1,018 research outputs found

    Autonomic care platform for optimizing query performance

    Get PDF
    Background: As the amount of information in electronic health care systems increases, data operations get more complicated and time-consuming. Intensive Care platforms require a timely processing of data retrievals to guarantee the continuous display of recent data of patients. Physicians and nurses rely on this data for their decision making. Manual optimization of query executions has become difficult to handle due to the increased amount of queries across multiple sources. Hence, a more automated management is necessary to increase the performance of database queries. The autonomic computing paradigm promises an approach in which the system adapts itself and acts as self-managing entity, thereby limiting human interventions and taking actions. Despite the usage of autonomic control loops in network and software systems, this approach has not been applied so far for health information systems. Methods: We extend the COSARA architecture, an infection surveillance and antibiotic management service platform for the Intensive Care Unit (ICU), with self-managed components to increase the performance of data retrievals. We used real-life ICU COSARA queries to analyse slow performance and measure the impact of optimizations. Each day more than 2 million COSARA queries are executed. Three control loops, which monitor the executions and take action, have been proposed: reactive, deliberative and reflective control loops. We focus on improvements of the execution time of microbiology queries directly related to the visual displays of patients' data on the bedside screens. Results: The results show that autonomic control loops are beneficial for the optimizations in the data executions in the ICU. The application of reactive control loop results in a reduction of 8.61% of the average execution time of microbiology results. The combined application of the reactive and deliberative control loop results in an average query time reduction of 10.92% and the combination of reactive, deliberative and reflective control loops provides a reduction of 13.04%. Conclusions: We found that by controlled reduction of queries' executions the performance for the end-user can be improved. The implementation of autonomic control loops in an existing health platform, COSARA, has a positive effect on the timely data visualization for the physician and nurse

    A framework for autonomic web service selection

    Get PDF
    Web services are a form of distributed computing. As applications accessible over standard internet protocols, web services allow access to disparate computational resources. Recently, with an increased commoditization of web services, there has been a greater interest in the problem of selection. If a web service client can be configured to use one of a number of different web services, which should it select? In this thesis, an approach based on examining the past quality of service (QoS) parameters of similar clients is presented. Standard web service clients are augmented to report their experiences, and can reason over both these and the experiences of others using a number of formal techniques, thereby arriving at an informed decision

    An agent-based evolutionary approach for manufacturing system layout design

    Get PDF
    Dissertação apresentada na Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa para obtenção do grau de Mestre em Engenharia Electrotécnica e de ComputadoresIn this thesis it is presented an approach to the problem of layout design for a manufacturing system, which is an important part of its design stage, given that it has influence in the system efficiency and, therefore, in its output rate and fault handling capabilities. The presented approach is based on a Genetic Algorithm (GA) that, by using information provided by the the user through an ontology file, and by using algorithms from graph-theory, designs the layout of a manufacturing system. The instances of the ontology represent manufacturing resources and their characteristics that, when they are being used by the algorithm, are encoded in chromosomes and in their genes. The algorithm begins with a number of chromosomes with low fitness which, with the directed evolution provided by the algorithm, that is restricted by the control parameters that might be tunned by the user, improve with the passing of the new generations. It is considered that the fittest solution is the one that connects, in order, all the resources required by the manufacturing plan, described in the ontology, without the occurrence of overlaps when the layout is constructed. The configuration presented by the transport system that handles parts and materials, in the selected layout, is only dependent on the available resources and on the fitness function used by the GA, being that the last cannot be changed by the user. This approach differs from others by positioning simultaneously all the components of the manufacturing system and not only workstations or transport system. The solution is directed to evolvable assembly systems, purpose for which it was implemented inside an agent, so it can be integrated in a Multiagent System (MAS) to be used in the control of a manufacturing system with minimal changes. Keywords: layout design, manufacturing system, multiagent system, ontology, genetic algorithm

    Linked data as medium for distributed Multi-Agent Systems

    Get PDF
    The conceptual design and discussion of multi-agents systems (MAS) typically focuses on agents and their models, and the elements and effects in the environment which they perceive. This view, however, leaves out potential pitfalls in the later implementation of the system that may stem from limitations in data models, interfaces, or protocols by which agents and environments exchange information. By today, the research community agrees that for this, that the environment should be understood as well as abstraction layer by which agents access, interpret, and modify elements within the environment. This, however, blurs the the line of the environment being the sum of interactive elements and phenomena perceivable by agents, and the underlying technology by which this information and interactions are offered to agents. This thesis proposes as remedy to consider as third component of multi agent systems, besides agents and environments, the digital medium by which the environment is provided to agents. "Medium" then refers to exactly this technological component via which environment data is published interactively towards the agents, and via which agents perceive, interpret, and finally, modify the underlying environment data. Furthermore, this thesis will detail how MAS may use capabilities of a properly chosen medium to achieve coordinating system behaviors. A suitable candidate technology for digital agent media comes from the Semantic Web in form of Linked Data. In addition to conceptual discussions about the notions of digital agent media, this thesis will provide in detail a specification of a Linked Data agent medium, and detail on means to implement MAS around Linked Data media technologies.Sowohl der konzeptuelle Entwurf von, als auch die wissenschaftliche Diskussion über Multi-Agenten-Systeme (MAS) konzentrieren sich für gewöhnlich auf die Agenten selbst, die Agentenmodelle, sowie die Elemente und Effekte, die sie in ihrer Umgebung wahrnehmen. Diese Betrachtung lässt jedoch mögliche Probleme in einer späteren Implementierung aus, die von Einschränkungen in Datenmodellen, Schnittstellen, oder Protokollen herrühren können, über die Agenten und ihre Umgebung Informationen miteinander austauschen. Heutzutage ist sich die Forschungsgemeinschaft einig, dass die Umgebung als solche als Abstraktionsschicht verstanden werden sollte, über die Agenten Umgebungseffekte und -elemente wahrnehmen, interpretieren, und mit ihnen interagieren. Diese Betrachtungsweise verschleiert jedoch die Trennung zwischen der Umgebung als die Sammlung interaktiver Elemente und wahrnehmbarer Phänomene auf der einen Seite, und der zugrundeliegenden Technologie, über die diese Information den Agenten bereitgestellt wird, auf der anderen. Diese Dissertation schlägt als Lösung vor, zusätzlich zu Agenten undUmgebung ein digitales Medium, über das Agenten die Umgebung bereitgestellt wird, als drittes Element von Multi-Agenten-Systemen zu betrachten. Der Begriff "Medium" bezieht sich dann genau auf diese technologische Komponente, über die Umgebungsinformationen Agenten interaktiv bereitgestellt werden, und über die Agenten die zugrundeliegenden Daten wahrnehmen, interpretieren, und letztendlich modifizieren. Desweiteren wird diese Dissertation aufzeigen, wie die Eigenschaften eines sorgfältig gewählten Mediums ausgenutzt werden können, um ein koordiniertes Systemverhalten zu erreichen. Ein geeigneter Kandidat für ein digitales Agentenmedium findet sich im Ökosystem des „Semantic Web”, in Form von „Linked Data”, wörtlich („verknüpfte Daten”). Zusätzlich zu einer konzeptionellen Diskussion über die Natur digitaler Agenten- Media, spezifiziert diese Dissertation „Linked Data” als Agentenmedium detailliert aus, und beschreibt im Detail die Mittel, wie sich MAS um Linked Data Technologien herum implementieren lassen

    Towards Semantically Enabled Complex Event Processing

    Full text link

    HABITAT: An IoT Solution for Independent Elderly

    Get PDF
    In this work, a flexible and extensive digital platform for Smart Homes is presented, exploiting the most advanced technologies of the Internet of Things, such as Radio Frequency Identification, wearable electronics, Wireless Sensor Networks, and Artificial Intelligence. Thus, the main novelty of the paper is the system-level description of the platform flexibility allowing the interoperability of different smart devices. This research was developed within the framework of the operative project HABITAT (Home Assistance Based on the Internet of Things for the Autonomy of Everybody), aiming at developing smart devices to support elderly people both in their own houses and in retirement homes, and embedding them in everyday life objects, thus reducing the expenses for healthcare due to the lower need for personal assistance, and providing a better life quality to the elderly users

    HABITAT: An IoT solution for independent elderly

    Get PDF
    In this work, a flexible and extensive digital platform for Smart Homes is presented, exploiting the most advanced technologies of the Internet of Things, such as Radio Frequency Identification, wearable electronics, Wireless Sensor Networks, and Artificial Intelligence. Thus, the main novelty of the paper is the system-level description of the platform flexibility allowing the interoperability of different smart devices. This research was developed within the framework of the operative project HABITAT (Home Assistance Based on the Internet of Things for the Autonomy of Everybody), aiming at developing smart devices to support elderly people both in their own houses and in retirement homes, and embedding them in everyday life objects, thus reducing the expenses for healthcare due to the lower need for personal assistance, and providing a better life quality to the elderly users.In this work, a flexible and extensive digital platform for Smart Homes is presented, exploiting the most advanced technologies of the Internet of Things, such as Radio Frequency Identification, wearable electronics, Wireless Sensor Networks, and Artificial Intelligence. Thus, the main novelty of the paper is the system-level description of the platform flexibility allowing the interoperability of different smart devices. This research was developed within the framework of the operative project HABITAT (Home Assistance Based on the Internet of Things for the Autonomy of Everybody), aiming at developing smart devices to support elderly people both in their own houses and in retirement homes, and embedding them in everyday life objects, thus reducing the expenses for healthcare due to the lower need for personal assistance, and providing a better life quality to the elderly users

    Reducing the Gap Between Business and Information Systems Through Complex Event Processing

    Get PDF
    According to the Object Management Group, a rule is a proposition that is a claim of obligation or of necessity. The concept of rule is usually employed in the context of business process to manage companies operations. While a workflow is an explicit specification of tasks' execution flow, business rules only impose restrictions on the tasks' execution. This provides a great deal of flexibility for the process execution, since the stakeholders are free to choose an execution flow which does not violate the rules. The execution of a task in a process can be seen as the occurrence of an event, which may enable/disable the execution of some other tasks in the process. Event-driven programming is a paradigm in which the program control-flow is determined by the occurrence of events. The capacity to handle processes that are unpredictably non-linear and dynamic makes the event-driven paradigm an effective solution for the implementation of business rules. However, the connection between the business rules and their implementation through event-driven programming has been made in an ad-hoc and unstructured manner. This paper proposes a methodology to tackle such a problem by systematically moving from business rules described in natural language toward a concrete implementation of a business process. We use complex event processing (CEP) to implement the process. CEP relies on the event driven paradigm for monitoring and processing events. The methodology allows for the active participation of business people at all stages of the refinement process. Throughout the paper, we show how our methodology was employed to implement the operations of the World Bank
    corecore