1,570 research outputs found

    Predicting and Explaining Human Semantic Search in a Cognitive Model

    Full text link
    Recent work has attempted to characterize the structure of semantic memory and the search algorithms which, together, best approximate human patterns of search revealed in a semantic fluency task. There are a number of models that seek to capture semantic search processes over networks, but they vary in the cognitive plausibility of their implementation. Existing work has also neglected to consider the constraints that the incremental process of language acquisition must place on the structure of semantic memory. Here we present a model that incrementally updates a semantic network, with limited computational steps, and replicates many patterns found in human semantic fluency using a simple random walk. We also perform thorough analyses showing that a combination of both structural and semantic features are correlated with human performance patterns.Comment: To appear in proceedings for CMCL 201

    Footprints of information foragers: Behaviour semantics of visual exploration

    Get PDF
    Social navigation exploits the knowledge and experience of peer users of information resources. A wide variety of visual–spatial approaches become increasingly popular as a means to optimize information access as well as to foster and sustain a virtual community among geographically distributed users. An information landscape is among the most appealing design options of representing and communicating the essence of distributed information resources to users. A fundamental and challenging issue is how an information landscape can be designed such that it will not only preserve the essence of the underlying information structure, but also accommodate the diversity of individual users. The majority of research in social navigation has been focusing on how to extract useful information from what is in common between users' profiles, their interests and preferences. In this article, we explore the role of modelling sequential behaviour patterns of users in augmenting social navigation in thematic landscapes. In particular, we compare and analyse the trails of individual users in thematic spaces along with their cognitive ability measures. We are interested in whether such trails can provide useful guidance for social navigation if they are embedded in a visual–spatial environment. Furthermore, we are interested in whether such information can help users to learn from each other, for example, from the ones who have been successful in retrieving documents. In this article, we first describe how users' trails in sessions of an experimental study of visual information retrieval can be characterized by Hidden Markov Models. Trails of users with the most successful retrieval performance are used to estimate parameters of such models. Optimal virtual trails generated from the models are visualized and animated as if they were actual trails of individual users in order to highlight behavioural patterns that may foster social navigation. The findings of the research will provide direct input to the design of social navigation systems as well as to enrich theories of social navigation in a wider context. These findings will lead to the further development and consolidation of a tightly coupled paradigm of spatial, semantic and social navigation

    Foraging in semantic fields : how we search through memory

    Get PDF
    When searching for concepts in memory-as in the verbal fluency task of naming all the animals one can think of-people appear to explore internal mental representations in much the same way that animals forage in physical space: searching locally within patches of information before transitioning globally between patches. However, the definition of the patches being searched in mental space is not well specified. Do we search by activating explicit predefined categories (e.g., pets) and recall items from within that category (categorical search), or do we activate and recall a connected sequence of individual items without using categorical information, with each item recalled leading to the retrieval of an associated item in a stream (associative search), or both? Using semantic representations in a search of associative memory framework and data from the animal fluency task, we tested competing hypotheses based on associative and categorical search models. Associative, but not categorical, patch transitions took longer to make than position-matched productions, suggesting that categorical transitions were not true transitions. There was also clear evidence of associative search even within categorical patch boundaries. Furthermore, most individuals' behavior was best explained by an associative search model without the addition of categorical information. Thus, our results support a search process that does not use categorical information, but for which patch boundaries shift with each recall and local search is well described by a random walk in semantic space, with switches to new regions of the semantic space when the current region is depleted

    Implications of Computational Cognitive Models for Information Retrieval

    Get PDF
    This dissertation explores the implications of computational cognitive modeling for information retrieval. The parallel between information retrieval and human memory is that the goal of an information retrieval system is to find the set of documents most relevant to the query whereas the goal for the human memory system is to access the relevance of items stored in memory given a memory probe (Steyvers & Griffiths, 2010). The two major topics of this dissertation are desirability and information scent. Desirability is the context independent probability of an item receiving attention (Recker & Pitkow, 1996). Desirability has been widely utilized in numerous experiments to model the probability that a given memory item would be retrieved (Anderson, 2007). Information scent is a context dependent measure defined as the utility of an information item (Pirolli & Card, 1996b). Information scent has been widely utilized to predict the memory item that would be retrieved given a probe (Anderson, 2007) and to predict the browsing behavior of humans (Pirolli & Card, 1996b). In this dissertation, I proposed the theory that desirability observed in human memory is caused by preferential attachment in networks. Additionally, I showed that documents accessed in large repositories mirror the observed statistical properties in human memory and that these properties can be used to improve document ranking. Finally, I showed that the combination of information scent and desirability improves document ranking over existing well-established approaches

    New Perspectives on the Aging Lexicon

    Get PDF
    The field of cognitive aging has seen considerable advances in describing the linguistic and semantic changes that happen during the adult life span to uncover the structure of the mental lexicon (i.e., the mental repository of lexical and conceptual representations). Nevertheless, there is still debate concerning the sources of these changes, including the role of environmental exposure and several cognitive mechanisms associated with learning, representation, and retrieval of information. We review the current status of research in this field and outline a framework that promises to assess the contribution of both ecological and psychological aspects to the aging lexicon

    Toward an Effective Automated Tracing Process

    Get PDF
    Traceability is defined as the ability to establish, record, and maintain dependency relations among various software artifacts in a software system, in both a forwards and backwards direction, throughout the multiple phases of the project’s life cycle. The availability of traceability information has been proven vital to several software engineering activities such as program comprehension, impact analysis, feature location, software reuse, and verification and validation (V&V). The research on automated software traceability has noticeably advanced in the past few years. Various methodologies and tools have been proposed in the literature to provide automatic support for establishing and maintaining traceability information in software systems. This movement is motivated by the increasing attention traceability has been receiving as a critical element of any rigorous software development process. However, despite these major advances, traceability implementation and use is still not pervasive in industry. In particular, traceability tools are still far from achieving performance levels that are adequate for practical applications. Such low levels of accuracy require software engineers working with traceability tools to spend a considerable amount of their time verifying the generated traceability information, a process that is often described as tedious, exhaustive, and error-prone. Motivated by these observations, and building upon a growing body of work in this area, in this dissertation we explore several research directions related to enhancing the performance of automated tracing tools and techniques. In particular, our work addresses several issues related to the various aspects of the IR-based automated tracing process, including trace link retrieval, performance enhancement, and the role of the human in the process. Our main objective is to achieve performance levels, in terms of accuracy, efficiency, and usability, that are adequate for practical applications, and ultimately to accomplish a successful technology transfer from research to industry

    Trajectories through semantic spaces in schizophrenia and the relationship to ripple bursts

    Get PDF
    Human cognition is underpinned by structured internal representations that encode relationships between entities in the world (cognitive maps). Clinical features of schizophrenia-from thought disorder to delusions-are proposed to reflect disorganization in such conceptual representations. Schizophrenia is also linked to abnormalities in neural processes that support cognitive map representations, including hippocampal replay and high-frequency ripple oscillations. Here, we report a computational assay of semantically guided conceptual sampling and exploit this to test a hypothesis that people with schizophrenia (PScz) exhibit abnormalities in semantically guided cognition that relate to hippocampal replay and ripples. Fifty-two participants [26 PScz (13 unmedicated) and 26 age-, gender-, and intelligence quotient (IQ)-matched nonclinical controls] completed a category- and letter-verbal fluency task, followed by a magnetoencephalography (MEG) scan involving a separate sequence-learning task. We used a pretrained word embedding model of semantic similarity, coupled to a computational model of word selection, to quantify the degree to which each participant's verbal behavior was guided by semantic similarity. Using MEG, we indexed neural replay and ripple power in a post-task rest session. Across all participants, word selection was strongly influenced by semantic similarity. The strength of this influence showed sensitivity to task demands (category > letter fluency) and predicted performance. In line with our hypothesis, the influence of semantic similarity on behavior was reduced in schizophrenia relative to controls, predicted negative psychotic symptoms, and correlated with an MEG signature of hippocampal ripple power (but not replay). The findings bridge a gap between phenomenological and neurocomputational accounts of schizophrenia
    • …
    corecore