
nose." The lemma to follow shows that the recursion-theoretic operations of + and X

on Q are mirrored precisely by the set-theoretically defined operations of the cardinal
arithmetic. Prerequisite to this is a reprise of the definitions of + and X on fi.

2.6. Definition. For A, B E fi,

(1) A + B = {(0, n) : n £ A} U{(1, m) : m E B}.

(2) A X B = {{n, m) : n E AAm E B}.

Here, { ,) represents primitive recursive number-theoretic pairing, g

Just as in standard model-theoretic isomorphism theorems, one proves that both +
and X commute with the injection x. As you would expect, the '+' and 'X' on the left of
the equalities in the lemma statement below are the natural operations of cardinal addition
and of multiplication as defined set-theoretically over P(u>)3*.
2.7. Lemma.

(1) Y(Kl) f= A+ 5 = T+B.

(2) V{Kl)t=A.XB = TxB.
Proof. Ad (1). First, we prove that ~V(Kl) satisfies

A + B = {(0 ,x) : x E A} U{(0,y) : y E B} C A + B.

We will rely heavily on the absoluteness of the recursive relations. On the one hand,
if n (j— a E A + B, then

either no = 0 and ni )j— 3y E A (a = (0, y))
or no 0 and n\ [j— 3y E B [a = (0, y)).

In the first case, one can calculate, effectively from n, numbers m and p such that

m|j— a = (0,p),

where p E A. By the absoluteness of primitive recursive pairing,

V(Kl) 1= (0,p) = (0,p),
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with witness calculable from p. Therefore, there is no loss of generality in claiming thai

m [|— a = (0, p), and {{0, p), i) (j— (0, p) £ A + B.

Of course, we would come to the same conclusion in the case no 0. It follows that

V{Kl)\=A + B C A+B.

On the other hand, if n [|— a 6 A + B, then

nj (I— a = (n0o, «oi),

where either n0o — 0 and ngi G A, or noo = 1 and noi G B. By the absoluteness of tin
recursive relations, there is a p, calculable from n, such that

P (noo>«oi) = ("oo

Hence, either

noo = 0 and (n0i, i) [)— noT G A or

n00 = 1 and (n0i, i) |f- 5toT G B .

Consequently, there is a partial recursive 0 such that 0(n) realizes

(36 a = (0,6) A 6 G A) V(36 a = (1,6) A 6 G -B).

Hence,

A + B C A + B

holds in V(/C) and we are done.

The proof of (2) is virtually identical to that of (1) and is omitted. |

The order on H.

There is no reason to exclude from consideration the canonical partial order on the
RETs, since it comes out so naturally over V(Kl). Strong recursion-theoretic inclusion on
the RETs coincides, over *V[Kl), with the traditional intuitionistic notion of "decidahle
subset."
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2.8. Definitipn. For B, C £ P(ui), C C B is partial recursive on B iff there is a partial
recursive / such that Dom(/)D B, Ran(/)C {0,1} and Vi £ (i g C iff f(x) = 0). In
this situation, we say that / decides C on. B. |

2.9. Definition. For A, B 6 Q, A < B iff there is a subset C of B, C partial recursive
on B, such that A~C. |

The set-theoretic construct that fits into the analogy with partial recursivity for sub¬
sets is that of decidability (Brouwer's "removability") for subsets. See section 4 of Chapter
One. The availability in intuitionistic mathematics of the latter notion motivates our (per¬
haps remarkable) interest in the notion < for RETs.

2.10. Definition. When AwC and C is a decidable subset of B, we will write A ^ 13.
I

2.11. Lemma. A<B in V iffV(Kl) \=A<B.
Proof. Once again, we have divided the proof up into two parts, one for each half of
the 'if and only if.' We will consider the first part now and return to the second,following
an interlude on quantification.

(1) If A < B in V, there is a C 6 P(u>) such that A ~ C and C is partial recursive on
B. From the previous lemmas, we know that *V[Kt) |= A « C. It suffices to show that
V(jfl) |= C is a decidable subset of B. Let e index a partial recursive function deciding
O on B. For n £ B, either {e}(n) = 0 and n 6 C or {e}(n) = 1 and njfC. We look to
construct from e a witness for

Vz £ B (z 6 C V x g C)

Let n (|— a 6 B. Then, ni [j— a — no with no £ B. It is a consequence of this that,

either {e}(no) = 0 and (no, i) |f- no € C
or {e}(n0) ^ 0 and 0 [)— -ino 6 C

Therefore, there is a partial recursive 0 such that n |J— 0 £ B imples that 0(n) ( and
either

{e}(n0) = 0 and 0(n) |(— a £ C
or {e}(no) =»A 0 and 0(n) ()— a (. C.
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That is,

~V(Kl) |= C is a decidablc subset of B.

This concludes the Grst half of the theorem. J

The second half of the theorem is marginally more difficult, because of the need to

attend to'quantification over P(w) in ~V(Kl). We will break off the main line of proof to
present some lemmas on quantification before returning to the proof proper. This is hardly
wasted effort; the lemmas we prove here are essential to discerning the relation between
quantification in fi and quantification over P(w)s^.
2.12. Lemma. If~V(Kl) (= A £ P(w)sthen there is a B £ V such that V(Kl) \=A =

B.

Proof. Assuming that ~V{Kl) |= A £ P(w)5^, we have, by definition, that

V(/C) 1—A C S7 A Vx £ w (-1 -> x 6A-+i£ -4).

In particular, assume that g [|~ Vx £m(-'-ij:£4-u£/1). Consider

A = {n : V{Kl) (=h£ A}.

Our claim is that V(/fl) [= A — A. (This means that, if V(/S7) sees that the membership
condition on A is ai-stable, then A is equal in V(K7) to the re-embedding of the set of its
"realizability members.") To see that this is so, let ei K~ §0 6 A. Immediately, (eo,i) I-
eb € A- Hence, regardless of the stability of A, V(/fl) )= A C A. Conversely, if e (|— a
then

ei [|— a = eb and V(I<7) |= eb E A.

Then, (e0, i) (f— eb £ w, while

0 D— ->->eb 6 A, and {g}(((e0, i), 0)) [f-eb£ A.

Therefore,

V(Kl) )= 2 C A.

I
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To some extent, this lemma explains our fascination with the stable subsets in P(w).
A less self-interested explanation for the fascination appears in Section 3 of this Chapter.

2.13. Lemma. IZF 1— (If C E P(w) o.nd B E P(u/)s* and C is a decidable subset of B,
then C £ P(w)si).
Proof. We work in IZF. Let n £ u and assume that ->pn £ C. Since C C B, £ B.
B £ P(u>)3^ so n £ B. C is decidable on B and ->~>n £ C, so n £ C. |

2.14. Corollary. IfV(Kl) j= (C £ P(u)aC is a decidable subset of B), thenY[Kl) |=
(C is a decidable subset of B).
Proof. This follows directly from the above and from the soundness theorem for IZF
with respect to readability. |

We return now to the proof of Lemma 2.11. Assume that Y[Kl) \= A ^ B. Then,

aC £V(ffl) .V(/fl) 1= C £ P(w)3i AA « C A C is a decidable subset of B.

From the corollary, we have that, for some C in P(w),

V(Kl) |=A«sCACisa decidable subset of B.

From the previous lemmas, A. — C in V, and it's obvious that C C B. It remains only to
show that C is partial recursive on B. If V(Ifl) |= C is a decidable subset of B, then, for
some e,

e If-Vz £B(i£CVx0C).

Then, if n £ B, (n, i) (f- n £ B, so

either {e}((n,i))0 = 0 and {e}((ri, z))i [)—n S C
or {e}((n, i))0 ^ 0 and {e}((n, i))i |\-n<£C.

Clearly, if n £ C, then V(is7) n £ C. Therefore, {e}«n,i»0 decides C on B. g
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Section 3: The Isomorphism Theorem

The next (and final) stage in our plan is to exploit Kleene's remarks on the logic of
classical realizability to prove that 12 in V and the cardinal structure on P(w)s* in V(ffl)
are isomorphic "up to stability."

Let Ln be a first-order language one of whose realizations is the algebraic structure

on the RETs:

£2 = (fl, +, X,<, ~,0, w,A)aen-

We assume that Ln contains a distinct constant A for each A G f2. For each <j> GFormj^,
we define its translation fr into the language of ZF as follows, beginning with the terms of
Ln-

3.1. Definition.

(1) 0(r = 0, u,r = 57, Atr = A.

(2) For r, o-eTermLn, (r + a)'" = rtr + atr, (r X a)tr = rtr X atr■
i

Again, the + and X on the right sides of the equations in part (2) stand for the
set-theoretically defined terms, e.g.,

Ttr + o" = {<0 , x) : X e r'-} U{(T, x) : x G vtr}.

Next, tr extends almost homophonically to all <j> from Ln:

3.2. Definition.

(1) (r < <r)tr = Ttr < <xtT

(2) (r ~ cr)ir = rtr sa <jtT

(3) tr commutes with A,.V, _l, and —

(4) (3x </>)tr = E P(w)3t <j>tT

(5) (Vx </>)"■ = Vx G P(w)s< - <i>tr
3.3. Note. In the clauses defining tr on the quantifiers, we take it as given that there is
a correspondence of variables that prohibits clashes or redundancies in translation, fl
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3.4. Theorem. For <j> £Sent^n, we have Q }= 0 |= <j>tr.
Proof. The proof proceeds in seven stages, one for each clause in the structural induction
on <f>.

(1) The preceding lemmas of this chapter give the proof for the base or "atomic" clause of
the inductive argument.

(2) n f= [ij> A ip) iff H p= <p and fl |= ip

V{Kl] j= <ftr and V{Kl) (= iptr iff

"V"(JiCf) \= {<t> A i>)tr ■

(3) Q (= (0V0) iff either Q (= <j> or £2 |= ip. If the former, then 3e . e |j— <ptr and
(0, e) 0— (<p\/ ip)tT. If the latter, (l,e) [= (<p\J ip)tr ■ The converse is trivial.

(4) That fi (= -i <p iff ~V(Kl) (= <p)tr is trivial.

(5) S j= <j> —► ip iff, either it is not the case that Q f= <f>, or Q |= ip. If the former, then
Xx.O [f— (<j> —► ip)tr. If the latter, then, for some m, m ()— iptT, so Xz.m ff— (<p —»ip)tT■

On the other hand, assume that V(ATI) j= (ij>tr —► iptr) and that fi )= p. Then,
V(Kl) f= tfr, so V(KI) |= V'r- Hence, fi f= ij>.

(6) If fi |= 3x lj>t then 3AGP(w) Q )= 4>[x/A\. The latter implies that V(ffl) |= <t>[x/A]'r.
From this it follows that

V{KI) |= A 6 P(w)ai A <j>tT[x/A] and V(Kl) (= (3s <P)tr.

Conversely, that ~V{Kl) (= 3s 6 P(w)3t ptT implies that 3A£ P(w) such thatV(ffi)
PtT\xjA], Therefore,

V(Ffl) |= <p[x/A\tr and fi (= 3s <j>.

(7) If Q |= Vm <p, then, for all A 6 P(w), Q }= P[x/A\. Now, assume that e |f- B 6
Then, V(Kl) (= B = B and fi j= <P[x/B). Hence, V(Kl) f= <Ptr[x/B], and, by

the soundness of equality, V(KI) [= <j>tr[x/B\. Therefore, 0 |{- -i-xptT[x/B\ and As.O (f-
(Vz0)".
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In the opposite direction, assume that V(K7) |= ViGP(u)'1' "~l <t>tr and that A £

P(w) in V. Then, ~V[Kl) f= <j>ir\x/ A\. Therefore, Q (= <j>[x/A\. Since A was arbitrary,
0 f= Vx <j>. |

Clause (5) of the definition of tr explains why we say that the relation between fi
and P(w)5' in ~V[Kl) is one of isomorphism up to stability. Universal quantification is
not preserved precisely; instead, a double negation is inserted to break down the strong

realizability condition on relativized quantification. An example will be given later to prove

that the -* -i cannot be eliminated.

However, if one is careful in defining the classical quantifiers, then the intrusive
can be removed and we can say, without qualification, that the classical theory of RETs
is precisely the realizability theory of w-stable cardinals. One can simply insist that the
classical universal quantifer Vx over Q be defined as ->3x Then, we may take fr
to be homophonic on Vz , for -> 3x -i is equivalent intuitionistically to Vz -i -> and the
"stabilization" of Vz is given automatically via its classical definition.
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Section 4: The Preservation Theorems

There is no great difficulty in characterizing the class of Lfj-formulae which are pre¬

served in the passage from \{Kl) to fi without alteration of the "logic."

4.1. Definition. The translation pr is defined just as tr, Definition 3.2, except that

(Vz </>)*"■ = vz6P(u)s'r

4.2. Definition. Let T be the class of formulae of Formj^ such that </> £ T iff there is
in (j> no occurrence of Vx in the scope of -> or in the antecedent of —►. |

4.3. Note. F should be compared with the class Fo as defined in Troelstra (1971). B

4.4. Theorem. If <j> £5 TOSentj^, and ~V[Kl) |= (j>pr, then Q f= <j>.
Proof. It is clear from the isomorphism theorem that, on the Vx -free fragment of Lq,
pr agrees with tr and that f2 [= if and only if V(Kl) (== (j>pr. The theorem follows
immediately by induction on T. j

The Theory of RETs.

One knows precisely which algebraic properties of the stable cardinals in P(w) in
V(Kl) transfer directly, without the intermediary -i-", into properties of the RETs. The
point of all the earlier work on pure cardinal arithmetic should now be clear. First, since
P(w)3* is obviously closed under cardinal addition, the propositions-3.6 (and following) of
Chapter One show that all the fundamental properties of the RETs can be obtained from
constructively acceptable axioms via the preservation theorem, and, hence, without the
intervention of explicit recursion theory.

4.5. Proposition. f2 is a partially-ordered commutative semigroup with respect to +,
< and

Proof. The assertion that P(cj)s* is a partially-ordered commutative semigroup is in T
^d the proof that P(cj)s^ has this property can be carried out in IZF. See the relevant
sections of Chapter One. |
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4.6. Proposition. Q has refp.

Proof. One readily checks that the proof of Proposition 3.10 can be carried out over

P(w)st. |

4.7. Proposition. f2 is a partially-ordered commutative semigroup with respect to X,

|, and ss.

Proof. We proved, in Proposition 3.12 of Chapter One, that P(w) (and, hence, P(w)s')
is, under X and |, almost a partially-ordered commutative semigroup. Then, since all
these assertions naturally lie in T, O has these properties. Since 12 is classical, it is not

almost, but truly a partially-ordered semigroup. |

The separation of recursion theory from set theory is seen to be highly successful.
In proving all the basic properties of the RETs, no recursion-theoretic techniques more

sophisticated than those required to define ~V(Kl), to verify the soundness theorem, and to
set up the isomorphism are required. Now, the recursive mathematician can work in pure
constructive set theory, undistracted by recursion, and leave the rest to realizability.

Adding the natural numbers.

We remark that there is no obstacle to extending the isomorphism to include any of
the conventional predicates defined over C. For instance, the theorem can incorporate the
apposite 'is a natural number' notion:

4.8. Definition. For A £ 12, A is a natural number (N(A)) iff 3n£u Ac;n. I

For its correlate in ~V(Kl), we adopt the definition of 'finite number' discussed in
Chapter One; cf. Definition 3.1. To extend the isomorphism theorem, it suffices to prove
that the atomic formulae of the extended language are preserved.

4.9. Proposition. For A£fl, Q (=N(A) iff~V(Kl) \= A is a finite number.
Proof. Immediate from the lemma 2.5 and from the absoluteness of w. |

It follows that we can extend the isomorphism and preservation theorems to the struc¬
ture nN, which is f2 augmented by the natural numbers:

4.10. Corollary. If = (fi, X, <,W, ~, 0, w) and <j> is a sentence of a suitaik
language, then f2^ |= <j> iffV(Kl) |= <j>tr. tr is defined in accord Definitions 3.1 and S.&
Proof. 1
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Section 5: On a Mathematical Property of Stable Sets

This section represents a useful digression from the main argument of the chapter.
Here we want to show that there are good mathematical reasons (independent of interest
in the isomorphism theorem) to prefer a cardinal arithmetic on the stable subsets of u. For
one thing, unlike some of their recalcitrant brethern in ~V(Kl), the stable subsets always
have "enough functions" defined on them. The sufficiency of functions is guaranteed by
the fact that the stable subsets of a> satisfy the relevant axioms of choice.

5.1. Proposition.

V(Kt) |= A € P(w)st - (Vx 6 A By £X <j> -* 3P £ {A =>X) Vz € A <t>[y/F{x)])

Proof. Assume that e |j—ViSi5^i£i-nE A), that

g ff-Vi (x S A -+ 3y S B <j>{x, y))

and that h ft—A C 67.

There is a partial recursive 0 such that, if there is an m such that m [)— n £ A, then
0(n) J. and

36 (ff}(0(n)) H— 6 gflA <t>{n, 6).

We consider the set {n : ~V(Kl) |=SgA} and use the axiom of choice in the metatheory
to guarantee the existence of a choice function F defined on this set and such that

V(ifi) |= n £ A only if fg}(0(n)) ()— F(n) £ B A <t>[n, F(n)).

Now, we inject F into V{Kl) as F:

F — {<{?}(©(«)). . F(n))) ■ V[Kl) \=n£A).

It is easily seen that F is single-valued: let n (- (a,i) £ F and m |j— (a,c) 6 F. By
definition,

"i H-(a,6) = (p, F(p)) while mi |j- (a, c) = (q, F(q)).
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Absoluteness for the basic relations on ui gives p — q, and, hence, F(p) = F[q). It only
remains to check that, with a witness calculable in e, g and h,

V(Kl) |= Vx g A By «x, y) <E F A y)).

Assume that n |j— a £ A. Then, {/i}(n) [)— a £ to, in other words, {/i}(n)i ||— a = {h}(n)c
Hence, V(/C/) f= {h}(n)0 £ A. Consequently,

({?}(©(W(«)o)), i) H- {{M(n)o , F({h}(n)0) € ~F and

{g}(0({h}(n)o))l H-«T(WW)).

The result now follows by the substitutivity of equality. |

In our case, having "enough functions" means that each u-stable set A is a retract of
its internal realizability set:

{(n, (n, a»:n(-a£ A}.

The fact used in the proof, that \'{Kl) |=f A = A, is a direct expression of the "enougi.
functions" property. Our proofs in earlier sections would have been impossible without
this. We might say, then, that "reducing" the theory of RETs to that of pure cardinal!
in V(Kl) not only depends on the realizability interpretation of the logical signs, but
on selecting the right concept of set—that of internal realizability set—from out of til
amazing variety of intuitionistic sets.
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Section 5: On a Mathematical Property of Stable Sets

This section represents a useful digression from the main argument of the chapter.
Here we want to show that there are good mathematical reasons (independent of interest
in the isomorphism theorem) to prefer a cardinal arithmetic on the stable subsets of co. For
one thing, unlike some of their recalcitrant brethern in *V(Kl), the stable subsets always
have "enough functions" defined on them. The sufficiency of functions is guaranteed by
the fact that the stable subsets of to satisfy the relevant axioms of choice.

5.1. Proposition.

V(Kl) f= A £ P(ca)st —»(Vz £ A. 3y £X tf> —> 3F E(A=>X) Vx EA <t>[y/F(x)})

! Proof. Assume that e [)—VzEwf-nigi-nG A), that

g D~ Vz (x E A —► 3y E B 4>{x, y))

and that h [j— A C w.

There is a partial recursive 0 such that, if there is an m such that m ||— n E A, then
O(n)I and

36 {<?}(0(n)) 6 £ 13 A <A(«. *>)•

We consider the set (rt ; V(Kl) ) n A} and use the axiom of choice in the metatheory
to guarantee the existence of a choice function F defined on this set and such that

V(lfl) |= n E A only if {?}(©(")) f— F[n) E B A <t>{n, ^(w))-

Now, we inject F into V[Kl) as F:

F = {{{s}(©(«)).{n,F(n))) ; V(lff) |= n £ A}.

It is easily seen that F is single-valued: let n |f— (a, b) E F and m ||— (a,c) £ F. By
definition,

ni |f-(a, 6) = (p,F(p)) while mi H— (a> c) = (QiHi))-
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Absoluteness for the basic relations on u> gives p = q, and, hence, F(p) = F(q). It only
remains to check that, with a witness calculable in e, g and h,

V{Kl) f= Vi G A 3y ((x, y) € F A <t>(:r, y))•

Assume that 71 |f- a G A. Then, {h}(n) ||— a G u5, in other words, {h}(n)i (f— a = {h}(n)o-
Hence, V(A7) |= {/i}(n)0 6 A. Consequently,

({ff}(©(W(™)o)),») H~ <{M(«)o i -FXMMo) € F and

{g}(e{{h}(n)0))i H-«,F({W).

The result now follows by the substitutivity of equality. |

In our case, having "enough functions" means that each u-stable set A is a retract of
its internal realizability set:

{(", («, a)) : n |(- a G A}.

The fact used in the proof, that V(/C) (= A = A, is a direct expression of the "enough
functions" property. Our proofs in earlier sections would have been impossible without
this. We might say, then, that "reducing" the theory of RETs to that of pure cardinals
in V(Af) not only depends on the realizability interpretation of the logical signs, but
on selecting the right concept of set—that of internal realizability set—from out of the
amazing variety of intuitionistic sets.
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Section 6: Isols and Dedekind-finite cardinals

The isols were originally conceived as the analogues (in choice-free recursive mathe¬

matics) of the Dedekind-finite cardinals in choice-frec set theory. Accordingly, a subset of
P(u>) in V is an isol if and only if it contains no infinite re subset.

6.1. Definition. A £ fi is an isol iff ->3/ (/ : ui >-.—-> A/\f is recursive). Speaking
classically, if A is not an isol, we say that A is recursively infinite. The collection of isols
is denoted 'A'. |

6.2. Definition. Let A = (A, +, X,N, <, c^,A)asa be the algebraic structure on the
isols, with relations and operations defined as for f2. |

It should come as no surprise that the notion of isol, when put over V(/C), comes to
correspond with Dedekind's original notion of 'finite set'. The latter is the concept we called
'Definite' in Section 4 of Chapter One. Since all the results of Section 4 of Chapter One
are constructively correct, they hold over V(K7) and a subset of P(w) is finite in Dedekind's
sense if and only if it is not infinite and if and only if it has the cancellation property.
Moreover, the Dedekind-finites are closed under the cardinal operations of -I- and X, so

that, if P(ui)1^ is the collection of stable Dedekind-finites of P(ui), then (P(w)^,+, X, ~)
is a cardinal algebra. This is, up to stability, the algebra A of isols.

6.3. Lemma. A £ fl is an isol iff V(Kl) |= A is D-finite.

Proof. What we prove is this statement: A £ CI is recursively infinite iff V(A7) j= A is
infinite.

First, assume that / : u >—a- A, f recursive. Then, as in Lemma 2.5, V(Kl) f= / :
w 5—» A.

On the other hand, assume that ~V[Kl) f= / : U >—a- A. Inter alia, there is an e £ u
such that

e U~ Vi (x G w —i■ 3y (y £AA(x,y) 6 /))

We consider the function

L = {(«» {e}((n, i))oo) : n £ w}.
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in IZF, the conventional construction of the ring of pairs over the D-finites and check that
the construction gives precisely P(w) . |

7.4. Theorem. IZF+MP I- P(w)c' is isomorphic to the semiring ($,+, X, ~) in
B{w)d*, where <J> = {{C, D) £ P(wj^Tiyl £ P(<o)d (C, D) = (A, 0)}.
Proof. Once again, we work the analogy between the natural numbers and the integers.
For A 6 P(w)^, one sets F(A) = {A, 0) and shows that F is injective and a homomorphism
of + and X. J,

7.5. Theorem. For the appropriate languages and translation tr, A*_ is isomorphic up

to stability with P(cu)^ in ~V(Kl).
i Proof. We need only check that

(A, B) £ A* iff V{Kl) (= (A,B) £ P(w)d*
and for A, B £ A,

V(Kl) |= (.A,B) + (C,D) = (A,B) + (C,D)
while

V(Kl) h (A, B) X (C,D) = (A,B) X (C ,D)

I

With pr defined as above, we have the appropriate preservation properties:

7.6. Corollary. For sentences of the class T (of the appropriate languages), A* |= ^ '/
V(/fl) f=
Proof. |

Thanks to a clever construction on the infinite retraceable sets (cf. Dekker and Myhill
(1960), pp. 148-152), it is demonstrable that fails to be an integral domain. Therefore,

A*. 1= BX BY (X X Y = OAX^OAT ^ 0).

By the preceeding theorem,

V(K7) |= BX BY 6PH^V X T = 0AX ^ OAT ^ 0).

Consequently, the following independence result is trivial:

7.7. Corollary. IZF+MP does not derive "P(io)^ is an integral domain".
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Section 8: Consequences of Isomorphism: Some Independence Results

Let Tbe the theory of V(A7). CSB is the strong classical Cantor-Schroedcr-
Bernstein theorem:

(x«rA7«x)-x«r.

Here, represents the weak inclusion relation of Cantor's cardinal arithmetic:

X < Y if and only if 3/ f :X >—> Y.

As indicated in Chapter Zero, we can easily prove the following

8.1. Theorem. Tm does not derive CSB.
Proof. In fact, we prove a stronger result:

V(Kl) f= 3X 3Y g P(w)3'(y is a decidable subset of uAX <g.Y AY XAlX Y).

The idea is to exploit the isomorphism theorem (and its proof) to embed the Dekker-Myhill
counterexample to strong CSB into ~V[Kl). To get the counterexample, let A = u> — K,
where K encodes the halting problem. Set B = w. Since A is productive, B A. Since
B is w, A -C B. However, A is not r.e., so it is not the case that Ac^. B.

Now, we apply the isomorphism theorem, noting that the proof of that theorem shows
that for C, D g 0, C < D iff V(Kl) \=C<D. |

8.2. Note. Feferman has, using a readability technique, obtained a similar result for his
theory To. Cf. Feferman (1975). |

The correspondence between the structures of recursive set theory and of cardinal
algebras in ~V(Kl) gives easy access to methods for transforming the failures of the classical
results in recursive cardinal arithmetic into independence results from Tjfj.
8.3. Theorem. In V(Kl), <C is not well-founded, even over P(u)^. There is, in fact,
an infinitely-descending u-sequence in P(u/)^.
Proof. According to Dekker and Myhill (1960), there is an w-sequence F = (Xn)„ew in
A such that

Vne«Xn+i <X„.
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(< is the strict inclusion correlative to <.) The classical proof of this result shows that
the partial recursive functions in virtue of which Xn+| < X„ can be chosen uniformly in
n. In fact, an index j of the identity on to can be used for all n.

We can put F into V(/<7) as the co-sequence F of stable, D-finite sets:

F = {(". (n, X„}) : n g co}

and then show that the range of F has, in V(K7), no minimal element.

Because of the cited uniformity, ~V(Kl) satisfies

F : to —» P(to)^A Vngtu F (n + 1) <C F (n).

The proof that the first conjunct is realized is trivial. To see that the second obtains, let
e (j— a £ Eo. Then, ei []— a = eo and

(eo,») H- (§o , Xeo} g F and

(eo + 1> i) H- (eo + 11 Xeo + i) g F .

As the proof of the isomorphism theorem shows, there is a partial recursive 0 such that

e(j)W-xZ7i<xT0-

The latter holds independently of eo-

Finally, a simple application of the preservation theorem proves that 0 j[— -'Xt0+i
i

8.4. Theorem. In ~V(Ki), there is an infinite ascending chain from P(co)1^ which
has, in P(io)^, no least upper bound with respect to -<.

Proof. Dekker and Myhill proved that there is, externally, a sequence F — (Xn)„eu
from A such that, for all n, Xn < Xn+1 but such that Rng(F) has no lub in A. Again, we
can assume that it is the identity that guarantees Xn < Xn+i, uniformly in n.

As before, we embed F into V(Kl), and then check that

V(/<7) \=F-.ui —* P(w)dAVngw(F(n) -<F(n + l)).
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To show that there is no lub for F, we assume that, in V(iv/),

U eP(w)dAVnew F(n) < U AVA£ P(u)d (Vn 6 w F (n) <A->U ■< A).

From the Dekker-Myhill proof one can see that, in V, Xn+i = Xn + 1. Now, if we
work in IZF and take F (n) arbitrary, then F (71 + 1) U. Let / be the constructive
function in virtue of which this is true and take U~ = U — {/((1,0))}. By cancellation,
F(n) ^ U- and this holds for arbitrary n. Therefore, Vn F(n} ^ U~. But U~ -< U,
since U is D-finite. |

8.5. Theorem. In ~V(Kl), there are infinitely-descending <C-chains from P(oj)d that
lack greatest lower bounds both in P(w)d and in P(u>).
Proof. Externally, if Xo is an infinite isol, then the sequence F of Lemma 6.3 has a

range in A which has a gib neither in A nor in fi. We proceed as before and consider F.
V(Kl) |= (F enumerates an infinitely descending w-sequence from P(w)^.) Since P(w)d is
downward-closed under A, it would be sufficient to prove that the range of F has no gib
in P(u)d.

Without loss of generality, we can assume that F[n + l) ~ F{n) — 1. Let L be a
lower bound for the F(r»)'s in P(iv)''. Then, for any n, L ^ F(n) — 1, so L+ 1 ^ F(n).
Therefore, L + 1 is also a lower bound for Rng(F), but L -i. L + 1. g

8.6. Theorem. ^ is not a total ordering, even in P(w)^. In fact, there is a collection A
from V{u)d such that the members of A are mutually incomparable and A is in one-to-one
correspondence with P(w)s'.
Proof. Dekker and Myhill have proved that there is a collection A C A such that A has
IPWI-many members and the members of A are mutually incomparable. (Cf. p. 103 of
Recursive equivalence types.)

We embed A into ~V{Kl) as

A = {(0,A) : AG A}.

It is easily seen that V(Kl) f= A C P(w)rf. To see that the members of A are pairwise
incomparable in V(Jfl), one first assumes that

e f— A £ A and g [j— B G A .
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Then, for some C, D £ A,

ei |\- A — C and <?i |j— 0 = D .

Since, C and D are incomparable in V, the preservation theorem shows that

<0,0) 0--C ■< ba-5 < c.

Therefore,

v(Ki) |= vx.re a --x ■< ya-^y < x.

As for the cardinality of A, let F : P(ui) >—» A in V. Embed F as F, where F is

{(O,(A,0»: 0 = 0(A)>.

The goal is to show that, in ~V(Kl), F : P(w)®' >—»> A.

To see that F is single-valued in its second component, we assume that

e H- (xTF) £ F and g ff- JxTz) g F .

Then, for appropriately chosen A, B, C, D in P(w),

e, Vr(X7n = (A,B) and gi H~{X7Z) = (C,D).

It follows that V(Kl) 0— A = C and that A = C in V. Therefore, B — D and i |f— B =
D.

Next, we check that ~V[Kl) |= Dom(Ir) D P(w)3'. This is a direct consequence of a
fact we unearthed much earlier—that there is a partial recursive 0 such that, if e [j-A6
PH8t, then ©(e) J. and 0(e) [f- A = A. We leave a complete verification to the reader.

Finally, we want to be assured that V(Kl) j= Ran(A) DA. To that end, we note
that e H~ C G A only if ej |j— C = B, for some 0 £ A. Then, when F(A) = 0, (0,i) If"
{A,B) £ F. Since there is a j £ w such that j ||— A £ P(w)s' uniformly in A, we are
finished. |

8.7. Definition. B £ O is an immediate successor of A iff A < 0 and for no C 6 fi h i'
the case that A < C < 0. Immediate successor is defined analogously for P(w)sf I
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8.8. Theorem. There are X £ P(ui)st and A C P(w)3i in V(A7) such that A is a

collection of immediate successors of X and is in one-to-one correspondence with P(ui)3'.
Proof. Every nonisolic RET in V has precisely |P(w)| immediate successors. Let X be

any of these RETs. By Kbnig's Lemma, there is a set A of immediate successors of X
such that A is in one-to-one correspondence with P(w) and there is an e £ w such that for
all Y £ A, X < Y holds in virtue of the partial recursive function {e}. We insert A into

Y[Kl) as

A = {{e, A) : A £ A}.

Now, 'V(Kl) |= X £ P(ai)st. If g [J— B £ A, then g\ (f— B = A, where A £ A and go = e-
From the proof of the isomorphism theorem, we know that there is a fixed partial recursive
function E such that

%o)H—X ^A.

Therefore, V(ffl) j=

vreA x -< Fa-3Z6PH x <z<y .

The last clause is realized uniformly, since

0 ff--32£P(w) X <Z -<Y.

The remainder of the theorem, that A is, internally, of the same cardinality as P(w)3' is
'proved precisely as in Theorem 8.6. g

The previous theorem shows that, in terms of cardinality, P(u>)3' in V(Kl) is exceed¬
ingly "wide:" a sizeable collection of members of P(u>)3^ each have at least P(w) -many
cardinals serving as immediate successors. Another result of the classical theory of RETs
(also due to Dekker and Myhill) can be employed to show that P(ia)3^ is extremely tall.
One can show that there is a "version" of RUl in P(w)3^, indeed, even in P(w) • The proof
works by internalizing the classical fact, proved by Dekker and Myhill, that

3F : u>i j—> f! A Va £/? £ uii F(a) < E(/3).
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First, we prove that (Oi can be embedded into V(/<7) as an toi-analogue. For each
a < U|, set a equal to

{(0j):/3 6a}.

8.9. Lemma. V(KI) j= a = p iff a — p.

Proof. Assume that V(A7) [= 5 = /? and that 7 £ a. Then, ~V(Kl) |=7G5A7G/h
It follows that there is a <5 G /? such that ~V[Kl) |= i = 7. By induction, 7 £ p. |

Here is a cardinality concept that bears an obvious relation to traditional recursion
theory. Grayson used this notion, in the context of pure constructive set theory, in his
dissertation (1978).

8.10. Definition. A set X is to-productive iff V/ £(u=tX) 3i£X x Rng(/). I

8.11. Lemma. X(Kl) [= 577 is a nonsubcov.nta.ble, 10-productive, regular cardinal.

Proof. (1) By its very definition, 575" is a uniformity set. If e [j— a G uff, then ei [f— a = f),
while (0, i) 1|— /? G 575*. Therefore, 577 is not subcountable.

(2) To see thatuq is to-productive, assume that e. }-{— / G (io=tioi). Then, with g computable
from e, g realizes

Vi 6 57 3y G 577 (a:, j/) G /.

It follows that there is a partial recursive 0 such that, for each n G to, there is an a6"l
for which

©(<=,") H-(n.a) 6 /•

By countable choice in the metatheory, there is a function F : to —► to 1 such that, for all n,

9{e,n) ff-(n,F(n)) G /•

Let P be the least element of toj ~ Rng(F) and let g |j— (n, F(n)) G f ■ Then, (0, i) |
F(n) G P- Assume that V(Kl) |= (m, p) G /, for some m G to. Then, V(F') H
(m,F(m)) G /. Since / is realizably a function, and since, by the previous theorem,

200



the equality oil the ordinals is absolute, F{m) = 0. This contradicts the choice of 0.
Therefore, to is internally w-productive and V{Kl) |= no function on w is cofinal in wf.

(3) Assume that V(Kl) |= / € (a =t rlTf), where a £ uq. Then, for some e £ u,

e H" Vx g a 3y S S77 (x, y) 6 /.

It follows that there is a partial recursive © such that for all 0 6 a, there is a 7 E uq such
that

e(e)|htf.Def-

Now, it's only a matter of repeating the argument of (2) to prove that / is not cofinal in
wT. a

Next, we look to embed the F of the original Dekker-Myhill theorem into V(A7) as
F. A cardinality argument over uj 1 shows that we may assume there to be a single ego
such that for all a E 0 E uq, {e} : F(a) < F(0). Set F = {(0, (a,F(a))) : a E Wi}-
8.12. Lemma. V(A7) [= F : STf >—-> P(w)s0
Proof. This is absolutely straightforward; we need only exploit the absoluteness prop¬

erties of equality on the A's in P(u>)si and on the 5's in uq. I

8.13. Lemma. ~V(Kl) (= Vx,y E uq (x E y —> F(x) -< F(y)).
Proof. For a, 0 E uq, let h f(— 5 6 0- Then, a E 0 in reality, and there is an m
(provided by the abovementioned cardinality considerations) which, uniformly in a and 0,
realizes F(a) -< F(0). |

These lemmas, taken together, prove that
8.14. Theorem. In V(A.'), there is a nonsubcountable uj-productive, regular cardinal K,
and a function f .such that f takes k injectively into P(ai)s^ and such that, for all ct,0 E k,
/(«) -< /(/?).

Myhill and Dekker proved that the / of the theorem can even be assumed to map k
into P(w)d with the same results. Therefore, we also have
8.15. Theorem. In ~V{Kt), there is a nonsubcountable u-productive, regular cardinal k,
and a function f such that f takes k injectively in P(uj)^ and such that, for all a,0 6 k,
/(Q) -< /OS).
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Section 9: Notes on exponentiation

We have yet to treat the Dekker-Myhill notion of exponentiation for the RETs and
the reader may well have wondered at this. It is not that there is some conceptual barrier
to the ready incorporation of exponentiation into the "realizability scheme." The reader
should, by now, have had sufficient contact with the mechanisms underlying our approach
to be morally certain that this could easily be done.

It is not a question of feasibility, but one of naturalness. If we do not alter the Dekker-
Myhill notion of RET exponentiation, one can show that its internal version corresponds to
no natural constructive notion of "power." If, however, we permit ourselves some liberty
to tamper with the classical definition, we can prove that a slightly revised concept of
exponentiation agrees with a notion of "finitely indexed" exponentiation for constructive
cardinals.

In large part, the unnaturalness arises in the very attempt to perform an exponen¬

tiation operation on sets of natural numbers in a constructive setting. However, some

measure of the "unnaturalness" of the Dekker-Myhill notion resides in the details of the
specific coding scheme upon which their definition of exponentiation depends.

9.1. Definition. Let px be the x-th prime in cj. For each pair n, z 6 u,

rn(x) = fiy < n(p"+1 does not divide n + 1).

I

Every finite function on to is then indexed by the n such that Dom(/)= {x : r„(x) >
0} and rn(x) gives the value of f(x).
9.2. Definition. For A,BE P(w), r„ maps A into B (r„ : A—>B) iff, whenever r„(x) > 0|
x £ A and rn(x) £ B. |

With this mapping concept, Dekker and Myhill define the RET-cxponentiation oper¬
ation Exp(A, B):
9.3. Definition. For A,BE P(w), Exp(A, B) = {n : r„ : A —► B}. |

9.4. Remark. 'Exp(A, B)' is our own terminology for the canonical RET exponentiation
operation. In light of the facts which we are about to uncover, we find our terminology
less misleading than the usual: 'AB'. |
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Negative results on exponentiation.

The authors of Recursive equivalence types offered no explanation for their choice
of definitions, although their exposition suggests that, somehow, Exp is "constructively
correct." This section is designed to put that suggestion to a realizability-theoretic test.

Our test will show that any interesting or straightforward conception of exponentiation in

P(cu)5f does not give rise to anything amenable to RET-style treatment. This result turns
on the fact that nontrivial exponentiation objects cannot be (equivalent to) the range or

domain of a constructive number-theoretic function in ~V(Kl). In fact, no natural function-
space object on an infinite subset of to can be injected into a discrete space in V(Kl).

As prelude, we prove that some of the absoluteness properties of elements of to extend
to elements of (w to).

9.5. Lemma. Let g and h index partial recursive function on to. Ifg is defined as

{(".(".{?}(«))) : {ffX")!}

and h is defined analogously, then

{g} = {h} iff-V{Kl)\=g = h.

Proof. The implication from left-to-right is obvious. For the other direction, assume
that V(Kl) |=g ==i h. Then, for any n from u such that {</}(ra) i,

(n, i) (f- (n, {s}(n)> € g and

V[Kl) f= (n, {?}(«)) = (m,{/i}(m))

for some m £ to.

By the absoluteness conditions on u, n = m and {g}{n) = {^}(m)* Hence, {g} C
{k}. By parity of reasoning, {h} C {<7} holds also, g

9.6. Lemma. There is a j £ u such that, if g indexes a total recursive function, then
O'Kff) 1 and {j}(g) |j- g £ (w => a>).
Proof. A proof of this is easily abstracted from a proof of Lemma 2.5. |
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9.7. Lemma. ~V(Kl) \= ^Vx,y £(u=)u)(i = }V",i = v).
Proof. We can use Lemma 9.5 and the unsolvability of the halting problem. The proof
is easy. |

9.8. Theorem. V(K7) (= -»3a C w (tu =t cu) a.

Proof. Reasoning in set theory over *V{Kl), we assume that / : (u =( w) « a. It follows
that

Wx,y g (w=>u) (z = y <-> /(z) = /(j/)).

Since equality is provably decidable on a, we have, in ~V(Kl),

Vz, y £ (w =* to) (z = y V -> z = y).

This contradicts the conclusion of Lemma 9.7.

9.9. Remark.

(1) Since Y(Kl) |= CTo, Theorem 9.8 yields an explicit proof that

V(Kl) |= .

(2) Much the same technique could be harnessed to show that

V(Kl) t=-3aCw(u=t2)«u.

This sharpens the very simple result that

Y(Kl) (= -.3/ ./ : w —» (w=* 2),

where the latter is proved via diagonalization. |

To extend the discouraging results of Theorem 9.8 to all infinite RETs, we need
relativizations of Lemmas 9.5 and 9.6:

9.10. Lemma. Let A C u). Let g and h index partial recursive Junction on <n. If 9a 13
defined as

{{«>{"> {</}(")» '• n e AA{}}(n)|}
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and Iia is defined analogously, then

{g} PA = {h} I'A iff Y(Kl) h gA = hA.

Proof. One simply repeats the proof of Lemma 9.5. |

9.11. Lemma. There is a j £ u such that, if g indexes a total recursive function on u
and A C w, then

{j }(ff) 1 and V(Kl) [= gA <E (A => u).

Proof. Just as in Lemma 9.6. (

9.12. Theorem. For any A £ P(at), A infinite,

V(Kl) h -3x C w (A=^ 2) « i.

Proof. Just as before, if ~V(Kl) |= (A 2) c A c C u, then there is an e 6 w such
that for all a, b £ V{Kl),

e H~ a € (A 2) A 6 G (A =* 2) —>« = 6 V a = 6.

By Lemmas 9.10 and 9.11, there is a k £ u such that, if g and h index total recursive
functions, then {A:}(g, h) j and

{fc}(g, h) = 0 iff {g} fA = {h} fA.

Hence, {A;} indexes an effective procedure which, given a pair of total indices as ar¬
guments, decides whether or not the indexed functions agree on the infinite set A. With
h in hand, one can solve the halting problem, as follows, there is a p £ to which, given x,
produces an index of / £ (to => 2) where

f(y) = 0 iff -i 3u <y T(x, x, u).

Then, {A:}({p}(x), Az.O) = 0 iff / = \x.O iff - 3u T{x, x, u). |

It follows from our theorems 9.8 and 9.12 that there can be no definition of exponen¬
tiation that does full justice to the usual constructive notion and yet fits securely into the
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"world" of RETs. The latter is a world in which sets are fully represented as collections of

natural numbers. This conclusion stands in conflict with the claim of Dekker and Myhill
that

[t]he operation 2A [Dekker-Myhill exponentiation] can be considered as the constructive
analogue to the operation 2r in cardinal arithmetic, provided that we restrict it to A.

Theorem 9.12 applies a fortiori to all infinite isols and shows that there can be no

such analogue in-the fullest sense.

Dekker-Myhill exponentiation.

In the face of all this and with the desire to extend the isomorphism theorems to

exponentiation, one is left with searching out best possible alternatives. There is a notion
which reflection on the isomorphism theorem might suggest as a plausible candidate for
internal "effective exponentiation." The notion comes from relativizing exponentials to
decidable subsets:

9.13. Definition. D(y, i) = {/ : 3z z ^ y A / 6 (s => x)}. S

Unfortunately, the plausibility of the notion as an internalization of Exp is merely
apparent. We have immediately that

IZF bVyCo)[(y=>2)C D(x,2)].

We already know that ~V[Kl) [=^3iCu(A=t2)rsi and this implies that

V(J£7) )=-i3zCu D(.A, 2) sa x.

D will not, therefore, provide both a constructively viable notion of exponentiation and a
set over which a number-theoretic "RET" function can be defined.

There is an obvious, albeit unnatural, internalization of the original Dekker-Myhill
notion and it is to this that we now turn. This internalization puts everything in terms of
finite functions, so, it agrees with exponentiation on (classical) finite sets and does not fall
afoul of the halting problem. 'IExp' is our notation for this internal concept.

9.14. Definition. For x,y g P(w), set

rExp(i,yi) = {/:3zCi3ti6un«zA/e(r=» y) A ->3m }{m) = 0}.
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We assert that Exp is amenable to the treatment undergone by + and X on Q by
proving that

V(Kl) \= EExp(A, B) ~ Exp(A, B)

for any A, £? 6 P(oj). We will not, in fact, carry out the full treatment here. By this
stage, the reader should well be able to do this by himself. Suffice it to say that this shows
how, by coding, the isomorphism theorem could be extended to allow for Dekker-Myhill
exponentiation.

9.15. Theorem. For all A,B£ P(w),

V{Kl) |= Exp(A, B) = IExp(A,B)

and a witness for the claim can be found independently of A and B.

The proof is divided into a series of lemmas:

9.16. Lemma. There is an e £ oi such that if {/} : n C, C C B, {3} : C —► A and
Vn ({ff}(n) I -> (g}(n) > 0), then

{«}(</>n,g)) \\-g GlExp(5,A).

Proof. This is a straightforward and tedious application of the earlier techniques of this
chapter. |

9.17. Lemma. There is a j from ai such that for all e £ ui and f 6 \{Kl), if e |f- / E
IExp(23,A), then there is a C C A such that

f1) 0'}(e)o S ai,

W {{y}Wi} : {/}(e)0 « C,

W {{l}(e)2}:C-+A,
M 0}(«)3 H- / = {{y>(e)2} and

(5) Vn ({{j}(e)2}(n) 1 - {{j}(e)2}(n) > 0).
Proof. (1) js immediate from the readability conditions on the initial numerical quan¬
tifier of the internal definition of IExp.
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(2) From (1), there is a k £ co and b £ \{Kl) for which

IZF I— (3ngw (n « f>Ab G P(w)) —> h is w-stable). Therefore, by Theorem 2.12, there is
an I € u and a C £ P(w) of V such that

By our previous proofs, there is an / such that / : {l }(e)o fa C in V and an index for /
is calculable from (I}(e).

(3) By (2), there is a p 6 w such that

WMIWe(c^).

By examining the realizer of

Vx £ C 3y £ A (x, y) £ /,

one can obtain from {p}(e) the desired {{j}(e)2}-

(4) This follows almost immediately from (3).

(5) Here, we commit only a few details to paper to serve as an illustration. If given in full
detail, this proof would be excruciatingly long. Let h = {{j}(e)2}. From (4), we know
that

~V(Kl) |= Vn h (n) > 0.

Now, if h(n) j, then (n, i) ||— (n , h(n)) g h. Hence,

V(Kl) )= h{n) ^ 0.

By absoluteness, h(n) > 0 and we are done. |

At this point in the proof, it helps to define an intermediate internal concept, E:
9.18. Definition. For A,B g P(oj) in V, E(B, A) is the element of V(A1) which is

{((/»9), ?) : 3C CB {/} : n C and {g} g [C =* A) and Vn ({g}(n) | ->{?}(n) > ")
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E is a simple-minded internalization of the RET-theoretic notion of exponentiation.
In terms of E, we want to prove that

V{Kl) [= IExp(A, B) « I (A, B) ss Exp(A, B),
and this will complete the proof. To fulfill this intention, we prove another lemma.

9.19. Lemma. 3k VA,B £P(u) A; (f- I (A, B) = IExp(A,B).
Proof. First, if n (j— g £ E(A, B), then ni [(— g — no! and for some COB,

{™ooo} : "ooi *** CA{«oi} S (C => A).

And, with e as in Lemma 9.16, we know that

M({«ooo,"ooi>«oi)) H-"oi ©IExp(A,.B).

An application of the realizability of the substitutivity of identity concludes this part of
the proof.

On the other hand, if n |j— g £ IExp(A,B), then 9.17 applies and there is a CCA
such that {y}(n)0 € w, {{i}(«)r} : {j}(n)o C, {{i}(n)2} ■ C —> A and {j}(n)3 D~ g =

{j}(n)2- It follows that there is a partial recursive © such that (0(n), i) [j— {i}(«)2 €
E(A, B). Once more, a simple substitution is required to complete the proof. ]

Finally, we can return to the main proof. Thanks to the last lemma, all we need to
show is that

3e VA,B © P(tu) e [)— 1 (A, B) ~ Exp(A, B).

9.20. Definition. For /, g partial functions on u into ui, we say that / =0 g iff

Vn ((/(n) J. A f(n) > 0) (g(n) J, A g(n) > 0)) and
Vn (/(n) > 0 -» }(n) = g(n)).

I

Integral to our proof are two obvious facts of special note:
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Fact (1): There is a k G w such that, if

((/> ™. 3> 9) € E (A, Z?) then

r0}((/,",»» =0 {9} and {*}((/, n, 9)) G Exp(A,B).

Fact (2): There is an I £ w such that, if rn : A —» B, then

{{0(")2} : {'}(™)i 5:3 ix '■ M1) ^ 0} C A,

{{'}(n)3} & ({^ :f»^0}=» B), and

{WWs} =0 rn.

In short, if rn : A —<■ B, then, with 0(n) = ({!}(")2> 0}(n)li 0}(n)3)>

{0W,{i}H)eI(A,fl).

To realize the purported internal isomorphism between E and Exp(A, /i), we define a
function H:

9.21. Definition. For A, B G P(w)i set

H = {{{f,n,g),(g,{k}((f,n,g»» : «/,n,g),g) 6 E(A,B)}.

The index fc is that of Fact (1). |

There is no question but that H G V(Kl).
9.22. Lemma. ~V[Kl) j= H : E(A,B) Exp(A, B) uniformly in A and B.
Proof.

(1) V(Kl) |= iZ" C E (A, B) X IExp(A, B) and ~V{Kl) j= H is functional: this follows
directly from our earlier results.

(2) V(Zfl) |= H is injective: this is an immediate consequence of Fact (1).

(3) ~V[Kl) |= E (A, B) C Dom(7Z): once again, this is obtained from Fact (1).

(4) V(ZcTl) j= Exp(A, B) C Rng(iZ): Assume that e [)— a G Exp(A, B). Then, ei (f- a = «o
and r5„ : A -> B. By Fact (2),

(0(eo), i) H- {i}(«o)3 £ I (A, B) and
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{«M} = reo

Since rn =o rm implies that n = m, Fact (1) shows that

{fc}(0(eo)) = e0 and that

<0(eo).({O(eo)3 ,e0» 0 I(A,B).

Barring the obligatory applications of substitutivity, we are done. |

It follows from the various lemmas that IExp is the correct pure analogue of recursion-
theoretic exponentiation. The last group of theorems puts us well on the way to extending
the isomorphism and preservation theorems to cover Dekker-Myhill exponentiation. Even
though (or, even, thanks to the fact that) its definition is unnatural, we know that

IExpfA, B) Exp(A,i?) C w

in \{Kl). That is, unlike the natural function-space concepts, IExp is representablc as

the internalization of an RET, in fact, as the internalization of the Dekker-Myhill notion
Exp.

Cardinals away from zero.

A large measure of the unnaturalness of the Dekker-Myhill notion of exponentiation
comes from our general negative results on exponentiation over V(AT/). It is impossible
to find any reasonably natural exponentiation operation on cardinals from P(u)s' to fit
into the existing scheme. What makes for the impossibility is the discreteness of w under
realizability plus the unsolvability of the halting problem.

The unnaturalness that remains comes from the coding scheme chosen by Dekkcr
and Myhill. Under that scheme, the number 0 becomes an intrusive singularity. Should
a different coding be adopted, or should we choose to work on cardinals away from zero,
that singularity would disappear.

9.23. Definition. For x, y from P(w)3', set

JExp = {/ : 3z C a; 3n ./ : z -+ y A n « /}.

I
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JExp is clearly the set of "finitely indexed" functions from subsets or x into y. If we
restrict consideration to x and y "away from zero," then JExp captures the RET notion
of exponentiation.

9.24. Theorem. For A, BfE fi, i/0 ^ dUB, then

V(Kl) f= JExp(A, B) = Exp(A, B).

Proof. This follows immediately from the lemmas above, g

Again, much the same effect could be achieved by altering the coding that goes into
the Dekker-Myhill definition of exponentiation. In any case, we know that, with some

circumlocution, the isomorphism and preservation theorems can be extended to incorporate

exponentiation.
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Eliminating Stability: An Extended Note

CHAPTER 6

Section 1: Prefatory and historical remarks
This chapter serves as an appendix to or extended note on the labors of the previous

chapter. Were it not for its length, it would have been attached directly to some incon¬
spicuous niche in Chapter Five. The reader should, therefore, think of these two chapters
as thematically one. Or better, the reader might well press on to Chapter Seven and leave
this note for later.

The concern of this chapter is really with two details. These details seem to be
independent, but, happily, they can be dealt with simultaneously. The first concerns
a point of mathematical economy as pertains to stabilization. As we saw in Chapter
Five, the classical theory of recursive equivalence types will disappear into interpreted
constructive mathematics, so long as we work over the w-stable fragment of P(^). From a
semantical point of view, stabilization is quite natural. After all, Godel has already shown
that classical mathematics results when constructive mathematics is factored wholesale
through a double negation. From a mathematical point of view, however, it all seems
quite mysterious.

The mystery comes to light when we reflect on the results of Chapter One. There, we
showed that the entire basic theory of RETs can be obtained within IZF+MP by working
over P(w). Never once did we have to assume that the sets on which cardinal operat
are defined are actually w-stable! Unlike the stabilization required by Godel s the >

which interposes itself continually in any attempt to work out the classical mathema i
in an intuitionistic setting, the move from P(w) to P(u>)5^ seems irrelevant to working
the classical mathematics of RETs in a constructive setting. The mathematics of R
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appears over ~V(Kl) without any reference to stabilization of sets; that comes in only when !
we apply the Preservation Theorem. So much for mystery.

The second detail pertains to the sheer "size" of IZF. IZF, like its classical cousin

ZF, reigns over a luxuriant domain of mathematical objects. Among these are ordinals,
Hilbert spaces, function spaces of arbitrarily high types; all of which seem largely irrelevant
to the relatively pedestrian concerns of the mathematics of equivalence types of sets of
natural numbers. The fundamental theory of the latter seems to require, at most, talk
of sets of natural numbers and constructive functions on them. A desire for parsimony
of expression might well motivate one to ask after a formal theory for the constructive
cardinal arithmetic which is less capacious than full IZF and which treats primarily such
sets and functions. It would be desirable if such a theory could link directly with the
classical theory of RETs in the fashion of Chapter Five. Such a formal theory would, most
likely, be a version of the second-order arithmetic HAS.

This note addresses both details simultaneously. We describe a theory HAS*', which
is a modification of HAS. In that theory, all of the work of Chapter One on cardinals
.in P(uj) can be carried out. This takes care of the second detail: HAS*' is constrained
syntactically to direct its attention to numbers, sets and functions. Then, we present
a rcalizability model for that theory. The model is a variation on the Kreisel-Troelstra
idea of Chapter Four. Using the realizability as an interim technique, we can prove that
HAS*' so-interpreted offers a solution for the first detail as well. We prove that, over

the realizability structure, the entire classical theory of RETs appears as an interpreted
subtheory—without relativization of set quantifiers to stable sets. As a result, one sees
that the framework provided by HAS*' is an excellent place within which to develop the
constructive analogue of RET-theory. The realizability result shows that, by adding extra
axioms to those of HAS*', the classical theory can be rebuilt constructively without loss
and without set-stabilization. Where did the stabilization go? It has been built into the
new realizability interpretation itself.

There is another, more unified, way in which to think of the themes of this note. One
can think of it as a "narrow circumscription" of syntax and semantics. The usual ap'
proach to the metamathematics of constructive arithemtic provides a good example of this
circumscription. Even though both arithmetic and Kleene realizability are interpretable
into set theory and ~V(Kl), respectively, each of them retains their usefulness as a "narrow
circumscription." We mean that, if one cares to work in constructive arithmetic with a
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readability interpretation attached, V(Kl) is just too big. One needs a narrow view that

focuses on that circumscribed part of Y(Kl) that pertains only to arithmetic. Original
Kleene readability dots just that. It would be far too confusing to look to set-theoretic

readability whenever one is concerned only with constructive arithmetic. Far better to

be limited by the readability interpretation that pertains properly to arithmetic.

One might have similar thoughts about recursive equivalence types. If our desire was

to concentrate efforts on constructive cardinal arithmetic, then it would be better to take
a narrow view. Here, a narrow view would be on a syntax adequate for RET-theory and
a readability that applies directly to that syntax, without the intermediary of set theory.
The syntax we propose is that of HAS*'. The readability will be that of |j—*. This
readability is an unmediated picture of the V(M)-interpretation relativized to P(w)3f
just as Kleene readability is an unmediated picture of ~V[Kl) as relativized in ui. In effect,
If-8 is a capsule summary of what *V{Kl) makes true over P(ui)sf and, together with HAS8',
it gives a narrow circumscription of the mathematics of RETs.

Therefore, in circumscribing readability over P(w)3f we are paring things down con¬

siderably. The benefit of the circumscription is that the "building in" process of Chapter
Five is complete. In f|—3, not only is all the explicit recursion of classical RET-theory built
into the logical signs of constructive mathematics, but so is all the classical set theory.
That is, we need not relativize explicitly to the stable part of P(m). Hence, a fair bit of
tedium is avoided.

However, this paring-down of realizability relative to classical quantification does carry
a price tag. The paring-down eliminates from the realizability universe all of those patho¬
logical sets that live in P(w) outside of P(w)af These sets are attached, under V(Kl)-
realizability, to comprehension terms defined over u. Therefore, comprehension terms
which would naturally specify subsets of w will, under the realizability described in this
section, come to delineate proper classes.

Section 2: Stable Heyting arithmetic and realizability

Full second-order Heyting arithmetic, HAS, should now be a familiar creature. In fine,
HAS incorporates the mechanisms for first and second-order number-theoretic quantifica¬
tion, together with the axioms for full arithmetic which are the heritage of Dedekind and
Reano. For a description of the language, the reader can refer to section 5 of Chapter Five
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or to the relevant sections of Troelstra (1973b). We recall that our version of HAS con¬

tains, as a primitive, a distinct function sign for each primitive-recursive function scheme.
We also assume that the language contains second-order variables for unary species only.

Finally, we presume that the only well-formed formulae of the form X(r), for X a species
variable or constant, are those in which r is an individual variable or canonical numeral.

Axioms for HAS include all the axioms characteristic of HA and those specifying the

graphs of the primitive recursive function signs. The induction scheme of elementary
arithmetic has been replaced by full second-order induction. There is also the usual com¬

prehension scheme:

3X Vx (X(x) 4>(x)).

To go from HAS to the more restrictive HAS®', we will replace full induction by an

induction scheme and allow comprehension only with respect to almost negative formulae
of the language.

2.1. Definition. For 4> from the language of HAS, <!> is second-order almost negative
(a.n.2) iff no V occurs in tj> and 3x occurs only immediately prior to atomic first-order
subformulae. |

a.n.2 is the notion of "almost negative" appropriate to second-order arithmetic. The
reader should recall the correlative first-order notion of a.n. from Section 4 of Chapter
Four.

2.2. Definition. HAS3' is defined to be the formal system which varies from HAS in
that full second-order induction is replaced by the induction scheme and comprehension
is restricted to those second-order formulae which are a.n.2. Otherwise HAS"' and HAS
are identical. |

By restricting comprehension, we can, in the realizability model, implicitly restrict
the second-order variables to ranging only over w-stable subsets. The imposition of the
induction scheme represents our admission that, in some models of HAS"', not every
comprehension term will specify a set. HAS"' is as expressive as HAS, so it can specify
collections which, under realizability, fail to be w-stable. However, even in realizability
models, we wish ui to retain its full inductive properties.
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Stable realizability.

We go directly to defining the desired "nonstandard" realizability for HAS". Realiz¬

ability for HAS" is defined precisely as was realizability for HAS, except that quantification
is restricted to the realizability sets in the image of the injection ihi. With this restric¬

tion, quantification in HAS3' is restricted automatically to the u-stable sets.

2.3. Definition. For each unary number-theoretic relation A in V, we set

A= {(n,n) : V (= A{n)}.

I

The apposite realizability notion, [j—'is defined as follows:

2.4. Definition. Assume that the language of HAS3' includes autonymous names for each
n 6 u and each A. (j—3 is defined directly for the sentences <p of this expanded language.
The definition of [j—3 agrees with that of Kreisel-Troelstra realizability (cf. Section 5 of
Chapter Four) except that

(1) for <j> atomic and second-order,

e [j—3 A(n) iff e = n and V [= A(n).

(2) e H-3 VX <t> iff, for all A,e [|-3 4>{X/ A) and

(3) e (j—3 3X ij> iff, for some A,e [j—'3 4>{Xj A).
The structure for this interpretation we call '2"(X/)' and, for sentences <j>, we say that

2"(XI) [= <j> whenever 3n n fj—3 tj>. |

It is now a simple exercise to check that HAS3' provides a base for the right set theory
under this notion of realizability:

2.5. Theorem. HAS" H V0 only if 2"(Kt) (= V<£.
Proof. In the theorem statement 'V1 represents universal closure on all free variables
both first- and second-order. Very little manipulation is required to see that 2''[K(]
satisfies all of the second-order consequences of the HA axioms, including all instances of the
induction scheme. It remains only to check on the validity of the restricted comprehension
axiom, and, for that, we isolate a crucial lemma:
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2.6. Lemma. If <t> is a.n.2, then <j> is ui-stable over 2'l[Kl):

2'l(Kl) |= Vx

Proof. In the statement of the lemma, we presumed that, for the sake of illustration, f>
contains at most one free first-order variable.

Since Markov'3 principle MP holds in 2"'(KI), it will suffice to show (1) that the
relevant second-order atomic formulae are to-stable and (2) that to-stability is closed under
second-order existential quantification.

(1) Given n, assume that, for some m, m ff—" A(n). By definition, m = n and A(n) holds.
Hence, AnAe.n realizes that A is co-stable.

(2) Given n, assume that, for some m, m |J—4 3A" <j>■ By definition, 3A 3m m |f-'
4>{X/ A). The inductive hypothesis tells us <j>(X/ A) is w-stable, so there is an e 6 u such
that

W(n) h* j,(X/A).

Therefore,

{e}(n) H-* 3X

and the proof is complete. |

Now we can return to the proof of the theorem. Given <j> a.n.2, we consider the <j>-
instance of the comprehension axiom. Let

A — {(n,n): 2"'(Kt) (= d>(n)}.

All one needs to show is that

2't[KI) |= Vi (-i-'A(i) <-+ -1-1

which, by the lemma and the earlier parts of the proof, will suffice. But the truth of the
displayed line follows directly from the definition of A, since

2"(Kl) |= A(n) iff 2"(Kl) f= f>[n).
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We should also record the fact that, because of the presence of MP in 2at(Kl), a.n.2
comprehension is coextensive with co-stable comprehension;

2.7. Proposition. If <j> is ui-stable over 2°t(Kl), then tj> is semantically equivalent to an

a.n.2 formula of HAS"'.

Proof. This is immediate by intuitionistic logic. |

Section 3: Mathematics in 2at(Kl)
At first sight, 2"'(Kl) supports what appears to be a number of mathematical anoma¬

lies. For instance, there are comprehension terms which are classically identical to oj but

which, when evaluated over 2specify proper classes. 23t(Kl) also satisfies a full
Church's Thesis. On a wider view, however, one sees that the anomalies are merely repre¬

sentative of regularities characteristic of P(w)s', when P(co)s' is considered as a universe
of sets. The wider view is one that includes the translation theorems of the next section.

With those translations, the anomalies can all be identified with results already known to
us.

3.1. Proposition. With T as the unary Kleene "T" predicate, the comprehension term

{n : 3m T(n,n,m)\/^3m T(n,n,m)}

specifies, in 2at(Kt), a proper class.

Proof. Set cji{x) = 3m T(x, x, m) V ^ 3m T[x, x, m). By logic, we have

HAS" 1- Vx

By the preceding lemma, 2satisfies

VX Vn (-i-iX(n) —* X(n)).

Therefore, were tf> to specify a value for a second-order variable over 2jt(Kl), then we would
have 2"(Kl) (= 3X Vx (X(x) <-► </>). It then follows from the two displayed lines that

2"(Kl) |= Vx </,.
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But that would clearly flout the unsolvability of the halting problem. Therefore, {x : $(x)}
represents a proper class in 2't(Kt). |

23t(K() also satisfies what seems to be a very strong Church's Thesis, CT3, a principle
asserting that functions between arbitrary sets are computable. From the satisfaction of

CT3, it is a trivial matter to prove that ECTo holds in 2,t(Kl). Moreover, from the
translation results of the final section, it will be easy to transfer this result to ~V(Kl) and,
thence, to see that CT3 has the same realizability conditions as CT2 (cf. Chapter Four,
Section 3).

3.2. Definition. CT3 is the statement

VX VY [3jF : (X-Y) - Be Vx (X(x) - 3y T(e, x, y) A U{y, F(x)))].

!

3.3. Note. Since all the primitive second-order variables and constants are unary, the
binary 'F' of CT3 can be taken as shorthand for a "coded" unary sign. |

3.4. Proposition. 2°'(X/) (=CT3-
Proof. Assume that e (|—'" Vx (A(x) —► 3t/ (B (y) A F[x, y))). Then, for n g A,

{{«}(")}(«)! H-' B({{e}(n)}(n)o)AF(n,{{e}(n)}(n)o).

Let g £ to be such that,' for all n, {</}(n) ~ {{e}(n)}(n)o- By the classical a-m-
n Theorem, g is 0(e) for some primitive recursive 0. Our intention is to show that a

realizing witness for

Vx [A (x) —> 3y {T(g, x, y) A U{y, F(x))))

is calculable effectively from e. To that end, assume that e [j—'* A (n). Then, e = n and e G
A. Therefore, {ff}(n) [ and for some m,

(= T(g, n, m) A U(m, {?}(n)).

m is, of course, effectively calculable from g and n. Moreover, T and U are atomic, so the
proof is complete. |
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3.5. Corollary. 2"(Kl) 1=ECT0.
Proof. One uses a.n.2 comprehension to show that HASal h- CT3 —► ECTo- |

In contrast with the above, the second-order version of CT( does not hold; once

again, CT i fails because of the unsolvability of the halting problem. (Cf. Chapter Four.)
Expressed in the second-order idiom,

3.6. Definition. CT] is

Vx Vt/ Va [(.E(x, y) A F(x, z) -► y — z) —► 3e Vx \/y (F(x, y) <-> {e}(x) | A F(x, {e}(x))J.

I

To see the failure of CTj under J)—'', we take F to be the coded graph of the charac¬
teristic function of the halting problem and set F accordingly. Now, we know that

2at{Kl) |= Vx Vy Vz (F(x, y) A F(x, z) -► y = z).

This is due simply to the fact that F is externally functional and that the natural numbers
bear the same absoluteness, relations to 2at(Kt) that they do to V[Kl). However, were

2,t(KC) to satisfy CT3, there would be an e 6 u such that

2"(Kl) h [F[x, y) ~ (e}(x) | AF(x, {«}(«))].

Since 23t(Kl) |=MP, 2at(I(l) also satisfies

Vx (-1 -13t/ F (x, y) —>• 3y F (x, y)).

Classically, F is total, so, over realizability in 2at(Kt). F is almost total;

2'\Kl)\=-'-i3y F(x,y).

Therefore,

2at(Kl) (= Vx 3y F (x, y).

This would mean that F is total recursive, which it most decidedly is not. We have, then
3.7. Theorem. 2at{Kt] \= -.CTi.
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I)—* supports a quite general version of AC, which we call 'AC*1. This choice principle
should be compared with that of-Chapter Five, Section 5.

3.8. Definition. AC* is

Vi (X{x) -* 3y <j>) — 3F Vz (X(x) — </>(x/F[i))).

I

3.9. Theorem. 2" (XI) (=AC*.
Proof. When a form of AC holds in the "Heyting universe," the domain of all proofs and
constructions, it does so in virtue of the proof conditions of the statement's antecedent.
This situation is perfectly reflected in it is from the readability witness of the
antecedent that we extract the requisite choice functions. Here is a case in which realiz-
ability (and intuitionism) make an old saw literally true: whenever an inference obtains,
the truth conditions of the consequent are contained in those of the antecedent.

We begin with the assumption that

e H—" Vz (A(x) —► 3y <j>).

Then, if n £ A,

{W(«)}(n)i H-' *(»,{*}(»))

where g = An.{{e}(n)}(n)0. Again, g is effectively calculable from e.

The required choice function is the obvious internalization of {g}. Let

F = {("> {»}(«)) : " C A}.

It is clear that a realizer for Vz (A(z) —► <j>{y/ F (z))) is obtainable from e. |

3.10. Note. We have already (in Chapter Five) uncovered the fact that a version of
full AC holds over the w-stable subsets of ui iq ~V{Kl). Under the translation of the next
section, the fact that 2"t(Kt) |=AC* will come to coincide precisely with the former fact.
This "coincidence" is an indication that the claims of earlier sections of this chapter are
correct: that HAS"' under 2embodies the realizability mathematics true over P(w)s'
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Section 4: Translation theorems

Given our ultimate designs, any more of this piecemeal checking of axioms would not

only be dreary but otiose. We set out to see how results about 2'*(Kl) might be obtained by
relativization from ~V(Kl). In particular, we want to make the realizability version of RET

theory carry over to the new structure. In keeping with that, we ought to eschew further
evaluation of specific principles and turn toward a translation theorem that will allow us to

calculate the realizability conditions of HAS3'-statements automatically by relativization
to P(u)st over V(Kl).

For purposes of the present chapter (and for no other), we will use 'A' to stand for the
result of injecting A £ P(lj) into ~V(Kl) in the standard fashion. We coin the new notation
only because A is already performing a duty in the service of 23l(fG).
4.1. Definition. For each A £ P(w) in V, we set

A = {(n,n) : A(n)}.

4.2. Assumption. In order to avoid clashes in translating the two-sorted second-order
language into the single-sorted language of IZF, we assume that there is an extra, hith-
ertofore untapped source of set variables, one variable for each second-order variable AT.
For X, the corresponding "extra" set parameter is denoted 'xxI

At this stage, the reader might consult Section 5 of Chapter Four to refresh his memory
on the translation under consideration there.

4.3. Definition. The translation (j> $ is defined on the formulae of the language of
HAS3' by associating with each formula O of HAS3' a formula $ of the language of set
theory. The translation agrees with that of Chapter Four except that

[1] for <j> = A(n), $ = n £ A

[2] for <j> ' A(z), $ = x £ A

[3] for </> = VX V, $ = Vzx £ P(w)a*
[4] for <t> = 3X ip, 4> = 3zx £ P(w)s< $.

I
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Now we can prove a theorem relating 2si[Kl), V(Kl) and the above translation.

4.4. Theorem. Let <f> be a sentence of the language of HAS"'. 23'(A7) <j> iffY(Kl) |=
*■

This proof mimics those of correlative translation theorems in Chapter Four. The
proof arises by way of what is, in effect, an isomorphism between realizability structures.
This isomorphism makes for perfect parity of atomic formulae. As before, the correspon¬

dence engendered by isomorphism must be carried up the hierarchy of formulae by effective
maps.

What follows are the lemmas that do the "carrying." We give only the merest indi¬
cations of their proofs.

4.5. Lemma. There is a j such that, for all A, j }f— A 6 P(w)3'.
Proof. This is precisely the lemma 2.3 from Chapter Five. |

4.6. Lemma. There is « j £u such that for all b £ V(Kl), if e [j— b £ P(w)3', then
{,'}(«) I and, for some A from "V, (j }(e) (f- b — A.

Proof. One need only apply the proof of Lemma 2.12 in Chapter Five. J

For ease of notation, we will now assume that rj> from the language of HAS3' has at
most two numerical and two unary set parameters. The truth of our result suffers no'such
restriction.

4.7. Lemma. Let <j>[x,y,X,Y) be a formula of the HAS3' language. There are partial
recursive indices ej, and g$ such that

whenever p [j—'' <j>(n ,m, A, B), {e^}(p, n, m) J. and {e^}(p, n, m) [f— <Sf(n ,m ,A, B), and
whenever p |f- $(n,m,A,B), {g^,}{p,n,m) J. and {gt}[p,n,m) [J—' ,A,B).

Proof. After all the work we did in Chapter Four, there's very little left to do. Actu¬
ally, the clauses of the translation governing second-order quantification need be our sole
concern.

We consider existential second-order quantification: if p f)—' 3X <j>(n,m ,A, B), then,
for some C from P(w) in V, p ||—'3 <f>(X/ C)(n ,m ,A, B). Hence, for some such C,

W}(p,n,m) | and {e^}(p,n,m) |)— $(X/ C)(n ,rh,A, B).
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It follows that

0'. {«*}(p. ™. ™)) th l3** € P(w)st $)(n,m, A, B),

where j is given by Lemma 4.5.

Conversely, p (J- 3xx (xx g P(wn)3* A $)(n, m ,~A, B) only if

for some C, p(p) [j- / C)(n,m , X, B).

p is given by applying Lemma 4.6 and the substitutivity of identity for <J>. From this, it
follows immediately that

{s*}(p(p).n,™) It-' 3-X" 4>{n,m,A,B).

A similar argument gives the proof for the universal quantifier. This completes the
proofs of the lemma and of the main theorem. (

The desired result is now a corollary:

4.8. Corollary. For sentences of tf> of the augmented HAS1' language, .

2"(Kl) j= f, ijJ*V{Kl) h <&.

Proof. |

In summary, 2''(Kt) is precisely as advertised, [f—'-realizability for HAS"' is just the
relativization of [j— to P(cj)3^. We now see that the realizability of CT3 is a register of
the fact that, in V(iC), a version of Church's Thesis holds on the w-stable sets. Similarly,
AC* mirrors in 2"t(Kl) the choice principle for w-stables over ~V(Kl). Hence, we need not
have checked these results directly in 2st[K[) but could have obtained them via translation
from V[Kl).
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Section 5: Hiding the relativization

We now have at our disposal all the equipment required to check the claims of the first
section of this chapter. We first indicate how the constructive mathematics of cardinal
arithmetic on w-stable subsets can be developed in HAS''. This development will take

place without relativizing quantifiers to stable subsets. Second, we will show that, under
realizability in 2*'(Kl), all of the classical theory of f2 can be captured in the language of
HAS''. Again, we can hide the recursivity of the RETs in the logical signs as interpreted
over realizability. Moreover, we can now hide the relativization of quantifiers to P(w)s'
within 2"'(X/) and leave pure constructive set quantification in its stead.

We recall that f2, the elementary structure of RETs, is

<n,+, X, <,=qO,cu)

and that Lq is a diagram language for 0. (Cf. Section 3 of Chapter Five.) Each <j> € '

Form; n will, by structural induction, be assigned a translation sir into the augmented
language of HAS''. First, sir is defined for primitive constants. Given that HAS'' allows
a.n.2 comprehension, we can make use of comprehension terms in specifying the interpre¬
tation sir.

5.1. Definition. 0"r = 0, = {x:x = x}, A"r = A. |

For interpreting the compound terms, one needs to be apprised of the existence in
of certain abstracts. The following proposition shows that the required abstract

will exist.' Again, ()0 and ()j denote projections relative to a convenient primitive recursive
pairing.

5.2. Proposition.

HAS"' b- 3Z Vn [Z{n) *-* ((no = 0 AX(nr)) V(no = 1 AT(ii)))]
HAS" t- Vn [Z[n) (X(n0) A^nr))].

Proof. The second entailment is immediate because the right hand side of the defining
biconditional is a.n.2. The first is almost as easy; the right hand side of its biconditional
is HAS"'-provably equivalent to the a.n.2 predicate

(n0 < 2) A(no = 0 —► X(ni)) A("o = 1 —► T(ni)).
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5.3. Definition. For a, r ^Term^, str is defined inductively on the term structure
using comprehension terms liberally:

(1) (<r + r)atr ={i:(i0 = OA cr"r(^i)) V(x0 = 1 A ratr(ii))}
(2) (a X T)'tr = {z : ^"(sojAr^fs,)}
1

It is easy to check that all the comprehension terms which correspond to terms from
the language of f2 exist as sets in

5.4. Proposition. For all r £Term^n,

2"{Kl) j= 3X Vn (X(n) <-> r"r(n)).

Proof. We use structural induction, the preceding proposition and the definition. |

Next, the sentences of Lq are interpreted by str so that, for each atomic sentence, its
"purely set theoretic component" is retained in its obvious expression over 2"'{Ktj. For
instance, A < B has, as its str-translate, the sentence

3C 3F (F : A ~—■» B A C is a decidable subset of B).

5.5. Definition.

(1) (ir ~ r)"r = 3F F : o'tr >—» r'tr

(2) (a < r)'tr = 3C 3F F : c',r >—» C A C is a decidable subset of r"T
(3) str commutes with A, V, "■ and —>

(4) (310)"; = 3X<t>"r

(5) (Vz <j>)'tr = VX -i -i

I

It should go without saying that in the clauses pertaining to the quantifiers, variables
are so chosen that clashes and redundancies do not occur. The tendency of all this should
be clear; the idea is to prove that, for <j> GSent^,

n |= <t> iff 23t(K[) j= 4>'tr.
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Given the main theorem of the last section, we can prove this result and yet circumvent
the tedium that made Chapter Five so monstrous a read. To prove the above, it will suffice
to show that translation str results when the language of fl is translated into set theory as

in Chapter Five and then set theory is "translated back" into the language of HASat by
reversing the translation of the last section. In short, using 'st' for the translation of the
last section, all we need show is

5.6. Theorem. For each <j> £Sent^n,

V(ifl) |= <- <t>tr-

Proof. The proof of this theorem is nothing more than a simple check. The only "new
fact" that one needs is a fact about functions in ~V(Kl): if / is, in a map between
w-stable sets, then the graph of / is itself w-stable. |

Finally, combining Corollary 4.8 with the above, we obtain the desired theorem. This
is truly the desired theorem because of the clauses that govern quantification under sfr.
We note that, under str, we need not relativize to the w-stable sets.

5.7. Corollary. • £2 |=</> iff 2at{Kl) f= <t>'tT.
To complete the foray into nonstandard set theory and "stable realizability," one

merely checks that the theory of RETs can actually be developed in HAS'' over
This amounts to ascertaining that the restrictions on comprehension do not stand in the
way of any of the proofs in pure cardinal arithmetic surveyed in Chapter One. Indeed,
should one care to consult the proofs in Section Four of that Chapter, he will find that
no comprehension term even gives the appearance of calling for expression in non-a.n.2
style. Therefore, we can say with confidence that all our labors on constructive cardinals
could have been carried out in HAS"' without restriction to stable sets. Similar remarks

apply to Dedekind-finite cardinals, because a subset of u> is infinite in IZF if and only if it
is infinite thanks to an w-stable function:

IZF 1-Vz€P(w)[3/(/:w * x) <- 3/ £ P(m2)st / : u> =—> x).
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Section 6: Assessing the alternatives

In a way, our elimination of relativization is still somewhat unsatisfactory, because,
in so doing, we have moved outside the set-theoretic framework. It would have been far

more elegant and consonant with our general perspective (the set-theoretic one) to have
carried out the elimination of stability by restriction not of comprehension in HAS but of

separation in full IZF.

Sadly, the proper restriction to set theory is not immediately apparent and it is the
task of this section to indicate why this is so. Presumably, an appropriate generalization
of to-siability would suggest the commensurate restriction of separation. It is unfortunate
that the concept of 10-stability is very closely attached to to, so much so that it is nowise
obvious what the right generalization should be. There are things one might try (we won't
pursue them fully here). For one, there is the aforementioned affinity between to-stable
sets and the axiom of choice; the to-stable sets are those which enjoy full number-theoretic
choice.

There is an intuitive explanation of this choice phenomenon: thai the properties of
to-stable sets are predicated more on the arrangement of the elements of the set than on

the arrangement of the possible "proofs." We elaborate on this explanation later in the
section. General to-stable sets may well be those for which, as realizability sets, there
is an E-recursive choice function from the elements into the evidence. The function we

have in mind would, given a realizing witness, choose an element for which the witness is
evidence of membership. Unfortunately, this approach will have to await the development
of E-realizability.

Many other natural alternatives to eliminating stability by restriction of comprehen¬
sion do not come rushing up. There is one alternative which seems favorable. Given the
number and variety of "copies" and "versions" of normal sets in V(A7), we might well ask
alter an "to-like" set whose subsets are just the to-stable sets. However, the very feature of
V(Kl) on which this suggestion relies undercuts it immediately. With unrestricted separa¬
tion, there simply is no such to-variant, to is, of course, to-stable in itself. Hence, if A is the
desired to-variant, to C A. Therefore, by full separation, the entire multitude of nonstable
subsets of to live in P(A).

On the other hand, perhaps the mathematical facts about RETs tell us something
important for semantics. The details of cardinal arithmetic from Chapter One encourage
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the formulation of an even more radical alternative to elimination. None of the proofs
from Sections 3 and 4 of Chapter One called explicitly for the assumption of ui-stability.
Isn't it possible that no conceivable proof from the theory of RETs as pure cardinals over

~V(Kl) need make such a call? Isn't it possible that w-stability, although making smooth
the way of the isomorphism and preservation theorems, has no real semantic relevance?
Sadly, answers to these questions are not forthcoming; at this stage, we know of no RET-
or isol-theoretic property not shared by both P(w) and P(w)a'.

However, there is some evidence for the conclusion that, as far as RET-properties are

concerned, P(cu)3^ aTid P(w) diverge. It is a fact that the obvious model-theoretic strategy
for linking the cardinal-theoretic universes of P(w) and P(oj)s' fails. P(oj)3' is clearly
a retract of P(w), but the retraction does not preserve cardinal-theoretic properties. It
seems, therefore, that the relevant properties of the domains are not the same.

In terms of sets and of identity, P(w)3^ is a retract of P(w) under the operation uP T
where for AC u,

ui~" "'(A) = {i£u:-'-'i£ A}.

This retraction demonstrably fails to carry the right mathematical properties along with
it. Specifically, there are realizability sets A and B which are subsets of u such that

V(Kt) |= A~ B but V(Kl) |= -(w"(A) uT "(B)).

6.1. Theorem. There are A,B£ V(KI) such that V(Kl) |=A,flg AAe&B, but
V(Kl)\=^(oj—(A)^u>""(B)).
Proof. Reasoning externally, let K be the Kleene set:

{n £ <j : {n}(n)J.}

and let -1K be its classical complement. Now, we set

A= {({fcn,"), n> : n G w),

where (fc„)ngo, is a (nonrecursive) listing of ->K in increasing order. Take

B — {((fcn,«), fc„> : n G w}.
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First, Ae(ej, eoi) [|- A C or. I'or, if e |j fl E A, then ej [j— a = em. Next, it is just as
easy to see that Ae(e1,e0o) H~ B C w. Third, V(ft7) ((- B. To see this, we take

/ = {((fcn,n), {n,kn)) : n 6 w}.

Clearly, ~V{Kl) satisfies

/ C A X -B A / is functional A / is infective.

To see that / is total on A, let e fj— a £ A Then, e0 — {kn, n) and ct [j- a = n. To finish,
we simply remark that

(eo, *) H- (n, kn) € /•

In just the same way, / is seen to be onto B.

Finally, 0 (}— "'(A) ai^^(B)). This follows immediately from each of these:

V(/<7) f= ""(A) — u and

V{Kl) |= uT -(iJ) = TK

and a consequence of the Preservation Theorem of Chapter Five:

V(Kl) \= —'(CT « =TT).

a

These internal phenomena strongly suggest that P(w) in V(Ifl) is not the right place
to look for an analogue of the theory of RETs. The theorem exemplifies the fact that,
among arbitrary realizability subsets of w, cardinal equivalence may have more to do with
the "evidential" component of the realizability set than with the echt elements of the set.
In more detail: if one cares to think somewhat inaccurately and picture a realizability
set as a collection of evidence-element pairs (e, a), then the proof shows that a one-to-
one correspondence in V(/C) can have little to do with the a's and can depend for its
subsistence almost entirely on the e's. In the particular case at hand, there is a trivial
correspondence between the evidential components and no constructive functional relation
of the right sort holding between the collections of internal elements of A and of B.
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Without question, a cardinal arithmetic mirroring the theory of RETs will have to

treat mainly of the recursion-theoretic "sizes" of the sets of elements, and use the bits
of evidence to encapsulate the recursion theory. Hence, it seems that w-stable sets are

indicated. It is precisely because AC holds over the w-stables that we are assured that
these relations between element and evidence hold; one can use AC to prove that a corre¬

spondence between bits of evidence will always carry over into one on the sets of elements.

Therefore, reference to the w-stables can be "hidden," as we have in this chapter, but the
passage from recursive mathematics to recursive realizability cannot skirt that reference

altogether. ^
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CHAPTER 7

Continuity, RealizaLility and Information Systems

Section Is Prefatory and historical remarks

There is a widespread and injurious impression—that working in constructive rather
than in classical mathematics is mathematically expensive. Perhaps the impression derives
from the feeling that one pays too high a price for relinquishing those logical laws, like
TND, that lapse on the passage into constructivism. Usually, the price is quoted in terms of
the comforting theorems from analysis, like the mean value theorem, that lapse along with
classical logic. On the other hand, a benefit of working in readability is the perception that
this impression is truly a prejudice, one fostered by lingering over invidious comparisons
between constructive and classical theories.

With readability, we find that the initial price of constructivism brings considerable
profit. Net gain accrues from the fact that lost mathematics is more than countered by an

axiomatic freedom that attends intuitionistic logic. Granted, intuitionistic logic is, when
measured along certain dimensions, weaker than its classical counterpart. This very weak¬
ness, however, holds tremendous potential value. Axiomatic freedom is the recognition that
intuitionistic logic allows axioms which are classically false but mathematically efficient to
be consistent with powerful theories.

The results of this chapter afford a case study in and demonstration of axiomatic
freedom. First, the full intuitionistic set theory IZF is proved to be consistent with the
assumption that there is an extensive category of information systems, ISys, in which every
function is approximable. As you might imagine, the assumption that every function on
information systems is approximable becomes an extremely useful and extremely powerful
nonclassical axiom for the theory of domains. Its presence in constructive set theory
turns some moderately difficult results in the theories of domains and effective domains
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into trivialities. Next, we show that it is consistent with IZF to assume that ISys is
at the same time the category of effectively given information systems (eg systems) with
computable maps.

In each case, consistency is seen by working over the realizability model ~V{Kl). The
profit from our venture into constructivity is revealed when ISys, as interpreted over V(ff/),
is examined from the conventional mathematical standpoint of V. So seen, ISys is precisely
the external category ESys of effectively given information systems, computable elements
and computable morphisms. This ontic correspondence extends to one between the re¬

spective theories: the V(/f7)-theory of ISys incorporates all the usual theory of classical
effectively given systems. Consequently, the burden of working constructively with ax¬

ioms true in V(A7) is pure profit; the theory of effectively given domains is captured in a

streamlined theory of purely intuitiouistic sets without effective, superstructure. In other
words, we will prove that the smooth isomorphism between recursive and realizability set
theories can be extended to cover recursive and realizability domain theories.

These are not the only benefits to axiomatic freedom; there are some mathematical
benefits that fall out along the way. Incidental to the representation of ESys as ISys is a

complete answer to a question of G. Plotkin. Plotkin asked (in Plotkin (1973)) whether the
tedious calculations characteristic of work over eg systems—the calculations of recursive
indices of products, of exponentials and of other domain constructs in terms of their
components' indices—are eliminable in favor of constructive mathematics over some form
of realizability. Our answer to Plotkin is affirmative and uniform for a variety of domain
constructs that includes all those conventionally considered.

All the results of this chapter were known to the author in July 1982 and were proved
in complete detail in March 1983. The reader is advised to compare our consistency results
with the theorems on sequential continuity of Hyland (1982).

Section 2: Wouldn't it be lovely?

Wouldn't it be lovely if the cartesian closed category of information systems and ap¬

proximate maps (a la Scott (1982)) were a full subcategory of the category of sets? Proofs
in denotational semantics would be much easier (and shorter) if the semanticist could
freely assume that every map is continuous and monotone. To take a simple example, it
would then be trivial to show that the least fixed-point operator, fix, is approximable as
a function from A into A. If morphisms of information systems were just set maps,
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it would suffice to prove that fix provides a map. More generally, it would be child's

play to prove that every term of the typed X-calculus defines an approximable map; one

need only check that each term defines a function. Indeed, with a "Brouwer's Theorem"
for information systems in a set-theoretic context, we can say that any set-theoretically
definable relation between information systems which is intuitionistically functional is au¬

tomatically continuous and monotone! Hence, any functional construction available to the
most liberal constructivist, even ones involving uncountable ordinals, various forms of AC
or full powerset, give continuous functions on information systems.

Once one assumes that there is such a lovely category and that it is cartesian closed,
there is a simple proof that the loveliness extends from the morphisms in the category to
certain endomorphisms of the category. Specifically, every endofunctor on the category of
systems is provably approximable as a functor on the correlative category of systems with
embeddings. To see this, we make the assumption that a Brouwer's Theorem for informa¬
tion systems is already in place and deduce from the assumption the desired property of
enaofunctors.

2.1. Assumption. ISys is a cartesian closed category of information systems in which
every set map is approximable. $

9
2.2. Definition. If ISys is a category of information systems, ISysE is the category of
systems with embeddings. -<j is an embedding of system A into system B just in case
i and j are approximable maps, i \ A —> B_ and j '■ B —' A, such that j o i = idA and
l o j C ids. |

2.3. Definition. A unary endofunctor F : ISys —* ISys is approximable whenever it
is continuous and monotone on ISysE. F is monotone when it carries embeddings into
embeddings, i.e., when A B implies that F(A) ^ 's continuous when it
commutes with direct limits, i.e., when , ey)) = Hm(F(Ai), F[e{j)). I

2.4. Theorem. On the above assumption, every endofunctor of ISys is approximable
when considered as a functor over ISysE.
Proof. To prove that every such functor F is monotone and continuous, we assume that
i : A —> B and j : B —► A are such that j o i idA and i o j C id&. First, F is a functor,
80 F{i) : F(A) -» F(B), F{j) : F(B) — F(A) and F(j) o F{i) = idF{Ay But F is also a
map on function spaces; in particular, F : {A => B) —* (-F(A) =t F(B)). By assumption,
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ISys is cartesian closed and every map is monotone. Therefore, F[i) o F(j) C idp^B) and,
consequently, F is itself monotone.

Next, if Lim = lim(Ai ,eij) is a direct limit, then fdym = U(/> °/tr)> where, for each
i,

A; -<j\ Lim.

Since F is approximable as a mapping from (Lim=>Lim) into (F(Lim) => F(Lim)),

^Lim,=nlK* ° ft)) = Uw<) ° F(/n-
It follows (cf. Plotkin (1978)) that F(Lim) is the direct limit of (F(At-), F(ey)). Therefore,
the functor F is continuous. Consequently, even though ISys is nothing more than a

category of sets and set maps, there are solutions to recursive domain equations defined
over it. ]

Once we've come this far, not even propriety prohibits us from becoming even more

imaginative. Can we also assume that ISys coincides with the category of effectively
given information systems with computable maps? If the answer were 'Yes,' all manner

.*1
of tiresome calculations become superfluous. Dispensible would be the cheviK that X-terms
always define computable maps on effectively given systems. Also, the knowledge that
recursive domain equations are solvable over the effectively given systems would come

automatically from the elementary considerations of the preceding theorem.

We will prove that, over V(Kl), the answer to our (classically) fanciful question can
be 'Yes.' If one insists on ordinary set theory in classical logic, the category ISys is a pure

fancy; our assumption 2.1 is outrageously false. Even in classical arithmetic, one can define
demonstrably nonapproximable maps on information systems. However, in intuitionistic
set theory, we attain axiomatic freedom: there are no counterexamples to our assumption.
In fact, the requisite intuitionistic set theory is nowise nonstandard; it is our old friend IZF.
It is in IZF that we think of ISys as formalized. In describing the consistency proof, we
will have reference to the following fact about To: there is an index i such that, whenever
/ is a total recursive function with index e, (i}(e) [|— / £ (tu => w). / is the usual internal
representation of / defined in terms of pairing:

/ = {(«, {«, m)) : /(n) = m}
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This is a fact easily abstracted from the lengthy considerations of Chapter Five. One
should also bear in mind the results of Chapters Three and Four, primarily the fact that
a subset of the internal natural numbers is decidable in V(A7) just in case, when viewed
from without, it is recursive. (Of course, such a subset is also internally recursive, thanks
to the presence of CTq.)
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Section 3: A category of constructive information systems

Just as IZF is in many ways a natural set theory, so ISys is a quite natural category of
information systems. In fact, ISys is properly conceived as the result of a straightforward
constructivization of Scott's notion of "information system." And that is just how we

conceive it and how we will motivate its definition, starting from the conventional definition
of an information system:

3.1. Definition. Let P<U(A) be the finite powerset of A. A quadruple

A — (A, ConsA, \-A, AA)

is an information system iff ConsA is a unary relation on P<U,(A) and : a is a binary
relation on P<UJ(A) XP<U(A) such that

whenever u C v and ConsA(v), Cons/i(") [1]
for all x £A, ConsJ4({x}), and [2]

whenever it I—A v and Cons^u), Cons/i(uUu). [3]

Also, whenever Cons^u) and ConsA(o), we assume that

u I~A {^a} [4]
u Pa u if u C u [5]
u Pa v and v Pa w implies that it Pa w, and [6]

it Pa v and u Pa w implies that u Pa »U». [7]
a

When A is an information system, A is thought of as the set of tokens or "atomic bits
of information" about some interpreted computations. ConA and Pa are, respectively,
a notion of consistency on the finite subsets of A and a relation of entailment holding
between the finite subsets. Aa is the null bit, the token incorporating no information.
Under the implied analogy, one thinks of A as a "space" of all possible propositions or
coherent bits of information about a collection of computations.

Of all the available bits of information, the reasonably complete collections of bits are
the elements of A and these are collected into the set A*. Officially, x £ A* iff x C A,
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all finite subsets of x satisfy ConsA, and, whenever u C x and u v, then v C x. One

can extend the obvious analogy between the information-systems concept of consistency
and consistency in logic by saying that any subset of A, all of whose finite subsets are

consistent, is also called consistent. Moreover, as far as the elements of A are concerned,
such consistent sets are all that matter. The members of A' are, then, precisely the
closures of consistent sets under Ha- Hence, we can refer to each consistent subset of A,
finite or otherwise, as a basis (for some element). Furthermore, (speaking classically) if A
is countable, so is every basis, as is the set of all finite subsets of a basis.

The move from the classical notion of information system to the notion appropriate for
constructive contexts calls for the addition of some extra structure to the classical notion.

This is no cause for alarm; the weakness of intuitionistic logic itself issues a general permit
for structural improvements. (Cf. Bishop (1967).) Aside from this, one can offer good
reasons, both prudential and philosophical, for the structure we propose to add.

The first addition attaches to the notion of element. Working as constructivists, we

will identify the elements with the countable bases. In constructive contexts, it is generally
a matter of prudence to refrain from talk about arbitrary subsets of (even finite) structures.
So, one should avoid arbitrary elements of systems as classically construed. The IZF axioms
exert even less control over powersets than do their classical counterparts. This is apparent
from realizability: as we have seen, P(w) in V(A7) contains cardinal numbers up to (a
version of) uU]. On the philosophical side, insisting that bases be enumerable preserves
the computational metaphors that enliven Scott's ideas. When the basis is enumerable, the
finite consistent subsets of it literally form a series of approximations to the corresponding
element.

Second, in ISys, Cousa and Ha will be assumed to be decidable relations. This
restriction shares its prudential motivation with the first: arbitrary relations on a structure
are just too uncontrolled. But again, decidability is mandated if we're to follow the advice
of Scott in conceiving of the building blocks of systems:

The best advice is to think of the members of [A] as consisting of finite data objects, some
of which are more informative than others. The word "finite" should be taken in the
sense of "fully circumscribed"—as regards what is given in [A] these data objects can be
comprehended in "one step."
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If the tokens are thoroughly finite informational bits, one should be able to determine, in a

finite number of steps, the entailment and consistency relations holding on finite collections
of them. Hence, the decidability requirement is extremely natural.

Lastly, we assume that the set of tokens of an ISys system is an cj-retract. In that

regard, we pause to review some results from Section 6 of Chapter Three.

3.2. Definition. A set 5 is an w-retract whenever there are functions i : S >—-> ui and

j : w —» S such that j o i = ids ■ I

Admittedly, this is a nontrivial constraint. In the presence of the axiom of choice
AC, even in intuitionistic logic, all and only countable sets are w-retracts. As we know

(cf. Chapter One, Proposition 2.5), full choice is not constructively consistent with IZF.
However, the connection with AC points the way to an acceptable motivation for the
requirement, for one can prove that

3.3. Proposition. V(A7) For S countable, S is an U)-retract iff S is discrete iff AC
holds on S.

Proof. See Chapter Three, Proposition 6.5. ]

Insisting on w-retracts, then, is in keeping with Scott's advice; it guarantees that
identity on the sets of bits is decidable. Also, AC will make sure that functions exist over
the system whenever they are needed. It is a simple consequence of this characterization
that, for subsets of u>, co-retraction is no restriction beyond countability.

3.4. Corollary. V(A1) |= For S C ui, S is countable iff S is an uj-retract.

Proof. See Chapter Three, Corollary 6.6. |

A point worth noting: to the classical mathematician schooled in AC, all this extra
structure is nugatory. In ZF+AC, ISys is merely the category of countable information
systems.

Now that all the conceptual software is mounted, we can give the official description
of ISys.

3.5. Definition. A is an object of ISys iff A = {A, Cons^, I—^, A^) is an information
system, Cons^ and \~a are decidable on P<a,(A) and P<iu(A) XP<U,(.A), respectively, and
A is an w-retract. I
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3.6. Definition. / is an element of A iff / £ (w => P<U(A)), and

Vn ConsA(/(0) U /(l) U ... U /("))•

The set of elements of A is denoted 'A'.'

I

Intuitively, equality on bases should be equality on elements, and it is for this that the
next definition provides. When / and g are equal as elements, we will say that / ssA g.

3.7. Definition. For /, g 6 A", / CA g iff

Vn 3m 5(0) U j(l)U • • ■ U j(m) Ha /(")

and / «A g iff

/ CA g and g CA /.

I

Strictly speaking, the set of elements of A is the collection of bases, plus the appro¬

priately defined equality:

3.8. Definition. If A is an object of ISys, the set of elements of A is the pair (A*, «A).
1

Finally, there is no difficulty in proving constructively that ISys is truly a category
of domains. The traditional notion of domain, as in Plotkin (1978), is that of consistently
complete, w-algebraic cpo.

3.9. Proposition. For A from ISys, (A*, CA, ~A) is a consistently complete, to-
algebraic cpo.

Proof. Immediate from the definitions of the constituent notions. |

As an to-algebraic cpo, A has finite elements. These are sequences of finite consistent
subsets from A which are, up to <=aA, constant.

3.10. Definition. / £ A* is finite iff g is a constant function and / 9- I
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3.11. Theorem. / g just in case for all finite h,

h C / iff h C g.

Proof. Immediate, i

As a category, ISys has a perspicuous and useful skeleton—a collection of presented
information systems. Roughly, the presented systems are those having u itself as a set
of tokens. For present purposes, we let '{xo, Xi,... x„}' represent a surjective primitive
recursive coding into w of finite subsets consisting of elements xo, X\1 ... xn of M. Under
this coding, nUm represents the code of the finite set which is the union of the set coded
by n with that coded by m. n C m is the primitive recursive relation of set-theoretic
inclusion holding between the sets coded by n and by m.

3.12. Definition. A pair (Cons, I—) is a presentation iff Cons is a decidable unary relation
on w and t— is a decidable binary relation such that

whenever n C m and Cons(m), Cons(n) [l]
for all n, Cons({n}), and [2]

whenever n\- m and Cons(n), Cons(n U m). [3]

Also, whenever Cons(ra) and Cons(m), we must have

n \- 0 [4]
n I— p if p C n [5]

m I— n and n h- p implies that m \— p, and [6]
n 1— m and nbp implies that n\- m\Jp. [7]

I

This definition makes explicit what it takes to be an information system in terms of
the coding on the natural numbers. Note that, in presented systems, 0 always plays the
role of {A}. The constant m-valued w-sequence is denoted '[m]' and finite elements are
specified in accord with this notational convention. Hence, if S is presented, then / 6 S
is finite iff 3mgu / [ti]-
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One readily sees that the presented systems really do provide a domain-theoretic
skeleton for ISys.

3.13. Definition. Information systems A and B are equivalent iff (A', CA, rsa) is
isomorphic (in the order-theoretic sense) to (B~, Qg, «b). |

3.14. Definition. An information system A is presented iff there is a presentation

(Cons, |—) such that, when 5 = (w,Cons, I—,0), (A', CA, ksa) is equivalent to (5*, Cj
,^s)- I

3.15. Theorem. Every object of ISys is equivalent to some presented system.

Proof. Given A in ISys, A is an u-retract. Hence, there are functions i : A 5—u and
j : w —» A such that j o i = idA. Define a presentation on u> so that it accords with
consistency and entailment in A, as mediated by the pair (i,j). Specifically, we take

Cons(n) iff ConsA{;'(m) : m 6 n} and

m I- n iff (j'(p) : p 6 m} h-yi {j{q) ■ q £ rn}.

It is a simple matter to show that this presented system is equivalent to A. g
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Section 4: Consistency theorems

This section is devoted to proving that, for the intuitionistic information systems of

ISys, axiomatic freedom is attainable. We will prove that, in V(A7), the assumption that
every set map in ISys is approximate holds. In keeping with the set-theoretic paradigm,
a map between objects of ISys is just a binary relation that is single-valued on its second

place and respects the relevant equalities. More formally,

4.1. Definition. If A and B are in ISys, and and are the respective equalities,
F is a function fronrAtoB[F:A —>■ B) iS F C. A' Xfl" which is invariant under
in its first coordinate, invariant with respect to ;=sB in its second, and which is total and
functional:

(a, b) £ F A (a, c) £ F -* b s«B c

I

It is also worth recalling the definitions of monotonicity and of continuity for systems

maps. Again, these are written in "set-theoreticalese:"

4.2. Definition. For A and B £ ISys, F : A —► B is monotone iff

Va,c EA' (a CAc^Vb,d<EB' (((a, b) € F A(c, d) € F) -» b CB d))

I

4.3. Definition. F : A-+ Bis continuous iff

Vn Va £ A" (V6£fl* ({o, 6) £ F — [n] CB6)->
3m ([m] CA a AVi£B* (([m],t) £ F —> [n] CB 6)))

I

In giving these definitions, we have taken an excusable liberty. Strictly speaking,
an arbitrary A from ISys does not contain the finite elements [n] of a presented system.
But, since every object of ISys is equivalent to a presented system, we can use the same
notation for the Unites of any system. Conjoining these two definitions gives the definition
of systems morphism:
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4.4. Definition. F : A—* B is approximable iff F is continuous and monotone. |

All the machinery is now in place for the proofs of the consistency theorems.

4.5. Theorem. ~V[Kl) |= If F : A—* B, then F is continuous.

Proof. Since every member of ISys is equivalent to a presented system, we are free to

restrict consideration to A and B presented. There will be no notational distinction made
between the basic relations Cons and I— for A and the corresponding relations for B. This
will not be a source of confusion.

F is, by definition, total on A', so we can assume that there is an e\ such that

Now, we evaluate the definition of continuity over V(Kl): let e3 [|— / G A' while

Here, we are abbreviating ff(0) U • • ■ U g(m) as g'[m).
We now think of i as an index for a Turing machine. Take f to be a total recursive

function for which {^(i)} outputs 0 on 0 and such that, for n > 0,

if otherwise

Given that V(Kl) mediates a close relation between decidability and recursivity, it is clear
that 0 exists. Let index the total recursive function enumerating the range of {^(i)}
by dovetailing. Because of the way is defined, there is a total recursive 9 such that

By clause (6) of the definition of (J— ( cf. Definition 4.1 of Chapter Zero), we infer that

{£l}W)) H~ (? € B" A<{V'(«)} > 9) C -P)-

Because total functions on w in V(lu') are recursive, there are partial recursive p, 04, 02

H- v/ (/ € A* - 3g (g 6 B* A(/, g) e F)).

{e2}((n,e3)) )j- Vg ((/,?) eF->3meu g*(m) h n). [l]

{i}(n) if Vx < n {i}(r:) J. /\V(Kl) j= Cons {i} (n)
| if Vx < n {t}(a:) | A ~'V(KI) f= Cons {i} (n)

such that

{p(i)} is total,
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ui(i) H~ {p(t)} € B*, while

From [1] we know that

{{e2}((n,e3))}(<r2(i)) H-3m (p(i)} (m)f-n.

Then, for each n6», let

Un = {i : V(i$T() |= 3m (p(i)} (m) |- n}.

Our intention is to apply the classical Rice-Shapiro theorem to £/„. For that purpose, we
have to check that Un is r.e. and extensional on indices.

Because A is presented and I- is decidable in V(Kl), Un is clearly r.e. For extension-
ality, assume that {i} ~ {j}. Then (<A(i)} — {$(/)} and

As F : A —♦ B is a function in ~V(Kl),

This asserts that {p(rj} and (p(i)} determine bases generating the same element of B.
Hence, if i 6 Un, then so is j. Therefore, Un is extensional. (Note that an r.e. index for
Un can be calculated uniformly in n.)

Now, suppose that i |j— / £ i'. Without loss of generality, we can assume that
V(ifl) [— f — {i}. From our work above, it follows that

and that there is a <73 such that

*3(0 H- (v(0> ~ /•

Working just as above and using [1], we get

{{e2}((n,0(i)))}(<r2(t')) H~ 3m (p(i)}* (m) n.
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Therefore, every index for {i} lies in Un. By the Rice-Shapiro theorem, there is a finite
subfunction g of {i} which is defined on an initial segment of u and which has an index
in [/„. Given the conditions on i and n, one can find, effectively in i and n, a canonical
index for g. Consequently, there is available a partial recursive 7r such that it{i,n) indexes
the total constant function whose value is m, where

m = U 9W-
>eDom(a)

Since ~V(Kl) |= {i} £ A*, V(KY) [= Gons(m). Also, there is an effective routine which,
from i and n, calculates a j such that

i H- N Q /.

If k is a Turing index for g, calculable from t and n, then k 6 Un or

V(A'/) )= 3m {p(/c)} (m)l-n.

Again, it is easy to calculate a realizing number for the statement above.

To complete the proof, it suffices to calculate a witness for the assertion

(H, {/>(/=)}> e F. [2]

This will suffice, since we already know that, in ~V(KI),

n Q Wfc)} ■

To find a realizing number for [2], it is sufficient to find one for

H «Wk)} -

But that is easy—one runs through the dovetailing procedure that specifies
proof is now complete. |

4.6. Theorem. V[Kl) |= If F : A-> B, then F is monotone.
Proof. Assume that ~V(Kl) \= F •. A-* B. Take ei, e2, e3, e4 £ u such that

ei H~V/ £ A" 3fi £ B" ((f,h)€F)
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e3 H~ / S -A*

{e2}((n,e3)) [)— V/i ({/, h) £ F -> 3m /i*(m) n) and

0- Vn 3m g*(m) ||- /(n).

ei realizes that F is total, e2((n, e3)) realizes that [ft] C F(f) and e4 realizes that / C g.

The plan is to prove monotonicity for F in V(Kl) by checking that

V(Kl) H ((/ Cj A[n] C F(f)) - [n] C F(g)).

ej is used to instigate the same construction as that of the preceding theorem. As before,
we form the collection

Un = {i : ~V(Kl) |= 3m {p(i)} (m) b- n}.

Again, it's easily provable that, if i fj— / 6 A", then i G Un- By the Rice-Shapiro theorem,
there is a finite subfunction gi of {i} all of whose indices belong to XJn. We continue as
in Theorem 4.5 to find an m £ ui and a realizing number for [m] C g. To complete the
proof, it will suffice to show that there is a j £ u such that j |(— g £ A" and j £ Un.

To that end, assume that j (f— g £ A" and ~V[Kl) )= g = {j}. We can locate a
function h and a subfunction hi such that V(AT/) f= h « g and h 1 has its indices in Un.
Again, this is very easy:

V(Kl) b [m] C g.

This means that

V{Kl)^=3k g"(k) I— m .

Let h be a function on lo such that for all p £ u,

(m
= (M(p -

if p < k
(fc + 1)) if p > k

Obviously, V(A3) [= h as g. Take hi = h l(fc + 1) and let r be an index for this finite
function. It follows that

V(ffl)H3l{p(r)}'(t)krii
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and, hence, that r has an index for hi that falls into Un. |

4.7. Note. Certainly, other proofs of the consistency theorems are available. We opted
to present one that employs the Rice-Shapiro Theorem explicitly to emphasize the accord

(which will be plainly apparent from later sections) between the objects of ISys and the clas¬
sical eg systems. Using the Rice-Shapiro Theorem in this way shows that the consistency
theorems derive from a realizability-theoretic application of known results about effec¬
tive domains, specifically the Myhill-Shepherdson Theorem for eg systems. (Cf. Plotkin

(1978).) |
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Section 5: Properties of the category

In the eyes of V(Kl), every set map between members of ISys is continuous and
monotone. Therefore, the category of ISys objects and set maps is precisely a category
of information systems and approximable maps. Now, IZF can take over almost entirely;
from the definitions and these nonstandard axioms one can show that ISys has all the
properties of a rich collection of computational domains. In fact, we devote this section to

cataloging some of these properties.

Every map between A and B in ISys is determined by its graph:

5.1. Definition. For F : A—► B, gh(F), the graph of F, is the binary relation on oj for
which

(m,n) £ gh(F) iff [n] CB E([m]).

I

5.2. Theorem. V(AT/) |= If F : A—* B, then F is uniquely determined by gh(F).
Proof. Assume that both A and B are presented and take F approximable. We work in
IZF. For each / 6 A", let II(f) enumerate

{n£u: 3m ([m] CA f A (m, n) £ gh(F))}.

Since all the basic relations are decidable, H(f) exists. It will suffice to show that
(f,H(f)) £ F, and, for that, it will suffice in turn to prove that, if (/, g) £ F, then
9 H(f).

Assume that (f,g) £ F. Then, by continuity of F, if [n] CB g and (/,</) £ F, then
H(f) eventually outputs n. Hence, g C. B H(f)- On the other hand, let [n] CB 11(f)-
From the definition of H(f) and the monotonicity of F, [n] C g g. Therefore, g H(f)-
I

5.3. Theorem. V(iO) j= If F : A—> B, then gh(F) is countable.

Proof. This is immediate, in IZF, from the decidability of Cons and I—. |

Thanks to the recursion theory which is "built into" realizability, ISys is, in V(Kl),
precisely the category of effectively given domains. First, the fact that decidable and
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recursive relations coincide in V(ICl) has already received considerable attention. Moreover,
since CT0 holds in V(A7), every countable set of natural numbers is r.e. It follows directly
from this that ISys coincides with ESys and that every ISys morphism is computable.

5.4. Corollary. ~V[Kl) [= ISys is equivalent to the category of eg information systems
and computable morphisms.

Again, because of CTo, only the computable elements of a system exist in V(ffl):

5.5. Corollary. ~V(Kl) (= //Ag ISys and f g A", then f is computable.

The standard proof that Sys, the classical category of information systems, is carte¬

sian closed is fully constructive. Hence, it is reproducible in IZF and, to show that ISys is
cartesian closed, it suffices to show that products and exponentials of presented systems
are presented. In truth, one can show that the category is closed under any of the usual
constructs.

5.6. Theorem. V(f£7) j= ISys is closed under products, sums, exponentiation, and the
formation of Hoare and of Smyth powerdomains.

Proof. All the requisite verifications are obtainable in IZF. We restrict ourselves here to
a sample, the proof of closure under products.

Recall that (, ) is a surjective p.r. pairing function with xo and x\ as the corresponding
projections. Let ra° and m1 be the p.r. functions defined by

m° = {no : n g m} and m1 = {ni : n g m}.

For this pairing, we assume that 0^ = 0 = 0*. Let A and B be presented elements of ISys.
We define relations CohsaxB and Kixfl a3 follows:

ConsAxfl(n) 'ff Cons^n0) and Cons^n1)
m \~AxB n iff m° I~A n° and m1 Hb n1

These new relations are clearly decidable and satisfy the conditions on presentations. It is
then straightforward to check that (ConsAxB, Haxb) '3 a presentation for A X B. I
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Section 6: On eg systems: a question of Plotkin

In V, ESys is the category whose objects are the eg information systems and whose

morphisms are the computable approximable maps. Specifically,

6.1. Definition. S = (iu,Conss, I—s,0) is an eg information system (an object of ESys)
iff S is an information system and Conss and |—s are recursive relations on (coded) P<u'(w)
and on P<'"(t«;)xP<','(w)> respectively. As is the case with ISys, when S is in ESys, we

say that (Conss, H-s) is a presentation of 5. |

6.2. Definition. i£u indexes 5 in ESys iff io in an index for Conss and i\ is an index
for !—5- ]

The proof of the last theorem of the preceding section, not to mention the effectiveness
of all set maps of ISys in ~V(Kl), point to the existence of a close connection between ISys
and ESys. As a first step toward illuminating the connection, we note that the objects
of ISys in V(AT/) stand in a correspondence with the objects of ESys in V given by the
respective presentations. A construction on the familiar injection S i—♦ 5 takes each
presentation from ESys into the presentation of a presented system of ISys.

6.3. Definition. Let (Conss, I—s) be a presentation from ESys. Then, (Consg, I— s) =
(Conss , I—s) where, as usual,

Conss = {(n,n) : n 6 Conss} and

FJ = {{(n, m), (n , fn)) : nhs m}.

I

Of special note is the fact that the correspondence is effective:

6.4. Lemma. There is onegu with the property that, if i indexes 5, then {e}(r) I and

WW H~~ {ConsSl Is) is a presentation in ISy3.

Conversely, there is an h with the property that, if

j (Conss, I—s) ts a presentation in ISys,
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then {h}(j) J. and {h}(y) indexes S.

Proof. This is a straightforward application of the absoluteness theorems of Chapter
Four. One need only remark that the properties Cons and I- are a.n. |

The lemma justifies the following definition.

6.5. Definition. If 5 is an eg system whose presentation is (Cons, H), then 5 is the
system of ISys whose presentation is (Cons, (-). |

Plotkin has asked whether a realizability construction could be employed to eliminate
from the classical development of ESys theory the explicit calculation of indices. With the
above information, we propose to answer the question of Plotkin affirmatively in a simple
case, that of products. Then, from the simple case, we can extrapolate to a general answer.
Since the usual proof of the closure of ESys under products is constructive, there is no need
to calculate on indices to insure that the product construct is effective. The realizability
interpretation of intuitionistic logic then gives the indexing calculations automatically.

The mathematical core of the proof that ISys is, intuitionistically, closed under prod¬
ucts is the provision of a presentation for the product, (ConSAxB. Haxb)> 'n terms °f
the presentations (ConsA, Ha) and (Consa, He) of its component systems. This same
construction is also the mathematical core of the proof that ESys is closed under products.
The very identification of these two "cores" has itself a mathematical content, which is
expressed in the proof that, over V(Fff), the results of the two constructions are identical.

Let A and B belong to ESys. Let ConsA XConsa represent ConsAxfl a3 's defined
arithmetically in terms of ConsA and Consa- Similarly for Ha x Hb-

6.6. Lemma. Let (Cons^, Ha) and {Consg, Ha) present A and B as objects from ESys.
V(Kl) satisfies

(ConsAxB , Haxb) = (ConsA x Cotisb,\-a x fa).

A realizability witness can be found for the latter statement independently of A, B and of
their respective presentations.

Proof. We will check that

Haxb = Ha x Hb
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and leave the correlative check on Cons for the reader. First,

e H~ (m,n) g \~axB

implies that m = eo, n = e\ and eo Haxb ei- By the internal definition of \~axBj this
means that

eg I a ei and ej \-B e\.

Hence, ({eg, e?), i) (m° ,n°) g Ha and (rn1 ,n1) g Hj.
The absoluteness of the recursive functions shows that there is a partial recursive 9

such that

0(e) [j— (m° , n°) 6 Fa and (m1 , ra1) g Ps .

Second, if e |-(n,m) £|-a X l-fl, then

eo H— 1 n ) £ I-A and

ei [)- (n1 ,«') € I B ■

Then, the above reasoning can easily be worked in reverse to prove that there is a partial
recursive 'P such that

'P(e) [)— (n,m) GHaxb •

This completes the proof. |

With the above lemmas in place, the elimination of indices for products is an easy
exercise:

6.7. Theorem. The explicit calculation of indices is eliminable from a complete proof
that ESys is closed under products. The calculation is eliminated in favor of working
constructively over ~V(Kl).
Proof. Assume that (ConsA, I-a) and (Conss, |~b) present A and B as objects of ESys
and have indices 1'a and is, respectively. Thanks to the preceding lemmas, for X = A or
X = B, {e}{ix) I and

{e}(0c) H~ (Consx , \~x) is a presentation of an object of ISys .
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As we have seen, IZF |-"ISys is closed under X," so the soundness of realizability produces
a j such that j fj— "{Cons^, H/i) and {Consa,l-fl) are presentations from ISys only if
(Consul X Consfl , a X Ha) presents their product."

By the definition of realizability for implication,

{.?H({e}(ct), {e}(la))) (h {Cons^ X Conss ,\-A X Fa) presents their product.

Next, there is a k g w such that {A=}({y}«{e}(i^), {e}(z'a)))) realizes that

(consaxb ,\~axb)

presents the product of A and B in ISys.

At last, we apply the second half of the first lemma to obtain the result that

indexes (Cons_^xfl» ! axb) in ESys.

a

The theorem shows that all indexing calculations can be removed from the consid¬
eration of products in ESys. This is the most instructive elementary demonstration we

know of the profits of constructivity. The only price for automatic index calculation is the
observation that the conventional proof of closure is constructive and that constructive
mathematics is sound with respect to realizability. But that's not all: the pleasures of re¬
alizability are not limited to products. Any of the conventional operations on ESys admit
of the same treatment because the definitions of the operations can take a particularly
simple form. The form in question is that which allows, for each operation, a version of
Lemma 6.6 to go through.

6.8. Definition. Let P be a set of decidable number-theoretic predicates. Let Lp be the
language of Peano arithmetic with predicates from P. <f> 6Form(Lp) is almost negative
(a.n.) in P iff V does not occur in ^ and 3x occurs only before decidable subformulae of
4■ 1

This definition should be compared with that of "almost negative" formulae as it
appears in Chapter Four. For purposes of exposition, we pretend that the predicates of P
are all binary.
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6.9. Definition. For </> £ Form(Lp), <f> is obtained by replacing each appearance of any
P from P in </> by P where P =

{{{m, n), (m,ff)):V |= P(m)},

and then by expressing </> "in the natural way" in set theory (Cf. Chapter Four.) |

For purposes of exposition in the next lemma, we assume that <j> has at most two free
variables.

6.10. Lemma. If <j> is a.n. in P, then there is an e# £ oo such that if~V <j>(m, n), then
{e^,}(m,n) I and {e^}(m, n) |j— <j> [m , n). Also, ifY[Kl)\=<j>{rn,n), thenY \= tj>{myn).
Proof. One need only reproduce, modulo P, the proof that the a.n. definable relations
are effectively absolute. Again, the reader should consult Chapter Four. J

6.11. Lemma. Let F[A,B) be an operation on ESys such that the presentation of
F(A,B) is a.n. in the presentations ofA and of B. Specifically, let tf>0 be an a.n. formula
defining Consfia,b) in terms of Consa, Consg, I—a and F-g and let 6\ do the same for
! f[a,b)~ Then

V{Kl) |= ConsF{A,B) = (f>o and

t= l-FbLB) = ■

Also, realizability witnesses fo.r each of the above is obtainable independently of A and B.

Proof. We use the preceding lemma and the usual injection manipulations. The proof
is straightforward but tedious. |

This, finally, is our general theorem on the elimination of indices:

6.12. Theorem. Assume that F(A,B) is an operation on ESys such that a presentation
°fF(A,B) is a.n. in those ofA and B. Let T be any extension of IZF such that both~V f=
T andY(Kl) f= T and assume that Th~ "ESys is closed under F". Then, Y[Kl) f= "ISys is
closed under F" and all the indexing calculations relevant to F are effective and eliminable
in favor of realizability.

Proof. Use the lemmas and work just as in the case of products, g

The following corollary provides a general answer to Plotkin's question.
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6.13. Corollary. In ~V(Kl), ISys is closed under products, exponentials, sums, Hoare

powerdomains, and Smyth powerdomains. The operations corresponding to the construc¬
tions are effective and all the indexing calculations are eliminable.

Proof. One checks that all the operations have presentations which are a.n. in those of
their components and that all the relevant proofs can be carried out in IZF. |
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Section 7: Eliminating the first-order theory of eg systems

One might say that, in eliminating index calculations, we have shown that the effective
form of the theory of eg systems is fully captured by the logic of the theory of ISys.
The phrase 'eliminating the theory of ESys' means more than this; it means that the
mathematical content of the theory of eg systems can be wholly replaced by that of ISys
over ~V[Kl). As rationale for the suggestion, we give a "small scale" isomorphism result
linking ESys with ISys. The result shows that, mathematically speaking, nothing will
be lost in taking up_ this suggestion. The isomorphism is "small scale" because it does
not treat certain logical features, such as quantification over objects from the various

categories. These features could only be considered on a much grander scale than that
available here. (In a future writing, we will show how the isomorphism can be made to
work on the "grand scale.")

7.1. Definition. For A from ESys, the language L° ('e' for 'effective') is a two-sorted
first-order language with sorts E and M and with the following predicates as primitive:

C of sort E X E

App of sort M X E X E

As a matter of convenience, we assume that each computable / £ A' and computable
F : A —* A appears in L' as an autonymous name. Jj

Under the natural interpretation of L' over ESys, E represents the collection of com¬
putable elements of A and M the collection of computable morphisms from A into A.
Specifically,

ESys \= f Cj

iff computable / is contained in computable g as A-elements and

ESys |= App(E, /, g)

iB F : A~* A, f and g are computable, and F(f) = g.

To carry out the proposed elimination, each of the objects of the interpreted sorts is
injected into V(Kl). There each reappears, under the appropriate description, as a feature
of A 'n ISys. In the following, we let e/ be any index for recursive /.
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7.2. Definition. For / G (in => in), let

/ = {(n, (n,m» : (n,m) G /}.

For F : A—* A, and F computable let

1

The next lemma is intended to show that the "overlining" injection underlies a perfect
semantic accord—at least as far as the sorts and atomic sentences are concerned—between

ESys and ISys over V(ffl).

7.3. Lemma.

ESys b £(/) iff V(Kl) t= 7 G A' [1].

ESys }= M[F) iff V(Kl) |= F : A — A [2]

ESys\=fCg iff V(Kl)\=JCAg [3]

ESys |= App(F, /, g) iff V(Kl) \= (J, g) G F [4]

Proof, [l] and [3] follow immediately from the definitions of the pertinent notions and
from our oft cited reflections on decidability in V(Kl). [2] follows from [1] and [3], We will
prove [4] explicitly:

If App(F, f, g) holds in ESys, then F is computable and takes / into g. By the
definition of F, (e/, t) |f— (/, g) G F. Conversely, if e [f— (/, g) G F, then

eo and = (h,k),

where (h, k) is in F. By the absoluteness properties for the natural numbers, f = h and
g = k, so (/, g) G F. |

As should now be familiar, the neat correspondence of this lemma extends to a full
translation <j>tr. Let Se be the set of sentences of L°.
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7.4. Definition. 0lr is defined for <j> from SL If <f is atomic, let <j>tT be given by the

correspondence of the preceding lemma. <j>tr commutes with A, V, —►. For X and x

ranging, respectively, over the computable endomorphisms and elements of A,

(VX i)" = VX (X : (A— A) — -- - <j>tT)

(Vx 4>)tr = Vx (x € A* ->• - - <ftr)

(3X <t>)'r = 3X (X : (A -f 2) A <l>tr)

(3x ^)"- = 3x (x£A* A0tr).

1

7.5. Theorem. For </> £Se, .ESys (= <A iffV{Kl) 1= «i'r.
Given the previous lemmas and the properties of realizability, there is no difficulty in

proving that if <j> is quantifier-free, then the theorem holds. For quantified expressions, the
following lemmas are necessary. The proof of each lemma is strictly analogous to that of
the correlative theorem of Chapter Five.

7.6. Lemma. For f £ ~V(Kl), iJ~V{Kl) |= / £ A , then, for some g £ A", we have
V(Kl) \=f = g.

7.7. Lemma. For F £ V(Xf), ifV(Kl) (= F : A -> A, then V(Kl) |= F = G, /or some

computable G '■ A—> A.

Now we return to the proof of the theorem.

Proof. The essential idea can be conveyed by presenting the proof for one of the universal
quantifiers.

Assume that ESys \= VX <f> and suppose that ~V{Kl) )= F : A —► A. By the lemma,
there is a G : A —► A such that, in ~V(Kl), F = G. <j>(X/G) holds in ESys, so

V(Kl) |= <j>tr[X/F) and 0 |f- - -■ ttr(X/F).

Therefore, V(Kl) (= (VX <j>)tT.
On the other hand, if

V(Xf) |= VX (X : (A- A) -> - -n
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and F : A —* A in V is computable, then

V(Kl)\= F :A-> A.

It follows that V(A7) [= <f>tT(X/F) and, hence, by the inductive hypothesis, ESys |=
f(X/F). |

The theorem on ftr shows that, in studying the effective aspects of ESys, no mathe¬
matical fact is ever lost by restricting our researches to ISys and using the mathematical

principles holding over ~V(Kl). The next theorem is a straightforward preservation result;
as with the similar result for RETs, it shows the ease with which constructive truth about

ISys can be transformed into classical truth for ESys.

First, we pick out those formulae of L° which are naturally preserved in this transition.

7.8. Definition. A formula <f of Le is in T iff if £Se, and, in <j>, occurrences of V appear

neither in the scope of -> nor in the antecedent of —►. |

7.9. Definition. The translation </ipr is defined just as <f>tr, except that the double
negatives are removed from the cases governing the quantifiers. |

7.10. Theorem. For <j> 6 T, V(Kl) }= <j>VT only if ESys j= if.
Proof. This is immediate by induction on the structure of if. |
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Section 8: Conclusion and prospectus

Nothing now stands in the way of giving elegant and informative but decidedly "non¬
standard" derivations of classical results about ESys. For example, one can prove the full
effective fixed-point theorem without the use of recursion theory by proving the pure fixed-
point theorem constructively over V(X/). The usual proof of the noneffective version of
the fixed-point theorem is fully constructive, so there is no difficulty in carrying it out over

ISys in V(ffl). It is an immediate consequence of this trivial remark that the following
holds in V(X/) for every A from ESys:

VX (X : (A- A) -* 3y € A* (X(y) = y A Va G A* (X(a) = a - y CA a))).

Since this expression of the fixed-point result is formulable in L' as a sentence in T, the
effective fixed-point theorem holds automatically and without further ado in ESys.

Moreover, because the constructive proof of the fixed-point theorem is interpreted
over realizability, even more information is forthcoming. The realizability conditions for

►' show that there is a uniform effective procedure which, given an index for computable
F : A—>A in ESys, outputs an index of the computable fixed-point of F. But that is not all.
The proof of the soundness theorem for realizability gives one even more: an index for this
uniform procedure is itself effectively calculable from the code of a constructive proof of the
fixed-point theorem together with the index of a presentation of A. We want to emphasize
that this is not a further result that one labors to derive in addition to the proof of the
pure fixed-point result—as is the practice in the theory of classical eg systems. Rather,
"automatic effectiveness" is merely part of the profit earned by constructive mathematics.

This is just an instance of a general phenomenon on which we have already had
occasion to remark. We are refering to the ability of IZF under realizability to offer
automatic "program specification." The conclusions of the preceding paragraph should
be compared with our remarks in Chapter Four on Church's Thesis. One may take it as

given that, whenever a universally-quantified conditional statement in the language of set
theory is realized, there is something that one could say about automatic programming.

In V(Kl), ISys represents exactly what one would want from a constructive category of
information systems. First, we've seen that ISys has a kind of domain-theoretic Brouwer's
Theorem: every set map of systems is contiguous. It also satisfies a kind of Church's
Thesis: that every set map is computable. These highly nonclassical axioms make for
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the axiomatic freedom encouraged earlier; in *V(Kl), domain-theoretic life is blissful. But
that's not all. Since set theory is interpreted over V(/f/) as readability, ISys stands in
an illuminating semantical relationship with the classical category ESys. Thanks to this

relationship, proofs of "effective facts" about ESys, like the effective fixed-point theorem,
can be obtained from simple, wholly noneffective set-theoretic arguments over ISys. In
this way, the theory of ESys is eliminated, and all that remains are realizability and the
constructive mathematics of ISys.
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CHAPTER 8

Recursive Point-Set Topology: A Final Application

Section 1: Prefatory and historical remarks

The primary result of this chapter is that certain sorts of forcing constructions cannot
be carried out in IZF and in some of its extensions. We make no pretense that this in
itself answers some pressing or longstanding problem in the foundations of intuitionistic
mathematics. Rather, our designs are, in a way, much less ambitious. First, our hope is
to reply to those who claim that, under realizability, recursive topology does not represent

any constructively interesting mathematics. Our contention is that work in recursive

topology often represents a contribution to the foundations of nonrecursive constructive

mathematics, and that attention to realizability might increase the frequency of positive
contributions from this direction.

Second, we hope to suggest that this feature of classical recursive mathematics is
ubiquitous. Independently of topology and of polemics, this chapter offers a hint of the
ways in which our work in the past chapters can be extended. There is every indication that
any of the fields of recursive mathematics—recursive topology, recursive algebra, recursive
analysis and even recursively saturated models—might be examined under realizability for
their contributions to pure constructive mathematics. Consequently, we close the present
exposition with a very brief indication of the work which is open to the future.

All the results of this chapter were obtained in June 1982.

Section 2: cHa's and forcing in IZF

Just as a complete Boolean algebra is a natural algebraic representative of classical
elementary logic, the category of complete Heyting algebras (cHa's) is the category of
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first-order intuitionistic "theories." A cHa is a distributive, complemented lattice with

arbitrary infs and sups and with the infinitary distributive law:

P/\\J qi = V(pA<7.)-
i i

The quantificational correlate of the distributive law is

p A 3x <t>«-» 3x (p A 0),

which is intuitionistically valid, as is the logical correlate of any law of Heyting algebra,
fi, the set of constructive propositions, and P(A), for any set A, afford natural examples
of Heyting algebras.

The dual distributive law

• P V /\ ?•' = f\[p V 9i)
i i

does not hold in all cHa's and has as its logical correlate

p vVi iVi(pv <!>)■

This principle is not intuitionistically correct. Instances of the latter are false on finite
Kripke structures. Addition of the dual law gives algebraic formulation to the logic of
"constant domains." (For the logic of constant domains, see Gorneman (1971).)

Forcing in IZF is relatively easy. It is intrinsically no more difficult than in ZF. All
one needs to do is locate an IZF-provably cHa A—the opens of an IZF-topological space
will do—and then run through the construction of the usual Heyting-valued universe V(A)
over it. Just as in the classical world, if IZF I—"A is a cHa," then IZF f-"V(A) j=IZF." The
details of this construction are fully explained in Grayson (1975) and applied in Grayson
(1979). Forcing in IZF can even be sufficient unto the needs of TND: if A happens to be
(IZF-)Boolean, then IZF h-"V(A) |=ZF." In IZF, there are plenty of Boolean algebras; the
"'-closed subsets of P({0}) comprise, constructively, a Boolean algebra with the Boolean

operations defined using a double negation translation.

We will prove that some work in recursive topology presents, under realizability, a
theorem that sets limits to forcing in IZF. A pair of enumeration arguments from the
work of Kalantari and Retzlaff (in particular, from Kalantari and Retzlaff (1979)) can
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\
be transformed into surprizingly strong theorems on the structure of cHa's and on the
limits of forcing over ~V(Kl). The theorems are all the more surprizing because of their
universality; we prove that all objects of an extensive category of topological spaces over

V(.ffl) exhibit certain "bad" cHa behaviors. The theorems also partake of a fair measure

of naturalness; there is no call to go searching wildly through the conceptual warehouse
to locate the constructive concepts appropriate to expressing the classical theorems.

Classically, it is trivially true that the countable opens of a space with a countable
basis form a cHa. If an open is countable whenever it is a union of a countable collection
of basis elements, then, classically, every open in a space with countable basis is countable

(or empty). However, this sort of reasoning is, to all appearances, highly nonconstructive.
The present chapter shows to what a great extent these appearances are not deceiving.
In V(KI), for every w-presented topological space, the lattice of countable opens is not
complemented, and, hence, cannot form a cHa. Incidentally, this fact about ~V(Kl) provides
a powerful argument for the importance of the concept of subcountability; it shows that,
for some important applications of constructive topology, countability had best be replaced
by subcountability.

Roughly, a space (X, A) is [^-presented if and only if there are A C A and a function /
such that A is a basis for A and / :uisi A. The rationals and the reals, under their usual
topologies, provide paradigmatic w-presented spaces. In V(Kl), in none of these familiar
spaces does the lattice of countable opens (relative to the presentation) form a cHa. As
independence results for IZF go, this is extremely strong; it is not the case that there is
some recherche space for which the lattice of countable opens is nonHeyting. Rather, there
is a constructively effective procedure, which, given the realizability "data" on (X,A) as
an w-presented space in ~V(Kl), enumerates an open U of X which is noncomplemented in
~V[Kl). The set U can even be placed under a maximum of logical control. In terms of the
basis, U can be chosen to be a decidable open. For us, an open of (X,A) is decidable just
in case there is a constructive function which determines the inclusion of basis elements

vis-a-vis U. In short, an open U is decidable just in case

Vd e A (<5 C U V -> <5 C U) holds.
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Section 3: Noncomplemented opens in recursive topology

There are certain known facts from recursive topology which can be exploited in
proving the desired independence theorems; this section provides a rapid summary of
them. The reader is refered to Kalantari and Retzlaff (1979) for further details.
3.1. Definition. A topological space (X,A) is recursively presented if and only if there
is a A C A and an / such that / : u as A, A is a base for A and

(1) A is closed under finite unions and intersections,

(2) U and (T are, after being pulled back onto u along /, recursive,

(3) /(0) = 0 and

(4) V6 G A (6 0 —> 3ei,£2 € A (S D £j LU2 A £1 fl£2 = 0 A£I 7^ 0 A£2 7^ 0))-

I

We remark that (4) implies that the recursively presented spaces contain no isolated
points.

3.2. Definition. If (X,A) is a recursively presented space in virtue of the correspondence
/ : u w A, then / is a presentation of (X,A). |

3.3. Definition. For (X,A) recursively presented with presentation /, an open U E A is
r.e. (in ((X, A), /)) iff there is a g such that g is total recursive and U = Uigui /(s(f)). |

3.4. Definition. For (X, A) recursively presented with presentation /, RE(((X,A),/))=
{U E A : U is r.e. }. |

Henceforth, we will adopt a studied carelessness about terminology; 'RE(((X,A),/))'
will often be reduced to 'RE(X).'
3.5. Definition. U GRE(X) is complemented in RE(X) iff 3V E RE(X) such that

(1) t/fiF = 0 and

(2) U UV is dense in (X, A). •
>>

At first glance, the members of RE(X) play a role in topology analogous to that
played in ordinary recursion theory by the r.e. sets. The analogy is borne out to some
extent by the behavior of the (classical) finite sets; just as all finite sets are r.e. in the
recursion-theoretic sense, all finite unions of basic opens are r.e. in the topological sense.
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However, the next lemma destroys any hope of such across-the-board parity between r.e.

opens and r.e. sets.

3.6. Note. Kalantari and Retzlaff have themselves adopted no simple expression for
the spaces that we call 'recursively presented.' Our terminology is not, however, without
precedent in the literature. |

3.7. Lemma. For recursively presented (X,A), there is a U SRE(X_) which is not

complemented.

Proof. A full proof appears as Theorem 2.1 of Kalantari and Retzlaff (1979); as noted
above, our terminology differs slightly from theirs. The essence of the proof is a simple
enumeration technique; the technique and the attendant reasoning could well be treated in
IZF. For present purposes, it is enough to extract from the proof the knowledge that, given
indices for U and (~l as recursive functions on to, an index for an r.e. but noncomplemented
U is effectively calculable. I

3.8. Definition. For (X,A) recursively presented with presentation /, U € A is recursive
(in ((X, A), /)) if and only if there is an E C to such that E is recursive and U = (J;SB /(O-
3

3.9. Lemma.
_ For (X,A) recursively presented, there is a recursive U £ A which is

noncomplemented in RE(X).
Proof. This is Corollary 2.4 of Kalantari and Retzlaff. Again, from the construction of
Kalantari and Retzlaff, there is obtainable an effective procedure, which, given indices for
U and n, produces an index for the required U.
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Section 4: Noncomplemented opens in constructive topology

Naturally, the concept of "recursively presented topological space" is related to some

nonrecursive notion via the interpretation of the logical signs given by ~V(Kl). The appro¬

priate nonrecursive notion is that of "w-presented" space:

4.1. Definition. A topological space (X, A) is w-presented if and only if there is a A C A
and an / such that / : tit ss A and

(1) A is a basis for A,

(2) A is closed under finite unions and intersections,

(3) /(0) = 0 and

(4) V<5 6 A (d 7^ 0 -» 3c!,ea € A (5 D ei Ut2 A ei fU2 = 0 Aei 0 Ae2 ^ 0)).

I

4.2. Definition. When {X, A) is w-presented via /, where / : w « A, we say that / is a

presentation for (X,A). |

4.3. Definition. If (X,A) is w-presented, an open U £ A is countable (relative to
«X, A), /)) iff 3p <E (w=>w) [/ = Uiec /(s('O)- I

4.4. Definition. When (X, A) is w-presented via /, C(((X, A), /)) is the set of all countable
U from A. |

Here, we will lapse into an abbreviated idiom: 'C(X)' will be used for 'C(((X, A), /))'
when A and / are already understood.

4.5. Definition. Let U, V £ A. 1/ L.J V is dense in w-presented (X,A) if and only if

V5 e A {6 ^ 0 — (3ei c U (er n<5 ^ 0) V 3e2 C V (e2 nd ^ 0)))-

I

4.6. Definition. U £ C(X) is complemented in C(X) if and only if there is a V 6 C(X)
such that U (T V = 0 and U U V is dense in (X, A). |

4.7. Remark. From a constructive standpoint, our definition of density is a rather
stringent one. We are insisting that, when AUB is dense in space X, one can apply a
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constructive function, which, given a nonempty basis element, determines which of A or

B it intersects. Later, we will show that a weaker definition would have done just as well.
At that point, we will prove that the theorems are not altered by a reasonable weakening
of the density notion. At this point, we prefer to retain the strict notion because it lies
closer to classical sensibilities. |

4.8. Lemma. There is a partial recursive 0 such that, for f g if

e [j— / Is a binary function on u,

then ©(e) | and ©(e) indexes f, where

f = {(n, m) : V(Af) |= (n , m) g /}.

Proof. This should be compared with the proof of Part (2) of Lemma 2.5, Chapter Five.

Assume that e (j—"/ is a binary function on ui." First, it is clear that / is total and
functional on w. Second, there is a partial recursive T such that

*(e) [f- Vx g w 3y g w (x, y) g /.

If we can prove that

/ = {(", {*(e)}((n, i))oo) : n g w},

then the proof will be complete.

Let n g w. Then, as always, (n,i) |-rigu, and 35g~V{Kl) such that

{1>(e)}((n, i)) H— 5 g w A <n, 5) g /.

By definition of u>, we know that

{*(e)}«n,;»0i D- b = {>F(e)}((n, i))00 .

Hence, V(Kl) f=

(n,{*F(e)}«n,i))oo) G /•
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This lemma shows that ^-presentations of topological spaces can be "excised" from

~V(Kl) and will reappear in V as cu-structures under appropriate recursive operations.
The central idea of the proof of the next (and main) theorem exploits this fact. An ui-

presentation can first be excised as a recursive structure which is provably a presentation
for a recursively presented topological space. Then, the construction of Lemma 3.7 is

performed in V. Finally, the results of the construction are reembedded into \{Kl) and
we prove that the resulting object indexes a noncomplemented set there.

4.9. Theorem. V(Kl) |= For every u-presented apace (X,A), there is a noncomple¬
mented U £C(X).

Proof. Let e [j—"(X, A) is an w-presented topological space." Then, by the preceding
lemma, there are partial recursive © and VI; such that, in V,

0(e) indexes fl and 't(e) indexes U •

The constructive lattice-theoretic structure on (internal) (X, A) now appears in V as a
recursion-theoretic structure on u. Moreover, this structure specifies a unique recursively
presented topological space. This is almost obvious; the only real question is whether

V<5 g A (6 7^ 0 —► 3«i,£2 S A (6 D £i U£2 A£i fl£2 = 0 Aei -7^ 0 A£2 7^ 0))-

holds for this external topology.

In terms of the excised presentation, the latter condition becomes

Vngai (n 7^ 0 —► (nQ(pUg) = pUgApn9 = 0AP7^0Ag7^0).

But it is trivial to check that, given that (X, A) is presented via / in ~V[Kl), this statement
holds effectively in V. Therefore, there are (X, A) and f such that (X,A) is presented via /
and Q and U axe the pullbacks of the intersection and union operations on the presentation
basis A.

The strategy is now clear. We construct noncomplementcd U in the external (X,A)
with K C w such that U = Uke/c /(k). K is then embedded back into V(XI) in the usual
way as an u-stable set K. It is then easy—because the requisite conditions are negative—
to check that, internally, V = Ufce/c/CO w^ere ^ 's noncomplemented in V(X/). As
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adverted to in the proof of Lemma 3.7, we can, given indices for ©(e) and ^(e), effectively
calculate an index for a K C uj such that K is noncomplemented in RE(X). Hence,

V(Kl) 1= K is countable and

~V(Kl) (= f(K) is a countable open .

Witnesses for these are obtainable effectively from e. It only remains to show that (J f(K)
is not complemented in internal 0(X).

To that end, assume that V(A7) satisfies the statement

3ZE C{X) (U f(K)) nz = $ A(U f(K)) U Z is dense in (X, A).

From this it follows that V(KI)

3L C uj L is countable A

(1) -> 3m 3p (m E K /\p E L/\mr\p 7^ 0) A
(2) Vn E (n jZ o —► (3m E K nDm jZ OV 3m E L n ("Im jZ o)).

IZF+MP I— VL£P(w) (L is countable —+ L is u> — stable), so L in the above can be
taken to be w-stable. By Lemma 2.3 of Chapter Five, L is realizably identical to the
injection of a classical subset of lo. Hence, there is a set L in P(w) of V such that ~V(Kl) )=
L = L and (1) and (2) supra hold in X(Kl) with L replacing L.

Since X[Kl) [= "L is countable," L is r.e. in V. We then prove that L is disjoint from
K. Assume that 3rngFC 3p£L mQp = 0. Then, given the definitions of K, L and Qj
~V(Kl) satisfies

3m 3p (m E K Ap E LAmClp 0).

But this contradicts assumption (1).

Finally, K \JL is provably dense in external (X,A). Take n £ u, n ^ 0. Then,

(1) -V(Kl) [=newAn^0.
i

From (2), using the readability interpretations of —► and V, we know that either

3m E K ~V(Kl) j= n 0m ^ 0 or
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3m £ LV(Kl) |= n f| m 7^ 0.

Therefore, there is some m, either from K or from L, such that V |= nflm 7^ 0. It
follows that (J f[KUi) is dense in external (X,A). But this contradicts the conditions set

by the Kalantari-Retzlaff construction of K. Consequently, our original assumption was

false and the desired conclusion, that

V(XI) |= (J f{K) is not complemented in C(X),

is true. 1

4.10. Note. As it happens, the "excision and reembedding" strategy is not entirely
necessary for this theorem. Because the proof of Lemma 3.7 is constructive, the whole
proof could have been conducted internally However, doing everything internally seems

to require unnecessary circumlocution. Also, our strategy permits the use of full classical
logic (externally) in obtaining results about IZF and does not restrict our dealings to
those portions of recursive mathematics that just happen to be constructively acceptable.
After all, the point of our entire enterprise is to plumb the relations between parts of
classical mathematics and mathematics over V(X/), so, our strategy is in keeping with our
metamathematical Weldbild. |

As mentioned before, the logical strength of our density condition:

Vd£A (<5 ^0-»(3£lel75nei 7^ 0 V 3<=2 € V 6 ru2 ^ 0))-

is more than sufficient to the task. In the preceding proof, we could well have adopted a
weaker notion:

VdeAO^O—dne = 0AVeeV 5fu = 0)).

To see this, return to stage (3) of the proof and assume that

V )= Vm £X n fjm = 0 A Vm £ L n f)m = 0.

Then, if e |j— m £ K, «o = m £ K. So, n f~l eo — 0

{<", «o), i) 0- («,, 0) 6 Q •
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Therefore, ~V(Kl) |= Vmgff nflm = 0. (Remember that V(A7) f= Q = Pi). Similarly,

V(/<7) |= Vm 6 L n Dm = 0.

But this would contradict the above assumption, so

V }= -i Vm GX n nm = 0 A Vm £inf|m = 0.

and K \J L is dense externally. Therefore, our proof would have gone through untroubled
for a much weaker notion of density.

4.11. Corollary. ~V(Kl) j= If (X, A) is u-presented, then C(X) is not a Heyting algebra.

Proof. We work in IZF. We already know that, in V(KI), if (X,A) is w-presented, there
is a 17 G C(X) such that U is not complemented. The intention is to prove that this U
from C(X) is not complemented in the "Heyting algebra" sense, so that C(X) does not,
under the usual operations, constitute the domain of a Heyting algebra.

Assume that U is Heyting-complemented. Then there is a C-maximum V in C(X)
disjoint from U. Since the space is w-presented. V — f(L) for some L G P(w). We take
n G u, n ^ 0 and assume that

VmGJC npm = 0AVmginflm — 0.

Then, V U f{n) is disjoint from U and V U /(n) C V.

Now, we assume that /(n) is inhabited. Then, for some m G L, there is an x G
/(«) n /(m). Therefore, 3mGI This contradicts our previous assumption, so

-i 3x [x G /(n)),

or n — 0. But this contradicts the original assumption on n. Hence,

-■(Vm nnm = 0A Vm £inflm = 0).

Therefore, U is complemented in C(X) and this contradicts the proved property of U. I

Finally, the second of the lemmas drawn from recursive topology (3.9), when internal¬
ized using excision and reembedding, shows that the sets for which complementation fails
in V(X1) can be maximally well-controlled—they can be taken to satisfy TND.
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4.12. Theorem. ~V(KI) (= If(X, A) is ^-presented, then there is a decidable V EC(XJ
withV noncomplemented in C(X).

Proof. Apply the techniques of Theorem 4.9 to Lemma 3.9. |

In summary, we have shown that, in the project of forcing over topologies in IZF, we
cannot force with the countable opens of the reals. Should one care to force with opens

from the reals which are indexed by natural numbers, one must make do with sets which
are subcountable. For this weaker notion, there is no such failure of complementation. We
have come to this information by way of the same realizability techniques we have applied

repeatedly in gleaning purely constructive information from the RETs, isols, isolic integers
and eg systems. We claim that there is no in principle barrier to carrying such techniques
into every realm of effective mathematics.
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