
Departamento de Engenharia Electrotécnica

An Agent-Based Evolutionary Approach
For Manufacturing System Layout Design

Por
Nuno Emanuel Nunes Pereira

Dissertação apresentada na Faculdade de Ciências e Tecnologia da Universidade Nova de
Lisboa para obtenção do grau de Mestre em Engenharia Electrotécnica e de Computadores

Orientador: Doutor José António Barata de Oliveira

Júri:
Presidente: Doutor Pedro Alexandre da Costa Sousa
Vogal: Doutor José António Barata de Oliveira
Vogal: Doutor João Paulo Branquinho Pimentão

Monte de Caparica
Abril de 2011



ii



An Agent-Based Evolutionary Approach For Manufacturing System Layout Design

Copyright c©Todos os direitos reservados a Nuno Pereira, FCT/UNL e UNL

A Faculdade de Ciências e Tecnologia e a Universidade Nova de Lisboa têm o direito, perpétuo e sem
limites geográficos, de arquivar e publicar esta dissertação através de exemplares impressos reproduzi-
dos em papel ou de forma digital, ou por qualquer outro meio conhecido ou que venha a ser inventado,
e de a divulgar através de repositórios cientificos e de admitir a sua cópia e distnibuição com objectivos
educacionais ou de investigação, não comerciais, desde que seja dado crédito ao autor e editor.

iii



iv



Para a minha Famı́lia
E os meus Amigos

v



vi



Acknowledgments

Many people contributed in one way or another to me reaching this point of my life and to the conclusion
of this work. They loved me, cared for me and supported me through my life as a student and, more
importantly, through my life as a person.

These people are: my mother and father, my grandmother, my brother Bruno Pereira, my cousins
Patrı́cia Nunes and Gonçalo Mateus, my aunts and uncles, Marijke Niessen, Gonçalo Costa, José Belo,
José Luzio, Hugo Lopes, Francisco Ganhão, the ”hard core” of the Mestrado Integrado em Engenharia
Electrotécnica, and my colleagues and friends outside the university. To all of you, my most sincere
thanks.

I want to thank Professor José Barata for the opportunity to develop the work presented in this thesis.
I also thank Dr. Regina Frei for her ideas.

vii



viii



Resumo

Nesta tese é apresentada uma solução para o problema do desenho do layout de um sistema de manufac-
tura, uma parte importante da sua fase de projecto, dada a influência que tem na eficiência do sistema e,
portanto, na sua capacidade de produção e de lidar com falhas.

A solução apresentada tem por base um algoritmo genético que, utilizando a informação que é
fornecida pelo utilizador através de um ficheiro de ontologia, e utilizando algoritmos da teoria de grafos,
desenha o layout do sistema de manufactura. As instâncias da ontologia representam recursos de manu-
factura e suas caracterı́sticas que, quando utilizados pelo algoritmo, são codificados em cromossomas e
nos seus genes.

O algoritmo inicia-se com um número de cromossomas com fitness baixa que, com a evolução di-
reccionada proporcionada pelo algoritmo, que é condicionada por parâmetros de controlo que podem
ser alterados pelo utilizador, melhoram com o surgimento de novas geraçães. Considera-se que a mel-
hor solução é aquela que conecta, por ordem, todos os recursos necessários para realizar as operações
requeridas pelo plano de manufactura descrito na ontologia, sem que estes se sobreponham quando o
layout é construı́do.

A configuração apresentada pelo sistema de transporte de partes e materiais, no layout escolhido,
está apenas dependente dos recursos disponı́veis e da função de fitness utilizada pelo algoritmo genético,
sendo que esta última não pode ser alterada pelo utilizador. Esta solução diferencia-se das demais por
posicionar simultaneamente todos os componentes do sistema de manufactura e não apenas estações de
trabalho ou o sistema de transporte.

A solução é direccionada para evolvable assembly systems, pelo que foi implementada dentro de um
agente, para poder ser integrada num sistema multiagente, a ser utilizado para controlar um sistema de
manufactura, com um mı́nimo de alterações.

Palavras-chave: desenho de layout, sistema de manufactura, sistema multiagente, ontologia, algo-
ritmo genético.

ix



x



Abstract

In this thesis it is presented an approach to the problem of layout design for a manufacturing system,
which is an important part of its design stage, given that it has influence in the system efficiency and,
therefore, in its output rate and fault handling capabilities.

The presented approach is based on a Genetic Algorithm (GA) that, by using information provided
by the the user through an ontology file, and by using algorithms from graph-theory, designs the layout
of a manufacturing system. The instances of the ontology represent manufacturing resources and their
characteristics that, when they are being used by the algorithm, are encoded in chromosomes and in their
genes.

The algorithm begins with a number of chromosomes with low fitness which, with the directed
evolution provided by the algorithm, that is restricted by the control parameters that might be tunned
by the user, improve with the passing of the new generations. It is considered that the fittest solution
is the one that connects, in order, all the resources required by the manufacturing plan, described in the
ontology, without the occurrence of overlaps when the layout is constructed.

The configuration presented by the transport system that handles parts and materials, in the selected
layout, is only dependent on the available resources and on the fitness function used by the GA, being that
the last cannot be changed by the user. This approach differs from others by positioning simultaneously
all the components of the manufacturing system and not only workstations or transport system.

The solution is directed to evolvable assembly systems, purpose for which it was implemented inside
an agent, so it can be integrated in a Multiagent System (MAS) to be used in the control of a manufac-
turing system with minimal changes.

Keywords: layout design, manufacturing system, multiagent system, ontology, genetic algorithm.

xi



xii



Contents

Acknowledgments vii

Resumo ix

Abstract xi

Acronyms xix

1 Introduction 1
1.1 Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.3 Hypothesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.4 Objectives And Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.5 Structure of the Dissertation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 State Of The Art, Related Work And Supporting Concepts 5
2.1 Manufacturing Paradigms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 Flexible Manufacturing Systems . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.1.2 Intelligent Supervising Systems . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.1.3 Agility in Manufacturing Systems . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.1.4 Evolvable Assembly Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.1.5 Self-Organisation in Manufacturing Systems . . . . . . . . . . . . . . . . . . . 10

2.2 Control Approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2.1 Centralised . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2.2 Hierarchical . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2.3 Modified Hierarchical . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2.4 Heterarchical . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3 Agent-Based Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3.1 Individual Agent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3.2 Agent Typologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3.3 Multiagent Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.3.4 Communication Technologies . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.3.5 Integrating Agents In Custom Applications: The Jade Framework . . . . . . . . 18

2.4 Ontologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.4.1 Language Specifications: RDF and OWL . . . . . . . . . . . . . . . . . . . . . 19
2.4.2 Editing Tools: Protégé . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.4.3 Integrating Ontologies In Custom Applications: Jena Java API . . . . . . . . . . 20
2.4.4 Manufacturing Ontologies: EUPASS Ontology . . . . . . . . . . . . . . . . . . 20

2.5 Genetic Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.5.1 Encoding Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.5.2 Selection Of Parents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.5.3 Crossover Operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

xiii



2.5.4 Mutation Operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.5.5 Fitness Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.5.6 Integrating Genetic Algorithms In Custom Applications: JGAP . . . . . . . . . 23

2.6 Manufacturing System Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.6.1 Equipment Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.6.2 Equipment Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.6.3 Layout Configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.6.4 Layout Design With Genetic Algorithms . . . . . . . . . . . . . . . . . . . . . 27

2.7 Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.7.1 Integrating Graphs In Custom Applications: JGraphT . . . . . . . . . . . . . . . 28

3 System Architecture 31
3.1 Control Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.1.1 Design Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.1.2 Run-Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.2 Types of Agents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.2.1 Resource Agent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.2.2 Layout Agent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.2.3 System Agent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.2.4 Directory Facilitator Agent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.3 Agent Knowledge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.3.1 Manufacturing Plan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.3.2 Resource Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.4 Agent Behaviours . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.4.1 Registrations In DF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.4.2 Information Requests To DF . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.4.3 Layout Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.4.4 Coalition Creation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.4.5 Workflow Execution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.4.6 Coalition Coordination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4 Supporting Ontologies 39
4.1 Product Manufacturing Plan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.2 Resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5 Genetic Algorithm For Layout Design 41
5.1 Chromosome . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
5.2 Selection Of Parents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
5.3 Crossover Operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
5.4 Mutation Operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
5.5 Fitness Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

6 Implementation 47
6.1 Programming In Java . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
6.2 NetBeans . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
6.3 The Layout Agent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

6.3.1 Constructor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
6.3.2 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
6.3.3 Events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

6.4 Graphical User Interface Of The Layout Agent . . . . . . . . . . . . . . . . . . . . . . 49
6.4.1 Control Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
6.4.2 Starting Layout Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

xiv



6.4.3 Consulting Other Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
6.5 Layout Behaviour . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

6.5.1 Constructor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
6.5.2 Action . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
6.5.3 Done Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

6.6 Ontology Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
6.6.1 Model Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
6.6.2 Retrieving Connection Points . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
6.6.3 Retrieving Required Resources . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
6.6.4 Retrieving Resource Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . 52
6.6.5 Retrieving Connection Point Data . . . . . . . . . . . . . . . . . . . . . . . . . 52

6.7 Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
6.8 Encoding Chromosomes And Genes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

6.8.1 Chromosomes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
6.8.2 Composite Genes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
6.8.3 Genes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

6.9 Crossover And Mutation Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
6.10 Fitness Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

6.10.1 Constructor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
6.10.2 Fitness Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

6.11 Graph Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
6.11.1 Creating A Graph From A Chromosome . . . . . . . . . . . . . . . . . . . . . . 56
6.11.2 Creating A Layout From A Graph . . . . . . . . . . . . . . . . . . . . . . . . . 56
6.11.3 Determination Of The Source And Target Connection Points In A Resource Con-

nection Edge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
6.12 Transform Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

6.12.1 Rotation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
6.12.2 Translation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
6.12.3 Inversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
6.12.4 Rectangular Area And Areas Of Any Shape . . . . . . . . . . . . . . . . . . . . 58

6.13 Decoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

7 Validation And Test Cases 59
7.1 Test 4R3P1T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
7.2 Test 6R4P2T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
7.3 Test 5R3P1T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
7.4 Test 9R3P2T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

8 Conclusions 65
8.1 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

Bibliography 69

xv



xvi



List of Figures

2.1 Information flow in a supervising architecture . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 An evolvable assembly system architecture . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3 Interactions in a centralised control architecture . . . . . . . . . . . . . . . . . . . . . . 13
2.4 Interactions in a hierarchical control architecture . . . . . . . . . . . . . . . . . . . . . 14
2.5 Interactions in a modified hierarchical control architecture . . . . . . . . . . . . . . . . 15
2.6 Interactions in a heterarchical control architecture . . . . . . . . . . . . . . . . . . . . . 16
2.7 A genetic algorithm evolution cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.8 The structure of a chromosome . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.9 Single point crossover effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.10 Mutation effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.11 Transfer line layouts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.12 Centralised layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.13 Functional layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.14 Distributed layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.1 Information flow at the beginning of design time . . . . . . . . . . . . . . . . . . . . . . 32
3.2 Information flow at the end of design time . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.3 Control approach at run-time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.4 A manufacturing plan structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.5 Connection points of resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5.1 Information encoding in a chromosome . . . . . . . . . . . . . . . . . . . . . . . . . . 42
5.2 Connection points of a conveyor belt . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
5.3 Crossover in the layout algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
5.4 Mutation in the layout algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
5.5 A path in a layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

6.1 Graphical user interface of the layout agent . . . . . . . . . . . . . . . . . . . . . . . . 49

7.1 Solution presented by the layout algorithm for the test 4R3P1T . . . . . . . . . . . . . . 60
7.2 Sequence of solutions presented by the layout algorithm for the test 6R4P2T . . . . . . . 62
7.3 Sequence of solutions presented by the layout algorithm for the test 5R3P1T . . . . . . . 63
7.4 Solution presented by the layout algorithm for the test 9R3P2T . . . . . . . . . . . . . . 64

xvii



xviii



Acronyms

ACL Agent Communication Language

AEI Advanced Enabling Interface

API Application Programming Interface

AGV Automated Guided Vehicle

BDI Belief-Desire-Intention

CoBASA Coalition Based Approach For Shop Floor Agility

DF Directory Facilitator

EAS Evolvable Assembly System

EUPASS Evolvable Ultra-Precision Assembly Systems

FAS Flexible Assembly System

FIPA Foundation For Intelligent Physical Agents

FMS Flexible Manufacturing System

GA Genetic Algorithm

GUI Graphical User Interface

ICT Information And Communication Technology

IDE Integrated Development Environment

JADE Java Agent Development Framework

Jena Jena Semantic Web Framework For Java

JGAP Java Genetic Algorithms Package

KIF Knowledge Interchange Format

KQML Knowledge Query Manipulation Language

MAS Multiagent System

MGA Messy Genetic Algorithm

NetBeans Netbeans Integrated Development Environment

OS Operating System

OWL Web Ontology Language

xix



Pellet Pellet OWL-DL Reasoner

R&D Research And Development

RDF Resource Description Framework

SA Self-Adaptive

SO Self-Organising

SOA Service-Oriented Architecture

SPARQL SPARQL Query Language For RDF

SWRL Semantic Web Rule Language

URI Uniform Resource Identifier

W3C World Wide Web Consortium

xx



Chapter 1

Introduction

The first humans to inhabit planet Earth were fully dependent on Nature to survive. They would collect

from Nature everything they required, not only food and water, but also animal skins and bones, wood

and stone which were used to manufacture clothes, shelter and tools [Nunes et al., 1995]. Those times

are past but the need to transform what Nature gives in order to satisfy the necessities of society still

remains. There are differences though. Nowadays, with the growing understanding of the universe,

mankind relies on artificial machines to execute the most difficult, repetitive and precision requiring

tasks, which can be witnessed in different domains such as search and rescue, medicine, warfare, space

exploration, construction and manufacturing [Frei et al., 2009b].

1.1 Context

The purpose of a manufacturing company is to manufacture a product that will enter the market where

it will be available for consumers to buy. Consumers will only purchase what they need, like and can

afford. In this way, they have great influence in the manufacturing world. Furthermore, unless a company

has the monopoly1 of the market, competing companies are always a concern, since they will try to make

their products more appealing to consumers then those of other companies. For both these reasons, a

manufacturing company has to manufacture products that are attractive to consumers in terms of quality

and cost, and that often have to be improved or renewed given their short life-cycle.

1.2 Problem

Companies have to be able to cope with the market demands described in Section 1.1 while maintaining

the manufacturing costs of their products as low as possible. Tompkins et al. [2010] stated that between

20 and 50% of the total operating expenses within manufacturing is attributed to material handling. The

1A monopoly is an exclusive ownership through legal privilege, command of supply, or concerted action [’monopoly’, 2010]

1



2 CHAPTER 1. INTRODUCTION

efficiency of a material handling system is dependent on the layout of the whole manufacturing system,

which is difficult to design and costly to modify [Rajasekharan et al., 1998]. The problem of generating

the best layout for a manufacturing system is very old and, due to the complexity of designing a system

flexible to handle a variety of product requirements and agile to handle the introduction of new products,

research efforts have only produced a number of incomplete solutions.

1.3 Hypothesis

A manufacturing system capable of self-organising provides a way of addressing the problem described

in Section 1.2 by automating part of the layout design process. The following hypothesis are formu-

lated: a manufacturing system is capable of designing its layout using self-organisation if it has access to

enough information about itself and the world around it. It is possible to define and implement an archi-

tecture able to create its own layout. The resulting implementation facilitates the the task of designing a

manufacturing system’s layout.

1.4 Objectives And Contributions

The objective and contribution of this thesis is to design and implement an agent architecture compliant

with the hypothesis of Section 1.3. This architecture is capable of designing the layout of a manufacturing

system by integrating agent technology, ontologies, genetic algorithms and graph-theory algorithms.

1.5 Structure of the Dissertation

The dissertation is structured in eight chapters:

• Chapter 2 - state of the art of manufacturing technology and related work: manufacturing paradigms,

control approaches, agent-based control, ontologies, genetic algorithms, layout design, and graph-

theory algorithms.

• Chapter 3 - agent’s architecture and integration of modules: ontologies, genetic algorithms and

graph-theory algorithms.

• Chapter 4 - support ontology that describes the manufacturing plan and manufacturing resources.

• Chapter 5 - genetic algorithm: coding of the chromosomes, mutation operators and fitness func-

tions.

• Chapter 6 - implementation: problems encountered and solutions found.



1.5. STRUCTURE OF THE DISSERTATION 3

• Chapter 7 - tests performed to validate the implementation.

• Chapter 8 - analyses the work developed in this dissertation, based on the hypothesis of section

1.3, and future work.



4 CHAPTER 1. INTRODUCTION



Chapter 2

State Of The Art, Related Work And

Supporting Concepts

A manufacturing company integrates product development and design activities with the process of pro-

ducing the product and with business, which involves distribution, marketing and service infrastructure

[Leitão, 2004]. The work developed in this thesis focuses mainly in the product description and corre-

sponding manufacturing system.

2.1 Manufacturing Paradigms

A manufacturing system is a combination of machines, tools and human workers organised in worksta-

tions and interconnected by transporters and material handling technology. The manufacturing process

results of the coordinated action of humans and manufacturing equipment and is defined by Groover

[2007]:

”Manufacturing can be defined as the application of physical and chemical processes to

alter the geometry, properties, and/or appearance of a given starting material to make parts

or products; manufacturing also includes the joining of multiple parts to make assembled

products.”

This means that product, process and system are intrinsically related to one another. Hence, a change

in product design may have an impact on the process and the system. Likewise, a change in a process

may imply a change in the product design and system [Frei et al., 2009b]. Nonetheless, a manufacturing

system should be able to respond instantaneously to product demands [Davidow and Malone, 1993].

However, the readiness and quality of that response is dependent on the control architecture and physical

layout of the system. Although the majority of manufacturing companies remains resilient to the replace-

ment of their antiquated but well known manufacturing system of many years by a strange and complex

5



6 CHAPTER 2. STATE OF THE ART, RELATED WORK AND SUPPORTING CONCEPTS

system that just came out of Research And Development (R&D), manufacturing paradigms have been

evolving through the years and the ones available today allow the design of flexible and agile systems

that are able to deal with product diversity, change and uncertainty.

2.1.1 Flexible Manufacturing Systems

Flexibility is the capability to adapt to new, different, or changing requirements [’flexibility’, 2010]. A

manufacturing system gains this capability when it is designed to handle predictable variations. Leitão

[2004] identifies different types of flexibility, such as mix, changeover, volume, product and sequencing.

Each type is characterized by dealing with a different variation:

• mix flexibility - the capability to deal with a range of products or variants;

• changeover flexibility - the capability to quickly change the manufacturing system to offer a new

product;

• volume flexibility - the capability to deal with demands of variable volume;

• product flexibility - the capability to quickly modify a product design;

• sequencing flexibility - the capability to support different sequences of the operations that are part

of the manufacturing plan.

The control of a Flexible Manufacturing System (FMS) is carried out by an integrated computational

system [Upton, 1992] and its main limitation is its inflexibility to the introduction of new products due

to the complexity of automatically making the required adjustments [Leitão, 2004].

2.1.2 Intelligent Supervising Systems

Intelligent Supervising Systems are an approach to FMS [Camarinha-Matos et al., 1996]. They include

a planning module which is responsible for the generation of executable manufacturing plans. However,

the generated plan is based on a simplified model of the world, which does not consider every hypothesis

and, even if it did, there can be the occurrence of unpredictable events. Therefore, there is the need for a

supervising module, which is responsible for executing the plan and generating eventual recovery plans.

The supervising module is composed of:

• dispatcher - Executes the manufacturing plan, given by the planning module, by sending execution

commands to the device controllers.

• monitoring - Monitors the manufacturing process, based on the information retrieved from sensors,

in search of deviations from the plan objectives, problems or abnormalities.



2.1. MANUFACTURING PARADIGMS 7

• diagnosis - Analyses the issues encountered and identifies their origin.

• recovery - Tries to recover from the issue by generating a recovery manufacturing plan.

Figure 2.1 shows the information flow between these modules in a possible supervising architecture.

S
u

p
e

rv
is

in
g

 
m

o
d

u
le

Planning module

Dispatcher Monitoring Diagnosis Recovery

Actuators and sensors

Figure 2.1: Information flow in a supervising architecture

Supervising applications may include extra functionalities:

• prognosis - Analyses the temporal evolution of a set of state variables and tries to anticipate the

occurrence of errors.

• preventive maintenance - Similarly to recovery, this functionality generates preventive mainte-

nance plans.

• learning - Improves the performance of the previous functionalities through the acquisition of

knowledge.

Supervising systems are applied when a real-time system is required to handle different asynchronous

events in a certain time limit. If expert techniques from the artificial intelligence domain are used in the

implementation of a real-time system, a real-time expert system is obtained.

Expert Systems

Winston and Prendergast [1984] define an expert system as ”a computer program that behaves like a

human expert in some useful ways”. They involve modeling knowledge through logical propositions and

reasoning with it through the use of rules. The system core architecture is composed of a knowledge

base and an inference engine but an user interface and a data base are also required to interact with the

user and store relevant data, respectively.



8 CHAPTER 2. STATE OF THE ART, RELATED WORK AND SUPPORTING CONCEPTS

2.1.3 Agility in Manufacturing Systems

Agility is the ability to thrive and prosper in an environment of constant and unpredictable change [Gold-

man et al., 1995] and it covers different areas of manufacturing, from management to shop floor [Barata,

2005]. A manufacturing system that has this ability is able to deal with change and uncertainty [Barata,

2005] and with things that cannot be controlled [Maskell, 2001]. Barata [2005] includes a list of re-

quirements for a successful implementation of agile manufacturing, from which the following points are

relevant in the context of this thesis:

• information technology - Information And Communication Technologies (ICTs) are required to

provide the computational support needed for the creation of an agile shop floor.

• new agile shop floor strategies - Actors, processes and areas involved in the manufacturing system

should be studied for the development of a methodology that helps the integration of these elements

during the creation of an agile shop floor to support their life cycle evolution.

2.1.4 Evolvable Assembly Systems

Evolvable Assembly Systems (EASs) arose as a solution to the problem of achieving agility in assembly

systems. They are based on the concept of emergence whose basic idea is that complex systems exhibit

expected and unexpected properties and behaviours resulting from the integration of components with

known and unknown characteristics. Their composition consists of several reconfigurable, task-specific

and process oriented modules which allows for a continuous evolution together with the product and the

corresponding assembly process. These characteristics allow modules to live beyond the product life

cycle [Frei et al., 2009a, Barata and Onori, 2006, Onori et al., 2005].

Barata and Onori [2006] list some requirements to successfully designing an EAS:

• module - Any unit that can perform operations and integrates a specific interface.

• granularity - The lowest level of device being considered in the reference architecture. The lower

the level of the building blocks the higher the emergent behaviour.

• plugability - The ability to rearrange and integrate system components within the framework of a

given system architecture. A legacy system1 can be adapted into an EAS component through an

Advanced Enabling Interface (AEI) that enables the communication with other EAS components.

• reconfigurability (interoperability) - The ability to rearrange available system components to per-

form new, but predefined functions.

1A legacy system is an antiquated computer system which is still in use because it cannot be replaced or redesigned.



2.1. MANUFACTURING PARADIGMS 9

• evolvability - The reconfiguration of the system platform enables new or refined levels of func-

tionality.

The architecture of an EAS is composed of an individual module architecture and a global system archi-

tecture.

Individual Module

An individual physical module is represented by a computational model that must be part of the archi-

tecture. This model must possess a set of attributes that capture the relevant physical characteristics of

the module and are to be used for its operation, configuration and selection. Model functionalities should

capture the behaviour of the physical module and realize the necessary control actions that must be is-

sued for the behaviour to be accomplished [Onori et al., 2005]. They are offered as skills and each skill

represents the capability of the module to perform a certain task, which may be dependent on some or

all the represented attributes. A skill execution may involve performing a sequence of the control actions

offered by the module controller. A control action should be offered in a skill execution sequence, and

not alone, when its resulting effect is not significantly relevant to the assembly process.

Assembly System

The global architecture of the assembly system should support easy addition and removal of modules

and also support their interactions, such as synchronization, which are required to handle complex skills

(see Figure 2.2 (equipment figures taken from [KUKA, 2010, ABB, 2011, Montech, 2011, SCHUNK,

2011])). A complex skill is a skill offered and performed by a group of modules selected by the user to

be part of a coalition [Barata, 2005, Onori et al., 2005].

Development Of EAS

The Coalition Based Approach For Shop Floor Agility (CoBASA) is a multiagent approach developed

by Barata [2005] which established the first ideas and concepts for EASs [Frei et al., 2008].

The Evolvable Ultra-Precision Assembly Systems (EUPASS) Integrated project, which ran from

2004 to 2009, aimed to develop affordable, cost effective and sustainable ultra-precision manufacturing

solutions by offering rapidly deployable ultra-precision assembly services on demand, which was to be

achieved by developing and delivering a number of breakthrough technologies and solutions [EUPASS].

This endeavour followed the EAS principles, and has, together with more pinpointed efforts between

KTH, UNINOVA, and EPFL, elaborated a set of foundations for EAS [Shen et al., 2006].



10 CHAPTER 2. STATE OF THE ART, RELATED WORK AND SUPPORTING CONCEPTS

Module pool

Coalition x

Coalition y Coalition z

Figure 2.2: An evolvable assembly system architecture

2.1.5 Self-Organisation in Manufacturing Systems

Although manufacturing systems such as EASs are built to be easily reconfigurable, a human is still

required to actually design the reconfigured system, to program the required modules, and to monitor

the manufacturing process. The whole process is expensive, error-prone and tedious [Frei et al., 2009a].

The application of self-* capabilities to manufacturing systems contributes to the creation of more user-

friendly systems by increasing autonomy and hiding complexity from the user [Frei and Barata, 2008].

However, to obtain a trustworthy system, the user retains control, and safety, security and performance

must be assured during development, deployment and evolution [Di Marzo Serugendo et al., 2008].

Babaoglu and Shrobe [2010] define Self-Organising (SO) systems and Self-Adaptive (SA) systems:

”Self-organising systems work bottom up. They are composed of a large number of

components that interact locally according to typically simple rules. The global behavior of

the system emerges from these local interactions. Here, a challenge is often to predict and

control the resulting global behavior.”

”Self-adaptive systems work in a top down manner. They evaluate their own global be-

havior and change it when the evaluation indicates that they are not accomplishing what they



2.1. MANUFACTURING PARADIGMS 11

were intended to do, or when better functionality or performance is possible. A challenge is

often to identify how to change specific behaviors to achieve the desired improvement.”

Trustworthy SO and SA systems can be created by assuring their compliance with the following require-

ments, which were adapted from Di Marzo Serugendo et al. [2008]:

• autonomous individual components - Robustness and self-* behaviour arise from the system being

composed of autonomous individual components, which can be ant-like entities in an SO system

and autonomous parts of the supporting infrastructure in an SA system.

• interoperability - The global behaviour of the system arises from the interactions between the

individual components of the SO or SA system. Description of component capabilities should be

decoupled from the programming code.

• self-awareness - Self-* properties and behaviour arise from the capability of the system or its

individual components to identify by themselves new opportunities of evolution, problems and so-

lutions, without the interference of a human user. Self-awareness involves sensing capabilities in

order to trigger reasoning and acting, and requires acquisition, updating and monitoring of meta-

data2. The components of an SO system are capable of sensing and affecting their environment.

SA systems use intelligent supervising components, such as planners, controllers and monitors.

• behaviour guiding and bounding - A set of rules are used to direct and limit the behaviour of SO

and SA system components towards what might me considered an optimum. In a SA system,

there are also rules that apply to the system as a whole. The system must possess mechanisms for

enforcing these rules.

• development process - The development process involves the analysis of the system in different

views from abstract descriptions to programming code. Self-description of components and spec-

ification of metadata and rules must be available at design-time, run-time or both, depending on

when they are required.

The main difference between a SO system and a SA system is that the first is decentralised and bottom

up driven and the second is hierarchical and top down driven.

Self-Organising Evolvable Assembly Systems

A SO-EAS is an EAS in which the modules self-organise to create a suitable layout for the assembly

and that self-adapts as a whole to manufacturing conditions [Frei et al., 2008]. The static coalitions of

2Metadata conveys functional and non-functional information about the system itself [Di Marzo Serugendo et al., 2008]



12 CHAPTER 2. STATE OF THE ART, RELATED WORK AND SUPPORTING CONCEPTS

classic EASs become dynamic. As an example of application, when new modules are connected to an

EAS, their controllers communicate with one another, verify their compatibility, create complex skills

based on their individual simple skills, and offer them to the user [Frei and Barata, 2008].

Frei et al. [2009b, 2010], Frei [2010] investigate the question of whether self-organisation can be

useful in agile assembly, what are the suitable mechanisms for self-organisation, and how they can be

implemented. The work developed in this thesis is part of this research.

2.2 Control Approaches

Shop floor control approaches have been evolving through time with a noticed increasing of autonomy

and relaxation of master-slave relationships [Barata, 2005], which allowed the arising of more flexible

and agile manufacturing systems. Dilts et al. [1991] classifies control approaches as centralized, hierar-

chical and heterarchical, which have advantages and disadvantages as Barata [2005], Leitão [2004] have

identified.

2.2.1 Centralised

In a centralised approach (see Figure 2.3), the central module is responsible for all decision-making

related with planning and processing of information and issues commands to the modules around it.

By requiring simpler coordinating algorithms, it eases management and control optimization. However,

introducing modifications and adding new elements implies making changes to the program. Moreover,

its total dependence on the central note, raises control complexity and response time, and lowers its fault

tolerance.

2.2.2 Hierarchical

In this approach, decision-making is divided by multiple modules organized hierarchically in a tree-like

structure (see Figure 2.4). Modules in upper layers of the tree interact with those on a layer immedi-

ately below based on the master-slave concept. Hence, the module on the top of the hierarchy sets the

global goals and the long-range strategies and issues commands to the lower levels which decompose

these commands into simpler ones and then send them to a further lower level for their accomplishment.

Thus, the complexity of each individual controller is reduced. A system implementing this architecture

works near optimal performance under stable situations but the appearance of disturbances reduces that

performance significantly. As a response to disturbances, there can be a control loop for adaptive pur-

poses, which is possible because information also flows bottom-up. Unlike a centralised approach, this

approach enables modifications such as the addition of new modules to existing layers. However, it is



2.2. CONTROL APPROACHES 13

Module x

Central 
module

Module z Module y

Figure 2.3: Interactions in a centralised control architecture

difficult to introduce a new layer.

2.2.3 Modified Hierarchical

The modified hierarchical approach maintains all features of the hierarchical approach while adding

interaction between modules at the same hierarchical level (see Figure 2.5), increasing their complexity.

In this way, whenever there is a disturbance in the normal execution of the system, it might be solved with

the information gathered at the level where it was detected and without involving upper levels, improving

response. System expandability is also improved.

2.2.4 Heterarchical

This is a flat architecture (see Figure 2.6) where decision-making is distributed and happens in each

module autonomously, without a global view of the system. Thus, overall complexity is reduced when

compared with other approaches. Modules cooperate with one another and it is easy to modify their

functioning and to add new modules to the system, which makes expandability an easier task than in

other approaches. It increases performance against disturbances by decreasing response time at the cost

of reducing global optimisation.



14 CHAPTER 2. STATE OF THE ART, RELATED WORK AND SUPPORTING CONCEPTS

Module a

Module cModule b

Module y Module z

Module x

Figure 2.4: Interactions in a hierarchical control architecture

2.3 Agent-Based Control

The heterarchical architecture, referred to in 2.2.4, is also designated by autonomous agent approach in

the agent domain [Leitão, 2004]. In this approach, the manufacturing system is controlled by a society of

autonomous entities called agents which interact autonomously with the environment through the devices

they control, and with one another through the exchange of messages. There are two levels of abstraction

to be considered: the individual agent and the multiagent society.

2.3.1 Individual Agent

Wooldridge [2009] gives the following definition of agent:

”An agent is a computer system that is situated in some environment, and that is capable

of autonomous action in this environment in order to meet its delegated objectives.”

This definition of agent was chosen because it is in agreement with the requirements of this thesis but it

does not represent a universally accepted definition of the term. Such definition does not exist, which is

due to the fact that the various attributes associated with agency are of differing importance for different

domains, from which autonomy is considered central to the notion of agency [Wooldridge, 2009]. There-

fore, an agent presents a desired level of autonomous behaviour in its interactions with the environment

and with other agents. This autonomy is dependent on the decisions it is prepared to make, based on

an internal representation of the perceived environment, which can be thought of as an internal state, in



2.3. AGENT-BASED CONTROL 15

Module a

Module cModule b

Module y Module z

Module x

Figure 2.5: Interactions in a modified hierarchical control architecture

order to take action towards the realization of its functionality. Perception, decision and action are the

keywords of agent behaviour.

2.3.2 Agent Typologies

An agent can be classified according to its behaviour as deliberative, reactive and hybrid [Wooldridge,

2009].

Deliberative Agent

A deliberative agent is an agent that behaves pro-actively towards the achievement of a predetermined

goal. It maintains a knowledge representation of the world and, through reasoning, it is capable of

planning a course of action, which comprehends the generation of a correct and optimal sequence of

actions that take him closer to its goal [Leitão, 2004].

The Belief-Desire-Intention (BDI) architecture is a well known deliberative agent architecture, which

attempts to replicate human practical reasoning [Wooldridge, 2009]. In this architecture, the reasoning

process that leads to decision-making takes in consideration the following representations:

• beliefs - Knowledge of the agent regarding itself and its environment.

• desires - Goals that the agent has to achieve, but does not know yet how to.

• intentions - Goals that the agent is committed to achieve and that knows how to.



16 CHAPTER 2. STATE OF THE ART, RELATED WORK AND SUPPORTING CONCEPTS

Module x

Module y

Module z

Figure 2.6: Interactions in a heterarchical control architecture

Reactive Agent

A reactive agent is an agent whose sole purpose is to respond to changes that occur in the environment,

when they happen, producing robust actions. Unlike a deliberative agent, it does not have an internal

knowledge representation.

Brooks [1986, 1991a,b,c] proposed the subsumption architecture for reactive agents, which is based

on three thesis:

• Intelligent behaviour does not require explicit symbolic representations.

• Intelligent behaviour does not require explicit abstract symbolic reasoning.

• Intelligence is an emergent property of certain complex systems.

The basic ideas are that intelligence is in the world and not inside the agent. Moreover, intelligent

behaviour arises from the interaction of the agent with its environment.

This architecture is a hierarchy of behaviours and each behaviour has a situation-action rule-like

structure. Although behaviours compete with one another for the control of the agent, lower layers of the

architecture, which represent more primitive kinds of behaviour, have precedence over layers further up

the hierarchy Wooldridge [2009].

Hybrid Agent

A hybrid agent combines the best characteristics of deliberative agents and reactive agents. Their archi-

tecture is composed of a set of interacting layers in which some are deliberative and others are reactive.

Therefore, they are capable of generating optimal sequences of actions and of achieving fast response.



2.3. AGENT-BASED CONTROL 17

However, depending on how the layers receive sensorial information and interact, this architecture can

be classified as horizontal layering and vertical layering [Wooldridge, 2009].

In horizontal layering, the sensors are directly connected to the layers, which are directly connected

to the output [Wooldridge, 2009]. This can create a problematic situation in which different layers give

different orders to the output. [Barata, 2005].

In vertical layering, sensors and output connect to one layer each, which can happen in one of two

ways. In ”one pass control” sensors are connected to the bottom layer and actuators are connected to the

top layer; consequently, required information flows bottom-up, being filtered from layer to layer. In ”two

pass control” sensors and actuators are connected to the bottom layer. Hence, information flows upwards

and then downwards through the layers [Wooldridge, 2009]. In both situations, only one layer affects the

output. Thus, the problem described in horizontal layering does not occur in this architecture. However,

if one layer stops working, the whole architecture fails [Barata, 2005].

2.3.3 Multiagent Systems

Agents in a Multiagent System (MAS) have to interact with one-another. Wooldridge [2009] states that

this interaction requires the abilities:

• coordination - Coordination is needed in the access to non-sharable resources.

• cooperation - Agents cooperate to achieve a common goal by working together.

• negotiation - The process of negotiation is required to reach agreements on matters of common

interest.

The usefulness of these abilities is observable in a coalition, which is a structure that results from the

association of at least two cooperating agents. Negotiation is required for the autonomous formation of

coalitions, and coordination is required when performing a joint activity.

Coalition Formation

Sandholm et al. [1999] identified three activities in coalition formation:

• Coalition structure generation: the set of agents should be partitioned in coalitions in such a way

that the agents inside a coalition coordinate their efforts with one-another but not with agents

belonging to other coalitions.

• Solving the optimization problem of each coalition. This involves coordinating the individual

efforts and the usage of resources of each agent while trying to maximize the efficiency of the

resulting joint effort.



18 CHAPTER 2. STATE OF THE ART, RELATED WORK AND SUPPORTING CONCEPTS

• Dividing the value of the generated solution among agents.

2.3.4 Communication Technologies

Agent interaction involves communication and understanding which is where ontologies (see 2.4), Agent

Communication Languages (ACLs) and agent communication protocols play an important role.

Agent Communication Languages

ACLs provide formats for the exchange of messages between the agents in the MAS. There are two well

known ACLs: Knowledge Query Manipulation Language (KQML), developed by the ARPA knowledge

sharing initiative, and FIPA-ACL, developed by Foundation For Intelligent Physical Agents (FIPA). The

structure of a message is similar in both standards, being composed of a performative, a content and

a set of control parameters [FIPA, 1996 - 2002b]. Performative and content parameters are the two

components of a speech act, as explained in speech act theory [Austin, 1975, Searle, 1997], and are used

by agents to express their intentions to other agents. Some FIPA-ACL performatives are relevant to this

work, such as: request, agree, refuse, inform, failure, cfp (call for proposals), propose, accept-proposal,

reject-proposal and subscribe. KQML includes the Knowledge Interchange Format (KIF) language,

which is used to express the content of messages.

Agent Communication Protocols

A communication protocol defines how agents should behave when communicating with one-another.

They consist of an ordered sequence of messages that an agent should send, or wait for, at a given time

during the communication process. FIPA defined a set of communication protocols, some of which are

relevant to this work, such as: request interaction protocol, contract net interaction protocol, subscribe

interaction protocol [FIPA, 1996 - 2002c,-,-]. The performative of a message sent or received is related

with the protocol in use at that time and with its state of execution.

2.3.5 Integrating Agents In Custom Applications: The Jade Framework

Java Agent Development Framework (JADE) [Jade - Telecom Italia Lab, 2010] is an open source plat-

form developed by Telecom Italia for peer-to-peer agent based applications fully implemented in the Java

language. It can be used to implement multi-agent systems through middle-ware that is compliant with

the FIPA specifications, and through a set of graphical tools that facilitate debugging and deployment

phases.



2.4. ONTOLOGIES 19

2.4 Ontologies

An ontology is a formal specification of a set of terms used to describe and represent an area of knowl-

edge. It is widely used in areas such as knowledge engineering, artificial intelligence and computer sci-

ence in computer applications that involve knowledge management and information management [Barata

and Onori, 2006]. In the context of this work, an ontology is used to define a set of classes of things, the

properties of those classes and the relationships between them. Moreover, the classes and properties de-

fined are instantiated to create a set of individuals which represent a knowledge base of the corresponding

ontology domain.

Technologies available for developing ontologies include language specifications and editing tools.

As for integrating ontologies in an application, there are libraries which can be imported into a program-

ming environment and that make it easy to read and write ontology files.

2.4.1 Language Specifications: RDF and OWL

The two languages that are relevant to this work are Resource Description Framework (RDF) and Web

Ontology Language (OWL), both developed by the World Wide Web Consortium (W3C). These lan-

guages use syntax in the encoding of knowledge.

RDF

RDF is a standard for data interchange. In this language, a thing is represented as a resource which is

identified by a Uniform Resource Identifier (URI). It encodes information in triple structures, which are

composed of three URIs: URI of a resource, followed by the URI of a property, followed by a literal or

the URI of other resource. Properties can have a literal or a URI as their value. This linking structure

forms a directed labeled graph where the nodes represent resources and edges represent properties. This

facilitates visualization and analysis of the ontology [RDF Working Group, 2009].

OWL

OWL is useful in applications where information is to be processed as it is capable of describing classes

of concepts with the corresponding properties and relations between them. Moreover, classes have re-

strictions and properties have characteristics and constraints. There are three increasingly-expressive

sublanguages of OWL: OWL Lite, OWL DL and OWL Full, which differ from one-another in the rela-

tions and restrictions allowed on classes and in the characteristics and constraints allowed on properties.

This language allows the instantiation of classes to create individuals and it is the decision of the creator

of an ontology to decide if a thing is a class or an individual. As resources in RDF, classes and individu-

als in OWL have an URI by which they are identified. Similarly, the value of a property can be an URI



20 CHAPTER 2. STATE OF THE ART, RELATED WORK AND SUPPORTING CONCEPTS

or a datatype, such as: boolean, integer, double, string. The OWL Working Group has produced a W3C

recommendation for OWL [OWL Working Group, 2004].

2.4.2 Editing Tools: Protégé

The editing tool used in the context of this work was Protégé, a free open source ontology editor and

knowledge-base framework which supports OWL [Stanford Center for Biomedical Informatics Research,

2010]. The creator of an ontology can use the Graphical User Interface (GUI) of Protégé to write his

ontology and then use the automatically generated files in a computer application or program. This

editor supports the addition of third party plug-ins, which add new functionalities to the ones available

by default, facilitating the process of creating an ontology.

2.4.3 Integrating Ontologies In Custom Applications: Jena Java API

Jena Semantic Web Framework For Java (Jena) [Jena] is a Java Application Programming Interface (API)

which supplies methods for creation and manipulation of RDF graphs [McBride et al., 2009]. In Jena,

graphs, resources, properties and literals are represented by Java object classes and interfaces. Moreover,

a graph is called a model, an arc of a model is called a statement and each statement asserts a fact

about a resource, which is accomplished by its three components: subject, predicate and object. These

components correspond to the three components of a triple.

Jena also aims to provide a consistent programming interface for the development of applications

which deal with ontologies [Dickinson, 2009]. One of the ontology languages it supports is OWL.

However, the Jena ontology API is used equally for every language supported. It provides Java object

classes for ontology classes, object properties, datatype properties and individuals. The value of an object

property is an URI and the value of a datatype property is a datatype. The ontology is contained in an

ontology model, which is an extension of the model used for RDF, as the information is still encoded in

RDF triples. It also facilitates working with ontologies spread across different files as imports through a

document manager.

2.4.4 Manufacturing Ontologies: EUPASS Ontology

A manufacturing ontology is an ontology that defines concepts in the domain of manufacturing, such

as manufacturing system components and processes. An example of manufacturing ontology is the

ontology produced in the EUPASS project, which is a relevant reference to the work developed in this

thesis.



2.5. GENETIC ALGORITHMS 21

2.5 Genetic Algorithms

Genetic Algorithms (GAs) [Goldberg, 1989] are inspired by natural genetic evolution, the process by

which nature produces new individuals different from their parents and that leads to the arising of new

species. In this process, favourable individual differences and variations are preserved, and those that

are injurious are destroyed, which is known as natural selection or survival of the fittest [Darwin, 2010].

In nature, genetic information of individuals is encoded in structures called chromosomes. When two

individuals reproduce, their genetic information is combined to create new chromosomes, which contain

genetic information used to generate a new individual.

A genetic algorithm is a simplified version of this process that uses data structures as its chromo-

somes. In such an algorithm, a population of individuals undergoes a cycle of evolution (see Figure 2.7).

Each iteration of this cycle comprises: selection of parent chromosomes, their duplication and crossover

of the genes, mutation of the resulting offspring, and selection of the fittest who will remain for the next

iteration. Its purpose is to search for an optimal solution to a given problem, which might not be the best.

Heuristics can be used to fasten the search.

Selection of parent 
chromosomes

Crossover and 
mutation

Fitness evaluation

Selection of the 
fittest

Figure 2.7: A genetic algorithm evolution cycle

2.5.1 Encoding Information

Information of individuals is encoded in a data structures called chromosomes, which are composed of

genes (see Figure 2.8). A chromosome can be structured as a sequence of genes or can have multiple

layers. Each individual is a possible solution to the problem, and, by having different chromosomes, each

individual represents a different solution. An allele, which is the value of a gene, can be a number, letter,

symbol, or a complex data structure. In spite of all chromosomes having the same length in classical

GAs, in messy GAs, it is possible for different chromosomes to have different lengths.



22 CHAPTER 2. STATE OF THE ART, RELATED WORK AND SUPPORTING CONCEPTS

Chromosome

Gene 1 ... Gene n

Figure 2.8: The structure of a chromosome

2.5.2 Selection Of Parents

The process of reproduction requires the selection of multiple pairs of individuals to be the parents of new

individuals, which will join the population for the following iteration. The most common algorithm used

for this step is the roulette wheel, where each individual in the population is given a probability of being

selected proportional to its fitness, which is used for randomly choosing pairs of parent chromosomes.

2.5.3 Crossover Operator

Crossover is the process by which the copies of two parents exchange sequences of genes from their

chromosomes, in order to create two new individuals. Single point crossover, which is the most common

type of crossover, consists of choosing a position in the gene sequence of one parent chromosome, being

that such a position is designated as locus, and exchanging all genes from that point on to the other

chromosome and vice-versa. Occurrence of crossover is dependent on a given probability. If it does not

happen, the two chosen parent chromosomes are copied directly into the population.

1 2 3 54

a b c edChromosome 1

Chromosome 2

1 2 3

54a b c

ed

Chromosome 1'

Chromosome 2'

Crossover

Figure 2.9: Single point crossover effect



2.6. MANUFACTURING SYSTEM DESIGN 23

2.5.4 Mutation Operator

Mutation is the process by which the genes in a chromosome change their alleles with a given probability.

This process consists of choosing a gene of the chromosome at random chance and changing its value to

other possible value.

c

c

a bChromosome 1

a eChromosome 1'

Mutation

d

d

e

e

Figure 2.10: Mutation effect

2.5.5 Fitness Evaluation

Only the fittest chromosomes of an iteration are kept to the following one. For this purpose, each chro-

mosome is evaluated and given a fitness value. The ones which have the higher value are the ones that

are kept. Evaluation is performed by an evaluation function, which returns a fitness value. This func-

tion requires the decoding of the information encoded in the chromosomes. Decoding is the process of

retrieving the real value of the information represented by the genes in a chromosome.

2.5.6 Integrating Genetic Algorithms In Custom Applications: JGAP

Java Genetic Algorithms Package (JGAP) [Meffert and Rotstan, 2002 - 2010] is a framework for genetic

algorithms and genetic programming for the Java language. It provides basic genetic mechanisms that

are useful in the application of evolutionary principles to problems that are to be computationally solved.

It contains classes for chromosomes, genes, genetic operators and fitness functions that can be used or

extended as it is necessary.

2.6 Manufacturing System Design

The life cycle of a manufacturing system can be summarized in a design time stage followed by a run-

time stage. In design time, the system is being designed and implemented by a software architect in

order to be fully functional to enter the run-time stage, when it will be executing and manufacturing the

product. Manufacturing solutions such as the previously discussed intelligent supervising systems, EASs



24 CHAPTER 2. STATE OF THE ART, RELATED WORK AND SUPPORTING CONCEPTS

and SO-systems increase system complexity and introduce new stages in its life cycle. SO principles in-

troduce creation-time, a stage when the layout of the system is being generated by software. Intelligent

supervising systems and SA principles introduce stages when the manufacturing plan is improved, mod-

ified or replaced by other, and the system is reconfigured. EAS introduces the possibility for a system to

evolve. This thesis addresses design time and creation-time issues, such as the choosing of the required

equipment modules and the design of the shop floor layout.

The process of designing a manufacturing system consists of selecting production and material han-

dling equipment, and determining a layout for this equipment, which are different problems on their own

[Heragu and Kusiak, 1988]. Depending on the situation, manufacturing and material handling equip-

ment can be selected and laid out at the same time, or manufacturing equipment can be first, followed by

material handling equipment. The usage of one or other approach is dependent on each situation analysis

[Heragu, 2006].

2.6.1 Equipment Selection

A designer must know what are the required types and quantities of manufacturing and support equip-

ment before designing the machine layout. The required types of equipment can be determined by

matching available equipment with the basic production processes required on product parts and materi-

als to produce the final product [Heragu, 2006]. As for quantities of equipment, which is to be understood

as the number of pieces of each type of equipment, the designer must account for sequencing of opera-

tions and fault tolerance, which are relevant issues during run-time and are affected by this decision. If

the right types and quantities of equipment are selected, then the costs of equipment purchase, opera-

tion and maintenance will be efficient, machine utilization will be increased, and available space will be

efficiently used [Heragu and Kusiak, 1987].

Tompkins et al. [2010] describes material handling equipment selection as a problem of ”providing

the right amount of the right material, in the right condition, at the right place, at the right time, in the

right position, in the right sequence, and for the right cost, using the right methods”. Properties and

characteristics of materials, such as: size, weight, form, etc, must be considered when selecting material

handling equipment. Heragu [2006] identifies several types of material handling devices: conveyors,

palletizers, pallet lifting devices, trucks, robots, Automated Guided Vehicles (AGVs), hoists, cranes and

jibs, and warehouse dedicated devices.

2.6.2 Equipment Layout

The position and orientation of each machine in the shop floor and the way materials are handled and

transported from one workstation to the other, affects the efficiency of a manufacturing system. For an



2.6. MANUFACTURING SYSTEM DESIGN 25

efficient layout design, the designer must consider: throughput rates, responsiveness, material handling

efficiency, scope, scale, equipment and housing costs, reconfigurability, product life cycle, fault toler-

ance, interactions with the environment, etc. A flexible, modular and reconfigurable layout might not

need to be redesigned each time manufacturing requirements change. Relayout can be expensive and

might require shutting down production [Benjaafar et al., 2002].

2.6.3 Layout Configurations

Depending on the situation, different types of layout can be used in the design of a manufacturing system.

Product, process and cellular layouts are designed for a specific product mix and production volume that

are supposed to last for a long period of time [Heragu, 2006].

Transfer/Flow Line Layout

In a transfer/flow line layout, workstations are layout in line, ordered according to the required sequence

of operations. Consequently, during run-time, materials flow from one workstation to the next in a

sequential manner. The execution of one operation is dependent on the finalization of the previous

one, which means that the production rate is dependent on the slowest operation. The processing rate

of workstations and transportation time between these can be planned in a way such that there is no

need for buffer storage between workstations. Configurations for a transfer line include: straight-line

flow, U-flow, circular flow, open field layout (see Figure 2.11). This type of layout is suitable for high-

volume production. Although its production rates are unmatched by other types of layout, it is inflexible

in the number of products manufactured and, in case of equipment failure, the complete system stops

[Tompkins et al., 2010].

Centralised Layout

In a centralised layout, workstations are layout around the area where materials are transported. Materials

enter and flow in this area, from workstation to workstation, as demanded by the required operations (see

Figure 2.12), the sequence of which can be altered without modifying the layout. In case of equipment

malfunction, and depending on the affected equipment, the system might remain partially operational

[Tompkins et al., 2010]. Material handling system configurations that support a centralized layout are:

uni-directional linear layout, spine layout, loop layout and star layout.

Functional Layout

In a functional layout, resources with the same type of functionality share the same location (see Figure

2.13). In spite of offering the greatest flexibility for high product variety and/or small production vol-



26 CHAPTER 2. STATE OF THE ART, RELATED WORK AND SUPPORTING CONCEPTS

umes, this layout presents inefficient material handling and complex scheduling, that results in poor lead

times, poor resource utilization and limited throughput rates. Furthermore, changes in the product mix

and/or routings, often require the redesign of the material handling system [Benjaafar et al., 2002]. This

layout can be supported by a material handling system configured in ladder layout.

Cellular Layout

Manufacturing and material handling equipment can be grouped into cells, in which case the layout

of the machines has to be determined within each cell as well as the layout of the cells. A cellular

layout is suitable for manufacturing systems that produce a large number of components and for which

manufacturing activities can be decomposed into almost mutually independent cells [Heragu, 2006]. This

design approach simplifies workflow and reduces material handling; however, it can be highly inflexible

to the introduction of new products, as it is designed for a fixed set of part families. Some variations of

this layout try to surpass this limitations with overlapping cells and machine sharing [Benjaafar et al.,

2002].

Distributed Layout

In a distributed layout, resources with the same type of functionality can be more or less distributed

through the shop floor (see Figure 2.14). Consequently, accessibility to distributed types of resource is

increased, as a result of shorter material travel distances, which makes this layout more efficient for a

larger set of product volumes and mixes [Benjaafar et al., 2002].

Modular Layout

A modular layout is composed by a network of basic modules, which consist of groups of machines

required for subsets of operations in different routings that are arranged into traditional layout configura-

tions, such as: functional, transfer line or cellular, that minimize total flow distances or costs. To support

evolution of the product mix and demand changes, modules can be added and eliminated. It is suitable

for manufacturing multiple products [Benjaafar et al., 2002].

Reconfigurable Layout

In a reconfigurable layout, it is assumed that resources can be easily relocated, supporting highly variable

product demand and product mix. However, production is affected during relocation of resources, and

the relocation itself has costs [Benjaafar et al., 2002].



2.7. GRAPHS 27

2.6.4 Layout Design With Genetic Algorithms

To and Ho [2002], To [2003] propose a GA for configuring reconfigurable conveyor-components in a

flexible assembly line system. Their approach is a messy genetic algorithm in which a chromosome

is a complete assembly line of conveyors. Each chromosome is composed of composite genes, which

represent conveyor components, and each component gene represents a property of the conveyor, such

as moving direction and rotational angle. In crossover, chromosomes exchange sequences of composite

genes that may have different lengths, in which case the offspring chromosomes have a different length

from what their parents had. Hence, the ”messy” part of the algorithm. When mutation takes place in

a chromosome, characteristics, which are encoded in binary as genes, are altered. In fitness evaluation,

the composite genes in a chromosome are decoded sequentially. The first composite gene represents the

conveyor component closest to the loading station and the following represented conveyor components

are assigned positions after that, according to the positions determined using geometric equations specific

to the type of conveyor considered. The unknowns of these equations are the characteristics represented

by genes and the result is a position for the next conveyor component. Each chromosome is evaluated

using a set of fitness functions which, one by one, add to the fitness value of the chromosome, which is

zero at first.

2.7 Graphs

Graphs are used in this thesis as a means of analysing the manufacturing system’s layout. Diestel [2006]

gives the following definitions for graph, path and tree, which are the three relevant structures in the

context of this thesis:

”A graph is a pair G = (V,E) of sets such that E ⊆ [V ]2; thus, the elements of E are

2-element subsets of V. ... The elements of V are the vertices (or nodes, or points) of the

graph G, and the elements of E are its edges (or lines).”

”A path is a non-empty graph P = (V,E) of the form

V = {x0,x1, ...,xk} E = {x0x1,x1x2, ...,xk−1xk},

where the xi are all distinct. The vertices x0 and xk are linked by P and are called its ends; the

vertices x1, ...,xk−1 are the inner vertices of P. The number of edges of a path is its length,

and the path of length k is denoted by Pk.”

”A topological spanning tree of G is an arc-connected standard subspace of |G| that

contains every vertex and every end but contains no circle.”



28 CHAPTER 2. STATE OF THE ART, RELATED WORK AND SUPPORTING CONCEPTS

2.7.1 Integrating Graphs In Custom Applications: JGraphT

JGraphT [Naveh, 2003 - 2005] is a free Java graph library that provides mathematical graph-theory

objects and algorithms. It supports various types of graphs, including: directed and undirected graphs,

graphs with weighted / unweighted / labeled or any user-defined edges, etc. Graph vertices can be of any

objects. Furthermore, it can be integrated with the JGraph [JGraph, 2001 - 2010] library, to enable graph

visualization.

The Dijkstra algorithm, as explained in Tanenbaum [2003, pages 353 - 355], and the Kruskal mini-

mum spanning tree algorithm are between the algorithms available in JGraphT.



2.7. GRAPHS 29

U-flow

Circular flow

Straight-line

Workstation

Subtitle:

Flow direction

Figure 2.11: Transfer line layouts



30 CHAPTER 2. STATE OF THE ART, RELATED WORK AND SUPPORTING CONCEPTS

Workstation

Subtitle:

Flow direction

Figure 2.12: Centralised layout

A A B B B

Workstation with functionality A

Subtitle:

A A B B D

C C C DD

A

B

C

D

Workstation with functionality B

Workstation with functionality C

Workstation with functionality D

Figure 2.13: Functional layout

A A B B

B

Workstation with functionality A

Subtitle:

A A

B

B

D

C

C C

D D

A

B

C

D

Workstation with functionality B

Workstation with functionality C

Workstation with functionality D

Figure 2.14: Distributed layout



Chapter 3

System Architecture

The purpose of the developed system architecture is to support manufacturing system lay out based on a

given product plan. Therefore, it was developed to support design, run-time and re-engineering phases.

Modules, in an EAS context, are agents organised in a MAS and exhibit self-* capabilities. Knowledge

and process control are distributed through the agents, as different agents have different roles in the

manufacturing process, which they perform with a certain degree of autonomy, based on the knowledge

they have of themselves, of other agents, and of the process. With this approach, should the need for

re-lay out arise during an evolution stage, old modules can be removed and new modules can be added

without reprogramming.

This chapter describes and explains the ideas followed and decisions taken during the development

of the system architecture in sections with different points of view, focusing on the layout agent, which

is the agent capable of performing layout design, and its interactions with other agents.

3.1 Control Approach

In the developed manufacturing system architecture, control results from the interactions between the

agents in the MAS. As these interactions evolve, the architecture is able to adapt to different system life

cycle phases.

3.1.1 Design Time

The first agent to be launched is the Directory Facilitator (DF), which is followed by resource agents,

and then by the layout agent. Resource agents register to the DF and send it their characteristics and

capabilities. The layout agent registers to the DF and requests information about the resource agents,

which is used to design a layout for the manufacturing system by assigning positions to the resources

controlled by resource agents (see Figure 3.1).

31



32 CHAPTER 3. SYSTEM ARCHITECTURE

Layout agent

DF agent Resource 
agent x

Resource 
agent y

Resource 
agent z

Figure 3.1: Information flow at the beginning of design time

After the positions have been assigned, each resource agent interacts with its neighbour agents, which

are the ones that control resources that were assigned positions near its resource, to create coalitions (see

Figure 3.2). It is over when it is not possible to create more coalitions. Resource agents update their

registry information at the DF.

DF agent

Resource 
agent x

Resource 
agent y

Resource 
agent z

Figure 3.2: Information flow at the end of design time

3.1.2 Run-Time

At this stage, the system agent is launched. It registers the DF and requests information about the resource

agents. Furthermore, it positions itself at the top level of an agent hierarchy, issuing control orders from

the manufacturing plan. Resource agents are at the bottom layers, receiving control orders from the

system agent, distributing these orders among them, and controlling the manufacturing resources (see

Figure 3.3).



3.2. TYPES OF AGENTS 33

System agent

Resource 
agent x

Resource 
agent y

Resource 
agent z

Actuators and sensors

DF agent

Figure 3.3: Control approach at run-time

3.2 Types of Agents

There are resource agents, a layout agent, a system agent, and a DF agent, in the MAS. They have

different knowledge and different behaviours, that change throughout the life cycle of the system.

3.2.1 Resource Agent

A resource agent is initialised with an ontology file containing a description of what type of resource it

has to become and a description of the physical device it controls. It contains an ontology model where

this information is kept and from where it can be retrieved and used by the agent to create coalitions and

to issue control actions to the device hardware. It offers its functionalities, as described in the ontology

model, as skills to other agents, which can request their execution. Some resource agents have skills that

can only be offered in a joint effort with other resource agents. In order to make these complex skills

available, resource agents create coalitions with one-another, that are controlled by one of them.

3.2.2 Layout Agent

A layout agent is initialized with an ontology file containing a product manufacturing plan, which is

kept in an ontology model inside the agent. It requests, to the DF, the descriptions of resource agents

and keeps them in the ontology model. This knowledge is used, by the agent, to design the layout of

the manufacturing system. Based on the layout designed, it assigns a position to each manufacturing

resource, by sending a message to the corresponding agent.

3.2.3 System Agent

A system agent is initialized with an ontology file containing a product manufacturing plan, which is

kept in an ontology model inside the agent. It requests, to the DF, the descriptions of resource agents and



34 CHAPTER 3. SYSTEM ARCHITECTURE

keeps them in the ontology model. This knowledge is used, by the agent, to coordinate resources and

coalitions when the plan is being executed.

3.2.4 Directory Facilitator Agent

The DF accepts registration requests from the layout agent, system agent and resource agents. Registered

agents send it information, which it stores in an ontology model, and that other agents might request.

3.3 Agent Knowledge

The system knows what is the product to produce and what resources can be used to produce it through

ontology files that are given to the agents when they are initialized, and that contain instances of an ontol-

ogy that is common to all the agents in the system. This ontology is described in Chapter 4. The product

is known through its manufacturing plan. Available resources are known through resource descriptions.

The success of layout design is dependent on the quality of this information, as lack of information might

cause layout design failure.

Knowledge is stored, reasoned with, and retrieved from an ontology model that exists inside all the

agents. The scope and nature of the information contained in the ontology model of an agent depends

on the type of agent: the layout agent and the system agent contain information related with the manu-

facturing plan and with resource agents; and a resource agent contains information about the resource it

controls, and about the agents that are part of its coalitions, if that is the case.

Knowledge is provided in OWL, which was chosen because it is a semantic language and the on-

tologies and instances written in it can be integrated in applications through existing libraries, and easily

understood and edited by users.

3.3.1 Manufacturing Plan

The manufacturing plan consists of a sequence of operations with the corresponding arguments (see

Figure 3.4). It is supplied, by the user, to the system agent, as a workflow that might include parallel,

concurrent and decision dependent operations. Arguments define the conditions by which an operation

is to be performed (i.e., length, depth, rotation, velocity, etc.).

Activity 1 Activity 2 Activity 3

Start Finish

Figure 3.4: A manufacturing plan structure



3.4. AGENT BEHAVIOURS 35

3.3.2 Resource Description

Resource knowledge consists of descriptions of manufacturing resources available to be used in the

manufacturing process (i.e., conveyor belts, drillers, robots, cranes, etc.), including their properties and

characteristics (i.e., size, weight, etc.), as well as their capabilities and functionalities (i.e., drill, solder,

etc.). Capabilities are described as skill templates, which are skills that can only be performed if a set of

predefined requirements are met. Capabilities have restrictions that are related to the characteristics of the

resources (i.e., a driller with an arm of a certain length can drill only to a certain depth). Functionalities

are described as agent skills whose requirements have been fulfilled.

Skills that require cooperation between resource agents are described as complex skills. Their de-

scription includes the sequence of interactions that are required for their execution.

Resources have characteristics that are related with the physical connections that have to be estab-

lished between the resources for the execution of complex skills (i.e., a conveyor belt holds the part while

the driller drills a hole in it). The connection between two pieces can be established by overlapping their

work volumes. This overlap creates an intersection volume from which one point is chosen as a con-

nection point in the description of the resource. A direction by which this point can be accessed is also

included in the description as a connection point orientation.

In Figure 3.5, the conveyor belt contains three connection points: cb:1 and cb:2 as input and output

from and to other conveyor belts, and cb:3 in the middle of the belt surface, where it can hold a product

part for the driller to work with. This third connection point is the connection point d:1 of the driller.

Driller

Conveyor belt
cb:2cb:3 ≡ d:1cb:1

Subtitle:

Indicates the position 
and orientation of a 

connection point

Figure 3.5: Connection points of resources

3.4 Agent Behaviours

The way in which agents behave throughout the manufacturing system life cycle is dependent on the

agent behaviours that they are executing inside. Each type of agent has its own set of behaviours, which

change throughout each stage of the life cycle.

An initiator and a responder are used for the interaction between an agent and other agents, being



36 CHAPTER 3. SYSTEM ARCHITECTURE

that the initiator behaviour is in the agent that initiated the interaction, and the responder behaviour is in

the agents that respond. This interaction follows FIPA communication protocols and uses the FIPA ACL

in messages.

3.4.1 Registrations In DF

When they enter the system, the layout agent, system agent and resource agents register in the DF and

send it information from their ontology models. The layout agent registers when it is launched. Its layout

design capabilities are registered as services. The system agent registers when it is launched. Its product

manufacturing plan execution capabilities are registered as services. Resource agents register when they

are launched. Their characteristics and skill capabilities are registered as services.

3.4.2 Information Requests To DF

The layout agent and the system agent request information related to the characteristics and capabilities

of resource agents, to the DF, through a FIPA request interaction protocol, and insert it into their ontology

models.

3.4.3 Layout Design

The layout design behaviour is executed in the layout agent. Its purpose is to design and re-design, when

required, the layout of the manufacturing system, for which task it uses a genetic algorithm (see Chapter

5 for details on the developed algorithm). It consists in the selection of candidate agents, algorithm setup,

algorithm execution, and reporting of results.

Agent Selection

The layout agent uses the knowledge of the characteristics and capabilities of resource agents for the

selection of agents. The agents that can perform the operations required in the manufacturing plan,

within the required conditions, are selected to participate in the manufacturing process. This selection

is performed by matching, for each manufacturing operation and for each agent, the planned operation

conditions with the operation restrictions of the candidate. Although these agents will definitely be in the

final solution, all resource agents are selected as candidates to participate in the manufacturing process.

Algorithm Setup

The resources of selected agents are checked for connection points, which are used to initialize the

population of chromosomes used by the GA.



3.4. AGENT BEHAVIOURS 37

Algorithm

Layout design is accomplished by means of a GA. The result of this algorithm is a layout for the

manufacturing system, which includes the connections between the resources that were selected to be

part of the system. Geometric equations, based on the geometry of each resource, are then used to

determine the location and orientation of each one inside the shop floor. However, layout design will

provide an incomplete solution if the resources available are not sufficient to perform the manufacturing

process required to produce the product.

The GA gives an optimal solution, which might not be the best, within an acceptable length of

time. In order to obtain the best solution, all the combinations of connections between resources had

to be explored, evaluated and compared, which is a process that increases in length with the increase in

connection possibilities. The GA performs a directed search for a solution based on predefined evaluation

functions. Different evaluation functions reflect different views of what the best layout should be and

lead to different layout solutions.

Reporting Results

The layout agent sends to each resource agent, that was selected to be part of the system, its position and

orientation inside the shop floor.

3.4.4 Coalition Creation

A coalition creation behaviour executes inside a resource agent, after it receives a position and orienta-

tion. Its purpose is to discover which other resource agents were positioned nearby, that have compatible

capabilities and overlapping connection points with this agent, and create coalitions with them.

3.4.5 Workflow Execution

The workflow behaviour exists inside the system agent. It follows the right sequence of skills to request

to other agents, from the ones that are described inside the workflow of the product manufacturing plan.

3.4.6 Coalition Coordination

The coalition coordination behaviour exists inside resource agents. It follows the right sequence of

skills to request to other agents, from the ones that are described inside the workflow of a complex skill

execution plan.



38 CHAPTER 3. SYSTEM ARCHITECTURE



Chapter 4

Supporting Ontologies

Ontologies are used in this thesis to define the product manufacturing plan and the properties, charac-

teristics, capabilities and functionalities of manufacturing resources and of the agents that represent and

control them. They are also used to specify a common set of terms that the agents can use to communicate

with one-another.

This chapter describes the ontologies developed to support the architecture described in Chapter 3

and the genetic algorithm explained in Chapter 5. Ontologies were written in OWL with the Protégé

editor.

4.1 Product Manufacturing Plan

The concepts related with the product manufacturing plan are:

• Product: a product to be manufactured.

• Skill: a functionality required by a product.

The object properties related with the product manufacturing plan are:

• needsSkill(x, y): product x needs skill y.

The datatype properties related with the product manufacturing plan are:

• hasID(x, y): product x has string identification y; skill x has string identification y.

4.2 Resources

The concepts related with the manufacturing resources are:

• ConPoint: a connection point of a resource module.

39



40 CHAPTER 4. SUPPORTING ONTOLOGIES

• Dim: a dimension.

• Module: a resource module.

• Pos: a position.

• Skill: a functionality performed by a resource module.

• ComplexSkill: a functionality that is a result of the execution of a set of functionalities.

• System: a manufacturing system.

The object properties related with the manufacturing resources are:

• compModule(x, y): system x is composed by module y.

• compSkill(x, y): complex skill x is composed by skill y.

• forSkill(x, y): connection point x exists for skill y.

• hasConPoint(x, y): resource module x has connection point y.

• hasDim(x, y): resource module x has dimension y.

• hasPos(x, y): resource module x has position y.

• hasSkill(x, y): resource module x has skill y.

The datatype properties related with the manufacturing resources are:

• hasID(x, y): module x has string identification; connection point x has string identification; product

x has string identification y; skill x has string identification y.

• height(x, y): dimension x has a height of y m (double).

• width(x, y): dimension x has a width of y m (double).

• x(x, y): position x has a x coordinate of y m (double).

• y(x, y): position x has a y coordinate of y m (double).

• yaw(x, y): position x has a yaw of y m (double).

These datatype properties correspond to the properties and characteristics of manufacturing equipment

available in a set of analysed data sheets and specifications from industrial equipment manufacturers:

KUKA, ABB, Montech, and SCHUNK.



Chapter 5

Genetic Algorithm For Layout Design

The genetic algorithm used in this thesis differs from the ones reviewed in Chapter 2 in the way the

information is encoded in chromosomes and in the fitness evaluation function.

5.1 Chromosome

A chromosome is composed of multiple composite genes, each one with a number of genes inside. As

for the information contained in each of these structures: a chromosome contains encoded information

about the layout of the manufacturing system, a composite gene contains encoded information about

the connection points of a resource, and a gene contains encoded information about a connection point

belonging to the resource (see Figure 5.1). The value of a gene is an identification of a connection point

of other resource.

Connection points are selective in the way they connect, which means that, for a connection point

of a resource, there is a set of connection points of other resources to which this connection point can

establish a connection.

In Figure 5.2, a conveyor belt is connected to a loader through connection point cb:2, to a driller

through connection point cb:3, and to an unloader through connection point cb:1.

5.2 Selection Of Parents

Pairs of parent chromosomes are selected through a roulette wheel algorithm.

5.3 Crossover Operator

There is a probability, which can be adjusted, for crossover to happen during reproduction. In crossover, a

locus is randomly chosen from one of the parent chromosomes. The group of genes inside the composite

41



42 CHAPTER 5. GENETIC ALGORITHM FOR LAYOUT DESIGN

Manufacturing System Layout

Resource 1 … Resource n

Resource id Connection point 1 ... Connection point n

Connection point id Index Allowed values

Chromosome

Id Allele

Id Gene 1 ... Gene n

Composite gene 1 ... Composite gene n

Decoded view

Encoded view

Figure 5.1: Information encoding in a chromosome

gene located at that locus, which represents a group of connections belonging to a resource, changes

from one parent chromosome to the other (see Figure 5.3). The composite genes are the same and at the

same order in both chromosomes; so, crossover is equal to changing a group of connections at the same

time.

The values of genes that were already in a chromosome are changed to match the values of the new

genes. This means that, at the end of crossover, the origin connection points take the value of the destiny

connections points, and the destiny connection points take the value of the origin connection points.

Other genes involved in this process are given a null value.

5.4 Mutation Operator

There is a probability, which can be adjusted, for the composite genes of each chromosome to mutate. In

mutation, the value of each gene inside the composite genes that were selected to mutate changes from

its current value to other value contained in a set of possible values (see Figure 5.4). The value selected

corresponds to a connection point belonging to other resource, from the ones that are compatible with



5.5. FITNESS EVALUATION 43

Subtitle:

Connection point 
with orientation

cb:2

cb:1

cb:3

Figure 5.2: Connection points of a conveyor belt

the connection point for which a connection is being established.

At the end of mutation, the origin connection points take the values of the destiny connection points,

and the destiny connection points take the values of the origin connection points. Other genes involved

in this process are given a null value.

5.5 Fitness Evaluation

The fitness of a chromosome is evaluated, at first, by verifying the existence of paths between the required

resources (see Figure 5.5). The fitness value of a solution is inversely proportional to the number of

resources through which these paths are established. Then, a layout is designed for the resources that

are connected. If at least two resources overlap, the fitness value is reduced to zero, if not, the previous

fitness value is maintained and returned.



44 CHAPTER 5. GENETIC ALGORITHM FOR LAYOUT DESIGN

d:1

d:1

cb:1

nn l:1 d:1Chromosome 1

Chromosome 2

Chromosome 1'

Chromosome 2'

Crossover

cb:3 cb:2

u:1 n d:1 cb:3 n

cb:1 cb:2 cb:3 d:1 l:1 u:1Gene identifications

n n cb:3 n

u:1 l:1 cb:3 cb:1

n

cb:2

Figure 5.3: Crossover in the layout algorithm

Chromosome 1

Chromosome 1'

Mutation

cb:1 cb:2 cb:3 d:1 l:1 u:1Gene identifications

l:1 n n cb:1 n

l:1 n d:1 cb:1 n

n

cb:3

Figure 5.4: Mutation in the layout algorithm



5.5. FITNESS EVALUATION 45

Figure 5.5: A path in a layout



46 CHAPTER 5. GENETIC ALGORITHM FOR LAYOUT DESIGN



Chapter 6

Implementation

The software application that results from the implementation of the proposed architecture was developed

by a team of two master’s students in Netbeans Integrated Development Environment (NetBeans) using

the Java programming language, being that the part of the implementation performed by the author of

this thesis consisted of a layout agent class, a layout design behaviour class, and their supporting classes.

The libraries used for agent development, ontology integration, GAs, graph search algorithms and graph

drawing are JADE, Jena, JGAP, JGraphT, and JGraph, respectively. The architecture was implemented

by extending classes provided by these libraries with new fields and methods.

This chapter describes the process of implementation, the problems, and the solutions.

6.1 Programming In Java

Java technology [Oracle] provides a class-based, object-oriented, platform-independent, multithreaded

programming environment, which is why it was chosen over other programming languages. It is the

foundation for web and networked services, applications, robotics, and other embedded devices.

6.2 NetBeans

NetBeans [Oracle, 2010] is a development environment that can be used with the Windows Operating

System (OS). The NetBeans project consists of an open-source Integrated Development Environment

(IDE) and an application platform that enable the creation of web and desktop applications using the Java

platform. It was chosen to be used in the implementation for its compiler, debugger, project manager,

library manager, subversion support, and GUI editor.

47



48 CHAPTER 6. IMPLEMENTATION

6.3 The Layout Agent

The layout agent and its behaviours were implemented with JADE, as it contains classes for agents,

behaviours that implement FIPA agent communication protocols, and messages in the FIPA ACLs.

A layout agent is an instance of the LayoutAgent class, which is an extension of the GuiAgent class.

It has a constructor, a setup method and supports GUI events.

6.3.1 Constructor

The constructor of the layout agent class initializes a list where the best layout solutions found by the

layout algorithm at each generation are kept.

6.3.2 Setup

At setup, the layout agent shows a GUI through which the user can interact with the agent.

6.3.3 Events

The layout agent supports the events:

• begin layout design - The agent adds the layout behaviour to its running behaviours. The empty

list of solutions is passed as an argument.

• show final solution - The agent initializes an index with a value equal to the last index of the,

now populated, list of solutions, gets the solution at that index, and calls the graph drawing and

the layout drawing methods of the GUI with the graph and layout of the solution as arguments,

respectively.

• show first solution - The agent sets the index value to zero, gets the solution at that index, and calls

the graph drawing and the layout drawing methods of the GUI with the graph and layout of the

solution as arguments, respectively.

• show previous solution - If the index value is higher than zero, the agent decreases the index value,

gets the solution at that index, and calls the graph drawing and the layout drawing methods of the

GUI with the graph and layout of the solution as arguments, respectively.

• show next solution - If the index value is lower than the last index of the list of solutions, the agent

increases the index value, gets the solution at that index, and calls the graph drawing and the layout

drawing methods of the GUI with the graph and layout of the solution as arguments, respectively.



6.4. GRAPHICAL USER INTERFACE OF THE LAYOUT AGENT 49

6.4 Graphical User Interface Of The Layout Agent

The GUI of the layout agent contains three panels (see Figure 6.1):

• graph panel - where the graph of a solution is drawn.

• layout panel - where the layout of a solution is drawn.

• control panel - where the user can change the default values for the control parameters of the

genetic algorithm, begin the layout design process, and change the visible solution.

Figure 6.1: Graphical user interface of the layout agent

6.4.1 Control Parameters

Through the GUI, the user can change the parameters: population size, mutation rate, crossover rate, and

evolution time, being that the last one is the time limit for the genetic algorithm to reach a solution.

6.4.2 Starting Layout Design

The user can start the layout design process by clicking the layout algorithm button, which posts a

begin layout design event on the layout agent. A progress bar shows the time that has passed since the

beginning of the algorithm and how much is left. A text field shows the evolution of the fitness of the

fittest solution.

6.4.3 Consulting Other Solutions

A solution is shown when the progress bar is filled. This solution is the best solution found in the final

generation. It is possible for the user to consult other solutions by using the buttons available in the GUI:



50 CHAPTER 6. IMPLEMENTATION

• fast forward - posts a ”show final solution” event on the layout agent.

• forward - posts a ”show next solution event” on the layout agent.

• backwards - posts a ”show previous solution” event on the layout agent.

• fast backwards - posts a ”show first solution” event on the layout agent.

The generation to which the solution belongs and its fitness are visible in two text fields.

6.5 Layout Behaviour

The LayoutBehaviour class extends the SimpleBehaviour class. It has a constructor, an action and a done

method.

6.5.1 Constructor

The layout behaviour has a number of states through which it passes before finishing its execution.

These are: setup, algorithm, finish and finished. The constructor initializes the behaviour state to setup

and gives it access to the layout agent, the fittest chromosome list and the gui panel.

6.5.2 Action

The actions taken by the layout agent are dependent on the state of the layout behaviour when the action

method is called, which is specified inside the method:

• setup - The population of chromosomes is initialized with a custom configuration, which is initial-

ized with the control parameters visible at the interface, and a time stamp is initialized with the

current time. The GUI is updated and the state is changed to algorithm.

• algorithm - If the time elapsed since the beginning of the algorithm exceeds the time limit, then the

state is changed to finish. Otherwise, the population is evolved, the fittest chromosome is saved

and the GUI is updated.

• finish - A ”show final solution” is posted on the layout agent, the GUI is updated, and the state is

changed to finished.

6.5.3 Done Method

If the state is finished, then the behaviour execution can end.



6.6. ONTOLOGY INTEGRATION 51

6.6 Ontology Integration

The ontologies were integrated through Jena, which has classes for ontology models, ontology classes,

and properties and their corresponding object and datatype values.

The OntologyMethods class contains a number of methods that are used by the other classes to

access the information given in the ontology file, and that is kept in an ontology model inside the class.

Information is retrieved through queries in SPARQL Query Language For RDF (SPARQL) [W3C, 2006

- 2007] that are now coded inside the methods for testing purposes, but that can be provided in the

ontology file. In that way, if the ontology is changed, the queries can be changed outside the program to

match the new information. Each method returns a data structure with the retrieved information.

6.6.1 Model Setup

The readModel method is used to create and initialize the ontology model. The model is initialized to

use a OWL rules inference engine.

6.6.2 Retrieving Connection Points

The query used in a method for retrieving the resource, connection point, and corresponding compatible

connection point, identifications is:

SELECT ?resourceId ?conPointId ?allowedValueId WHERE {

?resource rdf:type ga:Resource .

?resource ga:hasId ?resourceId .

?resource ga:hasConPoint ?conPoint .

?conPoint ga:hasId ?conPointId .

?conPoint ga:forSkill ?skill .

?compSkill ga:compSkill ?skill .

?compSkill ga:compSkill ?otherSkill .

FILTER (?skill != ?otherSkill) .

?allowedValue ga:forSkill ?otherSkill .

?allowedValue ga:hasId ?allowedValueId .

}

6.6.3 Retrieving Required Resources

The query used in a method for retrieving the resource identifications is:



52 CHAPTER 6. IMPLEMENTATION

SELECT ?resourceId WHERE {

?product rdf:type ga:Product .

?product ga:needsSkill ?skill .

?resource ga:hasSkill ?skill .

?resource ga:hasId ?resourceId .

}

6.6.4 Retrieving Resource Dimensions

The query used in a method for retrieving the dimensions of the resource corresponding to the given

resource identification:

SELECT ?resourceWidth ?resourceHeight WHERE {

?resource rdf:type ga:Resource .

?resource ga:hasId GIVEN RESOURCE ID .

?resource ga:hasDim ?resourceDim .

?resourceDim ga:width ?resourceWidth .

?resourceDim ga:height ?resourceHeight .

}

6.6.5 Retrieving Connection Point Data

The query used in a method for retrieving the x, y, and yaw, of the connection point corresponding to a

given connection point identification:

SELECT ?conPointX ?conPointY ?conPointYaw WHERE {

?conPoint rdf:type ga:ConPoint .

?conPoint ga:hasId GIVEN CONNECTION POINT ID .

?conPoint ga:hasPos ?conPointPos .

?conPointPos ga:x ?conPointX .

?conPointPos ga:y ?conPointY .

?conPointPos ga:yaw ?conPointYaw .

}

6.7 Configuration

The GA classes were implemented by extending the classes provided by JGAP. This package has a set

of classes for chromosomes, genes, genetic operators, and fitness functions.



6.8. ENCODING CHROMOSOMES AND GENES 53

Through the constructor of the configuration class, the parent selector, mutation operator, crossover

operator, and fitness evaluator are set to be used during the execution of the genetic algorithm.

6.8 Encoding Chromosomes And Genes

The genetic algorithm solutions are encoded in the chromosomes by using composite genes that are

composed of genes with a certain value.

6.8.1 Chromosomes

Besides the methods available in a chromosome, that are implemented in the extended class, a chromo-

some has methods to set its corresponding graph and layout. It is composed of composite genes.

In the custom chromosome class, the methods isHandlerFor, perform and clone of the Chromosome

class have to be overridden by switching the Chromosome constructor by the custom chromosome con-

structor.

Constructor

The chromosome class contains three constructors. The first two call the default constructors of the

Chromosome class. The third sets the graph and layout values to the values given as parameters.

Chromosome Factory

A chromosome factory was implemented to retrieve the information of the resources available in the on-

tology into a chromosome data structure. The method to create a chromosome uses the OntologyMethods

class to retrieve connection points information, codes the resources as composite genes and connection

points as genes. The connection points of other resources that are compatible with the connection point

of a resource are kept inside the gene that encodes that connection point.

6.8.2 Composite Genes

Resources are encoded as composite genes, which have an identification equal to the identification of the

resource.

The newGeneInternal method of the CompositeGene class has to be overrridden by switching the

CompositeGene constructor by the custom composite gene constructor.

Constructor

The constructor of a composite gene sets its identification to the value given as parameter.



54 CHAPTER 6. IMPLEMENTATION

6.8.3 Genes

A connection point of a resource is encoded as a gene, which contains an identification equal to the

identification of the connection point. This string of identification has to contain, first, the identification

of the resource to which the connection point belongs, and then, separated by the colon character, a

string of characters that distinguishes this connection point from others of the same resource. This kind

of identification was used to enable simpler queries and data structures.

Besides the identification, a gene contains a list of identifications that belong to genes that encode

connection points that are compatible with the one encoded by this gene, and an index. The index value

indicates which identification on the list is the current value of the gene.

The IndexGene class that was implemented extends the BaseGene class, which is an abstract class,

which means that its abstract methods must be implemented, aside from the methods that must be over-

ridden.

The methods newGeneInternal and compareTo are overridden by switching the BaseGene constructor

by the IndexGene constructor.

Constructor

A gene has two constructors. The first constructor sets the identification, list of compatible connection

points, and index, to the values given as parameters. In the second constructor, the value of the index

is set to zero, which is the index of the null value character ”n”. The identification ”n” is added to the

list of compatible connection points of all the connection points of all resources at the index zero, by the

chromosome factory.

Returning The Value

The internal value of the gene is returned by retrieving the identification at the current index of the list.

Setting The Allele

The allele of an IndexGene is set by changing the value of the index to the value of the identification

given as parameter, if that identification is in the list, or to the index value given as parameter.

Setting To A Random Value

When it is necessary to set the value of the gene randomly, the value is set to zero. This is due to the fact

that, when the population of chromosomes is initialized in the configuration, it is required that a gene has

an index of zero. This means that, when the algorithm starts, there are no connections established.



6.9. CROSSOVER AND MUTATION OPERATORS 55

Gene Mutation

When the gene mutates, its index is set randomly to a value that is higher than zero and lower than the

size of the list.

6.9 Crossover And Mutation Operators

The custom classes for crossover and mutation extend the classes CrossoverOperator and MutationOp-

erator, from JGAP, respectively, by overriding the methods doCrossover, in the first, and operate, in the

second. The actions performed by these methods are the ones described in Sections 5.3 and 5.4.

6.10 Fitness Evaluation

The fitness function class used in this implementation extends the FitnessFunction class provided by the

JGAP package. It has a constructor and an evaluate method.

6.10.1 Constructor

The constructor retrieves the resources required to execute the manufacturing plan by using the Ontolo-

gyMethods class and keeps them in a list inside the fitness function class.

6.10.2 Fitness Function

At first, for the given chromosome, the fitness is set to zero and its graph is determined by using the

GraphMethods class. Then, the evaluate method uses the Dijkstra shortest path algorithm to find the

existence of a path between each two resources contained in the list by the order they appear. If there is

a path, the function adds a value to the fitness that is equal to the number of required resources divided

by the number of resources that are in the path that was found.

f itness +=
size o f the list o f resources

size o f the path
(6.1)

The resources that are in the graph, but are not part of any path, are removed from the graph, so that

they are not considered when the layout is being determined. At last, a layout that is in agreement with

the connections contained in the graph is determined. If at least two resources overlap each other, the

chromosome is given a fitness value of zero, otherwise, the fitness value is maintained. Before the fitness

is returned, the graph and the layout determined are set in the chromosome.

The graph-theory algorithms used in this implementation are included in JGraphT classes.



56 CHAPTER 6. IMPLEMENTATION

6.11 Graph Methods

Three utility graph methods were implemented to facilitate the implementation of the fitness function

by creating a graph from a chromosome, creating a layout from a graph, and to retrieve the connection

points that are the source and the target of the connection between two resources in an edge of the graph.

6.11.1 Creating A Graph From A Chromosome

The identifications of every composite gene contained in the chromosome is added as a vertex to an

undirected graph, and if any gene inside that composite gene has a value that connects it to a gene in

other composite gene, an edge is added to the graph with the two identifications of the composite genes

as source and target. The sources and edges of the graph are not connection point identifications but are,

instead, resource identifications.

6.11.2 Creating A Layout From A Graph

The Kruskal minimum spanning tree algorithm is used to determine the order by which the resources

have to be layout. By following this order, aside from the first resource, which is layout without any

restriction, the resources are layout in positions relative to other resources that are connected to them and

that have already been layout.

A resource is layout relative to other resource by considering the relative coordinates and yaw of the

two connection points that connect them and also their dimensions. This information is retrieved from

the ontology by using the OntologyMethods class. The result is, for each resource, a position (x and y)

and an orientation (yaw).

First, the coordinates of the source connection point are rotated, and then translated, from relative to

absolute. Then, the new yaw for the target connection point is calculated.

new target connection point yaw = source resource yaw

+ source connection point yaw + 180 (6.2)

The rotation that is applied to the target connection point is determined.

target connection point rotation = new target connection point yaw

− target connection point yaw (6.3)

The target connection point is rotated and, finally, the target resource point is equal to the source con-

nection point, in absolute coordinates, when translated in a distance equal to the difference between the



6.12. TRANSFORM METHODS 57

rotated target connection point and the origin, in x and y. Its yaw is equal to the target connection point

rotation.

6.11.3 Determination Of The Source And Target Connection Points In A Resource Con-

nection Edge

To determine by which connection points two resources are connected, all the genes of the composite

gene which has the source identification, given as a parameter, are verified, and the one with a value that

contains the target identification, also given as a parameter, is the source connection point. Its value is

the target connection point.

6.12 Transform Methods

The methods presented in this section were implemented to facilitate the application of geometric trans-

forms to the coordinates and orientation of the resources and connection points.

6.12.1 Rotation

The result of a rotation is calculated using a transform matrix.

x

y

=

cos(rotation) −sin(rotation)

sin(rotation) cos(rotation)

x0

y0

 (6.4)

6.12.2 Translation

The result of a translation is calculated by adding the value of the translation in x and y to the point

coordinates.

x = x0+ translation in x (6.5)

y = y0+ translation in y (6.6)

6.12.3 Inversion

An inversion of the point is obtained by negating the x and y coordinates of the point.

x =−x0 (6.7)

y =−y0 (6.8)



58 CHAPTER 6. IMPLEMENTATION

6.12.4 Rectangular Area And Areas Of Any Shape

This implementation uses rectangular areas for the shapes of resources, for which it uses the Rectan-

gle2D.Double class, and, consequently, the dimension of a resource is described in the ontology in terms

of width and height. However, for determining if two resources intersect, the algorithm has to deal with

areas of undefined shapes. For that purpose, instances of the Rectangle2D.Double class are converted to

instances of the Area class.

6.13 Decoding

Other classes were implemented to keep the data of connection points (x, y, yaw), edges (source, target),

and resources (x, y, yaw, width and height). These classes have set and get methods for the data they

keep.



Chapter 7

Validation And Test Cases

In this chapter, the tests performed to validate the implementation through the several stages of its im-

plementation are described.

The test cases were given names based on: the number of resources described in the given ontology,

that is the number before the letter ”R”, which stands for ”resource”; the number of resources required

directly by the manufacturing plan, that is the number before the letter ”P”, which stands for ”plan”; and

the number of resources required for material handling and transport purposes, that is the number before

the letter ”T”, which stands for ”transport”.

7.1 Test 4R3P1T

The test 4R3P1T was repeated several times during the development of the implementation to assure that

the results given were the ones expected.

The ontology file given to the algorithm contained four manufacturing resources with skills, dimen-

sions and contact points, a product manufacturing plan with a list of required operations, and descriptions

of complex skills.

Three of the given resources are required directly by the manufacturing plan and one is required for

transporting the product parts between these resources.

Every time this test was performed, the algorithm was expected to select the four resources to be

part of the manufacturing system. Three of them were to be selected based on the manufacturing plan

description. The third was to be selected during the establishment of connections between the resources,

due to the fact that it was the only resource available to connect the other three in the required order,

according to the descriptions of complex skills and connection points. The algorithm was also expected

to design the layout, based on the established connections, and to present a drawing of the same. After

each test, the algorithm was tunned to optimize its performance.

59



60 CHAPTER 7. VALIDATION AND TEST CASES

With the current implementation, population of 500, mutation rate of 12, and crossover rate of 0.35,

the algorithm presents the expected result in less than one second and one generation of solutions (see

Figure 7.1).

Figure 7.1: Solution presented by the layout algorithm for the test 4R3P1T

7.2 Test 6R4P2T

The test 6R4P2T is an improvement of the test 4R3P1T. Its purpose was to see how the layout algorithm

reacted to the introduction of two more manufacturing resources.

The ontology file given to the algorithm contained six manufacturing resources with skills, dimen-

sions and contact points, a product manufacturing plan with a list of required operations, and descriptions

of complex skills.

Four of the given resources are required directly by the manufacturing plan and two are required for

transporting the product parts between these resources.

The algorithm was expected to select the six resources to be part of the manufacturing system.

With the current implementation, population of 500, mutation rate of 12, and crossover rate of 0.35,

the algorithm presents the expected result in less than five seconds and five generations of solutions (see

Figure 7.2).

7.3 Test 5R3P1T

The purpose of the test 5R3P1T was to verify that the algorithm was selecting the shortest path possible,

and consequently, the fewer resources possible.



7.4. TEST 9R3P2T 61

The ontology file given to the algorithm contained five manufacturing resources with skills, dimen-

sions and contact points, a product manufacturing plan with a list of required operations, and descriptions

of complex skills.

Three of the given resources are required directly by the manufacturing plan, one is required for

transporting the product parts between these resources, and one has connection points that are compatible

with the connection points of these resources.

The algorithm performed as expected, by selecting the first four resources to be part of the manufac-

turing system and ignoring the other one.

With the current implementation, population of 500, mutation rate of 12, and crossover rate of 0.35,

the algorithm presents the expected result in less than one second and two generations of solutions (see

Figure 7.3).

7.4 Test 9R3P2T

Test 9R3P2T is a mix of the tests in Sections 7.1, 7.2 and 7.3. Its purpose was to see how the layout

algorithm reacted to the increase of manufacturing resources, being that some of them are identical.

The ontology file given to the algorithm contained nine manufacturing resources with skills, dimen-

sions and contact points, a product manufacturing plan with a list of required operations, and descriptions

of complex skills.

Five of the given resources are required directly by the manufacturing plan, being that three of them

are equal. The other four are capable of transporting the product parts, but only two of them are required.

The algorithm selected the five resources that offered the skills required by the manufacturing plan

and two transporters to connect them. The rest of the transporters were ignored.

With the current implementation, population of 500, mutation rate of 12, and crossover rate of 0.35,

the algorithm presents the expected result in less than 30 seconds (see Figure 7.4).



62 CHAPTER 7. VALIDATION AND TEST CASES

Figure 7.2: Sequence of solutions presented by the layout algorithm for the test 6R4P2T



7.4. TEST 9R3P2T 63

Figure 7.3: Sequence of solutions presented by the layout algorithm for the test 5R3P1T



64 CHAPTER 7. VALIDATION AND TEST CASES

Figure 7.4: Solution presented by the layout algorithm for the test 9R3P2T



Chapter 8

Conclusions

In Chapter 2, the state of the art on manufacturing systems’ paradigms and control approaches was

reviewed, related work was acknowledged, and supporting concepts such as agents, ontologies, genetic

algorithms and graphs were explained, to set a solid ground for the upcoming chapters.

Chapters 3 through 7 validate the hypothesis formulated in Section 1.3 and fulfill the objectives

proposed in 1.4. It was possible to demonstrate the creation of a manufacturing system’s layout with the

developed algorithm.

Chapter 3 contains a description of an agent architecture that integrates agent technology, ontologies

(described in detail in Chapter 4), genetic algorithms (described in detail in Chapter 5) and graph-theory

algorithms, which is implemented in Chapter 6 and validated in Chapter 7. The implemented agent can

be integrated in a MAS that controls an EAS to provide a new SO-capability. This integration requires

the further implementation of specific communication behaviours.

The developed approach is dependent on the quantity and quality of the knowledge it contains. This

knowledge is distributed by the agents in the system in a way that every agent has access to the infor-

mation it requires to function properly. A part of this knowledge, which consists of the manufacturing

plan and resource descriptions, is given by the user to the agents when they are initialised. The other

part, which is related to positions, orientations and coalitions, is generated by the agents themselves and

shared among them, sometimes by using the DF agent and others directly. The reason why the DF agent

keeps all the characteristics and capabilities of the resource agents is so it can ”feed” the ”knowledge

hungry” agents such as the layout agent and the system agent, who would have, otherwise, to request

this information to the resource agents in the system individually, which would involve the trading of a

higher amount of messages, proportional to the number of resource agents.

Control is also distributed by the agents in the system, which takes complexity from the design

and implementation of each individual agent and puts it in the orchestration of the interactions between

all of them. Moreover, functionalities can be easily added and removed from the system by adding

65



66 CHAPTER 8. CONCLUSIONS

and removing the corresponding agents, which is the situation of layout design and the layout agent.

Likewise, a resource agent, for instance, is a generic agent that can become any type of resource that is

described in the ontology file that it receives when it is launched in the system. When it is removed, the

functionalities of the equipment it represents are no longer offered to the system. Agent technology was

chosen because an agent can be designed to keep knowledge inside it, to run the desired algorithms, and

to interact with other agents, that is what was required.

The layout agent executes an algorithm based on a biologically inspired genetic algorithm to design

the layout of a manufacturing system. A genetic algorithm was chosen because it allows the directed

search for a solution, which is, in this situation, a layout that is fit to manufacture the desired product,

based on the resources required to execute the activities described in the manufacturing plan. In the

current implementation, the algorithm stops searching for a solution when time limit predefined by the

user ends. The result might be a complete or incomplete solution, that might be useful either way. The

discovery of a good solution is dependent on the descriptions provided in the ontology file, through the

queries that retrieve their content, on its control parameters, and on the fitness function. As every case is

a different case, it might be useful to change one of these items to accelerate the discovery of a solution,

or even to obtain a better one. This is possible only in the case of the descriptions in the ontology and

the control parameters, as they are the only ones that are accessible to the designer.

The encoding of information in the chromosomes of the genetic algorithm is accomplished in a

generic manner, by which any manufacturing system that is described based on the connections between

its manufacturing resources can be encoded. The link between two composite genes in a chromosome is

the value of two or more genes. In other words, two resources are connected through their connection

points. This enables the appearance of solutions with loops that correspond to a transfer line with a

circular flow or a centralised loop layout, which is another difference between this and other existing

approaches.

A genetic algorithm can sometimes become stuck in a local minimum solution, which can be a

problem if that solution does not have the required resources or connections. As it happens with other

genetic algorithms, this approach relies on the mutation operator to avoid this problem.

In the test cases, the scalability of this solution was studied for a maximum of nine manufacturing

resources, for which the algorithm took less than 30 seconds to find a good solution. However, this was

still a small test. The approach needs to be tested with a higher number of resources, for which a real

case could be used.

The solution found is presented in a connection graph and in a two dimensional layout map, which

are easily understandable by the designer. The first indicates which connections have to be established

between which manufacturing resources, and the second indicates the position and orientation of each of



8.1. FUTURE WORK 67

these resources. It is a task of the designer to move the equipment to the locations defined in the solution.

An article describing early work on this project was accepted in the IEEE International Symposium

on Industrial Electronics 2010, held in Bari, Italy, in July 2010 (see Reference [Frei et al., 2010]).

8.1 Future Work

From the conclusions in Section 1.4, although the specified architecture and its implementation validate

the hypothesis formulated in Section 1.3 and fulfill the objectives proposed in Section 1.4, future work

on the following topics will improve the developed approach:

• The supporting ontology specification should be extended to support the description of more re-

sources and their characteristics.

• The queries should be given as an input to the algorithm, as they are dependent on the ontology

specification.

• The control parameters of the genetic algorithm should be tunned more precisely so that the layout

can be design in a shorter time.

• The fitness function should be editable outside the program, so that it might be changed without

changing the code. This could be done by using a script language.

• The result of the layout design could be a 3D map instead of 2D, so that the designer might have a

better perception of where and how to position the resources.



68 CHAPTER 8. CONCLUSIONS



Bibliography

ABB. Abb em portugal, 2011. URL http://www.abb.pt/.

J. L. Austin. How To Do Things With Words. Harvard University Press, 2nd edition, 1975.

O. Babaoglu and editors Shrobe, H. Fourth ieee international conference on self-adaptive and self-
organizing systems, budapest, hungary, September 27-October 1 2010.

J. Barata. Coalition Based Approach For Shop Floor Agility. PhD thesis, Universidade Nova de Lisboa,
Faculdade de Ciências e Tecnologia, 2005.

J. Barata and M. Onori. Evolvable assembly and exploiting emergent behaviour. In Industrial Elec-
tronics, 2006 IEEE International Symposium on, volume 4, pages 3353 –3360, jul. 2006. doi:
10.1109/ISIE.2006.296004.

S. Benjaafar, S. S. Heragu, and S. A. Irani. Next generation factory layouts: Research challenges and
recent progress. Interfaces, 32(6):58 – 76, 2002. URL http://www.jstor.org/stable/20141207.

R. A. Brooks. A robust layered control system for a mobile robot. Robotics and Automation, IEE
Transactions on, 2 Issue:1:14 – 23, Mar 1986. ISSN 0882-4967. doi: 10.1109/JRA.1986.1087032.

R. A. Brooks. Intelligence without representation. Artificial Intelligence, 47(1-3):139 – 159, 1991a.
ISSN 0004-3702. doi: DOI:10.1016/0004-3702(91)90053-M. URL http://www.sciencedirect.com/
science/article/B6TYF-47YRKJD-4D/2/0161f0099e8b4e126a78033b6712d6e1.

R. A. Brooks. New approaches to robotics. Science, 253(5025):1227 – 1232, 13 September 1991b. doi:
10.1126/science.253.5025.1227.

R. A. Brooks. Itelligence without reason. In Proceedings of the Twelfth International Joint Conference
on Artificial Intelligence (IJCAI-91), pages 569 – 595, Sydney, Australia, 1991c.

L. M. Camarinha-Matos, L. S. Lopes, and J. Barata. Integration and learning in supervision of flexible
assembly systems. Robotics and Automation, IEE Transactions on, 12 Issue: 2:202 – 219, April 1996.
ISSN 1042-296X. doi: 10.1109/70.488941.

C. Darwin. The Origin of Species. Cricket House Books LLC, 2010.

W. H. Davidow and M. S. Malone. The Virtual Corporation: structuring and revitalizing the corporation
for the 21st century. HarperBusiness, New York, 1993.

G. Di Marzo Serugendo, J. Fitzgerald, A. Romanovsky, and N. Guelfi. A generic framework for the
engineering of self-adaptive and self-organising systems. In Kirstie Bellman, Michael G. Hinchey,
Christian Müller-Schloer, Hartmut Schmeck, and Rolf Würtz, editors, Organic Computing - Con-
trolled Self-organization, number 08141 in Dagstuhl Seminar Proceedings, Dagstuhl, Germany, 2008.
Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, Germany.

I. Dickinson. Jena ontology api, 2009. URL http://jena.sourceforge.net/ontology/index.html.

69

http://www.abb.pt/
http://www.jstor.org/stable/20141207
http://www.sciencedirect.com/science/article/B6TYF-47YRKJD-4D/2/0161f0099e8b4e126a78033b6712d6e1
http://www.sciencedirect.com/science/article/B6TYF-47YRKJD-4D/2/0161f0099e8b4e126a78033b6712d6e1
http://jena.sourceforge.net/ontology/index.html


70 BIBLIOGRAPHY

R. Diestel. Graph Theory. Springer, 3rd edition, 2006.

D. M. Dilts, N. P. Boyd, and H. H. Whorms. The evolution of control architectures for auto-
mated manufacturing systems. Journal of Manufacturing Systems, 10(1):79–93, 1991. ISSN 0278-
6125. doi: DOI:10.1016/0278-6125(91)90049-8. URL http://www.sciencedirect.com/science/article/
B6VJD-47XF485-21/2/d5bba8967507b5c1332e95c3d5f9b984.

EUPASS. Eupass : Evolvable ultra-precision assembly systems. URL http://cordis.europa.eu/fetch?
CALLER=PROJ ICT&ACTION=D&CAT=PROJ&RCN=75342.

FIPA. Fipa contract net interaction protocol specification, 1996 - 2002a. URL http://www.fipa.org/specs/
fipa00029/SC00029H.html. (19 October 2010).

FIPA. Fipa acl message structure specification, 1996 - 2002b. URL http://www.fipa.org/specs/fipa00061/
SC00061G.html. (19 October 2010).

FIPA. Fipa request interaction protocol specification, 1996 - 2002c. URL http://www.fipa.org/specs/
fipa00026/SC00026H.html. (19 October 2010).

FIPA. Fipa subscribe interaction protocol specification, 1996 - 2002d. URL http://www.fipa.org/specs/
fipa00035/SC00035H.html. (19 October 2010).

’flexibility’. Merriam-webster online dictionary, 2010. URL http://www.merriam-webster.com/
dictionary/flexibility. (23 September 2010).

R. Frei. Self-Organisation in Evolvable Assembly Systems. PhD thesis, Universidade Nova de Lisboa,
Faculdade de Cincias e Tecnologia, August 4 2010.

R. Frei and J. Barata. Embodied intelligence to turn evolvable assembly systems reality. In Américo
Azevedo, editor, Innovation in Manufacturing Networks, volume 266 of IFIP International Federation
for Information Processing, pages 269–278. Springer Boston, 2008. URL http://dx.doi.org/10.1007/
978-0-387-09492-2 29. 10.1007/978-0-387-09492-2 29.

R. Frei, G. Di Marzo Serugendo, and J. Barata. Designing self-organization for evolvable assembly
systems. In Self-Adaptive and Self-Organizing Systems, 2008. SASO ’08. Second IEEE International
Conference on, pages 97 –106, oct. 2008. doi: 10.1109/SASO.2008.20.

R. Frei, B. Ferreira, G. Di Marzo Serugendo, and J. Barata. An architecture for self-managing evolvable
assembly systems. In Systems, Man and Cybernetics, 2009. SMC 2009. IEEE International Confer-
ence on, pages 2707 –2712, oct. 2009a. doi: 10.1109/ICSMC.2009.5346137.

R. Frei, N. Pereira, J. Belo, J. Barata, and G. Di Marzo Serugendo. Self-awareness in evolvable assembly
systems. Technical report, BBKCS-09-07, School of Computer Science and Information Systems,
Birbeck College, London, UK, 2009b.

R. Frei, N. Pereira, J. Belo, J. Barata, and G. Di Marzo Serugendo. Implementing self-organisation and
self-management in evolvable assembly systems. In IEEE Int. Symp. on Industrial Electronics (ISIE),
page 3527 3532, Bari, Italy, 2010.

D. E. Goldberg. Genetic Algorithms in Search, Optimization and Machine Learning. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA, 1989. ISBN 0201157675.

S. L. Goldman, R. N. Nagel, and K. Preiss. Agile competitors and virtual organizations: strategies for
enriching the costumer. Van Nostrand Reinhold, New York, 1995.

M. P. Groover. Automation, production systems, and computer-integrated manufacturing. Prentice Hall,
3rd edition, 2007.

http://www.sciencedirect.com/science/article/B6VJD-47XF485-21/2/d5bba8967507b5c1332e95c3d5f9b984
http://www.sciencedirect.com/science/article/B6VJD-47XF485-21/2/d5bba8967507b5c1332e95c3d5f9b984
http://cordis.europa.eu/fetch?CALLER=PROJ_ICT&ACTION=D&CAT=PROJ&RCN=75342
http://cordis.europa.eu/fetch?CALLER=PROJ_ICT&ACTION=D&CAT=PROJ&RCN=75342
http://www.fipa.org/specs/fipa00029/SC00029H.html
http://www.fipa.org/specs/fipa00029/SC00029H.html
http://www.fipa.org/specs/fipa00061/SC00061G.html
http://www.fipa.org/specs/fipa00061/SC00061G.html
http://www.fipa.org/specs/fipa00026/SC00026H.html
http://www.fipa.org/specs/fipa00026/SC00026H.html
http://www.fipa.org/specs/fipa00035/SC00035H.html
http://www.fipa.org/specs/fipa00035/SC00035H.html
http://www.merriam-webster.com/dictionary/flexibility
http://www.merriam-webster.com/dictionary/flexibility
http://dx.doi.org/10.1007/978-0-387-09492-2_29
http://dx.doi.org/10.1007/978-0-387-09492-2_29


BIBLIOGRAPHY 71

S. S. Heragu. Facilities Design. iUniverse, 2nd edition, 2006.

S. S. Heragu and A. Kusiak. Expert systems in manufacturing design. IEE Transactions on Systems,
Man and Cybernetics, SMC-17(6):898 – 912, 1987.

S. S. Heragu and A. Kusiak. Machine layout problem in flexible manufacturing systems. Operations
Research, 36(2):258 – 268, 1988.

Jade - Telecom Italia Lab. Jade - java agent development framework, 2010. URL http://jade.tilab.com/.

Jena. Jena - a semantic web framework for java. URL http://jena.sourceforge.net/.

JGraph. Jgraph, 2001 - 2010. URL http://www.jgraph.com/.

KUKA. Kuka robotics, 2010. URL http://www.kuka-robotics.com.

P. J. P. Leitão. An Agile and Adaptative Holonic Architecture for Manufacturing Control. PhD thesis,
Faculty of Engineering of University of Porto, Porto, January 2004.

B. Maskell. The age of agile manufacturing. Supply Chain Management: An International Journal, 6
(1):5–11, 2001.

B. McBride, D. Boothby, and C. Dollin. An introduction to rdf and the jena rdf api, 2009. URL http:
//jena.sourceforge.net/tutorial/RDF API/index.html.

K. Meffert and N. Rotstan. Jgap - java genetic algorithms package, 2002 - 2010. URL http://jgap.
sourceforge.net/.

’monopoly’. Merriam-webster online dictionary, 2010. URL http://www.merriam-webster.com/
dictionary/monopoly. (20 September 2010).

Montech. Montech, 2011. URL http://www.montech.com/.

B. Naveh, 2003 - 2005. URL http://www.jgrapht.org/.

A. M. C. Nunes, M. B. M. Vargas, and M. J. G. Lobato. História e Geografia de Portugal - 5o Ano.
Lisboa: O Livro, 1st edition, 1995.

M. Onori, H. Alsterman, and J. Barata. An architecture development approach for evolvable assembly
systems. In Assembly and Task Planning: From Nano to Macro Assembly and Manufacturing, 2005.
(ISATP 2005). The 6th IEEE International Symposium on, pages 19 –24, jul. 2005. doi: 10.1109/
ISATP.2005.1511444.

Oracle. About java. URL http://www.oracle.com/us/technologies/java/index.html. (15 November 2010).

Oracle. Netbeans ide, 2010. URL http://netbeans.org/.

OWL Working Group. Owl recommendation, 2004. URL http://www.w3.org/TR/owl-features/.

M. Rajasekharan, B. A. Peters, and T. Yang. A genetic algorithm for facility layout design in flexible
manufacturing systems. International Journal of Production Research, 36(1):95–110, January 1998.

RDF Working Group. Rdf standards, 2009. URL http://www.w3.org/standards/techs/rdf#w3c all.

T. Sandholm, K. Larson, M. Andersson, O. Shehory, and F. Tohm. Coalition structure genera-
tion with worst case guarantees. Artificial Intelligence, 111(1-2):209 – 238, 1999. ISSN 0004-
3702. doi: DOI:10.1016/S0004-3702(99)00036-3. URL http://www.sciencedirect.com/science/
article/B6TYF-3X7VMJC-7/2/b1224a6ab9375f4634384eeb57c2f2b3.

http://jade.tilab.com/
http://jena.sourceforge.net/
http://www.jgraph.com/
http://www.kuka-robotics.com
http://jena.sourceforge.net/tutorial/RDF_API/index.html
http://jena.sourceforge.net/tutorial/RDF_API/index.html
http://jgap.sourceforge.net/
http://jgap.sourceforge.net/
http://www.merriam-webster.com/dictionary/monopoly
http://www.merriam-webster.com/dictionary/monopoly
http://www.montech.com/
http://www.jgrapht.org/
http://www.oracle.com/us/technologies/java/index.html
http://netbeans.org/
http://www.w3.org/TR/owl-features/
http://www.w3.org/standards/techs/rdf#w3c_all
http://www.sciencedirect.com/science/article/B6TYF-3X7VMJC-7/2/b1224a6ab9375f4634384eeb57c2f2b3
http://www.sciencedirect.com/science/article/B6TYF-3X7VMJC-7/2/b1224a6ab9375f4634384eeb57c2f2b3


72 BIBLIOGRAPHY

SCHUNK. Schunk, 2011. URL http://www.schunk.com.

J. R. Searle. Speech Acts: An Essay in the Philosophy of Language. Cambridge University Press, 1997.

W. Shen, M. Onori, J. Barata, and R. Frei. Evolvable assembly systems basic principles. In Informa-
tion Technology For Balanced Manufacturing Systems, volume 220 of IFIP International Federation
for Information Processing, pages 317–328. Springer Boston, 2006. URL http://dx.doi.org/10.1007/
978-0-387-36594-7 34. 10.1007/978-0-387-36594-7 34.

Stanford Center for Biomedical Informatics Research. Protégé website, 2010. URL http://protege.
stanford.edu/.

A. S. Tanenbaum. Computer Networks. Prentice Hall PTR, 4th edition, 2003.

T. K. W. To. An evolutionary approach for the reconfiguration of an assembly-line system. Master’s
thesis, Department of Manufacturing Engineering and Engineering Management of the City University
of Hong Kong, Hong Kong, February 2003.

T. K. W. To and J. K. L. Ho. A genetic algorithm for configuring reconfigurable conveyor-components
in a flexible assembly line system. In Manufacturing Complexity Network Conference April 2002.
Second International Conference on, Downing College, Cambridge, UK, 9 - 10 April 2002. Institute
for Manufacturing.

J. A. Tompkins, J. A. White, and Y. A. Bozer. Facilities Planning. John Wiley and Sons, 4th edition,
2010.

D. M. Upton. A flexible structure for computer-controlled manufacturing systems. Manufacturing re-
view, 5(1):58–72, 1992.

W3C. Sparql query language for rdf, 2006 - 2007. URL http://www.w3.org/TR/rdf-sparql-query/.

P. H. Winston and K. A. Prendergast. The AI business: the commercial uses of artificial intelligence.
MIT Press, 1984.

M. Wooldridge. An Introduction To MultiAgent Systems. John Wiley and Sons, 2nd edition, 2009.

http://www.schunk.com
http://dx.doi.org/10.1007/978-0-387-36594-7_34
http://dx.doi.org/10.1007/978-0-387-36594-7_34
http://protege.stanford.edu/
http://protege.stanford.edu/
http://www.w3.org/TR/rdf-sparql-query/

	Acknowledgments
	Resumo
	Abstract
	Acronyms
	Introduction
	Context
	Problem
	Hypothesis
	Objectives And Contributions
	Structure of the Dissertation

	State Of The Art, Related Work And Supporting Concepts
	Manufacturing Paradigms
	Flexible Manufacturing Systems
	Intelligent Supervising Systems
	Agility in Manufacturing Systems
	Evolvable Assembly Systems
	Self-Organisation in Manufacturing Systems

	Control Approaches
	Centralised
	Hierarchical
	Modified Hierarchical
	Heterarchical

	Agent-Based Control
	Individual Agent
	Agent Typologies
	Multiagent Systems
	Communication Technologies
	Integrating Agents In Custom Applications: The Jade Framework

	Ontologies
	Language Specifications: RDF and OWL
	Editing Tools: Protégé
	Integrating Ontologies In Custom Applications: Jena Java API
	Manufacturing Ontologies: EUPASS Ontology

	Genetic Algorithms
	Encoding Information
	Selection Of Parents
	Crossover Operator
	Mutation Operator
	Fitness Evaluation
	Integrating Genetic Algorithms In Custom Applications: JGAP

	Manufacturing System Design
	Equipment Selection
	Equipment Layout
	Layout Configurations
	Layout Design With Genetic Algorithms

	Graphs
	Integrating Graphs In Custom Applications: JGraphT


	System Architecture
	Control Approach
	Design Time
	Run-Time

	Types of Agents
	Resource Agent
	Layout Agent
	System Agent
	Directory Facilitator Agent

	Agent Knowledge
	Manufacturing Plan
	Resource Description

	Agent Behaviours
	Registrations In DF
	Information Requests To DF
	Layout Design
	Coalition Creation
	Workflow Execution
	Coalition Coordination


	Supporting Ontologies
	Product Manufacturing Plan
	Resources

	Genetic Algorithm For Layout Design
	Chromosome
	Selection Of Parents
	Crossover Operator
	Mutation Operator
	Fitness Evaluation

	Implementation
	Programming In Java
	NetBeans
	The Layout Agent
	Constructor
	Setup
	Events

	Graphical User Interface Of The Layout Agent
	Control Parameters
	Starting Layout Design
	Consulting Other Solutions

	Layout Behaviour
	Constructor
	Action
	Done Method

	Ontology Integration
	Model Setup
	Retrieving Connection Points
	Retrieving Required Resources
	Retrieving Resource Dimensions
	Retrieving Connection Point Data

	Configuration
	Encoding Chromosomes And Genes
	Chromosomes
	Composite Genes
	Genes

	Crossover And Mutation Operators
	Fitness Evaluation
	Constructor
	Fitness Function

	Graph Methods
	Creating A Graph From A Chromosome
	Creating A Layout From A Graph
	Determination Of The Source And Target Connection Points In A Resource Connection Edge

	Transform Methods
	Rotation
	Translation
	Inversion
	Rectangular Area And Areas Of Any Shape

	Decoding

	Validation And Test Cases
	Test 4R3P1T
	Test 6R4P2T
	Test 5R3P1T
	Test 9R3P2T

	Conclusions
	Future Work

	Bibliography

