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Abstract

Recent publications witness that there is a growing interest in multi-valued logics for ma-

chine learning; some of them arose as a more or less formal description of a computer

program's inferential behaviour. The referred origin of these systems is Belnap's four-

valued logic, which has been adopted for the various needs of knowledge representation in

a machine learning system. However, it is unclear what an inconsistent knowledge base

entails. We investigate Mobal's logic < and show how to interpret the term `paraconsis-

tent inference' of this system. It turns out that the meaning of the basic connective !
of < can be represented as a combination of two systems of Kleene's strong three-valued

logic, where the two systems di�er in the set of designated truth values. The resulting

logic is functionally complete but the entailment relation is not axiomatizable. This draw-

back yields a fundamental di�erence between nonmontonicity within belief-revision and

non-monotonic reasoning systems like Servi's re�nement 1 of Gabbay's .
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1 Paraconsistency

Paraconsistency is a general term to describe the property of a logic where the principle of

ex falso sequitur quodlibet (EFQ) fails, that is, something inconsistent1 does not entail the

set of all well formed formulas (w�s). To see how EFQ comes into play in standard logics,

consider the following example: suppose, we know fA;:Ag. Then, by OR-introduction

this set entails fA;:A_Bg for an arbitrary sentence B and by the principle of disjunctive

syllogism, we can conclude B from fA;:A_ Bg.

How can we avoid this fallacy? In general there are two possibilities. The �rst one tries

to `clear' the inconsistent set of formulas, and the keyword is belief revision. The second

one allows inconsistencies in the sense of a paraconsistent logic. In order to formulate a

paraconsistent consequence relation we have to �nd a model for fA;:Ag. Well, obviously

it is no problem to de�ne an appropriate truth table where fA;:Ag is satis�able, but what
does this really mean? Belnap ([Belnap, 1977]) argues that we should not interpret the

sentence A ontologically but epistemically. That is, if an interpretation function assigns

the truth value true to A, then this does not mean `A is true' but `we have been told that

A is true'. Hence, fA;:Agmeans that we have been told (maybe by two di�erent persons)

both, that A holds and that :A holds.

Our approach is to come up with a four-valued semantics, i.e., the set of truth values

is � = ft; f;>;?g. If I is an interpretation function, A an atomic sentence we write

I(A) = > in order to denote `A and :A hold' and I(A) = ? to denote `we do not have any

information about A', that is, it is unknown whether A holds or not. If a sentence has the

epistemic truth value > or ?, then its ontological status is uncertain which does not mean

that it will stay uncertain in eternity. A sentence whose truth value is > is overdetermined,

in the sense that we have too much data (and less information) concerning A and if its

truth value is ? then it is underdetermined. Note that the di�erent interpretations of the

third truth value in some three-valued logics correspond to > and ?2.

1.1 Mobal from a logical point of view

Mobal's inference engine [Morik et al.,1933] and its underlying logic < try to accomodate

several aspects of paraconsistent reasoning, which will be shown to be incompatible. The

very postulate of < is that classical inconsistencies are allowed, in the sense that they

should be entailed (i.e. fA;B;A! :Bg ` :B), but from something inconsistent nothing

should be inferred (i.e. fA;:A;A ! Bg 6` B). These two principles are incompatible.

In order to see this let us state them more formally. Let Cn be a logical consequence

operator and ` a corresponding provability relation. The following is a wishlist for Cn.

1. Cn(fA;:Ag) 6= Form(�) , where Form(�) is the set of all well-formed formulas

w.r.t. to a signature �.

1Throughout the paper we will use the term `inconsistency' in order to describe contrary information,
which is the same in classical two-valued logic but in a multiple-valued logic we could have contrary

information within a set of sentences although there is a model for these sentences.
2According to Rescher ([Rescher, 1969]), Bochvar interprets his third truth value as `paradoxi-

cal', `meaningless' or `undecidable' to overcome di�culties that arise with antinomies whereas Kleene

([Kleene, 1952]) interprets the third value as a truth value gap. Another possibility is a partial interpreta-

tion where some sentences simply don't have a truth value.



2 1 PARACONSISTENCY

2. From something `inconsistent' nothing should be inferred:

` A;A! B 6` :A

` B

3. `Inconsistencies' should be allowed:

` A;:B;A! B

` B

The formalization of item 2) actually reads `conclude only from sentences which do not

contain contrary information' which is a rewording of the item's informal description. Item

3) is a punctualization of 1). If one is willing to accept two other rules (contraposition and

!-introduction) it is easy to show that the items on our wishlist are incompatible. Since

it is claimed by [Morik et al.,1933], p. 41, that the connectives ^ and ! have the usual

meaning (and therefore the usual properties) there is no reason to reject the following

rules of inference:

` A! B
` :B ! :A

(CP )

[` A]
....

` B
` A! B

(! I)

Now let us examine item 2 of the wishlist, which is our formulation of `from something

inconsistent, nothing should be inferred'. What is meant by this statement is that if

both A and :A are known as well as A ! B, then B should not be entailed. This

non-monotonic e�ect was originally called `blocking' by Wrobel (in [Morik et al.,1933]). A

special case may occur if we consider the set fA;A ! :Ag. The problem is that within

such a circularity and according to item 2 the derivation of :A could only be blocked, if

it was permitted in a previous step. Hence, fA;A! :Ag should not entail :A although

this cannot be guaranteed by the rule in item 2. On way to hack around this problem is

to reformulate item 2 as

` A;A! B 6` :A and B 6� :A

` B

where � stands for an appropriate notion of semantical equivalence.

The insu�ciency of this formulation can be seen by a counter-example because the

above pattern of odd loops can be applied in a more general form: X = fA;A! B;B !
:Ag 6` :A. A solution could be found if we had the following rule of inference

` A! B;B ! C

` A! C

Together with (! I) we can derive A ! :A from fA;:Ag and A ! :A from

fA ! B;B ! :Ag. To capture this strange kind of loops properly within a non-

monotonic inference rule, we introduce non-monotonic MP (NMP)3, which does not only

check whether :A is not derivable but if 6` A! :A.

3This notion mirrors exactly a di�culty by which all nonmonotonic formalisms are plagued (as stated
in [Servi, 1992]).
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` A;A! B 6` A! :A

` B
(NMP)

We think that this is the correct formalization of `from something inconsistent nothing

should be inferred'. We now show the incompatibility between NMP and item 3) of our

wishlist.

X = fA;:B;A! Bg ` A! :B by (! I)

` B ! :A by contraposition

` A! :A by transitivity

That is, there is a conict between `from something inconsistent, nothing should be

inferred' and `inconsistencies are allowed'.

2 Semantical investigation

In the last section we have seen that the main aspects of Mobal's concept of paraconsis-

tency { using a straightforward formulation { are incompatible. In order to make a new

wishlist, we have to point out which logical preliminaries we accept. These preliminaries

concern basic properties of the entailment relation as well as the logical connectives. Our

requirements concerning these two points will be put into a formal framework in the next

section, therefore we want to leave some things intuitive for now. As a language we assume

atomic propositions, negation (:), disjunction (_) and implication (!). A formula can

take the truth value overdetermined (>), unde�ned (?) true (t) or false (f). As designated

truth values we take t and >. Note that these imply a concept of entailment based on the

standard notion of Bolzano.

For the entailment relation we have the following properties in mind: �rst, it should

be reexive, i.e.
` A
` A

Reexivity

Cumulativity is needed to guarantee the order-independence of entailment steps, that

is if X entails A then the addition of A to X does not block the entailment of an arbitrary

sentence B entailed by X (hence, causes no additional non-monotonic e�ect).

X ` A X ` B
X [ A ` B

Cumulativity

For the connectives :;_;!: we wish them to be as close as possible to classical logic.

That is, we want to have double negation, material implication and the usual de�nition

of satis�ability for _ (a disjunct statement is satis�ed if one of its disjuncts is satis�ed).

Additionally we have to give up one of the most important properties of classical logic,

the principle of tertium non datur. To pretty print these thoughts

` ::A
` A

DN
` A! B
` :A _B

MI
` A _B
` B _A

` A _ A
` A
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As a derived rule, we have contraposition. The invalidity of tertium non datur can

only be stated semantically. Now let's focal the real point of paraconsistent reasoning.

If we take ! as material implication, the sentence A ! :A reduces to :A _ :A which

equals :A. Since our entailment relation should be reexive, we have

` A;A! :A

` :A

At a �rst glance this looks strange, since there is an inference from something `incon-

sistent' via modus ponens but a closer look shows, that :A was given explicitely by the

assertion of A! :A.

Another point on our former wishlist was the avoidance of odd loops, i.e.,

` A! B; B ! :A

6` A! :A

Now, if we transform the two implications in the premise, we get f:A _B;:B _ :Ag
from which we cannot conclude :A, since B could be overdetermined and therefore :A is

not entailed. This sounds reasonable and is very close to the behaviour of Mobal. But

the crucial point is: can we expect X = fA;:B;A ! Bg to entail B? Clearly, X entails

:B ! :A by contraposition. If we allow the derivation of B, then we must allow the

derivation of :A. But then we would have applied modus ponens to A;A ! B although

A and :A holds. Hence, neither :A nor B should be entailed by X . To see that this

argument is consistent with our semantical view, transform A! B to :A_B which yields

X 0 = fA;:B;:A _Bg. A could be overdetermined as well as B. If A is overdetermined,

:A _ B is satis�ed but not B, and if B is overdetermined the disjunction is satis�ed but

not :A. Hence, neither B nor :A should be entailed by X 0.

The last point shows that if we accept a few properties of our entailment relation

(Inclusion, Cumulativity) and a few standard characteristics of the logical connectives

:;_ and !, the aims of Mobal's paraconsistent logic

� inconsistencies should be allowed and inconsistent conclusions should be drawn (via

a restricted version of MP) and

� from something inconsistent no conclusion should be drawn via MP.

are still incompatible.

2.1 Truth tables

Up to now we have mentioned paraconsistency and the behaviour of > in an inference.

But nothing has been said about the fourth truth value, ?, except that it means something

like `underdetermined' and does not belong to the set of designated truth values. In this

section we develop a complete truth table for the basic connectives ^ (conjunction) and

: (negation), from which _ and ! can be de�ned4. From these tables we obtain an

entailment relation, which meets our aims, de�ned in the previous section.

4In the rest of the paper we will treat ! and : as basic connectives. Notwithstanding, for didactical
and illustrative reasons we will use in the current section : and ^ as basic.
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Consider the following set of sentences X = A;:A;A^B. The interpretation that A

is both true and false is necessary in order to �nd a model for X . But then, what is the

truth value of a compound statement like A ^B ? That is we have to �ll the gaps in the

following truth value table:

^ t f > ?

> ? ? ? ?

Our interpretation is that if a sentence A has the truth value > or ? then it is (up

to now) uncertain, but we will see in the future whether the sentence is true or false.

Therefore, suppose what will happen to A ^ B if I(A) = > and I(B) = f . In this case

A could become true or false but due to I(B) = f the sentence A ^ B will never become

true. Hence,

^ t f > ?

> ? f ? ?

The case I(B) = t is similiar. Here the truth value of the conjunct depends solely on

the truth value of A which is the uncertain truth value >. Therefore,

^ t f > ?

> > f ? ?

What about the remaining gaps? Their value must be an uncertain one like > or

?. We think that a sentence whose truth value is > should be read as overdetermined

(underdetermined in the case that I(A) = ?). And if A and B are overdetermined so is

the adjunct A ^ B.

^ t f > ?

> > f > ?

The last gap is the most di�cult one and we've got no knocking down philosophical

arguments why it should be ? except the following one: if, and the thing wildly possible,

we want fA ^ Bg to entail A and to entail B, we have to prevent that I(A) = > and

I(B) = ? satis�es fA ^ Bg (keeping in mind that > is a designated truth value).5 This

leads us to

^ t f > ?

> > f > ?

Similiar arguments are leading to the cases where I(A) = ?. If B is true, then the

truth of A ^ B depends merely on A.

5Note that there is an argument why the truth value of the adjunct should be >: if something has

neither been told true nor false (that is it is unknown) the assertion of such a sentence is consistent in a
classical sense. That is any sentence whose truth value is ? can be asserted without causing (big) problems.

But if we know that of a conjunctive sentence A^B one part is > while the other one is ?, then we cannot
consistently assume that A ^B holds.
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^ t f > ?

> > f > ?
? ? ? ? ?

Now if B is false, then the compound statement will never become true. That is,

^ t f > ?

> > f > ?
? ? f ? ?

If B is > and we want ^ to be an associative operation, we can reduce this to the case

where I(A) = > and I(B) = ?.

^ t f > ?

> > f > ?

? ? f > ?

The case where I(A) = I(B) = ? should be read as A is underdetermined and B is

underdeterminded. Hence, A ^ B is underdetermined.

The complete table is:

^ t f > ?

t t f > ?
f f f f f

> > f > ?
? ? f ? ?

The truth table for negation is very simple. The interpretation of ? was: neither a

statement nor its negation has been told. Therefore, if A is underdetermined, so is :A.

A similiar argument holds for >.

t f > ?

: f t > ?

The de�nition of A _B as :(:A ^ :B) and A! B as :A _ B yields

_ t f > ?

t t t t t

f t f > ?

> t > > ?
? t ? ? ?

! t f > ?

t t f > ?
f t t t t

> t > > ?
? t ? ? ?
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The above tables show that A ! A is no theorem6 and more than that: our logic (if

we call the set of truth tables a logic) does not have any tautologies. Indeed, this is very

bizarre. A closer look shows that there is no well-formed formula to represent the epistemic

state of A is underdetermined, but there are w�s which represent the other truth values.

For example `A has been told to be true' is represented by fAg, wheras `A has been told

both, to be true and to be false' can be represented by fA;:Ag. If we choose the empty set

to represent A is underdetermined, we cannot distinguish between A is underdetermined

and B is underdetermined. Therefore, we introduce a new operator,r (which is similiar to

the T-supplement in three-valued logic) to denote A is underdetermined byrA, associating
with r the following truth table:

t f > ?

r f f f t

Let t4 be the tupel [(!;:;r); ft; f;>;?g; ft;>g].

2.2 Truth functional completeness

Are the truth tables for :;!;r given in section 2.1 su�cient to generate all possible truth

tables, i.e., are they functionally complete?

It is easy to see that t4 is not functionally complete. For example consider the function

g : � ! � such that g(t) = g(f) = g(>) = g(?) = >. Clearly, g cannot be de�ned using

!;: and r. The reason is that there a subset X � � , namely ft; fg, which is closed under

!;: and r. One way to solve the problem is to de�ne a truth function (shift negation7,

denoted by /) in order to obtain truth functional completeness. The following will do:

t f > ?

/ ? t f >

In this section we replace the r-operator by /; let T4 := [(!;:; /); ft; f;>;?g; ft;>g].
A class of truth value functions G is called functionally complete if and only if every other

truth value function can be expressed in terms of the functions in G. A function is T4 -

de�nable i� it can be expressed in terms of :;! and /. Furthermore let F be a class of

functions de�ned on � = ft; f;?;>g; a subset X � � is said to be F-closed if X is closed

under the application of all f 2 F . The F-closure of X � � is the smallest F-closed set

containing X .

6The fact that A ! A is no theorem is worse than one would presume; 6j= A ! A means that the

normalization condition (NC) for implication (i.e. A! B takes a non-designated truth value if and only

if I(A) is a designated one but not I(B)) is not ful�lled. This in turn means that the Rosser/Turquette

procedure for axiomatizing the set of tautologies cannot be applied. Additionally NC is also violated by

the fact that A ! B takes the truth value > for I(A) = > and I(B) = f ; but this in turn guarantees

the formal treatment of Mobal's blocking behaviour or more generally: a nonmonotonic behaviour of the

entailment relation of section 3 which is based on T4 . Indubitably one could reasonably ask whether there

ain't no other pssobility to simulate blocking without the infringement of NC. The answer is `No, not

within a truth-functional (extensional) semantics'. This can be seen by looking at the basic assumption of

nonmonotonic systems; A;A! B should be valid but B could not be satis�ed.
7After �nishing the paper we found out that an identical function (�m) has been found by Post in 1921

([Post, 1921]).
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In order to prove the functional completeness of T4 , we �rst show that the functions

�k : � ! � are T4 -de�nable
8 .

�k(x) =

(
t for x = k

f otherwise

Lemma 1 �k(x), k 2 � is T4 -de�nable.

All proofs missing in the body of the paper can found in the Appendix. The following

lemma has been adopted from [Urquhart, 1986] (Lemma 2.9)

Lemma 2 Let F be a set of functions on � = ft; f;>;?g containing :;!; / as well as all

the �k. Then an n-place function g is F-de�nable if and only if g(~x) is in the F-closure

of fx1; : : : ; xng, for all ~x in � .

Theorem 1 T4 is functionally complete.

ProofWe will show that every unary function is T4 de�nable and that the only non-empty

T4 -closed subset of � is � itself. Hence, T4 is functionally complete by Lemma 2. The

function T (x) = t for all x is T4 -de�nable:

T (x) = :(x! x)! (/x! : / /x)

Furthermore the functions Tk for any k 2 � are de�ned as

Tk(x) :=

(
f for x 6= t

t otherwise

are T4 -de�nable as proved by the following:

Tf (x) = :T (x)

Tt(x) = �t(x)

T?(x) = : /�t(x)

T>(x) = : / /�t(x)

Now let g(x) be any one place � -valued function. Then the following function coincides

with g:

Tg(t)(x)_ Tg(f)(/x)_ Tg(>)(/ / x) _ Tg(?)(/ / /x)

The application of Lemma 2 yields the functional completeness of T4 .

J

As a general remark on functional completeness of T4 let us state that although there

is no intuitive reading of the one place function /, it provides the basis of functions that

make more sense, e.g., r.

8Don't try to look for a natural meaning of these functions; we don't have any in mind. As in
[Urquhart, 1986] they serve as mathematical construction necessary for functional completeness.
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2.3 Relationship between T4 and Kleene's K3

This short section relates the above truth tables to the well known strong three-valued logic

K3. As we will discuss in section 4.1 the philosophical implications are far-reaching. This is

due to the fact that `overde�nedness' and `underde�nedness' have the same epistemological

status; both lack information, although the set of valid sentences increases9. We took this

into account by the de�nition of the truth tables: both truth values > and ? could change

to t or f in a future epistemic state. These issues will be treated in a later section. We

restrict ourselves in this section to the meaning of the basic connectives.

Within three-valued logics there are di�erent interpretations of the third truth value

I . One is to read I as `unde�ned', another one is `meaningless' and a third one is

`paradoxical'10 There is a close relationship between Kleene's strong three-valued logic

K3 and the system T4 . To see this, we restrict our truth tables to three truth values:

t; f;X where X may be substituted by > or ?.

Consider the following truth tables:

_ t X f

t t t t

X t X X

f t X f

! t X f

t t X f

X t X X

f t t t

^ t X f

t t X f

X X X f

f f f f

t X f

: f X t

The reader may check that these tables correspond to those of section 2.1. Further-

more these truth tables are exactly those de�ned by Kleene's strong three-valued logic K3

([Kleene, 1952]). The only but important di�erence is that K3 has only t as designated

truth value. Of course, since we did not compare Kleene's notion of entailment with ours,

we cannot say that our logic is really a combination of Kleene's logic, but as far as the

truth tables are concerned, it is.

3 Entailment Relations

In this section we will consider the propositional case of our four-valued logic. That is, we

assume the classical propositional language Lc with the connectives of T4 . First, we will

develop a notion of semantic entailment before we investigate a syntactic characterization

of this consequence relation. In the following APROP and PROP denote the sets of atomic

propositions and propositions, respectively.

Let I be an interpretation function which maps every sentence of a propositional

language into the set � = ft; f;>;?g of truth values. Now let D � � be the set of

designated truth values. We say that I satis�es an atomic proposition P (denoted by

I j= P ), if I(P ) 2 D. The satis�ability relation j= can be extended as usual in order

to capture compound propositions. If X is a set of propositions we say that I j= X if I

satis�es every element of X .

9Unlike Belnap's four-valued logic where knowledge increases with every new sentence, T4 treats overde-

termined formulas as uncertain (i.e., knowledge decreases).
10Note that we have di�erent truth values namely > and ? to denote `unde�ned' and `paradoxical'.



10 3 ENTAILMENT RELATIONS

A sentence A is a consequence of a set X of sentences (or: X entails A, denoted

by X  A) if every model of X is also a model of A. This is the standard Bolzano

de�nition of entailment, which unfortunately does not meet our aims. Consider the set

X = fA;A ! Bg. We wish that this set entails B. But there is an interpretation

I(A) = >; I(B) = f which satis�es X but not B. The reason is that there are two

designated truth values: t and >; if we choose I(A) = >, we would satisfy :A as well.

But :A has not been mentioned in our set of formulas. What we've got here is a kind of

over-interpretation. We have to look for a kind of 'minimal truth assignment'. Therefore

we assume an ordering relation � on the set of truth values. In our case we de�ne

? � t � > and ? � f � >11.

De�nition 1 (j=, j=� ) Let I : APROP ! � be an interpretation, D the set of desig-

nated truth values and A a formula. We de�ne a relation j= between an interpretation

and a formula

I j= A if I(A) 2 D

and relation j=� between an interpretation and a set of propositions

I j=� X if I j= A for all A 2 X and I is minimal w.r.t � :

The sets MOD and
�

MOD can be de�ned as usual: MOD(X) := fM jM j= Xg and
�

MOD(X) := fM jM j=� Xg.

We say that a formula A is satis�able (valid) if there is (for all) an interpretation I

such that I j= A. It is now easy to see that I(A) = >; I(B) = f is no minimal model for

X = fA;A! Bg, since there is an interpretation I 0(A) = t and I 0(B) = t which satis�es

X , and for every atomic proposition p, I 0(p) � I(p).

The relation j=� is useful for de�ning an appropriate entailment relation :

De�nition 2 (, ENT) Let X be a set of formulas, A a formula. We say that X  A

if for every I such that I j=� X, I j= A. The operator ENT is de�ned as ENT(X) :=

fAjX  Ag.

Let us call L4 = hT4 ;; j=
� i.

Proposition 1 1. X � ENT(X) (Inclusion)

2. If X  A then for every M j=� X, M j=� A (Dot entailment)

3. If X  A and X  B then X [ fAg  B (Cumulativity)

4. X  A does not imply that X [ fBg  A for an arbitrary B (Nonmonotonicity)

5. ENT(X) = ENT(ENT(X)) (Idempotency)

Corollar 1 If
�

MOD(X) �
�

MOD(A) then
�

MOD(X) �
�

MOD(X [ fAg)

11This is exactly Belnap's lattice A4.
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The next observation is closely related to Section 1.1, where we pointed out that either

`inconsistencies are inferred' or `from someting inconsistent nothing should be inferred' is

a plausible scheme of reasoning. In our logic inconsistencies are allowed in the sense that

they don't produce the set of all w�s. If a set of formulas T is consistent in a classical

sense of the term (i.e. A ^ :A 62 T ), so is the -closure.

Observation 1 Let T be a set of w�s and A a formula. fA;:Ag 6� T if and only if

T 1 A ^ :A.

We now come to some brief observations, which characterize the relationship between

our four-valued semantics and the classical two-valued semantics. In order to describe the

relationship we restrict the set of well-formed formulas of L4 to the language Lc of classical

propositional calculus. In the following we denote by I4 (I2) a four-valued (two-valued)

interpretation of the sentences in Lc and by 1c the classical entailment relation. The

concepts of satis�ability and validity for the two-valued semantics are de�ned as usual.

The �rst observation is trivial:

Observation 2 Let X � Lc be a set of formulas. If X has a two-valued model, then there

is a four-valued model for X.

Observation 3 Let Lc be the classical propositional language, X a set of formulas. For

every formula A, which is satis�able, but not valid concerning X, the following holds:

1. X 1c A

2. X  rA and X  r:A in our extended language i� there is a unique I such that

I j=� X

4 Axiomatizability and other problems

In classical logic - and this is easy to see - the axiomatizability of the entailment relation

can be guaranteed by the facts that the set of tautologies is axiomatizable, the entailment

relation is monotonic and modus ponens (MP) is a correct rule of proof. For L4 , however,

MP is not correct for arbitrary sets of formulas, i.e., no correct rule of inference.

Observation 4 If A;A! B are tautologies, then MP is a correct of proof, i.e., B is also

a tautology.

4.1 Belief revision and reasoning by defaults

It has been mentioned by Makinson and G�ardenfors that belief-revision and nonmonotonic

reasoning are two sides of the same coin and Makinson published a method for transferring

one system into the other. Despite these results we think that the motivation for using

a logic for nonmonotonic reasoning di�ers from that of belief revision. A logic for non-

monotonic reasoning tries to capture non-deductive reasoning in a deductive formalism

(reasoning based on assumptions). In our terms `reasoning with assumptions' means that

there is a normative reassignment of truth values; formulas which had the truth value ?
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(or in classical terms, which were not valid but only satis�able) get one of the truth values

t or f . Once they have this interpretation, it will never become uncertain again. A logic

for nonmonotonic reasoning only shifts a formula's assignment from the bottom level to

the mid level of the truth value lattice (shown in Figure 4.1); once things are certain they

will remain certain. On the contrary belief revision cannot guarantee this property. If a set

of beliefs has been revised (or better contracted) nobody will witness that the contracted

formula will not be added at a later stage. Ergo, the nonmonotonicity of belief revision is

`not as safe as' than that of a typical logic for reasoning based on assumptions. Within

the �rst one a sentence or a belief may fall from the top to the middle of the lattice; new

information may jostle it to the top.

@
@
@
�
�
�@

@
@
�
�
�

6

-

>

f

?

t

truth

data

Figure 4.1 Belnap's lattice A4.

4.2 Conclusions

Starting from a wishlist for a notion of paraconsistent entailment, we developed a four-

valued semantics for the connectives : and ^. This semantics turned out to be a combi-

nation of two variations on Kleene's strong three-valued logic K3 which means that the

truth values > and ? in our four-valued semantics correspond to the notion of a truth

value gap in K3. This in turn implies that the epistemic status of an overdetermined

and underdetermined sentence in our semantics is the same: both represent a lack of

knowledge, albeit the amount of told sentences (data) di�ers. Coherently, the entailment

relation which is based on a notion of minimal models does not allow the entailment of a

sentence via disjunctive syllogism with overdetermined premisses. This type of paracon-

sistent entailment is very cautious and maybe the least possible one in the sense that it

isolates classical inconsistencies. Table 4.2 illustrates the major di�erences between L4 ,

Belnap's four-valued logic A4 and Mobal's inferential behaviour:

Formulas Mobal A4 L4

X = fA;:A;A! Bg X 6`M B X B B X 6 B

X = fA;:B;A! Bg X `M B X B B X 6 B

Table 4.2
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`M denotes Mobal's inference relation and B denotes Belnap's entailment relation.

The next step is to axiomatize the set of all tautologies via a sequent-style calculus,i.e.,

to develop a proof theory for L4 .
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5 Appendix: Proofs

Lemma 1 �k(x), k 2 � is T4 -de�nable.

Proof We will de�ne the corresponding functions �k for every k 2 � . De�ne

g(x) =

8><
>:

t for x = t or x = f

f for x = >

> for x = ?

g(x) = /:(x! x) is L4-de�nable. Now consider the following function:

f(x) =

(
t for x 2 ft; f;>g

? otherwise

f(x) = :(x ! x) ! (/x ! /x) is L4-de�nable. The reader may verify that the

following equations hold:

�?(x) = :(g(g(f(x)))) (1)

�t(x) = �?(/x) (2)

�f (x) = �?(/ / x) (3)

�>(x) = �?(/ / /x) (4)

Note that �? is exactly the same as the r-operator.

J

Lemma 2 Let F be a set of functions on � = ft; f;>;?g containing :;!; / as well as all

the �k. Then an n-place function g is F-de�nable if and only i� g(~x) is in the F-closure

of fx1; : : : ; xng, for all ~x in � .

Proof For the ) part assume that g is F-de�nable. By de�nition of the F-closure of

fx1; : : : ; xng it follows that g(~x) is in the F-closure of fx1; : : : ; xng. For the converse ((-

part) assume that g(~x) is in the F-closure of fx1; : : : ; xng. Now consider the function 	

as de�ned below and an n-tupel ~a in � .

	(~a) := :�a1(x1) _ : : :_ :�an(xn) _ g(~a)
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Clearly, 	(~a) takes the value g(~a) if ~x = ~a and t otherwise. Now let ~a1; : : : ;~an! be all

possible disjunct inputs for 	. Then

g(~x) = 	(~a1)! 	(~a2)! : : :! 	(~an!)

Hence, g is F-de�nable.

J

Proposition 1 1. X � ENT(X) (Inclusion)

2. If X  A then for every M j=� X, M j=� A (Dot entailment)

3. If X  A and X  B then X [ fAg  B (Cumulativity)

4. X  A does not imply that X [ fBg  A for an arbitrary B (Nonmonotonicity)

5. ENT(X) = ENT(ENT(X)) (Idempotency)

Proof

Inclusion Trivial. Since fromM j=� fAg it follows thatM j=� fAg, we have fAg  A, the

relation  is reexive.

Dot entailment Trivial. Since M is an interpretation function which assigns each atom

a truth value and the function does not change.

Cumulativity We know that
�

MOD(X) �
�

MOD(A) and
�

MOD(X) �
�

MOD(B). The

proposition follows if we can show that if X  A then
�

MOD(X) =
�

MOD(X [ fAg).

We show this by contradiction. Therefore assume that
�

MOD(X) 6=
�

MOD(X [fAg).
Then there are two cases:

1. Assume there is an M such that M j=� X and M 6 j=� X [ fAg. This means

that the conjunction of all elements of the set X [ fAg is not entailed by X .

Since  is refelxive, X 1 A, which is a contradiction.

2. Assume there is M j=� X [ fAg but M 6 j=� X . Hence, X [ fAg 1 X in

contradiction to the inclusion property.

Nonmonotonicity Trivial, by counter-example.

Idempotency The relation ENT(X) � ENT(ENT(X)) follows from the inclusion. It

remains to show that ENT(ENT(X)) � ENT(X). We have to show that for every

A 2 ENT(ENT(X)) it follows that A 2 ENT(X) (5)

De�ne

� := ENT(X)�X

Obviously, X  �. A reformulation of 5 using �

X [ �  A implies X  A
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Thus we have to show that

�

MOD(X [ �) �
�

MOD(A) and
�

MOD(X) �
�

MOD(�) implies
�

MOD(X) �
�

MOD(A)

Since
�

MOD(X) �
�

MOD(�) we have by Corollar 1 that
�

MOD(X) �
�

MOD(X [ �)

and from
�

MOD(X [ �) �
�

MOD(X) it follows that

�

MOD(X) �
�

MOD(A)

J

Corollar 1 If
�

MOD(X) �
�

MOD(A) then
�

MOD(X) �
�

MOD(X [ fAg)

Proof Obviously: for all M 2
�

MOD(X) : M j= A. Hence M j= X1 : : : ^ : : :Xn ^ A

(X1; : : : ; Xn 2 X).

J

Observation 3 Let Lc be the classical propositional language, X a set of formulas. For

every formula A, which is satis�able, but not valid concerning X, the following holds:

1. X 1c A

2. X  rA and X  r:A in our extended language i� there is a unique I such that

I j=� X

Proof

1. Obvious, by de�nition.

2. We have to proof that I4(A) = ? is the only allowed interpretation. From the

satis�ablity of A w.r.t X we conclude that I2(A) = t and I 02(A) = f are possible

interpretations within the two-valued semantics. But the greatest lower bound of t

and f is according to our lattice ? which is also a possible interpretation. Moreover

I4(A) = ? is the only possible interpretation for j=� . Hence, X  rA and X 

r:A.

J
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