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Abstract 

 

Intelligent Transportation Systems (ITS) have been considered as a solution to the problems 

associated with modern urban traffic management systems. The implementation of ITS is highly 

complex due to the multi-domain and geographically distributed nature of the traffic 

controls/systems and legacy infrastructures. Some of the approaches that have attempted to address 

these challenges include control engineering, artificial intelligence, telematics, grid computing and 

multi-agent systems. This research work was undertaken to investigate the implementation 

approaches aimed at addressing the complexity and communication challenges of ITS, specifically 

intelligent and cooperative traffic systems/controls which are capable of distributed decision making 

in response to emergent traffic situations. 

This research introduces the novel concept of Semantic Agent-based Controls which utilise a unique 

combination of computing concepts including multi-agent systems, Service Oriented Architecture 

(SOA) and semantic web services. The semantic agent-based controls extend the functionality and 

decision making capabilities of fixed traffic controls by using semantic agents over the network to 

effectively control geographically distributed traffic controls/roadside systems.  

The research introduces a novel Agent communication and coordination mechanism that facilitates 

the interaction between the Semantic Agent-based Controls in a multi-domain ITS environment. The 

mechanism uses a semantic layer approach based on the principles of SOA and the concept of 

semantic web services which enables Agents to store, share and integrate heterogeneous data on the 

semantic level across the SOA enabled network of traffic systems and devices. This highly flexible 

mechanism allows semantic agent-based controls to interact with each other by using different levels 

of ontologies that semantically describe the Agents’ intentions, behaviours and coordination 

strategies. The semantic communication layer allows coordination of action plans in the form of 

decision rules between the semantic agent-based controls which facilitates dynamic and distributed 

decision making in response to emergent situations. 

A new ITS platform (named ITS@CU) is presented, which was developed to support and evaluate 

the semantic agent-based controls approach. The ITS@CU platform (and the associated simulation 

utilities) was developed using the latest state of the art commercially available tools and technologies. 

It is a multi-agent platform and is based on advanced SOA principles which enable seamless 

integration of traffic controls/systems.  
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The research approaches are evaluated using a variety of different test cases generated using 

historical traffic data and typical traffic situations identified by UTMC Control Room, Coventry City 

Council. The results demonstrate the advantages of Semantic Agent-based Controls especially when 

compared with traditional controls (without Agents). The advantages include communication 

reductions, flexible and robust coordination between the distributed controls, and enhanced decision 

making and self-organisation capabilities.   

The research presented started as a Knowledge Transfer Programme (KTP) funded project in 

collaboration with T@lecom Limited. Elements of the ITS@CU platform developed during the 

project also led to the design and development of the following three successful commercial 

applications/products for T@lecom. The “Patient Transport System” is a mobile solution for 

ambulance crews to transfer patients to and from hospitals and with novel features of intelligent 

tracking, two-way messaging/alerts and patient prioritising in real-time. The “Mobile Gateway 

System” is a SOA enabled unified communication and integration platform for T@lecom’s mobile 

solutions. Finally, the “Vehicle Tracking Solution” incorporated comprehensive functionalities of the 

ITS@CU platform and also includes a novel driver behaviour assessment. 

 

 

Keywords:  Agent-based Controls, SOA, ITS, Multi-Agent Systems, Grid Computing, Telematics, 

Urban Traffic Management and Semantic Web Services. 
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Chapter 1 
 

 

1. Research Introduction 

 

 

This chapter introduces this research and presents its overall aim and objectives. It also 

describes the research methodology used and the organisation of the thesis. Additionally, the 

chapter outlines some of the key research and commercial contributions, published research 

papers and novelty aspects of this research.  
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1.1. Context and Problem Statement 

Intelligent Transportation Systems (ITS) have been considered as an alternative approach with a potential to 

revolutionise our modern traffic infrastructure and resolve traffic management problems. During the last 5 

years, advanced ITS-based traffic infrastructures are gradually becoming a reality due to the emergence of 

high-tech computing technologies and the integration capabilities of the new generation of traffic systems and 

devices. However, the implementation of ITS traffic infrastructures still faces a number of challenges due to 

the highly complex, multi-domain, heterogeneous, and distributed nature of the data, systems and devices 

involved in ITS infrastructures. Other obstacles include a lack of standards, high processing power/memory 

requirements within traffic devices, multiple decision levels, data load and network latency (Wang, 2005). 

These result in a lack of efficient communication and integration between the various ITS 

components/systems, which is vital for the efficient management of traffic flow, incident detection and for a 

quicker incident response time. It also makes the infrastructure design, system development, implementation 

and maintenance of ITS difficult as well as costly. Obviously, the bigger the ITS infrastructure grows the more 

complex it becomes to manage especially when it comes to incident/fault detection within ITS systems, and 

managing a quick and efficient response to it. 

In order to address these issues and problems, different approaches have been adopted by other research, 

ranging from artificial intelligence, multi-Agent networks, artificial neural networks, distributed systems, 

telematics to grid Computing. So far, the outcome of these research approaches and systems have not been 

able to effectively address some of the important ITS problems, such as: 

 How to establish cooperation, coordination and communication among different domains and 

systems  

 How to store, share and integrate heterogeneous data on the semantic level across the network of 

traffic systems and devices 

 Finding an intelligent way to control the geographically distributed and limited memory roadside 

sensors/systems 

 How to manage dynamic service flow and self-organisation of the traffic systems in response to 

emergent situations 

In comparison to large scale corporate and commercial systems, ITS related systems have still not fully 

benefited from technologies such as the new generation SOA, federated Cloud computing and latest ad-hoc 

wireless technologies. Utilising intra/internet enabled services based infrastructure (in a controlled manner) 

can beneficially provide more functionality to ITS controls without additional overheads. 

Among several other technologies, researchers considered “Agent-based technologies” as a potential and well-

suited approach for such complex ITS environments (Wooldridge, 2002; Wang, 2005). However, Agent-based 
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technology has its limitations and are lacking in commercial tools/technologies, so it has been unable to 

address all these issues effectively on its own. Therefore, the solution to such complex problems requires a 

fundamental shift in approach. 

This research has approached current ITS issues from a different perspective by utilising a combination of 

computing concepts such as multi-agent systems, service oriented architecture (SOA), semantic web services 

and grid computing in order to implement an ITS platform (named ITS@CU in this research). The 

implementation was based on latest state of the art and commercially available tools and technologies. SOA 

was adopted for the seamless integration and communication among different traffic control systems from 

multiple domains. Semantic Agent-based controls were used to control geographically distributed traffic 

controls/systems and provide additional functionality and decision making capabilities. A semantic layer 

(based on semantic web services) was introduced to all agent and service communication with different levels 

of ontologies. The semantic layer enables agent controls to store, share and integrate heterogeneous data on 

the semantic level across the network of traffic systems and devices. SOA principles were used for providing 

composite services (multiple service work flows) and the ability to dynamically discover services across the 

service bus. This facilitated the traffic systems self-organisation in response to emergent situations using 

dynamic service flows. 

This PhD research was initially started as part of a Knowledge Transfer Programme (KTP)1 project at 

T@lecom Limited2 in association with the Control Theory and Applications Centre (CTAC), Coventry 

University. T@lecom is one of the leading providers of transportation/logistics related mobile software 

solutions, and this research project was primarily targeted towards their R&D efforts to implement a new 

platform for the development of a new generation of ITS-based systems at T@lecom. The KTP project 

successfully completed within its two year term period (2005-07), however the author continued the research 

project at T@lecom (during his employment for the next two years), and the PhD at CTAC. The objectives of 

the PhD were derived from the KTP/T@lecom research requirements however its research scope goes much 

further to another level in the subject research areas.        

                                                

1 Knowledge Transfer Partnerships (KTP) is Europe's leading programme helping businesses to improve their 

competitiveness and productivity through the better use of knowledge, technology and skills that reside within the 

UK knowledge base. It supports and funds a huge range of projects in joint collaboration between commercial 

organisations and universities/research organisations.   

2 T@lecom Limited is a Microsoft’s Gold Partner specialises in enterprise mobility solutions such as mobile 

application for field/sales force automation, logistics, vehicle tracking, navigation assistance, ambulance and 

emergency response systems, and enterprise Blackberry solutions. The main sector serviced by T@lecom is the 

NHS Ambulance Services and their Patient Transportation System (PTS), and currently T@lecom is the most 

dominant player in that sector. 
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1.2. Research Aim & Objectives 

This research investigated novel methods and implementation approaches aimed at addressing the 

complexity and communication challenges of ITS, in particular, intelligent and cooperative traffic 

systems/controls which are capable of distributed decision making in response to emergent traffic 

situations in a complex multi-domain environment.  

The following objectives were set to accomplish the overall aim of the research: 

 Develop a road network model adapted for the ITS@CU3 platform  

 Design and implement Semantic Agent-based Controls to effectively control the distributed ITS 

traffic systems/controls and organise the Agents in an effective organisational structure.  

 Design and implement a novel Agent-based communication and cooperation mechanism between 

the ITS traffic systems/controls and services distributed over the grids of the road network. The 

communication mechanism uses SOA principles for the seamless systems/controls integration, 

efficient service discovery and dynamic service composition. The mechanism also uses Semantic web 

service concepts allowing the Agents to use different levels of dynamic ontologies.      

 Define Ontologies to semantically describe the Agents’ behaviours, rules and coordination strategies 

for flexible and efficient communications, and distributed decision making in the multi-agent 

environment of the platform.  

 Design and develop the ITS@CU platform (and associated simulation utilities) using latest state of 

the art commercially available tools and technologies. The platform provides and supports various 

layers of services in order to manage, integrate and control the distributed Agent-based Controls, 

and also facilitate the arbitration and decision making process between the Agents. 

 Develop a new mobile application framework for developing PDA based applications to simulate 

the behaviour of different types of traffic Controls/devices (for platform evaluation) 

  Evaluate and analyse the platform using various traffic scenarios and other related test cases.  

Additionally, provide the commercial implementation benefits of the platform components in order to 

fulfil the KTP requirements.     

                                                
3 ITS@CU – Intelligent Transportation System at Coventry University is only a research title to refer to the ITS 

platform developed as part of the KTP project. 
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The following figure 1.1 outlines the overall aims and objectives of the research.  

Aim & Requirements

Efficient ITS Platform Development

 (with simulation and controls development capabilities)  

Commercial Tools/

Technologies   
Novel techniques/methods  (Combining Agent-Based 

Controls concept, MAS and Semantic Web Services)  

Meet KTP / T@lecom 

requirements 

Architecture principles Built on

Road Network Model development
Design Ontologies for Semantic 

description of Control Agents behaviour 

Simulation Setup & Studies

Based on

Using traffic Cases 
& ITS Scenarios

SOA enabled

Control Agents Design, Organisation Structure 

and Communication implementation

ITS@CU Design & Development

Mobile Application Framework 

Development

Evaluation & Analyse

Research Contributions Commercial Implementations

 

Figure 1.1: Overall Aim and objectives of the research 
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1.3. Research Methodology  

This research has included various experiments, study analyses, field surveys, design & modelling, 

development, simulations and continual refinements. The author has liaised with the UTMC Control 

Room of Coventry City Council responsible for managing the traffic of Coventry City and surrounding 

areas. For the purpose of this research, the UTMC provided an extensive range of traffic data for 

different traffic routes in Coventry City, gathered from the SCOOT system (Siemens Mobility, 2009).  

This research was a commercially-oriented R&D project and was therefore conducted in line with 

T@lecom’s project management and software development processes using IBM’s Rational Unified 

Processes (RUP). Various other methodologies were also considered, specifically Agile based, such as 

SCRUM, Kanban, eXtreme Programming (XP) and Dynamic Systems Development (DSDM) which 

promotes iterative, collaborative, adaptable and requirements driven development processes. Each 

methodology has its own strengths and drawbacks depending on the application area and project type.  

The following table outlines some of the relevant methodologies considered for this research project: 

Methodology Consideration aspects in the context of this research 

PRINCE2 

Projects in Controlled 

Environments 

(PRINCE) 

It is a highly structured methodology and primarily focused towards project 

management, control and organisation (Huijbers, et al., 2004). PRINCE2 

provides a clear beginning, managed phases/stages and an end of a project 

throughout its lifecycle to ensure the successful completion (or termination) of 

a project i.e. on time, within budget and conforming to its requirements. 

PRINCE2 is a generic project management methodology and can be used for 

non IT projects as well. It is endorsed by the UK government as the project 

management standard for public projects (APMG, 2011).         

Some of the main reasons for not adopting PRINCE2 include: 

It is primarily a project management methodology rather than a development 

methodology (APMG, 2011). This research required a methodology tailored 

towards software development. PRINCE2 usage involves producing a number 

of specific stage and phase documentation (Lefevre, 2011) which would have 

created additional overhead for this research project.   

PRINCE2 was not used within T@lecom and it requires familiarity amongst 

the project team and stakeholders to be successful (Huijbers, et al., 2004; 
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Collaris & Dekker, 2010).  

XP 

eXtreme 

Programming 

XP is an Agile process driven software engineering methodology.  It focuses 

on customer requirements and to minimise the risks of rapid requirement 

changes during the project life cycle (Wells, 2009; Amatriain, 2008). It supports 

smaller collaborative teams, and it is fairly simple and lightweight compared to 

other Agile methodologies (Huijbers, et al., 2004).   

The lightweight nature and small team support was quite favourable for this 

research project, but as this project was not constantly changing from the 

requirements perspective, other methodologies provided additional benefits 

and a better approach when  compared to XP.  Additionally, XP was not used 

in T@lecom and would have required extra effort (time/training) to use it for 

the PhD project.   

SCRUM SCRUM is also an Agile method of project management and it is based on an 

iterative approach for product/solution development. It implements the work 

(backlog) in sprints/phases and a daily scrum meeting takes place to assess the 

backlog for the current sprint in order to steer the project in the right 

direction.   

The iterative sprint approach of SCRUM was suitable for this project i.e. by 

dividing the PhD tasks into several sprints along with timely sprint reviews 

with supervisor and project sponsors to track and control the research 

progress. However, the major difficulty in adopting SCRUM was that it was 

not used in T@lecom.  Additionally, SCRUM is more focused on team 

management and team work (Collaris & Dekker, 2010), whereas this research 

work was primarily based on the author, with occasional interaction with 

T@lecom’s development team.   

 

RUP 

Rational Unified 

Process  

RUP is a software design methodology by IBM. It is widely used in the US and 

parts of Europe (Huijbers, et al., 2004; Collaris & Dekker, 2010). The key 

strength of RUP is its versatile, modular, iterative and adaptable nature 

allowing the development of a wide variety of projects/products both software 

and non-software. It is a comprehensive methodology providing not just a 

process framework but also a set of guidelines, example templates and 
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integration with various applications for risk and requirements management, 

planning, design (UML) and testing applications. The integration with such 

applications allows the methodology to be tightly coupled with the actual tools 

which are used for the project design, development and implementation.       

The modular and iterative nature of RUP provided an effective approach to 

distribute the PhD research into various phases and iterations (as mentioned in 

table 1.2). The iterations in each phase provided better control, planning and 

progress assessment not only for the author, but also for the supervisor and 

project sponsors (T@lecom and KTP).  

The possibility to adapt RUP for a single person team (Collaris & Dekker, 

2010) meant that the author had the freedom to continue the project in both 

individual capacity and where required in a team. RUP promotes clear 

requirements analysis and testing after each iteration (Huijbers, et al., 2004), 

which was also helpful during the initial stages of the project where the project 

involved various experimentation and study analyses. It also helped with 

managing the requirement changes which resulted from the research 

experiments and literature review.  

One of the key drivers for adopting RUP as a development methodology was 

its use in T@lecom. For every methodology to be successful it is vital that it is 

supported and understood by the team (Huijbers, et al., 2004; Collaris & 

Dekker, 2010), and as RUP was already the preferred methodology used in 

T@lecom it was the most sensible way forward.   

Beside T@lecom’s requirement & preference of using RUP, other main 

reasons for adopting it was its versatility, successful projects implementation 

(IBM, 2007; Hanssen, Westerheim, & Bjørnson, 2006), comprehensive 

documentations, SOA support (IBM, 2007), requirements driven & iterative 

approach (Sabine & Karlheinz; IBM, 2007), and also its capability to adapt 

towards research driven projects (Huijbers, et al., 2004).     

Table 1.1: Methodologies considered for the PhD  
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In accordance with the RUP methodology, the overall research project was broken into four phases and 

each phase comprised of several iterations. The following table outlines the phases and activities carried 

out during the lifecycle of this research:  

Phase Description Research activities and Outputs 

Inception Establishing key 

research objectives and 

its feasibility. 

 RDC1 document (PhD proposal)  

 Business case document for T@lecom 
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Elaboration Knowledge 

Acquisition, Domain 

understanding and  

research analysis 

 

Specifying 

requirements, system 

modelling and project 

planning     

 

 Requirement specification document and 

project plan produced for T@lecom/KTP 

 Literature review covering the analysis, and 

comparison of ITS-related researches, 

systems, models and methods. 

 Surveys of Coventry city centre’s road traffic 

network and traffic network model. 

 Analysed SCOOT data provided by UTMC 

Control Room, Coventry City Council.  

Construction System design, 

Experimentation, 

Development, Testing, 

Results Analysis 

Change management 

and continual system 

refinement   

 Experiment and testing of various 

programming technologies, communication 

methods, and hardware such as mobile 

devices, GPS receivers, sensors and servers. 

 Mobile application framework development 

 Personal Area Network (PAN) based Agent-

Agent communication system for simulations.  

 ITS@CU platform design and development  

 Testing and result analysis  

 System/model verification, validation and 

improvement  
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Transition System components 

deployment, formal 

documentation and 

feedback assessment    

 Deployment of the system components 

 Assessment of the feedback from T@lecom’s 

technical team and CTAC 

 Formal documentation of each iteration’s 

outcome 

 Thesis write-up 

 Viva preparation  

 Implement changes and corrections 

recommended by PhD examiners 

Table 1.2: Research methodology (phases and iterations according to RUP) 

 

 

  



1.  Research Introduction 
 

 

21 

 

1.4. Research Contributions 

Novelty  

This research project contributed to the research area and novel in the following ways:  

 It introduced a concept of “Semantic Agent-based Controls”, which extends the concept of 

traditional Agents and fixed controls to another level. It enables controlling multiple ITS-based 

controls/systems over a network by using Control Agents with the capability to encapsulate semantic 

data. This allows for efficient communication, cooperation and coordination between agent-based 

controls, and provides the ability for agents to work in synergy with other agents with dynamic 

adaptability in order to manage the traffic grids controls and make smart decisions in response to 

emergent situations. 

 Development of a new ITS platform (ITS@CU) based on novel methods by using a combination of 

different computing areas such as Multi-Agent systems, Control Systems, SOA and Semantic web 

services.    

 One of the key elements of this research project is the use of SOA principles in the ITS@CU 

platform adapted to facilitate Agent interactions in the form of services over highly complex, 

distributed and multi-domain networks. This is a unique implementation of multi-agent systems and 

provides a robust and highly scalable ITS platform.   

 It implemented a new Mobile Application Development Framework for rapid application 

development and simulation of ITS-based traffic Controls and Agents. The framework provides 

multiple wireless communication channels and methods (3G/GPRS, Wi-Fi, Bluetooth, Infrared, Web 

Services, TCP/UDP) and built-in external hardware support.   

 The research was based on a commercial development approach and used state of the art 

technologies, at the time the work was implemented, such as .NET 4, WCF, SQL Server 2008 spatial 

data, LINQ, Silverlight, Bing Maps API, Windows Mobile 6.5 and various wireless communication 

technologies and libraries. 
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Commercial Implementations  

This research was commercially inclined and in addition to the core research objectives, the R&D efforts 

also led to the development of various commercial applications and Proof of Concepts (PoC). Some of 

the relevant commercial implementations and patent ideas which resulted from this research are covered 

in “Appendix A”. 

 

Research Publications  

During the research, the author has published the following scientific papers based on various outcomes 

of the research:  

 “Detecting traffic incidents based on traffic patterns and vehicle behaviours using GPS”, In 

Proceedings of the 18th International Conference on Systems Engineering (ISCE06), Coventry, 

United Kingdom, 5-7th September 2006, pp. 201 – 206 by Kamran, S., Black, J. and Haas, O. C. L. 

(2006). 

 "A Multilevel Traffic Incidents Detection Approach: Identifying Traffic Patterns and Vehicle 

Behaviours using real-time GPS data", In proceedings of the Intelligent Vehicles Symposium, IEEE, 

Istanbul, Turkey, 13-15th June 2007, pp. 912 – 917 by Kamran, S. and Haas, O.C.L, (2007). 

 “Emergency response time optimisation using real-time traffic information”, In proceedings of the 

7th International Conference on Transport Systems Telematics (TST’07), Katowice-Ustroń, Poland, 

17-19th October 2007 by Jaskułowski, M., Kamran, S. and Haas, O.C.L, (2007). 

 “Semantic Agent-based Controls for SOA enabled ITS”,  In proceedings of the 14th International 

IEEE Annual Conference on Intelligent Transportation Systems (ITSC 2011), The George 

Washington University, Washington, DC, USA,  October 5-7, 2011 by Kamran, S. and Haas, O.C.L, 

(2011)  
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1.5. Scope of  the Report 

The ITS@CU platform is a large system and involves various components and technologies. This report 

focuses mainly on the Semantic Agent-based Controls implementation aspects of the ITS@CU platform.  

Not all aspects of the development details of ITS@CU are covered in this report due to the report length 

constraint. However, the appendices section includes the details of some important components/sub-

components.  

 

1.6. Report Organisation 

The thesis is organised in different chapters as follows: 

1. Research Introduction:  Introduces this research in terms of its Aim & Objectives, Novelty and research 

methodology and contributions.  

2. Background & Literature Review: This chapter outlines the research background, and reviews the 

theoretical and technological aspects of the areas related to this research such as such as ITS, Agent oriented 

technologies, Semantic Agent-based Controls and SOA. It also presents a review of related work, systems and 

studies related to this research. 

3. Road Network Model Development: This chapter presents the Road Network Model which is used as a 

foundation for the design of the Agents and ITS@CU platform components.  

4. Agent-based Controls Design & Organisation Structure: This chapter describes the design and 

modelling of the Agents in the ITS@CU platform. It covers the detailed design of the three main Agent types, their 

sub-types/roles, capabilities and their Organisational structure. 

5. Agent Communication structure: This chapter describes the structure of the Agent Communication Layer 

used by agents to communicate and coordinate using the ontology based message instructions.  



1.  Research Introduction 
 

 

24 

 

6. Agent Semantics, Ontologies and Rules structure: This chapter describes the design of the Ontologies 

and Rules used in multi-Agent communication layer to describe the semantic behaviour of the Agents and facilitate 

in decision making. 

7. Implementation of ITS@CU platform: This chapter presents the technical design and development 

description of the ITS@CU platform relevant to the implementation of the Agent design, communication and 

semantic behaviour approaches described in chapters 4, 5 and 6. 

8. Evaluation & Analysis: This chapter evaluates the overall research approach used in the implementation of 

the platform. It presents an analysis of the ITS@CU platform by simulating different traffic scenarios and test cases. 

9. Conclusion & Further Work: This chapter concludes the thesis by discussing the outcome of the overall 

research and its objectives. It also outlines future implementations and suggestions.  

Appendices: This section presents additional materials and outlines supporting literature. It also contains the 

various published papers; and sources code and ontologies in an encrypted CD.  

 See figure 1.2 illustrating the flow of the thesis and report organisation. 
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Figure 1.2: Thesis Flow and Report Organisation 
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Chapter 2 
 

2. Background & Literature 
Review 

 

 

The previous chapter introduced this research in terms of its aim & objectives, novelty and 

research methodology. The academic contributions made to the relevant research area 

(papers published and research projects engagement) and the relevant industry contributions 

(commercial implementations of the research outcome) were also stated. 

 

This chapter outlines the research background, and reviews the theoretical and 

technological aspects of the areas related to this research such as:  

 Intelligent Transportation Systems (ITS) and telematics 

 Agent oriented systems and technologies 

 Semantic Agent-based Controls 

 Service Oriented Architecture (SOA) and grid computing 

 Communication methodologies  

 Relevant tools/technologies 

The later part of the chapter presents the review of related work, researches and 

commercial systems.   



2.  Background & Literature Review 

 

27 

 

 

2.1. Intelligent Transportation Systems (ITS) 

2.1.1. ITS overview   

The increasing level of traffic volume and limited growth in the capacity of the traffic infrastructure has resulted in 

various social, economic and environmental problems. One of the major problems is congestion especially the non-

recurrent type of congestion, which is difficult to manage and plan for the authorities, and causes unexpected delays 

for the commuters and the deliveries of goods and services (Ozbay, 1999). It is also the main cause of road traffic 

incidents. The ever increasing consumer demand for the faster delivery of goods, services and shorter travel times 

mean that congestion and associated traffic management problems have become a noticeable obstacle to the 

economy and workers’ productivity (Tang and Wang, 2006). 

This trend has put the already deteriorating traffic infrastructures under immense stress and the efforts by the 

authorities to improve the infrastructure are unable to keep up with the pace of the growing transportation demand.  

In order to address these problems, a variety of measures have been taken over the years such as infrastructure 

expansion, public transportation improvements, road sharing programs, variable speed controls, counter flow, and 

technological enhancement such as active traffic management, adaptive traffic lights signalling and broadcasting 

traffic information (Bazzan, 2005).  

However, the volume of traffic is constantly increasing worldwide and it is likely to continue in the future which 

means that the traffic problems will become even worse compared to the current state if drastic measures are not 

taken on a continuous basis. The problems and challenges faced are indeed complex, intertwined and require 

coordination from all parties involved in the operation, management and research of the transportation system to 

achieve efficient, integrated, safe and environmentally responsible transportation.  

This research explores the area of Intelligent Transportation Systems (ITS) which offers a promising future to 

revolutionise the modern transportation infrastructure’s implementation and planning and to resolve traffic 

problems including providing a reduction in accidents and traffic congestion.  

ITS refer to a wide range of systems as well as research efforts intended to enhance the productivity and safety of 

transportation systems by using advanced information and communications technologies. ITS is a wide ranging area 

and includes various technologies and applications such as advanced information processing (computers), 

communication technologies (wired-wireless), electronics devices (sensing and control), electrical equipment and 

strategies for management and planning traffic infrastructure – all in an integrated manner - to achieve the following 

transportation benefits.  

 Improved Safety  

 Reduced Congestion and better mobility  

 Improved energy efficiency  

 Enhanced economic productivity 
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 Reduced environmental impacts  

 Reduced infrastructure costs 

 Reduced operational cost by efficient automation 

 Improved monitoring & management of traffic flows, incidents and efficient response 

 Improved data collection on traffic flows, goods carried, carriers, drivers  

 

 

 

 

 

Figure 2.1: ITS Components 

Vehicle: It is one of the main ITS components, which focuses on improving “in-vehicle intelligent systems” such as 

collision detection, avoidance and warning systems, advance driver assistance and navigation system, tracking, lane 

detection, safety monitoring, speed control, vision enhancement etc. 

User: Focuses on enhancing the system providing assistance and real-time information to the users of any ITS 

related system such as navigational assistance systems, traveller information and route guidance according to the 

current traffic conditions, driver performance monitoring, and drivers’ comfort and safety improvement system. 

Traffic Infrastructure: Intelligent traffic infrastructure is vital for the success of any ITS implementation as it 

provides a platform allowing efficient traffic monitoring & control, incident detection & response and other 

administration functions. It includes applications for:  

 Monitoring weather & environmental conditions, collecting traffic data (rate of flow of vehicles, 

congestion) 

 Detecting incidents, vehicle locations etc. 

 Responding to incidents  

 Management of planned and unexpected traffic events 

 Controlling traffic signals and other such devices/sensors 

 Administration of regulatory enforcement  

Communication: Communication systems make the ITS work, as they link and provide the ability to exchange 

information between all the components. It allows data gathering for processing into intelligence, which can be then 

used efficiently to determine and activate appropriate response actions in the event of traffic incidents or faults.  

Vehicle 
In-vehicle safety & driver  

assistance systems 

 User 
 Real-time traffic Information    

   and route guidance systems 

Traffic Infrastructure 
Traffic control, monitoring  

and management systems  

   Communication 
  Systems to connect all    

 components together 

All systems 

work in an 
integrated 

manner in 
ITS 
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During the last 5 years, ITS-based traffic infrastructures have been significantly developed due to the emergence of 

high-tech computing technologies and the integration capabilities of the new generation of traffic systems and 

devices. Most of the developed countries now have departments and organisations on both regional and national 

level, which are planning and implementing next generation of ITS-based architectures, standards and sub-systems.  

Further review of ITS is included in “Appendix C, section 1 and 2”    

 

2.1.2. ITS controls and traffic data management  

The real-time data collection about the vehicles and road condition plays a vital part in managing, planning and 

forecasting the traffic flow. The data collected from various sources goes through various steps, systems and 

domains to provide the user level information. Over the years, the data collection methods have been changed 

considerably and the modern traffic infrastructures involve arrays of controls, devices and technologies to collect 

the traffic information.  

The traffic data collections can be divided into the following two categories: 

Road-based: This category involves the use of fixed devices and sensors on the traffic infrastructure, based on 

various methods and technologies each with their advantages and disadvantages in terms of reliability, cost, 

performance and data accuracy.   

Device/Source Description 

Inductive Loops These are metal detection devices installed along the roads to detect traffic flow situated 

mainly at the traffic lights. It is a reliable technology; however, the shift is now more 

towards cheaper alternatives such as infrared sensors (Turner et al., 1998). The accuracy 

of the data collected and exploited depends on the placement of the inductive loop 

which is not always located sufficiently close to the traffic controls. 

Video 

recognition/CCTV 

Arrays of cameras alongside roads mainly on motorways to monitor traffic condition. 

They are monitored by operators; however with advanced image processing techniques 

it is moving towards being fully automated. In Coventry a number of road corridors 

have been equipped with CCTV cameras for traffic monitoring and enforcement. 

Active and Passive 

Infrared sensors 

An alternative technology to inductive loops usually placed at traffic lights based 

intersections to detect vehicles. It uses thermal radiation for passive infrared and 

reflective signals for active infrared (Ozbay, 1999).  

Weather sensors Array of sensors to monitor weather conditions to assist traffic operators in managing 

the dynamic traffic flow.  

Pipes  Two rubber tubes filled with liquid are placed across the road separated by a short 

distance. Sensors placed on the end of pipes detect the change of pressure when run 

over. They can determine the speed and type of a vehicle. 
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Laser  Variety of laser based technologies to detect vehicle information 

Pulse-Doppler radar Active detection technology to detect objects including their bearing, range, and altitude 

and also measuring their radial velocity (range-rate).  

Ultrasonic sensors Transmits low pressure waves of sound energy below human audible range to provide 

vehicle count, presence and lane occupancy information. (Klein, 2002) 

Acoustic sensors Array of acoustic sensors to detect acoustic signals by vehicles mainly used for vehicle 

count and multi-lane road monitoring 

Electronic Toll 

Collection Sensors 

Roadside beacons scanning signals from tags on the windscreen. Most often it is used 

for congestion charge systems but can indicate the number of cars which have entered a 

particular area. 

Table 2.1: Traffic Data Collection Sources 

 

Vehicle-based: This category involves the use of various in-vehicle detection technologies. Mainly it is used in 

vehicles by traffic authorities, police and in some cases public transport vehicles as probe vehicles. Probe vehicles 

with dedicated equipment provide real-time traffic data of route journey times and such data stored over a period of 

time provides a good source for analysing, planning and predicting journey times on different routes (McDonald 

and Li, 2006). 

The use of navigation and tracking systems is also becoming widespread. Almost all the major car manufacturers are 

installing GPS receivers as a standard item; alternatively it is available as relatively-cheap add-on. It is likely that 

within few years’ time almost all vehicles will be equipped with GPS receivers and navigation systems in most of the 

developed countries. Beside the purpose of navigation, GPS technology is also widely used for vehicle tracking 

systems where the vehicles are equipped with General Packet Radio System (GPRS) or Third Generation (3G) 

based vehicle modems or mobile devices to transmit real-time GPS data. This has opened a new dimension in the 

area of traffic data collection where vehicles themselves provide up to date location, speed and other such 

information to a central system; which in combination with cumulative traffic information can provide much better 

traffic flow management.  

 

Data fusion technologies 

ITS based traffic infrastructures involve heterogeneous data from a wide range of sources such as sensors, 

devices/equipment, control systems, GIS, manual and other application sources, and in various formats (Wu et al. 

2005). The data collected requires highly efficient fusion techniques in order to provide comprehensive and accurate 

information required for further processing. Several data fusion algorithms and techniques have been developed and 

applied, individually and in combination, providing users with various levels of informational detail (Sharma, 1999). 

Selecting a suitable fusion technique depends on the type, level and amount of information involved.  



2.  Background & Literature Review 

 

31 

 

 

The traffic management applications involving pattern recognition, artificial intelligence, neural networks, fuzzy 

logic, Figure Of Merit (FOM), expert systems and Kalman Filtering are already becoming common. Other 

algorithms, such as Bayesian inference, Dempster-Shafer inference, and voting logic, have also been used to detect 

and classify multiple source data for ITS purposes such as incident detection.  

There are three basic categories or levels of data fusion (Linn & Hall, 1991) differentiated according to the amount 

of information they provide.  

 Level one: Fusion of multi-sensor data determining the position, velocity, and identity of a target.  

 Level two: High level of inference and delivering an additional interpretive meaning to the raw data.  

 Level three: The highest level data fusion designed to make assessments and provide recommendations at user 

level.  

The following table shows the different data fusion algorithms/techniques and methods at different levels.  

Fusion Level General Method Specific Technique 

Level one Data association Figure Of Merit (FOM)  

Gating techniques 
Positional estimation Kalman filters 

Level two Identity fusion Bayesian decision theory,  

Bayesian Inference, 

Dempster-Schafer  Evidential Reasoning (DSER),  

Adaptive neural networks 

Pattern recognition Cluster methods 

Level three Artificial intelligence Expert systems,  

Blackboard architecture, Fuzzy logic 

Table 2.2: Common data fusion techniques 

Major ITS based projects using different data fusion techniques are discussed in detail in “Appendix C, section 3”. 

 

In this research the data collection devices and controls were analysed to model their behaviour in developing 

agent-based controls and also for simulation in PDA based mobile applications mentioned in the implementation 

chapter 7, section 7.4. The data fusion techniques were investigated to develop an efficient data fusion mechanism for 

the ITS@CU platform which involves data from multiple controls. The author primarily focused on utilising level 

three expert System based fusion techniques. This was mainly achieved using SQL Server 2008 built-in data 

transformation services which are part of SQL Server Integration Services (SSIS). 
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2.1.3. Traffic light controls 

Traffic signals at intersections or crossings are the most common and effective means of controlling the traffic flow. 

Poorly designed traffic signals can result in unnecessary and excessive delays. On the other hand, if appropriately 

designed, it can provide orderly movement and could actually increase the capacity of the intersection (Chawdry and 

Sadek, 2003).  Traffic controllers can be classified according to the method in which they allocate green time 

for each phase and can be roughly classified into the following types of control: 

Fixed-time control: A signal timing plan is selected according to a fixed schedule (e.g., time-of-day, day-of-

week) from a set of predetermined plans, which were developed off-line on the basis of historical traffic data. The 

duration and order of all green phases remain fixed and are not adapted to fluctuations in traffic demand. The 

main drawback of fixed-time control is that it is not able to adapt itself as it is based on historical rather than on 

real-time data (Katwijk, 2008). Historical data is often not representative for the current situation such as: 

• Traffic arrives at the intersection randomly, which makes it impossible to predict the traffic demand 

accurately 

• Demand changes on the long term leading to “ageing” of the optimised settings 

• Events, accidents, and other disturbances may disrupt traffic conditions in a non-predictable way 

• Demand may change due to drivers’ responses to the new optimised signal settings (Diakaki & Kotsialos, 

2003) 

Actuated control: Signal timings (green/red phases) are extended or terminated depending on the current traffic 

demand usually using traffic detectors such as inductive loops to indicate the presence or absence of vehicles.  

Adaptive control: A traffic control system that continuously optimises the signal plan according to the actual 

traffic load factors such as time, weather, and unpredictable situations such as accidents, special events, or 

construction activities. Adaptive traffic control systems continuously sense and monitor traffic conditions and 

adjust the timing of traffic signals accordingly. Adaptive systems, such as SCOOT and SCATS, have been around 

for a long time and have proven their worth in various places around the world. Using real-time traffic information, 

an adaptive system can continuously update signal timings to fit the current traffic demand.  

The continuing growth in computational power enables control systems to further cater to the dynamics of the 

traffic system. Adaptive traffic systems are currently the most advanced and complex systems available. Whereas 

the working of fixed-time and traffic-actuated control systems is generally well-understood and is more-or-less 

standardised, this is not yet the case for traffic-adaptive systems. As traffic-adaptive systems operate on the 

forefront of what computers, monitoring equipment, traffic prediction, and optimisation are capable of, these 

systems significantly differ in their approach of traffic-adaptive control (Katwijk, 2008) 

In this research, the study of signal controls was important for the simulation of Agent-based Controls 

representing traffic signal controllers. The behaviour of different types of traffic signal controls has been 

implemented for developing Agent controls and mobile simulation applications (described in chapter 7, section 

7.3.2.4). 
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2.1.4. Traffic flow simulation  

Traffic flow simulation systems and techniques are very important for analysing and optimising traffic flows and 

capacity. It is helpful in planning, implementing, and estimating traffic and its environmental effects. Simulations 

can be performed on a small part of the roads to a large traffic network/area. Simulation becomes more 

complicated with the increase in the size of the traffic network (small area, town, big part of the city etc.) and the 

level of detail. 

Simulation systems and algorithms depend on traffic flow controls and models. There are three basic elements 

typically used for describing traffic stream: flow, speed and density (Chowdary and Sadek, 2003). 

Elements Description  Parameters 

Flow (q) The rate of flow, measured in the number of 

vehicles per unit time q(x,t) 

Maximum capacity qm 

Speed(u) Distance vehicle travelled during a time Free Flow Speed uf 

Optimum Speed uo 

Density (p) The number of vehicles per unit length of road p(x,t) Jam Density pj 

Optimum Density po 

Velocity (v) Mean velocity of the traffic flow v(x,t)  

Headway Time or distance gap between two vehicles in the 

traffic stream 

Space Headway d 

Time Headway h 

Table 2.3: Flow elements  

The traffic flow elements/parameters are related to each other by following equation 

 Flow = speed * density   (q = u * p) 

      i.e. 10 vehicles in 1 mile stretch (density p = 10) and 50 mph average speed of vehicles (u = 50)  

     means the flow q = 500 vehicles per hour 

The traffic flow elements or parameters play an important part in the traffic modelling. The following are 

classifications used for describing traffic models:  

 Scale of values (continuous, discrete, semi-discrete) 

 Level of detail (microscopic, mesoscopic, macroscopic) 

 Predictability of an algorithm (deterministic, stochastic) 

 Source of data (analytical, simulation) 

 Processing area (networks, stretches, links, intersections) 

There are two general approaches for modelling a traffic flow:  
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Macroscopic models focus and analyse the traffic flow–density relationship for a traffic stream and its behaviour.  

Microscopic models focus on describing and analysing the behaviour of individual vehicles and driver behaviour. 

Microscopic models represent an individual’s behaviour, and have the flexibility to be adapted to the changes of 

road environment.  

Traffic simulation systems are based on different data flow models and can be divided into the same categories 

microscopic, mesoscopic and macroscopic levels based on either continuous or discrete time approach. The 

macroscopic simulators involve analysing traffic flow where the microscopic approach focuses on analysing the 

behaviour of the individual cars/drivers. Mesoscopic mostly refers to approaches involving elements of both macro 

and micro or intermediate between both levels of simulation. 

Researchers and the traffic system providers have always pushed the simulation towards more and more 

microscopic level, where the individual entities in the traffic network from vehicles to road based sensors could be 

taken into account during the simulation. Various technologies have been used to achieve this goal such as objects 

or agents that can be programmed to interact in a very natural way to produce accurate models of traffic flow 

behaviour (Kosonen, 1996). One interesting research area to complement microscopic simulation is Multi-agent 

systems. It allows the development of detailed microscopic simulations where each vehicle is controlled by an 

individual agent.  

There are different types of models employed by traffic simulators based on traffic control strategies, area of 

coverage and level. Some of the well-known traffic simulators include VISUM, VISSIM, SOUND, MITSIM, 

SATURN, NETSIM, BOX Model and CORISM. A further review of these simulation systems is included in 

“Appendix C, section 5” 

In this research, a Multi-Agent approach has been used for ITS@CU to simulate the behaviour of semantic based 

agents, traffic controls and vehicles. The benefits of using a Multi-Agent approach have been presented in studies by 

(Ehlert, 2005; Bazzan, 2005).  

 

2.1.5. Traffic network modelling and mapping  

A typical traffic infrastructure consists of various elements such as the network of roads/intersections, points of 

interest (petrol stations, services, parking etc.), on-road or road-side objects and equipment (traffic lights, signs, 

surveillance devices/sensors, information display etc.), services locations (e.g. tolls) and control centres. All these 

elements are distributed geographically and located on an identifiable address point on a map. Therefore, ITS-based 

systems dealing with the traffic network infrastructure requires an efficient mapping and modelling strategy in order to 

simplify the infrastructure planning and design, and improve the communication between the traffic elements.  

Digital mapping technologies are widely used for structuring the traffic infrastructure’s geo information in terms of 
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their location, distance and other properties. Generally the attributes of map elements and the road network model can 

be categorised as follows (Clemens Portele, 2007): 

 Navigation:  Arterial classification, dividers, barriers, one-ways, speed limits, road signs, turn restrictions, ramp 

signs, time of day and flow restrictions 

 Geometry: Links, nodes, shape points, relative elevation, connectivity 

 Path: Street names, route number and address ranges 

 Points of Interest:  Hotels, restaurants, tourist attractions, parking, transportation terminals etc. 

 Cartography: Railroads, rivers, canals, lakes, golf courses, shopping centres, woodlands etc. 

 Administrative: Country, state, county, city, and post codes etc. 

 Traffic Codes: Database elements that provide map displays of traffic problems and dynamic route guidance 

when used in conjunction with real time traffic incident information  

 

 

Figure 2.2: Real world junction and its map representation as simple features 

There are various digital map formats developed by different providers such as NAVTEQ, ESRI, Garmin, Google, 

MapQuest, Genasys, GeoMicro, GeoSpatial Technologies, eSpatial, Maporama, MapInfo, MapSolute, Microsoft 

MapPoint, Mobilaris, Telogis, Autodesk deCarta and Telmap. Most of the maps are in proprietary formats and not 

readable without their special parser.  

In this research, a road network model was developed to support the ITS@CU platform. The model was based on 

SCOOT (Siemens Mobility, 2009), and adapted for the proposed agent based controls and grid approach (discussed in 

chapter 3). Mapping technologies were important for the ITS@CU platform allowing location aware multi-agent 

communication based on specific area or location between the Agent-based Controls. Therefore, different mapping 

technologies and formats/standards such Geographic Data File (GDF), Geography Markup Language (GML), GPS 

and GIS were explored as part of this research. GML provides a good format and it is used as a basis for map data 

representation; however it was customised for the ITS@CU platform. For simulation and monitoring, Microsoft 

Bing was used due to its extensive map support, .NET compatibility and support for map services such as 

customised tiles, map layers, geo-coding, and location, traffic and direction information.       

A further review of the mapping technologies relevant to this research is included in “Appendix C, section 6”   

Real World Representation Data level Representation 
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2.1.6. Incident management  

In any ITS system, efficient management of traffic incidents is vital for keeping the traffic flow normal and to avoid 

unnecessary congestion by quicker incident detection and response. The process of incident management consists of 

four sequential steps (Ozbay and Kachroo, 1999):  

 

 

Figure 2.3: Incident Management Process 

Incident management is a complex process and involves the coordination of activities from traffic authorities to 

restore the traffic flow to normal after the incident. From a technological perspective, the main problem lies in the 

efficient data collection, surveillance systems accuracy and malfunctions. It is therefore important that the data 

obtained is validated for its accuracy.   

Incident detection and verification: Timely and accurate detection of a traffic incident and the verification of its 

existence in terms of time, location and nature is the most important step in the process of incident management. 

Generally, most of the incident detection systems follow two steps in order to determine the occurrence of an incident:  

1. Determine the existence of congestion: Using the traffic data from on-road surveillance and monitoring 

systems e.g. CCTV, inductive loops, probe vehicles, sensors as well as reports by drivers  

2. Analysing the data to verify the incidents: using incident detection systems and algorithms e.g. Automated 

Incident Detection (AID). 

There are various Automated Incident Detection (AID) algorithms and systems, using different surveillance 

technologies and different methods to analyse the traffic data. AID algorithms are generally Model-based, Image-

based, Prediction-based, and pattern recognition based. AID systems and Algorithms are evaluated using quantitative 

measures such as Detection Rate (DR), False Alarm rate (FAR) and average Time to Detect (TTD).   

Incident response, clearance and recovery: Incident response comprises of the following time based 

components and reducing the time in any of the components clearly reduces the overall response time. 

 Detection/Verification Time (T1)  

 Dispatch Time (T2) 

 Travel Time from dispatch location to incident location (T3) 

 Incident Clearance Time(T4) 

Overall Response Time (TR) = T1  +   T2    +    T3   +  T4 
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The incident response process consists of the following steps: 

 Incident characterisation/classification: categorise incident based on factors such as type, location, 

fatalities/injuries, number of vehicles, number of lanes, weather condition, infrastructure damage, fire, 

hazardous materials, and cargo spill. 

 Service Identification: Devising complete package of response services/actions by traffic operators based 

on incident characterisation 

 Notifying relevant authorities: Ambulances, Fire, Police, Highway/road maintenance team etc. as per 

requirement  

 Clearance/Traffic flow normalisation: Actions to clear the incident scene (debris/vehicle removal, 

passenger/injured evacuation, evidence collection, informing authorities and traffic restoration actions)   

Often the authorities decide to divert the traffic flow in order to alleviate congestion caused by major accidents. The 

diversion is a tricky process for traffic authorities due to practical as well as political constraints (avoid residential 

area) and the impact it has on other roads and could result in congestion on the other road.   

In this research, various AID approaches (review presented in “Appendix C, section 7”) were investigated from a 

technical point of view to design Agent-based Controls with the ability to respond to emergent traffic situations and 

make intelligent decisions to restore the traffic flow. Most particularly, the author studied the approach used in 

SCOOT (by UTMC Control Room, Coventry city council) for dealing with traffic issues and planning. Another 

important aspect considered was the dynamic signal adaptation method for traffic flow optimisation using Agent-

based Controls for analysing the traffic conditions. As part of the research, various strategies for traffic diversion 

and alternative route generation techniques were analysed, however, the implementation of route generation 

functionality in the ITS@CU platform was achieved using the Microsoft Bing API web service which provides 

customised route generation as a service.  

2.1.7. ITS in the context of this research 

The field of ITS is constantly evolving and researchers and system providers are exploiting different kinds of 

technologies and concepts from different principles to innovate the transportation infrastructure and vehicles. Some 

of the major areas of interest in computer science include AI, neural networks, distributed computing, multi-agent 

systems, grid computing, computer vision, pattern recognition, machine learning, data mining and intelligent 

controls. Other areas include applied cognition, HCI/user interface design, and even psychology for monitoring the 

driving behaviours, and predicting the drivers’ physical and mental states. 

Currently, various ITS-based systems and controls are implemented throughout the developed world, which are 

significantly improving the transportation safety, mobility, and productivity (Tang et al. 2006). However, the full 

potential is still far from implemented and we have a long way to go. As more new concepts, methods, tools and 

technologies continue to emerge in the field of communication, information, automation and electronics, the more 
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ITS will progress towards achieving its vision of revolutionising the traffic system and dramatically reducing its 

associated problems.  

This research investigates various methods and technologies from the perspective of a new generation of vehicles 

and roadside traffic controls which can interact autonomously and intelligently without the need of significant 

infrastructural changes. The following are some of the ITS promises and visions for the future of transportation 

relevant to this research: 

Smart vehicles on Smart Roads: Modern vehicles are getting smarter and smarter and they already include many 

different kinds of sensors, CPUs, software systems, and communication capacities (Li et al. 2005). In the near 

future, vehicle-2-vehilce and vehicle-2-infrastructure sensing and communication will become standard features. It 

will be used for assisting drivers/passengers in a more intelligent manner for improving the driving safety, efficiency 

and comfort. On the other hand, the transportation infrastructure will also become intelligent to efficiently manage 

the vehicle flows and improve safety.  

Artificial Transportation Societies: It is an exciting new concept aimed to study the social effects of complex 

transportation problems. These societies are mainly based on multi-agent systems integrated with transportation 

models including analytical descriptions of traffic flow models as well as rule-based human and vehicle behaviours 

and social and natural events. It allows transportation activities to “grow” in a bottom-up fashion, providing an 

alternative to real systems for experimental investigations (Wang and Tang, 2004). This will provide a better way to 

test and evaluate different traffic management systems, and simulate system behaviours on a larger scale by using the 

artificial traffic infrastructures.  

Intelligent travelling spaces: Intelligent spaces are environments which have the capabilities to monitor all 

internal events, and are able to communicate with their inhabitants and neighbouring environments. Such intelligent 

spaces would be the next natural step in the advancement of ITS infrastructure. Incorporating intelligent-space 

technology into transportation will help to lay the foundation for a connected transportation environment where 

vehicles and infrastructure components intelligently, and securely share information, self-manage efficiently and 

react to the occurring problems (Wu et al. 2005).  
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2.2. Agent Oriented Systems and Controls 

2.2.1. Agent technology overview 

An ‘Agent’ is an autonomous software entity that can interact with its environment i.e. other agents, hardware and 

applications. “Agents are computer systems with two important capabilities. First, they are at least to some extent 

capable of autonomous action – of deciding for themselves what they need to do in order to satisfy their design 

objectives. Second, they are capable of interacting with other agents – not simply by exchanging data, but by engaging 

in analogues of the kind of social activity that we all engage in every day of our lives: coordination, cooperation, 

negotiation and the like” (Wooldridge, 2009). 

 

 

 

 

 

 

 

Figure 2.4: Agent properties 

An agent must respond quickly to changes in the environment in order to be useful and act autonomously and where 

required communicate, negotiate and collaborate with other agents to achieve its goals. All Agent types satisfies the 

first four properties (reactive, autonomous, goal-oriented and temporally continuous) and the others are added as per 

application requirement (Buchanan, 2000). 

There are weak and strong notions of software agents. The weak notion considers agents as a software-based 

computer model with Autonomy, Social abilities, Reactivity and Pro-activeness as their main properties (Oliveira, 

1999; Wooldridge and Jennings, 1995). The strong notion of agents adds concepts like mentality, emotion and sociality 

to the definition of an agent in an attempt to simulate more human like behaviour (Castelfranchi, 1998). Agents are 

can be distinguished based on the level of their intelligence. Intelligence in an agent is usually defined by Autonomy, 

Intentionality, Reasoning and Learning. 
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Types of Agents    

Reactive agents: These types of software agents are designed to react to the impulses from the environment 

that they work in. Although they can sometimes act as Intelligent Agents (reason or learn), their actions are 

triggered by incoming signals. They are comparatively simpler to design (Sanchez Passos & Rossetti, 2010). As 

compared to the deliberative/Intelligent agents which possess a reasoning model, i.e. they engage in planning 

and negotiation in order to achieve coordination with other agents, the reactive agents use request/response type 

actions (Simonin & Gechter, 2005).  

Intelligent agents: These types of agents are close to artificial intelligence technologies, because they have an 

ability to adapt, learn and respond according to their environment. They are also referred to as BDI agents, as 

they act intelligently based on their beliefs (knowledge), desires (goals) and intentions (means). They are 

proactive and act on their own initiative to achieve their goals. They can reason over facts and scenarios and 

often learn in order to gain knowledge needed to fulfil their desires (Guerra-Hernández et al., 2004).  

Fuzzy agents: These types of software agent are based on the fuzzy logic implementation i.e. it interacts with its 

environment through an adaptive rule-base. They are often considered as part of the Intelligent Agents. 

Distributed agents: Such types of agents include the capabilities suited for a distributed environment i.e. they 

are designed to be loosely coupled and can be executed as independent threads and on distributed processors. 

Mobile agents: Mobile Agents can relocate from one machine to another in order to perform their tasks more 

efficiently. It is a composition of software and data with an ability to move from one computer to another 

autonomously and continue its execution on the destination computer (Borselius, 2003). Mobile agents decide 

when and where to move, and they accomplish such moves through data duplication. During its movement, a 

mobile agent saves its current state, and transports the saved state to the destination host, then resumes its 

execution from that saved state. Web search engine crawlers are examples of mobile agents because they relocate 

from one cluster of the server to another (Milojicic, 1999). Mobile agents are ideal for occasionally connected 

environments (e.g. wireless) where they can operate in on off communication bases. 

 

  

http://en.wikipedia.org/wiki/Artificial_intelligence
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2.2.2. Multi-Agent System (MAS) 

MAS refers to a system that consists of multiple agents, each with a certain function, that communicate and cooperate 

with each other in order to achieve the goal of the system as well as their own goals (Wooldridge 2009, Tweedale et al. 

2007). MAS have their own problem solving capabilities and the agents are able to interact with each other in order to 

achieve an overall goal (Oliveira, 1999). Interaction may occur between agents and between agents and their host 

environment (Weiss, 1999). The nature of the interaction depends on the purpose of the system and actual situation 

but the point of the agent interaction is to distribute the complex tasks between specialised agents and therefore 

complete them more efficiently.  

As agents are autonomous entities and tend to prioritise their own goals they have to be coordinated by the system to 

ensure its coherency (Nwana 1996). If not coordinated, agents can conflict, waste their efforts and eventually fail to 

achieve the system goal (Durfee 2004). The basic way to coordinate agents is by using joint commitments and 

conventions. According to the notion of joint commitment, if an agent agrees to perform a certain action, it can be 

safely assumed that he will perform it. Conventions ensure that agents in the MAS will act in the same manner 

(Jennings et al., 1998). MAS have the following characteristics (Lee et al., 2006; Shehory & Sturm, 2001):  

 An agent has an incomplete information to solve a problem 

 No global system control (may have central control only for arbitration) 

 Data is decentralised  

 Computations are asynchronous 

 Agents that are autonomous and distributed 

 Agents may be self-interested or cooperative 

 

 

 

Figure 2.5: Typical structures of Multi-Agent Systems (Source: Adapted from Wooldridge, 2009) 
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In this research, the agent platform is based on the MAS approach due to the following rationale:  

 A single agent that does everything could be constructed, but fat agents represent a bottleneck for 

speed, reliability, and maintainability. Dividing functionality among many agents provides modularity, 

flexibility, modifiability, and extensibility (Ozdag, 2007).  

 A single agent may not carry or provide complete specialised knowledge which is spread over various 

sources (agents) and can be integrated for a more complete view when needed (Zhengping, 2006).  

 MAS are ideal for distributed applications where agents can be designed as fine-grained autonomous 

components that act in parallel. Concurrent processing and distributed problem solving can provide 

solutions to many problems that up until now were usually handled in a more linear manner. Agent 

technology in this context can provide the ultimate in distributed systems (Andreas, 2005).  

MAS require an appropriate environment to function:  

 Multiple agents that are autonomous, adaptive, and coordinative  

 An infrastructure specifying communication and interaction protocols 

 Open with no (or limited) centralised control   

In MAS, agents possess many functions such as programming, synchronising and prioritising tasks. They can 

collaborate or recruit resources, re-instantiate in different environments, store data, achieve messaging and 

communication etc. Most of the advanced agent based systems include hybrid of type of agents i.e. agents are 

designed to have the properties of multiple types for example distributed intelligent agent. In MAS environment, 

multiple type of agents can also interact and can achieve their own and cumulative goal. Agents can 

communicate over networks using multiple communication methods (e.g. HTTP, TCP), enter in new 

environments and adapt to the new environment.   

2.2.3. Multi-Agent communication and coordination 

The communication and coordination between agents is a key feature of Multi-Agent Systems (MAS). In a MAS 

environment agents must be able to communicate with their host/environment and with other agents to 

cooperate, collaborate and negotiate. In order to communicate, agents interact with each other by using special 

and commonly understood communication languages, called agent communication languages. In addition to a 

common language for agent communication, Agent-based controls require ontologies for understanding the 

communication semantics. Ontology is a representation of a set of concepts within a domain and the 

relationships between those concepts. When Agents communicate about a domain then it is necessary that 

there is an agreed set of common terminology that these agents understand for describing that domain.  

http://en.wikipedia.org/wiki/Domain_of_discourse
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The agent based languages provide both: 

 Communicative acts (outer messaging layer/actions) e.g. KQML, ACL 

 Content language (actual contents/ontologies/semantics within the messages) e.g. KIF 

Knowledge Query & Manipulation Language (KQML): KQML was one of the earliest agent based 

communication languages purely based on speech-act-theory. “It is a language and protocol for exchanging 

information and knowledge that defines a number of performative verbs and allows message content to be 

represented in a first-order logic-like language similar” (Genesereth, 1994). KQML has actually provided the basis 

for FIPA ACL, a more advanced and widely used agent communication language (Labrou et al., 1999). 

Knowledge Interchange Format (KIF): KIF is a language for the interchange of knowledge among disparate 

programs and KQML based agent-agent interaction. It has declarative semantics based on targeted domain in the 

form of expressions representation, with properties definition and their relationship for understanding between 

same domain agents. It is logically comprehensive i.e. contains the usual connectives of the first-order predicate 

calculus. It provides the representation of knowledge, reasoning rules and the definition of objects, functions, and 

relations within the communicative acts or messages in multi agent interaction.  

Foundation for Intelligent Physical Agents (FIPA): “FIPA is an IEEE Computer Society standards 

organisation that promotes agent-based technology and the interoperability of its standards with other 

technologies” (fipa.org). It specifies the communication interfaces with different components in the environment 

with which an agent interacts (e.g. other agents, non-agent software, devices and services). The main emphasis is 

on standardising multi-agent communication using Agent Communication Language (ACL).  

Agent Communication Language (ACL): ACL which is based on KQML, is an agent based communication 

language according to the FIPA standard, often referred to as FIPA ACL. A FIPA based agent message consists 

of a sender, receiver, performative and message contents. The performative is used to classify the message into 

meaningful low level intentions (fipa.org).  

Further detail and a review of ACL relevant to this research is covered in “Appendix D, section 1”    

According to FIPA, the content of an ACL agent message can be encoded in any content language. Ontologies 

encoded in agent messages can be defined in different formats/languages provided the involved agents can 

interpret and parse the message contents.  More recently XML has become widely used for defining ontologies, 

which provides a highly flexible way of defining the semantics.  Other ontology languages include Ontology 

Mark-up Language (OML), Web Ontology Language (OWL), Resource Description Framework (RDF) Schema, 

DAML+OIL and F-Logic. Further details are provided in section 2.3. 
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2.2.4. Security in agent-oriented environment 

Security is vital for any system and network, however agent based systems require a higher level of security when 

compared to other distributed technologies (Borselius, 2003). It is mainly due to: 

 Agent autonomy: Agent is autonomous and decides where it can go and what it will do, which 

deliberately or not deliberately can cause harm to the system in which it is executing or interacting 

with (Pitt et al., 2001). 

 Information carrier: Agent can potentially compromise data by transferring its embedded data when 

migrating between hosts. 

 Virus behaviour: An agent travels with its state of execution which means it can execute harmful 

operations.  

 Outside interaction: Agents can execute commands as per instructions from external (non-trusted) 

sources.  

 Migration independence: Travels across the network to any host independently without external 

influences (Buchanan et al., 2000). 

 

In this research, the following security measures were considered for the multi-agent communication approach 

in the implementation of the ITS@CU platform:  

 Multiple agents can co-exist and execute simultaneously however with some level of control and 

arbitration including agent-agent communication and with its hosts. 

 Agent transport and acceptance mechanism from/to trusted hosts using identity verification process 

 Ability to stop or limit agent despite the level of access or priority level of the agent. 

 Ability to halt or freeze agents’ execution states.  

 Ability to constrain agents from interfering with each other in conflicting scenarios 
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2.2.5. Virtual Agent organisations  

Agent computing enables a complex system (and its micro level components) to operate in a manner similar to a 

human organisation, thus allowing very flexible distributed computing and bringing the area of intelligent 

systems to another level. The major benefits of using agent computing especially in a complex system is the 

ability to self-organise, configure, manage, diagnose problems and even correct itself in different emerging 

situations/conditions, and thus to minimise the human interference and reliance (Madureira et al., 2008).  

In MAS environments, agents form an organisation and have certain roles, responsibilities and set of tasks and 

objectives which they are assigned to perform and achieve (similar to human based organisation concepts). A 

Multi-Agent organisation has the following properties:  

 Level of autonomy 

 Power and authority 

 Knowledge and skills  

 Resources access 

In order to achieve their tasks/goals, whether on individual level, team level or overall organisation level, agents: 

 Communicate and coordinate with each other,  

 Delegate tasks,  

 Negotiate,  

 Make decisions,  

 Get commitments,  

 Reach agreements 

In an agent system, agencies (i.e. agent organisations) are main building blocks installed in each node of a 

networked system in which agents can reside and execute it operations. To facilitate the inter-operation of agents 

and agent systems across heterogeneous platforms, agencies designed to comply with agent standards are highly 

desired (Chen & Cheng, 2010). 

In this research, these properties of MAS and virtual organisation formation approaches were important for 

the agent organisation in ITS@CU, which is a multi-agent platform with distributed Agents having different 

roles and organised in different agencies based on their domain level and area of influence (details are covered 

in chapter 4).  
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2.2.6. Agent oriented design approaches  

The agent computing paradigm is rapidly emerging as one of the powerful technologies for developing large 

scale distributed systems to deal with the uncertainty in a dynamic environment (Chen & Cheng, 2010). Many 

researchers also argue that agent-oriented design represent the most important new paradigm for software 

development since object-oriented design (Luck, 2004).  In recent years, agent oriented computing has further 

progressed and various architectures, models and methodologies have been developed for the design and 

implementation of agent based systems.  

Agent architectures & design models  

Agent architecture is defined as a particular methodology or framework for designing agent-oriented systems or 

individual agents. Agent design architectures are the fundamental engines underlying the autonomous 

components that support effective behaviour in real-world, dynamic and open environments (Luck , 2004; 

Bellifemine et al., 2007).  

Agent architectures and design models can be divided into four groups: 

Logic-based (Symbolic): Logic-based agents use traditional knowledge-based system techniques in which 

an environment is symbolically represented and manipulated using reasoning mechanisms (Bellifemine et al., 

2007). The behaviour and desires of agents are based on logical deduction or theorem proving (Wooldridge, 

2009; Poole et al., 1998). Logic-based reasoning comprises a set of knowledge representations (knowledge base) 

where logic is used to form axioms that describe facts (nuggets of knowledge) and their relationships (Lakemeyer 

and Nebel, 1994).  

Logic-based agents are dependent on the knowledge base to perform their tasks.  They are complex to design and 

comparatively slower than reactive agents due to deductive reasoning (i.e. processing of the knowledge base) 

(Russell & Norvig, 2010). 

 

Stimulus–response (Reactive): Reactive architectures implement the agent decision-making capabilities 

based on a stimulus–response mechanism triggered by environmental factors (sensory data inputs). Unlike logic-

based architectures, they do not have any central symbolic model and therefore do not utilise any complex 

symbolic reasoning (Bellifemine et al., 2007).  

Reactive agents exhibit faster responses in dynamic environments and are often simpler to design than logic-
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based agents (Sanchez Passos & Rossetti, 2010; Wooldridge, 2009). However, reactive agents lack the same level 

of reasoning as they do not employ models of their environment compared to other approaches. Also, it is a 

complicated process to design reactive agents to fulfil specific tasks in a complex environment where the situation 

changes all the time (Simonin & Gechter, 2005; Henderson-Sellers & Giorgini, 2005).  

 

Belief-Desire-Intention (BDI): BDI architectures are probably the most popular agent architectures 

(Busetta, 2003). In BDI architectures, agents have certain mental attitudes i.e. beliefs, desires and intentions. 

‘Beliefs’ refer to the information an agent has about the environment it is in, ‘Desires’ relate to the tasks that are 

allocated to the agent and ‘Intentions’ are desires that an agent has committed to achieve (Rao and George, 1995). 

In order to achieve its intentions, an agent has a plan library (stored plans) which represents the procedural 

knowledge.  

Different agent-based systems have been implement based on BDI such as Procedural Reasoning System (PRS) 

JAM (Huber, 1999), JACK (Howden et al., 2001), dMARS (d’Inverno et al, 2001) and JADEX, with a wide 

range of applications demonstrating the viability of the BDI model. One of the well-known BDI architectures is 

the PRS which is also relevant to the platform in this research. Its architecture is based on four key data 

structures: beliefs, desires, intentions and plans, and an interpreter (Ma et al., 2010). In PRS: Beliefs represent the 

agent’s information about its environment, which may be inaccurate; Desires represent the 

goals/objectives/tasks which are allocated to the agent; Intentions represent desires that the agent has 

committed to achieve; finally, plans specify the actions followed by an agent in order to achieve its intentions. 

These four attitude (in form of data structures) are managed by the interpreter agent which is responsible for 

updating beliefs from environment observations, generating new desires (tasks) based on new beliefs, and 

selecting a subset of tasks from currently active desires to act as intentions. Finally, the interpreter selects an 

action to perform based on agent’s current intentions and knowledge (Bellifemine et al., 2007; Wooldridge, 

2009).  

BDI agents lack learning capability i.e. to learn from their past behaviour and adapt to new situations (Guerra-

Hernández et al., 2004). BDI is composed of three attitudes (Belief-Desire-Intention) which are actually not 

sufficient for all types of agents systems (Rao and Georgeff, 1995; Busetta, 2003) hence it is not suitable for all 

types of agent system design.  

 

Layered/Hybrid architectures: In layered architectures various layers are designed to deal with both the 

reactive and pro-active behavioural requirements of an agent. The philosophy of layered architectures is based on 

the assumption that agents need to produce both simple reactive behaviours (e.g. to avoid an obstacle in the case 

of robots) and pro-active behaviours (e.g. to plan for future actions). Agents that show more reactive behaviour 

perform relatively better in environments that are highly dynamic compared to pro-active agents that do better in 
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more static environments (Wooldridge, 1999). Layered/hybrid architectures allow both reactive and deliberative 

agent behaviour. To enable this flexibility, subsystems arranged as the layers of a hierarchy are utilised to 

accommodate both types of agent behaviour. There are two types of control flows within a layered architecture: 

horizontal (Ferguson, 1991) and vertical layering (Muller et al., 1995).  

 

Figure 2.6: Layered architectures (Source: Bellifemine et al., 2007):   
Left horizontal, middle vertical (one pass) and Right vertical (two pass) 

 

In horizontal layer approach, the layers are connected to the sensory input and action output where each layer 

acts like an agent in itself. The main advantage of this is the simplicity of design i.e. single layer per agent’s 

behaviour. However, since each layer is in effect an agent, their actions could be inconsistent prompting the need 

for a mediator function to control the actions. Another complexity and potential drawback is the large number 

of possible agent interactions/transactions between horizontal layers. Vertical layer architecture eliminates some 

of these issues as the sensory input and action output are each dealt with by at most one layer each (creating no 

inconsistent action suggestions). The vertical layered architecture can be divided into one pass and two pass 

architectures (as shown in figure 2.6). In one pass architectures, control flows from the initial layer that gets data 

from sensors to the final layer that generates action output. In two pass architectures, data flows up the sequence 

of layers and control then flows back down. The main advantage of vertical layered architecture is the interaction 

between layers is reduced significantly. The main disadvantage is that the architecture depends on all layers and is 

not fault tolerant, so if one layer fails, the entire system fails (Bellifemine et al., 2007). 

 

In this research, combinations of Agent architecture and design models were adopted based on the specific 

role of the Agent and the requirements of that role. For example, a Reactive agents design approach was adopted 

for some types of Agents (Service Agents and resources provider agents) which do not require proactive 

properties to function i.e. these agents only react to incoming requests (Simonin & Gechter, 2005; Sanchez 

Passos & Rossetti, 2010). Control Agents were designed based on a logic-based approach as they can embed the 

controller’s logic as part of the Agent functions. Most Operational Agents were designed to follow the BDI 

design approach which provides an ability to design agents with more sophisticated behaviour in a distributed 

environment (Ma et al., 2010; Vidal, 2010) making it an ideal choice for core operational agents in the platform 

(mentioned in chapter 4,5 and 6).  
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Overall, the architecture of the platform in this research was based on a hybrid architectural approach. A hybrid 

model allows the use of different underlying models/architectures for sub-components of the system; 

therefore, it was a better architectural choice for dealing with multiple architecture types of components/sub-

systems in the ITS@CU platform. A hybrid approach of layering by combining both horizontal and vertical 

architectures provides a better approach for reducing the number of agent interactions (hence better performance 

and communication) and fault tolerance by eliminating the reliance on a single layer (Bellifemine et al., 2007).  

Different types of agents were investigated for the design of Agent-based controls in the platform. Intelligent 

Agents are ideal for control applications (Vidal, 2010); however the proposed Agent-based controls also required 

the capability of agents to migrate between different domains and interact with other Agent-based controls to 

make decisions. Therefore mobile agent’s capabilities were also useful in designing the agent structure and 

platform’s capability to host/execute mobile agents.  The concept of MAS was essential to this research as the 

ITS platform involved multiple agents working in synergy at different domain levels. The overall approach 

adopted in the research for Agent modelling was to design different types of specialised agents with the 

properties of mobile, reactive and intelligent agents or a combination depending on the Agent’s role and 

purpose. The FIPA ACL based communication concepts of MAS were employed for multi agent cooperation 

and coordination; however the research takes the Agent design and MAS communication to another level by 

using semantic agent concepts based on a semantic web services approach (see chapter 4, 5, and 6). The Agents in 

ITS@CU are therefore flexible by design to promote agility and efficiency especially when it comes to domain 

specific problem solving in SOA based complex multi-domain environments.  

 

Agent-based modelling and simulation  

Agent-based modelling (ABM) and simulation uses multi-agent systems for the representation of social, 

economic, ecological and other similar systems in a software environment (Salamon, 2011). Agent-based 

modelling appears to be a promising technology that has the potential to improve the modelling techniques in 

complex systems (Dasheng et al., 2010). ITS systems are highly complex and distributed in nature which makes 

them suitable for Agent-based modelling (Andreas, 2005; Wang, 2008; Dasheng et al., 2010). Agent-based 

modelling and simulations are usually considered the same (Macal & north, 2007).  Agent-based modelling can 

be used to design and represent the behaviour of traffic flow and infrastructure components where individual 

agents are programmed to control/simulate the behaviour of vehicles, traffic controls and other components.  

Agent based modelling is different from an object-oriented modelling approach however object-oriented 

techniques usually provide a suitable foundation for the development of agent-oriented models (Bazghandi & 

Pouyan, 2011). Agent-based models are often confused with multi-agent systems (MAS) and it is important to 
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distinguish that ABM is primarily focused on modelling/simulating Agents, and MAS is the implementation of 

a system (with multiple agents).  

ABM is not a general purpose modelling technique and requires the right level of description/detail to serve its 

purpose. ABM looks at a system at a component/unit level i.e. not at the aggregate level. Simulating the 

behaviour of all of the units can be time consuming and extremely computation intensive which means that 

the high computational requirements of ABM remain a problem when it comes to modelling large systems 

(Eric Bonabeau, 2002). 

One of the interesting application areas of agent based modelling techniques is the simulation of traffic 

systems. As mentioned in section 2.1.4, Agent oriented technologies provides a very good approach for 

simulation especially microscopic level traffic simulation (Bazzan, 2005). Entities in the traffic network from 

vehicles to road based sensors could be taken into account during the simulation to produce accurate models 

of traffic flow behaviour (Kosonen, 1996). Multi-agent systems allow the development of detailed microscopic 

simulations where each vehicle is represented by an individual agent. There are different types of models 

employed by traffic simulators based on traffic control strategies, area of coverage and level. Some of the well-

known traffic simulators include VISUM, VISSIM, SOUND, MITSIM, SATURN, NETSIM, BOX Model and 

CORISM.  

A further review of these simulation systems is included in “Appendix C, section 5”.  The benefits of using a 

Multi-Agent approach in traffic simulation have been discussed in studies by (Ehlert, 2005; Bazzan, 2005).  
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Agent design methodologies  

There are various methodologies for designing agent oriented systems. These methodologies typically consist of 

models and guidelines (Henderson-Sellers & Giorgini, 2005; Wooldridge, 2009). Some of the relevant 

methodologies reviewed in this research include: 

Methodology Description Analysis aspects 

Agent UML 

(Odell et al., 

2001) 

It is based on an object-oriented approach 

to designing Agent based systems by using 

Unified Modelling Language (UML). The 

notations in UML were extended to enable 

the modelling of Agent systems in order to 

support concurrent Agent interactions 

(multi-threaded) and the notion of ‘role’ to 

design different roles of agents in MAS. 

The familiarity of UML design 

models/notations and object-oriented 

concepts make it easier to design the agent 

based systems using Agent UML especially 

in systems where Agents are implemented 

using objects (Henderson-Sellers & Giorgini, 

2005).  

It provides a good graphical representation 

of the agent system in form of UML 

diagrams.  

The main drawback is that it is greatly 

focused on object-oriented approach 

however the Agents implementation is not 

just limited to objects (Baurer et al, 2001).  

Gaia  

(Wooldridge, 

2009)  

It is a top down methodology and provides 

a systematic process from requirement 

specification to design phase in order to 

support the agent system implementation. It 

promotes moving from abstract to 

increasingly concrete concepts. The key 

Gaia concepts are roles, which have 

associated responsibilities, permissions, 

activities, and protocols. Roles can interact 

with one another using the protocols of the 

respective roles (Wooldridge, 2009)    

 

Gaia is tailored for agent design and analysis 

particularly to address the design of agent’s 

flexibility, autonomous problem solving 

behaviour, multi agent interaction and 

organisational structure complexities 

(Wooldridge et al., 2000).  

The methodology is not easily scalable and 

provides weak support for open systems (Juan 

et al., 2002). Gaia requires detailed and 

somewhat complete requirements 

specification to design agent systems (Iglesias 

et al, 1999); but in most complex system the 

requirements are either only partially complete 

in the early phases or they change frequently 

(Henderson-Sellers & Giorgini, 2005).  
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Desire 

(Framework for 

DEsign and 

Specification of 

Interacting 

REasoning 

components) 

 

It is a framework for the design and formal 

specification of compositional systems 

(Treur et al., 1995). It has been adapted for 

Multi agent systems and it views both 

Agents and its overall system as a 

compositional system (Brazier et al., 1997).    

It is based on formal specification techniques 

which help in the agent design and modelling 

process by providing comprehensive 

specification.  

It has a graphical tool for assisting with the 

design process however it is out-dated. It 

also lacks support for BDI agent 

architecture.   

Agents in Z 

 

It is an Agent specification framework 

based on Z language (d’Inverno & Luck, 

2001). It has a four-tiered hierarchical 

approach to designing agent based systems. 

The agents in this methodology are entities 

(objects) with attributes, capabilities and 

goals. 

It is not very scalable and limited due to the 

Z language specification. It does not allow 

constructing reactive and proactive agents 

(Wooldridge, 2009).  

Table 2.4: Agent design methodologies 

 

A comprehensive survey on different agent methodologies has been provided in a study by (Iglesias et al, 1999) 

and an interesting analysis of agent methodologies is presented by (Henderson-Sellers & Giorgini, 2005).  

 

2.2.7. Agent tools and technologies  

Agent oriented computing is a relatively less established area, and the tools and technologies involved still lack 

standards. However, various standards are being discussed (Tweedale et al. 2007) and agent technology is getting 

attention from a few major software vendors such as Oracle/Sun and Progress Software. Currently, most of the 

commercial products/toolkits are proprietary and quite specific in nature.  

A further review of relevant Agent Tools and Technologies is included in “Appendix D, section 2” 

This research involved a wide range of development technologies in order to implement the different 

components of the ITS@CU platform. Various tools and technologies especially Java Agent Development 

Environment (JADE) and NetLogo were initially used for MAS experimentation and traffic simulation (see 

“Appendix K”).  
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JADE provides a good Agent development platform however it is limited to the Java platform and lacks SOA 

and integration with ITS based traffic controls/devices. One of the core research requirements was to focus on 

the Microsoft .NET development framework and C# due to its compatibility with T@lecom’s other commercial 

systems. Therefore, the ITS@CU platform was developed from the ground up based on the Microsoft .NET 

development framework. It was obviously a big challenge and a vast amount of time was spent on the 

development of the platform however it was necessary due to the requirements. In addition to just the 

requirement, .NET technologies were also industry leading technologies and provided comprehensive 

functionalities and technical advantages over other technologies (reviewed in “Appendix F and D, section 2”). Some 

of the main benefits of .NET include a powerful IDE (Visual Studio 2008/10) and programming language 

(C#/VB.NET) support; native integration with SQL Server 2005/08 DBMS; an extensive range of 

APIs/libraries; and other technologies such Web Services/WCF, ASP.NET, native XML parsing and LINQ 

support.    

 

2.2.8. Agent-oriented approach to ITS problems 

ITS systems are highly distributed in nature with micro level components and multiple levels of decision making 

which makes the development, modelling and simulation very difficult. The domain of traffic and 

transportation systems is therefore well suited to an agent-based approach because of its geographically 

distributed nature (Andreas, 2005) and it’s alternating busy-idle operating characteristics (Wang, 2008).  

Agent technology’s inherent distribution allows for a natural decomposition of the system/sub-systems into 

multiple agents that interact with each other to achieve a desired global goal (Parunak, 1999). Agent’s 

properties such as collaboration, autonomy and decision making abilities provide a better way to implement 

automated traffic management and control systems. Agent-based transportation systems allow distributed 

systems/sub-systems collaborating with each other to perform traffic control and management based on real-

time traffic conditions (Chen & Cheng, 2010). 

The development (or improvements) of traffic infrastructures is costly and it must be carefully evaluated for its 

impact on the traffic before any actual work commences (Ozbay & Kachroo, 1999; Chowdhury & Sadek, 2003). 

Agent technology has an advantage to develop micro level simulation with individual agents simulating the 

internal behaviour, interaction and decision making capabilities of all the entities in traffic systems (Ehlert, 2005; 

Bazzan, 2005). A review of traffic simulation systems and techniques is also provided in section 2.1.4.  
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2.2.9. Difference between Agents and other technologies 

Object-Oriented: The main difference between objects and agents the autonomous nature of the Agent 

(Henderson-Sellers & Giorgini, 2005). An object is not autonomous as it relies on the host application and 

follows the class description defined and controlled by the application. Agents are not completely controlled by 

any application. Furthermore, agents are interactive entities that are capable of using rich forms of messages. 

These messages can support method invocation – as well as informing the agents of particular events, asking 

something of the agent, or receiving a response to an earlier query. Lastly, because agents are autonomous they 

can initiate interaction and respond to a message in any way they choose (Odell, 1999; Jennings et al., 1998).   

Distributed/Concurrent systems: Similar to agent based computing, distributed/concurrent systems 

have multiple components which interact and run as separate entities or on separate threads, however there are 

two main differences (Wooldridge, 2002):  

 Agents are autonomous entities i.e. capable of making independent decisions and not strictly 

hardwired in at design time.  

 Agents are mostly self-interested entities, while the components/elements in distributed concurrent 

systems generally share a common goal of the system. 

Artificial Intelligence (AI): Agent technology has been considered by many as part of AI, as it involves the 

use of various AI algorithms/methods especially when it comes to Intelligent Agents e.g. learning, planning, 

understand images, self-configure etc. However, Agent technology is much more than just the use of AI as it uses 

various non-AI technologies as well. It involves social aspects of systems interaction and communication, and has 

its own development methodologies and concepts. 

An interesting analysis and discussion regarding the differences between agents and other technologies are 

covered in (Odell, 1999; Wooldridge 2009; d’Inverno & Luck, 2001).   

 

2.2.10.   Critical analysis and challenges of agents based approach 

Despite the promising potential of Agent oriented approaches, there exist a number of concerns that should 

not be overlooked (Wooldridge, 2009). Agent technology still lacks development tools, protocols/standards, 

design techniques and methodologies as compared to more mature technologies such as object-oriented 
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(Henderson-Sellers & Giorgini, 2005; Luck et al., 2005). There are no widely-used software platforms for 

developing multi-agent systems that provides for example: a complete infrastructure required for agent 

message handling, tracing and monitoring, run-time management. Hence, a significant amount of time and 

resource is generally spent on implementing an infrastructure prior to the development of a multi-agent system 

(Wooldridge, 2009; Henderson-Sellers & Giorgini, 2005). This has been the case in this research and a new 

platform (ITS@CU) was specially designed as part of the implementation process (see chapter 7 for the 

platform details and the reasons for implementing a new platform).   

Agent researchers and developers often overestimate the potential of agent approach. It is important to 

understand its limitations and useful application areas/scenarios. Although agents have been used in a wide 

range of applications (Chen & Cheng, 2010), they are not a universal solution i.e. there are many scenarios in 

which other conventional software development approaches (e.g. object-oriented) can be more appropriate 

(Wooldridge, 2009). There advantages of an agent based approach should be clearly identified and understood 

prior to the actual implementation (Henderson-Sellers & Giorgini, 2005).  

Security in agent systems is also a common concern due to the autonomous nature of agents which means they 

can behave like a virus and compromise data (mentioned in section 2.1.4). The dilemma is that if an agent platform 

is designed to be strict and more controlling then the agent becomes less autonomous which goes against the 

agent philosophy of having greater autonomy (Pitt et al., 2001). Therefore, the right balance of trust and security 

must be considered in open agent environments (Borselius, 2003).    

Multi-Agent systems by design tend to be highly multi-threaded systems which presents its own complexities 

and challenges usually associated with concurrent and distributed systems (Vidal, 2010) i.e. concurrency and 

coordination issues of agent messages/process flows and distributive resource (host memory/CPU) allocation 

issues (d’Inverno & Luck, 2001; Chen & Cheng, 2010).  

The design of individual agents is a challenging process and adopting an appropriate type and model required 

for agents’ roles is not a straight forward process (Macal & north, 2007). An incorrect balance of having too 

many or too few agents can also lead to an inefficient system (Vidal, 2010).Too many agents in a system can 

result in communication overheads, resource limitations, concurrency and coordination issues. By contrast, too 

few agents or fat agents (i.e. agents performing multiple roles) can negatively impact the system’s performance 

and its reliability i.e. if one agent fails then all the functions associated with the multiple roles of that agent fails 

(Ozdag, 2007). The design of an agent system without such considerations often leads to an implementation 

failure (Chen & Cheng, 2010; Tapia et al., 2008; Henderson-Sellers & Giorgini, 2005).   

Readers interested in further information analysis on drawbacks and challenges of agent technology can refer to 

(Luck et al., 2005 and Wooldridge, 2009).  
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2.3. Ontologies for Agent communication  

2.3.1. Ontology overview   

In addition to a common language for agent communication, Agent-based controls require ontologies for 

understanding the communication semantics. Ontologies represent the domain knowledge as concepts and their 

relationships. When Agents communicate about a domain then it is necessary that there is an agreed set of 

common terminology that these agents understand for describing that domain. 

Ontologies can be defined in any format or language as long as they are understood by the agents i.e. they have 

the capabilities to interpret the message contents. According to FIPA (fipa.org), the content of an ACL agent 

message can be encoded in any ontology definition language (e.g. KIF). More recently XML has become widely 

used for defining ontologies, which provides a highly flexible way of defining the semantics (Sabou, 2006).  

Other popular ontology languages include Ontology Mark-up Language (OML), Web Ontology Language 

(OWL), Resource Description Framework (RDF) Schema, DAML+OIL and F-Logic (Cardoso, 2007).  

 

2.3.2. Ontologies design  

Ontologies can be defined for a system at different levels classified as follows: 

Foundational ontologies: Top-level conceptualisations that contain specifications of domain and problem 

independent concepts and relations based on formal principles derived from linguistics, philosophy, and 

mathematics.  

Generic ontologies: Contain generic knowledge about a certain domain such as Telematics, medicine or 

biology.  These domain concepts are often specified in terms of top-level concepts thus inheriting the general 

theories behind the top-level concepts.   

Domain ontologies: Specific to a particular domain and have the lowest reusability outside of the domain. 

Well defined ontologies are important for agent communication languages to reduce errors during the 

communication between the agents (Vidal, 2010; Luck et al., 2005). The more thorough the ontologies, the 

better the Agents are able to understand what a data resource is and how it relates to other data and resources. 

The ontology design for Semantic data representation in web services and Agent communication in ITS@CU 

is covered in chapter 5 and 6, and the implementation description is covered in chapter 7.  

http://en.wikipedia.org/wiki/Domain_of_discourse
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2.3.3.  Ontology languages and technologies review  

Ontologies are explicitly specified in a formal language such as Resource Description Framework (RDF), 

RDF Schema (RDFS), DAML+OIL, and Web Ontology Language (OWL). Currently, both OWL and RDFS 

are widely used however OWL is becoming more popular (Cardoso, 2007). Both languages have their 

strengths and which to use is entirely up to the designer/developer’s own preference, experience and also the 

application area/type (Antoniou & Harmelen, 2009; Cardoso, 2007).    

RDF only provides a model and syntax to describe resources; however it does not specify the semantics of the 

resources, so to define semantics RDFS and OWL are required (Altova, 2007). RDFS provides support for 

rich semantic definitions however it has a limited support for the specification of local usage constraints (i.e. 

structural, cardinality and data type constraints) (Hunter & Lagoze, 2001).  

OWL is derived from DAML+OIL and builds on RDF concepts (w3c.org) and it is more expressive than 

RDFS with a larger vocabulary to describe classes and properties (Horrocks et al, 2003; Antoniou & 

Harmelen, 2009). It is based on Description Logic which provides the basic representation features of OWL 

with well-defined construct meanings. OWL also includes features which help it to integrate into the 

mainstream web technologies such as the Internationalized Resource Identifiers (IRIs) as names, XML Schema 

data types, and ontologies as web documents, which can then import other OWL ontologies over the Web. 

(Antoniou, 2009) 

Ontology building processes still lack guidelines to facilitate what knowledge ontologies should contain and 

what design principles they should follow (Sabou, 2006). This is the main reason why ontologies described for 

web services/applications even in the same domain are vastly different which then hinders the reusability of 

the ontologies. Ontology building is a difficult and generally time consuming process with less automation 

support for large and changing textual data collections (Horrocks et al, 2003; Sabou, 2006). 

A further review of RDF, RDFS and OWL is included in “Appendix E”. 

There are several ontology editors available such as Protégé, Swoop, OntoEdit and Altova SemanticWorks. 

However, Protégé is the most widely used editor and its users share is about 62.8% (Cardoso, 2007). Further 

detail is provided in “Appendix F, Ontology Editors”. 

In this research, ontology languages were explored in detail, especially OWL, however the ontology 

described for the agent communication is customised and defined in an XML format to suit the ITS@CU 

platform. XML was preferred due to its native support in SQL Server 2008 and .NET parsing capabilities. 

(Other benefits of using XML are mentioned in chapter 5, section 5.2). Primarily, Protégé software was used 

for designing ontologies in OWL, and then these ontologies were converted from OWL into XML for 

further customisation to adapt to the ITS@CU Agent communication structure.  
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2.4. Semantic Agent-based Controls & Services 

2.4.1. Agent-based Controls 

Any control system can be viewed as an agent (Wooldridge, 2002), for example a simple thermostat with sensor 

to detect low/high temperature (of the environment) can trigger the heating/cooling system to start/stop based 

on the current temperature. In more complex systems, multiple controls can be agents themselves or governed 

by different types of agents over the network. Therefore, the central concept behind agent-based controls is a 

type of control which is governed by an agent or agents (of any type). 

In software terms, these agents are the control algorithms, or actual code logic or programs which are 

responsible for executing certain actions based on the environment. Agents based controls therefore can be:  

 Purely code level agent entities over the network controlling single or multiple controls 

 Local, static level sensors/equipment/systems 

 or even a combination of both 

In large distributed systems involving many control devices, if the local system controls the functionality of the 

devices not only does it require more memory and hardware (hence cost), but it also increases the complexity of 

the overall system. On the other hand, a network based agent can control multiple controls, and provide extra 

functionality and intelligence to the overall system and leaves the local controls to do basic computation on a 

local level. It allows decomposition of a control algorithm into many simple task-oriented control agents 

distributed over a wide area network. In this way, a network-enabled device can operate on a “control on 

demand” basis i.e. it will need to host only the operating agents, not all the possible agents required for its 

operation (Wang, 2005).  

2.4.2. Semantic web services 

Web service technology has its limitations and fails to achieve the goals of automation and interoperability 

because they require a well-defined service interface involving humans to write the description (McIlraith et al., 

2001). WSDL specifies the functionality of the service only at a syntactic level allowing these descriptions to be 

automatically parsed and invoked by machines, however the interpretation of their meaning is still largely 

human (Martin et al., 2004). In order to overcome the limitations of traditional web services, the concepts 

from semantic web offers an ideal approach by augmenting the service descriptions with a semantic layer to 

facilitate automatic service discovery, composition and execution (Maleshkova, 2008).  

Semantic web services implementation requires adding semantic metadata (data that describes data in the form 

of ontology) to the information resources, allowing computers to effectively process the data based on the 
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semantic information that describes it (Altova, 2007).  Semantic web’s current research focus is more directed 

towards the support of intelligent data exchange where the information that is being annotated is not 

unstructured text but rather semi-structured information available from databases or exchanged between web 

services (Sabou, 2006). The role of the semantic annotations is to support merging, integrating and exchanging 

data between applications or domains in highly distributed environment including ITS.  

 

2.4.3. Semantic Agent 

Semantic agents can be described as any type of intelligent agent which also exhibits or uses the semantics for 

system wide communication. The concept originated from the advent of semantic web however it is the least 

researched area in Agent-oriented computing.  

Key to all agent interaction languages is a shared syntax and semantics of the domain (in the form of ontology) 

and the interaction protocols. In large distributed networks (e.g. enterprise intranets or large ITS systems) no 

single ontology can describe all the information. The vast majority of inter/intranet information is usually 

unstructured, informally interlinked and lacks formal semantics. These facts hinder agent-based activities over 

such a network and therefore, semantic agents have an edge and tend to be specialised for particular domains; 

i.e. those domains providing well-structured well-specified ontologies (Anon., 2009). Semantic web services 

provide an ideal medium for semantic agents’ communication in form of service interface between agents 

using different level of ontologies.  

 

In this research, the “control on demand” ability in agents design was one of the main motivations for using 

Agent-based Controls. The ITS@CU platform utilises Control Agents hosted on traffic controller devices and 

systems. These Agent-based controls extends the concept of Agents and fixed controls to another level by 

dynamically adding additional functionalities and decision making capabilities to the traffic 

systems/controllers. Control Agent can govern the operations of geographically distributed traffic 

controllers/systems over a network, and they also interact with other Agents on behalf of traffic Controllers 

in response to traffic situations and events.  

Furthermore, the concept of semantic agents was combined with the Agent-based control concept in a novel 

way and hence in this research they are referred to as “Semantic Agent-based Controls”. The service agents are 

designed to integrate and communicate with semantic web services using the ontologies embedded within the 

service description. In this way the agents can find suitable services and interact with other agents in a more 

dynamic manner using flexible ontologies. The design details are covered in chapter 4, 5 and 6, and the 

implementation is covered in chapter 7. 
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2.5. Service Oriented Architecture and Grid computing 

2.5.1. SOA Overview  

The development of large ITS based systems are a highly complex process and require good software design, 

development and management processes. An efficient design and architecture plays a vital role in the success 

of such systems therefore adopting the right software architecture and programming paradigm becomes 

crucial. There are several software architectures such as:  

 Blackboard 

 Client-Server 

 Distributed computing 

 Front-end and back-end 

 Monolithic application 

 Peer-to-peer (P2P) 

 Component Oriented Architecture 

 Service Oriented Architecture 

 N-Tier model 

Most systems utilise multiple architectures, especially distributed systems which involve multiple sub-systems 

or components. Each architecture model has its limitation and benefits, and are suitable accordingly for 

example the Client-Server model is a good approach where multiple client applications require access to a 

central server but P2P does not necessarily require any centralised server. Individual components/sub-systems 

can have a completely different architecture relevant to its requirements; however, a system on the whole must 

have an architecture design which allows all the components and sub-systems to work in an efficient and 

integrated manner. Here SOA has an edge over all other architectures due to its interoperability and services 

based interfacing capabilities (Lorenz, 2006; Oracle, 2010).   

SOA represents a system architecture which is based on a collection of services integrated in a loosely coupled 

manner. SOA is really about designing and building systems using heterogeneous network addressable 

software components in the form of Services (Lee et al., 2006). It is an architecture comprising components 

and interconnections that stress interoperability and location transparency (Strahle et al., 2007).  

A general misconception is that SOA is just the use Web Services for integrating systems; SOA may be realised 

via Web services but Web services are not necessarily required to implement SOA (MSDN, 2007).  
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Properties of SOA 

Use-based published contract: Contract design between components is a critical activity in SOA and it 

provides a published interface expressing the capabilities and purpose of the service.  

Network Addressable Interface: A service must have a network addressable and identifiable interface and 

able to be invoked across a network.  

Payload Format: The format of the data that is transmitted from a client to a service has to be commonly 

understood. For that reason, XML is the most popular format for data exchange in a SOA context.   

Transport Type: The transport type or the protocol that is used to transfer data from client to service is 

usually HTTP/S and it is also used with web services to transfer service requests. The benefit of HTTP/S is 

that requests to a service are not blocked by the majority of firewalls hence it is considered as the most 

interoperable protocol. However, other types of transport types can be used for service invocation.  

Interoperability: SOA stresses better interoperability and services must provide an interface that can be 

accessed across the network using a payload format and protocol that is understood by all of the potential 

clients of the service.  

Discovery and Lookup: A service must be dynamically discoverable for the clients using directories which 

store information about the service. The directory information includes the service location, service operations 

and how these operations are invoked including the parameters and types that must be passed. 

 

Main benefits of a SOA   

The main benefits of a Service-Oriented Architecture are listed below:  

 Reusable components or services 

 Code mobility and rapid development of applications  

 Standardised process & technologies 

 Better scalability and transition to a responsive, flexible & extensible infrastructure 

 More security and high availability 

 Support for multiple client types  

 Better maintainability 

 Better testing hence less defects 

 Ability to support cross functional and cross divisional processes 

 Single implementation & enterprise-view of business services 
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 Service granularity recognised by a business user 

 Cost reduction in longer term 

 

2.5.2. SOA principles and architecture  

SOA is based on various principles which provide a foundation for designing and developing SOA based 

systems and platforms. The following are some of the core principles:  

 Compliance to standards (enterprise & industry)  

 Loose coupling of services to minimise dependencies  

 Service autonomy where services have control over the logic they encapsulate  

 Service abstraction where services hide the internal functions/logic  

 Service contracts are agreed and defined according the service-description 

 Access disparate data via a single consistent access point 

 Separation of business logic from the underlying technology  

 Services are reusable and logic is divided into basic function services. Services are effective 

composition participants and multiple services can be used to provide composite functionalities    

 Support cross-functional processes and service granularity  

 Dynamic, discoverable, metadata-driven processes & services 

Service Oriented design and architecture provides integration on a much higher level as shown in Figure 2.7. 

Object oriented design focuses on class level granularity and is tightly coupled to the system. In contrast, the 

SOA paradigm attempts to promote flexibility and agility through loose coupling.  

 

Figure 2.7: The layers of design (source adapted from: (Lorenz, 2006)) 
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SOA services have two key roles: A service consumer and a service provider. The consumer client application invokes the 

services by sending request messages and then processes the response messages.  

Service Consumer

Service Description

Service Broker

(optional)

Service Provider

contains/describes

 uses  provides 

 uses 

 

Figure 2.8: Service roles 

The key terms that define the service in SOA are: 

Service Contract: It specifies the rules of engagement between consumers and provider of the service. It is driven 

by business needs and specifies the policies that should be enforced and monitored. 

Service Interface: It provides the consumers of a service to access its functionality according to its contract. A 

service implementation may have multiple interfaces or an interface can apply to multiple implementations.  

Service Implementation: The implementation is the actual functionality used by the service, and may be 

accomplished using any technology. 

Usage agreement: It is a contract between a service and its consumer derived from the overall contract to define 

the performance provided by the service and the level of usage. 

A service consists of one implementation of one contract with one or more interfaces; and one or more usage 

agreements (Oracle, 2010)  

 

 

 

 

 

 

 

Figure 2.9: Service Definition 
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SOA Reference Architecture 

SOA based architecture design is a complex process, and consistency, standardisation and best practices are 

critical. Every implementation of SOA should have a customised “Reference Architecture” to provide a 

framework that helps and guides the overall SOA implementation. Reference Architecture is the architectural 

blueprint describing all the services, its categories, support model, technical aspects, integration and underlying 

infrastructure and relationship with existing architectures. It plays a crucial role in SOA based system/solution 

implementations and serves as a communication vehicle, compliance tool, vision/roadmap and authoritative 

definition of SOA for the implementing organisation and stakeholders (developers, suppliers, integration 

partners etc.). A Reference Architecture must be based on well-defined SOA principles and best practices 

(Oracle, 2010).  

SOA architecture is a layered approach to system design and integration. The following diagram outlines the 

basic layers used for SOA architecture. 

Presentation Layer and Service Consumers 

Integration A
rchitecture 

(S
ervice Infrastructure) 

S
ecurity, Q

oS
, G

overnance,  
M

anagem
ent and M

onitoring 

Business Process Choreography (Composite applications) 

Services 

Underlying business components 

Data and operational systems 

 Figure 2.10: The layers of a SOA 

Access or presentation layer: This layer provides access to service consumers such as Web Apps, Portals or 

client applications using browsers, PDA/Mobile etc. 

Business process choreography layer:  In this layer, services are bundled into process flows through 

orchestration or choreography, which act together as a single or composite application.  

Services layer: Comprises of core services that are part of the entire SOA infrastructure. These services can 

be internal or exposed to external application or services. The services can be discovered dynamically and then 

invoked or choreographed into a composite service. Usually a Service Bus is used to provide all the service 

access, usage and orchestration features. Services are interpreted based on their service description and the 

term of use is based on the policy and service contracts. These services interact with other services and 

underlying business components and data access components. These services can exist in isolation or as a 

composite service. 
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Business components layer: Consists of components that are responsible for realising functionality and 

maintaining the Quality of Service (QoS) of the services. This layer typically uses container based technologies 

to implement the workload management, identity and authentication, high availability and load balancing. 

Data and Operational systems layer: This consists of access/integration layer to databases, files and existing 

custom built or legacy applications. 

Additionally, various supporting layers form part of a SOA infrastructure such as Integration layer, QoS, Service 

enablement, management/BAM, Governance and Security. Integration architecture generally refers to the 

Enterprise Service Bus (ESB) that supports and provides all the service access, routing, mediation, and 

translation of services, components, and their work flows. The services must be monitored and managed for 

quality of service and adherence to the non-functional requirements of the service (Arsanjani, 2004). 

 

2.5.3. SOA related technologies 

SOA is a technology independent architecture and the implementation can be accomplished using a wide 

range of technologies. Some of the established technologies used for SOA implementation include:  

 Simple Object Access Protocol(SOAP) based Web Services 

 Representational State Transfer (REST) or RESTful Web Service  

 Microsoft Windows Communication Foundation (WCF) 

Some older technologies can be also used in SOA implementation such as Remote Procedure Call (RPC), 

Remote Method Invocation, .NET Remoting, Distributed Component Object Model (DCOM)/DCOM+, 

and Common Object Request Broker Architecture (CORBA). 

There are various vendors in the software industry which provide different development tools and 

technologies for SOA based implementation. Some of the leading providers’ offerings include: 

 Oracle SOA Suite 11g:  It is an integrated suite of products to design, assemble, deploy and manage 

adaptable SOA based applications. It is based on industry standards targeted for corporate and large 

scale SOA and grid computing infrastructure systems. It includes products such as Oracle 

JDeveloper, Oracle Business Rules, Oracle BPEL Process Manager, Oracle Business-to-Business 

Integration, Oracle Business Activity Monitoring, Oracle Service Bus and Oracle Complex Event 

Processing. 
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 IBM SOA Smart and SOA foundation: It is a set of integrated software products and based on 

open standards and SOA’s best practices and patterns. It is scalable, interoperable and allows a 

modular development approach. The software supports each stage of the SOA life cycle/stages i.e. 

model, assemble, deploy and manage. Some of the key products include WebSphere Business 

Modeler,  Rational Software Architect, WebSphere Integration Developer, Rational Application 

Developer, WebSphere Portlet Factory, Rational Tester for SOA Quality, WebSphere DataPower 

SOA Appliances, WebSphere Process Server, WebSphere ESB, WebSphere Message Broker, 

WebSphere Portal, WebSphere Business Services Fabric, WebSphere MQ, Tivoli Access Manager, 

Tivoli Composite Application Manager for SOA, and  WebSphere Service Registry and Repository. 

 Other vendors’ offerings include Microsoft Connected Services Framework (MCSF) and SAP 

Enterprise Services Architecture. 

 
 

2.5.4.  Critical analysis and drawbacks of SOA  

Service Oriented Architecture is not always the best architecture for all type of systems because an optimal 

utilisation of SOA requires additional development and design attempts and supporting infrastructure which 

escalates the implementation costs (Exforsys Inc, 2007; Daigneau, 2011). Applications in homogenous 

environments, standalone, non-distributed, short lived and limited scope applications are not usually suitable 

for SOA (Altman, 2008; Lorenz, 2006; Exforsys Inc, 2007).  

The governance of large SOA based systems is not an easy process and requires dedicated resources for 

service auditing, monitoring, versioning and change management problems associated with a large number of 

services (Oracle, 2010; Erl et al., 2012). 

SOA has limited standards and every reference architecture of a SOA based system implementation is vastly 

different (Oracle, 2010; Daigneau, 2011). Although standardisation for SOA security, integration and 

management is progressing, there is still a long way to go before a coherent set of interoperability standards 

fully evolves (Exforsys Inc, 2007; Daigneau, 2011). 

SOA is essentially based on a network centric approach i.e. it requires internet or intranet based network 

connectivity. This means that in highly distributed ITS environments where services and host systems are 

geographically dispersed, network latency issues are bound to have a negative impact on performance, 

especially in high network traffic or low bandwidth environments e.g. mobile/wireless communication 

(Schwab, 2007; Richardson & Ruby, 2007; Erl et al., 2012).  SOA services lack proactivity features and there 
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are no adequate push-subscribe mechanisms without polling i.e. consumer clients (applications/services) 

usually invoke a service request and the service then responds.  

Although SOA is not limited to web services (MSDN, 2007), web service technology forms a major building 

block of most SOA implementations. Web Services has its limitations and fails to achieve the goals of 

automation and interoperability because they require a well-defined service interface involving humans to write 

the description (McIlraith et al., 2001). WSDL specifies the functionality of the service only at a syntactic level 

allowing these descriptions to be automatically parsed and invoked by machines, however the interpretation of 

their meaning is still largely human (Martin et al., 2004).  

SOA web services have additional overheads in terms of message payload, message processing, and 

connection setup and termination steps (Erl et al., 2012). SOA design process is complex and requires a 

considerable amount of experience in choosing appropriate platforms/technologies, types of web services 

(SOAP, RESTful etc.), payload formats (XML, JSON, Fast Infoset etc.), payload processing/parsing 

techniques and compression techniques (GZIP, SOAP extensions etc.). Most importantly the design should 

focus on reducing the number of service calls and effective service composition, orchestration, connection 

pooling and session management. Inappropriate choices often lead to inefficient SOA implementation, failure 

and cost implications (Lorenz, 2006; Daigneau, 2011).  

The use of agents especially MAS in SOA is a relatively less explored area (Trullàs-Ledesma & Ribas-Xirgo, 

2009; Goncalves et al., 2009) hence it poses its own challenges due to the lack of agent tools and support in 

SOA. Using Agents can add more complexity to services invocation especially for asynchronous service calls 

resulting in inconsistent service flows and difficult to track service activities. The use of agents across service 

bus and the self-organisation of service flows (orchestration and composition) is also challenging with agents. 

Agents can fight over the service access leading to conflicts which can result in a loss of service response or 

delays (Ribeiro et al., 2008; Ricci et al., 2007). All such issues must be considered and addressed when 

implementing SOA based systems using agents. The next section further discusses the adoption of SOA for 

the agent-based ITS platform in this research.  

2.5.5.  SOA in the context of this research    

Agents in geographically distributed and heterogeneous environments (such as ITS) have implementation 

difficulties due to interoperability among agents, and therefore require a unified software platform and 

standard implementation protocols (Dasheng, 2010; Ricci, 2007). SOA is based on a unified standard, and it is 

platform-independent, loosely coupled and provides an ease of integration which enables system 

interoperability and computing resources reuse. Web services can also embed agents or use agents to send and 

receive messages, while the services themselves are the resources characterised by the functionality it provides 

(Luck & McBurney, 2008). The combination of MAS and SOA is a promising approach to address the 
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interoperability, unified communication and other such complexity issues associated with modern ITS systems. 

SOA provides an ideal underlying framework to implement MAS in distributed and heterogeneous ITS 

environments (Dasheng, 2010; Tapia, 2008; Booth et al, 2004).  

The overall architecture of the platform in this research is based on SOA which provided seamless integration 

required for distributed traffic control systems and Agents from multiple domains (Wang et al., 2010). A 

customised “Reference Architecture” was designed as a framework to help and guide the overall SOA 

implementation of the platform. The Agent communication layer was developed using a combination of 

SOAP and REST services specifically to allow multi-agent communication in the SOA environment.  

Additionally, the platform supports ontology based semantic web services which are not limited by the 

requirement of a well-defined service interface of conventional web services. A WSDL specifies the 

functionality of the service at a syntactic level, allowing these descriptions to be automatically parsed and 

invoked by machines. However the interpretation of their meaning is still human based. Semantic Web 

services address the limitations of current Web service technology by augmenting the service descriptions 

(through the addition of ontologies/semantic metadata to the information resources) with a semantic layer in 

order to achieve automatic discovery, composition, monitoring and execution (Li et al., 2005; Sabou, 2006; 

Altova, 2007). Chapter 7, sections 7.2 and 7.3 discuss the implementation details of the SOA reference model and 

the Agent messaging and communication layer in this research. 

 

2.5.6. Grid computing  

Grid is a distributed system of networked computers (with no or limited central control) cooperating and 

sharing resources to perform tasks more efficiently, and to minimise the processing idle time. Grid technology 

also provides an ability to store, share and analyse large volumes of data, improves resource utilisation, 

efficient access to information which can improve decision making, productivity, collaboration and flexibility 

of the overall system. Grid computing can be divided into three stages based on their sizes: 

Cluster Grids: Consist of several systems connected together (forming a cluster), providing a single point of 

access to users, and perform shared tasks, and share the workload and resources. Such grids are typically 

owned and used by a small number of users e.g. a project or department level teams.  

Campus/Enterprise Grids: Consist of multiple cluster grids to achieve computational outcome on a wider 

scale. Mainly used by large organisations with distributed networks dispersed in different locations to 

cooperatively share the computing resources across the enterprise.  
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Global Grids: This level includes the geographically dispersed grids of enterprise and cluster levels combined 

to form larger global grids. Primarily designed to support and address the needs of multiple sites and 

organisations sharing resources and workload. The participating grids agree upon global usage policies and 

protocols, however not necessarily the same implementation.  

Semantic Grid 

This is a grid computing approach using the semantic data model to describe the information, resources and 

services. It is based on the concept of semantic web, and can be defined as an extension of the current grid 

approach where the services have well defined meaning in form of ontologies. It enables easier discovery and 

automatic join up of resources, which helps bringing the resources together much more efficiently over the 

distributed network to form virtual organisations.  

 

Grid computing in ITS 

The problems of large scale ITS based infrastructure includes:  

 Integration of heterogeneous data,  

 Management of dynamic service flow,  

 Cooperation among different domains, and  

 Store and share massive data among different systems and departments 

Grid computing offers a great opportunity to build a synthetic platform to address these issues. It can support 

traffic data semantisation, resource sharing, ITS subsystem cooperation, and distributed computing to connect 

all kinds of ITS systems and resources (Wu et al. 2005). Therefore, Grid based distributed architectures are 

ideal in an ITS context, to share the load and resources and minimise the role of central server systems.  

This research utilises the Grid based approach in the ITS@CU platform by dividing traffic network 

infrastructure/systems into smaller areas (grids), which are controlled by autonomous subsystems (local 

controllers). The local controller governs the ITS elements within its grid area, therefore reducing the load on 

the central server. It also increases the responsiveness of the system by allowing local controllers to make 

decisions independently at the local/grid level and share resource utilisation. Additionally, a semantic layer is 

added to the grid approach allowing the services, agent controls and traffic controls to communicate at a cross 

domain level.       
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2.6. Review of  the Related Work  

This section reviews some of the relevant research work with similarities either at the approach or 

component level. In addition, it reviews available technologies, platforms and approaches at the time the 

research was carried out in order to justify the approach adopted for ITS@CU. There are currently no 

platforms available which, as a whole, can be directly compared with the ITS@CU implementation 

approach due to the unique functionality and combination of technologies/concepts employed in the 

approach.    

2.6.1. Related research platforms and systems 

Over the years, various research initiatives and approaches have been adopted for the efficient 

management of traffic such as distributed systems, Multi-Agent networks, artificial intelligence, artificial 

neural network, Grid Computing and Telematics. The automation of the ITS infrastructure using Agent-

based Controls, and integration using semantic services and SOA principles have to date received very 

limited attention (Dasheng et al., 2010).  

The following table outlines some of the platforms and systems, and its relevance to this research:  

System/ 

platform  

Description and analysis  

DATAGRID II   

(Wu et al., 

2005) 

It is a semantic ITS platform and uses the concept of grid technology and allows 

resources sharing and multi-platform service flow and cooperation.  

This system has some similarities with the ITS@CU platform as it also has a 

layered architecture approach and the components of the systems are grouped 

into different layers. However it lacks the concept of SOA and Agent based 

controls which are the key differentiators.   

FUSION@ 

(Tapia et al., 

2008) 

FUSION stands for Flexible User and ServIces Oriented multi-ageNt 

Architecture. It is a multi-agent architecture which facilitates the integration of 

distributed services and applications to optimise the development of agent 

systems. The core of the architecture is a group of deliberative agents acting as 

controllers and administrators for all applications and services. The 

functionalities of the agents are not inside their structure, but modelled as 

services (Tapia et al., 2008). This system approached the SOA based 
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communication strategy where applications and services can communicate in a 

distributed way independent of a specific platform. 

The system has some similarities with the way ITS@CU platform Agents are 

designed. However, the focus of this system is on de-centralisation as compared 

to the hybrid approach in ITS@CU. Also the services in FUSION@ are 

atomic/single service which complicates the use of multiple services as 

composite workflows i.e. a client application has to perform the composition of 

multiple services which adds processing overhead. FUSION@ supports a 

limited number of Agents i.e. controllers and coordinators. Currently, the 

system is in its early research stages and very limited test results have been 

published.  

MADARP 

(Cubillos et al., 

2005) 

MADARP, Multi-Agent Architecture for Passenger Transportation Systems, is 

a multi-agent architecture for passenger transportation systems. The 

architecture provides agents that implement basic planning and control 

functionality to process transport requests coming from different users.  

It provides a set of base agents that perform the basic interface, planning and 

support services for managing different types of transportation requests by 

using a heterogeneous fleet. The agents allow adapting the architecture to 

different planning models by integrating vehicles and users in a pervasive way. 

It also includes three planning models implemented using the architecture. It 

provides an interesting approach to the use of Agent based technologies in ITS 

context.  

MADRAP has some similarities to this research in Agents organisation and 

some communication aspect; however its focus is mainly Passenger transport.    

IITS UCSD  

(Trivedi, 2001)  

ITS and Telematics research initiative at University of California at San Diego. 

It is an incident detection system and uses the basic concepts of Agents. It uses 

image processing techniques for analysing incident situations. The research also 

introduces mobile platforms in support of various spatial search or other 

interactions desired by a remotely stationed human in this environment.   

The mobile platform and the use of wireless based sensory controls offers some 

similarities in relation to this research, however the wireless communication 

technologies used are now out-dated and do not incorporate ad-hoc networking 

features as compared to ITS@CU. 



2.  Background & Literature Review 

 

72 

 

 

WAIMSS  

(Ozbay & 

Kachroo, 1999) 

Wide-Area Incident Management Support System (WAIMSS) is an 

incident management system implemented mainly in Java. It uses various 

incident prediction algorithms, rules and models. It includes GIS capabilities 

and various research studies have been carried out on this system.  

The rules in WAIMSS for detecting traffic abnormalities has a similar approach 

to this research, however the main difference is that ITS@CU uses Control 

Agents to analyse and select appropriate rules from a rule-set data dynamically 

in response to different traffic situations (detailed in chapter 6).   

RHODES 

(Mirchandani & 

Wang, 2005) 

RHODES (Real-Time Hierarchical Optimized Distributed Effective System) is 

an Advanced Traffic Management Systems (ATM) for intelligent transportation 

systems. RHODES takes sensor-based traffic data as input and outputs traffic 

signal timings to optimally control traffic flow.  

RHODES also uses a similar concept of a Control Algorithm which allows for 

controlling multiple controls over the network. RHODES limits the control 

algorithm to the intersection level (traffic control devices level), however 

ITS@CU uses Control Agents at traffic Controllers and Grid level. RHODES 

uses fixed control algorithms only for prediction and estimation of traffic flow 

but ITS@CU uses a dynamic approach and adds domain semantics allowing 

Control Agents to expand its functionalities.       

SOA based 

VANET  

(Goncalves et 

al., 2009) 

This is a SOA based framework for Vehicle to Vehicle communication. It 

couples the SOA concepts with Vehicular Ad-hoc NETworks (VANET), where 

each vehicle communicates with other vehicles using a services layer. It forms a 

mesh of ad-hoc networked vehicles within a limited range and each vehicle 

becomes a node. These nodes provide (publish) their functionalities in the form 

of services for other nodes to use (consume).  

The simulation framework has some similarities to the V2V SOA coupling in 

ITS@CU. The framework is limited to V2V communication and relies on 

mobile wireless (GPRS) technologies and GPS location data to form ad-hoc 

network between vehicles within a set range. In comparison, ITS@CU uses 

Bluetooth and IrDA for ad-hoc network formation which means it is not 

dependent on mobile network (3G/GPRS) coverage or GPS to form an ad-hoc 

network between vehicles within the range of each other. 

Table 2.5: Related ITS research systems 
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2.6.2. Relevant Agent oriented approaches and studies  

Various Agent oriented approaches have been applied in recent years mainly to traffic modelling and 

simulation, dynamic routing and management of intelligent traffic control and congestion.  

The following table outlines some of the Agent-based approaches and their applications:  

Approach/ 

Systems  

Description and analysis  

aDAPTS 

 

 (Wang, 2005) 

 

 

aDAPTS is  an Agent based networked traffic management system. It proposes 

the use of Agent-based controls which decompose a sophisticated control 

algorithm into task oriented agents distributed over a network. The ability of 

dynamically deploying and replacing control agents as needed allows the network 

to operate in a control on demand manner to adapt to different control scenarios. 

According to Wang (2005), the system architecture employs a three level 

hierarchical architecture. The highest level performs reasoning and planning of 

task sequences for control agents; the middle level dispatches and coordinates 

control agents; and the lowest level hosts and runs control agents. The control 

agents are represented by mobile agents that could migrate from remote traffic 

control centres to field traffic devices or from one field device to another. 

This is one of the very few research approaches which uses Agent-based controls 

in ITS. As compare to aDAPTS, the ITS@CU platform adds a semantic layer to 

the Agent-based controls and the agent can split its functionality on different 

hosts which gives it an advantage especially in limited resource hosts. Another 

key differentiator is that the ITS@CU platform is based on SOA principles as 

compared to aDAPTS architecture which is tightly coupled and difficult to 

integrate.  
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TRACK-R 

(Garcia-Serrano & 

Vioque, 2003) 

 

Traffic Agent City for Knowledge-based Recommendation (TRACK-R) is a 

roadway traffic detection and management system. It is compliant with the IEEE 

Foundation for Intelligent Physical Agents (FIPA) standards. 

TRACK-R comprises of agents responsible for a geographical area and they 

provide traffic route recommendations for humans or other agents. The agents in 

these two systems are implemented using the JADE agent platform.  

The ITS@CU platform also includes Service Agents to provide route guidance 

however the approach is different. The route guidance agents work with control 

agents and can be configured to provide route diversion information which can 

be used by multiple control agents to adapt new routes, for example change the 

green time on traffic signals and dynamic diversion messages on the affected 

route to inform approaching vehicles. 

Mobile-C 

(Chen et al., 2006) 

Mobile-C is an IEEE FIPA standard compliant multi-agent platform. It supports 

both mobile and stationary agents in networked and embedded systems. It is 

based on hybrid control architecture and uses C/C++. Mobile is an academic 

level platform for agent development. As compared to the ITS@CU platform it 

is limited and does not support SOA and other complex requirements of this 

research such as .NET, SQL Server and mobile application integration support.  

TRYSA2 and 

InTRYS  

(Hernandez et al., 

2002) 

InTRYS and TRYSA2 are agent-based intelligent traffic management systems. 

InTRYS achieves agent coordination based on a traditional centralised 

mechanism, whereas TRYSA2 employs decentralised coordination. The 

decentralised architecture has advantages in terms of synchronisation, reusability, 

and scalability. However, regarding the complexity of the coordination task, the 

InTRYS approach is better than the decentralised system TRYSA2. This is 

because the TRYSA2 strategy may apply an exhaustive search for plans to be 

selected by the involved agents. 

ITS@CU uses a hybrid approach as the above study shows both centralisation 

and decentralisation have different advantages and weaknesses. A fully centralised 

approach increases delays in decision making as the central control requires 

communication with all the controls involved to make a decision. Conversely 

fully decentralising the system to agent and grid control level requires devices 

(e.g. traffic light) with more processing power and memory. The ITS@CU 

platform follows a hybrid approach where the central system arbitrates on a 

higher level and provides essential services whilst Agent-based controls perform 
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tasks in association and cooperation with each other (and utilising shared 

resources) for local level decision making and operations. 

CARTESIUS 

(Logi & Ritchie, 

2002) 

This is an Inter-jurisdictional traffic congestion management system for 

motorway/freeway networks. It is composed of two decision support agents 1) 

A motorway/freeway agent which analyses congestion and 2) An arterial agent 

which generates appropriate responses to the traffic situations. Both agents 

interact in real-time to support incident management operations and interact 

with human operators to determine control recommendations in response to 

incidents. The agents continuously receive real-time traffic, incident detection 

and control status data, and analyse the data for congestion or a potential 

incident. In the event of an incident, it formulates solution recommendations to 

deal with the incidents. These recommendations appear on the user interface of 

the application to allow operators to agree and select a solution. 

ITS@CU uses a similar approach to monitor the traffic flow and Agents interact 

with other Agents in a similar fashion. However, the agents involved in 

ITS@CU have a different design structure and organisation hierarchy with more 

functionalities and services which provides an advantage in dealing complex 

scenarios.     

(Roozemond, 

2001) 

 

Roozemond suggested a Cooperative Traffic Signals approach using an agent-

based urban intersection control system that reacts to changes in the traffic 

environment and adapts itself to changing environments based on internal rules. 

It comprises various agents such as Intersection Traffic Signalling Agents 

(ITSAs), Road Segment Agents (RSAs), and some authority agents. All the 

agents collaborate with each other to manage the intersection controls. 

The behaviour of traffic lights adaptation using Agents has some resemblance to 

the approach in ITS@CU however it lacks the ability to share the same data 

between multiple intersections such that each intersection can get an accurate 

picture of the current traffic situation.  

(Srinivasan & 

Choy, 2006) 

This is a multi-Agent system comprising of different levels of Agents; the lowest 

layer uses an Intersection Controller Agents (ICAs); the middle layer uses a 

Zone Controller Agents (ZCAs); and the highest layer uses a Regional 

Controller Agents (RCAs). ZCA controls several pre-assigned ICAs, and one 

RCA controls all of the ZCAs. The implementation of agents is based on neural 
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network and fuzzy logic theories. It allows agents to dynamically adapt to the 

changing environment using reinforcement learning, weight adjustment and 

dynamic update of fuzzy relations using evolutionary algorithms. The 

architecture has some similarities in terms of agent organisation but the design 

approach is completely different.  

Platoons 

(Clement & 

Taylor, 2006) 

Clement and Taylor focused on creating platoons of vehicles in order to 

minimise the effects of stop-and-go driving using a model called “Simple Platoon 

Advancement" (SPA).  ITS@CU does not use platooning algorithms however it 

attempts to automate intersections by adapting traffic lights/signals using Traffic 

Light Controls Agents. 

(Balan & Luke, 

2006)  

 

This is an intersection control method using a history based approach to 

maximise fairness (all vehicles experience similar delays) as opposed to efficiency 

(the average vehicle experiences short delays). Vehicles which have historically 

experienced long delays should be more likely to experience shorter delays at 

subsequent intersections. In addition to being a multi-intersection approach, this 

method uses a marketplace model involving a system of credits that can be given 

and taken in exchange for shorter and longer delays, respectively. Coordination 

at individual intersections is still done with traditional traffic lights, the timings of 

which are part of the mechanism. Interestingly, the fairness approach actually 

yields results that are also reasonably efficient.  

The concept of system credits provided an efficient method to moderately 

distribute the traffic load therefore it was also explored for the ITS@CU 

platform and can be configured for Agents to use system credits for routes 

affected by diversions. So if any given route is affected for a longer time then the 

system credits can be increased for the route, which are configurable values (set 

by the administrators).   

(Balbo & Pinson, 

2005) 

This is a multi-agent based Distributed Decision Support System for urban 

public transportation system management. It introduces an interaction model 

called Environment aS Active Communication support (ESAC) which allows 

agent interaction by sending and receiving messages through logical filters of 

emission, reception, and interception. The communication approach shares 

similar methods with ITS@CU for filtering messages for example ontology 

selection process by control agents during communication with Service Agents. 

Table 2.6: Relevant Agent Oriented approaches and studies  
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2.6.3. Related commercial traffic management systems  

The author worked with the UTMC Control Room, Coventry City Council responsible for managing the 

traffic of Coventry City and surrounding areas. They use SCOOT and related add-on systems for 

managing traffic control systems. They provided an extensive range of real historical data for different 

routes of Coventry City for the purpose this research. A summary report of the collaboration work is 

covered in “Appendix L”.   

There are various other commercial systems for managing traffic control systems however SCOOT and 

associated add-on systems are widely used. The following table outlines these systems and their relation 

to the research: 

System  Description 

SCOOT  SCOOT, the Split, Cycle, and Offset Optimisation Technique, is an urban 

adaptive Traffic Control system for optimising traffic signal timings in a 

network to minimise delays and stops. SCOOT is an on-line adaptive traffic 

control system that can react to changes in traffic flow, give priority to public 

vehicles such as buses, and estimates vehicle emissions. While  SCOOT has 

been shown to offer a better performance  in reducing traffic delays by an 

average of 20% over systems like TRANSYT, SCOOT requires reliable traffic 

data in order to adapt, and thus may be slow in its reaction to changes in 

traffic flow (Siemens, 1999). 

SCOOT is widely used across the world and therefore in this research the 

author has studied SCOOT and its associated systems such as ASTRID and 

INGRID. As part of this process, the author used the data provided by 

Coventry City Council Communication Centre to analyse traffic trends on 

some of the routes in Coventry City centre. The data was also used in 

simulation studies and imported into the ITS@CU platform.  

ASTRID ASTRID, Automatic SCOOT Traffic Information Database, is a database 

designed to collect information from a SCOOT traffic control system, or 

other source of time-varying traffic data. ASTRID automatically collects, 

stores and processes traffic information (such as delays, flows and congestion) 

used by the SCOOT model in the optimisation process. ASTRID is generally 

used for display or analysis of the SCOOT data by engineers and researchers. 

If the data is converted into an appropriate format, ASTRID can also process 
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data from sources other than SCOOT. (Siemens, 1999).  

The author used mainly ASTRID system for SCOOTS’s historical data 

extraction and detailed analysis of selected traffic corridors to and from 

Coventry City Centre.  

INGRID INGRID is a real-time traffic incident detection system using information 

from SCOOT. Once an incident has been detected, information on the 

location and severity of the incident can be passed to the traffic operator. 

INGRID uses an algorithm to detect traffic incidents by examining the 

current traffic data for sudden changes in detector flow and detector 

occupancy (SCOOT-UTC, n.d.).  

In this research, INGRID algorithms were also studied to develop the Control 

Agents incident detection capabilities. INGRID uses information from 

connected detectors on roads and detects incident location by analysing 

detectors at a point where an upstream detector shows a queue of vehicles (i.e. 

occupancy greater or flow lower than the normal smooth value over recent 

minutes) and a downstream detector shows the opposite level of flow and 

occupancy. This approach was adopted in the ITS@CU platform and the 

Agents collect vehicle count sensor information in a similar fashion and then 

report the occupancy and flow abnormalities to an operational Agent for 

further analysis and actions to restore traffic flow. The evaluation chapter 8 

presents a congestion detection study detailing this approach. 

Table 2.7: Related commercial traffic management systems  

 

Remark: A further review of the relevant simulation systems is included in “Appendix C, section 7” and 

relevant Agent tools and technologies are covered in “Appendix D, section 2”. 
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2.7. Conclusion  

This chapter has reviewed the theoretical and technological aspects of various areas relevant to this 

research. It has been discussed that an approach using a combination of multi-agent, SOA and 

semantic web services provides an alternative approach to implement cooperative and efficient ITS 

systems with the capability to self-organise by responding to emergent traffic situations. Agents can 

be used for controlling the distributed traffic systems/devices over the network; however these 

systems and controls are usually multi-domain and technologically diverse. SOA provides ideal 

underlying architectural principles for seamless integration and communication between these 

agent-enabled traffic controls/systems. Furthermore, the SOA enabled agent communication can 

be enhanced by using semantic web services concepts allowing easier service discovery. 

The final part of the chapter presented a review of related work, researches, studies and commercial 

systems which supported the need for an alternative approach and justified the investigation into 

semantic agent-based controls. The lack of ITS platform availability, especially on a commercial 

level, indicated the need for the development of a new platform to achieve the main research 

objectives.    
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Chapter 3 
 

 

3. Road Network Model 
Development 

 

The previous chapter reviewed the theoretical and technological aspects of various areas 

relevant to this research such as ITS, Agent oriented technologies, Semantic Agent based 

Controls and SOA. It also presented the review of various research systems and studies 

related to this research. 

This chapter is focused on a road network model which is adapted and used as a 

foundation for the design of the Agent-based Controls and the ITS@CU platform 

components in this research. The chapter has the following sections: 

 The first section provides an overview of the model and states why a new road 

network model was required 

 The second and third sections outlines the elements of a typical road network and 

their mapping strategies 

 The fourth section describes the road network model, attributes of its elements and 

their relationships.      
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3.1. Overview 

Several traffic/road network models for ITS have been developed in the past few years ranging from a generic 

traffic flow models to road network classification models to infrastructure specific models. During the 

research, the author assessed various existing models both of microscopic and macroscopic type (discussed in 

chapter 2); however these models were not directly applicable to the agent-based controls approach in the 

ITS@CU platform and its design specification. Therefore, a traffic/road network model was developed 

specifically adapted for distributed agent-based controls and to efficiently utilise semantic services. This model 

is based on SCOOT (Siemens Mobility, 2009), however with the following additions: 

 Support for the grid-based traffic network  

 Support for the Agent-based Controls  

 Simplified data representation of the model elements and implementation on the database level to 

support scalability of the platform (important for SOA) 

Traffic networks are of different types such as road network, rail network, waterway network and air traffic 

network. This model is specific to a road based network.  

 

3.2. Road network elements 

A typical road network consists of the following main elements: 

Road: A road is the main element of the traffic network, which forms a link or path connecting two junctions 

or intersections.  There are different types of roads such as one/two way, single/dual carriageway, motorway, 

slip road and so on. A road has various attributes and properties such as name, type, number of lanes, length, 

speed limits and location. 

Junction: A Junction is a traffic element which binds roads and represents a physical connection between its 

adjoining roads.  A junction has different types such as box junction, T junction, roundabouts, and crossings.  

Junctions always have some form of traffic flow control to avoid accidents e.g. traffic lights, signs or road 

marking.  

Traffic areas and points: The traffic points or areas refer to places on the road network designated for traffic 

related purposes e.g. bus stops, parking on road side, tolls, services. 

Beside the aforementioned main elements, the road network also contains the following infrastructure controls: 
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Traffic flow controls: The flow of traffic is always controlled by various flow control elements such as traffic 

lights, road/lane marking (give way, zebra crossing, no stop, turns) and signs (speed, stop, prohibited vehicle 

type, prohibited turns and one way). The flow controls are mainly located at intersections or junctions to avoid 

the incidents and manage the traffic stream.    

Traffic Information: On road information and warning for drivers such as signposts, signs, road markings 

and variable message display boards.  

Traffic monitoring and data collection: Devices and systems which monitor the traffic such as CCTV, 

camera capture (for speed and signal break), inductive loop sensors, toll collection, weather sensors and so on.  

 

3.3. Road network mapping 

Another aspect of road networks is mapping and routing, and the traffic networks (represented as digital 

maps) follows graph theory which states that a graph is a pair G = (V,E) of sets where the elements of V are 

the vertices (nodes or points) of the graph G, the elements E are its edges (lines, or arcs, or link) (Xia et al., 

2004). This means that a graph can represent a map as its main building blocks are two elements 1) a road 

which is simply an edge or line and 2) a junction/intersection which can be assimilated to a graph’s nodes. 

Since roads always have a direction (two-way or one-way) a map can be represented as a directed graph. Most 

of the mapping related technologies such as GIS, GML and GDF (discussed in “Appendix C, section 8”) are 

based on the link-node approach.   

 

Figure 3.1: Representation of map as a graph (Red arrow showing one way road) 
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3.4. Model description  

The model developed takes into account all the main traffic elements and infrastructural controls, and 

classifies them into the following categories:  

Grid: A typical traffic network infrastructure covers a vast area, and in some cases it covers an array of cities 

linked closely to each other. In order to manage the infrastructure, it is always divided into smaller zones or 

sections by the authorities and infrastructure developers. In this model, a “grid based” approach has been 

adopted as a way to divide the road network. Grids are virtual representations of geographic areas of the traffic 

network infrastructure as shown in figure 3.2. All systems and devices related to the traffic infrastructure (on-

road/roadside), which are within the boundary of a grid, belong to that grid on a system level. 

A grid covers an area based on a combination of both size and the number of systems within that grid. The 

grids do not overlap and have no gaps between them. While forming the grid the actual road network and road 

intersections are taken into account so that a grid always covers roads with as many of their interdependent 

intersections as possible (As seen in figure 3.2, a map with grid edges).  

 
Figure 3.2: Map showing Grids in green colour boundary line (Coventry City Centre) 

For the modelling purpose, the area around Coventry city centre was surveyed (see “Appendix L”) and used 

as an example for a typical urban traffic network.  

A Grid has the following properties: 

Grid Property Description 

Grid ID (Gi) Each grid has a unique identifier to distinguish it from other grids  

Boundary Polygonal geocode/geometry (List of all points in longitude/latitude) representing its 

location and boundary 

Type Rural, urban or motorway  

Table 3.1: Grid properties 
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The grid based distribution approach of the traffic infrastructure has many benefits.  

 Highly scalable: Grids can be added and resized easily  

 Easier management of the traffic infrastructure components 

 Easier way of pinpointing the traffic problem   

 Efficient data sharing and communication between grids in distributed environment 

A Grid is always controlled by a “grid controller”, which is responsible for managing all the 

systems/devices/controls within the grid and for outside communication i.e. with control centre, vehicles and other 

grid controllers. 

 

Node: A node is simply a point on a road network where the traffic flow stops or converges (e.g. a junction). It 

joins one or more inbound and outbound links. A node contains some form of flow control such as traffic lights or 

signs/markings to avoid collisions. A node in the context of this model is a single point, which consist of all traffic 

flow control points directly dependant on each other e.g. a pedestrian crossing on one side of the road which 

depends on the other side forms single node, or a junction or roundabout may have multiple traffic lights which are 

dependent on each other and must be coordinated with each other to avoid collision.  In this model the nodes are 

divided in two types: passive and active, see table 3.2 which defines the Nodes properties. 

Node Property Description 

Node ID (Ni) Unique identifier of the node 

Type Active or Passive 

Boundary/Location Polygonal geocode/geometry (List of all points in longitude/latitude) representing its 

location and boundary 

Structure Type Roundabout, Junction, Crossing etc.  

Links-In List of incoming links 

Links-Out List of outgoing links  

Current Status 

(Only for active node) 

The current status of each route combination (Link-In/Link-Out) within the node 

i.e. Busy, Normal  

Request Timeout 

(Only for Active node) 

The timeout period (in minutes) for a change in signal adaptation based on the 

Current Status of links within the node.  

Table 3.2: Node properties 

Active Nodes are traffic flow controls involving traffic lights i.e. they are controlled by traffic signalisation 

principles. They play an important role in managing and distributing the demand of the traffic flow. Active nodes 

change their behaviour based on the traffic condition and external systems’ requests. For example they can 

increase/decrease the red/green signal time to accommodate for changes in traffic flow.  
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An active node resembles a black box i.e. a single control, exposing only relevant external attributes and 

functionalities, and encapsulates and hides its internal controls functionalities and properties. An active node on a 

system level is controlled by the node controller responsible for all the controls within the node such as traffic 

signalisation, message displays, and the coordination and synchronisation of the signals in opposite direction (or 

dependant).  

A node as a single control is an important aspect of the model to reduce the complexities at the traffic network level 

i.e. by leaving each node controller to manage its internal controls and functionalities. Such decentralisation makes it 

an ideal candidate for agent-based controls. A node allows external systems/controls (Grid controller or other node 

controllers) to either enquire its current status (or other properties) or request permissible actions e.g. to allow extra 

traffic stream from certain incoming link(s) going to certain outgoing link(s). A node assesses its internal status and 

accepts/rejects any requests accordingly. If an action is requested and the node is in a position to perform that 

request, it uses its internal properties and functions e.g. if it needs to allow additional traffic from incoming link L1 

going towards L3 (by increasing the green signal time on these links), and if L1 depends on L2 (L2 red signal time 

must be increased to avoid accidents) then the node itself deals with all the internal adjustment/signal 

synchronisation and behaviour.  

 

Figure 3.3:  Internal signalisation adaptation 

There are some other types of traffic points for example toll services or rail junctions which qualify as active nodes, 

however in this model such points are not considered as active nodes, as they are more rigid and signal adaptation is 

difficult or not possible in some cases.  

Passive Node: This is a type of node point where the traffic flow is not controlled through signalisation but through 

general traffic rules such as road marking and signs (e.g. T-junctions, roundabouts). There are always more passive 

nodes than active nodes in any traffic network especially in residential built-up areas. A passive node does not have 

any internal controls and functionalities and it is only used for route formation.  

Link: This is a connection between two nodes. It comprises multiple roads and is multi-directional i.e. upstream or 

downstream. Each stream can consist of multiple lanes. 
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Figure 3.4: Link with up/down stream and lanes 

A link has the following properties:   

Link Property  Description 

Link ID (Li) Each link has a unique identifier  

Boundary/Location Polygonal geocode/geometry (List of all points in longitude/latitude) representing its 

location and boundary 

Length  Length in meters  

Road name Name of the road on which the link exists  

Road Type Info Type information of the road on which the link exist e.g. Motorway, Dual Carriage way, 

Side street, One-way. 

Number of lanes Lanes on the road 

Speed  Default or normal speed 

Max Speed  Maximum speed allowed 

Max Capacity Maximum number of vehicles allowed 

Priority weighting 

factor 

Not all links in a network are of equal importance. Each link has its priority in form 

of a weighting factor value 

Current flow status Current average speed and the number of vehicles 

Table 3.3: Link properties 

Route: An ordered list of links and nodes. It is connected by a start and end node (with no repeating nodes). Route 

R is a sequence of distinct nodes (N1, N2,…, Nn) such that <Ni,Ni+1> (or {Ni,Ni+1}), for each i from 0 to n-1, is a 

link in G. The path is simple if it does not cross itself and is a cycle if N0=Nn i.e. the start and end node are same. 

 

Figure 3.5: Route 
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Efficient route formation is important for optimising the traffic flow, diversion, route planning, 

navigation and managing the controls network flow. A route is formed using shortest path algorithms 

(such as Dijaskra and A*) which identify a set of specific simple paths or routes paths whose length is 

smaller than a given length threshold.  

Controls (Traffic Infrastructure): Road network/traffic infrastructure consists of various control systems 

(roadside sensors, devices, traffic lights, message displays, vehicles etc.), and efficiently controlling and managing 

these controls is vital in ITS infrastructures. In this model the controls are divided into the following types. 

 Flow control (Active nodes) 

 Informative (Message boards, signs etc.) 

 Monitoring (Traffic data collection sensors, CCTV etc.) 

All controls are either part of a link or a node e.g. Message display is part of the road/link it is placed on. Other 

controls include a grid controller which is part of a grid network and vehicle controls which temporarily becomes a 

part of the grid where it is presently located. 

A Control has the following properties:   

Control Property  Description 

Control ID (Ci) Each control has a unique identifier  

Location Location in terms of longitude/latitude of the control  

Type Node Controller, Grid Controller, Message Board, Traffic Signal/Lights, Inductive 

Loop, Sensor, CCTV etc. 

Part of The ID of the node, link or grid the control exist or belong to  

Current Status Current status depending on the type e.g. Traffic light could be in default mode or 

High green mode, whether sensor to return current condition, node controller to 

return individual Links-In/Links-Out status etc.   

Controlled by ID of external controller or control Agent. Controls functionality can be controlled 

by Agents.  

Other control specific 

properties 

As controls are of different type they will have their own additional 

properties/attributes  

Table 3.4: Controls properties 

 

Vehicles: This is a dynamic type of control entity in this model. A vehicle is always part of the grid it is presently 

in. The vehicle may be complex in itself and may have several internal controls, however from the model 

perspective it is a single control. The vehicles are of different types such as standard, logistics, public transport or 

emergency. The vehicles properties are outlined in the following table. 
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Vehicle Property  Description 

Vehicle ID (Vi) Each control has a unique identifier  

Location Last known location in terms of longitude/latitude  

Type Standard, logistics, public transport, Emergency/Priority   

Dimensions The vehicle dimensions/size in term of its height, width and length  

Current Status Idle, On the move etc.  

Table 3.5: Vehicle properties 

All the elements of the model are related to each other and on a system data level they form the 

relationships illustrated in figure 3.6.  

 

 

 

 

 

 

 

 

 

Figure 3.6: Elements Data Relationship Model 

3.5. Conclusion  

This chapter has described the new customised road network model, the attributes of its elements 

and their relationships. It provides the foundation for describing the Agent-based controls and their 

data level relationships in the ITS@CU platform. The model is also important for the design of the 

platform and elements of the model form the basis for all the components/sub-components of the 

platform.  
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Chapter 4 
 

 

4. Agent-based Controls 
Design & Organisation 

Structure 

 

The previous chapter presented the road network model which is used as a foundation for 

the design of the ITS@CU platform components and the Agent-based Controls described in 

the next section.  

This chapter is focused on the overall design and modelling of the Agent-based Controls in 

the ITS@CU platform. The chapter has two sections: 

 The first section covers the detailed design of the three main types of Agents 

(Control, Operational and Service Agents) and their sub-types/roles. 

 The second section describes the overall organisational structure of the Agents and 

their relationships  
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4.1. Agents design description 

4.1.1. Types of Agents  

This research employed a multi-agent approach to control and manage the distributed traffic controllers and 

systems. Hence the ITS@CU platform comprises of Agents having specific roles and organised into different 

agencies. These Agents are classified into the following main types:  

 “Control Agent” for controlling the traffic controllers responsible for managing traffic devices such 

as traffic lights, vehicle count sensors, grid/vehicle controllers, variable message displays and signs. It 

is the core type of agent in this agent-based controls approach however the following two agent types 

are the key enablers in the overall multi-agent platform.  

 “Service Agent” for accessing/providing external or internal Services such as traffic and weather 

information services.  

 “Operational Agent” provides supporting roles in the platform such as security, arbitration and 

management tasks.  

 
Figure 4.1: Agent types (in ITS@CU platform)  

Agent types are further divided into several sub-types based on their role requirements such as capabilities, 

host/environment, and area of influence. Agents use templates to facilitate the creation of Agents dynamically and 

provide the flexibility to create customised instances of Agent role/sub-types (Tagni & Jovanovic, 2006). The 

template provides the means to specify common as well as specific properties and functions. For example, the 

Control Agent’s sub-types “Traffic Light Control Agent” and “Vehicle Count Sensor Control Agent” have shared 

common properties and functions (e.g. Location) but have different specific properties and functions (e.g. the 
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Traffic Light Control Agent has a function to change traffic light/signal duration values which is not present in 

Sensor Control Agents).      

4.1.2. Control Agents  

Road network/traffic infrastructures consist of various control systems (roadside sensors, devices, traffic lights, 

message displays, vehicles etc.), and efficiently controlling and managing these controls are vital in ITS 

infrastructures. These controls are divided into the following types. 

 Flow control (Active nodes with traffic lights) 

 Informative (Variable Message boards, signs etc.) 

 Monitoring (Traffic data collection sensors) 

In modern urban traffic management systems, a set or group of specific traffic control devices (e.g. traffic lights or 

sensors) is controlled by a local “Controller” which is responsible for their operations. The traffic control devices 

perform specialised tasks and have limited memory and resources. However, Controllers have reasonable CPU, 

memory, storage and networking capabilities. The Controllers are inter-connected and monitored by central or 

regional control centres. So if any particular traffic control device stops functioning, the Controller relays a 

notification message to the control centre system. For example, in the Coventry City traffic management system, all 

the traffic light and inductive loop detectors/sensors are controlled by their local Controllers (called out-station 

transmission unit (OTU)) which are interlinked (using built-in modem) and integrated with SCOOT system for 

overall monitoring and calibration of traffic flow and controllers (see “Appendix L” for details).  

There are some limitations to this type of approach: 

 The controllers have a fixed set of features/functions  

 Traffic diversion requires manual intervention 

 Traffic light/signal adaptation is very limited  

 Communication overheads as each controller is directly communicating with regional/central control 

system 

 No integration with external services at controller level 

 Most importantly, it is very costly to update traffic controls/system as update usually means replacing the 

existing controls.   

This research has addressed these limitations by introducing Agent-based controls i.e. Control Agents hosted on 

Controllers (discussed in chapter 2, section 2.4). Agent-based controls extend the concept of agents and fixed controls 

to a next level by dynamically adding extra functionality and decision making capabilities to the traffic controls. As 

seen in figure 4.2, all geographically distributed local traffic Controllers are governed and controlled by Control 

Agents which interact with other Agents over a wide area network on behalf of Controllers.  
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Figure 4.2: Agents-based Controls Overview 

 

A “Control Agent” is hosted on a Controller and it uses the host’s resources such as CPU, memory and network 

capabilities. Different Control Agents can reside on a Controller at different times however only a single Control 

Agent will be hosted by a Controller at any given time and will use a pre-configured resource allocation.  

In a traditional control system, operational control algorithm/logic is built-in within an isolated Controller and is 

responsible for all its operations. However, in the Agent-based Control approach, the Controller’s operational logic 

has been split into “Default-logic” and “Agent-logic”.  

Default-logic is the basic default functionality/logic of a controller, which is pre-configured within the control (e.g. 

fixed time duration of traffic lights) to enable it to operate despite loss of communication.  

Agent-logic is an additional intelligence provided by the Control Agents to the Controllers. It provides dynamic 

functionalities and decision-making capabilities in response to the current situation of the traffic.  

The Control Agent-logic decision making process involves multiple agents working together to assess current 

situation, arbitration, and data fusion. For example, if a traffic light Controller loses connectivity with the platform, 

it will stop its dynamic signal adaptation functions provided by Control Agent logic but continue to operate its 

set/group of traffic lights in a fixed time manner.  
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 Figure 4.3: Controller with a hosted Control Agent 

 

In the ITS@CU platform only certain devices can become a host for a Control Agent such as traffic light 

controllers or sensor controllers. Traffic control devices, such as the actual traffic lights, cannot be a host as they are 

controlled and managed by Controllers, and above and beyond the traffic devices do not have enough processing or 

memory to host any control agents. As Controllers are responsible for the control devices’ functions it is sensible to 

host Control Agents on Controllers in order to control the networked traffic control devices. 

A single Control Agent can be hosted on multiple Controllers which mean a single Control Agent can 

manage/control multiple Controllers at the same time.  This makes this approach very efficient where single Agent 

deal with multiple Controllers to reduce the communication overheads (between controls, controllers and the 

central/regional traffic control systems). The Control Agents approach also enables the upgrade or implementation 

of new traffic management systems/controls without increasing or modifying the capacity of local hardware and 

software environments. It is a cost effective way to develop, maintain and expand/upgrade a transportation system 

in connected environments.  

For the purpose of resiliency and load balancing a pair or a cluster of Agents can be configured to perform a single 

agent’s task. In such cases one Control Agent works in a primary/active mode and the other(s) in standby/passive 

mode. 

The following types of traffic controllers can be controlled and managed by Control Agents:   

Controllers   Notation Description 

Dynamic Traffic Sign   CtrSgnD Controls a set of connected variable traffic signs (speed, stop etc.) 

Variable Message 

Display Board   

CtrMsgD Controls a set of connected variable Message display boards for 

road users information  

Traffic Lights   CtrTL   Controls a set of inter-linked and dependent traffic lights/signals  
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Vehicle Count Sensor   CtrVC Controls a set of inter-linked vehicle count sensors  

Vehicle Controller   CtrVeh   Each vehicle has a controller which controls its internal controls  

Grid Controller   CtrGrid Controls a Grid area, as per the road network model 

Node Controller   CtrNd    Controls a Node (intersection/Junction etc.) – Optional 

Link Controller   CtrLnk   Controls a road link  – Optional 

Table 4.1: Controller types  

More controllers can be added however currently only the above are supported as part of the ITS@CU platform. 

Roles/Sub-Types of Control Agents 

The sub-types of Control Agents designed to manage the traffic Controllers are given in table 4.2: 

Control Agent 

Role (Sub-Type) 

Controller Description 

cAgtCtrTL    Traffic lights Provides Agent-logic and dynamic functionality to the controller 

of traffic lights/signals to dynamically adapt the signalisation 

based on multi-agent coordination. 

cAgtCtrVC Vehicle Count 

Sensors  

Provides Agent-logic functions to the Controller of a set of 

vehicle count and monitoring sensors for obtaining vehicle flow 

data in response to emergent situations or request by other agents. 

cAgtCtrMsgD Variable 

Message 

displays  

Provides Agent-logic functions to the Controller of Variable 

Message display boards to intelligently display useful messages 

based on situations, location and time. 

cAgtCtrSgnD   Dynamic signs   Similar to Message display, it provides Agent-logic functions to 

the Controller of Dynamic Sign boards to intelligently display 

different traffic signs based on situations, location and time. 

cAgtCtrGrid   Grid controller  It is the main Agent providing Agent-logic functions to the Grid 

controller system. It is responsible for overall grid operations and 

for controlling grid level Operational Agents. 

cAgtCtrCc Central control 

System  

It is the main Agent controlling the Central Control system. It 

uses other operational Agents for achieving most of its tasks 

(mentioned in operational Agents section in the chapter). 

cAgtCtrVeh Vehicle control   Manages the intra-vehicle functions and interact with other agents 

either vehicle to vehicle or vehicle to grid controllers  

cAgtCtrLnk Link  Manages a Link (part of road) in conjunction with above control 
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agents on that road. It is though optional agent and can be 

configured only if required 

cAgtCtrNd Node  Manages a node (junction/intersection) in conjunction with above 

control agents on that junction/intersection. It is an optional 

agent and should only be configured if required 

Table 4.2: Control Agent sub-types/roles  

 

Control Agent Design Description 

The following is an example of a Control Agent hosted on a Controller (for traffic lights management).  

 

Figure 4.4: Controller and Control Agent (Traffic Lights example) 

 

The Control Agent has the following characteristics and properties: 

 A Control Agent is identifiable and has a unique ID which is composed of cAgt[type]-[n] where cAgt 

represents Control Agent, type is the type of Controller the Agent is hosted on, and n is an incremental and 

unique value. “cAgtCtrTL-01” is an example ID of a Control Agent for a traffic lights Controller.    

 A Control Agent is an intelligent agent type with hybrid/layered architecture. It is discrete, autonomous 

and self-contained entity. It has a set of characteristics and logic/rules for governing its internal 
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behaviours/functions and decision-making capability. An agent exercises control over its actions and 

states, and it functions independently within its environment and in its dealings with other agents. 

However, for security and reliability purposes it has a pre-configured role and an area of 

influence/boundary within which it operates. Also, specialised Operational Agents “Control Agents 

Manager” can intervene in a Control Agent’s operations, if required. 

 A Control Agent is hosted on a Controller and uses the host resources such as CPU, memory, data 

storage, and networking capabilities. A single agent can be hosted on multiple controllers at the same time 

forming a “one to many” relationship however a Controller is only allowed to host a single Control Agent 

at a time forming a “one to one” relationship.  

 A Control Agent interacts with the host Controller to command actions or request the use of a resource. 

It also interacts with other Agents to get information or coordinate in the decision making process.  

 A Control Agent is goal directed and performs tasks based on internal or external requests/events. An 

Agent’s goal can be a subtask delegated by other Agent(s) to achieve a wider/system level goal. For 

example, multiple Agents can work on traffic signal adaptation for traffic flow optimisation or diversion 

where each Control Agent performs its internal tasks based on the request by other Agent(s).   

 An Agent belongs to an Agency (organisation of agents). 

 An Agent can be standalone, part of a team or multiple teams.  

 A Control Agent has a defined role and performs a specific set of functions e.g. A Traffic Light Control 

Agent is only capable of managing Traffic Light Controller and a Message Board Display Control Agent is 

only capable of dealing with Display Controllers. This approach of having specific purpose Agents has 

advantages in terms of flexibility, reliability, maintainability and update. 

 A Control Agent can continuously operate however it can move into other states e.g. suspended or idle 

mode. An Agent can be resumed by either operational agents or any relevant external or internal events 

(on a host Controller). 

 A Control Agent stores its functional capabilities and knowledge (rules/logic, data, ontologies etc.) in the 

host Controller’s memory/storage. This information can be modified by the agent itself based on situation 

changes or an update request by other operational Agents. This capability makes Control Agents dynamic, 

flexible, and having the ability to learn and build a knowledge base by storing rules and past data. The 

update mechanism also means that an Agent can update its logic/behaviour or even default-logic when 

new system functionality updates/enhancements are released by Operational Agents.   

 

The Control Agent design structure properties that can also be used as the design template for creating new Control 

Agent instances is illustrated in figure 4.5  
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Figure 4.5: Control Agent Design Structure/Template 

A Control Agent design shares the same base structure with Operational and Service Agents so they can inherit 

common communication and knowledge management methods. 
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Attribute  Description 

ID Unique identifier of the Agent 

Role-Type  Sub types mentioned in table 4.2, e.g. cAgtCtrTL - Traffic Lights Control Agent  

Controller ID  Identifier of the host Controller (mentioned in table 4.1) 

Location  longitude/latitude of the current host controller(s) 

Operational Status  Current status of the Control Agent e.g. active, idle, suspended etc. 

Team IDs  The team identifier, if a Control Agent is part of team (or teams)  

Agency ID  Identifier value of the organisation the control Agent belongs to 

Table 4.3: Control Agent generic attributes  

Host specific attributes are different from host to host for example a traffic lights controller has different attributes 

when compared to a Grid Controller. These attributes are internal to the host and the Agent can use these values 

for its function and, if allowed, can manipulate these values. Some examples of host specific attributes include 

Green time of a traffic lights Controller, Vehicle flow detection frequency for a Vehicle Count Sensor Controller, 

Current hardware status of Controller and traffic controls etc.  

 

Capabilities/Functions 

A Control Agent’s capabilities are defined as the operational functions or methods which enable it to perform 

various actions to achieve its goals and plans. These capabilities are either default-logic or Agent-logic based. 

Default-logic consists of the pre-configured capabilities of the host controller. Agent-Logic consists of the 

methods/functions which control when, how and with which other agents and hosts the agent communicates with, 

and affect the behaviour or reasoning of the agent. It also includes functions to use/manipulate attributes and local 

data using the embedded logic in response to events or interaction with other agents or the host.  

Some of the core functions of a Control Agent (Agent-Logic) include:  

 Change agent status and Controller’s status 

 Formulate goals and action plan  

 Request information from other Agents (Send messages) 

 Raise events or request other agents to show their intentions (ontology requests) 

 Update/Modify Agent-logic, rule set and ontology  

 Update/Modify default-logic of the Controller  – permanently or temporarily 

The intentions of an agent are described in terms of imperative goals. Multiple goals can be executed in parallel 

(provided the host can support multithreading). Goals are either basic actions or sequential compositions of internal 

functions combined with external Agents functions. 
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Controller Internal functions (default-logic): Default functions are different depending on the type of host controller 

and its purpose. Some example functions include:  

 Change the controls status and parameter values (e.g. set values of traffic light’s green time) 

 Sending task execution commands to host (e.g. display traffic message on dynamic display board)  

 

Agent communication interface 

The communication of the Control Agent with its environment is an integral part of its operations. It requires 

external communication with other Control and Operational Agents as well as internal communication with the host 

Controller (for sending commands to traffic control devices). The external communication interface comprises of 

light-weight RESTful web services allowing interaction with other Agents and dealing with external requests and 

events (such as status updates and agents communication requests). 

In the event of no connectivity, the host will stop using the Agent’s functions (in Agent-Logic mode) which are 

dependent on other agents’ input, and the default-logic mode will take control.  

The communication interface has various modules which perform various functions such as sending/receiving 

messages, queuing, message parsing, ontology interpretation and message composition. Further detail of the 

communication structure is covered in chapter 5 and 6, and the implementation/technological details are covered in 

chapter 7.  

Remark: The Controller in default-logic mode still uses the same communication layer and communicates with 

Operational Agents but without the semantic-content and the intelligence provided by Control Agents. It is also not 

capable of communicating with other Controllers hence the communication becomes more centralised.   

 

Host resources usage     

As seen in figure 4.5, a Control Agent hosts itself on a Controller to provide additional logic/intelligence (in addition 

to Controller’s default-logic mode). A Control Agent is hosted by a mutual agreement between the participating host 

Controller and a “Controller Manager” Operational Agent. An Agent uses the host resources on a pre-defined level 

as per the agreement between the Controller and “Controller Manager” to avoid misuse and overloading the 

Controller.  

A Control Agent uses host resources to perform the following operations: 

 Store its state info in the local data store which can be a database or a file depending on the type of host 

Controller e.g. Grid controller can host light version of DBMS (SQL Server Compact Edition) however a 
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vehicle count sensor Controller can only store basic XML files. Similarly, Control Agent stores and accesses 

its behavioural Rules set and Ontologies (which are defined in XML format) either as files or in Database. 

 Communicate with other Agent or local traffic Control Devices using host’s internetworking capabilities 

which may be LAN, wireless or ad-hoc.    

 Uses CPU and memory for executing its functions, analysing events and other operations for decision-

making process based on the rules, ontologies or other data. 

 Exploit the default-mode capabilities of the host for executing simple internal tasks   

 

Local Data, Rules and Ontologies 

An agent stores various data locally during its lifetime based on which it performs all its operations and decision 

making. Different types of data are stored by the Control Agent such as state information, Rules set and Ontologies. 

All the data are in XML format however the storage type can be can be a database or a file depending on the host. 

Rules form the beliefs of an agent. It is a set of match cases and possible response actions which the agent uses to 

deal with events and its operations. Ontologies are required for Agents-based controls to understand the semantics of 

any agent message. Both ontologies and rules are defined in XML format (further detail is covered in chapter 6.) 

 

Agent creation 

“Control Agents Manager” operational Agent hosted on a grid controller creates a new instance of Control Agent 

using Agent role-type templates and then assigns a unique ID. Templates are in XML format containing the 

definition of the classes, behaviour, rules and other design information which are used by the host application to 

generate multi-threaded objects of the Agent type class (Further explanation is covered in section 4.1.4 and chapter 7).    
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4.1.3. Service Agents  

Services are at the heart of SOA based systems architecture which is also the core architecture of the ITS@CU 

platform. There are various types of services in the platform providing various features and functions ranging from 

internal communication layer services to external sources e.g. weather services and traffic information service. 

In the ITS@CU platform, all external Services are governed by dedicated Service Agents which serve as brokers 

between a Service and consumer Agents i.e. Control, Operational and Service Agents. For example, to access the 

weather information service from an external source (such as the Met Office), the ITS@CU platform has a 

dedicated Service Agent which all other Agents use to access the service. The dedicated Service Agent holds all the 

details such as Service description (WSDL), authentication rights and other service agreements with the Service.      

Keeping Operational and Control Agents separate from direct interaction with the services makes the platform’s 

approach very flexible and also avoids unnecessary communication. For example, if Control Agents or Operational 

agents interact directly services then they have to know all the available services and their features in the platform 

which means they require all the services description/WSDL, Authentication details, service agreements and other 

details, resulting in an additional and unnecessary processing overhead for normal Agents. Another benefit of the 

Service Agents is if any Service is updated only the relevant Service Agent requires updating and no other 

component of the platform is affected. This approach provides flexibility, and enables an efficient and cost effective 

way to maintain and upgrade the ITS@CU platform’s components/agents.  

Agents internally communicate with each other using a described communication structure however dedicated 

Service Agents can communicate with external services based on the service’s source implementation technology 

e.g. SOAP, RESTful, WCF or any SOA enabled service platform. Moreover, Service Agents have the capability to 

encapsulate semantic data in the form of domain ontologies in order to understand and communicate with semantic 

web services.  

Service Agents can interact with a single atomic service or can combine different services into a composite 

workflow, for example a single service agent can communicate with different weather traffic information services at 

the same time and combine the result back to the requester/consumer Agent(s). 

 

Service Agent Design Description 

Service Agents by design are reactive type of agents as they only respond to requests made by other agents, and do 

not require proactive capabilities. As seen in figure 4.6, all external and internal Services are accessed and provided by 

Service Agents. Other types of Agents interact with Service Agents over a wide area network.  
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Figure 4.6: Service Agents Overview 

 

 

The ITS@CU platform can support any type of Service provided the service conforms to SOA principles and W3C 

standards. The Services implemented are:  

Services   Notation Description 

Weather 

Information   

SvcWS A service providing real-time weather information based on street level 

location. Various service providers are currently available such as the Met 

Office, Yahoo UK and BBC allowing web service integration.  

A web service application was developed for simulations which provides 

similar functionality but with pre-configured data which can be altered in 

real-time to simulate different weather conditions.  

Route 

Information   

SvcRt A simulation purpose Web Service application was developed for the 

platform evaluation. It provides simulation route information data which 

can be configured to street level.   

Bing Map 

  

SvcBing    It provides two online features: 

 Reverse geocoding service provided by Microsoft Bing Maps Service. 

Operational  

Agents 
Operational  

Agents 
Operational  

Agents 

Operational  

Agents 
Operational  

Agents 
Control 

Agents 

Service 

Agent 

Service 

Agent 

 

Service 

Agent 

Service 

Agent 
Service 

Agent 

Service 

Agent 

C
e
n

tr
a

l 
C

o
n

tr
o

l 
L

e
v
e

l 
G

ri
d

 L
e

v
e

l 

Internal 

Services 

 

External 

Services 

Inter/Intranet 
(LAN/WAN) 



4.  Agent-based Controls Design & Organisation Structure 

 

103 

 

 

It provided the exact coordinates of a location or address and vice 

versa.  

 Route information and direction service provided by Microsoft Bing 

Maps Service. It is used in diversion planning by Agents.  

Table 4.4: Platform external Services  

More services can be added however only the above were included as part of the platform at this time.  

 

Roles/Sub-Types of Service Agents 

The following sub-types of Service Agents are designed to provide the services, mentioned in table 4.4: 

Service Agents 

Notation  

Service Description 

sAgtSvcWs   Weather Info   Accesses the Weather Information Service in response to other 

Agents requests 

sAgtSvcRt   Route Info   Accesses Route Information Service and interacts with Agents in the 

platform (in response to other Agents requests) 

sAgtSvcBing  Bing Service Accesses the online Bing Map Service in response to other Agents 

requests 

Table 4.5: Service Agents Sub-types/Roles  

 

A Service Agent in ITS@CU has the following characteristics and properties: 

 A Service Agent is identifiable and has a unique ID which is composed of sAgt[Service type]-[n] where sAgt 

represents Service Agent, type is the Service type, and n is an incremental value. “sAgtSvcWs-001” is an 

example ID of a Service Agent for a Weather Information Service Agent.    

 A Service Agent is reactive and performs tasks based on external requests/events. Agent’s goal can be a 

subtask delegated by other Agent(s) achieving a wider system level goal.  

 A Service Agent exercises control over its actions and states, and it functions independently in its 

environment and in its dealings with other agents. However, for security and reliability purposes it has its 

pre-configured role and an area of influence/boundary within which it operates. Specialised Operational 

Agents “Service Agents Manager” can intervene in Service Agents operations, if required. 
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 A Service Agent has a defined role to provide a single service e.g. the Weather Information Service Agent 

is only capable of interacting with Weather Info Service. This approach of having specific purpose Service 

Agents has advantages in terms of flexibility, reliability, maintainability and system/Controller features 

update. 

 A Service Agent is usually continuous i.e. constantly running in listening mode however it can go into 

other states such as suspended and idle.  

The following figure 4.7 illustrates the Service Agent design structure based on the above properties. This structure is 

also used as the design template for creating new Service Agent instances.   

 

Figure 4.7: Service Agent Design Structure/Template 
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As seen in figure 4.7, a Service Agent hosts itself on a Controller (Central Control or Grid Controller). The Service 

Agents are hosted on a fixed host i.e. they do not move between hosts.     

Service Agents share the same base structure with Operational and Control Agents so they can inherit common 

communication and knowledge management methods. 

 

Attributes  

A Service Agent has several attributes divided into “Generic” and “Service specific” types. The following are the 

base generic attributes: 

Attribute  Description 

ID Unique identifier of the Agent 

Role-Type  Sub types shown in table 4.5, e.g. sAgtSvcWs – Weather Service Agent  

Host ID  Identifier of the host Controller  

Operational Status  Current status of the Service Agent e.g. active, idle, suspended etc. 

Table 4.6: Service Agent generic attributes  

Additional roles/Sub-Types can be dynamically added, if required. 

Service specific attributes are different for different service for example the weather service has different attributes 

to the Route Service. Some of the examples of service specific attributes include URL of the Service, credentials 

Login/access info, allowed usage Polices and service Contract info.   

 

Capabilities/Functions 

A Service Agent comprises of various functions mainly to interact with the corresponding Service (or other Service 

Agents) on behalf of the requesting Control or Operational Agents. Some of the core functions of a Service Agent 

include:  

 Change its states and local parameter values  

 Update service description/WSDL, internal logic and ontology – permanently or temporarily 

Service functions are the methods the corresponding Service provides as per its description (such as WSDL). They 

are required for the service Agent to fulfil the requests by other Agents.  
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Agent communication interface 

A Service agent mainly responds to the requests by other agents and then interacts with Services or other Service 

Agents. Similar to Control Agent design, the Service Agent itself provides a light-weight RESTful web services 

based communication interface for external Agents to call/communicate with it. A Communication interface has 

various modules performing functions such as sending/receiving messages, queuing, message parsing, ontology 

interpretation and message composition. Further detail of the communication structure is covered in chapter 5 and 6, 

and the implementation/technological details are covered in chapter 7.  

          

Host resources usage     

Similar to Control Agent design, a Service Agent also requires a host (and its resources) to function. The host must 

have connectivity (intranet or internet) in order to access the corresponding Service and may also require high 

bandwidth as compared to Control Agents. A Service Agent requests resources from its host, and interacts with 

other Service Agents to get information or coordinate for decision making as part of composite service work flows. 

Usually regional Control Room centres or Grid Controllers are suitable for hosting Service Agents. Unlike Control 

Agents, multiple Service Agents can reside on a host at the same time as their hosts do not have the resource 

limitations of traffic Controllers. 

In ITS@CU Service Agents that are responsible for external Service access are hosted on the Central Control 

systems and the Service Agents that are responsible for internal services are hosted at both Central/Regional or 

Grid Controllers level (details are covered in chapter 7).   

A Service Agent uses the host’s resources (CPU, memory, storage, DBMS and network capabilities) on an allocated 

level to avoid misuse and overloading the host.  

 

Service discovery and subscription model     

As seen in the figure 4.8, Agents use the “Service Registry Operational Agent” to find/discover Service Agents. 

Service Registry Agents keep a registry of all the Service Agents and corresponding Services. A Service Agent can 

publish/register its capabilities to which other Agents can subscribe, and whenever new changes occur the Service 

Agent can inform the subscribers.   
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Figure 4.8: Service registration and subscription overview 
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4.1.4. Operational Agents  

Operational Agents provide specialised and supporting roles for Agent-based Controls in the ITS@CU 

platform such as security, arbitration, facilitation, administration and management tasks. There are different 

types of Operational Agents with different roles, responsibilities and areas of influence/levels of access. 

Depending on their role type, they communicate and coordinate with other relevant Operational Agents, 

Service Agents and Control Agents. They also communicate with their host system components as seen in 

figure 4.9.    

 

 

Figure 4.9: Operational Agents Overview 
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or Service level.  It is the first point of contact for Agents in different grids 

or levels, for example, if a Grid Control Agent wants to instigate a 

communication with other Grid Control Agent, it invokes communication 

with the Arbitrator Agent of that Grid. 

oAgtSec   Security Authenticates and verifies Agents validity and its level of access  

oAgtCtrMgr   Host Controllers 
Manager 

It manages the lists of Controllers (hosts) and their capabilities in the 

platform. It also facilitates the allocation of Control Agent to a Controller 

and agrees the resource usage of the host Controller.  

oAgtcAgtMgr Control Agents 
Manager 

Manage Control Agents in the platform:  

 Create a new instance of Control Agent using the design templates  

 Add, delete or suspend a Control Agent 

 Keeps track of control agents lists and current host location to facilitate 

inter-agent communication. 

oAgtoAgtMgr Operational 
Agents Manager  

Manage (add/delete/suspend etc.) and keeps track of all Operational 

Agents.  

oAgtsAgtMgr Service Agents 
Manager  

Manage (add/delete/suspend etc.) and keeps track of all Service Agents.  

oAgtSvcReg   Service Registry  Keep the registry of all the services and the Service Agent currently 

providing interface to that service. This operational Agent assists in the 

service discovery (using meta-tags) and dynamic services composition over 

the service bus of the platform (mentioned in the SOA reference 

architecture in chapter 7) 

oAgtQoS   Agents Quality of 
Service (QoS) 

This Agent provides the current performance and operational status of the 

platform’s agents in terms of their Quality of Service (QoS) values. The 

agents QoS parameter values changes based on their current performance 

i.e. response time (which are configurable values set in milliseconds ms). The 

following QoS values are currently setup: 

  3 = Normal  (Response time less than the normal ms value) 

  2 = Overloaded  (Response time above the normal ms value) 

  1 = Unresponsive  (not responding within the maximum ms value)  

  0 = Stopped  

This agent periodically checks the status of all active Agents in the platform 

by sending ping broadcast messages (interval configured as every 3 

minutes), and then it assigns a QoS value to each agent based on the 

response time.   

Other agents use these QoS values to choose an Agent to carry out task(s), 
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where multiple agents with similar capabilities for the required tasks are 

available.  

In the case where an Agent has 0 or 1 value, it informs the relevant 

Manager Agent (e.g. oAgtcAgtMgr for Control Agents) to take an appropriate 

action (e.g. create new instance) based on the situation as programmed. 

oAgtPoolMgr Pool Manager 

Agent 

In cases where multiple Agents work as a pool or cluster for load 

balancing/sharing, one of the Agents in that pool also takes the role of Pool 

Manager Agent. It then deals with all the external requests and decides 

which agent within the pool can be used by taking into account the QoS 

values provided by the oAgtQoS agent.  

oAgtSys System Agent General purpose agents for system management operations such as 

Recovery, clean-up etc.  

oAgtAppUI Interface Agent Application simulation purpose only - Optional 

Table 4.7: Operational Agents Sub-types/Roles  

 

Operational Agent Design Description 

An Operational agent is both pro-active and reactive depending on its role. It performs tasks based on its own 

or on external requests/events. Some Operational agents also have mobile capabilities and can migrate 

between different hosts to perform its goals. The goal of an agent can be a subtask delegated by other Agent(s) 

achieving a wider system level goal.  

The Operational Agent in ITS@CU has the following characteristics and properties: 

 An Operational Agent is identifiable and has a unique ID which is composed of oAgt[type][n] where 

oAgt represents Operational Agent, type is the Agent sub-type, and n is an incremental value. 

“oAgtArb-01” is an example ID of Arbitrator Operational Agent.    

 An Operational Agent is an autonomous entity with a set of characteristics and logic/rules for 

governing its behaviours/functions and decision-making capability. An agent exercises control over 

its actions and states, and it functions independently in its environment and in its dealings with other 

agents. However, for security and reliability purposes it has its pre-configured role and an area of 

influence/boundary within which it operates. Also “Operational Agents Manager” can intervene in 

the Operational Agent’s operations, if required. 
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 An Operational Agent belongs to an Agency (Agent Organisation), and can be standalone, part of a 

team or multiple teams.  

 An Operational Agent runs continuously however it can go into other states such as suspended and 

idle. It can then resume its role following a relevant operational agents external requests or internal 

events  

 An Operational Agent resides on a capable host and uses the host’s resources such as CPU, memory, 

data storage, and networking capabilities. An Operational Agent stores its functional capabilities and 

knowledge (rules/logic, data, ontologies etc.) in the host Controller’s memory/storage. All such 

information can be modified by the agent itself based on situation changes or an update request by 

other operational Agents. This capability makes Operational Agents dynamic, flexible, and the ability 

to build a knowledge base by storing rules and past data as experience.  

The following figure 4.10 illustrates the Operational Agent design structure based on the above properties. This 

structure is also used as the design template for creating new Agent instances.   

 

Figure 4.10: Operational Agent Design Structure/Template 
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Attributes  

An Operational Agent has several attributes divided into “Generic” and “Operation & host specific”. Generic 

attributes are similar to Control and Service agents i.e. ID, Role/Sub-Type, Operational Status, Host ID etc.    

Operation & host specific attributes are different for different role types of the Operation Agent and the type of 

host. These attributes can be internal to its host and the Agent can use these values for its function and if allowed 

can manipulate these values.  

 
 

Capabilities/Functions 

An Operational Agent comprises operational functions to deal with Agent requests and interact with other Agents 

and platform components.  

Some of the core generic functions include:  

 Change agent status and Controllers status 

 Request information from other Agents (Send messages) 

 Raise events or request other agents to show its intentions (ontology requests) 

 Update/Modify Agent-logic, rule set and ontology  

Operational Logic is the core of the operational Agent required to perform its functions and execute plans. They are 

different based on the type of agent’s role and host. For example, Security Agent has functions to check the Access 

level or credentials of any Agent and QoS Agent have functions to assess Agents health and performance (mentioned 

in table 4.7).     

 

Agent communication interface 

The communication interface of operational Agent is similar to Control Agent’s design. It interacts with its host to 

request the use of its resources and interacts with other Agents using domain specific ontologies. It provides a light-

weight RESTful web services based communication interface for external Agents to communicate.  

Communication interface modules perform functions such as sending/receiving messages, queuing, message 

parsing, ontology interpretation and message composition. Further detail of the communication structure is covered 

in chapter 5 and 6, and the implementation/technological details are covered in chapter 7.  
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Resiliency and load balancing    

An Agent can deal with multiple requests at the same time however a pool (pair or a cluster) of operational Agents 

can be configured to perform single agent’s task for the purpose of resiliency and load balancing. In such cases one 

Agent within the pool becomes a pool manager to distribute requests evenly. 

 

Figure 4.11: Agent pooling and queues 

 

 

 

Split-site hosting mechanism   

Similar to other Agents in the platform, Operational Agents also require a host (and its resources) for 

executing its functions, store/access local data and internetworking/communication. Usually regional Control 

Room centres or Grid Controllers are suitable for hosting Operational Agents. Unlike Control Agents, 

multiple Operational Agents can reside on a host at the same time as their hosts do not have the resource 

limitations of traffic Controllers. 

Some types of Operational Agents (“Arbitrator” and “System Agents”) are mobile agents i.e. they can move 

between different hosts dynamically and a single Agent instance can even reside on multiple hosts (split-site 

hosts) by dividing itself in partial instances (see figure 4.12).  
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Figure 4.12: Split-site agent hosting mechanism 

 

The split-site hosting mechanism allows a single agent to split its tasks and functionality (Agent-logic) based on 

host specific requirements or other situations/reasons: 

 A host of certain type may only support certain functions due to hardware/software limitation, for 

example, a traffic controller may have hardware with which requires only specific or compatible 

functions. As seen in figure 4.12, Agent X has been split across four hosts and “Function A” is only 

hosted on host B as this function is only suitable or used by host B. 

 Avoid hosting functions which are not used by the host e.g. a host without Database system does not 

require functions dealing with databases (store/retrieve queries)  

 Require multiple processing at the same time (simultaneous tasks execution) 

 The current or next state of the host may require different functions    

In this approach of hosting mechanism, there is always one “primary” host and one or more partial hosts. The 

primary host is the main executing point of an Agent’s logic, and it can move functions between partial hosts 

dynamically based on requirements and changes on the host.   
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The primary host is selected based on factors such as resource capacity and proximity/distance. The primary 

host is not fixed i.e. it can move to other hosts as well. When an agent splits it also checks if there is a better 

host (using QoS Agent), and if necessary it then moves (or re-gathers on a new host).  

Using the split-site hosting mechanism in Agents has the following main benefits:  

 A single agent can manage operations on multiple hosts systems 

 Share load between multiple hosts i.e. avoid overloading resources on a host 

 Achieve multi-threading and synchronous task and sub-tasks execution  

 Splits its functionality (operational logic code) based on the host’s requirement, type and states 

 Efficient way of providing localised functions to hosts of different types by the same Agent 

 Avoid the use of fat agents where all the code logic is carried by an agent during its movement from 

one host to another 
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4.2. Agents organisational structure 

 

Agents form a goal-driven multi-agent society in the ITS@CU platform comprising of different types of 

Agents with specific roles, belonging to team(s) and Agencies. 

An Agency in this context refers to a group of Agents organised hierarchically at the system level. Every 

Agent must be affiliated with an Agency (and have an attribute Agency ID). The platform has a main 

Agency called “System Agency” which is at the core platform level. Most Operational and Service Agents 

are affiliated with the System Agency. Further Agencies called “Grid Agency” are formed at grid/zone 

level. Control Agents are always affiliated with Grid Agencies, for example Control Agents managing the 

traffic Controllers in Coventry City Centre can be in one Agency and controls in outer zones can be in 

other Agencies.  

Separating Agents into different Agencies provides flexibility and allows a federated Multi-Agent System 

which improves maintainability and communication. They are also important for Agent-based controls to 

work in synergy with other Control Agents within the same Agency. Control Agents from different 

Agencies cannot communicate directly however if required, their communication can be facilitated by the 

“Arbitrator” Operational Agents.    

An agent can be standalone, part of a team or multiple teams in the approach employed in the ITS@CU 

platform. Teams refer to Agents working together on a specific task to achieve a common goal. Teams can 

be formed between Agents from the System Agency and Grid Agencies. No team formation is supported 

between Control Agents from different Grid Agencies without the involvement of “Arbitrator” 

Operational Agents at the System Agency level. Teams are dynamically formed and last until the 

completion of its task/objective. Teams may delegate tasks to their sub teams which can play different roles 

in different teams.   

The following figure 4.13 shows a team of Operational Agents and Service Agents in the System Agency, 

collaborating with Control Agents controlling a set of traffic device control (via Controllers).  

This research employed multi-agent approach to control and manage the distributed traffic controllers and 

systems. The ITS@CU platform hence comprises of Agents having specific roles and organised in different 

agencies 
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Figure 4.13: ITS@CU Agent Organisational Structure  

 

See “Appendix J” for organisational relationship model in form of ontology described in XML Schema 
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4.3. Conclusion  

This chapter described the Agent-based Controls approach which addresses the limitations of fixed 

traffic control/devices by extending their capabilities to include Agent-logic provided by dedicated 

Control Agents. Control Agents are supported by Operational Agents and Services Agents in a 

unique organisational structure where all the agents having specific roles work in synergy to 

accomplish complex tasks. 

Throughout the chapter the reasoning and novelty of the agent design approach was discussed with 

emphasis on the Control Agent and the concept of Agent-based Control.  
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Chapter 5 
 

 

5. Agent Communication 
Structure 

 

The previous chapter described the overall design and modelling of the Agents in the 

ITS@CU platform. It covered the detailed design of the three main Agent types, their sub-

types/roles, capabilities and the overall organisational structure. 

This chapter is focused on the communication layer and the message instructions used by 

the Agents (described in the previous chapter) to efficiently communicate and coordinate with each 

other. It is divided into the following sections: 

 Overview of Agents Communication Interface/Layer 

 Structure details of the Agent Message and Instructions/Commands types 

 Agent communication life cycle overview including an example     

 Security considerations for Agents communication in the platform  
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5.1. Multi-agent communication layer 

The communication between Agents and other system components (hosts and Services) is a fundamental 

element of the implementation approach in the ITS@CU platform. It is a novel agent-based communication 

mechanism specifically designed to support Semantic Agent-based Controls.  

The communication between Agents takes place in form of messages with a set of predefined instructions 

understood by all Agents and specific message semantic content (domain and Agent type specific). The agents 

possess both individual and collective level decision making capabilities using dynamic rule sets and plans. The 

messages instructions and semantic contents allow agents to coordinate, collaborate and negotiate amongst 

themselves.   

As seen in figure 5.1, the platform uses the “Agent Communication Layer” which comprises of various 

components to handle the messages between agents. It manages incoming messages/events from other agents 

or outgoing messages intended for other agents. It is also designed to support semantic web service approach 

allowing the augmentation of semantic metadata within Agent messages.  

 

Figure 5.1: Agent Communication Layer 

 

The “listening module” actively looks for incoming messages either from Agents request or events from the 

system components or host controllers. All messages (incoming, outgoing messages and events) are managed by 

the “message flow manager” which puts each message in a queue based on its priority. The message flow 

manager also manages the sequence of function execution (as part of the message flow) especially in the split-site 

hosting mechanism of mobile operational Agents (Arbitrator and System Agents). This sequencing is very 
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important for messages that are part of a workflow for example if the message is a request which is part of the 

subtask delegated by other agents and the request either has to happen at a specific time or event or requires 

further input from the environment (other agents or host). 

The “events handler” deals with internal or external events based on the local rules or data. 

The “web service Handler” is a special module capable of dealing with web service based requests. This module 

can interpret different types of web service-based technologies such as REST, SOAP or WCF. This is important 

for SOA enabled messaging. 

Once a message is released by the message flow manager, the “message content parser” module interprets the 

actual content of the message, which is encoded in domain specific semantics (ontologies defined in XML 

format). The message contents once interpreted against the local ontology and rules are then parsed for further 

processing.  

Similarly, if an agent wants to communicate with other agents it assembles the message and dynamically creates 

the content of the message based on its intention or plan. The newly created message is handled by the message 

flow manager which puts the message into the message queue (based on its priority or sequence). The message 

intended for another agent is then dealt with by the “connection manager” module. 

The “connection manager” is responsible for establishing a connection with the target recipient agent (using 

relevant discovery operational agents). The connection manager uses its credentials in order to connect with 

other agents. It also manages the sessions and other connectivity related functions (message queuing and 

connection re-establishment in dealing with connection lost/issues). 

All messages or events received by an Agent are validated against the “security module” which communicates 

with a security operational agent to perform security checks. 
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5.2. Agent message structure 

As seen in figure 5.2, the structure of the agent-based message comprises of: 

 Message instruction: Outer message layer with instructions (communicative acts) understood by all 

agents in the platform. They contain information such as sender and recipient IDs, type of message, type 

of message instructions, timestamp of creation, priority etc. 

 Semantic-content: This is a semantic layer encoded within the agent message. The semantic-content 

contains domain specific commands representing the actual intention of the sender Agent. These semantic 

commands are different for different types of agents and are only understood by the recipient agents with 

the domain knowledge (ontology) and the agent-logic to deal with the message content. The semantic layer is 

highly flexible and the semantic-content commands can be anything from a simple information request to a 

very complex set of actions/sequence of actions.  

 

Figure 5.2: Agent message communication structure 

 

Every agent message is unique and identified by a message ID to avoid any ambiguity. The following code excerpts 

5.1 and 5.2 show an agent message example with message instruction and semantic-content. It is a simple 

message exchange between a Traffic Light Control Agent requesting the current occupancy of a road from the 

relevant Link Control Agent. 
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Code excerpt 5.1: Request Message Example 

 
Code excerpt 5.2: Reply Message Example 

<?xml version="1.0" encoding="utf-8"?> 

<Agent-Message  Message-Type="Reply"  Instruction-Type="Response-Result" 

Message-ID="MSG00000124" Conversation-ID="CON-MSG00000123"  

Timestamp="2010-11-11 19:24:01" Expires="2010-11-11 19:24:01" > 

 

    <Sender-List> 

<Agent ID="cAgtCtrLnk-07" IsOrignator="False" IsCurrent-Owner="True" /> 

    </Sender-List> 

 

    <Recipient-List> 

     <Agent ID="cAgtCtrTL-01" IsPrimary="True" /> 

    </Recipient-List> 

 
 

    <Semantic-Content > 

        <Ontologies-List> 

            <Ontology Priority-Order="1">Traffic-Flow</Ontology> 

        </Ontologies-List> 

        <Context-Expression-Value> 

            <Result scalar="True" datatype="Int">191</Result> 

       <!— Result from the request message --> 
 

        </Context-Expression-Value> 

 <Rules /> 

    </Semantic-Content> 

 

</Agent-Message> 

<?xml version="1.0" encoding="utf-8"?> 

<Agent-Message  Message-Type="Request"  Instruction-Type="Action" Priority="high" 

 

Message-ID="MSG00000123" Conversation-ID="CON-MSG00000123"  

Timestamp="2010-11-11 19:23:44" Expires="2010-11-11 19:25:44"> 

   

  <Sender-List> 

    <Agent ID="cAgtCtrTL-01" IsOrignator="True" IsCurrent-Owner="True" /> 

  <!-- Other optional Agent details e.g. Agency, type etc. can be listed here, however, not mentioned in this example --> 
   </Sender-List> 

          <!-- List of other Senders, if the message was part of chain/workflow.  However in this example the Agent is both  
 Sender and Originator, so no other senders are listed --> 
 

  <Recipient-List> 

    <Agent ID="cAgtCtrLnk-07" IsPrimary="True" />  

           <!-- Can have other elements, attributes such as Info Only, Dependency, Sequence ID etc. --> 
   </Recipient-List> 

         <!-- List of other Recipients, if the message was intended for multiple recipients as part of message chain/workflow --> 
 

 

    <Semantic-Content > 

 <Ontologies-List> 

            <Ontology Priority-Order="1">Traffic-Flow</Ontology> 

                      <!-- Can be multiple Ontologies and more attributes such as context, location, version etc. --> 
        </Ontologies-List> 

        <Context-Expression-Value> 

     <!-- The rest is only understood by the relevant Recipient -->            
            <Get-Link-Occupancy filter=""> 

                <Link-Name>Foleshill Road</Link-Name> 

                <Start-Node>CtrNd-005</Start-Node> 

                <End-Node>CtrNd-006</End-Node> 

               <!-- Can have various other elements/Attribute based on ontology --> 
            </Get-Link-Occupancy> 

          <!-- Can have various other elements/Attributes  --> 
        </Context-Expression-Value> 

 <Rules /> <!—Rules relevant to the message, if required --> 
 

    </Semantic-Content> 

 

    <Conditions /> <!—optional, statement on which the request has to be fulfilled --> 
 

</Agent-Message> 
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There are different types of message instructions for representing the intention of the Agent in the 

communication layer. These message instructions are based on FIPA ACL performatives however the overall 

message structure is not FIPA compliant as the platform required more complex performatives than the FIPA 

provided. Table 5.1 lists all the message types/instructions supported in the communication layer (in ITS@CU) 

for communication between Agents and highlights and justifies the improvements made. 

Message Type Description 

Request  Request is the most common command used by an Agent to instigate a communication 

with another agent to request it to perform some action(s). It can be a simple Query or 

an Action request containing complex semantic contents.  

Optionally, conditions can be specified by the sender on which the request has to be 

fulfilled e.g. Perform action(s) only if or when condition statement is true. 

As compared to the FIPA specification which has query and request as two separate 

performatives (mentioned in “Appendix D”), the communication approach in this 

research merges both performatives in the Request in order to simplify the messages 

instruction without losing its functional strengths as the platform communication layer 

also include semantic-content (described in chapter 6) which provides the capability to 

embed complex queries/requests in the same message, so there was no need for 

separate query and request performatives/messages instructions. 

Reply In response to a Request/Inform/Propose etc., the recipient Agent uses a Reply command 

containing the possible outcome types (as Instruction-Type message): 

 Refuse to perform the action with reason code(s) e.g. security/access level, role 

restrictions etc. 

 Failure or unable to perform the action with reason code(s) e.g. message corrupt, 

ambiguous ontology/rules, action not possible due to system problems etc. 

 Response-Result usually means successful response to the requested message. The 

response result is part of the Semantic-Content, and can be complex semantic 

instructions or basic scalar type of response such as True/False to confirm or 

disconfirm a statement by the sender.  

 Agree to indicate that the requested Action will be performed by the Agent (when 

possible or the condition is met). This is useful in situations where the reply 

message does not include a result or the request was conditional.  

 Acknowledgement is just to acknowledge that the message was received successfully. 

Every message must be acknowledged if requested by the sender. Usually other 
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reply messages are followed by acknowledgment.  

As compared to the FIPA specification, the Reply message in this approach is very 

flexible and incorporates various other commands as outcome types (Instruction-Type 

in message structure) within the reply message which are separate FIPA performatives 

(mentioned in “Appendix D”). As the platform communication layer also include the 

capability to embed complex semantics in the same message, so there was no need for 

separate specific purpose performatives/messages instructions. 

Cancel This is sent whenever an Agent wants to cancel a previously submitted message of any 

type. It is a simple message with Cancel message type with the Message ID value. 

Forward-

Request  

It is similar to Request, but Forward-Request indicates that the message is forwarded on 

behalf of another Agent. This is important in situations where an Agent wants to relay 

Request messages to Agents not in direct reach or within its area of influence. The 

current sender just acts as a proxy to forward the message.  

Inform Inform message is sent whenever an Agent wants to share information or notify another 

Agent (or Agents).  

This can be a simple notification based on an event or a change in the Agent’s status or 

situation. It can be message for a single recipient or a broadcast message for multiple 

Agents.  

It is used mostly during active Requests or notifying subscribed Agents.  

Agents can use either Reply or Inform in response to the message, if required.  

Forward-

Inform 

Similar to Inform, however Forward-Inform indicates that the message is forwarded on 

behalf of another Agent. This is important in situations where an Agent wants another 

Agent to act as a proxy to forward its information.  

Subscribe It is a message sent by an agent to another agent if it wants to be notified whenever 

some event occurs. To unsubscribe, the same message with Unsubscribe Instruction-

Type value as True will stop further notifications.  

Agents use Reply to confirm subscription/un-subscription status (Response-Result 

Instruction-type with value of True) 

Register An Agent sends this message to register/advertise its capabilities. This is mainly used by 

Service Agents; however Operational Agents can also use it for similar purposes.  

The same message with Unregister Instruction-Type value as True will cancel the 
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registration.  

Similarly, the Agent uses Reply to confirm registration status (Response-Result with value 

of True in the reply message) 

Propose This message is used in negotiation between agents proposing actions e.g. an Agent can 

propose another Agent to apply/consider a specific set of actions as a solution to a 

problem or deal with a particular situation.   

Agents use a Reply message to respond to a proposal for example Rejecting the proposal 

or requesting more proposals  

Table 5.1: Message types/instructions in the agent communication layer   

 

All the messages were defined in XML format which offers a number of advantages: 

 XML is platform independent so is suitable for use in heterogeneous environments. XML is 

standardised by W3C and it is interchangeable between systems and programs which is key for 

heterogeneous entities needing to interact with each other (w3c.org). 

 Compared with other encoding formats (e.g. text file,  RDF, XHTML, JSON etc.), XML is easy to 

generate, parse, edit, and translate because of its strict and consistent syntax, and high standard of XML 

tools are available for these purposes (Chen et al., 2008; Hameseder et al., 2011). 

 XML allows defining of custom document structures, which is ideal for Agent based communication 

ontologies (Daigneau, 2011). 

 Native support for .NET which is the core technology used for ITS@CU platform development (Erl et 

al., 2010) 

 XML can be bound and validated against a schema which was important for Agent based messages to 

conform to a common structure (schema presented in figure 5.3 and  “Appendix M”) 

 

The following is the XML Schema Document (XSD) to define the overall messages structure: 
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Figure 5.3: Agent Message structure (XSD Schema) 

The complete detail of the elements and attributes of the message structure are covered in “Appendix M”. 
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5.3. Agent communication lifecycle 

The multi-agent communication approach adopted in this research can be just a one-off request and reply 

message between two Agents or it can be quite complex where communication involves a chain of 

messages passed between multiple Agents multiple times. As an example, consider a situation where a part 

of a road becomes congested in ITS@CU configuration, the Control Agents for vehicle count sensors 

controllers on the congested road section will report above average flow/occupancy of vehicles to the 

relevant Link Control Agent, which then requests an Arbitrator Operational Agent to propose a diversion 

or any other action(s). The Operational Agent then liaises with multiple other Agents including Service 

Agents if a diversion route is required. Based on the outcome, the Operational Agent sends a proposal or 

request to the affected Control Agents including the originator Control Agents.  

See figure 5.4 showing the overall communication flow for the above described example scenario  
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Figure 5.4: Example Communication flow (Multiple Agents and Message types)  

Every message has mandatory attributes “Message-ID” and “Conversation-ID”. The Message-ID uniquely 

identifies the message and it is generated as a Globally Unique Identifier (GUID) every time any message 

is generated between any Agents. A Conversation-ID uniquely identifies the message thread between 
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multiple Agents which originated initially from a single message. The Conversation-ID is also a GUID to 

avoid any ambiguity.  

The conversation flow therefore has a defined start and end-point. A conversation is ended either by the 

originator sending an Inform or a Cancel message. Alternatively an Operational Agent such as an Arbitrator 

Agent can end the conversation, if necessary.   

Multiple Messages can be also bundled by the message interface module however each message still 

maintains its complete structure with a unique message-ID to keep messages separate and avoid any 

ambiguity.   

Messages are parsed by a “Message Processor” which is part of the Interface Manager (shown in figure 5.1). 

It separates the message instructions and embedded semantic-content for an Agent to perform further 

analysis.  

Chapter 7 covers further details at the implementation level.     

 

5.4. Security 

Security is vital for any system and network, however agent based systems require an extra level of security 

as compared to other distributed technologies as an Agent is autonomous and can cause intentional or 

unintentional harm to a system. It may affect the performance of the host, communication channel or 

compromise data validity and privacy. In the agent communication layer, various measures were adopted 

to implement security such as:  

 Every Agent is uniquely identifiable and has a specific role and level of access. For example, a 

Control Agent can only send inform messages to other Control Agents and request limited actions, 

however a “Controller Manager” Operational Agent can create, suspend and access multiple 

Control Agent’s data.  

 Security is handled by a specialised “Security” Operational Agent which verifies Agents and their 

messages according to their roles, level of access/authority, trust and usage allocation policy. If 

an Agent requests another Agent, the message is verified by a Security Agent to check if the 

Agent is trusted and has the level of authority for the actions it is requesting. 

 During the hosting mechanism the Control Agents use only the agreed level of host resources 



5.  Agent Communication Structure  

 

131 

 

 

specified as a usage policy agreement by the “Controllers Manager” Operational Agent in order 

to avoid the excessive exploitation of the host CPU or memory. 

 The relevant Agent Manager Operational Agents (e.g. Control Agents Manager for Control 

Agents) can stop or suspend an Agent, if required. The “Arbitrator” agent can also cancel a 

conversation or message request. 

Chapter 7 covers further details at the implementation level.     

 

5.5. Conclusion  

This chapter described the agent communication layer and the message instruction types used by 

Agent-based Controls and other platform Agents to efficiently communicate and coordinate with 

each other. Agents communicate using messages based on a unique structure composed of an outer 

message instruction part and a semantic-content part. The chapter covered the types of message 

instructions/commands, which were based on FIPA performatives but adapted with improved 

functionality due to the enhanced capabilities of the semantic-content supported in the agent 

communication layer.  

The next chapter provides further details about the “semantic-content” part of the Agent message 

which is the essential part of Agent communication for understanding the agent’s intentions in 

order to work together to achieve their goals. 

 



6.  Agent Semantics, Ontologies and Rules structure 

 

132 

 

 

 

Chapter 6 
 

6. Agent Semantics, 
Ontologies and Rules 

structure 

 

The previous chapter presented the structure of the Agent communication layer for multi-

agent communication and coordination in the ITS@CU platform. 

This chapter is focused on the design of the Ontologies and Rules used in multi-Agent 

communication to describe the semantic behaviour of the Agents and facilitate in decision 

making. The chapter has the following sections:  

 The first section describes the steps or flow of Agent messages (from receipt to action) 

 The second section describes the structure of the “semantic-content” part of the Agent 

messages  

 The third section describes the structure of the Ontologies associated with Agent 

messages  

 The fourth section describes the structure of the Rules, and selection and matching 

criteria used by agents to formulate Plans as part of the decision making process 

 The fifth section outlines the formulation of Plans by agents based on the Rules in 

order to respond to situations/perform actions 
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6.1. Agent message flow   

Agent-based controls require ontologies for understanding the semantic-content in agent messages and to 

realise the communication intention. Ontologies semantically describe the Agents’ behaviours and 

coordination for efficient communication. When Agents communicate about a domain then it is necessary 

that there is an agreed set of common terminology that these agents understand for describing that domain.  

This section describes the core structural design of ontology and rules set which can be embedded as 

part of the Semantic-Content of the agent message.  

Figure 6.1 presents the steps which an agent message goes through in order for an Agent to perform the 

required actions.   

 
Figure 6.1: Message flow overview  

 

Ontologies and rules can be stored in files or in supported databases as an XML data type. The storage 

depends on the type of host e.g. Grid controller can host a light version of DBMS (SQL Server Compact 

Edition which supports the XML data type), but a vehicle count sensor Controller can only store basic 

XML files.  
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•Analyse/understand the semantic-content  
(Required tasks, processes, resources and entity relationship etc.) 
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•Select Rules 
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Figure 6.2: Message & Semantic-Content composition and parsing 

As seen in figure 6.2, an Agent receives a XML message comprising of message transport instructions and 

semantic-content. It is parsed by the interpreter/parser module which extracts the semantic content from 

XML document tree by splitting the message (see example code excerpt 6.1). The Agent then analyses the 

semantic-content part in accordance with the referenced ontology and also if any corresponding rule set 

can be applied from the rule set in its local memory storage.  

The semantic-content of an agent message can be a simple request such as the example code excerpt below 

or it can be very complex with references to multiple ontologies and new rules embedded within the 

semantic-content part. If the agent does not have the referenced ontology or has only a partial ontology 

then it composes another message to request the ontology from the requester agent or an operational 

agent. Similarly, if it does not have any rule or partial rule set it can also request the requester agent or a 

relevant operational agent to send matching rules. In this way the agent can perform a very complex task in 

coordination and cooperation with other agents. This also means that the agent does not need to have all 

the ontologies and rules available locally as it can always obtain them when required. This helps in keeping 

the local stored information to a minimum on the host hence reducing the need for more storage and 

memory. Although requesting ontologies and rules can result in a communication/data overhead, its 

benefit far outweighs this issue.      

Once the Agent has the complete ontology and rules required for the message semantic-content realisation, 

then it can perform the required task(s).  

Similarly, if the agent wants to send a message it composes the message and embeds semantic-content 

based on rules and ontology. The message is composed by a “Message Assembler” module which generates 

a XML document message file according to a valid schema (See figure 6.3 and the details in “Appendix M”).   
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Code excerpt 6.1: Example XML Message and Semantic-Content 

  

 

6.2. Semantic Layer (Semantic-Content) description 

As seen in code excerpt 6.1, the element “Semantic-Content” within the “Agent-Message” XML message 

document contains the semantic information required for the recipient Agent to analyse and process.  It is 

not bound to a strict XML schema as compared to the message itself. The main message XML schema uses 

<any> element and <anyAttribute> attribute to allow flexibility in the semantic-content part of the 

XML document (see figure 6.3). 

In the semantic-content there are few common elements and attributes shared by all agents and the rest of 

the nodes are specific to the type of Agent. The common nodes/elements are:  

 <Ontologies-List> List of ontologies required as a reference to understand the request 

<Agent-Message  Message-Type="Request"  Instruction-Type="Action" 

Message-ID="MSG00000123" Coversation-ID="CON-MSG00000123"  

TimeStamp="2010-11-11 19:23:44" Expires="2010-11-11 19:25:44"> 

   

  <Sender-List> 

    <Agent ID="cAgtCtrTL-01" IsOrignator="True" IsCurrent-Owner="True" /> 

   </Sender-List> 

 

  <Recipient-List> 

    <Agent ID="cAgtCtrLnk-07" IsPrimary="True" />  

   </Recipient-List> 

        
 

    <Semantic-Content > 

 

 <Ontologies-List> 

            <Ontology Priority-Order="1">Traffic-Flow</Ontology> 

                      <!-- Can be multiple Ontologies and more attributes such as context, location, version etc. --> 
        </Ontologies-List> 

 

        <Context-Expression-Value> 

     <!-- The rest is only understood by the relevant Recipient -->            
            <Get-Link-Occupancy filter=""> 

                <Link-Name>FolesHill Road</Link-Name> 

                <Start-Nodes>CtrNd-005</Start-Nodes> 

                <End-Nodes>CtrNd-006</End-Nodes> 

               <!-- Can have various other elements/Attribute based on ontology --> 
            </Get-Link-Occupancy> 

          <!-- Can have various other elements/Attributes  --> 
        </Context-Expression-Value> 

 

 <Rules /> <!—Rules relevant to the message, if required --> 
 

    </Semantic-Content> 

 

    <Conditions />  

 

</Agent-Message> 
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message. It also includes the priority and URI (location if the recipient agent wants to retrieve the 

ontology).   

 <Context-Expression-Value> Context expression containing the actual tasks or 

actions required. This is the core part of the entire message and is designed to be flexible allowing 

any type of attributes and elements. 

 <Rules> List of Rules which the sender Agent sends to the recipient in order to deal with the 

required tasks. It is up to the recipient agent to decide whether to apply the rules or not.  

 

Figure 6.3: Semantic-Content structure (XSD Schema) 

Further details of all the elements and attributes are covered in “Appendix N” 

The example code excerpt 6.1 shows simple semantic-content within a message between two control agents. 

The recipient, upon receiving the message, interprets the <get-link-occupancy> node and refers to its 

ontology to understand what action is required. The ontology “traffic-flow” (see figure 6.6) has the 

definition of get-link-occupancy and its sub nodes. After referring to the ontology it will ascertain that the 

request is about the current occupancy of a link between certain junction nodes (as per ontology 

relationship in figure 6.3 and terms explanation). Once the message is interpreted, the recipient agent will 

check against its rule set for an appropriate response. In this example no rules were provided by the sender 

implying that the recipient agent has the appropriate rules to deal with the request.  

In response the agent composes another message and embeds the return value in the semantic-content (as 
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shown in the code excerpt 6.2), also referring to the same ontology. Further details related to this message and 

ontology example are covered in the next section. 

 

Code excerpt 6.2: Example Semantic-Content in a reply message 

 

 

 

 

 

6.3. Ontology structure  

The approach adopted in ITS@CU includes various ontologies for Agent communication. The 

ontologies are classified as top-level, domain-level or task-level:  

Top-level: Describes general concepts and metadata in overall ITS@CU platform, for example, 

resource, roles and agents types and basic message terms/concepts. In this research, both foundational 

and generic ontologies are treated as top-level ontologies. The reason for adopting this approach was 

commonalties between the two in the platform and also to simplify/promote basic understanding among 

the agents.   

Domain-level: Describes the terminology specific to a particular domain for example the signal 

adaptation ontology is understood at local traffic light controllers by the involved agents. It is also used 

to further elaborate the top-level ontologies according to the domain.   

Task-level: These ontologies are specific to a particular task or process for example traffic-flow 

optimisation, broadcast alerts on route, perform recovery task etc.  

    <Semantic-Content > 

        <Ontologies-List> 

            <Ontology Priority-Order="1">Traffic-Flow</Ontology> 

        </Ontologies-List> 

        <Context-Expression-Value> 

            <Result scalar="True" datatype="Int">191</Result> 

        </Context-Expression-Value> 

 <Rules /> 

    </Semantic-Content> 
 

 



6.  Agent Semantics, Ontologies and Rules structure 

 

138 

 

 

 

 

 

Figure 6.4: Top-Level Ontology Structure (classes) 

 

As seen in figure 6.4, the overall ontology structure consists of the following type of classes:  

Organisation: Service providers for example Microsoft Bing which is providing the route service is a 

separate organisation in the description of ITS@CU’s top-level Ontology.   

Resource entities: Describes the resources (host controllers or Services) used in the processes for 

example Route Service, local traffic controllers/devices, central control system and other such host 

systems that can be used as resources in the platform system.  

Processes/Tasks: Describes the actual processes involving a set of tasks for example “signal 

adaptation” process for traffic lights Control Agent, “Broadcast” specific message by operational agent 

to relevant recipients etc. Control Agents rely on these ontologies for its decision making process.   
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Artefacts: Describes the output result (product) of a process, for example “Divert traffic” process 

results in a plan or plans for Control Agents to implement, “Report current vehicle flow” process 

generates a report of the current status of the vehicle flow on a specific road or section.  

Roles: Describes the Agents roles responsible for executing tasks/processes and providing 

resources/services, for example, “Traffic Lights Control Agent” performs the role of 

managing/controlling set of traffic lights controller, “Route info Service Agent” provides route and 

traffic information, “Security Agent” checks message validity and authenticates agents acquiring a 

resource.  

Individuals/Others: Additional classes which are not directly associated with above classes for 

example vehicles. They are however interlinked with the above classes and use the ontologies in 

conjunction with other classes.  

 

Agents use ontologies at different levels to understand the semantic contents of the messages. 

Ontologies not only provide the relationship and understanding between entities, resources and their 

properties, but also references to rules within processes which enables Agents to take appropriate and 

circumstantial actions. This is especially important for Control Agents mainly due to the dynamic nature 

of Control Agents and also the limitations of storage/memory (on its host). A Control Agent relies on 

dynamic ontologies for its operations rather than storing all rules and functions locally on the traffic 

Controller host. 

The following figure 6.5 shows the complete top-level ontology used in ITS@CU. The top-level ontology 

is further elaborated and fine grained using set of domain and task-level ontologies. 
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 Continued on the next page  
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Figure 6.5: Top-level/main ontology (used the ITS@CU implementation) 

 

The following figure 6.6 is a fine grain example of a task and domain level ontology derived from the top-

level ontology. It describes a simple “process” ontology which is applicable to Control Agents within a 

grid and local traffic controller’s domain (Traffic Counts Control Agents in particular).  
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Figure 6.6: Part of Ontology “Traffic-Flow” 

 

In the previous example mentioned in section 6.2 (and code excerpt 6.1), the semantic-content refers to 

“traffic-flow” ontology (partially illustrated in figure 6.6). The receiving Control Agent of the message will 

look up (or acquire) this ontology to understand and analyse the semantic content under the context 

expression element. Using this ontology the control agent can understand what a link-name refers to, and 

what a start and end-node means. It will also understand the function required to fulfil the request i.e. get 

the current occupancy of the road or link-name mentioned in the message. The functions would be 

matched in the local rules in the Agent’s memory or storage. Using the relevant rules the agent will 

formulate a plan of action to execute the request. Rules and plans are discussed in the next section. 

Similarly, there are various other task and domain-level ontologies which are used in ITS@CU for agent 

based communication (ontologies included in “Appendix J”). 

Ontologies can be defined in various formats such as RDF and OWL (mentioned in section 2.3.3), 

however in this research, XML was used for defining ontologies and rules due to its flexibility and 

suitability of SOA based environments.  
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6.4. Rules structure  

Rules describe the beliefs of an agent in the context of the agent implementation in this research. Rules 

are fundamental for Agent-based Controls and forms part of the Agent-Logic and can be also embedded 

in semantic layer of agent messages (see figure 6.3 and the details in “Appendix M”).  

 

Figure 6.7: Rules structure example (of a Control Agent)  

Rules are a set of match and select cases with possible response actions which an agent uses for its 

operations and to deal with events. As seen in the rules structure example in figure 6.7, the rules are of 

two types (i.e. Match-rules and Select-rules) which an Agent uses for its decision making process and to 

 Match-Rules:  
 
R-1:  IF  $user-info$  i  in range of  $Condition-Value-Set$ 

&& <<select-rule-R5>>  has goal  G  
THEN  <<select-rule-R6>> with parameter  i, G 

 
 
R-2:  IF  $Agent-name$  Agt  is part of  >>check-Agency-number(Agt)<<   

&&  $Controller-ID$  ctr  is part of  Agt  
THEN  <<allow-actions>> on  ctr  
 
 

R-3:  IF  >>user-action<<  ac  =  Complete   
|| ac = $defined-value$   

THEN  <<select-rule-R9>> 
 
 

R-4:  IF  $defined-value$  value  in message is ambiguous || undefined  
THEN  >>generate-response-ontology(value)<<  

 
 

 Select-Rules: 
 
R-6:  IF <<select-rule-R6>> 

THEN Wait   %set-wait-time%   &&   >>generate-reply-accept<<  
 with parameter   >>generate-reply-accept<<  in   %set-wait-time % 
IF response $status$ = high THEN  
>>generate-reply-accept<<  to  oAgtArb-1  
 for >>generate-reply-accept<<  with parameters  i, G  
 

R-7: IF <<select-rule-R7>> 
THEN >>send-request-stop($controllers$)  AND 

>>Change-status($defined-value$)<<  
 

R-8: IF <<select-rule-R8>> 
THEN >>get-link-occupancy($start-node$  ,$end-node$  ,$link-name$ )<<   

From $Agent-name$ 

$value$                = variable values   
%attribute% = local attribute value of the Agent  
<<select-rule>>  = Reference to other Rules 
>>local-function(parameter)<<  = local method of the Agent 
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formulate a plan of actions. An Agent uses match-rules in order to check if any condition or request by 

another agent matches an already existing rule. Match-rules can refer to select-rules which are action 

oriented and important for an agent to create a plan of action(s). 

Agents can change/update their Rules if requested by other Agents with authority (such as Control 

Agents Manager). Any such update comes as a request message. However not all rules are updatable by 

other Agents as they are a fixed type of rules for example rules in the default-logic of a Controller. The 

update mechanism provides flexibility and allows the traffic controllers to be updated whenever new and 

better functionality or rules are available (released by Manager operational Agents).   

Rules are defined in XML and stored in the agent’s local data store (host database or xml file), see 

“Appendix J” containing all the rules which were used in ITS@CU implementation and evaluation 

purposes. 

 

 

 

6.5. Agent Plans  

Once an Agent identifies the matching rules and appropriate select rules (in response to the 

situation/event it is dealing with), it dynamically formulates a plan of action (based on these rules and 

their agent-logic operations). The plan contains various action steps with different utility values. Utility 

values are used as weighing factors for the selection of an individual plan’s action. An action is treated as 

a goal for an agent to achieve and the agent aims to perform the action with highest utility value possible.  

The following figure 6.8 shows an example of plan structure. 
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Figure 6.8: Example structure of a plan (produced by a Control Agent) 

Plans are also defined in XML, See “Appendix J” containing various examples of Rules used by Agents in 

ITS@CU platform. 

 

6.6. Conclusion  

This chapter presented the approach of Ontologies and Rules used in Agent communication to 

describe the semantics of Agents’ messages and facilitate decision making. It outlined the flow of an 

Agent message in this platform which goes through the following steps: message interpretation; 

Ontology processing for understanding the message semantic-content; Rules selections and 

matching to formulate a plan of action.  

The semantic layer approach in Agent communication provides a high-level of flexibility in the 

form of semantic-content containing expressions, Ontologies and Rules embedded within Agent 

messages. In this way the agent messages can contain sophisticated semantic-content commands 

with references to multiple ontologies and rules at various levels. This provides Agents with a 

communication framework to work in synergy and coordinate distributed decision making at different 

domain levels.   

GOAL:  
 RESTORE-TRAFFIC-FLOW  
 
SITUATION  
 Road block “Link-1” between “Node-05” and “Node-06”  

oAgtArb-n confirmed diversion 
sAgtSvcRt-n provided alternative route 

 
 

Plan-1:   
 UTILTY: 20 

<<select-rule-R6>> 
THEN  >>generate-inform-message<<  to  oAgtArb-n 
FAILURE:  Retry $set-value$ times ELSE execute Next higher utility value plan 
 

Plan-2:   
 UTILTY = 10 

IF checkFlowStatus(route-1) from oAgtArb-2  
<<select-rule-R-20>> AND <<select-rule-R-10>>  
THEN  >>generate-inform-message<<  to  oAgtArb-n  
FAILURE:  Plan3 
 

Plan-3:   
<<select-rule-R-0>> -- do nothing 
THEN  >>generate-inform-message<<  to  oAgtArb-n  
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Chapter 7 
 

7. Implementation of  
ITS@CU platform 

 

The previous chapter described the design of the Ontologies and Rules used in multi-

Agent communication to describe the Semantic behaviour of the Agents and facilitate in 

decision making. 

This chapter presents the design and development description of the ITS@CU platform 

relevant to the concepts described in chapters 4, 5 and 6.  It is divided into the following four 

sections:   

 The first section provides an overview of the platform and its purpose 

 The second section presents the architecture and design of the overall platform  

 The third section covers the technical description of the platform’s three main 

components, applications, services, databases and communication structure. It also 

highlights the tools and technologies used for the development of the platform.  

 The fourth section outlines the Mobile Application Development Framework 

(MADF) which was developed as part of the research for the rapid development of 

different Controller and Control applications in order to simulate their behaviour. 
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7.1. Platform overview  

The ITS@CU platform is the combination of systems/applications, services, development framework 

and communication layer modules implemented to meet the research objectives. ITS@CU was 

implemented using the novel concept of Semantic Agent-based Controls and by uniquely combining 

Multi-Agent, SOA, semantic web services and intelligent control agents with the aim of reducing the 

complexities and inefficiencies resulting from the integration and communication between distributed and 

multi-domain controls associated with ITS.  

During the research, various platforms and systems (mentioned in chapter 2) were evaluated and studied; 

however each lacked certain core features needed to fully meet the research objectives and the 

commercial requirements. Additionally, there was a lack of suitable development platforms available for 

the simulation of ITS controls and rapid application development on a commercial level. Most of the 

simulation tools and platforms currently available are either too specific, technology centric or in early 

research stages.  

The ITS@CU platform was therefore developed from the ground up in order to achieve the following 

core objectives and requirements:   

 Ability to support the Semantic Agent-based Controls concept (presented in chapter 4). 

 Support dynamic cooperation and coordination between different Agents, services and systems 

from different domains and grids using the semantic data/ontologies, and respond to traffic 

situations using the rules and plans (described in chapter 6). 

 SOA principles based communication and integration architecture to support multi-Agent 

communication (described in chapter 5) using web services in a highly distributive environment.   

 Capable of integrating with other commercial systems and using commercially proven tools and 

technologies.  

 Provides features for the rapid development of applications to simulate various Agent based 

Controls (Traffic Controllers) and roadside controls.  

 Provides supporting utilities and applications for the management and simulation of the system 

and its components.  
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7.2. Design and architecture  

7.2.1. Platform components  

Modern traffic networks consist of various systems and components for example roadside 

devices/sensors, regional/central management system, vehicles, traveller information and flow control 

equipment. In order to design and develop the ITS@CU platform (and associated sub-systems) it was 

divided into three core components:   

 

Figure 7.1: Components of the ITS@CU platform 

Central Control System: This component consists of a central system (representing a set of system 

tools/utilities) responsible for managing the entire traffic infrastructure i.e. Control Agents, grid 

controllers and vehicle controls. It provides the central point of communication and coordination for grid 

controllers and operational Agents.  Although grids (and systems within grids) form a network of 

distributed systems with internal decision making power, it is necessary for security and safety reasons to 

have a Central Control which arbitrates and controls the grid and control agents at a higher level.  

Grid/Traffic Infrastructure Controls: This component includes all the traffic controllers (traffic lights, 

sensors, dynamic message boards/signs etc.) which are part of the road network. Based on the grid 

approach described in chapter 3, traffic infrastructure is divided into smaller variable size zones/areas. 
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Each grid is managed by a “Grid Controller” which hosts various types of Agents having different roles 

responsible for controlling and managing all the traffic Controllers (and Agent-based Controls) within the 

Grid area and communication with the control centre, vehicles and other grid controllers. 

Vehicle Control System:  As vehicles are dynamic entities they cannot strictly be part of any 

infrastructure grid controllers or in direct control of the infrastructure controls. However, in ITS based 

environment it is vital that the vehicle communicates with other components/controls. In the ITS@CU 

platform, Vehicle controls are designed to retain full control but are able to communicate with the 

infrastructure controls and other vehicles in range.    

 

7.2.2. Platform components design architecture 

The ITS@CU platform is a distributed and multi-layer system comprising of various components, 

modules and services. For this reason, and due to the other benefits described in chapter 2, section 2.5, 

Service Oriented Architecture (SOA) was adopted as the core architecture for the overall integration and 

communication of the ITS@CU platform.  

Each system or module within the platform has a different architecture for example a web application 

internally uses Model View Presenter (MVP) design architecture and the mobile application for 

Controllers uses component and object oriented design. The components are integrated in a loosely 

coupled manner using services and SOA principles i.e. each controller, system/sub-system within the 

platform is either a service or provides a service interface to others. SOA provides simple services based 

communication and integration between systems/components regardless of the systems’ underlying 

technologies.  

The platform was designed to be generally de-centralised however the central control (Cc) system 

provides arbitration and governs the high-level rules to ensure security and safety. The more 

centralisation is increased the more it delays decision making as central control has to communicate with 

all the involved controls to make a decision. On the other hand, if the system is completely decentralised 

to agent/grid controls level then the traffic Controllers require more processing power and memory. The 

ITS@CU platform follows a hybrid approach where the central system arbitrates at a higher level and 

agent-based controls perform tasks in association and cooperation with each other.  

As seen in figure 7.2, the platform components have different modules and layers. Each module performs 

a specific set of functions and comprises of various applications and utilities.  
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Figure 7.2: ITS@CU Architecture  
 

The Central Control (Cc) system comprises of the following core modules and layers: 

Services Layer  Comprises of different services providing various functionalities to other components 

of the platform. The “Vehicles Service” is used by vehicle controllers to send location 

data (GPS) periodically which can be used for vehicle tracking and other traffic data 

analysis purposes. The “Platform management service” is used by grid controllers to 

send and receive traffic controllers and Agents related updates and administration 

instructions.  

The “External services” are used by Service Agents to access services from external 

sources (such as Bing Map route information or Met Office weather information).  

The “Agents communication service” is the core communication service interface used 

by Grid Level Agents to interact with Central control system level Agents.  

Communication 

layer 
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Intelligence 

Layer 

This layer comprises of an application which perform vital functions such as Traffic 

Data Analysing, Incident/Congestion Detection & Response, Agents Controls 

arbitration and decision making. 

Additionally, it hosts Operational Agents (Central Control Level) and Service Agents for 

providing access to external service. 

Application Layer Includes web-based applications for vehicles and controls monitoring and management. 

The monitoring application has an interactive map based user interface. Additionally, it 

has various utilities for simulation purposes. 

Central 

Knowledge base 

Comprises of databases for Grids Controllers/devices, Agents and Ontologies/Rules. 

Table 7.1: Central Control modules and layers 

The Grid Control (Gc) system comprises of the following core modules and layers: 

Grid Controller This is an application for controlling and managing the Grid and associated traffic 

controllers. It provides the ability to host Agents and is responsible for the decision 

making/arbitration capabilities at grid level.  

Agent-based 

Controls 

This module refers to the traffic controllers with Control Agents for 

managing/controlling its operations, as described in chapter 4, section 4.12. Agent based 

Controls require a “Traffic Controller” which is different dependent on the type of traffic 

controller. The application provides the ability to host a “Control Agent” which provides 

Agent-Logic (in addition to default logic) and communicates with other Agents at Grid 

Level for advance decision making.  

Grid 

communication 

layer 

Includes various web services for interacting with other grid controllers and traffic 

controller devices. It provides all the connection management functions (Message 

Queuing and Session management), Security (Encryption and Authentication) and 

Notifications to other components etc.  

The communication layer also includes the “Agent Communication Layer” specifically 

designed to handle the Agent-based communication and interaction between different 

types of Agents (communication layer/interface described in chapters 5 and 6). 

Grid Knowledge 

base 

Comprises of databases for traffic Controllers/devices, Agents and Ontologies/Rules at 

grid level. 

Table 7.2: Grid modules and layers 
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Vehicle Controller (Vc): Application to manage and control in-vehicle systems/devices and provide 

communication with other vehicles and infrastructure grid controls. It also provides driver assistance 

features (Navigation/Route assistance, real-time feeds/alerts etc.) and can send its current location and 

status to the central server (for tracking purposes).  

Remark: “Vehicle Controllers” and “Traffic Controllers” can be different types of system/devices and 

technologies.  The ITS@CU platform proposed a design approach where a traffic Controller or Vehicle 

controller can provide the capability to host the Agents (as described in chapter 4). For the purposes of 

this research, various traffic controllers and vehicle controller applications were developed using a mobile 

application development framework (described later in this chapter, section 7.4) in order to simulate and 

analyse the design approach and the behaviour of Semantic Agent based Controls in the platform. 

See “Appendix H, Section 1” for further details of the ITS@CU components and architecture description.  

 

The section 7.3 provides the technical description and implementation details of each of the platform’s 

component and modules. 
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7.2.3. SOA reference architecture of the platform  

The overall architecture of the platform is based on SOA for the seamless integration between distributed 

traffic control systems and Agents from multiple domains using the Services mentioned in the previous 

section. The benefits and reasons for adopting SOA have been discussed in chapter 2, section 2.5.  

Figure 7.3 shows the customised Reference Architecture which was designed as a framework to help and 

guide the overall SOA implementation of the platform. Reference Architecture is the architectural 

blueprint using well-defined SOA principles and best practices for describing all the services, their 

categories, layers, technical aspects, integration and underlying infrastructure.   

 

Figure 7.3: ITS@CU SOA Reference Architecture  

As seen in figure 7.3, the platform’s reference architecture has different layers comprising of different 

modules. The platform supports different types of service consumers (Controllers/PDA applications 

such as Grid Controller Application, Vehicle Controller simulation application or other platform 

management applications/utilities). These Controller applications support running relevant platform 

Agents hosted on the Controller devices. The Service Agents perform the composition of different 
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service requests to bundle into process flows through orchestration or choreography, which act together 

as a single or composite application. The composition of services in dynamic service flow is vital for 

Agent communication and decision making. 

The core SOA layer comprises of the platform services and the supporting infrastructure modules. The 

services layer provides the main communication interface between different agents at both grid and 

central control system level. The “communication interface services” use message processing modules to 

interpret the incoming messages (as described in Chapter 6, section 6.1 – communication flow) and uses the 

security Agent for authentication and access level. “Business logic/decision (Agent-Logic)” services are 

the main functional services providing the logic required for decision-making or to fulfil the requests 

made by service consumers (Agents). It also deals with internal and external events (System or Agents 

related). The Agent-logic services utilises “data access services” to access the knowledge base of the 

platform (i.e. Ontologies, rules and database). The “Connectivity services” and “Adapter services” 

facilitate the integration of the platform components (i.e. traffic controllers, grid controllers and external 

services). 

The services in the platform are supported and managed by different infrastructure modules. The 

“Service Bus” uses different Operational Agents for Agent message routing, service translations, usage 

and orchestration features. Additionally, other modules use the Operational Agents (described in chapter 

4) for instance QoS Operational Agents are used for service reliability/performance; the Service Registry 

Agent is used for dynamic service discovery; Agent Manager Operational Agents and Arbitrator Agents 

are used for management/Governance; and Security Agents provide authentication/encryption.   

The consumer Agents dynamically discovers the services across the Service bus (using Service Registry 

Agents). Services publish their capabilities in the form of a WSDL description embedded with 

semantic/ontologies. The consumer Agents look for Tags (Meta key words) in the service descriptions to 

find, invoke and then choreograph into a composite service. Semantic web Services are interpreted based 

on their ontology description and the terms of use are based on the policies and service contracts 

(governance). These services interact with other services and underlying business components and data 

access components. The services can exist in isolation or as part of a composite service. 
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7.3. Components development and design description 

This section describes the platform’s components and its modules outlined in the previous section. It 

covers the technical implementation and design description including the technologies which were used 

to developed individual modules or applications. 

7.3.1. Central Control system  

The Central Control System comprises of various applications, databases and utilities responsible for managing 

the ITS@CU platform. It performs the following key functions: 

 Traffic infrastructure Controllers, Agents and Grids management  

 SOA enabled Services Layer for communication and coordination between all the components and 

Agents  

 Intelligence Layer to oversee and arbitrate the decisions by Agents (on multi-grid level) regarding 

incident detection, response, self-organisation and traffic flow adaptation process 

 Manage and provide ontologies and rules for Agent based communication  

 Provides interface to external Services  

 Real-time data analysis and central knowledge base 

 Provide map data/GIS information and services (for route generation and Geocoding)  

 Applications and utilities for map based visual monitoring and system administration  

7.3.1.1. Infrastructure description  

The Central Control application and utilities are designed to be hosted on multiple servers (running Windows 

Server 2008 R2). During the implementation of the research project they were hosted in a secure data centre 

(at T@lecom) and based on the following infrastructure as seen in figure 7.4. In this infrastructure approach 

there are three types of servers (clustered pair): 

 Gateway Web Server 

 Application Server  

 Database Server 
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Figure 7.4: ITS@CU Central Control (Server Side) infrastructure 

The Web Server provides an interface to other components/systems via .NET Web Services and 

Windows Communication Foundation (WCF) Services based on SOA principles and using a service bus. 

The Services and web applications are hosted on the Internet Information Services (IIS) and provide 

AES-128 based encryption for security purposes and GZIP based compression. Microsoft Message 

Queue (MSMQ) is used for message queuing and data reliability to avoid data loss during communication 

between Agents and Controller applications. The Web servers are configured as Network Load Balance 

(NLB) cluster for load sharing and also to provide a resilient interface to the end users (Grid 

Controllers/Devices – Agents).      

The Application Server includes the core “Intelligence Layer” which consists of a set of windows 

services and desktop applications performing real-time traffic data analysis for detecting congestions and 

other problems. It also provides map data, GIS and routing information and interfaces with external 

systems (such as Microsoft Bing Map Services). It has a comprehensive map-based visual monitoring 

application and system management/administration application. Additionally, it has a simulation 

application allowing it to simulate the behaviour of Agent-based controls in various traffic situation such 

as congestion, road blocks etc. The Application Servers are configured as a Windows Server 2008 

Failover Cluster for high availability and resiliency.  

The Database Server hosts the “Knowledge base” which comprises of various databases for Grids 

Controllers/devices, Agents and Ontologies/Rules. It uses SQL Server 2008 R2 Enterprise Edition 

configured as a Failover Clustered application for high availability and resiliency. The data is stored on a 

shared Storage Area Network (SAN) device. 
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7.3.1.2. Services on the central control system 

Communication services (interface/layer): This is the main communication layer for 

Agents and system component interactions hosted on the web server. It is the implementation of the 

Agent “Communication Interface” described in chapters 5 and 6. It is composed of various web services 

categorised into the following 3 types:  

Security Service This service provides the following security functions: 

 Validates login credentials and access level of an Agent (and any other 

components/users in the platform) before granting it access to the required 

service in the platform 

 Encrypt/Decrypt the AES-128 message contents  

Notification 

Service 

This is a web service providing all of the event-driven notifications to relevant 

Agents. It performs the following functions: 

 Broadcast messages to Agents (by groups) 

 Notify Agents when updates are available (Agent-Logic update, Ontology/Rules 

update) 

 Send stop, suspend or resume commands to agents (on behalf of Operational 

Agents) 

 Send Alerts and Notification messages to traffic Controllers (Simulation mobile 

applications on PDA devices) 

Agent 

communication 

Service  

 

This service provides all the key Multi-Agent communication between the Central 

Control and Grids level Agents. It provides a set of web methods/functions to 

facilitate SOA enabled communication between Agents of different types. Some of the 

functions include:   

 Capability to interpret the message structure described in Chapter 5, section 5.2 i.e. 

the commands/Instruction types used by Agents, and the semantic-contents 

interpretation using the ontologies and rules. 

 Maintain connection sessions for messages (using Message-ID) and restore 

connectivity in the event of message failure or corruption 

 Facilitate the conversations/message threads involving multiple messages by 

multiple Agents as part of the decision making process or composite service 
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work flows. It uses MSMQ for queuing messages in an orderly fashion (based 

on priority basis) required for executing actions in a correct sequential manner. 

Table 7.3: Communication Layer Services  

The services in the communication interface/layer were developed in accordance with SOA principles as 

per the SOA reference architecture of the ITS@CU platform (discussed in section 7.2.3).  

As seen in figure 7.5, the implemented web services allow SOAP, REST, HTTP Get and HTTP Post 

bindings and Port types for maximum compatibility and support for different types of service consumer.  

Remark: All the Agent message instruction types (described in chapter 5, section 5.2) are implemented as 

web service operations with Semantic-Content, Ontologies and Rules embedded as XML data types. For 

example, the AgtMsgRequest operation in the port types seen in the following figure is the implementation 

of a “Request” message instruction. 

 

Figure 7.5:  WSDL of the Agent Communication layer  
(shows Agent Message Instructions as web methods/Operations  
with semantic-content embedded as XML data type parameters) 
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The operations in the Agent communication layer service support Semantic Web Services. This provides 

flexibility in Agent based communication based on this research approach as traditional web service 

technology requires well defined service interfaces. Semantic web services address these limitations by 

augmenting the service descriptions with semantic metadata (meta-tags). The Semantic-Content (semantic 

layer) and Ontologies are therefore implemented as a core part of each operation in the Agent 

Communication interface/layer of the platform. The semantic web services also allow Agents to 

dynamically discover services and compose service flows benefitting on the adopted SOA approach as 

well.  

Further details of the WSDL, class descriptions and code is provided in “Appendix J” 

Platform Management Service: This service is used by the “ITS@CU System Management 

Application” and simulation utilities for the following management and administration related 

functionalities:  

 Grid Management (Add/update or delete Grid Controller or change its settings)   

 Agent management (Add/update or delete Agents in the platform)  

 Traffic Controller management (Add/update or delete traffic controllers in the platform)  

 Monitoring of traffic Controllers and Control Agents (used by Manager Operational Agents) 

 Various other functions such as Database and logs clean-up 

The Management Service is a combination of Windows Communication Foundation (WCF) and SOAP 

based web services hosted on the web server’s Internet Information Services (IIS). The Services were 

developed using .NET, C# and ASP.NET 2.0. The SOAP classes are modified using the SOAP 

extension mechanism allowing GZIP based compression and AES-128 encryption.  

External Services: There are various external services in the platform (mentioned in chapter 4, section 

4.1.3) such as Bing Map services and route info.  

For the purpose of simulation and evaluation of the platform, various Web Service applications were also 

developed which include:  

Weather 

Information   

Simulation web service which provides a similar level of functionality as provided by the Met 

Office but with pre-configured data which can be altered in real-time to simulate different 

weather conditions  

Route Information   Provides simulation route information data which can be configured to the street level   

  Table 7.4: Communication Layer Services  
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7.3.1.3. Applications in the central control system 

The central control system consists of various applications and utilities performing different functions. The 

applications are of different types i.e. web application, desktop application or background windows service 

application. The following are some of the core applications:   

 

ITS@CU System Management Application: This is a web based application for the 

managing, monitoring and administration of the platform. The main features include:  

 Agents management  (Add, delete, update, stop, suspend Agents)  

 Grid and Traffic Controller Management 

 Rules and Ontologies management (design and administration)  

 System monitor and Update 

 Bing Map based user interface for real time tracking of  traffic Controllers and Control Agents 

 Extensive reporting capabilities 

 
Figure 7.6 (a): ITS@CU Management Application (Default Monitoring View) 
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Figure 7.6 (b): ITS@CU Management Application  
(Menu options for managing platform components, simulation options and administration features) 

 
Figure 7.7: Monitoring view showing Traffic Controls icons on a route 

 
Figure 7.8:  Automated Route diversion example  

Agent uses Bing Maps Service to obtain directions between nodes in the platform 
 and then analyse the shortest path  
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Figure 7.9 (a): Adding new entities (components)    

 

     

Figure 7.9 (b): Add new Controller (left), New Agent types (Centre), and New Agent Properties fields (Right) 

See more screenshots of the system functionalities in “Appendix P, section 1 and 2” 

This application was developed using the following technologies/tools:  

 Microsoft Bing Maps API for extensive map integration and Route, Traffic and GIS services  

 Microsoft Silverlight 4 technology which provided a rich in-browser UI experience and native 

support for Bing Maps.  

 C# and Extensible Application Mark-up Language (XAML) as programming languages.    

 AJAX and JavaScript for additional client side browser based application functionalities  

 LINQ for database and XML data manipulation  

 Windows Communication Foundation (WCF) for SOA enabled services  

Agent Specific 

Properties 
(Control/Service/ 

Operational Agent 

attributes mentioned in 

chapter 4) 

Type and Sub 

types of Agents  
(Mentioned in 

chapter 4) 
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 SQL Server 2008 R2 as a core DBMS and Visual Studio 2008 as an IDE 

 SSL/HTTPS and AES-128 based data encryption for security  

 

Platform Intelligence Layer Application: This is the core application and key to all Agent-

based interactions and decision making processes in the platform. It is a Windows Service Application 

which runs as a background process on the application server. The main features of the application 

include:  

 Access central knowledge base on the database Server 

 Real-time data analysis of Agents and traffic Controllers 

 Control and arbitrate the decisions by Agents at the grid-level regarding incident detection, 

response, self-organisation and traffic flow adaptation process (currently limited to pre-

configured routes, ontologies and rules only) 

 Additionally, it hosts Operational Agents (Central Control Level) and Service Agents for providing 

access to external service. 

 The application was developed using the following technologies/tools:  

 .NET Framework 3.5   

 C#  as a programming language    

 LINQ for database and XML data manipulation  

 SQL Server 2008 R2 as a core DBMS 

 

Simulation utilities/applications: Additionally, various other utilities were developed to simulate 

the behaviour of Agent-based controls in various traffic situations such as congestion, road blocks etc.  

 
Figure 7.10: Generating an Agent Message (behaviour testing/simulation) 

  See more screenshots of the simulation utility in “Appendix P, section 3”  
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7.3.1.4. Central Database/Knowledge base of the platform  

ITS@CU has a main database and various supporting backend databases to form the knowledge base of the 

platform. Figure 7.11 shows the structure of the main database of the ITS@CU platform reflecting the road network 

model elements (described in chapter 3), Agent types, roles and organisation structure (described in chapter 4), and the 

Communication and the Ontology design (described in chapter 6).  

The main database stores/provides the following key data: 

 Agents and their organisational relationships (types, roles, attributes, access level and team/agency)  

 Agents code logic/functions (defined in XML) 

 Agent messages and conversation threads 

 Rules and Ontologies for Agents communication (defined in XML) 

 Platform Controllers/Systems (Grids, nodes, links, traffic controllers etc.) 

 External Services and their descriptions in XML for Service Agents 

Other supporting databases store/provide:  

 Traffic Controls status (for simulation purpose) 

 Vehicles and their current location for traffic analysis (optional or for simulation) 

 Administration Users and their credentials 

The databases are hosted on the SQL Server 2008 R2 Enterprise Edition in a clustered configuration. The databases 

are normalised to third normal form (3NF) to ensure efficient database queries and transactions. The main database 

also uses Stored Procedures for a high level of flexibility and optimisation, so application can access pre-compiled 

Stored Procedures which can be updated outside of application Logic. This was also important for updating the 

runtime Agents’ behaviour without changing any code in the platform applications. Other than Stored Procedures 

the applications and Services also access the database using Language Integrated Query (LINQ) which provides 

native C# database access functions. 

The main database also uses Spatial Data (also known as geospatial data or geographic information) which is a new 

GIS feature of SQL Server 2008 to identify the geographic location and features such as natural or constructed 

features (e.g. roads, buildings, landmarks, rivers etc.). Spatial data is stored as coordinates and is compatible with 

most mapping solutions such Bing, MapPoint and Google Maps. 

As seen in the figure 7.11, the ontologies and rules are stored as XML data type (in database table Ontologies column 

OntologyXMLDesc, and table Rules column RulesXMLDesc). SQL Server provides native support for XML 

document storage and parsing capabilities. It also allows Transact-SQL (T-SQL) queries within the nodes and 

elements of the XML column contents which reduced parsing and processing at the application level.  
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Figure 7.11: ITS@CU Main Database Structure 
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7.3.2. Traffic infrastructure/Grid Controls  

The ITS@CU platform requires that the traffic infrastructure be divided into smaller grids (zones/areas) for better 

manageability of the traffic network devices and to enable the Agent based Controls to function efficiently. Each 

grid has a “Grid Controller” application for controlling and managing the Grid and the associated traffic controllers. 

It provides the ability to host Agents and is responsible for the decision making/arbitration capabilities at grid level.  
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Figure 7.12: Grid Controller system Architecture 

This “Grid Controller” application is using a server with the Windows Server 2008 standard edition operation 

system. A Grid Controller application can work on normal desktop or even Windows CE mobile device however 

for resiliency and reliability windows Server 2008, ideally clustered, is preferred.  

 

7.3.2.1. Grid Controller Application  

This is a .NET based windows forms application developed in C#. The main features of the application include:  

 Control and arbitrates the decisions by Agents on “grid and controller level” regarding incident detection, 

response, self-organisation and traffic flow adaptation process 

 Real-time data analysis of local traffic Controllers and Agents  

 Grid level Agents management  (Add, delete, update, stop, suspend Agents)  

 Local Traffic Controller Management 

 Local Rules and Ontologies basic management   

 System monitor and basic administration  
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 Agent Communication interface/Layer for Agent Communication  

 
Figure 7.13: Grid Controller Application  

(Default Map view showing the traffic controls on a route) 

     
Figure 7.14: Grid Controller Application  

(Menu options for managing local traffic controllers/Controls, Grid Level Agents 
 and various simulation features) 

 

7.3.2.2. Agent Communication Interface/Layer  

A Grid controller system also provides communication capabilities similar to the Agent Communication Layer 

of the Central Control System (described in section 7.3.1.2), however it includes only a limited set of operations 

which are relevant to Grid level Agents. The agent communication interface is part of the Grid Controller 

Application which supports multi-channel communication (Web Services and Socket listeners) with SSL 

encryption, GZIP compression and MSMQ.  
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Communication technologies: During the design of the platform various communication 

technologies were investigated (see “Appendix G”) in order to create a communication layer between the 

various components of the platform such as communication between Controller to Grid Controller, Grid 

Controller to Central Control, Vehicle to Grid, vehicle to Central Control and Vehicle-to-vehicle. 

ITS@CU is not dependent on any specific communication protocol however HTTP based 

communication is preferred (and used in the platform implementation) due to its SOA support. Similarly, 

various communication channels are supported such as Bluetooth, IrDA for MANET (mobile ad-hoc 

network) and GPRS/3G/Wi-Fi for WAN connectivity. 

 

7.3.2.3. Grid Database/Knowledge base 

In addition to the central database, each grid controller has its local database holding information about 

the nodes, links, Agents and local traffic controllers. Similarly to the main central database, the grid 

database also reflects the road network model elements (described in chapter 3), Agent types, roles and 

organisation structure (described in chapter 4), and the Communication and the Ontology design 

(described in chapter 6). However the Grid database does not include the full platform data i.e. it only 

stores and provides data relevant to the grid such as: 

 Control Agents and grid level Operational Agents and their structural details   

 Control Agents code logic/functions (defined in XML) 

 Messages between Agents (inter grid only) 

 Rules and Ontologies for Agent communication 

 Traffic Controllers/host details    

 Traffic Controls operational status data  

Unlike the main central database, the grid database is light-weight, and can be hosted on either SQL 

Server 2008 or compact edition. In this research, SQL Server 3.5 Compact Edition was used as the Grid 

controller application is designed to be hosted on devices with limited available processing. 

Ontologies and rules are stored as XML in table columns and Agents access/manipulate the grid database 

(via the Grid Controller) using Language Integrated Query (LINQ). 
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7.3.2.4. Traffic Controllers applications  

As mentioned in chapter 2 and 4, modern urban traffic management systems includes a set/group of 

specific traffic control devices (e.g. traffic lights or sensors) controlled by a local “Controller” responsible 

for their operations. The traffic control devices just perform specialised tasks. These Controllers are inter-

connected and monitored by central or regional control centres. For example, in the Coventry City traffic 

management system, all the traffic light and inductive loop detectors/sensors are controlled by their local 

Controllers (called out-station transmission unit (OTU)) which are interlinked (using built-in modem) and 

integrated with SCOOT system for overall monitoring and calibration of traffic flow and controllers (see 

“Appendix L” for details).  

Traffic Controllers and Controls can be different types of systems/devices and technologies therefore it 

was not feasible to use real traffic controls in this research. In order to analyse the Agent-based Controls 

design approach (discussed in chapter 4 and specifically in section 4.1.2) and to simulate their behaviour  in 

the platform, various traffic Controller and Control applications were developed (using the Mobile 

Application Development Framework (MADF) described later in this chapter, section 7.4). MADF 

supports both “Agent-Logic” and “Default-Logic” modes of the Controllers.  

The following are some of the Applications developed for simulating the behaviour of the Controllers:  

Controller Setup Screen: 
Select and Configure a 
traffic Controller type  

Controller properties 
Configuration (Traffic 

Lights Controller 
Example) 

Controller Status 
Monitoring  

(Traffic Lights Controller 
Example) 

Hosted Control Agent 
configuration and Agents 

interactions status  
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Agent Message composed 
by the hosted Control 
Agent on the Traffic 

Lights Controller 
application destined to an 

Operational Agent  

Controller 
Setup/Configuration 

Screen (Vehicle Count 
Sensor Controller 

Example) 

Controller properties 
Configuration (Vehicle 

Count Sensor Controller 
Example) 

Controller Status 
Monitoring  

(Vehicle Count Sensor 
Controller Example) 

Figure 7.15: Controller Application (for Simulation)  

See more screenshots of Controller Applications in “Appendix P, section 4” 

 

The following are screenshots of some applications simulating the behaviour of local traffic controls 

associated with the above Controllers. See more screenshots of Traffic Control Applications in “Appendix 

P, section 5” 

 
Control Configuration (A 

Traffic Light Control 
Example associated with the 
Traffic Light Controller in 

Figure 7.15) 

 
Control’s current Status and 

properties configuration  
(Traffic Light Example) 

 
Variable Message Display 

Example 

 
Dynamic Speed Traffic Sign  

Example 

Figure 7.16: Local Traffic Controls Simulation Application  
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7.3.3. Vehicle Control System  

Vehicles are controlled by a “vehicle controller” application which manages and controls in-vehicle 

systems/devices and provides communication with other vehicles and infrastructure grid controls. It also 

provides driver assistance features (Navigation/Route assistance, real-time feeds/alerts etc.) and sends the 

current location and status to the central server (for tracking purposes).  

“Vehicle Controllers” can be different types of systems/devices and technologies (depending on the 

manufacturers).  For the purpose of the research, a vehicle controller application was developed using a 

mobile application development framework (described later in this chapter, section 7.4) in order to simulate 

vehicles in the platform. The Vehicle controller is an on-board mobile/PDA application (based on Windows 

Mobile 5/6.5) and local database (SQL Compact Edition 3.5). The application is fully integrated with 

navigation software such as TomTom6/7 and Co-Pilot.  

The vehicle controller application supports multiple wireless communications channels (Wi-Fi, 3G/GPRS) for 

Vehicle to Grid and Vehicle to Central Control Services communication. The communication is mainly via 

web services however the calls are compressed to avoid slow transmission especially in poor GPRS coverage 

areas. It also supports Bluetooth and IrDA to form ad-hoc networks required for Vehicle to Vehicle, Intra-

Vehicle and Vehicle to roadside controls communication. Local traffic information can be pushed to vehicle 

controls likely to be affected by the observed or predicted congestions. 

See “Appendix G, Section 2” for Vehicle to Vehicle based ad-hoc network application details.  

The following are some screenshots of the vehicle Controller application showing various functions:   

 
Vehicle Setup and 

Configuration 

 
Vehicle current Status 

 
Notification Screen (from 
an Operational Agent to 
inform road block ahead) 

 
New Command Message 

from 
Grid Control Agent 
(Simulation view) 

Figure 7.17: Local Traffic Controls Simulation Application   

  See further screenshots of Vehicle Control Application in “Appendix P, section 6”. 



7.  Implementation of ITS@CU platform 

 

172 

 

 

 

Figure 7.18 illustrates the Vehicle Control system architecture, sub-components and its interaction with 
other components.   

 

Figure 7.18: Vehicle Control Architecture 

  See “Appendix H, Section 2” for further design level details of the vehicle control component/modules 
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7.4. Mobile Application Development Framework (MADF) 

MADF was an important element of this research. It was specifically developed to support the ITS@CU 

platform and the novel communication approach based on Semantic Agent-based controls described in chapters 

5 and 6. It allows rapid application development for simulating traffic Controllers and Control Agents. It 

supports and provides modes for all of the ITS-based components and Agent controls (sensors, traffic signals, 

dynamic signs, in-vehicle applications, grid controllers etc.). It also has multi-channel wireless capabilities 

(3G/GPRS, Wi-Fi, Bluetooth) to enable communication between the various components and Agent-based 

Controls.  

The focus of this research and its requirements was to utilise mobile devices such as PDAs for simulating ITS 

controls and vehicle controls. A PDA can provide applications for navigation, driver information system, 

wireless vehicle-vehicle communication (using Bluetooth, infrared and Wi-Fi), and vehicle-to-grid and vehicle-

to-control centre simulation and communication (using Wi-Fi and GPRS/3G/HSPA).   

The author spent considerable time (about a year) in developing the MADF using the Microsoft .NET 

Compact Framework, C#, XML, Web Services, SQL Server CE, Windows Mobile 5/6 SDK, and Microsoft 

Visual Studio 08. The reasons for adopting .NET Compact Framework, C# and Visual Studio are discussed in 

detail in “Appendix F, section – tools and technologies”.  

MADF enables the development of any type of mobile application for the ITS platform in a very simplified 

way. The framework provides various Project Templates in Microsoft Visual Studio 2008, and an extensive set 

of C# libraries (dll files). It also includes Visual Studio based custom controls such as GPS modules or traffic 

light modules etc., all available as tools allowing for a simple drag and drop development environment.  

Some of the core features of MADF include:  

 Traffic controllers are configurable in both “Agent-Logic” and “Default-Logic” modes which is 

important for testing the Agent-based Controls approach and compare with the traditional fixed 

control behaviour of the Controllers. 

 Agent Communication Layer (described in chapter 5) support with custom XML parsing module for 

Agents Messages, Ontologies and Rules interpretation    

 Multi-Agent hosting support using multi-threaded objects 

 Wireless Communication layer: Bluetooth and Infrared based Personal Area Network (for small range 

based ad-hoc networking and communication between Vehicle-2-Vehicle and Vehicle-2-

Infrastrucutre  
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 Support for the “Communication Interface/Layer Services” mentioned in section 7.3.1.2: for 

communication between the Control Centre server and vehicles and infrastructure devices (over  

3G/GPRS and Wi-Fi) 

 Vehicle controller mode (for different types of vehicles i.e. normal or emergency),  

 Traffic infrastructure device control modes (such as traffic lights, variable message displays, and signs)  

 SQL Server CE Database support (for storing local data)  

 GPS data collection and analysis using built-in receivers 

 Navigation application control (using TomTom 5/6 and CoPilot 7 API) 

MADF was used for all of the mobile applications (Traffic Controllers/Controls and Vehicle Controller) in 

this research for simulation.  

See “Appendix P, Sections 4, 5 and 6” for applications developed using MADF. 

MADF Architecture and Design 

The architecture of the MADF follows Model View Presenter (MVP) approach and all the components and 

libraries are layered, segregating and hiding the core functionalities from the main code.     

 

Figure 7.19: MADF Application Architecture 
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Figure 7.20: MADF classes & layers 

 

Remark: The MADF is T@lecom’s Intellectual Property Right (IPR) as per the KTP contractual terms. 

Only high-level and relevant description is presented in figure 7.20 and only commercially insensitive and 

approved level of details about the MADF classes and methods are provided in “Appendix I” and the 

source code/instruction included in “Appendix J, CD”. 
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7.5. Conclusion  

This chapter presented the technical design and development description of the ITS@CU platform 

(and associated components/utilities) which was specifically developed to implement and evaluate 

the Semantic Agent-based Controls approach in this research. The platform enables the multi-agent 

communication layer approach (presented in chapter 5 and 6) using SOA principles as an 

underlying implementation and integration architecture. The platform was developed using 

commercially available and state of the art proven technologies at the time of development.  

The later part of the chapter presented the MADF, a supporting mobile applications framework 

developed for ITS@CU. It provides rapid mobile/PDA application development capabilities for 

developing different traffic Controller and Control applications in order to simulate the behaviour 

of traffic control devices and vehicles. The MADF was important for evaluating the research 

approaches without focusing on the underlying technology of the actual traffic controllers, and for 

its support for the Agent communication layer and Control Agent hosting capability.  
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Chapter 8 
 

8. Evaluation & Analysis 

 

The previous chapter presented the technical design and development description of the 

ITS@CU platform. 

This chapter discusses and evaluates the overall research approach of using the novel 

concepts of Semantic Agent-based Controls and their communication and co-ordination in 

large scale SOA based ITS systems. It presents an analysis of the ITS@CU platform by 

simulating different test cases. The outcome of the simulations are analysed to demonstrate 

the advantages of the proposed implementation.  

The chapter is divided into the following sections:   

 The first section describes the simulation system setup, geographical area studied, 

the test data and Agents configuration 

 The second section presents an analysis of the different traffic scenarios and test 

cases in order to discuss how they achieve the research objectives 

 The third section discusses the limitations and future potential of the overall 

research approach  

 The final section of the chapter concludes the overall evaluation findings 
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8.1. Evaluation approach and simulation setup 

8.1.1. Study area overview  

During the research, the author liaised with UTMC Control Room, a department of Coventry City 

Council. They provided real traffic data for different routes at different times/days (See “Appendix L” for 

a report outlining the collected data and traffic trends).  

This liaison with Coventry City Council assisted this research with the following: 

 identifying the key routes and junctions for evaluating the platform 

 providing practical traffic control expertise and evaluating and refining the research approach 

 providing access to historical traffic data and traffic flow trends  

Coventry City was selected as the main geographical area of study due to its proximity to the research 

establishment, the nature of the current system in place within the city and the levels of access the city 

council were willing to provide to personnel and traffic data. 

Using the Road Network Model described in chapter 3 and for the purposes of evaluation, the city has 

been divided into 6 Grids (as shown in the figure 8.1 below). The city centre has been allocated a smaller 

Grid as there is a greater concentration of traffic controls and other elements when compared to other 

Grids. 

The traffic elements (Nodes, links Controllers, Controls) in the Grids were created/placed on their 

current location as per the data provided by the Coventry City Council. Additional Traffic 

Controls/Elements were added to the system in different places for testing and evaluation purposes and 

to asses possible improvements to the current traffic network. 
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Figure 8.1: Study area (Coventry City Centre) with traffic Controls, Elements and Agents  

 

 

8.1.2. Simulation setup overview  

ITS@CU was evaluated in several phases and the simulation studies were performed using the hardware 

infrastructure/configuration and applications detailed in “Chapter 7”. Several test servers running 

Windows Server 2008 R2 were configured at T@lecom’s data centre for the Central Control System. The 

Grid Controllers were hosted on Virtual Server Machines (using VMWare virtualisation software).  

The Traffic Controllers, Vehicle Controllers and the local traffic Controls were set up using the MADF 

simulation mobile application (described in Chapter 7, section 7.3.2.4 and 7.3.3). The mobile simulation 

applications were installed on Windows Mobile 6.5 based PDA devices with wireless connectivity (i.e. Wi-

Fi, 3G/GPRS) for Controllers to Grids/Central Control communication and Bluetooth for ad-hoc 

networking simulating vehicle to vehicle and vehicle to infrastructure communication. 

See table 8.1 and section 8.13 
for further description 

Grid 2 

1 

3 

4 

5 

6 
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A Virtual environment on a smaller scale (using one Server, laptops and a few PDA devices 

interconnected together by Wi-Fi) was set up at CTAC test lab at Coventry University. It was also used at 

different stages of the research for evaluation.  

Remark: Due to the large number of traffic Controls and Controllers required, and to eliminate the 

hardware differences and intermittent communication factors, PDA emulation software (Windows 

Mobile 6.5 Phone Emulator in Visual Studio 2008) was used, enabling the simulation of multiple Controls 

and Controllers on a PC/Server. The Controllers were configured to support both “Agent-Logic” mode 

and “Default-Logic” mode (supported by the Controller simulation PDA application described in chapter 

7) in order to test the Agent-based Controls approach and where applicable compare with the traditional 

fixed control behaviour of the Controllers (as described in chapter 4).     

The Route and Weather web services (used as examples of external services for the system) were hosted 

on the Central Control Gateway Server. 

The Agents, Controllers and Controls were set up using the platform Management Application described 

in Chapter 7, section 7.3.1.3.  

 

8.1.3. Platform and Agents configuration  

The following entities (traffic elements, Controllers and Controls) were configured for the simulation 

studies discussed in the next section of the chapter. 

Platform 
Entity 

Notation Image # Description 

Central 

Control System 

CtrCc-1 
 

1 
The Central Control System was set up on several test 

servers according to the infrastructure design described 

in Chapter 7, section 7.3.1.1.  

For the purpose of the simulation, the location of the 

Central Control System (as seen in the figure 8.1) is set as 

the current location of the Traffic Control Centre, 

UTMC Control Room, Coventry City Council.  

Grid  

 

6 
The traffic network area was divided into 6 grids, based 

on the Road Network Model and on recommendations 

by Coventry Council.  
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Grid Controller CtrGrid-n 
 

6 
Each grid had a Grid Controller Application hosted on a 

Virtual Server/Machine (VM). 6 VM’s were set up 

representing the grid control infrastructure design similar 

to the one described in Chapter 7, section 7.3.2. 

Node Nd-n 

 

91 
The nodes were created for key junctions with the 

parameters mentioned in Chapter 3, section 3.4.  

The Nodes were not assigned dedicated Controllers in 

the simulation as they were controlled by Control Agents 

hosted on the associated Grid Controller. 

Link Lnk-n 

 

67 
The links were created for representing the roads for 

linking the above Nodes, and used for the formation of 

routes. Links were also not assigned dedicated 

Controllers in the simulation as they were controlled by 

relevant Control Agents hosted on their Grid Controller. 

All the information such as local data and parameters 

were stored on their host Grid Controller. 

(The link on the simulation application appears Purple as 

Normal, Orange as congested and Red as Blocked) 

Traffic Light cTL-n 
 

182 
Traffic Light/Signal Controls were simulated using the 

MADF based Control Application (described in Chapter 

7, section 7.3.2.4) on a combination of PDAs and 

emulators. The ‘Traffic Light Control’ applications were 

associated with the relevant ‘Traffic Light Controllers’ 

application at communication and database level.  

The locations of the Traffic Lights were configured 

similarly to the current real locations. 

Traffic Lights 

Controller 

CtrTL-n  36 
The Controllers for the traffic lights controls were 

simulated using the MADF based Controller Application 

(as described in Chapter 7, section 7.3.2.4) on a 

combination of PDAs’ and emulators’ Controller 

Applications.  

Each Traffic Light Controller was configured to control 

about 5-8 traffic Controls based on their distances and 

routes.  

Each Traffic Light Controller hosted a Control Agent 

for its operations in the Agent based networked 

environment (Control Agents mentioned in Table 8.2). 
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Vehicle Count 

Sensor   

cVC-n 
 

173 
These detectors sensors were placed on all crucial in- 

and outbound routes of the Links representing the 

current inductive loops in Coventry City.  

The sensors were  simulated using a simulation utility, 

part of the Grid Controller Application (mentioned in 

Chapter 7, section 7.3.2)  

Vehicle Count 

Sensors 

Controller 

CtrVC-n  44 
Several Vehicle Count Sensor Controllers were 

configured for controlling multiple ‘Vehicle Count 

Sensors’. The Controllers’ applications were configured 

on PDA emulator software connected with the Grid 

Controller system.  

The Sensor Controller applications hosted a relevant 

Control Agent for its operations and communication 

with other Control Agents in the platform.  

Variable 

Message 

Display Board   

cMsgD-n  23 
Variable Message Display Boards are not currently in use 

in the Coventry City area, but simulated versions were 

introduced on key diversion points in the system.  

These simulated boards were developed to evaluate the 

capabilities of the control type and to assess their use 

within the research. 

The boards were simulated using the MADF based 

Control Application (described in Chapter 7, section 

7.3.2.4) on a combination of PDAs and emulators. The 

Variable Message Display Board Control applications 

were associated with the relevant ‘Variable Message 

Display Board Controllers application.  

Variable Message 

Display Boards 

Controller   

CtrMsgD-n  6 
A Controller application was configured to Control a set 

of Variable Message Display Boards Controls in a Grid.  

Dynamic 

Traffic Sign   

cSgnD-n  49 
Dynamic Traffic Signs are not currently in use in the 

Coventry City area, but are supported and recommended 

in ITS@CU. These signs are very flexible and provide 

various traffic signs as part of the ITS solution such as 

speed, directions and parking signs. 

Part-time one-way signs were simulated for limited 

routes where possible and no parking signs were 
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simulated on other routes to allow more traffic. 

The locations of the Dynamic Sign Controls were 

chosen based on their relevance in terms of practicality 

(whether the sign was in a position where drivers could 

make use of the information) and importance (whether 

the road network benefited significantly from the placing 

of the sign).  

Dynamic 

Traffic Signs 

Controller   

CtrSgnD-n  16 
Similarly a Controller is configured to control the 

associated Dynamic Sign Controls (described above) 

using the MADF based Control Application.   

Other 

Controllers 

   
Other supported controllers used in some of the test 

studies  

Vehicles CtrVeh-n  

 

 
Different types of supported vehicles (normal, 

emergency and transport) were used in the test studies. 

Some Vehicle Controls were simulated using MADF 

based Vehicle Controller Applications (described in 

Chapter 7, Section 7.3.3) however most of the vehicle 

location data (GPS) and road occupancy data (Count 

Sensor data) was generated using the simulation utilities 

(discussed in chapter 7, section 7.3.1.3) which allowed real-

time data manipulation to test different traffic scenarios. 

The number of vehicles and traffic flow values were 

configured using simulation data and they differed for 

different studies.  

Bing Map 

External 

Services  

SvcBing-1 

 

1 
Microsoft Bing MAP service was used for Reverse 

geocoding and direction features (described in Chapter 4, 

Section 4.1.3). This Service was Controlled by the Service 

Agent (Service Agents mentioned in table 8.3)  

Weather 

Information  

External Service  

SvcWS-1 
 

1 
A test web service application was developed for 

simulations which provides similar functionality but with 

pre-configured data which can be altered in real-time to 

simulate different weather conditions. The web service 

was hosted on the Gateway web server. 

Route 

Information  

External Service  

SvcRt-1 
 

1 
A simulation purpose-built Web Service application 

providing route information data which can be 

configured to the street level.   

Table 8.1: Entities (traffic Elements, Controllers and Controls) used in test studies/simulation  
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The following number of Control Agent types/subtypes (discussed in chapter 4, table 4.2) were configured 

for test/simulation studies (in Agent-logic mode): 

  Control Agents 

Types/Roles # Description 

cAgtCtrGrid-n 

for Grid Controller  

6 Each Agent was hosted on the relevant Grid Controller (CtrGrid-n 

mentioned in table 8.1) providing the Agent-Logic for grid operations 

(described in the chapter 4, table 4.2). 

6 Agents in total were setup for the study area during the simulation. 

cAgtCtrTL-n 

for Traffic lights 
Controller 

15 Provides Agent-logic to the host Controller to dynamically adapt the 

signalisation of the associated controls based on the traffic situation. A 

single Traffic lights Agent is hosted on 2-3 Traffic Lights Controllers 

(CtrTL-n) depending on distance.  

cAgtCtrSgnD-n 

for Dynamic Signs 
Controller 

8 Provides Agent-logic to the host Controller to dynamically display traffic 

signs (variable Speed, parking and direction signs) on the associated 

controls based on the traffic situation. This Agent is hosted on 1-2 

Controllers (CtrSgnD-n) depending on distance. 

cAgtCtrVC-n 

for Vehicle Count 
Sensors Controller 

13 Hosted on 2-3 controllers (CtrVC-n) based on link length to provide 

Agent-Logic to the hosts 

cAgtCtrMsgD-n 

for Variable Message 
displays Controller 

6 1 Agent per grid to control all Variable Message Display Board Controls 

with a grid. (hosted on all CtrMsgD-n within a grid) 

cAgtCtrLnk-n 

For Links 

21 Multiple links were controlled by the link Control Agent which was used 

in limited studies. Similar to node agents, the number of links controlled 

by a single Agent varied in different test cases. The Agents were hosted 

on Grid Controller applications which allow simulating Link Controllers. 

The link Control Agents constantly monitors its link occupancy values 

and traffic flow rate (using the info provided by cAgtCtrVC-n Agents) 

cAgtCtrNd-n 

For Nodes 

29 Multiple nodes were controlled by this Agent and used in limited test 

studies. The number of nodes controlled by a single node Control Agent 

varied in different test cases. The Agents were hosted on Grid Controller 

applications which allow creating simulated mode Node Controllers.    
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cAgtCtrCc-1 1 Main Agent controlling the CtrCc-1 (mentioned in table 8.1) 

Table 8.2: Control Agents used in test studies/simulation 

The following number of Service Agent types/sub-types (discussed in chapter 4, table 4.5) were configured 

for simulation studies: 

 Service Agents 

Service/Role # Description 

sAgtSvcBing-1 

for Bing Map Service 

1 Accesses Bing Service in response to other Agents’ requests  

 

sAgtSvcWs-1 

for Weather Service 

1 Accesses Weather Information Service and interacts with Agents within 

the platform 

Hosted on a central control Application 

sAgtSvcRt-1     

for Route Service   

1 Accesses Route Information  Service and interacts with Agents within the 

platform 

Hosted on a central control Application 

Table 8.3: Service Agents used in test studies/simulation 

All these external services were hosted on the Central Control System Web server (discussed in chapter 7, 

section 7.3.1.2) and the Service Agents were hosted by the “platform intelligence layer application” on the 

Application Server (discussed in chapter 7, section 7.3.1.3). 

The following number of Operational Agent types/sub-types (discussed in chapter 4, table 4.7) were 

configured for simulation studies: 

 Operational Agents 

Types/Roles # Description 

oAgtArb-n 

Arbitrator 

11 Several Arbitrator Operational Agents were used at different levels. 

 2 for CtrCc-1 (Central Control System)  

 3 for CtrGrid-1 (Grid-1 Controller) 
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 2 for CtrGrid-3 (Grid-3 Controller) 

 1 each for the other four Grids (CtrGrid-2, CtrGrid-4, CtrGrid-5 

and CtrGrid-6) 

oAgtSec-n 

Security Agent 

7 Various Security agents were set up for authenticating/verifying Agents 

and their level of access at different levels:    

 1 at CtrCc-1 (Central Control System)  

 1 at each Grid Controller 

oAgtCtrMgr-1   

Host Controllers 
Manager 

1 A single Host Controllers Manager Agent was set up for managing 

Controllers within the platform during evaluation. Hosted on both 

Central Control and Grid level hosts. 

oAgtcAgtMgr-1 

Control Agents Manager 

1 An Agent was set up to manage all the Control Agents within the 

platform. Hosted on Grid level hosts. 

oAgtsAgtMgr-1 

Service Agents Manager 

1 An Agent was set up to manage all the Service Agents within the 

platform. Hosted on Central Control. 

oAgtoAgtMgr-1 

Operational Agents 
Manager 

1 An Agent was set up to manage all the Operational Agents within the 

platform. Hosted on both Central Control and Grid level hosts. 

oAgtSvcReg-1  

Service Registry  

 

1 A single agent was configured on the Central Control (Services 

bus/layer) to assist in service discovery and dynamic services 

composition in the platform. 

oAgtQoS-1  

Agent QoS 

1 This agent was set up on the Central Control System to check the 

Quality of Service (QoS) of all the Agents in the platform using the QoS 

values (described in chapter 4, table 4.7) 

oAgtPoolMgr-1 

Pool Manager Agent 
 

1 This Agent was used in limited studies to evaluate the load 

balancing/sharing features of Operational Agents. It was only used for 

the two Arbitrator Agents in CtrCc-1.  

The agent ID (oAgtPoolMgr-1) of the Pool Manager agent is just an alias 

of the actual agent (oAgtArb-1) serving as a current pool manager in the 

cluster of the agents (oAgtArb-1 & oAgtArb-2) in that pool. 

oAgtSys-n 

System Agent 

3 Several System Agents were configured to perform log clean up and 

orphan messages clear-up tasks in the platform for evaluation purpose  

Table 8.4: Operational Agents used in test studies/simulation 
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Remark: A different number of Agents and entities were used in different test studies (simulation 

configurations/setups).   

The platform Agents mentioned in above tables for the simulation studies were organised according to 

the Agent Organisation structure described in Chapter 4, Section 4.2. They were split into “System” and 

“Grid” agencies.  

 

 

Figure 8.2: Organisational Structure of the platform Agents (for simulation)  
(The Agent types and levels are shown in different colours)   

 

The above diagram shows the organisational structure (hierarchy/levels) of these Agents, which is 

important in understanding the results and conclusions of the test cases. 
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8.1.4. Test data  

The test data used for the evaluation primarily consisted of the historical traffic data (provided by UTMC, 

Coventry City Council generated from their SCOOT system). The data was then adapted in order to 

perform wide ranging tests simulating different traffic situations. The data obtained from the SCOOT 

system included traffic flow (vehicles/hour) for different junctions and routes at different times and days. 

It also included the congestion rate, number of stops, average delays, roads saturation/occupancy 

percentages, inductive loop detectors flow and occupancy and stage lengths. Each study/test case 

describes the specific data used.  

See “Appendix L” for a SCOOT report outlining the collected traffic data and “Appendix J, CD” for the 

bulk test data files.     
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8.2. Study cases and result analysis  

This section presents an analysis of the different aspects of the research approach and their benefits. It 

presents the selected traffic scenario with different test cases (configurations/setups) in order to show 

how they achieve the research objectives especially the communication, coordination and decision making 

behaviour of Semantic Agent based Controls in SOA based distributed setup. 

All the studies and cases are based on the platform elements, Agents, test data and study area described in 

section 8.1. 

 

8.2.1. Problem detection & response (Incident scenario)  

In this scenario, a road block representing an incident completely stopping the traffic flow on a busy road 

(near Junction 10314 – downstream) was simulated. The blockage points (road blocks) in the real world 

are variable (i.e. dependent on the situation with different severity) therefore in this study a complete 

blockage (no passing traffic) was simulated on the affected link in a certain direction.  

The road block affects 6 routes/streams of traffic flow causing congestion on major routes in Grid-3 

going towards Grid-1 (the city centre grid), see figure 8.3.  

This particular junction was selected due to its importance and also as it does not have any major 

immediate alternative routes apart from a residential street. This part of the junction historically causes 

bottlenecks especially during the morning rush-hour for the traffic flow towards the City centre. 

Therefore, the data used for this evaluation was morning rush hour traffic data between 08:15 and 08:30 

AM on a Monday (see “Appendix L”).   
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Figure 8.3: Affected links in Grid-3 due to the road block/incident  

(Image section from the simulation view shown in figure 8.1) 

 

With the introduction of such an incident/road block, the Agents in ITS@CU were configured to detect 

the problem by coordinating with each other using the Ontologies (described in chapter 5) and act 

appropriately using the Rules and Plans (described in chapter 6). Figure 8.4 outlines the behaviour of the 

ITS@CU platform and the steps that the Agents should perform in this situation as per the platform’s 

current configuration (defined by the Rules, parameters and Ontologies). All these ontologies and rules 

used in this study are provided in “Appendix J, CD”.   

Grid-3 

1 

4 

Affected 
 Links 

Road block 
(Downstream) 
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 Figure 8.4: ITS@CU behaviour overview for traffic problems detection and response 

(Showing the steps in the context of the situation described in the scenario overview)   

 

 

Methodology 

This scenario/study was simulated in different configuration setups each with a different number of 

elements, controls and Agents (detailed in table 8.1, 8.2, 8.3 and 8.4). Each simulation setup was 

performed 10 ten times/runs (with different sets of parameters and threshold values) in both “Agent-

Logic” and Default-Logic”.  

The original test data was also altered in order to assess different aspects of the system especially the 

behaviour of Semantic Agent based Controls in SOA environment.  

Remark: Using the Controllers in Default-Logic mode (configurable in the Controller simulation 

application, mentioned in chapter 7) disables the Control Agent governing the Controllers’ operations, 

hence it completely simulates the behaviour of a normal fixed traffic Controller. The Controller in default 

mode still uses the same communication layer and communicates with Operational Agents but without 

the semantic-content and the intelligence provided by Control Agents. It is also not capable of 

communicating with other Controllers hence the communication becomes more centralised and the 

complete communication at the Controller-Level of the organisational structure (described in figure 8.2) 

becomes non-functional.   

  

Detection 

• Agents detect congestion 
on the affected links (by 
monitoring the traffic flow 
abnormalities) 

• Agents liaise (at multiple 
grids level) to find  the 
location of the 
incident/road block  

Verify 

• Agents check/wait/re-
confirm to verify the 
incident (using the set 
parameters/threshold 
values) 

Respond 

• Agents start their 
coordination process to 
formulate a plan of actions 
(using the Rules/Plans 
approach) 

• Notify external systems 
(using events notification), 
if required 

Resolve 

• Agents now coordinate to 
implement the plan of actions 
(e.g. diversion setup, variable 
message display information, 
traffic lights adaptation etc.) to 
restore the traffic flow to normal 
or alleviate  the congestion 

• Broadcast notification messages to 
the vehicles approaching the 
affected routes   
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Results 

The following presents an analysis of how the platform Agents (Control Agents in particular) actually 

behaved/performed when the road block was introduced during the simulations studies.  

Remark: Configuration setup 1 is presented in detail below. Since the other configurations were similar 

to setup 1, only the differences, the result data and the analysis are presented in this section. 

In this scenario, the following Agents were primarily involved in the detection and response process. 

Please note that various other Agents (mentioned in table 8.2, 8.3 and 8.4) were also involved, performing 

their routine functions, however the following Agents were directly involved or were part of the decision 

making process in different stages mentioned in figure 8.4. 

Agents Details 

cAgtCtrGrid-3  for CtrGrid-3  

cAgtCtrGrid-1  for CtrGrid-1 

cAgtCtrGrid-4  for CtrGrid-4 

oAgtArb-1  Main Arbitrator Agent for CtrCc-1 providing arbitration between Grid level 

Agents and communication initiation. It is also set as a pool manager for 

load balancing. 

oAgtArb-3  Arbitrator Agent for CtrGrid-1  

oAgtArb-6, oAgtArb-7 Two Arbitrator Agents in CtrGrid-3 

oAgtArb-8  CtrGrid-4 Arbitrator Agent 

sAgtSvcBing-1 Service Agent responsible for external route/geocoding service (MS Bing 

Service)  

sAgtSvcWS-1 Service Agent responsible for Weather Info external service 

cAgtCtrVC-n (x 4) 4 Control Agents (with 12 CtrVC and 49 cVC) in CtrGrid-3 

cAgtCtrTL-n (x 4) 4 Control Agents (9 CtrTL and 43 cTL) in CtrGrid-3 

cAgtCtrMsgD-3  1 Control Agent for the CtrMsgD-3 (with 6 cMsgD) in CtrGrid-3  

cAgtCtrSgnD-n (x 2) 2 Control Agents (4 CtrSgnD and 15 cSgnD) in CtrGrid-3  

cAgtCtrLnk-n (x 3) 3 Control Agents (23 links) in CtrGrid-3  

cAgtCtrNd-n (x 5) 5 Control Agents (37 nodes) in CtrGrid-3  

Table 8.5: Agents involved in detection and response in the scenario (Configuration Setup 1) 
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In the “Detection” step, the relevant Vehicle Count Controller Agents cAgtCtrVC-n observed and 

reported a low traffic flow rate from vehicle count sensors on the affected links (the alarm for abnormal 

values was set to occur if the flow rate dropped below 100 vehicles per hour for all CtrVC). The Link 

Controller Agents cAgtCtrLnk-n involved calculated a high occupancy (the alarm for abnormal values was 

set to occur if the occupancy average was above 70% for a link).  

Next, the cAgtCtrLnk-n Agents checked with the adjacent/corresponding Links and Nodes by 

broadcasting request messages to check their occupancy status. During this process the specific link with 

abnormal occupancy was identified (using the algorithm in links’ Agent-logic to check Links where the 

traffic flow from an incoming node is considerably different from the outgoing node). Then the 

cAgtCtrVC-n agents associated with the identified link assessed their CtrVC-n flow data to identify the 

location of the blockage (using a similar algorithm in cAgtCtrVC-n agent-logic which checks the flow rates 

from the cVC-n detectors to find a cVC showing abnormal values or a different flow rate compared to 

adjacent sensors/detectors).  

At this point, the cAgtCtrLnk-n Agents involved reported the incident location to the local grid level 

Arbitrator Agent (oAgtArb-6) triggering the “Verification” step. The Arbitrator Agent monitored the 

situation for a period of time (the waiting time was set to 5 minutes) by repeating the status check and 

verification process every 30 seconds (with relevant cAgtCtrLnk-n and cAgtCtrVC-n) to confirm if the 

situation remained the same or degraded further in order to verify and establish the incident before 

escalating it.  

Once the incident was verified the oAgtArb-6 triggered the “Respond” step by sending a request to 

Arbitrator Agent at Central Control Level (oAgtArb-1) to propose a Plan. oAgtArb-1 liaised with other 

Grid Arbitrator Agents (in this case oAgtArb-3 and oAgtArb-8) to check their status in order to formulate 

a Plan. In this scenario only Grid-3 was affected by the initial congestion but (due to the Rules 

configuration set in the simulation) Grid-1 and Grid-4 were also involved in the response process of 

managing a traffic diversion to alleviate the congestion. A diversion involves checking the status of all the 

Nodes within a set proximity (the range was set to 100 meters on the adjoining links on the affected 

Nodes) in order to identify the Nodes and links which can best support extra traffic flow.  

Once the Nodes were identified the oAgtArb-1 Agent used the service agent sAgtSvcBing-1 to provide an 

alternative route generation for the affected roads. The sAgtSvcBing-1 agent not only provided the fastest 

route at node level (provided by the Bing Maps Service) but also liaises with the weather service Agent 

sAgtSvcWS-1 using the composite services flow feature of the platform’s service bus layer to find the most 

appropriate alternative route for the current circumstance. In the simulations, the sAgtSvcWS-1 agent was 

set to a value indicating no weather alarms.  
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In the “Resolve” step, the Arbitrator Agent on the Central Control Level oAgtArb-1 requested that the 

involved Arbitrator Agents at the Grid Level to execute the relevant steps of the plan for implementing 

the diversion (as recommended by sAgtSvcBing-1 – which was separate for different routes, as shown in 

figure 8.5 and 8.7). Next the individual Arbitrator Agents took the appropriate actions at their grid level 

(oAgtArb-6 for Grid-3, and oAgtArb-8 for Grid-4).  

 

Figure 8.5: Route diversion, Traffic lights adapted and Variable Messages  

 

As per the configuration (in the Ontologies and Rules used), oAgtArb-6 and oAgtArb-8 sent request 

commands with the specific set of Rules to the relevant Traffic Lights Control Agents (cAgtCtrTL-n) and 

Variable Message Display Control Agents (cAgtCtrMsgD-n), which were on the affected or diversion route 

links (see figure 8.5). Each cAgtCtrMsgD-n agent interpreted the request message instructions and executed 

the required actions described in the semantic-content of the message on their host controllers i.e. to 

display the road block and diversion messages for a set period of time (10 minutes in the simulation). 

Similarly, each cAgtCtrTL-n agent executed the message instructions on their host controllers i.e. adapting 

the associated traffic lights controls by adjusting green light time on the affected/diverted links (the value 

was set to -/+8% recommended by UTMC, Coventry Council and used in the SCOOT system) thereby 

allowing extra vehicles on diverted routes.  
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The modified values and status (on those cAgtCtrTL-n and cAgtCtrMsgD-n) were set for a limited time 

period (10 minutes in this configuration) after which the values returned to their default values/status. 

This timeframe is configurable and the oAgtArb-1 Agents can repeat the process of requesting oAgtArb-6 

and oAgtArb-8 to re-apply the same Rules, however in this simulation this option was not used.  

Remark: At any given point if the situation changes i.e. occupancy values changes which means 

congestion no longer exist, the cAgtCtrLnk-n Agent notifies the oAgtArb-6 which notifies the oAgtArb-1. 

This way the request for Plan can be cancelled. The arbitrator Agents use the conversation-ID and the 

Agent-list in the message instruction to send cancellation message to the involved agents (mentioned in 

chapter 5). 

Additionally, in this scenario the Grid Controller Agent (cAgtCtrGrid-3) was also configured to send 

broadcast message (congestion ahead and the blocked junction) to the vehicles (PDAs) approaching the 

congestion (using their current GPS location/coordinates in proximity of 70 meters of the affected links 

based on the flow direction as mentioned in chapter 7).   

The simulation results at different observation points (mentioned in result analysis section below) were 

recorded. Each simulation run ended with the Resolution Time (RT) observation (which indicates that 

the traffic flow has been restored to within the normal range of values).  

 

The following flowchart diagram further explains the steps and the behaviour of the involved 

Agents in this scenario result description.  
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Figure 8.6: Result: Agents behaviour representation in flow chart  

All the Ontologies and Rules used, and the Plan generated in this study are provided in “Appendix J, CD”.   
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The following simulation views (application screens) show the underlying behaviour/outcome of the 

Agents involved in this scenario. 

 

 

 
Simulation view 1: Before the incident was introduced.  

Links are normal in Purple colour lines 
 Simulation view 2: After the incident was introduced. 

(Red Links with abnormal flow rate and Orange links 
 with flow rate value below normal threshold) 

 

 

 
Simulation view 3: Same as view 2, but showing the simulated 
vehicles on the affected link. (Each link has different vehicle 

 density as per its current flow rate)  

 Simulation view 4: After the resolution Plan 
implementation. The main blocked link remained 

blocked even after the Resolution Time (RT). 

Figure 8.7: Simulation view of the scenario and its result 
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Result analysis 

The results of this study scenario were analysed to assess the following key areas:  

Congestion/Incident detection: The detection behaviour of the platform’s approach was assessed 

in terms of:  

 Detection Report Rate (DRR):  The rate of problem detection alarms by Control Agents   

 False Alarm Rate (FAR):  The number of incident free intervals with false incidents alarms 

divided by the total number of incident free intervals 

 Mean Time To Detect (MTTD):  The difference between the time of accident occurrence and 

the time of accident detected/verified 

 Detection Rate (DR):  The actual incidents verified (DRR - FAR) 

The following table outlines the setups/configurations used in this traffic scenario: 

Setup 1 The main scenario (configuration as described above) 

Setup 2 The same as Setup 1, but with 3 road blocks on separate links 

Setup 3 The same as Setup 1 but with three times higher concentration of Control Agents, 

Controllers and Controls (as per the same Agent/Controller ratio in table 8.2)  

Setup 4 A combination of Setup 3 (Three times higher concentration) and Setup 2 (with 3 road-

blocks) 

Table 8.6: Configuration setups (1-4) used in the “detection and response” scenario 

Each simulation run in the above configuration setups used the test data from the morning rush hour 

traffic data between 08:15 and 08:30 AM on a Monday (see “Appendix L”). The vehicle flow on average 

for that junction at that time was 1209 vehicles/hour.  

 

 



8.  Evaluation & Analysis 

 

199 

 

 

The following table presents the results obtained and calculated from all the setup runs:     
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Setup 1 21 29 15 1  100 100 0 10 6 11 100 90 

Setup 2 21 29 15 3  100 100 10 30 9 13 90 70 

Setup 3 67 91 44 1  100 100 0 20 16 21 100 80 

Setup 4 67 91 44 3  100 100 20 50 29 33 80 50 

Table 8.7: Result data obtained relevant for detection evaluation 

As each setup had 10 runs per mode, the percentage values are all multiples of 10. 

Remark: The blockage points were selected to make sure the involved Control Agents picked up the 

traffic abnormalities as the main intention was to assess the Controllers behaviour in both Agent and 

default modes – not the strength of the incident detection algorithm, therefore the DRR% and DR% 

values in both modes in all setups were high (as seen in table 8.7). 

The MTTD values in the result were the actual time duration of the detection processing (i.e. configured 

decision wait timers values were discarded by the stop watch module embedded in the simulation utility).  

 

Figure 8.8: Mean Time To Detect (MTTD)  
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The Control Agents were quicker in detecting and verifying incidents in all setup runs as compared with 

default mode Controllers. When the number of Control Agents was increased (in setup 3 and 4), the 

MTTD values also increased due to the extra communication/transactions by the Control Agents.  

One of the key findings based on the MDDT result values was that the ratio of the number Controllers 

per Control Agent is very important. The larger the number of Controllers per Control Agent the lower is 

the need for outside communication (Between the Control Agent with other Agents). However the 

drawback is that a single Control Agent has to control the operation of multiple Controllers and work in 

a split-site hosting mechanism (described in Chapter 4) which results in extra intra-agent level 

communication (between Controllers/hosts) and can have a negative impact on the host controller 

resources. The best approach is to balance this ratio depending on the capacity, resource, communication 

technology and distance between the Controllers.  

In this study, the PDA emulators were used and the best ratio on average was 3 Controllers per Control 

Agent. However, this can vary depending on the type and capacity of the Controllers, so this has to be 

approached based on these factors.  

     

Figure 8.9: Left: False Alarm Rate (FAR) and Right: Detection Rate (DR)   

   A-L = Controller in Agent-Logic Mode 

   D-L = Controller in Default-Logic Mode (i.e. No Control Agent) 

 

As seen in figure 8.9, FAR is where Agent based Controls have an advantage over fixed Controllers. 

Agent-based Controls raised much lower false alarms for the same runs when compared with Controllers 

in default mode. The main reason was that the Control Agents were configured to coordinate between 

each other and establish the incident location and the link where occupancy value was abnormal and only 

then report to the Arbitrator Agents (as described in the flow diagram, figure 8.6). This reduced the 

unnecessary detection reporting by Controllers to their Grid Arbitrator Agents, hence reducing the FAR.  

Consequently, the DR (as seen in figure 8.9) was also much better due to low FAR in the Agent-based 

Control approach. 
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Congestion/Incident Response: The response behaviour of the platform’s approach was assessed 

in terms of:  

 Mean Time To Respond (MTTR):  The difference between the time that the accident was 

verified and the time that the resolution Plan was generated and dispatched to Controllers for 

implementation (as mentioned in figure 8.6).  The lower the MTTR, the better it is for the overall 

system performance.  

 Controllers Scope:  The number of Controllers (CtrTL, CtrMsgD and CtrSgnD) involved/affected 

by the resolution Plan i.e. how many controllers’ property values were changed/adapted to return 

the traffic flow to normal. The wider the scope the better the adaptation that can be achieved.    

 Resolution Time (RT):  The time taken for the traffic flow on the Links (involved/affected in the 

resolution Plan) to become normal and stay normal for a period of time (10 min value was set in 

the simulation) without any further DRR (incident/congestion detection report). RT is used for 

estimating the overall effectiveness of the approach and the quicker the RT the better the 

approach.     

 

In this study an additional setup/configuration was also included in the simulation runs in addition to the 

four configurations described previously: 

Setup 5 Setup 3 and Setup 2 with the maximum Average traffic flow rate (2000 vehicles per hour in 

the involved links)   

Table 8.8: Additional configuration (setup 5) used in the “detection and response” scenario 
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The following table presents the results obtained and calculated from all the setup runs:     
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Setup 1 21 29 15 6 8 1 1208 
 

17 16 9 7 1 1 4 NA 3.4 6.5 

Setup 2 21 29 15 6 8 3 1208 
 

31 27 11 8 1 1 4 NA 6.2 8.3 

Setup 3 67 91 44 18 14 1 1208 
 

41 33 28 23 3 3 12 NA 8.3 13.2 

Setup 4 67 91 44 18 14 3 1208 
 

62 53 33 20 3 3 12 NA 11.3 23.2 

Setup 5 67 91 44 18 14 3 2000 
 

65 57 35 22 3 3 12 NA 15.4 27.4 

Table 8.9: Result values relevant for response evaluation 

Remark: The MTTR and RT values in the result table 8.9 are the actual time of the response processing 

duration. Other duration values such as the pre-configured decision wait time values, connection setup 

and authentication/validation time were discarded in order to analyse the actual duration relevant for 

analysing the results.  

As seen in figure 8.10 (left), the MTTR values in both modes showed a similar trend i.e. the more 

controllers involved the higher the MTTR. Although the default mode was slightly quicker as it does not 

require Control Agents to be between the Grid Control (Arbitrator agents) and the Controller (as 

described in figure 8.2). The reason MTTR trends were similar in both modes is because the 

communication was mainly from grid arbitrator agent to controllers and that type of communication is 

not affected whether a controller is in default mode or in agent-logic mode.  

In the Controllers Scope analysis (figure 8.10) the results show that agent logic is more dynamic. As the 

situation becomes more complex (for example an increase in the number of controllers involved or 

incidents/road blocks) the agent logic increases the scope of the involved controllers accordingly as 

compared to default mode which have a fixed scope.  

The main reason for the wider scope in Agent-mode is due to the ability of Control Agents to 

communicate with each other, due to having sophisticated relationship ontologies with the other Control 

Agents at their Controller’s level. If a resolution plan does not directly include a specific control agent, 
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but the associated agent can assist by involving other control agents then that agent is included in the co-

ordination of the plan (e.g. if a resolution Plan includes a particular link and the control agent for the link 

believes that other links need to be involved to better implement the plan then it will start coordinating 

with the link agent). The better the relationship level ontologies (described in chapter 4) the more effective 

the scope management becomes. 

The wider the scope of Controllers in implementing the resolution plan the more likely the resolution 

plan is to be effective however the wider the scope the longer it will take to form a consensus between 

the involved agents. So the domain-level Ontologies for describing Agents relationship must be designed 

using a balance approach to avoid any Scope related negative impact.  

      

Figure 8.10: Left: Mean Time To Respond (MTTR) and Right: Controllers Scope    

The main advantage of the Agent-based Controls was observed in the RT evaluation which shows the 

overall effectiveness of the approach. As seen in figure 8.11, the agent-logic mode helped the controllers 

quickly resolve the traffic flow due to the wider controller scope but mainly because Control Agents 

provide more functionality to their host traffic controllers (dynamic Traffic Lights adaptation, localised 

message displays to alerts vehicles etc.).  

 

Figure 8.11: Resolution Time (RT)  
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The flow rates were also quickly normalised by agent-based controls as compared to fixed controllers (as 

demonstrated in figure 8.12). For example, in setup 1 and setup 3 simulation, the Agent-based Controls 

took around 20% less time to reach the RT (to restore the flow rate to 1800 vehicles/hour which was 

within the normal threshold value set for the simulation) on the affected links (Also seen in figure 8.7).   

 

Figure 8.12: RT efficiency in normalising flow rate  

Overall the quicker RT values indicate that Agent-Based Control allowed more vehicles to pass through 

the affected links over the period of time due to the Control Agents ability to implement the resolution 

Plan (on diversion routes) in a more dynamic way (for example better Controller Scope in Traffic Lights 

signal adaptation). Fixed Controllers can only react to the implementation plan in the hard coded manner 

with a fixed scope.  
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8.2.2. Communication approach evaluation 

The communication approach of the Agent-based Controls in this research was focused mainly on 

reducing the number of transactions between Control Agents whilst optimising and enhancing the 

communication by embedding flexible semantic data within the agent’s messages.  

Transaction reduction: The Agent-based Controls approach reduces the overall number of 

transactions by significantly reducing the direct communication between traffic Controllers and 

Central/Grid control systems. The reduction of transactions is very important in a SOA environment 

(Daigneau, 2011; Erl et al., 2012) which involves geographically dispersed Services across networks. It is 

also important to curtail the processing overheads associated with XML messages (SOAP envelopes and 

embedded ontologies).   

In a fixed control system (or default logic mode) each controller requires direct communication with a 

grid control or central control system to report its status or receive any commands. This is a massive 

communication overhead in a large ITS system due to the number of transactions involved, especially 

with the status messages between the controllers and central control system. In an Agent-based Controls 

approach, a single Control Agent governs multiple Controllers which reduces the level of communication 

between Controllers and Grid Agents/Systems (as one Agent communicates on behalf of all its 

Controllers) but most importantly the Control Agents coordinate with each other and perform decision-

making at the Controller-Level to keep communication with Grid-Level Agents to a minimum (see the 

‘detection’ steps of the incident detection scenario and in figure 8.2).  

The chart in figure 8.13 represents the number of transactions in the incident detection scenario (Setup 

1), described in section 8.2.1. These transaction numbers were obtained from the simulation runs using the 

transaction logger module embedded within all the host central, grid and traffic controller/control 

applications (mentioned in chapter 7, section 7.3.1.3, 7.3.2.1, and 7.3.2.4).  
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Figure 8.13:  Transaction reduction between control agents at Controller-Level and Grid-Level 

     A-L = Controller in Agent-Logic Mode 

     D-L = Controller in Default-Logic Mode (i.e. No Control Agent) 

Figure 8.13 shows a reduction in controllers’ transactions between each level in Agent-based Control and 

default logic mode. In the incident detection scenario (Setup 1), there were 9 Traffic Light Controls 

(CtrTL) controlled by 4 Traffic Light Control Agents (cAgtCtrTL) and the results show that the number 

of transactions for basic status reporting from Controllers to Grid/Central Control were reduced by 

more than half (532 as compare to 1462 transactions). This reduction was due to the Control Agent 

communicating with other Agents on behalf of all its Controllers rather than each Controller 

communicating directly with Grid/Central Control systems in a non-control agents based setup. Similarly, 

in the incident detection scenario (Setup 1), when the abnormality in the traffic flow rate was first 

detected by Vehicle Count Sensor Control Agents (CtrVC-n), it started the communication between all 

the Control Agents involved (cAgtCtrVC-n and cAgtCtrLnk-n) to identify the incident location at the 

Controller-Level only. The incident was then reported to the Arbitrator Agent (oAgtArb-6) at the Grid-

Level by a single Control Agent and only when the incident location was identified and confirmed. This 

further reduced the number of transactions between the Controller-Level and Grid-Level Agents (as 

shown in figure 8.13). 

Remark: At the Controller-Level, Agent-based Controls require additional transactions between Control 

Agents (and its controllers). However, these transactions are between Control Agents which are closely 

interconnected at the Controller-Level as compared to the Central/Grid Control systems, which may be 

in different networks, geographic locations and may have bandwidth issues or host system limitation. So 

the reduction in transactions between Controller-Level agents and Grid-Level/Central Control-Level 
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agents (As demonstrated in figure 8.2) provides a key advantage to Agent-based control as compared to 

fixed traffic control systems. 

Communication intelligence and flexibility: The semantic layer in Agent communication 

(mentioned in chapters 5 and 6) provides a high-level of functionality and flexibility in the form of 

Semantic-content, Ontologies and Rules embedded within Agent messages. In this way the agent 

messages can be either a simple request-reply between two Agents or a complex communication with 

references to multiple ontologies and/or rules involving various levels of Agents. For example, in the incident 

detection and response scenario (Setup 1) described in section 8.2.1 and illustrated in figure 8.6, the ‘Inform’ 

message sent by the Grid Arbitrator Agent (oAgtArb-6) to the Central Control Arbitrator Agent (oAgtArb-1) 

started complex messages between multiple Agents at different levels using various ontologies and rules in 

order to generate a resolution plan to restore the traffic flow to normal.  

The simulation results mentioned in table 8.9 demonstrates the strength of the agent communication layer’s 

flexibility and functionality achieving more dynamic controllers Scope (as seen in figure 8.10) and quicker 

Resolution Time (RT) values (as seen in figure 8.11).   

 

 

Communication overheads analysis  

The implementation of SOA based systems can have some drawbacks mainly due to network latency, 

message payload overheads (increase data packets and processing) and services integration/discovery 

overheads (Erl et al., 2012). In highly distributed ITS environments, the services and host systems are 

geographically dispersed and network latency issues are bound to affect the performance especially where 

the bandwidth is low e.g. mobile/wireless communication (Schwab, 2007; Richardson & Ruby, 2007; Erl 

et al., 2012).   

In this research, the SOA related overheads were addressed by considering different measures. First of all, 

the SOA Reference architecture of the overall ITS@CU platform (detailed in chapter 7, section 7.2.3) was 

streamlined to improve the integration, discovery and composition of the services layers and between the 

Agent controls. The agent’s communication performance and network latency issue were addressed by 

reducing the number of service calls/transactions between Agents at different levels (mentioned earlier in 

this section and figure 8.13) and also by reducing the web services data payload overheads and efficient 

XML processing.    
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Web service and XML overhead handling: The Agent Communication Layer is based on 

web services interface (mentioned in chapter 7, section 7.3.1.2 and figure 7.5) which uses XML for the data 

payload. XML is highly flexible however it is not an efficient message format (Daigneau, 2011; 

Richardson & Ruby, 2007) due to parsing of elements tags and data. In a typical XML based web service 

the actual number of bytes required to construct a message is much higher than the actual information 

contained within. For example, a simple status/request message (similar to the example mentioned in 

chapter 5, code excerpt 5.1) with the size of the XML message wrapper of 832 bytes only has a message 

content size of 192 bytes which accounts to less than 25% of the size of the entire agent message. 

Additionally, the web service connection setup and termination takes various steps. For example in the 

ITS@CU, a typical service call from a client Agent goes through the gateway middleware, service bus, 

application/web server hosting the Service, and then the database server and back to the client. Each step 

can result in web service failure hence the use of connection pooling, session management and message 

queuing is vital (chapter 7 covers how ITS@CU address these issues at the implementation level).   

In this research, the web service and XML related overheads were addressed firstly by reducing the 

payload size (by using compression techniques and avoiding SOAP for smaller transactions) and secondly 

by using efficient XML parsing to reduce processing overheads.  

SOAP web services were all compressed using GZIP compression (using SOAP extension mentioned in 

chapter 7). As seen in the table 8.10, the GZIP compression reduced the data size and overall transaction 

download time of the web service requests by about 60% with an additional average 15-20% of time 

compressing and decompressing,  yielding around 40-60% overall efficiency. 

 Data Size (bytes) 
Simple SOAP 

Request Message  

Transaction  
Time (ms) 
Including 

compression/ 
Decompression time 

Data Size (bytes) 
Complex SOAP 

Message Response with 
Semantic-Content 
(Ontology/Rules)  

Transaction 
Time (ms) 

Including 
compression/ 

Decompression time 

Without 
Compression  

832 13 17892 157 

With GZIP 
Compression 

278 
7 

5 actual time + 2  
decompression time 

6326 
71 

62 actual time + 9 
decompression time 

Table 8.10: SOAP Compression Results 

Remarks: These values were captured using WireShark network protocol analysing software 

(wireshark.org). The web service transaction calls used in this study analysis were two types of messages 

1) a simple Agent Request message representing basic status request (e.g. in chapter 5, code excerpt 5.1) and 

2) a complex Response message with Ontologies and Rules (e.g. the plan implementation message by 
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Arbitrator agents in the resolve steps in the incident detection scenario 8.2.1 and figure 8.6). These analyses 

were performed using the Control Agent application (mentioned in chapter 7, section 7.3.2.4) running on 

PDA emulation software for consistency and eliminating other network factors. The PDA emulators 

were hosted on a workstation PC with WireShark logging each message inbound/request and 

outbound/response with a detailed network analysis down to protocol and data packet level breakdown. 

The stop watch module embedded in the simulation applications was used for calculating the GZIP 

compression or decompression time values. The values in the result table 8.10, 8.11 and 8.12 are the 

actual time of the message processing durations. Other duration values such as the pre-configured 

decision wait time values, connection setup and authentication/validation time were discarded by the stop 

watch module embedded in the simulation applications in order to analyse the actual duration relevant for 

analysing the results.  

Although GZIP based compression in SOAP web services was helpful in significantly reducing the data 

payload, SOAP web services have a higher message overhead when compared to REST web services 

(Hameseder et al., 2011; Richardson & Ruby, 2007). So in order to further reduce the web services 

overheads, the Agent communication layer in ITS@CU supported both SOAP and REST based binding 

(mentioned in chapter 7, section 7.3.1.2 and figure 7.5). For the purpose of performance comparison of the 

web service types, the same type of simulation tests mentioned in table 8.11 were performed using both 

SOAP and REST with XML as a data exchange format. The following table shows the results obtained: 

 Data Size (bytes) 
Simple Request-

Response Message  

Transaction 
& processing 

Time (ms) 

Data Size (bytes) 
Complex Message Request-
Response with Semantic-
Content (Ontology/Rules)  

Transaction 
& processing 

Time (ms) 

SOAP 278 7 6326 71 

REST 113 5 3907 43 

Table 8.11: SOAP and REST Comparison  

Remark: During the test the Dynamic Compression feature for IIS7 was enabled for HTTPCompression.  

As seen in table 8.11, the overall transaction and processing time using RESTful web services is more 

efficient when compared to SOAP web services, especially for a simple request-response service call. The 

reason for using SOAP along with REST web services in ITS@CU was to take advantage of both types. 

REST is very lightweight with less XML overheads (Erl et al., 2012; Richardson & Ruby, 2007) and 

therefore better suited for controllers. By contrast SOAP handles semantic content (as binary data) more 

efficiently, provides better type checking (Daigneau, 2011) and better implementation tools and support 

for .NET framework (Erl et al., 2010). It was therefore deemed efficient to use REST web services at the 
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controller level and SOAP web services for operational and service agents where the hosts generally have 

high bandwidth and CPU capability.  

Although the use of compression techniques and the combination of RESTful and SOAP web services 

reduces the data payload, they both use XML for their data content. In order to reduce the XML 

processing overheads, the control applications utilise the latest .NET libraries for native parsing support, 

LINQ for in-memory XML document handling (DOM capabilities), and using XML data types in 

databases (SQL Server 2008) for quicker handling at the database level (Chapter 7 mentions the 

implementation details).   

REST also provides support for other data exchange formats such as JSON and Fast InfoSet which are 

light weight as compared to XML (Hameseder et al., 2011; Daigneau, 2011), however XML was mainly 

adopted for the Agent Communication Layer due to its greater flexibility which far outweighs the lighter 

data payload benefit of JSON, Fast InfoSet or other object passing methods. Other benefits of using 

XML are mentioned in chapter 5, section 5.2. 

Network latency considerations: In SOA based distributed environments, network latency and 

reliability is also a major issue especially in mobile/wireless scenarios (Schwab, 2007; Erl et al., 2012). In 

order to evaluate the Agents’ communication approach using lower bandwidth and specification 

controller devices, a limited number of tests (similar as mentioned in table 8.11) were conducted using 

PDA devices using Wi-Fi and PDA emulators on a host PC.  

Mode of traffic 
controller 
applications 

(section 7.3.2.4)  

Data Size (bytes) 
REST based 
Status update 

Message  

Average 
Transaction & 

processing  
Time (ms) 

Data Size (bytes) 
SOAP based Message 
with Semantic-Content 

(Ontology/Rules)  

Average 
Transaction 

& processing 
Time (ms) 

PDA emulator 113 5 6326 71 

PDA device 113 8 6326 128 

Table 8.12: Network latency and CPU analysis (traffic controller application) 

Modes: 

  PDA device (HTC P6500): CPU 400 MHz, 128 MB RAM with WiFi 

  PDA emulation mode (Visual Studio 2008 emulator): CPU 528 MHz, 512 MB RAM with stable host connection 

Remark: PDA emulation software (Windows Mobile 6.5 Phone Emulator in Visual Studio 2008) was used to 

eliminate the hardware differences and intermittent communication factors.      
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The results in table 8.12 show the negative impact of lower bandwidth and CPU/Memory on the 

performance of Controller applications simulated using a PDA device and PDA emulator. 

To conclude, agent’s communication performance and network latency issues in the ITS@CU SOA 

platform were addressed by reducing the number of transactions between geographically distributed 

services/systems (controller to grid/central control level); reducing the payload size (by using 

compression techniques, and combination of REST and SOAP appropriately; and efficient XML parsing 

to reduce processing overheads. Additionally, various technologies and implementation methods adopted 

such as MSMQ for message queues, efficient session management and pooling implementation (using 

HttpSessionState in applications and IIS configuration on web servers) helped in improving the 

communication reliability in wireless scenarios.  

Other findings and considerations 

 Controllers per Control Agent ratio: One of the key findings (based on the MDDT result values 

mentioned in figure 8.8) was that the ratio of the number Controllers devices controlled by a 

Control Agent is very important for overall communication performance. The larger the number 

of Controllers per Control Agent the lower is the need for outside communication (Between the 

Control Agent with other Agents). However the drawback is that a single Control Agent has to 

control the operation of multiple Controllers and work in a split-site hosting mechanism 

(described in Chapter 4) which results in extra intra-agent level communication (between 

Controllers/hosts) and can have a negative impact on the host controller resources. The best 

approach is to balance this ratio depending on the capacity, resource, communication technology 

and distance between the Controllers. In this study, the best ratio on average was 3 Controllers 

per Control Agent (PDA emulation mode). However, this can vary depending on the type and 

capacity of the Controllers, so this has to be approached based on network, CPU/memory and 

other such specification factors.  

 XML Ontologies/Rules buildup: A benefit of the Agent Communication Layer approach was 

that the ontologies and rules are exchanged on a need-to-know basis i.e. if an agent receives a 

domain ontology/rule set it is stored locally (in local database/files mentioned in chapter 5 and 

7) and if a particular ontology is required to interpret an agent’s message then the agent acquires 

it using a request message (mentioned in chapter 6). This avoids the need of embedding 

ontologies/rules XML data within agent transactions (semantic-content) and the local ontology 

and rules build-up overtime hence reducing download data size over time.  
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 XML Message splitting: The Agent communication layer also supports message splitting using 

the dynamic XML node distribution mechanism in the message assembler/parser module. In 

this way, an Agent need send only the relevant parts (XML Node) of the message and domain-

level ontologies to multiple Agents (mentioned in chapter 5). This mechanism can also reduce 

the communication overheads and improves the integration between different domain controls.  

 

8.2.3. Semantic web services approach 

The Semantic Web Services concept in the platform’s Agent communication implementation was 

evaluated to assess the following key benefits: 

Dynamic Service discovery: The Service Agents in the ITS@CU platform were designed to 

dynamically build its metadata (called meta-tags) based on its domain-level ontologies and 

capabilities/operations. This helps other Agents in finding the most suitable Service Agent (over the 

platform Service bus) for any service delivery related requests.  

This functionally was evaluated in simulation study (using setup 1) but with 3 Weather Info Service 

Agents (oAgtSvcWS-n) with each Service Agent responsible for a specific set of Grids. First, various 

simulated web service requests based on different ontologies were made over a period (40 queries for 10 

minutes) to automatically generate meta-tags for each Service Agent’s operations (web service methods). 

Then, to assess the outcome, different Grid Arbitrator Agents (oAgtArb-n) were programmed to find a 

Service Agent which had the most recent weather update for a specific link. For example (using the 

Agents described in section 8.1 and study area figure 8.1) when the Grid Arbitrator Agent for Grid-6 

enquired the Service registry Agent (oAgtSvcReg-1) for a service lookup request regarding weather update 

relevant to “Foleshill Road” (incident location point in figure 8.3), the oAgtSvcReg-1 used the meta-tags and 

identified the sAgtSvcWS-1 as suitable to fulfil the request as it had a meta-tag “Foleshill road” as a link 

name. This meta-tag was added when the sAgtSvcWS-1 first received the domain-level ontology (during 

the simulated web service requests) where the link names list also contained “Foleshill road”. In this way 

meta-tags are built up dynamically for each service Agent and if multiple service agents have the same 

meta-tags then oAgtSvcReg-1 will look for other meta-tags until a service Agent is found with the most 

matching meta-tags.  
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Semantic queries (semantic layer):  The semantic web services capability in the platforms’ Agent 

Communication Layer/Interface (described in chapter 5, section 5.1 and chapter 7, section 7.3) allows the 

augmentation of semantic-content (described in chapter 6) and within Agent messages. The semantic-content 

provides the flexibility to embed complex queries and conversations which the targeted Control Agents can 

interpret based on its domain knowledge (domain-level ontologies) and can delegate/forward/coordinate 

the message to other Agents.  

In order to evaluate the semantic layer, consider the “resolve” step in the  detection and response scenario 

(described in section 8.2.1 and figure 8.6) where the Central Control Arbitrator Agent (oAgtArb-1) delegated 

the Plan implementation request to Grid-Level Arbitrator Agents (oAgtArb-6 and oAgtArb-8) using the 

semantic-content, only mentioning the potential diversion routes but with no detailed actions. The 

receiving agents further elaborated the Plan using their local domain-level Ontologies and Rules, and then 

further delegated these tasks to the relevant Controller-Level Agents (cAgtCtrTL-n and cAgtCtrMsgD-n 

seen in figure 8.6). Each cAgtCtrMsgD-n and cAgtCtrTL-n Agents interprets the semantic-content in the 

message instructions (based on their local ontologies and Rules) in order to execute the actions 

(mentioned in the figure 8.6 and its description) for the restoration of the traffic flow rate.  
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8.3. General observations & discussion 

 

8.3.1. Reliability  

The following are some of the reliability related aspects of the platform relevant to the Agent-based 

Controls approach: 

 A single Agent can deal with multiple requests at the same time however this also means a single 

point of failure in the platform in case the Agent becomes overloaded or becomes non-functional. 

So for the purpose of resiliency and load balancing, a pool (pair or a cluster) of Agents can be 

configured in the platform which work together and provide similar role functions to a single agent 

(mentioned in chapter 4, section 4.14). In such cases one Agent within the pool becomes a pool 

manager to distribute requests evenly. The pooling mechanism is particularly useful for agents with 

vital functions, so if one of the vital agents (or its host) stops responding or becomes overloaded 

then the other Agent(s) in that pool takes over and the platform continues to function.  

This functionality was used in incident detection and response scenario, where the Arbitrator 

Agents at the central control-level (oAgtArb-1 and oAgtArb-2) shared the tasks, and the oAgtArb-1 

served as the pool manager during the simulations (see figure 8.2 and table 8.4). 

 The ITS@CU platform has QoS Operational Agents (oAgtQoS-n) which provides the current 

performance and operational status of the platform’s agents in terms of their Quality of Service 

(QoS) values 3-0 (described in chapter 4, table 4.7). The oAgtQoS-n is used by other Agents to aid in 

selecting a suitable Agent to carry out task(s) where multiple Agents with similar capabilities are 

available. This is particularly useful in selecting Service agents or Arbitrator Agents which may be 

overloaded or slow responding due to other agents’ requests.  

The QoS agents improves reliability by keeping track of agents current status but also by informing 

relevant Manager Agents if an Agent has 0 or 1 value, so an appropriate action (e.g. create new 

instance) can be taken by the relevant Manager Agent. Although the QoS agent adds an additional 

communication overhead (due to the periodic ping broadcast messages to agents) it is a relatively 

small overhead when compared to the benefits it provides. The simulation results shown in figure 

8.13 show that the system (with a ping broadcast interval of 3 minutes) performs better (with a 

lower number of transactions) than the setup without agent-based controls.  
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The interval must be configured based on the number of agents, the network and other such 

factors to avoid any adverse impact on the overall performance of the system due to 

disproportionate QoS value check transactions. Additionally, the ping interval configuration 

implemented in the platform was not configurable for individual agents (i.e. the interval value was 

same for all agents). As a future recommendation, individual agent’s status/health check can be 

more efficient as compared to broadcast so a crucial agent can be checked more often than less 

important agents to keep the number of transactions lower.         

 The agent communication layer in the platform includes a message type “Reply” with instruction-

types Acknowledgment and Failure which were especially implemented for a reliable delivery of agent 

messages and handling message corruption issues (see chapter 5, table 5.1). By default every message 

sent by an Agent is acknowledged by the other agent, and if an acknowledgement reply is not 

received after a set period of time (10 seconds used in the simulations) then the Agent retries or 

takes another action based on the configuration. If the message is received but not understood 

(usually due to ambiguous ontology/rules or message corruption during the multi agent 

transaction) a Failure reply message with reason code is sent back to the sender(s).  

Additionally, from the technology point of view MSMQ was used in the platform to queue agent 

messages by the sender (host Controller) so in the event of connection loss, the data is queued 

locally and as soon as the connection is re-established the data is sent in an orderly fashion. This is 

particularly useful in wireless/mobile connectivity where the communication channels are not 

reliable. 

 The controller applications (mentioned in chapter 7, section 7.3.2.4) were designed to switch to 

default-logic mode (i.e. the basic default functionality/logic of a controller). So if a control agent 

(Agent-Logic functionality) stops working due to connectivity failure or control agent malfunction 

then the traffic Controller continues its basic default functions in a controlled manner despite the 

loss of communication with its control agent. It must be considered by any such critical agent 

based controls system to ensure that the system does not become non-operational during such 

incidents/issues.     

 The split-site agent hosting mechanism (described in chapter 4, section 4.1.4) allows the Agent to 

efficiently use the host resources by distributing its operations and files on multiple host 

Controllers. In this way, Agent-based Controls can actually perform more functions on the same 

hardware. Although the split-site hosting mechanism has various performance and recourse 

sharing advantages, it could also impact the agent’s reliability if any of the involved hosts become 

unresponsive or slow. This is especially true if the primary host fails as the Agent also fails despite 
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the other partial hosts being operational. It is therefore recommended to use the split site hosting 

mechanism only when the participating hosts have reasonable capacity/recourses available for the 

agent’s functions and also by considering network capacity and link type/channel between the 

participating hosts to avoid any impact on the overall system reliability.  

 

 

8.3.2. Security handing 

The security in Semantic Agent-based Controls is of significance importance as any vulnerability can 

impact the entire platform. The security was therefore designed as part of the Agent Communication 

Layer/Interface (described in chapter 5) which requires the transactions authentication by a Security Agent 

which also validates the identity of the sender Agent and its level of Access. As far as the technical 

implementation was concerned, all the web services based transactions in the platform were encrypted 

using AES-128 encryption in order to secure the transport method and the communication channel (Wi-

Fi or 3G/GPRS).  

The security was assessed by analysing various test cases such as creating an agent with less privileges/  

access level (e.g. the grid Arbitrator Agent oAgtArb-6 in incident detection and response scenario) then 

using that agent to try and obtain ontologies allowed only for the Central control-level Arbitrator Agent 

oAgtArb-1. The transaction resulted in access being denied. Similarly an unauthorised Agent-ID was used 

and similar results were obtained. 

In another test scenario, a Controllers-Level Agent was deliberately altered during simulations by 

changing its value at the database level to simulate situations where an Agent (with low access level i.e. 

Controllers-Level) was trying to perform operations at the Grid-Level. The Security Agent was successful 

in identifying the Agent’s actual access level (due to the ID cross checking in the main database 

functionality implemented in the platform) and changed its state to “suspended”. 

These studies were conducted to demonstrate that the ITS@CU approach of using Agents is secure and 

most importantly to demonstrate that Agent-based Controls can be securely used in any such 

environment as long as the right security measures are undertaken (such as those suggested in chapter 5, 

section 5.4). 
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8.3.3. Centralisation and decentralisation flexibility 

The Agent-based Controls approach promotes de-centralisation due to its localised decision-making 

capability at the Controllers-Level. If the controllers are in default mode (i.e. simulated as fixed 

controllers) the system becomes more centrally controlled as each controller would require direct 

communication with a grid control or the central control system. However, the Agent-based Controls 

coordinate with each other and perform decision-making at the Controller-Level (as seen in figure 8.2) 

with fewer interactions with Grid-Level Agents except for Arbitration purposes. For example, in the 

incident detection scenario as demonstrated in figure 8.6, the incident was reported to Arbitrator Agent 

(oAgtArb-6) at the Grid-Level only when the incident location was identified and confirmed first by the 

Control Agents (cAgtCtrVC-n and cAgtCtrLnk-n).  

In the ITS@CU platform, one of the main advantages of the Agent-based Controls approach was the 

flexibility of adjusting the level of centralisation and decentralisation of the system. The communication 

and relationship between all the entities (Agents, Controllers etc.) were all based on the ontologies (as 

described in chapter 5 and 6), and due to the flexible design of these ontologies the system can be 

configured to any level of centralisation/decentralisation. The more comprehensive the relationship 

ontologies (domain-level) with associated select and match Rules are defined, the more they would enable 

decision making abilities at the Controllers-Level. Similarly these Ontologies and Rules can be designed in 

such a way that will designate all the decision-making to the Grid-Level or even to the Central Controller-

level. 

 

8.3.4. Maintenance and scalability   

The following are some of the key maintenance and scalability aspects of the platform relevant to the 

Agent-based Controls approach: 

 One of the other important advantages of the Agent-Based Controls method is its dynamic 

update capability without the need to change the hardware or even firmware. The functionality of 

a Controller in the platform can be updated by sending new Agent-Logic operations/commands 

embedded in a request message. This functionality was evaluated by updating the Agent-Logic of 

all the 36 Traffic Light Controllers (CtrTL-n with 182 associated traffic light controls) mentioned 

in table 8.1. All the controllers were successfully updated in less than 2 minutes (using PDA 

emulators and just adding an extra operation to the Agent-Logic). This functionally cannot be 

achieved in a traditional control system as most of the current systems require hardware or 
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firmware refresh which is costly and could involve more Controller down time which is not ideal 

for a traffic system affecting the road users.  

 Similar to the incident detection behaviour of the Control Agents (described in detection and 

response scenario above), the Control Agents can also detect any hardware 

malfunctions/defects. Each Agent constantly monitors the host Controller and its associated 

traffic Controls, and if a problem is noticed it raises an Inform message to a Control Agents 

Manager (oAgtcAgtMgr) with the relevant defect code. Similarly, if the Control Agent stops 

responding (even if its host Controller is functioning correctly), the Controllers switch to default-

mode and the Control Agents Manager notifies other relevant Agents (about the non-functioning 

Control Agent/Controller). During the simulation studies, the PDA emulators were deliberately 

switched-off and restarted to simulate Agents and Controllers having a temporary defect or 

permanent failure. The Control Agents Manager successfully raised Agent and Controller failure 

events with defect codes during all these tests.   

 Another major advantage of this approach is the ability to define different Ontologies and Rules 

based on a location’s requirements. The ontologies and rules can be adapted for a specific section 

of the traffic network (for example city center or even smaller sections relevant to specific places 

such as schools) in order to maximise the overall performance of traffic Controllers and update 

the functionality over the time specific to that location.  

 

 

8.3.5. Limitations 

The semantic-agent based control approach has the following limitations: 

 Although the ontologies and rules provide a high level of flexibility, they need to be defined in an 

optimised manner to avoid any negative impact on the operations of the agent-based controls. 

For example poorly defined rules can lead to ineffective decision making by Control Agents, 

similarly a lack of ontologies or ambiguous entities within the ontologies’ descriptions can also 

limit the decision making of the Control Agents. The top-level ontology for the ITS@CU 

platform mentioned in chapter 6, figure 6.5 and in “Appendix O” is an example of an optimised 

ontology with no ambiguity.   
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 The semantic agent-based controls approach requires controllers to be interconnected and 

capable of hosting the control agents. Modern traffic control systems are heading in this 

direction however the legacy infrastructures may not be capable of implementing this approach. 

 The evaluation studies involved a single region and 6 grids in an urban traffic network. Multiple 

regions and other transportation types for example rail/ferry network were not evaluated due to 

the specific requirement and data availability from Coventry City Council.  

 The ITS@CU platform works in a pre-configured manner and the simulation/demonstration 

requires the specific data format and hardware/software environment pre-requisites.  

 The agent communication layer in the ITS@CU platform supports SOAP, WCF and RESTful 

web services (as described in chapter 7, figure 7.5) so the participating components/systems in the 

proposed approach must conform to SOA principles and must have the capability of using 

services based communication. The transportation industry is generally moving towards adopting 

SOA enabled platforms and technologies (Wang et al., 2010; Dion Hinchcliffe, 2009; Ross 

Altman, 2008), which are capable of supporting this approach. 
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8.4. Conclusion and summary of  findings  

This chapter evaluated the overall research approach of using the novel concepts of Semantic Agent-

based Controls. The results from the study cases demonstrated the following key advantages and findings 

of the approach:  

 Semantic agent-based controls demonstrated the capability to detect problems such as incidents 

and hardware issues more efficiently, as seen in figure 8.9 showing a high detection rate due to the 

low number of false alarms. The key advantage of the agent-based controls is their ability to 

respond to such problems by coordinating with each other and making decisions as 

demonstrated in figure 8.11 and 8.12 showing a quicker restoration time by using controllers’ 

scope more effectively. Traditional fixed controllers (for example SCOOT system) are generally 

centralised and only react in a pre-configured manner with a fixed scope hence they do not have 

the dynamic self-organisation capabilities of the agent-based controls approach.  

 The agent-based controls approach demonstrated a significant reduction in the number of 

transactions between the traffic controllers and central/grid control systems (as seen in figure 

8.13). This is due to control agents communicating on behalf of their host controllers primarily at 

the controllers-level between agents in the same grid and only communicating essential 

information up to the grid level agents.  

 The Agent communication layer provides a high-level of flexibility in the form of semantic-

content embedded in Agent messages allowing complex queries and conversations which the 

targeted Control Agents can interpret based on their domain knowledge (domain-level 

ontologies) and can delegate/forward/coordinate the messages to other Agents. 

 The semantic layer helped Agents in finding the most suitable Service Agent (over the platform 

service bus/layer, as described in chapter 7, section 7.3.1.2) for any service delivery related requests 

using the meta-tags which are updated automatically each time an agent processes a new/update 

ontology. 

 The features and mechanisms such as the split-site hosting, QoS ratings, and load balancing 

employed in this research helped improve the reliability of Agents and provided a dynamic 

performance management capability as demonstrated by the pooling mechanism which enables 

the agents to work in clusters/pools to share the load and provide resiliency in case of an Agent 

failure. Additionally, the switching capability of the agent-based controls approach (default-logic 

mode) ensures that the Controllers continue their important operations in case of Agent failures.   
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 The security measures for the semantic agent-based controls approach must incorporate identity 

authentication and level of access validation as a minimum due to their importance in securing 

the platform as demonstrated in section 8.2.6. Additionally, the communication/transmission 

channels must also be secured.  

 The semantic agent-based controls approach presented in the research promotes de-

centralisation due to its localised decision-making capability at the controllers-level as 

demonstrated in the incident detection scenario. The advantage of the approach is the flexibility 

to adjust the level of platform’s centralisation/decentralisation by defining the ontologies and 

rules accordingly. The communication and relationship between all the entities (Agents, 

Controllers etc.) were all based on the ontologies, and due to the flexible design of these 

ontologies the system can be configured to any level of centralisation/decentralisation i.e. the 

more comprehensive the relationship ontologies (domain-level) with associated select and match 

Rules are defined, the more they would enable decision making abilities at the Controllers-Level. 

Similarly these Ontologies and Rules can be designed in such a way that will designate all the 

decision-making to the Grid-Level or even to the Central Controller-level.  

 Sematic Agent-based Controls are ideal for ITS as they provide an efficient way of updating and 

optimising the traffic Controllers/Controls capabilities without the need to change the hardware 

or even firmware in form of Agent-Logic update. It is a cost effective way to develop, maintain 

and expand/upgrade a transportation system in a future connected environments.    
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Chapter 9 
 

9. Conclusion & Further 
Work 

 

The previous chapter evaluated the overall research approach of Semantic Agent-based 

Controls in a SOA based ITS environment. It presented an analysis of the ITS@CU 

platform by simulating different traffic scenarios and test cases. 

This chapter concludes the thesis, summarises and highlights the significance of the 

findings. It presents suggestions for further work and the potential of the research approach 

in different application areas.   
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9.1. Conclusion  

The research presented in this thesis was aimed at addressing the challenges of integration, 

communication and management which are associated with large scale multi-domain systems due to their 

highly complex, distributed and multi-domain natures. The application domain selected to evaluate the 

novel implementation approach of semantic agent-based controls was Intelligent Transportation System 

(ITS). ITS@CU, a comprehensive, purpose built, multi agent simulation and development platform was 

developed to investigate urban traffic control issues. A number of commercially oriented applications 

were also developed and have since been successfully deployed.    

The software designs and approach reported in this research addressed the challenges offered by the 

complexity, distributed and multi-domain nature of ITS in the following ways: 

 9 types of Control Agents with different roles were designed to govern the functionality of 

multiple traffic controllers. The control agents were based on intelligent and mobile agents design 

properties. These control agents host their Agent-Logic and associated knowledge base across a 

set of specific interconnected Controllers (for example traffic lights controller units). 

 The control agents were supported by various types of Operational and Services Agents in the 

multi-agent platform. Operational agents provide key supporting functions such as arbitration 

between agents, security, and platform/agents management and performance monitoring. Service 

agents provide access to external services by different sources for example direction/route 

services provided by Microsoft Bing Maps and weather information provided by the Met Office. 

The close cooperation and coordination between all the agents having specific roles provided the 

Agent-based Controls with the mechanism required to cooperatively respond to emergent traffic 

situations.          

 Service Oriented Architecture (SOA) principles provided seamless integration and 

communication methodologies in the form of standard services based interfaces which was 

required for the interoperability of the technologically diverse and multi-domain nature of the 

traffic systems/devices.  

 A unique agent communication layer was developed to allow the efficient communication and 

coordination mechanism between the agents across the SOA enabled platform components. The 

agent communication messages (implemented as web service operations) comprised of message 

instructions and a semantic content layer. The message instruction commands were adapted from 

FIPA standards but customised for better performance in the agent communication layer 

implementation. 
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 The semantic content layer within agent messages provided a sophisticated and flexible method 

to embed domain specific commands with associated ontologies and rules that semantically 

describe the Agents’ intentions. This enables agents to coordinate cooperatively across the SOA 

enabled network of traffic systems and devices, and formulate action plans in the form of 

decision rules between the semantic agent-based controls facilitating dynamic and distributed 

decision making in response to emergent situations. Overall, it facilitated efficient detection of 

traffic control problems (congestion/incidents/system faults) and the making of 

intelligent/smart decisions by activating/adapting different traffic controls. 

The ITS@CU platform was developed from the ground up specifically to support and evaluate the 

implementation approach presented in the Thesis. The platform and the associated simulation utilities 

were developed using the latest state of the art commercially available tools and technologies such as 

.NET 3.5/4, WCF, ASP.NET, SQL Server 2008 spatial data, LINQ, Microsoft Silverlight, Bing Maps 

API, Windows Mobile 6.5 SDK and various wireless communication technologies and libraries.  

 

Research findings 

The research approaches were evaluated using a variety of different test cases generated using historical 

traffic data and typical traffic situations identified by UTMC Control room, Coventry city council. The 

results demonstrated the advantages of semantic agent-based controls especially when compared with 

non-agent based controls, where applicable.  

The following are key advantages and findings of the overall research approach evaluation:   

 Semantic agent-based controls demonstrated the capability to detect problems such as incidents 

and hardware issues more efficiently. The detection rate was improved by 10-30% with a 

combined reduction in the number of false alarms. The key advantage of the agent-based 

controls is their ability to respond to such problems by coordinating with each other and making 

decisions. The overall traffic flow restoration time was improved by approximately 20%. 

Traditional fixed controllers are generally centralised and only react in a pre-configured manner 

with a fixed scope hence they do not have the dynamic self-organisation capabilities of the agent-

based controls approach.  

 The agent-based controls approach demonstrated a significant reduction (approximately 75%) in 

the number of transactions between the traffic controllers and central/grid control systems when 

compared with similar scenarios run with the controllers in default mode. This is due to control 
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agents communicating on behalf of their host controllers primarily at the controllers-level 

between agents in the same grid and only communicating essential information with the grid 

level agents.  

 The Agent communication layer provides a high-level of flexibility in the form of semantic-

content embedded in Agent messages allowing complex queries and conversations which the 

targeted Control Agents can interpret based on their domain knowledge (domain-level 

ontologies) and can delegate/forward/coordinate the messages to other Agents. 

 The semantic layer helped Agents in finding the most suitable Service Agent (over the platform 

service bus/layer) for any service delivery related requests using the meta-tags which are updated 

automatically each time an agent processes a new/updated ontology. 

 The features and mechanisms such as the split-site hosting, QoS ratings, and load balancing 

employed in this research helped improve the reliability of Agents and provided a dynamic 

performance management capability as demonstrated by the pooling mechanism which enables 

the agents to work in clusters/pools to share the load and provide resiliency in case of an Agent 

failure. Additionally, the switching capability of the agent-based controls approach (default-logic 

mode) ensures that the traffic Controllers continue their important operations in case of Agent 

failures.   

 The semantic agent-based controls approach presented in the research promotes de-

centralisation due to its localised decision-making capability at the controllers-level as 

demonstrated in the evaluation studies in incident detection scenario. The advantage of the 

approach is the flexibility to adjust the level of the platform’s centralisation/decentralisation by 

defining the ontologies and rules accordingly. Similarly, the level of ontologies and rules can be 

adjusted specifically for regions allowing optimisation based on the specific requirements of the 

location/traffic section or grid.  

 The security measures for the semantic agent-based controls approach must incorporate identity 

authentication and level of access validation as a minimum due to their importance in securing 

the platform. Additionally, the communication/transmission channels must also be secured.  

 Sematic Agent-based Controls are ideal for ITS as they provide an efficient way of updating and 

optimising the traffic Controllers/Controls capabilities without the need to change the hardware 

or even firmware in the form of Agent-Logic updates. It is a cost effective way to develop, 

maintain and expand/upgrade a transportation system in a future connected environment.  
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Critical evaluation of the research contributions and novelty 

The main novelty in terms of the implementation approach is the introduction of the concept of 

“Semantic Agent-based Controls”. It enables the controlling of multiple ITS-based controls/systems over 

a network by using Control Agents. The thesis also introduces a novel “agent communication layer” 

which provides the capability to encapsulate sophisticated semantic data (commands, ontologies and 

action rules) within agent messages. This enables efficient communication, cooperation and coordination 

between the semantic agent-based controls, and provides the ability for agents to work in synergy with 

other agents with dynamic adaptability in order to manage the traffic grids’ controls and make smart 

decisions in response to emergent situations. 

The second major contribution is the incorporation of the agent communication layer within the SOA 

enabled ITS@CU platform to facilitate Agent interactions in the form of services over highly complex, 

distributed and multi-domain networks. This is a unique implementation of multi-agent systems and 

provides a robust and highly scalable platform which can be also adopted in a wide range of other 

application domains. 

The main novelty in terms of application is the new ITS platform (ITS@CU) which provides 

comprehensive agent management, communication and traffic control devices/systems simulation 

capabilities using the adopted implementation approaches and technologies. The ITS@CU platform as a 

whole is unique and no such platform currently exists which uses .NET technologies and the agent 

oriented approach adopted in this research for ITS.    

One of the most significant contributions in terms of technology enablers is the Mobile Application 

Development Framework (MADF). It provides a template based rapid mobile application development 

framework (in the form of project templates in Visual Studio 2008) with reusable classes, modules and 

tools specifically designed to simulate the traffic controllers and controls behaviour. MADF was used for 

developing the key simulation applications (such as traffic controllers, controls and vehicle controls) on 

PDA devices for the evaluation of the ITS@CU platform. Additionally, it provided a baseline framework 

which was adapted to develop some of the commercial applications during the project such as the Patient 

Transportation System (PTS) and the Intelligent Vehicle tracking solution.   
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Additional contributions  

The research project had a commercially oriented R&D focus. In addition to the core research objectives, 

elements of the ITS@CU platform developed during the project also led to the development of various 

proof of concepts and commercial applications/products for T@lecom. The following are three 

successful applications which resulted from this research:   

 Patient Transport System (PTS): It is a mobile solution for non-emergency ambulance crews 

to transfer patients to and from hospitals. The solution consists of a mobile/PDA application 

integrated with NHS control room system via the T@lecom mobile gateway. The key relevant 

features include intelligent tracking/routing, two-way messaging/alerts and patient prioritising in 

real-time. The main contributions of the research were the use of MADF modules and class 

libraries in the development of the PTS mobile application. 

 Mobile Gateway System: It is a SOA enabled unified communication and integration platform 

for T@lecom’s mobile solutions. It comprises of a set of web services and a web-based 

management application for managing and monitoring mobile/PDA applications and devices. 

The main contribution of the research was the SOA based communication layer developed for 

ITS@CU and adapted for this system with re-use of various services and modules/classes. As a 

result of this contribution, T@lecom’s gateway was improved with the ability to integrate WCF 

enabled mobile applications with the existing gateway and better service choreography/services 

composition for streamlining mobile processes/work flows.      

 Vehicle Tracking Solution: It is an asset tracking solution for different type of assets such as 

vehicles and mobile devices. It comprises of a mobile/PDA application and a web based 

monitoring and management application. The main features include geo-fencing based tracking 

and alert notifications, real-time driver/vehicle updates, remote driving and navigation 

instructions and a novel feature of driver behaviour assessment. It incorporated various modules 

and functionalities originally developed for the ITS@CU platform’s simulation/monitoring 

application.  

Additionally, various other relevant research applications such as a Bluetooth based Vehicle-to-Vehicle 

communication application with ad-hoc wireless networking capability and a GPS based incident 

detection system were developed using the concepts/modules from this research activities. 

Further details regarding the above mentioned applications and contributions is provided in “Appendix A 

and B.    
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9.2. Other potential application areas (Non-ITS) 

 

The implementation approach of semantic agent-based controls presented in this research is not limited to 

ITS. It offers an interesting potential in numerous application areas. Some of the areas identified include:   

City infrastructure management: Similar to traffic management systems, modern cities involve a range of 

systems and services distributed in multi-domain environments. The concept of smart cities, which requires all 

these systems and services to be fully integrated and work in a collaborative manner, seems to be an ideal 

candidate for adopting the semantic agent-based controls approach. This approach can provide such levels of 

integration and collaboration between the systems and services due to its SOA enabled flexible sematic 

communication layer. It can provide enhanced and dynamic capabilities using control agents with location-

aware decision making. Other benefits of the approach in this application area are its support for grid based 

distribution of host system resources and its capability to integrate with any SOA enabled infrastructure 

including cloud based services. 

Utility services/infrastructure management: This implementation approach can be applied to the utility 

sector such as telephone/broadband or electricity/gas supply. Their geographically distributed 

hardware/devices and services can be managed in a more effective manner using the semantic agent-based 

controls. In case of faults and system load issues, control agents can respond much more effectively without 

the need for a highly centralised monitoring system. This will help in keeping the services operational resulting 

in good customer experiences. It can be cost effective due to reduced maintenance issues by allowing self-

organisation and dynamic update capabilities in Agent-based controls (as demonstrated in the thesis evaluation 

chapter).  

Healthcare systems: Modern hospitals and associated care providers presents a good application area where 

hospitals’ systems can be well-integrated and managed via the semantic agent-based controls approach. For 

example, the equipment/systems in patient rooms/wards, mobile patient health monitoring devices, 

doctors/nurses portable tablet devices can be all linked and managed by the semantic agent-based controls, 

which can provide proactive patient monitoring by means of controls agents cooperatively managing the 

involved systems and alerting relevant staff quicker as well as responding to emergencies in a controlled 

manner. Such control can be achieved by adjusting the rules and ontology levels which is another advantage of 

this approach.   

Marketing campaigns: This is another interesting application area where digital interactive 

displays/billboards across shopping centres can be dynamically controlled and updated by using the semantic 

agent-based controls approach. It can be used for location and situation aware advertisement displays where, 

for example, holidays or even sudden weather changes can attract a different type of consumer. The system 

could be implemented by integrating the control agents (controlling distributed digital interactive 
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displays/billboards) with external services for dynamic updates based on the location aware domain 

ontologies.   

Business process monitoring: Modern businesses involve multiple business processes in the form of 

services usually geographically distributed across multiple branches and departments. The Service Agents 

concept in this approach can be adapted to monitor and control these business process services across SOA 

enabled environments (as demonstrated in the Thesis, service agent controlling and accessing external services 

such as Bing Maps and the weather services). In such environments, service agents can effectively monitor the 

services, help in service discovery using the meta-tags, load sharing/balance using the agent pooling 

mechanism and enable the system to dynamically adapt to the failure of a single service and can therefore be 

much more robust and reliable. 

 

 

9.3. Further Work  

 

During the course of this research the following areas of further work have been identified:  

 The ITS@CU platform was evaluated using one urban region with six grids. The scope of the 

traffic network area can be further increased by designing and adding more domain-level 

ontologies to describe wider transportation infrastructure elements and relationship. Similarly, 

more accompanying rules can be implemented at controllers-level to further devolve the 

distributed decision making. This would enable the evaluation of the adopted approach for 

different types and levels of transportations with multiple regions including rail and ferries 

network.  

 The ITS@CU platform can be extended to include vehicles to be controlled by Control Agents, 

where each vehicle can be dynamically controlled by vehicle control agents in different grids. It 

will take the research to a next level where Control Agents for vehicles can work in synergy 

allowing the development of an advance vehicle mesh network. This can be even approached 

using the vehicle-2-vehicle ad-hoc wireless networks. In this way vehicles can cooperate with 

each other by passing key information (such as congestion ahead, speed warning and other such 

alerts/messages) and also communicate with grid/infrastructure controls using the agent 

communication layer presented in this research. Such implementation can lead towards the 

realisation of smart connected vehicle on smart roads.  

 The platform can be incorporated with cloud based services particularly the federated form of 

cloud computing. Service Agents presented in this research can be modified to provide cloud 
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services to the ITS@CU platform including shared data repository and even processing in the 

cloud for CPU intensive agent tasks. This will further reduce the need for traffic controllers with 

high processing power as agents decision type tasks can be performed in the cloud. However, 

high speed and reliable connectivity is required in that case.  

 The signal adaptation in the research was limited to severe congestion response only. The 

adaptation process can be further extended to mild congestions or even normal traffic conditions 

to increase the overall traffic flow. The Traffic Lights Control Agents, Vehicle Count Sensors 

Control Agents and Link Control Agents can be configured to cooperatively decide the level of 

traffic light adjustment (reducing/increasing green time) allowing dynamic adaptation in more 

effective manner (involving multiple links and routes) as compared to traditional fixed systems 

for example SCOOT which perform signal adaptation in a pre-configured manner and only at 

the junction levels.  

 The platform capabilities can be extended further to evaluate the effectiveness of dynamic sign 

boards which have the potential to replace fixed signs in future ITS systems. In ITS@CU, the 

dynamic sign boards can be controlled by Control Agent in a similar way as other controllers and 

they can be used intelligently to display different traffic signs based on situations, location and 

time (for example the speed limits of signs on different roads can be increased or decreased, 

directions can be set to one-way/two-way and stop/no stop signs can be changed and so on).  

T@lecom’s research and development activities have been capitalising on the foundation of the existing 

platform and its associated utilities, components and modules. T@lecom intends to advance and improve 

the elements of the ITS@CU system particularly MADF to provide more flexibility and functionality to 

their clients. 

The research at CTAC will continue and plans are already under way to extend this research and make the 

“non-commercial” elements of the platform available for further research. 

Additionally, some of the commercially insensitive elements of the ITS@CU platform can be 

modularised, packaged up with relevant Application Programming Interface (API) documentation and 

shared with the open source community in order to promote use of the platform in similar studies.  
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Appendix A: Commercial implementations & 

contributions  

As mentioned in chapter 1, this research started as part of a KTP funded project in association with T@lecom 

who are one of the leading providers of asset tracking, transportation and logistics related mobile software 

solutions in the UK. The research project had a commercially-oriented approach targeted towards T@lecom’s 

R&D efforts to implement a new platform for the development of a new generation of mobile solutions and 

ITS-based systems. In addition to the core research objectives, the R&D efforts also led to the development of 

various commercial applications and Proof of Concepts (PoC).  

Some of the relevant commercial implementations which resulted from this research are described below: 

1. Intelligent Vehicle Tracking System 

It is a GPS based commercial asset tracking system developed from elements of the research project. The system 

provides a complete tracking solution for different type of assets such as vehicles and mobile devices. It comprises 

of different components i.e. a mobile application; data collection and notification web services; central database; and 

interactive map based monitoring and management application. 

Background 

In the early stage of this research, the author developed a web based mapping and simulation application based on 

Microsoft Virtual Earth intended for the ITS@CU platform’s simulation and also to test an experimental Incident 

Detection System using real-time GPS data (outlined in appendix B). Due to the application’s GPS based tracking 

features, T@lecom’s CTO (who was also an industrial KTP advisor) at that time asked the author to extend the 

simulation system for commercial vehicle tracking purposes. T@lecom at the time was using a proprietary 3rd party 

vehicle tracking solution for its customers which was costly and also lacked features such as web based monitoring 

and up to date satellite maps. After 4 months of development effort a pre-release version was developed by the 

author with real-time vehicle tracking, geo-fencing and history trails features. This version was assessed rigorously 

by T@lecom’s software development team, and also by their business analysts for its business case viability for 

commercial implementation. The system was further enhanced and deployed on a trial basis for tracking a 

customer’s fleet of 20 large vehicles delivering fresh food supplies. The system since then has been evolved and 

used by various T@lecom’s customers.  

It is now integrated with T@lecom’s WD1 Live solution including the Patient Transport System for non-emergency 

ambulances.  
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   1 WD stands for Wireless Delivered and it is a registered trademark of T@lecom Limited. Most of the 

mobile solutions and products by T@lecom use WD as part of their branding.  

Note: This system is now called WD Live Tracking and the IPR is owned by T@lecom. It is not part of the 

“Wire3” which is another tracking product from T@lecom. 

Technical Description  

The system comprises of the following components: 

A. Mobile Tracker Application 

B. Data & Notification Service 

C. Central Database 

D. Asset Monitoring & Management web Application    
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Figure 1.1: Tracking System Overview 

A. Mobile Tracker Application 

It is a PDA/mobile application (called WD Tracker Mobile) which can be installed on a range of Windows Mobile 

5/6.1 PDA devices. The application is used by vehicle drivers or field users during their work shifts on their work 

PDA devices. The driver/user logs in to the application with their User ID or vehicle registration on the start of 

their shift. Each user belongs to a group or company, and the application on login determines the features set and 

access level based on the user’s role.  

The application uses real-time GPS data obtained from a GPS receiver either built-in within PDA or externally 

fitted. During operation, the application displays useful GPS data such as current position, Speed, Direction and 

connectivity status in real-time. It also provides feature to control several Navigation applications such as TomTom 
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5/6 and Co-Pilot 7. Using this feature the driver can start navigating right from the mobile application to a pre-set 

destination (send by the control room system). 

In the background the application collates GPS signals (National Marine Electronics Association NMEA) obtained 

by the receiver and converts it to World Geodetic System - WGS-84 format, which is the more standardised format 

understood by most GPS or location aware applications. The data is then periodically sent over GPRS/3G to the 

Data & Notification Web Service (hosted on the gateway server). The application has various connection 

management features to support the occasionally connected nature of the application and deals with out of mobile 

network coverage and GPRS issues. In addition, the application uses Microsoft Message Queuing (MSMQ) software 

which queues all the data in device memory before sending it to the gateway server. In the event of connection loss, 

the data is queued locally and as soon as device 3G/GPRS connection is re-established the data is sent to the server 

in an orderly fashion. 

 

Figure 1.2: Mobile Application login, GPS status, Alert/Notification messages and Configuration Screens  

 

Figure 1.3: Mobile Application Main Screen  

One of the key features of this mobile application is the capability to receive messages and notifications send by the 

control room staff. The drivers/users must acknowledge any incoming messages, which automatically send a 

confirmation back to the control room server that the message was read by the user. It also allows the user to reply 

to such messages (in free form text) enabling two-way messaging. This feature allows the Control room staff to 

communicate with the field drivers by sending alerts/notifications to either an individual or broadcast to a group of 
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drivers/vehicles. This feature reduces the need to call the driver’s phone hence reduce the operating cost 

dramatically.      

The application is fully configurable and the interval of GPS data update, type of receiver, type of vehicle and other 

log management features can be configured by an authorised user (admin role). 

The application was developed in C# and .Net Compact Framework 2.0. It also uses some core libraries as part of 

Windows Mobile 5 API written in C++. It also store data locally using Microsoft SQL Server Compact Edition 3.5. 

The database and the data transaction over the air (GPRS/3G) is fully encrypted using AES-128 level encryption for 

high security. The web service based communication is compressed using GZIP compression by using SOAP 

extension.     

  

B. Data & Notification Service  

This is a Web Service hosted on the T@lecom’s Central Gateway web server. It provides a communication interface 

for all the incoming and outgoing transactions to and from PDA devices to the Server. It performs the following 

functions: 

 Receives the GPS data from all the mobile applications  

 Stores the GPS data in relevant databases on the Server 

 Sends Alerts and Notification messages to mobile application on PDA device(s) 

 Maintain sessions and stores device connectivity & errors logs 

 Provides an integration capability for external systems  

This is SOAP based web service application hosted on web server’s Internet Information Services (IIS). It is 

developed using ASP.NET 2.0 and C#. The SOAP classes are modified (SOAP extension) allowing GZIP based 

compression and AES-128 encryption.  
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C. Database  

This is the backend database server (running SQL Server 2008 R2 Enterprise Edition) with databases for storing all 

the information related to assets (vehicle, users and PDAs), GPS data, messages/alerts, groups and companies, and 

other information required for the entire system. Following is the database schema diagram for the tracking system. 

 

Figure 1.4: Database Model 

The database also uses Spatial Data (also known as geospatial data or geographic information) which is a new GIS 

feature of SQL Server to identify the geographic location of features and boundaries on Earth, such as natural or 

constructed features (e.g. roads, buildings, landmarks, rivers etc.). Spatial data is stored as coordinates and 

compatible with most mapping solutions such Bing, MapPoint and Google Maps. 

All the SQL queries are stored as stored procedures allowing high level of flexibility and optimisation. The database 

supports replication between PDA devices and also between sites for resiliency purposes. 
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D. Asset Monitoring & Management web application    

This is the main application with interactive mapping interface for the back-office staffs (operators and 

administrators) to track/monitor, communicate and manage their field assets (vehicles, field force/users, devices 

etc.). It is a web-based application hosted on a central gateway web server and customer access it over internet using 

their web browser such as Internet Explorer 7/8, Firefox 3.x or Chrome. The application is highly secure using 

HTTPS, password protected and accessible from only allowed IP address ranges.  

The application can be used by multiple users/customers at the same time however each user only views their own 

assets (belong to their group or company). For example an “operator” user of company XYZ can only view the 

vehicles of company XYZ, and an “admin” user of company XYZ can only manage the vehicles, PDAs, users and 

other admin features related to company XYZ.  

The application starts with a login screen and based on the user’s affiliation and role the application displays relevant 

features and assets allowed for that login. The application has a map based interactive UI and touch screen friendly 

(see figure 1.5). After successful login, the application shows the current location and status of the vehicles/assets: 

 Active: Vehicle is currently on a shift or the mobile application is in use. 

 Inactive: This indicates vehicle is not currently on a shift.              

 Warning: This status highlights various other underlying statuses such as user outside of designated 

area/geo-fence; over speeding; Notification/Alert not acknowledged etc. These are configurable rule-sets 

defined by the administrator of the system. 

 

Figure 1.5: Asset Monitoring View  
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The user can manipulate map location, zoom level, views (map, hybrid, satellite, bird’s eye) and filter/display assets 

by current status. Hovering mouse pointer on any asset icon displays a pop up window with vehicles location 

description, and if required a message or alert can be send to that user’s mobile application.  

 

Figure 1.6: Geo-Fence based Asset Monitoring View  

One of the other main features of the system is to set Geo-fences (customised map boundaries) and each user can 

be assigned to a geo-fence (see figure 1.6). So if a vehicle bound to a particular geo-fence goes outside that geo-fence 

boundary area then the vehicle’s status changes to “Warning” status and an alert message is sent to the driver’s 

mobile application (if configured by the administrator).  

The system also allows viewing vehicle’s past journey (historical tracking information). The user can select a vehicle 

and enter number of last hours to display the trail of past journey. The user can hover the mouse pointer on each 

point of the trail to view GPS information obtained during that point (see figure 1.7). 

  

Figure 1.7: Vehicle past journey trail view  
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The application also has an administration and management view which is only accessible to customers’ admin 

account users, allowing: 

 Asset (user, vehicles and PDAs) management  

 Geo-fence allocation and manipulation 

 Rule set creation for Alerts and Notification    

 Users Grouping 

 GPS and Message data analysis  

 Custom Reports by driver, vehicle, journeys during any period  

 

This application was developed in C# and based on ASP.NET 2.0 framework. It uses Microsoft Virtual Earth 4.0 

API (now called Bing Maps). The application also uses AJAX.NET which allows real-time map status without 

refreshing the web page. This technology makes the UI very smooth and the vehicle location and their status are 

always kept up to date in real-time without any interruption.   

The application interacts with Central SQL Server 2008 Database and also utilises the Data and Notification Web 

Service for sending Alerts and Notification messages to the PDA application. The application is designed on Model 

View Presenter (MVP) design pattern providing a robust and flexible design approach. 

 

Commercial benefits  

The WD Tracking System is a value added solution as part of T@lecom’s WD Live Platform. The system has been 

used by various customers ranging from logistics to Non-Emergency Ambulances. It has also reduced T@lecom’s 

dependency on 3rd party supplier and proved to be profitable.    

 

Novelty 

The system delivers all the features of a modern tracking solution but it also combines a two-way communication 

and notification features right within the Map based UI. This at the time of implementation was quite a unique 

feature differentiating it from other such systems, and from a commercial point of view it has been the main 

marketing feature and highlight of the product.    

From technological perspective, the system used industry leading technologies such as Microsoft VE/Bing Maps 

API, AJAX.Net, Windows Mobile 5/6, SQL Server 2008 Spatial Data and other .NET related technologies in a 

well-integrated manner. The design of the overall system follows core SOA principles and individual components 

uses industry standard design approach MVP. 
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An additional feature of the system is the ability to analyse the driver’s driving behaviour such as average speed, 

acceleration and deceleration patterns. This feature is available in the reporting component of the management 

application. It uses bespoke algorithms to analyse the historical GPS data and based on that formulate the speeding, 

acceleration and deceleration patterns of the driver. This feature helps the operation staff to analyse the drivers’ 

behaviour, and proactively avoid vehicle misuse and also reduce the fuel and vehicle maintenance costs. The latter is 

particularly topical and could be used to reduce Co2 by informing drivers of their past performance in view to 

improve their driving behaviour.  

 

Challenges 

The development of the tracking system had various challenges such as short time period, lack of development 

resources and technical challenges to name few. Although the author had a solid software development background 

and industrial experience however the overall duration (8 months) and the scale of the system involving various 

technologies and wide range of skill set (programing, databases, network, design etc.) was a difficult undertaking. To 

overcome these challenges, the project was split into smaller components and where ever required the author 

acquired assistance from the wider development team.     

 

Relevance to the research 

Although this system was not the core part of the research, however it greatly helped the research in following ways: 

 Various components of the tracking system such as map services, GPS tracking database, mobile 

application libraries (DLLs) were reused in ITS@CU implementation. 

 The map based agent monitoring application is based on the same technologies and design principles 

 The mobile application uses the various features/components of the Mobile Application Development 

Framework (MADF).  

 Acquired valuable knowledge/experience in various tools and technologies which were also useful for the 

development of ITS@CU platform.  
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2. Patient Transport System 

Patient Transport System (PTS) is a mobile software solution by T@lecom for non-emergency ambulance sector. It 

includes a mobile application and gateway services integrated with NHS control centre system via T@lecom’s 

Mobile Gateway System. The mobile application is used by ambulance crews to transport patients to and from 

hospitals. It provides work/task lists, patient information, notification features, integrated Navigation (TomTom 6), 

GPS tracking, and real-time exchange of status information between the ambulance crew and their control centre.  

Background 

Mobile Application Development Framework (MADF) was one of the objectives developed as part of the research 

(discussed in chapter 7, section 7.4). As the new framework was very flexible and based on robust latest technologies, 

T@lecom assigned the author to evaluate and develop a Proof of Concept (PoC) of their PTS mobile application 

using this new framework. The existing PTS application was based on older Pocket PC 2003 and .NET compact 

framework 1.0 and it provides an ideal development framework to upgrade the PTS mobile application.  

The PoC application was developed in approximately 3-4 months which was evaluated internally by T@lecom’s test 

and software development team. It was further enhanced by the author (3 more months’ effort) and then handed 

over to T@lecom’s software development team for final development.  

Remark: The PTS system is quite a large system and includes a mobile application, set of gateway services, 

databases and back-end system integrators/connector services. The contribution of this research is mainly focused 

on the PTS mobile application and therefore rest of this section only outlines the early contributions made by the 

author which are relevant to the research efforts.      

Technical Description  

PTS system comprises of the following components: 

A. PTS Mobile Application 

B. Web Services  

C. Database server and device replication 
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Figure 1.8: PTS System Overview 

A. PTS Mobile Application 

It is a mobile application (also called WD PTS Mobile) which can be installed on a range of Windows Mobile 5/6.1 

based PDA devices. The application is used by ambulance crews during work shifts using their work PDAs. A crew 

member logs in to the application with their credentials (see figure 1.9). The application after successful login 

communicates (over GPRS/3G) with the web services hosted on T@lecom’s gateway server in order to download a 

list of work tasks assigned to the crew (see figure 1.10). 

 

Figure 1.9: Login and job details screen  

Note: The tasks generally are a list of patients which require pick-up or drop-off from hospitals or homes. These 

tasks (or jobs lists) are dynamically updated and assigned by the control room system based on crew’s location and 

availability status. The work tasks are stored on the gateway server’s database and kept up to date by an integration 

adapter application developed by T@lecom.  

PTS mobile application displays the tasks/jobs list in an order specified by the control room system (see figure 1.10). 

Using the application, the crew selects individual tasks to perform their job routine and update task status (e.g. 

arrived at patient’s pick-up location, patient on-board, patient not available, drop off, lunch break, emergency etc.). 

The status updates are transmitted to control room in real-time which helps control room staff monitor the crews 

work activities and tasks progress in real-time. The application provides various other features such as on-board 
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patient information, in-app calling and SMS, emergency notification etc. It also provides navigation feature (using 

TomTom 5/6) allowing the driver to start navigating to patient’s pickup or drop off location (send by the control 

room system as part of job list). The application also allows messaging and notifications to and from control room 

system. This feature allows the Control room staff to communicate with individuals or broadcast to a group of 

ambulances. This feature reduces the need to call the driver’s phone hence reduce the operating cost dramatically.  

 

Figure 1.10: Tasks/Jobs list screen with test data  

The mobile application uses two methods to communicate with the gateway server 1) Web services and 2) Merge 

Replication. Web Services interface provides general features such as user authentication, messaging, status updates, 

GPS data, application updates, job/tasks updates check etc. Merge replication synchronises the device database with 

server database so if any data changes either on server or device the replication mechanism keeps both datasets up 

to date.  

The mobile application has various connection management features to deal with mobile network coverage and 

GPRS connectivity issues. In addition, the application uses Microsoft Message Queuing (MSMQ) software which 

queues all the data in device memory before sending it to the gateway server. In the event of connection loss, the 

data is queued locally and as soon as device the 3G/GPRS connection is re-established the data is sent to the server 

in an orderly fashion. The mobile application was designed to be configurable and the interval of GPS data update, 

application update and log management features can be configured by an authorised user (admin role). 

The design of the overall system follows core SOA principles and individual components uses industry standard 

design approach Model View Presenter (MVP). 
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Figure 1.11: PTS Mobile application Design (based on MVP) 
 

The application was developed in C# and .NET Compact Framework 2.0. It also uses various core C++ libraries 

(DLLs) as part of Microsoft Windows Mobile 6.5 API. The application stores data locally using Microsoft SQL 

Server Compact Edition 3.5. The local database and the data transactions over the air (GPRS/3G) are encrypted 

using AES-128 level encryption for high security. The web service transactions are compressed using GZIP 

compression by using SOAP extension technique.     

 

B. PTS Web Service  

This is the main web service hosted on T@lecom’s Central Gateway web server. It provides a communication 

interface for all the incoming and outgoing transactions to and from PDA devices to the gateway server. It 

performs the following functions: 

 Validates login credentials of the mobile application users 

 Sends Alerts and Notification messages to mobile application on PDA device(s) 

 Notify mobile applications when Tasks/Jobs lists are updated on server which triggers Merge Replication 

process on the relevant device   

 Receives periodic status updates and GPS data from all the mobile applications, and stores the data in 

relevant database on SQL Server 

 Stores device connectivity & errors logs 

 

The web service is SOAP based and hosted as a web application on Internet Information Services (IIS) on the web 

server. It is developed using ASP.NET 2.0 and C#. The SOAP classes are modified (SOAP extension technique) 

allowing GZIP based compression and AES-128 encryption. The services are designed on SOA principles and 
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layered approach (presentation, business, access, integration etc.), service brokers, orchestration, service 

composition and allocation. 

C. Database Server and Merge Replication service 

PTS solution has a staging database for storing partial data containing the current jobs/tasks allocated to ambulance 

crews (for a limited period). The staging data is pulled from Control Room System by a separate integration adapter 

service (already developed by T@lecom). The data is downloaded by the mobile application using Merge 

Replication (a synchronisation method by Microsoft SQL Server 2008). The gateway web server hosts a SQL Server 

synchronisation proxy which allows mobile application’s to synchronise SQL Server 3.5 compact edition on the 

device with SQL Server 2008 on the server over HTTPS. Merge Replication is a highly secure and robust 

mechanism to update the tasks/jobs list and can handle large amount of data seamlessly.     

There are other components supporting the PTS solution such as “Gateway services” and “Control Room 

integration adaptor service” which are not discussed here as they were developed separately by T@lecom and not 

relevant to the research.   

 

Commercial benefits & Novelty 

The Mobile Application Development Framework developed as part of the KTP research provided a flexible 

development approach for upgrading T@lecom’s existing PTS mobile application. The author was predominantly 

involved in the development of pre-release version which eventually led to the final application now commercially 

being used by various ambulances services.  

The new version provides better application UI performance and also communication reliability especially the data 

download over slow and unstable GPRS mobile networks. In addition to the existing features, the new version also 

provides a two-way communication and notification features. 

It also uses standard SOAP based web services (compare to proprietary connection method used in the previous 

version) which allows the application to take advantage of T@lecom’s SOA platform and ability to scale the system 

rapidly. The Merge Replication (on Windows Mobile) at the time of development was a new technology allowing 

highly robust synchronisation of large amount of data securely over wireless (GPRS/3G) connection which 

exceeded the expectations of the performance requirements.    

From a technological perspective, the system used industry leading technologies at that time such as Microsoft 

Compact Framework 2.0, ASP.NET, Windows Mobile 5/6.5 APIs, SQL Server 2008, SSQL Server compact edition 

3.5, Merge Replication, TomTom in-app integration API, SOAP extension for compression and security other 

.NET related technologies in a well-integrated manner.  
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Challenges 

The development of PTS Proof of Concept application was a challenging task. The main requirement was to make 

significant performance improvements (UI and data transmission) without compromising any of the existing 

features. Reliable connectivity in a poor mobile network coverage area (especially GPRS coverage) was a major issue 

which becomes worse in buildings, moving vehicles and remote areas. Ambulance crew deals with all such situations 

during their work. The challenge was three fold i.e. reduce data size, queue data locally and automatically re-establish 

connection all seamlessly without affecting application.  

The author tested various technologies/methods to reduce data sizes and adopted GZIP compression by 

customising web service to reduce the SOAP overheads. In addition, Microsoft Message Queuing (MSMQ) 

software was used to queue all the data in device memory before sending it to the gateway server. In the event of 

connection loss, the data is queued locally and as soon as device 3G/GPRS connection is re-established the data is 

sent to the server in an orderly fashion. Security was also an issue with the web service. A common approach was 

the use of Microsoft’s Web Service Enhancement (WSE 3.0) however it was designed for high bandwidth 

connection not ideal for mobile environment and therefore had significant performance implications. After various 

tests the author implemented customised classes for utilising AES-128 encryption and modified web service 

transaction layer using SOAP extension technique.    

    

Relevance to the research  

PTS application was developed based on MADF which was a core part of the research objectives. The application 

provided commercial benefits and helped the author learn new tools/technologies which were also used in the 

ITS@CU platform development. Some of the mobile application libraries (DLLs) developed for this application 

were reused in ITS@CU simulation applications such as MSMQ, SQL server compact edition Merge Replication 

and GPRS connection management classes. 
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3. Mobile Gateway System   

These are a set of web services for unified mobile applications communication layer and a web-based management 

application hosted on T@lecom’s Gateway System for managing and monitoring mobile devices. The gateway 

services were initially developed as part of the ITS@CU platform for the communication between mobile devices 

and the gateway server. T@lecom assigned the author to extend this initial gateway services layer so it could be used 

for all other mobile applications (built on the new Mobile Application Development Framework) and also to 

integrate with T@lecom’s new SOA platform. Additionally, a web based utility was also required to view and 

manage the current field devices status using the Gateway Services. The author spent estimated 3 months on the 

gateway services and management application, and since then it has been further improved by T@lecom 

development team due to various customer requirements and change requests. 

Technical Description  

The system comprises of the following components: 

A. Gateway Services 

B. Gateway Management Application    

 

A. Gateway Services  

A set of web services (hosted on T@lecom’s Gateway web server) providing a communication interface for all the 

incoming and outgoing transactions to and from PDA devices to the gateway server. It performs the following functions: 

 Provides customer business processes (customised service workflows) 

 External services (Address search, direction/location info etc.) 

 Validates login credentials of the mobile application users 

 Sends Alerts and Notification messages to mobile application on PDA device(s) 

 Notify mobile application if any updates available on the server  

 Receives periodic status updates and GPS data from all the mobile applications, and stores the data in 

relevant databases on the server 

 Maintain device sessions  

 Stores device connectivity & errors logs  
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It combines SOAP web services and Windows Communication Foundation (WCF) services into composite 

workflows. The services layer was designed on SOA principles and layered approach (presentation, business, access, 

integration etc.), service brokers, orchestration, service composition and allocation. 

These services are hosted on Internet Information Services (IIS) on the gateway server. It was developed using 

ASP.NET 2.0, WCF and C#.  

B. Gateway Management Application    

It is a web based application primarily developed for T@lecom’s administrators/operators to monitor the gateway 

communication activities, service usage and manage mobile applications/devices. It provided a flexible way to 

manage the gateway remotely by multiple users as compared to the existing management software which was only 

accessible on the server where gateway services were hosted.  

It performs the following functions: 

 Monitor real time status of the users/vehicles and mobile devices  

 Asset management (Users and PDAs devices) 

 Send messages and Alerts/Notifications to individual users or broadcast to group 

 Generate custom reports (usage/activities by driver/user, vehicle during a specified period)  

 Download and view mobile device error logs for diagnosis/trouble shooting 

 Over the Air upgrades for mobile applications  

 Other system admin tasks (data clean up, system services analysis and configuration etc.) 

 

Figure 1.12: Gateway Management Application 
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The application can be accessed by multiple users at the same time over internet using a web browser. It is highly 

secure using HTTPS, password protected and accessible from only allowed IP address ranges. The application was 

developed in C# using ASP.NET 2.0. It also uses AJAX.NET for real-time data status update without refreshing 

the web page. The application interacts with the central SQL Server 2008 database and also utilises the gateway 

services.  

 

Commercial benefits  

The gateway services provided a unified communication and integration layer by combining T@lecom’s legacy web 

services with the new WCF services as part of the SOA platform. It was a cost effective approach and avoided the 

re-development of legacy SOAP web services.  

The management application enabled access over internet (from trusted source) allowing technical administrators to 

remotely manage the gateway. This greatly improved T@lecom’s support service especially during out of normal 

hours where administrators can even provide support from their homes in critical situations. 

 

Relevance to the research  

The development of the Gateway Services and Management web application contributed to the research in 

following ways:  

 Various components, libraries, code (classes) of both application and services were originated or used in 

ITS@CU implementation 

 Acquired valuable knowledge/experience in various tools/technologies especially the SOA based 

implementation which was also useful in the development of ITS@CU platform  
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Appendix B: Other research implementations & 
contributions  

1. Research publications  

The author has also published the following scientific papers based on various outcomes of the research:  

 “Detecting traffic incidents based on traffic patterns and vehicle behaviours using GPS”, In 

Proceedings of the 18th International Conference on Systems Engineering (ISCE06), Coventry, 

United Kingdom, 5-7th September 2006, pp. 201 – 206 by Kamran, S., Black, J. and Haas, O. C. L. 

(2006). 

 "A Multilevel Traffic Incidents Detection Approach: Identifying Traffic Patterns and Vehicle 

Behaviours using real-time GPS data", In proceedings of the Intelligent Vehicles Symposium, IEEE, 

Istanbul, Turkey, 13-15th June 2007, pp. 912 – 917 by Kamran, S. and Haas, O.C.L, (2007). 

 “Emergency response time optimisation using real-time traffic information”, In proceedings of the 

7th International Conference on Transport Systems Telematics (TST’07), Katowice-Ustroń, Poland, 

17-19th October 2007 by Jaskułowski, M., Kamran, S. and Haas, O.C.L, (2007). 

 “Semantic Agent-based Controls for SOA enabled ITS”,  In proceedings of the 14th International 

IEEE Annual Conference on Intelligent Transportation Systems (ITSC 2011), The George 

Washington University, Washington, DC, USA,  October 5-7, 2011 by Kamran, S. and Haas, O.C.L, 

(2011)  
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2. Student projects/dissertations   

During the research, the author has worked with other undergraduate and postgraduate students at 

CTAC as an external supervisor, and also specified various dissertations related to this research. These 

projects benefited both the students and this research; the students were given the opportunity to become 

part of a commercial research project and gain industrial exposure, and the research benefited in a variety 

of ways from the results of the students’ work. Following are some of the completed dissertations: 

 Agent technology in Intelligent Transportation Systems (2008) by Abdelouahab Benssassi 

 Agent based communication and control in Intelligent Transportation Systems (2008) by Stanislaw 

Kardach  

 Agent Communication Systems (2008) by Bertrand Stivalet 

 Emergency response Time optimisation using Traffic information (2007) by Miroslaw Jaskulowski 

 Mobile Computing for Intelligent Transportation System (2007) by Kamil Baczkowicz 

 

3. Patent idea  

The author has also instigated a patent of an idea in conjunction with T@lecom, based on the Personal 

Area Network. The patent idea is to develop a Bluetooth based proximity application for security 

devices/dongles, mobile phones and other such devices/appliances. The idea originated from the ad-hoc 

Bluetooth based Personalised Area Network (PAN) application development for V2V communication 

described in chapter 7. Currently the patent is in the final stages of filing.  
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4. Other Research implementations 

 

This research project involved wide ranging experiments for analysing various new methods, concepts and 

technologies relevant to the subject area. As a result of these R&D efforts, different research applications and 

simulation systems were developed and evaluated, and also published as research papers.   

Some of the research implementations relevant to this research are outlined below: 

4.1. GPS based incident detection system  

In the early stage of the research the author investigated different incident detection approaches in order to develop 

an effective incident detection system as part of the ITS@CU platform. As a result of these investigations, the 

author developed an experimental Incident Detection System based on a new approach for detecting traffic 

incidents causing congestion on major roads. This approach incorporated algorithms to detect unusual traffic 

patterns and vehicle behaviours on different road segments by utilising the real-time GPS data obtained from 

vehicles.  

Technical Description  

The system comprised of various components i.e. In-Vehicle mobile application, server controls, SQL Server 2005 

Databases, and a web based mapping front end application (See figure 1.1) 

 

Figure 1.1: Incident Detection System Overview 

The PDA application interprets the GPS signals every 5 seconds and converts it from NMEA to WSG84 format 

which is a standard that can be used with the Microsoft Virtual Earth mapping service. The PDA application uses 

GPRS/3G to communicate with the server communication service layer (SOAP based web service hosted on an IIS 

enabled server), transfer the real time GPS data and receive server alerts (advance driver warnings).  
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The intelligence layer is a Windows Service application and an important part of server controls. It uses multi-level 

detection algorithms for detecting traffic incidents which are causing congestion on major roads. The algorithms 

detect unusual traffic patterns and vehicle behaviours on different road segments by utilising the real-time GPS data 

obtained from vehicles.  

The incident detection process involves two phases:  

Phase 1:  Identifies road segments where an abnormal traffic pattern is observed and further divides the ‘abnormal 

segments’ into smaller segments in order to isolate the potential incident area;  

Phase 2:  Performs a hierarchical analysis of the vehicles’ GPS data, using pre-defined rules to detect any 

occurrence of abnormal behaviour within the ‘abnormal’ road section identified in phase 1.  

 

Figure 1.2: Incident Detection Algorithms 

The strength of such an approach lies in isolating road segments sequentially and then analysing vehicle data specific 

to the identified road segment. In this way, the processing of vast data is avoided which is an essential requirement 

for the better performance of such complex systems.  

The approach was demonstrated using simulated traffic data and the results were published in a research paper for 

the “IEEE Intelligent Vehicle Symposium 2007” research conference. The following are the summary of the results:  
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Figure 1.3: Results of the incident detection system in terms of DR, FAR and MTTD 

 

See “Appendix B (IEEE IV 07)” research paper for further details and results. The complete source code of the 

applications including instructions can be found in the attached CD, Appendix J. 

The following are some of the screen shots of applications developed as part of the Incident Detection System. 
 

 

Figure 1.4: PDA mobile application used in vehicles 

 



Appendix B: Other research implementations & contributions 

 

 

Figure 1.5: Web based mapping interface showing the vehicles and accidents 

 

 
Figure 1.6: Windows application for simulating various real time incident scenarios by generating bulk GPS data 

 

 
Figure 1.7: Road segmentation utility for creating custom road segments and grids 
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4.2. Simulation system using Personal Area Network (PAN) 

In this research project, various Vehicle to Vehicle (V2V) technologies were analysed as part of the ITS@CU 

platform development. As a result an experimental mobile application was developed for simulating Vehicle 

Controls forming ad-hoc Personal Area Networks (PAN) using Bluetooth. The application was developed using the 

Mobile Application Development Framework (described in chapter 7, section 7.4) and it was predominately used for 

testing the communications between vehicle-to-vehicle and vehicle-to-traffic-controls.   

The application uses Bluetooth listener classes (based on 32feet.NET libraries) and XML for describing the 

communication ontologies. Using this PDA application, a number of Vehicles can be set up to form ad-hoc 

networks, however the PDA application only allows for one Controller at a time. So in order to test ad-hoc PAN 

based Multi-vehicle interaction and their behaviour, multiple PDA devices were required with Bluetooth enabled 

and paired up. The author had tested up to 7 PDAs at the same time for simulating various traffic scenarios.  

 

         

Figure 1.8: Ad-hoc V2V PAN Application 

Left: Application initial setup; Centre: Bluetooth setup and ad-hoc vehicle/device in range info;  

Right: Customised V2V Messages for simulation/Test purposes   

 

The complete application source code including the instructions can be found in the attached CD, Appendix J. 
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4.3. Guidance system for emergency response vehicles  

This was a research system providing real-time route guidance for emergency response units such as ambulances. 

The research was conducted in association with CTAC research group, Coventry University. It involved the 

development of an experimental application to demonstrate a solution supporting emergency vehicle drivers with 

optimal real-time route guidance using on board navigation software. It provided intelligent navigation with real-

time traffic congestion information evaluated for the calculation of the fastest path to the destination. The 

application uses TomTom for alternative route generation however the application receives congestion alerts from a 

server control application using web services over 3G/GPRS. 

The results were published in a research paper for “Transport System Telematics Conference 2007”.  See “Appendix 

B (TST 07)” research paper and poster for further details and results. 

 

 

 

Figure 1.9: Alternative route generation by TomTom controlled by the mobile application 

 based on real-time congestion alerts from server 
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Appendix C:  Intelligent Transportation Systems (ITS)   

 

1. ITS functional and research areas  

The ITS based systems and applications are further divided into following areas: 

 Advanced Traffic Management Systems (ATMS) 

 Advanced Traveller Information Systems (ATIS) 
 Advanced Vehicle Control Systems (AVCS) 

 Commercial Vehicle Operations (CVO) 
 Advanced Public Transport Systems (APTS) 

 Advanced Rural Transportation Systems (ARTS) 

The ITS functional areas categories by service type:   

ITS Category Service Areas  

Travel and 
Transportation 
Management:  

 

 En-route driver information: Systems and services to provide up to date information to 
vehicle drivers. 

 Route guidance: Provides directions for optimal route to the driver’s destination. 

 Smart Traffic control: Effective management of the traffic flow. 

 Incident management: helps quicker incident detection and notifying the response 
authorities. 

 Highway-Rail Intersection: helps avoid accidents at railway crossings. 

 Location based services: Provides a location based services to the travellers such as 
Motorway services, Fuel/gas stations, hotels etc.  

 Emissions Quality Control: Air quality testing and mitigation strategies. 

Public 
Transportation 
Operations:  

 Public transportation management: automates operations, planning and management 
functions of public transportation systems. 

 Public Transportation Information services: Provides up to date information to 
travellers such as timetables, journey planners, station information etc. 

Travel Demand 
Management  

. 

 Advance Travel Information: Systems and services to provide information to travellers 
for selecting the best transportation mode, departure time and route. 

 Demand management and operations: Supports policies and regulations in order to 
mitigate the environmental and social impacts of traffic congestion. 

Commercial 
Vehicle 
Operations  

 

 Mobile Fleet Management: Effective fleet management tools and techniques such as 
automated dispatching, satellite tracking and optimal routing for multiple dispatch 
locations, and better communication systems to enable commercial vehicle users with 
their despatch centres. 

 Commercial vehicle electronic clearance: Automated vehicle identification and secure 
clearance to minimise vehicle stoppage 

 Hazardous material incident response: provides immediate description of hazardous 
materials to emergency responders. 

Emergency 
Management  

 

 Emergency notification: Systems to provide immediate notification of an incident with 
its location, nature and any other information to the response authorities. 
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 Emergency vehicle management: Helps rescue and response vehicles to guide and 
assist to the incident. 

Advanced 
Vehicle Control 
and Safety 
Systems 

 

 Collision Avoidance: Systems to prevent vehicle to collide with another vehicle or road 
side objects 

 Vision enhancement: Systems to enhance the visibility of the driver to see and assess 
the road-side objects and hazardous situations. 

 Safety Warnings/Alert systems: Advance driver information about the road condition, 
vehicle as well as driver.  

 Pre-Accident restraints: Activation of passenger safety systems at the right time before 
accidents to limit or avoid passenger’s physical injuries.  

Electronic 
Payment 

 

 Electronic payment: Services to allow travellers to pay easily and safely for 
transportation services electronically (tolls, transit fares, and parking) 

 

2. Major ITS Systems & organisation 

Some of the major ITS related systems include WAIMSS, RHODES, DATAGRID II, eDAPTS, MADARP, 

COMPASS (Freeway Traffic Management System), MIDAS (Motorway Incident Detection and Automatic 

Signalling), PRIME, TransVista, SCATS, SCOOT, OPAC, Active Traffic Management (near Birmingham on the 

M42, UK) 

Some major In-Vehicle ITS systems are OnStart, BMW ConnectedDrive,  SARA (Short-range Automotive Radar), 

PRE-SAFE, DSRC (Dedicated Short Range Communications, IVCS (Inter-Vehicle Communication System) 

Institutions and research groups dealing with ITS 

United Kingdom 

 ITS United Kingdom, the intelligent transport society for the UK (http://www.its-uk.org.uk)  

 Department of Transport, UK (http://www.dft.gov.uk) 

 InnovITS research group (http://www.innovits.com) 

 IBEC (http://www.ibec-its.org) 

Europe 

 ERTICO – ITS Europe (http://www.ertico.com/en/home.htm) 

 Trans-European Network for Transport (http://www.ten-t.com) 

 VIKING, for northern Europe  (http://www.viking.ten-t.com/VikingExtern/Index.htm) 

 CENTRICO (http://www.centrico.ten-t.com) 

World 

 Intelligent Transportation Society of America (http://www.itsa.org) 

 The Centre of Transportation Analysis (http://www-cta.ornl.gov/cta) 

 U.S. Department of Transportation (http://www.its.dot.gov) 

 Intelligent Transportation Systems Program on MIT (http://web.mit.edu/its) 

 Intelligent Transportation Systems Society (http://www.ewh.ieee.org/tc/its) 

 ITS Japan (http://www.its-jp.org/english) , ITS Australia (http://www.its-australia.com.au) 
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3. Data fusion technologies & projects 

Following are some of the ITS based projects using different data fusion techniques: 

Project  Technique(s) Purpose 

ADVANCE (Kirson et al.) 
 

Kalman filter  

Neural network 
Expert system  

Fuzzy logic 

Forecasts future traffic conditions 

Pattern-matches current traffic situations with historical 
situations 

Identifies abnormal traffic conditions 

Permits traffic conditions to be described with qualitative 
measure rather than simples "yes-no" responses 

PROMETHEUS  
(Behringer er al.) (Martinez et 
al.) 

Kalman filter  

Expert system Neural 
network 

Constructs 4-D position estimates for autonomous 
driving  

Decomposes a driving task into independent subtasks  

Allocates one neural net for each driving subtask 

Brainmaker Neural network Pattern-matches current traffic situations with historical 
situations 

IGHLC 
(Niehaus, Stengel) 

Kalman filter  
 
Bayesian  
 
Expert system 

Determines vehicle position 
 
Deals with traffic uncertainty 
 
Models concept of Worst-Case Decision Making 

Pathfinder 
(Sumner) 

Fuzzy logic Permits traffic conditions to be described with qualitative 
measure rather than simples "yes-no" responses 

TravTek 
(Sumner) 

Fuzzy logic Permits traffic conditions to be described with qualitative 
measure rather than simples "yes-no" responses 

DRIVE (Martinez et al.) Expert system 

Neural network 

Decomposes a driving task into independent subtasks 

Allocates one neural net for each driving subtask 

PRODYN  
(Kessaci et al.) 

Kalman filter 

Bayesian 

Estimates traffic-turning movements 

Estimates traffic-state variables, e.g., queues and 
saturation 

Application to AGVs:  
Autonomous Guided Vehicles 

(Harris & Read) 

DSER Determines state of AGV and outside world 

ITS data fusion projects 
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4. Traffic data services providers 

Various agencies and sources are involved in the data collection and processing such as:  

 Traffic Infrastructure operators: Responsible for monitoring traffic networks such as traffic lights 
management and motorway information displays etc.  

 Traffic Information services:  Local authorities providing off-line data for statistical and planning 
purposes for a certain area usually in cooperation with infrastructure operators. 

 Private Service: Collating data from various sources to provide commercial/user services for example 
traffic information feeds for navigation application, fleet route planning and public transport 
scheduling or selling traffic information tailored to the customer’s needs (McDonald and Li, 2006).  

 

Electronic Local 
Government 
Information 
Network (ELGIN) 

A website providing an interactive map and XML feed of current and planned 
road works plus diversionary routes. Data is updated on a daily basis and made 
available via DATEX II and SDEP protocols. As it can be observed on the 
map on the following page, the data is grouped in High Medium and Low 
impact on traffic categories. There are also current access restrictions displayed 
and future road works. 

BBC Traffic and 
Travel Information 

Service providing free of charge data on road traffic and public transport. The 
information is encoded as TPEG-ML and available via the Internet. Events are 
referenced using TPEG-locML and refreshed every 10 minutes. 

MATTISSE A service designed to cover traffic information from Midlands’s area. For data 
exchange, service uses UTMC v1.8 protocol, locations are referenced by 
Ordnance Survey Grid Reference (OSGR Eastings and Northings, arises 
historically from the creation of 2D paper maps). Data is updated in real time 
and available via the Internet. 

National Traffic 
Control Centre Data 
Services 

This service covers 6500 km of motorways and major A-roads which is 2% of 
all roads in England (350’000km in total (SABRE, 2007)). Information on 
planned and unplanned road events which influence on road is more than 15 
minutes is available via XML service.  

TrafficMaster Trafficmaster specialises in monitoring traffic and runs various data mining 
projects to picture “congestion hot spots” or local effects of school traffic. 
Smartnav is Trafficmaster’s satellite navigation system making use of data 
collected by 7500 fixed infrared and CCTV sensors covering 8000 miles of 
main UK’s roads along with 50000 intelligent vehicle probes. Smartnav utilises 
real-time traffic alerts (received when speed on motorways and A-roads fall 
below 30mph) and average speeds database collated from 50 billion data 
records. 

 Traffic Information publishers both from private and public sector operating in UK. 
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5. Traffic Simulation 

There are different type of models employed by traffic simulators based on traffic control strategies, area of 
coverage and level. Some of the well-known traffic simulators include: 

VISUM: Flexible and comprehensive simulation system for transportation planning, travel demand modelling and 
network data management. VISUM focuses on multimodal analysis by integrating all relevant modes of 
transportation such as car, passenger, truck, bus, train, pedestrians and cyclists into one consistent network model. It 
provides a variety of assignment procedures and four stage modelling components which include trip-end and 
activity based approaches. 

VISSIM: It is a widely used microscopic simulation tool for multi-modal traffic flow modelling. It provides high 
level of detail, able to accurately simulate urban and highway traffic, including pedestrians, cyclists and motorized 
vehicles. 

SOUND: It is based on the block density method (BDM) developed by the University of Tokyo in 1971, which is 
aimed at the online congestion estimation of near future. SOUND deals each vehicles behaviour to save a 
computational time. It can be applied to a large road network for analysing congestion situation with high accuracy.  

MITSIM: It is a microscopic simulator developed by Massachusetts Institute of Technology in 1996, with the 
ability to combine an urban network and a highway network simulation. MITSIM allows evaluating the advanced 
traffic management systems and the driver behaviours. It can handle highways and urban roads at the same time, 
can adapt changes in traffic. 

SATURN: SATURN (Simulation and Assignment of Traffic in Urban Road Network) was developed by Leeds 
University in 1978. It describes the traffic flow as fluid and analyses the route choice. It can also model the traffic 
flow in detail at intersection level. 

NETSIM: The NETSIM (NETwork SIMulator) is a microscopic traffic flow simulator which allows evaluating 
various Travel Demand Management (TDM) strategies in urban road. NETSIM outputs traffic flow rate, travel 
time, delay time and evaluates emission of gases and fuel consumptions. It effectively deals multiple calculations by 
using batch processing.  

BOX Model: It was developed by Kyoto University in 1990, primarily to evaluate traffic lights control strategies 
and route guidance. Its main feature is the effective calculation of a link flow.   

CORISM: It is a comprehensive microscopic traffic simulation used widely over last 30 years. It is applicable to 
surface streets, freeways, and integrated networks with a complete selection of control devices (i.e., stop sign, traffic 
signals, and ramp metering). It simulates traffic and traffic control systems using commonly accepted vehicle and 
driver behaviour models. CORSIM combines two of the most widely used traffic simulation models, NETSIM for 
surface streets, and FRESIM for freeways/Motorway (FHWA).  
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6. Mapping traffic network 

Some of the well-known formats and mapping standards are discussed below: 

Geographic Data File (GDF) 

GDF developed by Comité European de Normalisation (CEN) is a widely accepted standard for describing and 
exchanging road networks and road-related data in form of navigable databases. GDF exchange format specifies a 
sequential ASCII file for off- line data transfer in one-way communication.  GDF can be used in vehicle navigation, 
dynamic route guidance, location-based services, fleet management, public transport and road administration (Essen 
and Hiestermann 2005). It specifies the conceptual and logical data model, and the exchange format for geographic 
databases for ITS applications. It includes a specification of potential contents of such databases (features, attributes 
and relationships), a specification of how these contents shall be represented, and of how relevant information about 
the database itself can be specified (Innocenti et.all 200X; Essen and Hiestermann 2005).  

The overall data model of GDF contains three entities or models, Feature, Attribute and Relationship. 

Feature Model: 

Feature is the main entity which represents real world geographic object such as roads or buildings. A feature belongs 
to exactly one ‘feature class’ and exactly one ‘feature theme’ that are uniquely referenced by a name and a code. GDF 
features are defined by the feature catalogue/themes: Roads and ferries, administrative areas (cities, counties, countries, 
etc.), named areas (postal areas, police district, etc.), (parks, airports, olive grove, etc.), Waterways, Public transport or 
Custom features (ISO 2004; REWERSE 2005, Innocenti et.all 200X).  

The different objects together making up a GDF are conceptually divided over three different levels.  

Level  0:  Defines the basic graphical building blocks of the map, which are Nodes, Edges and Faces. They together 
contain the geometrical and topological information of the Features which refer to them.  

 A ‘Node’ represents a zero-dimensional location on the earth surface. It constitutes a zero-dimensional 
building block. 

 An ‘Edge’ represents a one-dimensional location on the earth surface. It constitutes a one-dimensional 
building block. An edge is bounded by a start and an end node. 

 A ‘Face’ represents a two-dimensional location on the earth surface. It constitutes a two-dimensional 
building block.  

In alternative non-explicit topological terms, these basic building blocks are objects: Dots, Polylines and Polygons.  

 A Dot is a zero dimensional location on the earth surface. 

 A Polyline is a one-dimensional location on the earth surface. 

 A Polygon is a two-dimensional location on the earth surface by means of a representation of the objects 
boundary. 

In order to unambiguously define a Polygon, it is necessary that it is defined relative to the order of the coordinates of 
the boundary. The Polygon will always be located on the right side of the sequence of coordinates. It is allowed that a 
Polygon is defined by more than one boundary. In this way, enclaves and exclaves are defined according to the same 
principle as stated above. The individual boundaries will always have identical start and end coordinates. 

The Features are divided over level-1 and level-2 depending on whether they are simple (level-1) or complex (level-2).  

Level  1: Defines simple features like Points, Lines and Areas. A road network on this level is represented by junctions 
(Point Feature) and roads (Line Feature). Area features can be used for address areas, counties, etc. As features can 
have attributes such as number of lanes, road name, speed limit, turn limitation, this level is used for en-route 
assistance and also for location on the map.  Below an example of Features from Roads & Ferries theme: 
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Level  2: defines complex Features composed of one or more simple Features. In this level a road element and a 
junction can be aggregated. This level is used to calculate the shortest route. Road and Ferry theme contains classes: 

Attribute Model: 

Characteristics of features which are independent of other features are modelled as attributes. It defines over 200 
simple or composite/complex (more than one simple) characteristics of Features and possibility of their relationships. 
Attributes are grouped so they apply to specific Features but one Feature might have any number of Attributes. They 
are of a certain attribute type identified by the name and the code. An attribute may be an aggregation of other 
attributes. Such an attribute is called a ‘composite attribute’. A composite attribute consists of a number of sub-
attributes. GDF attributes are defined by the attribute catalogue, e.g. ‘street names’, ‘house numbering’, ‘time domains’, 
‘official language’, and ‘speed restrictions’ (Larbo 2000). 

Relationship Model:  

Some information related to real world objects needs to be modelled in the form of a relationship between features 
and links between levels. Examples of such relations are prohibited and permitted manoeuvres, description of 
crossings or services along a road etc. The GDF Standard defines and describes all Relationships (Larbo 2000). The 
content of the GDF file with map database is build of 80 ASCII character per line records related to by pointers. The 
Line Feature contains references to other records. GDF databases used for route calculation require updating and one 
method to tackle the dynamism of road network parameters is to integrate pre-defined Traffic Messaging Chanel 
(TMC) locations database into a map. Such locations can be later referenced to enable traffic messaging. TMC defined 
as a specific point identified as a landmark are embedded into the map. In the GDF format locations are stored as a 
database TMC locations are present in a Level 1 or 2 as attributes identified with letters RD followed by TMC unique 
ID. 

 

Geography Markup Language (GML) 

GML is an XML grammar written in XML Schema for the description of application schemas as well as the transport 
and storage of geographic information (GML spec). The key concepts in GML for modelling the geographic 
information or mapping are based on earlier ISO 19100 Standards and the OpenGIS. GML focuses on the 
representation of the geographic data content on a map and does not actually used for creating maps. Like GDF, 
GML is also based on the abstract model of geography which describes the world in terms of geographic entities called 
features. A feature is a list of properties and geometries; properties have the usual name, type, value description, and 
geometries are composed of basic geometry building blocks such as points, lines, curves, surfaces and polygons. The 
new GML specification also supports 3D geometry and topological relationships between features. The type definition 
of the feature determines the number of properties together with their names and types. A feature collection is a 
collection of features that may itself be regarded as a feature; as a consequence a feature collection has a feature type 
and thus may have distinct properties of its own, in addition to the features it contains (Morris and Petry, 2006).  

In GML encoding, feature can be quite complex i.e. composed of other features in various layers.  E.g. A feature train 
station consists of other complex features such as taxi stands, parking and platforms.  The geometry of a geographic 
feature can also be composed of many geometry elements i.e. consist of a mix of geometry types including points, line 
strings and polygons. GML also encodes spatial reference systems, which means referencing the geographic features to 
the earth's surface or to some structure related to the earth's surface.  The current version of GML incorporates an 
earth based spatial reference system which is extensible and which incorporates the main projection and geocentric 
reference frames in use today.  

There are already a host of encoding standards for geographic information such as COGIF, MDIFF, SAIF, DLG and 
SDTS. As compared to other encoding standards, GML is a XML based text which can be universally exchanged 
between systems due to XML which is open, vendor neutral, robust, transformable and easily editable and upgradable. 
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7. Incident detection algorithms 

A number of incident detection algorithms have been developed over the years and with a variety of theoretical 
approaches. These AID algorithms can be classified in four categories:  

Model based detection algorithms: In model based detection algorithms, traffic flow models are derived and 
validated using historical records. These models are usually non-linear and operate at the macroscopic level. They can 
be implemented from past traffic information, using dynamic state space techniques to estimate the state of the traffic 
(in terms of density and flow) as well as perform additional observations such as on-ramp entrances to a particular 
road or segment length and capacity. These models can then be exploited, to predict the evolution of traffic pattern. If 
the traffic differs significantly, then it may be that an incident has occurred. A standard alternative to model complex 
non-linear behaviour is neural networks (NN). NN can be trained on past data to recognise traffic flow patterns and 
so recognise states associated with the presence or absence of incidents. Whilst effective, NN approach can be difficult 
to train and convergence to a solution can be slow. Understanding what a NN model means is difficult and a large 
amount of historical data are required for training purposes. Fuzzy logic has been used to overcome issues associated 
with scarce data and capture knowledge based on expert experience. Fuzzy algorithms have used the idea of a fuzzy 
boundary and the change in occupancy or relationship between speed and density between neighbouring detector 
stations to identify traffic incidents.  

Image-based algorithms: Mainly used at the micro or local level, detect and verify incidents from image sequences. 
Video image processing (VIP) is fairly new technology with diverse applications and promising potential. 
Understanding its capabilities and limitations, and supplementing it with other appropriate traffic sensors could prove 
to be a very efficient tool for incident detection and management.  

It is capable of obtaining lane occupancy, volume counts, speed data, density, headway, vehicle classification (via 
vehicle length), and queue length, as well as other traffic characteristics. It also may be used to monitor wrong way 
vehicles and lane changes, and to provide a real-time video screen for incident monitoring (Awadallah and Habesch 
1998).  

Logical commands (such as 'and' or 'greater than') may be used in algorithm analysis programs to predict incident 
detection from various traffic parameters. This may be obtained from commands such as vehicle presence for n or 
more seconds, vehicle speeds less than n, and/or queue length exceeding n.  

The camera's field-of-view (FOV) is the most important element for data and traffic parameter representation, and the 
larger the FOV, the larger the percentage of error, and the larger the percentage of false alarm for incident detection 
(Awadallah and Habesch 1998). Variation of object and background lighting, particularly at night, heavy rain, fog, sand 
storm and during lighting storms, requires special filtering attention.  

Prediction algorithms: are usually applied in situations where traffic forecasting is required. Historical traffic data is 
used to analyze the traffic-flow parameters using statistical forecasting techniques and compares the predictions to the 
actual flow to identify incidents. In this approach, the detection algorithms are both prediction and method based. 

Pattern recognition algorithms: In traffic pattern recognition algorithms, the aim is to recognize and discriminate 
between different traffic patterns using data from detector stations for example, monitoring the upstream and 
downstream occupancy using loop detector stations on a freeway or motorway . The expected state is when occupancy 
increases upstream, but decreases downstream. An incident is detected when upstream and downstream occupancy 
passes predefined thresholds.  

Approach Description Example Algorithms  

Pattern recognition Recognise and differentiate unusual 
traffic flow patterns from normal by 
monitoring the occupancy levels 

California algorithm 7/8  

GPS based  

Image Recognition Analyse the real-time images of the 
traffic flow to identify the 
congestion and blocked lanes.   
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statistical models: Analysis data statistic from loop 
detectors/sensors to establish the 
abnormal condition 

Standard Normal Deviation (SND), Bayesian  

Time series and filtering  

Theoretical Monitors the characteristics of traffic 
flow such as volume-occupancy 

McMaster  

Artificial 
intelligence/Neural 
Networks 

AI and NN based concepts by using 
the traffic flow data (volume, speed 
and density)  

 

 

 Following is a summary of the comparative performance of different algorithms is given below.  

Algorithm 
Detection Rate  

[%] 
False Alarm Rate  

[%] 
Average Detection Time  

[minutes] 

California 

Basic 82 1.73 0.85 

California #7 67 0.134 2.91 

California #8 68 0.177 3.04 

APID 86 0.05 2.5 

Standard Normal Deviate 92 1.3 1.1 

Bayesian 100 0 3.9 

Time Series ARIMA 100 1.5 0.4 

Exponential Smoothing 92 1.87 0.7 

Low-Pass Filter 80 0.3 4.0 

Modified McMaster 68 0.0018 2.2 

Neural Networks 
MLF 89 0.01 0.96 

PNN 89 0.012 0.9 

Fuzzy Set Good Good 
Up to 3 minutes quicker  

than conventional algorithms 

Wave Analysis Good Good Good 

Dutch Good Poor Good 

Monica Poor Good Good 

Low-Volume Algorithm 49-78 
Volume < 400vph: 1 per 7 hrs  

Volume 900-1000 vph: 1 per 2 hrs 
N/A 

Logit Based x 96.3 5.3 Good 

Reported Algorithm Performance Summary (Ozbay, 1999) 
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1. Multi-Agent communication using Agent Communication 
Language (ACL) 

ACL is based on KQML. It is an agent based communication language according to FIPA standard, often referred as 

FIFA ACL. A FIPA message consists of a sender, a receiver, contents and a performative. The performative is used to 

classify the message into meaningful low-level intentions.  There are 22 performatives classified into the following groups:  

Performative Description 

Confirm This message allows the Sender of the message to confirm the truth of the content to the 
recipient 

Disconfirm This message is sent whenever a sender agent wants to confirm the misbelieve of some 
statement 

Inform  This message is sent whenever an agent wants to share information 

Inform-if 
 

This message is sent to verify if a statement is true or false. Typically as the contents within a 
request message 

Inform-ref Similar to the inform-if message with the difference being that it is the value of an expression 
that is being asked for 

Table D1.1: Passing information 

Performative Description 

Cancel This is sent whenever an agent wants to cancel a previously submitted request  

Query-if This message allows for agents to query if something is true or not  

Query-ref  This message is used to ask for values of expressions 

Subscribe Sent whenever an agent wants to be notified when some event occurs 

Table D1.2: Requesting information 

Performative Description 

Failure Message sent to indicate that the agent failed to perform some action 

Not-understood Sent whenever an agent doesn’t understand the message of another agent 

Table D1.3: Error handling 
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Performative Description 

Agree Indicates that the agent agrees to perform some action 

Cancel  This is sent whenever an agent wants to cancel a previously submitted request 

Propagate 

 

Message sent when an agent wants another agent to propagate a message to other agents  

Proxy Used for forwarding of messages 

Refuse This message is used to indicate that the agent refuses to perform some action 

Request  Request for some agent to perform some action 

Request-when  The same as request but only if some statement is true 

Request whenever Similar to request-when with the difference that the requested action should be performed 

whenever some statement is true 

Table D1.4: Performing Actions 

Performative Description 

Accept-proposal Allows for an agent to state that it accepts another agents proposal  

CFP Call For Proposals is used to initiate negotiations 

Propose This message is sent to make a proposal to another agent 

Reject-proposal This message rejects a suggested proposal 

Table D1.5: - Negotiation 

 

Content of ACL Messages 

According to FIPA the content of an ACL message can be encoded in any content language. A content language must 

be able to express propositions, objects and actions. No other properties are required, though any given content 

language may be much more expressive than this. More specifically, the content of a message must express the data 

type of the action: propositions for inform, actions for request, etc. (FIPA, 2003). In this context, a proposition can be 

a sentence, e.g. in predicate-logic, which can be true or false. An object represents an abstract or a concrete entity, 

which does not necessary appear in an object-orientated languages. An action is considered as an activity, carried out 

by an agent. Possible candidate content languages are KIF, Semantic Language (SL), Prolog and eXtended Markup 

Language (XML). 
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2. Agent oriented Tools and Technologies  

Agent oriented computing is relatively less established area, and the tools and technologies involved still lack standards. 

However, various standards are being discussion (Tweedale et al. 2007), and agent technology is getting serious 

attention by major software vendors. Currently, most of the commercial products/toolkits are proprietary and quite 

specific in nature. Following are some of the tools and technologies currently available.    

Name Type Sector  By 

JADE Support software / Platform Commercial  TILAB 

JADE / LEAP Distributed Agent Platform Commercial  Motorola, ADAC, Broadcom, 
BT, TILabs Uni Parma, 
Siemens 

RePast MAS-based modelling/simulation tool Academic  University of Chicago 

NetLogo Language or environment for MAS 
development 

Academic  North-western Uni 

StarLogo Language or environment for MAS 
development 

Academic MIT MEDIA lab 

Voyager Support software Commercial  Recursion Software, Inc. 

JACK Language and Environment for MAS 
development 

Commercial  Agent Oriented Software 
Group 

3APL Language and environment for MAS 
development 

Academic  Utrecht University  

CORMAS Language or environment for MAS 
development 

Commercial  CIRAD 

Bee-gent Language or environment for MAS 
development 

Commercial  Toshiba Corporation 

ADK Language or environment for MAS 
development 

Commercial  Tryllian 

AgentSheets Language or environment for MAS 
development 

Commercial  AgentSheets Inc. 

CABLE Language or environment for MAS 
development 

Commercial  Logica UK Ltd 

Comet Way JAK for automated services Commercial  Comet Way Ltd. 

DECAF Language or environment for MAS 
development 

Academic  University of Delaware 

Grasshopper Language or environment for MAS 
development 

Commercial  IKV++ Technologies AG 

JAFMAS / JIVE Language or environment for MAS 
development 

Academic University of Cincinnati 

IDOL Language or environment for MAS 
development 

Commercial  IDOL 

IMPACT Methodology for design/development Academic  University of Maryland 

ZEUS Agent 
Building Toolkit 

Language or environment for MAS 
development 

Commercial  BTexact Technologies 

JATLiteBean Support software Academic  University of Otago 
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JESS Language or environment for MAS 
development 

Academic  Sandia National Laboratories 

LEE MAS modelling/ simulation toolkit Academic  University of California 

Living Markets Language or environment for MAS 
development 

Commercial  Living Systems AG  

MAML MAS-based modelling/simulation tool Commercial Agent-Lab Ltd. 

MAP / CSM Simulation toolkit Academic  University of Bonn 

NARVAL Framework to develop personal assistants Commercial  Logilab 

RETSINA Agent 
Foundation 
Classes (AFC) 

Language or environment for MAS 
development 

Academic Carnegie Mellon University 

StarLogo Language or environment for MAS 
development 

Academic  MIT MEDIA lab 

Cybele / Cybele 
PRO 

Support software / Development 
Framework 

Commercial Intelligent Automation, Inc 

AgentTool MAS engineering approach Academic  Kansas State University 

ASDK  Commercial IBM’s Tokyo Research 
Laboratory 

Table D2.1:  Agent related tools and technologies 

These toolkits and technologies are quite diverse ranging from specific, proprietary toolkit to open source and freely 

available development platform from both commercial and academia. Most of the toolkits are mainly for MAS related 

development and quite a few follow FIFA specifications. It depends on the researcher/developer to choose the right 

toolkit with suitable technology and programming language. JAVA as a language and platform seems to be the 

dominant among other languages due to its platform independence, Object Serialization, Remote Method Invocation 

(RMI), Aglets, threading, sockets, applets (web browser support) and built-in security features. Although few bespoke 

and smaller scale technologies in .NET, Python and C are also becoming available.  

Some of the prominent technologies, explored as part of the research are following:          

Java Agent Development Environment (JADE) 

 JADE is a Java based development platform aimed at developing Multi-Agent Systems. It is fully compliant with FIPA 

specification (FIPA ACL) for inter-agent communication. The platform enables the development of BDI agents, and 

provides graphical tools for testing and debugging the developed agents. The agent configuration can be even changed 

at run-time by moving agents from one machine to another one, as and when required. The JADE communication 

architecture offers flexible and efficient messaging, by creating and managing a queue of incoming ACL messages, 

private to each agent; agents can access their queue via a combination of several modes: blocking, polling, timeout and 

pattern matching based (Bellifemine et al., 2007).   

Agents are implemented as one thread per agent, but agents often need to execute parallel tasks. Further to the multi-

thread solution, JADE also supports scheduling of cooperative behaviours, where JADE schedules these tasks in a 

light and effective way. The run-time also includes some ready to use behaviours for the most common tasks in agent 

programming, such as FIPA interaction protocols, waking under a certain condition, and structuring complex tasks as 

aggregations of simpler ones. JADE provides a GUI for the remote management, monitoring and controlling of the 

http://jade.tilab.com/images/img005.gif
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status of agents e.g. stop and restart agents. The GUI also allows creating and starting the execution of an agent on a 

remote host, provided that an agent container is already running (http://jade.tilab.com).  

There are different types of agent which can be created in JADE; 

Dummy Agent: This type of agent is used for inspecting message exchanges among agents. It facilitates validation of 

an agent interface before integration into the MAS, and also facilitates interrogative testing in the event where an agent 

is failing. The graphical user interface provides support for editing, composing and communication i.e. send and view 

ACL messages to/from agents. 

Sniffer Agent: This type of agent allows the tracking of agent messages exchanged in a JADE platform. It can sniff an 

individual agent or a group of agents, and every message directed to or coming from that agent or group of, is tracked 

and displayed in the sniffer window. The tracked message(s) can be viewed, saved and loaded by user at any time for 

analysis. 

Introspector Agent: It allows the monitoring and control of the life-cycle of a running  agent  and  its  exchanged  

messages including the queue  of  sent  and  received messages. 

NetLogo 

NetLogo is also quite popular agent toolkit/development environment especially as a learning tool. It includes a multi-

agent programming language and integrated modelling environment with simulation capabilities to enable exploration 

of emergent phenomena. It has an extensive library of sample models for variety of domains such as economics, 

biology, physics, chemistry, psychology, and other natural and social sciences. NetLogo is based on earlier toolkit 

StarLogo and particularly well suited for modelling complex systems developing over time. Modellers can give 

instructions to hundreds or thousands of independent agents all operating concurrently. This makes it possible to 

explore the connection between the micro-level behaviour of individuals and the macro-level patterns that emerge from 

the interaction of many individuals (Vrobel et al, 2008). 

Some of the main features of NetLogo include:  

 Cross-platform (Mac, Windows and Linux)  

 Run as a standalone application as well as Models can be run as Java applets inside a web browser 

 Fully programmable 

 Simple language structure 

 Language is Logo dialect extended to support agents 

 Mobile agents (turtles) move over a grid of stationary agents (patches) 

 Create links between turtles to make aggregates, networks, and graphs 

 Large vocabulary of built-in language primitives 

 Double precision floating point math (IEEE 754) 

Recursive Porous Agent Simulation Toolkit (RePast) 

RePast is a free, open-source, cross-platform, agent-based modelling and simulation toolkit. One of the great features of 

the Repast is its implementations in several languages such as Java, Python and .NET, which allows the developers to 

choose their preferred language. It also has built-in adaptive features such as regression and genetic algorithms. 
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Agent Based Learning Environment (ABLE) 

ABLE was developed by the Research department of IBM which provides functionality similar to JADE but utilises the 

JavaBeans technology instead. It also uses its own rule based language and provides a set of ready to use artificial 

intelligence algorithms for quicker development. 

VOYAGER 

It is a java based agent software support package which is standard neutral. Its core strength is its capabilities to 

integrate and support other distributed technologies such as CORBA and Web Services. It is based on Object Request 

Broker (ORB) and offers an extension to Remote Method Invocation (RMI). 

Java Agent Template Lite (JATLite) 

JATLite is a Java-based package of programs to facilitate the development of agents that exchange messages over the 

network/internet. It provides Agent Router functionality using its core architecture feature Agent Messaging Router 

(AMR), which allows any registered agent to send messages to any other registered agent by making a single socket 

connection to the Agent Router. Messages are therefore seamlessly transferred from the sender to the receiving agent 

without each knowing the address (or socket connection). It provides a robust message passing system through its 

AMR and all messages are buffered to avoid data loss in the event of intermittent network problems.  

Aglets Software Development Kit (ASDK) 

ASDK is a Java based framework and environment for developing and running mobile agents. ASDK can be used for 

Multi-agent system development; however, it is predominately used for mobile agents in network related projects. It 

uses Aglet, which is a Java object that can move from one host on a network to another. When the aglet moves it takes 

the program code with it, as well as all the objects it is carrying.  
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Ontologies are explicitly specified in a formal language and following are some of the widely used languages used. 

Resource Description Framework (RDF) 

RDF is an official W3C standard for describing resources that exist on the Web, intranets, and extranets. RDF 

builds on existing XML and Uniform Resource Identifier (URI) technologies, using a URI to identify every 

resource and make statements about resources. RDF statements describe a resource (identified by a URI), the 

resource’s properties, and the values of those properties. RDF statements are often referred to as “triples” that 

consist of a subject, predicate, and object, which correspond to a resource (subject) a property (predicate), and a 

property value (object). (Altova, 2007) 

               

A simple RDF Triple (Altova, 2007)                             RDF multiple Triples  

The triples with subjects, predicates, and objects, RDF allows machines to make logical assertions based on the 

associations between subjects and objects. Since RDF uses URIs to identify resources, each resource is tied to a 

unique definition available on the Web. RDF triples can be written with XML tags. RDF provides only a model and 

syntax to describe resources; however it does not specify the semantics of the resources, so to define semantics we 

need RDFS and OWL (Altova, 2007).  

 

RDF Schema (RDFS) 

RDF Schema is based on RDF and allows the definition of basic ontology elements such as classes and their 

hierarchy, properties with their domain, range and hierarchy (McBride, 2004). It is an extensible knowledge 

representation language for creating vocabularies that describe groups of related RDF resources and the 

relationships between those resources. It provides basic elements for the description of ontologies or vocabularies 

intended for structuring RDF resources and the allowable properties within a given domain (Altova, 2007). Based 

on the RDF triples, RDFS triples consist of classes, class properties, and values that define the classes and 

relationships between the resources within a particular domain. It also allows classes of resources that share 

common properties. Resources are defined as instances of classes. A class is a resource too, and any class can be a 

subclass of another. This hierarchical semantic information is what allows machines to determine the meanings of 

resources based on their properties and classes. RDFS is well suited for expressing lightweight ontologies (Sabou, 

2006).  
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Web Ontology Language (OWL) 

OWL is one of the widely used and richest standard ontology description language (Cardosa, 2007) as well as W3C 

specification for creating Semantic Web applications. It is built upon RDF and RDFS, and defines the types of 

relationships that can be expressed in RDF using an XML vocabulary to indicate the hierarchies and relationships 

between different resources. OWL is a more expressive ontology language than RDFS. The basis for developing 

OWL was the DAML+OIL language which originated by merging two language proposals that aimed at 

overcoming the expressivity limitations of RDF(S): DAML-ONT and OIL (Horrocks et al., 2003). OWL enhances 

the expressivity of RDF(S) providing means to describe relations between classes (e.g., disjoints, union, 

intersection), cardinality and value restrictions on properties (e.g., cardinality, universal and existential quantifiers), 

property characteristics (e.g., transitivity, symmetry), equality etc.  

Semantic Web ontologies consist of taxonomy (system of classification) and a set of inference rules from which 

machines can make logical conclusions. Since taxonomies express the hierarchical relationships that exist between 

resources, we can use OWL to assign properties to classes of resources and allow their subclasses to inherit the same 

properties. OWL also utilises the XML Schema data types and supports class axioms such as subClassOf, 

disjointWith, etc., and class descriptions such as unionOf, intersectionOf, etc.  
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ITS based systems vary from a simple on-off sensor to highly complex central command server systems, and may 

use range of communication methods, technologies and standards. Obviously, the tools & technologies for the 

design and development of ITS systems are also diverse. Each technology has its advantages and disadvantages in 

terms of its capabilities, approach, target platform and availability. The following is the review of some of the 

technologies considered or used in ITS@CU platform development.  

 

Programming Languages and Technologies 

Java: It is an object-oriented language by Sun Microsystems also derived from C++. Java applications are typically 

compiled to bytecode that can run on any Java virtual machine (JVM) regardless of computer architecture. Java also 

supports Multi-Agent programming in form of JADE and Aglets. In most research level projects Java has been 

mostly the first choice as a programming language including for agent based systems.  

 

C++: It is an object-oriented language originally derived from C. It is quite powerful language however it is rather 

difficult to program as compared to C# and Java. It is still used in various development platforms such as .NET 

compact framework and devices and hardware programming. 

 

C#: It is a very powerful, object-oriented, and type safe programming language, derived from C/C++. It is the main 

language in the popular .NET framework by Microsoft, and combines the raw power of C++ with the high 

productivity of Visual Basic.  

The author decided to use C# for the following reasons:  

 Single language to support all Microsoft based platforms (mobile, desktop and web) and using single IDE 

(Visual Studio 2008) for the development which is important to avoid learning and implementation of 

multiple languages and development tools.   

 It is widely used in industry for high level commercial projects and proven highly successful.  

 C# supports completely the entire object oriented paradigm and integrates other powerful features. 

 C# also support component-oriented and Service-oriented development 

 Good capability to implement Agent oriented approach  

 Powerful library .NET Framework 2.0/3.5 and tools 

 Excellent help and support through Microsoft MSDN website 

 T@lecom’s other systems are also implemented in C#, which means the integration of the project with 

company other system will be easier.   
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Extensible Mark-up Language (XML): XML was designed for structuring hierarchical data in the file in a way 

that will be self-descriptive and easy to process by computers (XML Working Group 2006). The XML document is 

structured in a tree of elements called tags (e.g. <book>).  Each element can contain data, other tags, comments, 

character references and processing instructions (XML Working Group 2006). Each document contains also a 

declaration that defines which XML version of the standard (W3C defines 1.0 and 1.1) it follows. 

There are two types of correctness of XML document.  Well-formed document conforms to the XML syntax rules.  

The document is Valid when it is semantically correct.  The semantical structure of the document can be defined 

using Document Type Definition document or XML Schema document.  The first technology has been used for a 

long time and also the FIPA ACL XML Message Specification uses it (FIPA 2002d) but at the same time it provides 

only a loose definition of the XML structure and requires a separate parser (it’s not formed using XML structure).  

The XML Schema is a newer technology that can be parsed with XML parsers, because it is formed as XML 

document.  It also provides more strict way to define the XML structure with use of restrictions and data modifiers 

which is a great advantage but on the other hand because it is has fewer tools than the DTD. 

 

 

Development Frameworks 

There are numerous development frameworks which can be utilised in the development of ITS based systems. 

Following are some of the frameworks: 

Java Development Environment: Java is a platform independent i.e. it is not specific to any one processor or 

operating system, but rather an execution engine called a Java Virtual Machine (JVM) and a compiler with a set of 

standard libraries implemented for various hardware and operating systems so that Java programs can run identically 

on different OS.  

The Java platform consists of several programs or components each of which provides different capabilities. For 

example, the Java compiler converts Java source code into Java bytecode (an intermediate language for JVM), is 

provided as part of the Java Development Kit (JDK). The Java Runtime Environment (JRE), complementing the 

JVM with a just-in-time (JIT) compiler, converts intermediate bytecode into native machine code on the fly. The 

JDK also provide extensive libraries allowing developers with pre-compiled code and faster development.  

There are different editions targeting different type of the development areas or platforms. 

 Java SE (Standard Edition): Intended for general purpose use on desktop PCs, servers and similar devices.  

 Java EE (Enterprise Edition): Java SE plus various APIs useful for multi-tier client-server enterprise 

applications.  

 Java ME (Micro Edition): Intended for embedded/mobile devices based application development. It has 

limited set of libraries compared to SE or EE editions due to smaller memory and storage limitation of the 

mobile devices.  

 Java Card: Allows small Java-based applications (applets) to be run securely on smart cards and similar 

small memory footprint devices.  
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.NET Framework: .NET is a core framework for all windows based development by Microsoft. It is very 

comprehensive development framework comprising of development tools, run-time environments, server 

infrastructure, powerful Integrated Development Environment (IDE) support and intelligent tools, which enable 

the application development for various platforms and devices.  It supports various languages such as C#, C++ and 

Visual Basic.  

The current version of the .NET Framework is 3.5 which include new set of features such as Windows Workflow 

Foundation (WF), Windows Communication Foundation (WCF), Windows Presentation Foundation (WPF) and 

Windows CardSpace. .NET supports the SOA infrastructure and provides powerful services integration support in 

form of XML Web Services, Remoting, COM and WCF.  

The .NET Framework consists of two main components: the .NET Framework class library and the Common 

Language Runtime (CLR). The .NET Framework class library provides the types that are common to all .NET 

languages. Programmers can use these types to develop different kinds of applications, such as console applications, 

Windows and Web Forms, and XML Web services. The CLR consists of components that load the code of a 

program into the runtime, compile the code into native code, execute and manage the code, enforce security and 

type safety, and provide thread support and other useful services. 

 

In this research, .NET has been predominantly used for the development of various systems and its component. It 

is highly established technology and supported by comprehensive class library and development support in form of 

Microsoft Developer Network (MSDN) and top class development tools such as Microsoft Visual Studio 2008/10. 

It is equally suited for all flavours of development platforms i.e. desktop, web and mobile. It also provides inherent 

security in form of code access security and also supporting all major security protocols. It is highly interoperable, 

extendible, portable and with excellent memory management. New addition to the framework such as Language 

integrated Queries (LINQ), AJAX, Windows Communication Foundation (WCF), parallel and multi-core 

computing support makes it even more appealing. In SOA environment WCF plays very key role and allows .NET 

based application to integrate easily with virtually any other system. It is also crucial for the development of cloud 

computing based application for the Microsoft’s Windows Azure platform. 

Other major reason for adopting .Net is to complement the existing T@lecom systems which are also implemented 

in .NET which means easier integration of the project with company’s other systems.   

 

 

  



Appendix F: Relevant Tools & Technologies Review     

 

 

 

Mobile Development Frameworks 

The ITS systems also includes range in-vehicle and infrastructure based devices either standalone or embedded. It 

performs variety of tasks from simple on/off sensor to complex task and utilise various communication channels 

such as wireless (Wi-Fi, infrared, Bluetooth etc.). Mobile or embedded devices as compared to other systems have 

limited memory, processing speed, power and storage, which mean applications running on such devices must have 

smaller footprint. Therefore, the development frameworks for mobile platforms are generally different to address 

the limitations.    

There are different development frameworks from different vendors for mobile or compact devices development. 

Some of the major frameworks investigated in this research include:   

Java ME (Micro Edition): It is a Java based framework for the development of small footprint and mobile 

applications. It provides a robust, flexible environment for applications running on mobile and other embedded 

devices such as mobile phones, personal digital assistants (PDAs), TV set-top boxes, and printers. Java ME include 

flexible user interfaces, security, support for network protocols and networked and offline applications. Java ME 

applications are highly portable across many devices due to Java’s inherent platform independent feature. 

Java ME includes J2ME toolkit which is a state-of-the-art toolbox for developing mobile applications. It integrates 

CLDC, CDC and Blu-ray Disc Java (BD-J) technology into one SDK. Java ME SDK 3.0 is the successor to the 

popular Java Wireless Toolkit 2.5.2 and Java Toolkit 1.0 for CDC. It provides device emulation, a standalone 

development environment and a set of utilities for rapid development of Java ME applications. Recent version also 

provides good support for 2D/3D graphics, imaging, multiple I/O capabilities and range of wireless 

communication methods and channels.  

It is also supported by industry leading IDE’s such as Eclipse, NetBeans (Mobility Pack) and JRocket, and also 

provide extensive class libraries and packages which allows easier development.  

Android: It is relatively new platform however gaining a lot ground in mobile and embedded arena. It is Linux-

based platform with application layer programming exclusively done in Java. It provides extensive Java SDK for the 

development and supports Eclipse and NetBeans IDE. Android is targeted for Smartphone development however it 

can also be used other communication based application on mobile platform and appliances.  

iPhone: Platform for Apple based devices such as iPhone, iTouch and iPad and uses Objective C which is based on 

the C programming language. It is vendor specific and closely controlled by Apple.   

BlackBerry JDE: It is a Java based platform for Blackberry devices by Research In Motion (RIM). It supports most 

of the J2ME application however applications must be blackberry supported i.e. conforms to its UI and standards. 

Security and wireless data reliability is the key features of the Blackberry JDE. However, the platform is focused on 

the Smartphone devices only. 

.NET Compact Framework: It is a cut down version of .NET platform specifically designed for Microsoft 

Windows CE based mobile/embedded devices such as PDAs, mobile phones, factory controllers, set-top boxes, etc. 

It supports all the Microsoft tools and languages such as C#, VB.NET and ability to use Web Services and IDE 

Visual Studio 2008. It uses some of the same class libraries as the full .NET Framework and also a few libraries 

designed specifically for mobile devices such as Windows CE. It is the most dominant framework for enterprise 

mobility solutions.  
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In this research, .NET Compact Framework has been predominantly used for the development of mobile 

applications. It is highly established technology and supported by comprehensive class library and development 

support in form of Microsoft Developer Network (MSDN) and top class development tools such as Microsoft 

Visual Studio 2008. It also provides inherent security in form of code access security and also supports all major 

security protocols. It is highly interoperable, extendible, portable and with excellent memory management. New 

addition to the framework such as Language integrated Queries (LINQ) and Windows Communication Foundation 

(WCF) features make it even more appealing. In SOA environment WCF plays very key role and allows .NET based 

application to integrate easily with virtually any other system. It is also crucial for the development of cloud 

computing based application for the Microsoft’s Windows Azure platform. 

Other major reason for adopting .NET is to complement the existing T@lecom systems which are also 

implemented in .NET which means easier integration of the project with company’s other systems.   

 

 

Integrated Development Environment (IDE) 

Eclipse: An open source Java IDE allowing the development of enterprise, embedded/Device, Rich Client and 

Internet applications. It supports the complete Application Lifecycle Management (ALM) and Service Oriented 

Architecture (SOA).  It has a large open source community and supported by a large ecosystem of commercial 

developers, universities and research institutions. 

NetBeans: It is a free, open-source IDE for developing desktop, enterprise, web, and mobile applications with the 

Java language, C/C++, and even dynamic languages such as PHP, JavaScript, Groovy, and Ruby and supports all 

major platforms including Windows, Linux, Mac OS X and Solaris.  

Microsoft Visual Studio:  Visual studio is a very powerful and most widely used commercial IDE by Microsoft. It 

allows the development of standalone applications (desktop/server), mobile applications, embedded devices 

applications, web applications and web services predominately for Microsoft .NET platform. The current version is 

Visual Studio 2010 which provides advanced development tools, debugging features, database functionality, smart 

client connected applications, visual designing and testing features. 

 

In this research, mostly Visual studio 2005 and 2008 version was used due to its native support for .Net framework 

and also XML web services for SOA implementation. It was also a requirement by T@lecom as they use Visual 

Studio for most of their development. 
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Ontology editors 

There are several ontology editors available such as Protégé, Swoop, OntoEdit and Altova SemanticWorks. 

However Protégé is the most widely used editor and currently its share is about 62.8% (Cardosa, 2007).  

Protégé is a Java based free, open source ontology editor and knowledge-base framework. Protégé is supported by a 

strong community of developers and academic, government and corporate users, who are using Protégé for 

knowledge solutions in areas as diverse as biomedicine, intelligence gathering, and corporate modelling. The Protégé 

platform supports two main ways of modelling ontologies via the Protégé-Frames and Protégé-OWL editors. 

Protégé is also used in this project due to the following reasons:  

 Extensible and provides a plug-and-play environment that makes it a flexible base for rapid prototyping 

and application development. 

 Protégé ontologies can be exported into a variety of formats including RDF(S), OWL, and XML Schema. 

 Excellent documentation and examples for quick start. 

 

 

Database Systems 

ITS system or subsystems whether a small device or large server systems, requires some form of data storage and 

intelligent data manipulation in order to function. Databases are therefore backbone for most systems and efficient 

database design and implementation is vital to the success of any system. There are many data storage and 

manipulation technologies from simple flat file to highly complex database management systems.  

Following are some of the database systems evaluated for the research: 

Microsoft SQL Server 2005/2008: Microsoft SQL Server is one of the widely used relational database management 

system (RDBMS). It is primarily used for Microsoft based development platform however different other platform 

can utilise it equally well. The primary query language used is Transact-SQL which is based in SQL with additional 

built-in functions and programming features. SQL Server is optimised for the multithreaded, pre-emptive 

multiprocessing kernel of Windows NT, providing concurrent access to high volumes of data. The most recent 

version is SQL Server 2008. 

Some of the highlights of the SQL Server are: 

 Native support for .NET platform and Visual Studio 

 Highly portable, reliable and flexible 

 Client/server orientation 

 Set of UI tools for database design, management, analysis, tuning, performance evaluation   

 Ability to handle very large databases (VLDB) 

 Good for Knowledge Base and Data Mining 

 Robust feature for Integration and multi system synchronisation 
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 Resilient and automatic recovery and backup features 

 Reporting, Business Intelligence and data Analysis   

 Spatial data support for GIS and location aware systems  

 Mobile Version also available (SQL Compact Edition) 

 

Oracle RDBMS: It is a Relational Database Management System (RDBMS) from Oracle. It is market leader in 

enterprise and data warehousing sector (source: RDBMS, Gartner Report). It runs on variety of platforms from 

micro to mainframe. The current version is 11g and it includes built-in change testing, capability of viewing tables 

back in time, superior compression of all types of data and enhanced disaster recovery functions. It provides built-

in Java Virtual Machine (JVM) support. It is also highly efficient in grid and cluster environment making it ideal for 

distributed systems.  The query language is PL/SQL however Java can be used for complex functions due to its 

native Java support.  

MySQL: MySqL is also a Relational Database Management System (RDBMS) now acquired by Oracle. It is 

relatively light weight, open source and free to use. It is quite popular among web development community due to 

its simplicity and free licensing terms.  It is gradually growing into enterprise sector as well. It is supported on all 

major platforms and provides variety of tools for managing and implementing database.  

SQL Compact Edition: SQL Server Compact Edition is a smaller footprint version of SQL Server and it is 

specially designed for compact devices and systems with limited processing power. It is relational database system 

and supported by all the .NET based application with security, reliability, efficiency, manageability of the SQL 

Server but with much smaller file size which makes it ideal for the embedded and mobile devices. Some of the 

highlights of SQL Server Compact Edition are:  

 Great mobility features such as Synchronisation in form of Merge Replication and Remote Data Access 

(RDA)  

 Portable be-spoke and enterprise applications  

 Ideal for occasionally-connected & offline use especially in wireless communication where connection is 

never reliable 

 Can be embedded in applications & devices as a whole database stores itself as a file 

 

In this research SQL Server Compact Edition (version 3.5) has been used as data storage for all mobile 

applications. Beside the key benefits mentioned above, it provided simple yet powerful integration with Control 

Systems and easier communication with other systems in form of data synchronisation methods. Its native support 

for .NET and Visual studio and also familiar implementation of the full SQL Server were also the key factors for 

adopting it as main database storage for mobile devices.   
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1. Wireless Technologies Analysis 

Wireless technologies are revolutionising the process of traffic data collection and transmission between various ITS 

components i.e. Vehicle, road Infrastructure and central control system.  Major data bearer and wireless 

communication technologies used in communication between ITS components includes GPRS, 3G, HSPA, Wi-Fi, 

Bluetooth, IrDA and TETRA. Some of the successful implementation includes:  

 Fleet Management and communication using GPRS/3G/HSPA based on-board vehicle devices/mobile 

applications (WD Live Fleet). 

 Radio Data Service-Traffic Messaging Channel (RDS-TMC) for traffic information announcements (iTIS, 

TrafficMaster). 

 Real-Time vehicle tracking and satellite navigation systems (MasterNaut, WD Live Tracker). 

In this research, various wireless technologies were investigated such as GPRS/3G for cellular mobile data 

communication, Wi-Fi for localised high speed data transfer, and Bluetooth and iRDA for short range Personal Area 

Network (PAN), and TETRA for highly secure, reliable, long range transmission. Each technology has different 

data rate/speed, range/coverage and reliability characteristics and used for different purposes.  

Name Frequency 
[MHz] 

Download 
/Upload 
[kb/s] 

Range 
[m] 

Latency 
[ms] 

Availability / 
Coverage 

Advantages Disadvantage 

TETRA 380–390 7.2 / 7.2 8000 500 90+% Coverage, 
Security, 
Reliability 

Cost, Need to 
allocate one channel 

Satellite 137–150 4.8 / 2.4 huge huge 100% on flat 
areas 

Coverage Available only in 
open areas, Cost 

FM DAB, 

T-DMB  

DVB- H 

DRM 

87–110 

209–230 

209–230 

Below 30 

10 / — 

192 / — 

72 / — 

15 

000 

– 99% of 
population + 
motorways 

90% of 
population + 
motorways 

High speed 
vehicle 
support 

One way 
communication 

GSM Voice 

SMS 

HSCSD  

GPRS 

890–915, 

935–960, 

9.6 

160char/~2.5s 

112 

160 

1250 5000 

700 

Very good 
coverage in 
urban areas 

High speed 
vehicle 
support  

In-expensive 

Provider dependent 

EDGE 1710  –
1785 

320 580 600-300 Available mainly 
in urban areas 

data rate  
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W- CDMA 2000/3500 350 380 200 Available data rate  

HSPA 2000 >2048 / 350 550 150 Introduced data rate  

802.11a b, g 

802.11p 

, 2412  –
2472 

5850  –
5925 

23000, 
4500,19000 

 

90 

 Popular for 
home use  

Standardised 

In-expensive Access “on the 
pause” 

Wi- Max 2300 24 000 / 4096 400  Tested Data rate and 
travel speed 

Not fully 
implemented 

FLASH  
 
OFDM  
 
iBurst 

- 

450 

1800 

5300 

64000 

3000  Not available  Availability 

Table 1: Comparison of wireless communication  

 

In the context of vehicles which is a moving object requires wireless technologies with longer range however intra-

vehicle communication between devices can be achieved by small range technologies such as Bluetooth.    

 

Figure 1: Typical range (uplink data rate 64 kb/s) (Hurel et al.,2005) 

 

WiMax and LTE are quite interesting new technologies with a potential to provide wide range and high speed 

bandwidth. These technologies can be utilised in ITS components for reliable communication. However, in this 

research the implementation of the systems will be independent of the type/data bearer, so only the available 

technologies 3G/GPRS, TETRA, Wi-Fi and Bluetooth are used. 
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2. Vehicle-Vehicle-Infrastructure Communication in ITS 

Vehicles and roadside systems are usually autonomous however one of the main idea behind ITS is to move towards 

a connected network of vehicles and infrastructure systems where communication takes place between vehicles and 

infrastructure. ITS based systems by nature are highly distributed, geographically dispersed and multi 

layered/components, therefore efficient use of communication technologies are vital at every level of systems 

integration, traffic data collection, and communication between components/devices. In ITS, the communication is 

usually categorised in following three ways: 

 Vehicle-to-Infrastructure (V2I) 

 Vehicle-to-Vehicle (V2V) 

 Intra-Vehicle   

V2V and V2I communications can provide benefits in terms of safety, allowing constant, real-time sharing of 

information that will help warn of hazards (Active traffic management) and also potentially maintain the flow of 

traffic (Intelligent routing and signal adaptation). In this way the systems will provide a new dimension in inter-

system communication and distributed control systems.  It will also provide vehicles with effective internet 

connectivity through roadside gateways and grids. 

 

Ad-hoc V2V and V2I networks 

V2V communication allows vehicles to interact with each other wirelessly and sharing information. In the context of 

V2V, one interesting idea is the formation of ad-hoc and temporary network between vehicles (VANET) in 

communicating range. These ad-hoc networks can be used for self-organising and various other such tasks, where 

each vehicle and infrastructure controls act as a network node (on the ad-hoc network) and perform various actions 

however, within the constraint of the infrastructure to ensure safety and security. The communication messages 

between vehicles/nodes can be direct or can propagates to destination using a number of intermediate links. If 

vehicle mobility causes links to break, message can be re-routed using a different path. 

 
Figure 2: Vehicle based ad-hoc networks 

The major benefit of such ad-hoc network is the decreased dependency on fixed infrastructure in order to create 

highly connected ITS environment. In this way local services can also be provided to the nodes i.e. vehicles. Major 

challenges in achieving the ad-hoc network include:  

 Network congestion  

 Security 

 Range allocation and efficiency 

 Level of fixed infrastructure required 

 Application dependent 

 Routing protocol 

v1 

v3 

v6 

v2 

v5 
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The new generation of Bluetooth v3 especially v4 provides a potential for achieving such ad-hoc networks by 

forming Personal Area Networks (PAN) of nodes within range and with improved reliability. These ad-hoc PANs 

can join together by sharing bridging nodes to form large even larger networks.  

In this research, the idea of ad-hoc networks in the context of ITS was investigated, and various Vehicle to Vehicle 

(V2V) technologies were analysed as part of the ITS@CU platform development. As a result an experimental 

mobile application was developed for simulating Vehicle Controls forming ad-hoc Personal Area Networks (PAN) 

using Bluetooth. The application was developed using the Mobile Application Development Framework (described 

in chapter 7, section 7.4) and it was predominately used for testing the communications between vehicle-to-vehicle and 

vehicle-to-traffic-controls.  The Ad-hoc V2V idea was taken to further level by incorporating Agents to interact 

between participating nodes and make decisions by cooperating with each other.      

 

         

Figure 3: Ad-hoc V2V PAN Application 

Left: Application initial setup; Centre: Bluetooth setup and ad-hoc vehicle/device in range info;  

Right: Customised V2V Messages for simulation/Test purposes   
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1. Central Control System 
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2. Vehicle Control System 
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Appendix I:  Mobile Application Development 

Framework (MADF) Description  

This section describes the API description of the mobile application framework developed as part of the 
KTP project and used for simulation of various traffic controllers in ITS@CU platform. The API 
provides details of all of the elements necessary for any application to be built within the platform. 

Overview 

The architecture is logically split into Business Logic, Resource and Data and User Interface (UI) layers. Each layer 
deals with a different element of the platform. Segregation between the different layers will allow for easier 
modification when necessary at a later stage. 

User Interface Layer  

The UI layer contains Views and Presenters. 

 Views are controls on the screen that the user can interact with. 

 Presenters are classes that drive the views 

Business Logic Layer 

 Business Entities are classes that represent business concepts, such as “Customer”, “Bank Account” or 
“Address”. 

 Business Logic Components are classes that implement the majority of the business logic within the 
application. 

 Business Workflows drive the overall flow of control within the application. 

Data Access & Resource Layer 

 Data Access Components can fetch data from a local store such as SQL CE, and they may use 
infrastructure components to manage data subscriptions and expirations. 

 Service Agents act as proxies to external web services and meet the additional challenge of working in 
occasionally connected environments. 

Since the mobile application framework relies heavily on access to an SQL CE database, any direct access to this 
database would be governed under this layer. There is also the need to access a variety of text or XML files for 
configuration or logging purposes or otherwise. The Data layer should contain generic handlers for this file access. 

Management Layer  

The Management layer contains Logging, Configuration and Error management. 

Connectivity Layer 

Connection and Network Management includes providing features for assessing the current connectivity of the 
device and reacting to changes in connectivity. 

Security Layer 

The Connectivity layer contains Authorisation and authentication features. It also provides encryption using AES 
128 encryption. 
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Components 

There are various components to the application that are needed. Some of these components should only ever exist 
once across the application, whilst others should be available in as many instances as necessary. Logical components 
can have various elements to them that exist across the different layers in the application. These would then be 
broken down into separate smaller components that deal with the specific elements relating to a single layer. 

A component can either be: 

 Static – a single instance, but accessible from across the whole application. 

 Hybrid – many instances that access some instance-specific and some global properties. 

 Standard – many instances of this class can exist and each instance is stand-alone. 

 

Merge Replication 

The Merge Replication class allows the application to synchronise data with the server using merge replication. Since 
this may happen at any point within the application, this component should be global. 

There are two types of merge replication that can occur. The first is a “reset” replication, where the local database is 
removed and recreated based on the replication with the server. The second is a “standard” replication where the 
local database is synchronised with the server one. In the case of a “standard” replication, the replication is either 
two-way or upload only. 

If a user has logged out then the synchronisation will need to create a new subscription. 

The user interface may need to indirectly trigger a merge replication, but it is far more likely that an event within the 
business layer will trigger a replication. 

When a replication event starts, the Device Status will need to be updated to show that a replication is in progress. 
Once the replication is completed, the Device Status will need to be updated to show that a replication is now 
complete. 

The Merge Replication class is predominantly a Business layer class. It will need to interact with the merge 
replication functionality that is contained in the Data layer to perform the actual merge replication process. 

Public Methods: 

 Reset() – This will trigger a reset of the database and then recreate it from the server. 

 Synchronise(ExchangeType Type, bool InitialiseSubscription) – Synchronise the database or upload, 
depending on the flag. 

Public Events: 

 Started() – Event occurs when the synchronisation process has started. 

 Complete() – Event occurs when the synchronisation process has stopped. 

 Error() – Event occurs when an error occurs during synchronisation. 

Public Property: 

 InProgress {get} – Whether a synchronisation attempt is in progress. 
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Device 

The Device class allows the application to readily access various device methods and properties. Since there is only 
one device, this class should be global. The class should make available the Device ID (whether this is the IMEI or 
other), the GPS status, the Connectivity status, the Offline status and the Synchronisation status. It should also 
make available the sounds, clock and phone functionality. 

The class does not contain any business logic and is therefore in the Data layer. 

Public Methods: 

 Dial(string phonenumber, bool prompt) – dial the provided phone number. 

 SMSSendMessage(string number, string message) – Send an SMS message. 

 PlaySound(string filepath) – play the sound from the file provided. 

 PlaySound(SoundType beep|alarm|notify) – play a standard sound of the selected type. 

Public Properties: 

 DeviceID {get} 

 DeviceName {get} 

 IMEI {get} 

 SIMNumber {get} 

 Memory {get} – Return memory structure (Available and Total). 

 OSVersion {get} 

 CFVersion {get} 

 DateTime {get,set} 

 BatteryLevel {get} 

 BatteryStatus {get} 

 

SNAPI 

This static class monitors the snapi and provides updates to other classes. 

Public Events: 

 PhoneGPRSCoverage_Changed() 

 ConnectionsCellularCount_Changed() 

 ConnectionsNetworkCount_Changed() 

 PowerBatteryState_Changed() 

 PowerBatteryStrength_Changed() 

Public Properties: 

 PhoneGPRSCoverage {get} 

 ConnectionsCellularCount {get} 

 ConnectionsNetworkCount {get} 

 PowerBatteryState {get} 

 PowerBatteryStrength {get} 

 

Device Status Bar 
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The device status bar is a UI element which updates based on the Device settings. It is found in the UI layer on the 
device and is a Standard class. It shows the user, in order, the offline status, if the battery level is low, the GPS 
status, the synchronisation status and the connectivity status of the device. 

The UI element interacts with the Global Device class to obtain the settings for the device and keep the display up 
to date. 

The graphics for the various icons in the status bar are embedded into the class, although the background graphic 
should be readily available. Currently, the control has a minimum size which is the size of the five images embedded 
in the control. 

Public Properties: 

 Standard UI control properties (size, location, etc). 

 BackgroundImage {get,set} – The image to use on the background of the control. 

 BackgroundImageFormat {get,set} – Whether to centre, stretch or tile the image. 

 BackgroundColor {get,set} – The colour of the background if no image is selected. 

 OfflineIcon {set} 

 BatteryLowIcon {set} 

 GPSIcon {set} 

 SynchronisationIcon {set} 

 ConnectionIcon {set} 

 

Connection 

The connection class is the only current class in the Connectivity layer. It is a global class and should only be 
accessible (for now) through the Device class (also global). 

The class should allow the user to check the connectivity of the device through checking the GPRS, WiFi, 3G, Fixed 
line and other potential connectivity options. Currently, many of these options are not implemented. 

Public Methods: 

 HasConnection() – Check if the device has a viable connection. 

 HasCellularConnection() – Check if the device has a viable cellular connection. 

 CheckServer() – End to end test of server connectivity. 

 

Ping 

This standard Business layer class gathers all necessary information and then sends it to the server using a web 
service method. The class will almost certainly be triggered using a UI timer on the main form. 

Public Methods: 

 GeneratePing() – Create a ping and attempt to transmit it. 

Error Log 

This global Data class enables the logging of error information. 

Public Methods: 
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 Log(string message) 

 

LoginLogoutProcess 

This standard Business layer class controls the logging in process. When the application starts, or when a user logs 
off, this process should be triggered. Only once the logging in process is complete should activity be passed back to 
the calling class. 

In practise, this functionality will be achieved through opening the Login form in Dialog mode so that the form 
must be closed before focus can be returned to the activating form. Whether this requires a separate class to 
perform this is debatable. 

Public Methods: 

 ShowLogin() – Attempt to log in to the application (this will log out of the application if already logged in). 

 LoginSuccess() – Event occurs on a successful login. 

 Logout() – Event fired to trigger logout related actions. 

Public Events: 

 LoginSuccess() – Event occurs on a successful login. 

 Logout() – Event fired to trigger logout related actions. 

 

Login  

This UI class requires the facility to enter a username and a password and pass this information to the relevant 
(Login) class. On a successful log in, the form should close, otherwise the form should display useful information to 
the user and remain open, allowing the user to try again. 

The form should also allow for exiting the application completely if required and accessing the configuration to 
allow for changing of IP addresses etc. 

The Business layer class requires a username and a password to pass through to the web service. It will respond to 
the UI component through events to inform as to the success or failure of the login attempt. 

Public Methods: 

 AttemptLogin(string username, string password) 

Public Events: 

 LoginSuccess() – Event occurs when the login attempt is successful. 

 LoginFailure() – Event occurs when the login attempt fails. 

Public Properties: 

 LastLoginFailReason {get} – The reason for the last login failure event. 
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Web Services 

The Web Services need to be able to send web service requests to the server. Any response from the web service 
may need to be dealt with. 

Public Methods: 

 string WSVersion(bool Synchronous) 

 string DeviceLogin(bool Synchronous, string LoginID, string Password, string DeviceID, string 
AppVersion) 

 DeviceStatusStruct DeviceStatus(bool Synchronous, string LoginID, int PushProcessed, string Time, string 
Battery, string Conn, string Gps, int Lng, int Lat, int Spd, int Dir) – This method will populate the 
DeviceStatusStruct structure with relevant information or the structure will be made available by the event. 

 bool DeviceCommandsUpdate(bool Synchronous, string LoginID, int LogRequired, string Message, string 
KickOutUser, int WipeData) 

 DateTime CurrentDateTime(bool Synchronous) – Get the current date and time from the server. 

 string CheckUpgrades(bool Synchronous, string AppVersion) 

 FileStruct GetFile(bool Synchronous, string filename) – The FileStruct type contains both the binary data 
and the hash value for the file. 

 bool PutFile(bool Synchronous, byte[] buffer, string filename) 

 string UpdateOnSync(bool Synchronous, string UserID, string CompanyDB) 

Public Events: 

 WSVersionComplete(string result) – Event fires when the asynchronous WSVersion completes. 

 DeviceLoginComplete(string result) – Event fires when the asynchronous DeviceLogin completes. 

 DeviceStatusComplete(DeviceStatusStruct dst) – Event fires when the asynchronous DeviceStatus 
completes. Dst is populated with the results. 

 DeviceCommandsUpdateComplete(bool result) – Event fires when the asynchronous 
DeviceCommandsUpdate completes. 

 CurrentDateTimeComplete(DateTime dt) – Event fires when the asynchronous CurrentDateTime 
completes. 

 CheckUpgradesComplete(string result) – Event fires when the asynchronous CheckUpgrades completes. 

 GetFileComplete(FileStruct fs) – Event fires when the asynchronous GetFile completes. 

 PutFileComplete(bool result) – Event fires when the asynchronous PutFile completes. 

 UpdateOnSyncComplete(string result) – Event fires when the asynchronous UpdateOnSync completes. 

GPS 

The global GPS class needs to have the facility to provide co-ordinates for tracking purposes and (potentially) open 
a satellite navigation program to navigate to a specified location. 

Public Methods: 

 Start() – Start the GPS driver 

 Stop() – Stop the GPS driver 

 Navigate(string Label, int Long, int Lat, GPSAddress Address) – Navigate to the provided 
latitude/longitude or address. Priority is decided by the driver. 

 Show() – Show the satellite navigation application. 

 Hide() – Hide the satellite navigation application. 

 Dispose() – Dispose of the driver. 

Public Properties: 

 GetCurrentFix {get} – Obtain a current fix from the driver. 
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The ITS@CU platform and associated utilities comprises of a large amount of code which is not appropriate 

to include in the report. A password protected and encrypted CD is therefore enclosed with this report.  

It contains the following items in compressed .RAR format (WinRAR software is required): 

1. ITS@CU Gateway, Simulation and Mobile Application Development 
Framework 

File: ITSCU vss code.rar 

Requirements to run/view: 

 Microsoft Visual Studio 2008 Professional edition  

 SQL Server Compact Edition 3.5 installed and configured 

 Windows Mobile 6.1 or higher SDK installed including emulators 

 SQL Server 2005/08 Standard/Enterprise Edition with merge replication enabled  

 IIS 6 or higher with ASP.NET and SQL replication proxy allowed 

NOTE: Commercially sensitive code is not included.   

 

2. Incident Detection System Source Code 

File: Extra Utilities code.rar 

Mobile client application  

Requirements to run/view: 

 Microsoft Visual Studio 2008 Professional edition  

 Windows Mobile 5 or higher SDK installed including emulators 

 Microsoft ActiveSync 4.5 Installed (If running windows XP) 

 PDA with GPS receiver built-in or attached via Bluetooth  

 PDA also needs to have  data enabled SIM card for GPRS  

Server web application   

Requirements: 

 Microsoft Visual Studio 2008 Professional edition  

 Windows Mobile 5 or higher SDK installed including emulators 

 IIS 6 configured  

 SQL Server 2005 Express Edition 

 Microsoft Ajax.Net installed  
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3. PAN mobile application 

File: Extra Utilities code.rar 

Requirements: 

 Microsoft Visual Studio 2008 Professional edition  

 Windows Mobile 6.1 or higher SDK installed including emulators 

 PDAs (at least 4) with Bluetooth enabled and paired-up between all the devices 

 

4. Ontologies  

Includes all the ontology files used in this research implementation and analysis   

File: chapter 6 materials (ontologies, Rules).rar 

Requirements: 

 Protege or 

 Altova SemanticWorks 2008 

 

 

5. XML files: Examples Rules, Plans and messages  

Includes all the XML files describing rules, sample plans and messages used for Agent based interaction 
during the implementation and analysis of the platform   

Files:  chapter 7-8 materials.rar  
          chapter 5 XML files.rar    

Requirements: 

 Altova UModel 

 Altova SemanticWorks or Protege 

 Altova XMLSpy 

 Notepad (or any XML editor) 
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Appendix K:  NetLogo simulation for traffic evaluation  

During the initial phase of the research, NetLogo Agent simulation tool was used in various simulation studies 

primarily to simulate traffic light controls. In this appendix, one of the NetLogo based simulation studies is outlined 

in which a traffic simulator application was implemented in NetLogo. In this application Agents were configured to 

perform the behaviour of traffic lights and vehicles allowing the simulation of different traffic scenarios. Each agent 

receives the data from the application including: 

 The current the traffic lights phase. The simulator observes current active traffic lights phase that is being 

set to green. 

 Value of the counter (for the green) 

 The length of the Queue at each link waiting to be serviced. This is can be done by calculating the 

deference between the numbers of the vehicles entered the link and the vehicles left the link of each ln. 

These two numbers obtained by using sensors. 

 The space available for the vehicles to file on the downstream link. (The downstream is the other side of 

the junction.) 

By using the Traffic Simulator application the performance of the traffic was evaluated. This was done by 

programming a vehicle to calculate its delayed time when it is waiting in the queue, later the average delay for all 

vehicles can be obtained. Then the average delayed time can be compared to other simulation results and to real-time 

data. The simulation of simple intersection for 2 traffic lights and basic grid already exist within the tool. The 

enhancement of the existing simulation has been attempted in order to include some of the aspects of the traffic 

network model for an intersection controlled by up to 8 traffic lights. 

 

Figure: Traffic Simulator (NetLogo) 

The complete code is provided in “Appendix J, CD” 
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Appendix L:  SCOOT data and traffic area study report  

This document outlines the traffic data provided by the UTMC Control Room, Coventry City Council responsible for the 

Transport System Management of Coventry City and surrounding areas. They use SCOOT and related add-on systems (ASTRID 

and INGRID) for managing traffic control systems.  

SCOOT obtains the traffic flow information by calculating the data from the roadside inductive loops detectors. They comes in  

detector packs connected to out-station transmission unit (OTU) which is the Controller with modem and connected to the 

SCOOT system at the central control room system. Detectors are normally required on every road link. Their location is important 

and they are usually positioned at the upstream end of the approach link. Inductive loops are normally used, but other methods are 

also available. When vehicles pass the detector, SCOOT receives the information and converts the data into its internal units and 

uses them to construct "Cyclic flow profiles" for each link. As an adaptive system, SCOOT depends on reliable and real-time 

traffic data in order to respond to changes in the flow.  

 

SCOOT Overview (Siemens Mobility, 2009) 

Controllers 
(OTU)

SCOOT
Central Control 

System

ASTRID 

Database

query

Receive data

SCOOT System Overview (UTMC Coventry)

Traffic Controls 
(Detectors)

Traffic Controls 
(Traffic lights)

Flow data

Controls/adapts
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There are different messages to obtain data from SCOOT for example:  

 M14 Link<LINK> IVL aaaa OCC bbbb LQ cccc BQ dddd EB eeee LIT <REP> f 

This message is generated every four seconds for a non-faulty link. 

 IVL  is current interval within the profile 
 OCC  is the occupancy value arriving at stop-line (LPU/interval) 

 LQ   is the length of queue currently modelled (LPU) 
 BQ  is the position of back queue (LPU) 

 EB  exit blocked flag (0=no, 1=yes) 
 LIT  is four bits giving the effective state of signals in previous four seconds (1=green, 0=red)  

 

 M37 Node <NODE> UTC a IG b GN cc Length ddd 

 

The UTC stage lengths as measured from the stage replies. 

UTC   The UTC stage 

IG  The preceding inter green 
GN   Green length(s) 

Length   Total length = IG + green length(s) 

 

Alternatively, data can be collected using the ASTRID, which is a software utility to access the database used to store information derived from 

SCOOT system such as: 

 Flow: flow in vehicles per hour as modelled by SCOOT  

 Flow: flow in vehicles per hour derived from detectors (best for links with one detector per lane)  

 Delay: total delay in vehicles per hour  

 Congestion: percentage of 4 second intervals when a detector is occupied by traffic 

 Emissions estimates  

 

ASTRID data utility interface 

The current value of any of these items is also available to the user in the form of SCOOT messages. In addition to the data directly output, 
ASTRID calculates and stores the following information: 

 Vehicle delay: mean delay per vehicle  

 Journey time: obtained by adding vehicle delay to a pre-measured 'cruise time'  

 Speed: derived from link length, cruise time and vehicle delay  

 Congestion index: derived from vehicle delay and cruise time  

The data is available at the level of link, node, region, area or route ('route' is any pre-defined set of links). Both current and historic data is 
available. 
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Using the data obtained from ASTRID application, the following graphs were generated. For example, the following figure shows 
the flow for the “10314” junction over a week.  

 
 

 

 

 

The following figures shows the Stops, Delays, Congestion and Saturation graphs for “10314” junction over a week  
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Geographical study area selection 

Transport Communication Centre, Coventry City Council provided extensive range of historical traffic flow data for 
different routes of Coventry for the purpose this research. The data obtained from SCOOT and ASTRID was assessed 
in order to analyse the traffic trends and select appropriate section for the simulation studies. As seen in the following 
figure, a section around “Foleshill Road” and associated links were focused in this research which is a major arterial 
connecting the centre of Coventry with the M6.  

Signal Controller 

Number (SCN) 
Foleshill Road Corridor, Coventry Type 

10311 Harnell Lane Junction 

10312 Eagle Street Junction 

10313 Edmund Road Bus Gate 

10314 Cash's Lane Junction 

10315 Lockhurst Lane Junction 

10316 Broad Street Junction 

10351 Livingstone Road Pelican 

10352 Station Street Junction 

10355 Blackwell Road Pelican 

 
Study Area map image 
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Following are the detail illustrations provided by transport Communication Centre for each SCN (in SCOOT) 
 

 
10312 Junction 

 
10314 Junction 
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10315 Junction 

 

 

 
10316 Junction 
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10351 Pelican and 10352 Junction 

 

 

 

10355 Pelican 
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Data  
The data was extracted from junction/SCN 10312, 10314, 10315 and 10352, at different times, i.e. 07:00 to 10:00 and 16:00 to 19:00, and 
different days, i.e. Saturday to Tuesday: 

 
 
 
 

Raw data (from ASTRID) 

 
;======================================================================================================================= 
; EXTRACT 10314 BAC /DW:MOTUWETHFRSASU /D:FLOW /D:STOPS /D:DEL /D:CONG /D:DSAT /D:RFLOW /D:ROCC /D:SLEN /DS:20110804 /DE:20110808 /TS:0 /TE:24 /DF 

/O:GUITEXT.TMP 
; 
; Tu  9-Aug-2010 13:40:08 
;                                 Start   End         Flow    Flow    Stops  Stops  Delay  Delay Congestion    Saturation    Sat  Flow*  Flow*   Occ*   Occ* Length Length  
; Site       Day  Date       Time              Mean   Count   Mean  Count   Mean  Count   Mean  Count   Mean  Count   Mean  Count   Mean  Count   Mean  Count  
;                                                           veh/h  veh/h             veh    %         %         veh/h             %             s         
;--------- -- ----------- ----- ----- ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------  
10314      SA  6-Aug-2011 00:00 00:15    739     71    131     71    0.3     71      0     71     42     94      0      0    0.0      0     96    101  

10314      SA  6-Aug-2011 00:15 00:30    668     62    159     62    0.4     62      0     62     38     93      0      0    0.0      0     96     96  
10314      SA  6-Aug-2011 00:30 00:45    616     71    107     71    0.2     71      0     71     35     65      0      0    0.0      0     95    101  
10314      SA  6-Aug-2011 00:45 01:00    526     62     99     62    0.3     62      0     62     37     90      0      0    0.0      0     96    101  
10314      SA  6-Aug-2011 01:00 01:15    387     71     88     71    0.2     71      0     71     27    102      0      0    0.0      0     96    101  
10314      SA  6-Aug-2011 01:15 01:30    395     62     23     62    0.0     62      0     62     27     67      0      0    0.0      0     95     96  
10314      SA  6-Aug-2011 01:30 01:45    337     71     37     71    0.1     71      0     71     22     54      0      0    0.0      0     96    101  
10314      SA  6-Aug-2011 01:45 02:00    244     62     71     62    0.2     62      0     62     12     97      0      0    0.0      0     95    101  
10314      SA  6-Aug-2011 02:00 02:15    243     71     26     71    0.1     71      0     71     10    103      0      0    0.0      0     96    101  

10314      SA  6-Aug-2011 02:15 02:30    280     62     31     62    0.1     62      0     62     12     11      0      0    0.0      0     96     96  
10314      SA  6-Aug-2011 02:30 02:45    291     71     37     71    0.0     71      0     71     14     54      0      0    0.0      0     95    101  
10314      SA  6-Aug-2011 02:45 03:00    254     62      9     62    0.0     62      0     62      9     12      0      0    0.0      0     96    101  
10314      SA  6-Aug-2011 03:00 03:15    316     71     40     71    0.1     71      0     71     13     83      0      0    0.0      0     96    101  
10314      SA  6-Aug-2011 03:15 03:30    182     62     18     62    0.0     62      0     62      8    118      0      0    0.0      0     95     96  
10314      SA  6-Aug-2011 03:30 03:45    259     71     23     71    0.0     71      0     71      9     79      0      0    0.0      0     96    101  
10314      SA  6-Aug-2011 03:45 04:00    248     62     60     62    0.1     62      0     62     12     90      0      0    0.0      0     95    101  
10314      SA  6-Aug-2011 04:00 04:15    253     71      3     71    0.0     71      0     71      7     87      0      0    0.0      0     96    101  

10314      SA  6-Aug-2011 04:15 04:30    216     62      1     62    0.0     62      0     62      8     35      0      0    0.0      0     96     96  
10314      SA  6-Aug-2011 04:30 04:45    165     71      1     71    0.0     71      0     71      0      0      0      0    0.0      0     95    101  
10314      SA  6-Aug-2011 04:45 05:00    173     62      8     62    0.0     62      0     62      9      5      0      0    0.0      0     96    101  
10314      SA  6-Aug-2011 05:00 05:15    144     71      7     71    0.0     71      0     71      3      2      0      0    0.0      0     96    101  
10314      SA  6-Aug-2011 05:15 05:30    259     62     21     62    0.1     62      0     62     10     23      0      0    0.0      0     95     96  
10314      SA  6-Aug-2011 05:30 05:45    285     71     30     71    0.1     71      0     71     10     56      0      0    0.0      0     96    101  
10314      SA  6-Aug-2011 05:45 06:00    352     62     48     62    0.1     62      0     62     16     30      0      0    0.0      0     95    101  
10314      SA  6-Aug-2011 06:00 06:15    293     71     21     71    0.1     71      0     71     10     42      0      0    0.0      0     96    101  

10314      SA  6-Aug-2011 06:15 06:30    377     62    108     62    0.4     62      0     62     18     57      0      0    0.0      0     96     96  
10314      SA  6-Aug-2011 06:30 06:45    374     71     31     71    0.1     71      0     71     15     86      0      0    0.0      0     95    101  
10314      SA  6-Aug-2011 06:45 07:00    505     62     62     62    0.1     62      0     62     17     23      0      0    0.0      0     96    101  
10314      SA  6-Aug-2011 07:00 07:15    377     71     79     71    0.2     71      0     71     21    117      0      0    0.0      0     96    101  
10314      SA  6-Aug-2011 07:15 07:30    450     62     62     62    0.0     62      0     62     19     95      0      0    0.0      0     95     96  
10314      SA  6-Aug-2011 07:30 07:45    595     71    105     71    0.1     71      0     71     22    100      0      0    0.0      0     96    101  
10314      SA  6-Aug-2011 07:45 08:00    679     62    205     62    0.4     62      0     62     32     99      0      0    0.0      0     95    101  
10314      SA  6-Aug-2011 08:00 08:15    862     71    225     71    0.4     71      0     71     35    109      0      0    0.0      0     96    101  

10314      SA  6-Aug-2011 08:15 08:30    822     62    210     62    0.5     62      0     62     36     91      0      0    0.0      0     96     96  
10314      SA  6-Aug-2011 08:30 08:45   1166     71    469     71    1.0     71      0     71     49    108      0      0    0.0      0     95    101  
10314      SA  6-Aug-2011 08:45 09:00   1203     62    586     62    1.7     62      0     62     61     98      0      0    0.0      0     96    101  
10314      SA  6-Aug-2011 09:00 09:15   1243     71    479     71    1.2     71      0     71     63    102      0      0    0.0      0     96    101  
10314      SA  6-Aug-2011 09:15 09:30   1330     62    622     62    2.3     62      0     62     71    100      0      0    0.0      0     95     96  
10314      SA  6-Aug-2011 09:30 09:45   1195     71    505     71    1.5     71      0     71     65     98      0      0    0.0      0     96    101  
10314      SA  6-Aug-2011 09:45 10:00   1617     62    846     62    2.1     62      0     62     85    103      0      0    0.0      0     95    101  
10314      SA  6-Aug-2011 10:00 10:15   1613     71    826     71    1.6     71      0     71     90     97      0      0    0.0      0     96    101  

10314      SA  6-Aug-2011 10:15 10:30   1740     62   1047     62    4.7     62      0     62     90    102      0      0    0.0      0     96     96  
10314      SA  6-Aug-2011 10:30 10:45   1869     71   1039     71    2.5     71      0     71    102    100      0      0    0.0      0     95    101  
10314      SA  6-Aug-2011 10:45 11:00   1710     62    870     62    3.1     62      0     62    100     98      0      0    0.0      0     96    101  
10314      SA  6-Aug-2011 11:00 11:15   1980     71   1201     71    3.6     71      0     71    115    101      0      0    0.0      0     96    101  
10314      SA  6-Aug-2011 11:15 11:30   1993     62    936     62    2.2     62      0     62    101     96      0      0    0.0      0     95     96  
10314      SA  6-Aug-2011 11:30 11:45   2142     71   1298     71    3.9     71      0     71    151    102      0      0    0.0      0     96    101  
10314      SA  6-Aug-2011 11:45 12:00   2193     62   1349     62    5.6     62      0     62    128    101      0      0    0.0      0     95    101  
10314      SA  6-Aug-2011 12:00 12:15   2347     71   1614     71   12.9     71      0     71    186    100      0      0    0.0      0     96    101  

10314      SA  6-Aug-2011 12:15 12:30   2079     62   1640     62   19.9     62      0     62    179     95      0      0    0.0      0     96     96  



Appendix L: SCOOT data and traffic area study report  

 

 

 

10314      SA  6-Aug-2011 12:30 12:45   2136     71   1641     71   14.8     71      0     71    170    108      0      0    0.0      0     95    101  
10314      SA  6-Aug-2011 12:45 13:00   1793     62   1131     62    4.1     62      0     62    103     98      0      0    0.0      0     96    101  
10314      SA  6-Aug-2011 13:00 13:15   1822     71   1222     71    8.0     71      0     71    132     99      0      0    0.0      0     96    101  

10314      SA  6-Aug-2011 13:15 13:30   1898     62   1409     62   14.3     62      0     62    183    100      0      0    0.0      0     95     96  
10314      SA  6-Aug-2011 13:30 13:45   1887     71   1435     71   21.6     71      0     71    188    100      0      0    0.0      0     96    101  
10314      SA  6-Aug-2011 13:45 14:00   2016     62   1578     62   19.1     62      0     62    156     98      0      0    0.0      0     95    101  
10314      SA  6-Aug-2011 14:00 14:15   1914     71   1458     71   22.6     71      0     71    150    104      0      0    0.0      0     96    101  
10314      SA  6-Aug-2011 14:15 14:30   1971     62   1388     62    7.9     62      0     62    119     97      0      0    0.0      0     97     98  
10314      SA  6-Aug-2011 14:30 14:45   2022     71   1530     71   10.4     71      0     71    118    100      0      0    0.0      0     94    101  
10314      SA  6-Aug-2011 14:45 15:00   2106     62   1670     62   26.5     62      0     62    664    102      0      0    0.0      0     96     96  
10314      SA  6-Aug-2011 15:00 15:15   2276     71   1617     71   13.4     71      1     71    128     94      0      0    0.0      0     97    101  

10314      SA  6-Aug-2011 15:15 15:30   2250     62   1781     62   22.2     62      2     62    131    105      0      0    0.0      0     94    102  
10314      SA  6-Aug-2011 15:30 15:45   2150     71   1283     71    4.6     71      0     71    113    100      0      0    0.0      0     97    102  
10314      SA  6-Aug-2011 15:45 16:00   1757     62   1030     62    3.4     62      0     62     91     95      0      0    0.0      0     95    102  
10314      SA  6-Aug-2011 16:00 16:15   1703     71    894     71    2.5     71      0     71     86    104      0      0    0.0      0     96     96  
10314      SA  6-Aug-2011 16:15 16:30   1758     62    999     62    5.9     62      0     62     93    101      0      0    0.0      0     97    102  
10314      SA  6-Aug-2011 16:30 16:45   1853     71    773     71    2.1     71      0     71     84     91      0      0    0.0      0     94    102  
10314      SA  6-Aug-2011 16:45 17:00   1603     62    602     62    3.9     62      0     62     70     99      0      0    0.0      0     95     96  
10314      SA  6-Aug-2011 17:00 17:15   1774     71   1035     71    4.6     71      0     71     99    108      0      0    0.0      0     97    101  

10314      SA  6-Aug-2011 17:15 17:30   1607     62    831     62    2.4     62      0     62     89    100      0      0    0.0      0     94    102  
10314      SA  6-Aug-2011 17:30 17:45   1650     71    754     71    2.1     71      0     71    137     97      0      0    0.0      0     97    102  
10314      SA  6-Aug-2011 17:45 18:00   1912     62    954     62    4.3     62      0     62    120    105      0      0    0.0      0     95    101  
10314      SA  6-Aug-2011 18:00 18:15   1514     71    830     71    2.4     71      0     71     85     97      0      0    0.0      0     96     96  
10314      SA  6-Aug-2011 18:15 18:30   1608     62    809     62    2.7     62      0     62     92    102      0      0    0.0      0     97    102  
10314      SA  6-Aug-2011 18:30 18:45   1467     71    774     71    3.8     71      0     71     90    101      0      0    0.0      0     94    102  
10314      SA  6-Aug-2011 18:45 19:00   1299     62    417     62    0.9     62      0     62     78     95      0      0    0.0      0     95     96  
10314      SA  6-Aug-2011 19:00 19:15   1450     71    839     71    2.8     71      0     71     98    101      0      0    0.0      0     97    101  

10314      SA  6-Aug-2011 19:15 19:30   1297     62    699     62    1.6     62      0     62     85    100      0      0    0.0      0     94    102  
10314      SA  6-Aug-2011 19:30 19:45   1312     71    719     71    2.0     71      0     71     86    103      0      0    0.0      0     97    102  
10314      SA  6-Aug-2011 19:45 20:00   1191     62    431     62    1.1     62      0     62     73    101      0      0    0.0      0     95    102  
10314      SA  6-Aug-2011 20:00 20:15   1201     71    620     71    1.7     71      0     71     77    101      0      0    0.0      0     96     96  
10314      SA  6-Aug-2011 20:15 20:30   1185     62    617     62    1.8     62      0     62     82     99      0      0    0.0      0     97    102  
10314      SA  6-Aug-2011 20:30 20:45   1039     71    514     71    1.3     71      0     71     65    102      0      0    0.0      0     94    102  
10314      SA  6-Aug-2011 20:45 21:00   1044     62    391     62    1.1     62      0     62     53     98      0      0    0.0      0     95     96  
10314      SA  6-Aug-2011 21:00 21:15    854     71    348     71    1.1     71      0     71     47    102      0      0    0.0      0     97    101  

10314      SA  6-Aug-2011 21:15 21:30    933     62    355     62    0.9     62      0     62     47     98      0      0    0.0      0     94    102  
10314      SA  6-Aug-2011 21:30 21:45    815     71    176     71    0.4     71      0     71     42     66      0      0    0.0      0     97    102  
10314      SA  6-Aug-2011 21:45 22:00    809     62    372     62    1.6     62      0     62     49     95      0      0    0.0      0     95    102  
10314      SA  6-Aug-2011 22:00 22:15    894     71    369     71    1.0     71      0     71     55    104      0      0    0.0      0     96     96  
10314      SA  6-Aug-2011 22:15 22:30   1155     62    575     62    1.8     62      0     62     69    100      0      0    0.0      0     97    102  
10314      SA  6-Aug-2011 22:30 22:45    882     71    409     71    0.9     71      0     71     56    102      0      0    0.0      0     94    102  
10314      SA  6-Aug-2011 22:45 23:00    776     62    255     62    0.7     62      0     62     48     99      0      0    0.0      0     95     96  
10314      SA  6-Aug-2011 23:00 23:15    706     71    158     71    0.4     71      0     71     42     55      0      0     0.0      0     97    101  

10314      SA  6-Aug-2011 23:15 23:30    691     62    113     62    0.2     62      0     62     41     59      0      0    0.0      0     94    102  
10314      SA  6-Aug-2011 23:30 23:45    717     71    204     71    0.7     71      0     71     41    101      0      0    0.0      0     97    102  
10314      SA  6-Aug-2011 23:45 24:00    599     62    148     62    0.4     62      0     62     28     99      0      0    0.0      0     95    102  
10314      SU  7-Aug-2011 00:00 00:15    713     71    262     71    0.9     71      0     71     42    104      0      0    0.0      0     96     96  
10314      SU  7-Aug-2011 00:15 00:30    721     62     44     62    0.1     62      0     62     39     99      0      0    0.0      0     97    102  
10314      SU  7-Aug-2011 00:30 00:45    598     71    187     71    0.4     71      0     71     31     98      0      0    0.0      0     94    102  
10314      SU  7-Aug-2011 00:45 01:00    541     62    163     62    0.5     62      0     62     37     85      0      0    0.0      0     95     96  
10314      SU  7-Aug-2011 01:00 01:15    528     71     39     71    0.2     71      0     71     26    112      0      0    0.0      0     97    101  

10314      SU  7-Aug-2011 01:15 01:30    407     62     59     62    0.2     62      0     62     29    101      0      0    0.0      0     94    102  
10314      SU  7-Aug-2011 01:30 01:45    382     71     82     71    0.2     71      0     71     14    105      0      0    0.0      0     97    102  
10314      SU  7-Aug-2011 01:45 02:00    313     62     58     62    0.2     62      0     62     18     15      0      0    0.0      0     95    102  
10314      SU  7-Aug-2011 02:00 02:15    386     71     41     71    0.2     71      0     71     15     36      0      0    0.0      0     96     96  
10314      SU  7-Aug-2011 02:15 02:30    403     62     34     62    0.0     62      0     62     16     70      0      0    0.0      0     97    102  
10314      SU  7-Aug-2011 02:30 02:45    402     71    110     71    0.4     71      0     71     16    108      0      0    0.0      0     94    102  
10314      SU  7-Aug-2011 02:45 03:00    415     62     65     62    0.2     62      0     62     15    105      0      0    0.0      0     95     96  
10314      SU  7-Aug-2011 03:00 03:15    287     71     34     71    0.0     71      0     71     10     32      0      0    0.0      0     97    101  

10314      SU  7-Aug-2011 03:15 03:30    279     62     50     62    0.1     62      0     62     12     73      0      0    0.0      0     94    102  
10314      SU  7-Aug-2011 03:30 03:45    311     71     63     71    0.1     71      0     71     13     91      0      0    0.0      0     97    102  
10314      SU  7-Aug-2011 03:45 04:00    224     62      6     62    0.0     62      0     62      0      0      0      0    0.0      0     95    102  
10314      SU  7-Aug-2011 04:00 04:15    336     71      2     71    0.0     71      0     71      0      0      0      0    0.0      0     96     96  
10314      SU  7-Aug-2011 04:15 04:30    244     62     22     62    0.0     62      0     62     10     62      0      0    0.0      0     97    102  
10314      SU  7-Aug-2011 04:30 04:45    231     71      8     71    0.0     71      0     71     10     13      0      0    0.0      0     94    102  
10314      SU  7-Aug-2011 04:45 05:00    205     62     15     62    0.0     62      0     62      9     24      0      0    0.0      0     95     96  
10314      SU  7-Aug-2011 05:00 05:15    192     71      6     71    0.0     71      0     71      7     91      0      0    0.0      0     97    101  

10314      SU  7-Aug-2011 05:15 05:30    242     62      5     62    0.0     62      0     62      3     10      0      0    0.0      0     94    102  
10314      SU  7-Aug-2011 05:30 05:45    198     71     19     71    0.0     71      0     71      8     24      0      0    0.0      0     97    102  
10314      SU  7-Aug-2011 05:45 06:00    270     62      5     62    0.0     62      0     62     13     23      0      0    0.0      0     95    102  
10314      SU  7-Aug-2011 06:00 06:15    265     71     22     71    0.1     71      0     71     10     71      0      0    0.0      0     96     96  
10314      SU  7-Aug-2011 06:15 06:30    329     62      0     62    0.0     62      0     62     12     28      0      0    0.0      0     97    102  
10314      SU  7-Aug-2011 06:30 06:45    197     71     23     71    0.0     71      0     71      7      9      0      0    0.0      0     94    102  
10314      SU  7-Aug-2011 06:45 07:00    275     62     14     62    0.0     62      0     62     14     24      0      0    0.0      0     95     96  
10314      SU  7-Aug-2011 07:00 07:15    261     71     53     71    0.1     71      0     71     11    101      0      0    0.0      0     97    101  

10314      SU  7-Aug-2011 07:15 07:30    277     62     73     62    0.2     62      0     62     17     19      0      0    0.0      0     94    102  
10314      SU  7-Aug-2011 07:30 07:45    303     71     16     71    0.0     71      0     71     14     61      0      0    0.0      0     97    102  
10314      SU  7-Aug-2011 07:45 08:00    371     62     27     62    0.1     62      0     62     12     62      0      0    0.0      0     95    102  
10314      SU  7-Aug-2011 08:00 08:15    396     71     29     71    0.1     71      0     71     15     49      0      0    0.0      0     96     96  
10314      SU  7-Aug-2011 08:15 08:30    393     62     45     62    0.1     62      0     62     14    114      0      0    0.0      0     97    102  
10314      SU  7-Aug-2011 08:30 08:45    599     71     83     71    0.2     71      0     71     24     99      0      0    0.0      0     94    102  
10314      SU  7-Aug-2011 08:45 09:00    741     62    143     62    0.2     62      0     62     37     52      0      0    0.0      0     95     96  
10314      SU  7-Aug-2011 09:00 09:15    631     71    176     71    0.3     71      0     71     24    108      0      0    0.0      0     97    101  

10314      SU  7-Aug-2011 09:15 09:30    689     62    317     62    0.8     62      0     62     31     99      0      0    0.0      0     94    102  
10314      SU  7-Aug-2011 09:30 09:45    904     71    330     71    0.8     71      0     71     39     99      0      0    0.0      0     97    102  
10314      SU  7-Aug-2011 09:45 10:00   1188     62    609     62    1.6     62      0     62     58    103      0      0    0.0      0     95    102  
10314      SU  7-Aug-2011 10:00 10:15   1178     71    516     71    1.0     71      0     71     51     96      0      0    0.0      0     96     96  
10314      SU  7-Aug-2011 10:15 10:30   1408     62    714     62    1.5     62      0     62     64    102      0      0    0.0      0     97    102  
10314      SU  7-Aug-2011 10:30 10:45   1357     71    801     71    5.0     71      0     71    101     99      0      0    0.0      0     94    102  
10314      SU  7-Aug-2011 10:45 11:00   1457     62    583     62    1.5     62      0     62     81    102      0      0    0.0      0     95     96  
10314      SU  7-Aug-2011 11:00 11:15   1410     71    727     71    2.3     71      0     71     83     95      0      0    0.0      0     97    101  

10314      SU  7-Aug-2011 11:15 11:30   1801     62    971     62    4.7     62      0     62    117    107      0      0    0.0      0     94    102  
10314      SU  7-Aug-2011 11:30 11:45   1610     71    648     71    2.1     71      0     71     77     97      0      0    0.0      0     97    102  
10314      SU  7-Aug-2011 11:45 12:00   1699     62    914     62    2.7     62      0     62     90    102      0      0    0.0      0     95    102  
10314      SU  7-Aug-2011 12:00 12:15   1783     71    941     71    4.4     71      0     71    128     95      0      0    0.0      0     96     96  
10314      SU  7-Aug-2011 12:15 12:30   1711     62    937     62    2.3     62      0     62     81    105      0      0    0.0      0     97    102  
10314      SU  7-Aug-2011 12:30 12:45   1702     71   1020     71    3.2     71      0     71     94     99      0      0    0.0      0     94    102  
10314      SU  7-Aug-2011 12:45 13:00   1698     62    896     62    3.8     62      0     62     96     97      0      0    0.0      0     95     96  
10314      SU  7-Aug-2011 13:00 13:15   1984     71    981     71    2.3     71      0     71    129     99      0      0    0.0      0     97    101  

10314      SU  7-Aug-2011 13:15 13:30   1637     62    693     62    2.2     62      0     62     84     99      0      0    0.0      0     94    102  
10314      SU  7-Aug-2011 13:30 13:45   1818     71    824     71    1.7     71      0     71    109    102      0      0    0.0      0     97    102  
10314      SU  7-Aug-2011 13:45 14:00   1566     40    773     40    1.8     40      0     40     99    103      0      0    0.0      0     95    102  
10314      SU  7-Aug-2011 14:00 14:15   1168     36    503     36    1.7     36      0     36     95     99      0      0    0.0      0     96     96  
10314      SU  7-Aug-2011 14:15 14:30   1244     31    467     31    1.3     31      0     31     88     99      0      0    0.0      0     97    102  
10314      SU  7-Aug-2011 14:30 14:45   1098     35    376     35    1.0     35      0     35     88    102      0      0    0.0      0     94    102  
10314      SU  7-Aug-2011 14:45 15:00   1172     31    463     31    1.1     31      0     31     84    101      0      0    0.0      0     95     96  
10314      SU  7-Aug-2011 15:00 15:15   1112     36    394     36    1.0     36      0     36     92    100      0      0    0.0      0     97    101  

10314      SU  7-Aug-2011 15:15 15:30   1098     31    346     31    1.0     31      0     31     80     94      0      0    0.0      0     94    102  
10314      SU  7-Aug-2011 15:30 15:45   1175     35    383     35    1.1     35      0     35    167    105      0      0    0.0      0     97    102  



Appendix L: SCOOT data and traffic area study report  

 

 

 

10314      SU  7-Aug-2011 15:45 16:00   1105     31    644     31    3.4     31      0     31    258     96      0      0    0.0      0     95    102  
10314      SU  7-Aug-2011 16:00 16:15   1028     36    308     36    1.0     36      0     36     86     91      0      0    0.0      0     96     96  
10314      SU  7-Aug-2011 16:15 16:30   1119     31    521     31    1.6     31      0     31     72    111      0      0    0.0      0     97    102  

10314      SU  7-Aug-2011 16:30 16:45    880     35    189     35    0.6     35      0     35     75    100      0      0    0.0      0     94    102  
10314      SU  7-Aug-2011 16:45 17:00    942     31    448     31    1.2     31      0     31     79    104      0      0    0.0      0     95     96  
10314      SU  7-Aug-2011 17:00 17:15   1053     36    527     36    5.2     36      0     36    112     96      0      0    0.0      0     97    101  
10314      SU  7-Aug-2011 17:15 17:30   1041     31    338     31    2.7     31      0     31    151     99      0      0    0.0      0     94    102  
10314      SU  7-Aug-2011 17:30 17:45    916     35    236     35    0.7     35      0     35     84    101      0      0    0.0      0     97    102  
10314      SU  7-Aug-2011 17:45 18:00    817     31    236     31    0.7     31      0     31    142    100      0      0    0.0      0     95    102  
10314      SU  7-Aug-2011 18:00 18:15    834     36    210     36    0.5     36      0     36     76    101      0      0    0.0      0     96     96  
10314      SU  7-Aug-2011 18:15 18:30    529     31    164     31    0.3     31      0     31     65    102      0      0    0.0      0     97    102  

10314      SU  7-Aug-2011 18:30 18:45    672     35    132     35    0.3     35      0     35     66    101      0      0    0.0      0     94    102  
10314      SU  7-Aug-2011 18:45 19:00    882     31    265     31    0.6     31      0     31     73     99      0      0    0.0      0     95     96  
10314      SU  7-Aug-2011 19:00 19:15    636     36    195     36    0.6     36      0     36     74    100      0      0    0.0      0     97    101  
10314      SU  7-Aug-2011 19:15 19:30    823     31    313     31    0.9     31      0     31     73     97      0      0    0.0      0     94    102  
10314      SU  7-Aug-2011 19:30 19:45    633     35    151     35    0.4     35      0     35     66    103      0      0    0.0      0     97    102  
10314      SU  7-Aug-2011 19:45 20:00    658     31    226     31    0.7     31      0     31     65    101      0      0    0.0      0     95    102  
10314      SU  7-Aug-2011 20:00 20:15    680     36    197     36    0.5     36      0     36     59     95      0      0    0.0      0     96     96  
10314      SU  7-Aug-2011 20:15 20:30    671     31    181     31    0.5     31      0     31     61    101      0      0    0.0      0     97    102  

10314      SU  7-Aug-2011 20:30 20:45    619     35    115     35    0.2     35      0     35     55     88      0      0    0.0      0     94    102  
10314      SU  7-Aug-2011 20:45 21:00    531     31    194     31    0.6     31      0     31     52    113      0      0    0.0      0     95     96  
10314      SU  7-Aug-2011 21:00 21:15    545     36    204     36    0.6     36      0     36     54    101      0      0    0.0      0     97    101  
10314      SU  7-Aug-2011 21:15 21:30    381     31    127     31    0.3     31      0     31     54    100      0      0    0.0      0     94    102  
10314      SU  7-Aug-2011 21:30 21:45    523     35    216     35    0.8     35      0     35     55    101      0      0    0.0      0     97    102  
10314      SU  7-Aug-2011 21:45 22:00    571     31    219     31    0.7     31      0     31     46     98      0      0    0.0      0     95    102  
10314      SU  7-Aug-2011 22:00 22:15    437     36    108     36    0.3     36      0     36     46    102      0      0    0.0      0     96     96  
10314      SU  7-Aug-2011 22:15 22:30    468     31    165     31    0.5     31      0     31     49    101      0      0    0.0      0     97    102  

10314      SU  7-Aug-2011 22:30 22:45    271     35     87     35    0.2     35      0     35     45     97      0      0    0.0      0     94    102  
10314      SU  7-Aug-2011 22:45 23:00    419     31    120     31    0.4     31      0     31     38     96      0      0    0.0      0     95     96  
10314      SU  7-Aug-2011 23:00 23:15    278     36     63     36    0.2     36      0     36     19     96      0      0    0.0      0     97    101  
10314      SU  7-Aug-2011 23:15 23:30    268     31     40     31    0.0     31      0     31     24     68      0      0    0.0      0     94    102  
10314      SU  7-Aug-2011 23:30 23:45    304     35     66     35    0.2     35      0     35     18    105      0      0    0.0      0     97    102  
10314      SU  7-Aug-2011 23:45 24:00    290     31     38     31    0.1     31      0     31     17    101      0      0    0.0      0     95    102  
10314      MO  8-Aug-2011 00:00 00:15    406     36     59     36    0.2     36      0     36     17     97      0      0    0.0      0     96     96  
10314      MO  8-Aug-2011 00:15 00:30    341     31     51     31    0.1     31      0     31     16    102      0      0    0.0      0     97    102  

10314      MO  8-Aug-2011 00:30 00:45    177     35      4     35    0.0     35      0     35     10     51      0      0    0.0      0     94    102  
10314      MO  8-Aug-2011 00:45 01:00    121     31      5     31    0.0     31      0     31      9     69      0      0    0.0      0     95     96  
10314      MO  8-Aug-2011 01:00 01:15    182     36     10     36    0.0     36      0     36     11     23      0      0    0.0      0     97    101  
10314      MO  8-Aug-2011 01:15 01:30    189     31      0     31    0.0     31      0     31      0      0      0      0    0.0      0     94    102  
10314      MO  8-Aug-2011 01:30 01:45    115     35      4     35    0.0     35      0     35      0      0      0      0    0.0      0     97    102  
10314      MO  8-Aug-2011 01:45 02:00    202     31     18     31    0.0     31      0     31     11     87      0      0    0.0      0     95    102  
10314      MO  8-Aug-2011 02:00 02:15    176     36     23     36    0.0     36      0     36      9     52      0      0    0.0      0     96     96  
10314      MO  8-Aug-2011 02:15 02:30     89     31      0     31    0.0     31      0     31      5     49      0      0    0.0      0     97    102  

10314      MO  8-Aug-2011 02:30 02:45     98     35      4     35    0.0     35      0     35      0      0      0      0    0.0      0     94    102  
10314      MO  8-Aug-2011 02:45 03:00     96     31     25     31    0.1     31      0     31      5     35      0      0    0.0      0     95     96  
10314      MO  8-Aug-2011 03:00 03:15     75     36     18     36    0.1     36      0     36      6     29      0      0    0.0      0     97    101  
10314      MO  8-Aug-2011 03:15 03:30     70     31      0     31    0.0     31      0     31      0      0      0      0    0.0      0     94    102  
10314      MO  8-Aug-2011 03:30 03:45     69     35      0     35    0.0     35      0     35     32     24      0      0    0.0      0     97    102  
10314      MO  8-Aug-2011 03:45 04:00      0      4      0      4    0.0      4      0      4     10     33      0      0    0.0      0     95    102  
10314      MO  8-Aug-2011 04:00 04:15      0      0      0      0    0.0      0      0      0      0      0      0      0    0.0      0     96     96  
10314      MO  8-Aug-2011 04:15 04:30      0      0      0      0    0.0      0      0      0      0      0      0      0    0.0      0     97    102  

10314      MO  8-Aug-2011 04:30 04:45      0      0      0      0    0.0      0      0      0      0      0      0      0    0.0      0     94    102  
10314      MO  8-Aug-2011 04:45 05:00      0      0      0      0    0.0      0      0      0     33     29      0      0    0.0      0     95     96  
10314      MO  8-Aug-2011 05:00 05:15      0      0      0      0    0.0      0      0      0     17     50      0      0    0.0      0     97    101  
10314      MO  8-Aug-2011 05:15 05:30      0      0      0      0    0.0      0      0      0     11    113      0      0    0.0      0     94    102  
10314      MO  8-Aug-2011 05:30 05:45      0      0      0      0    0.0      0      0      0     14     23      0      0    0.0      0     97    102  
10314      MO  8-Aug-2011 05:45 06:00    228     27     31     27    0.1     27      0     27     19     94      0      0    0.0      0     95    102  
10314      MO  8-Aug-2011 06:00 06:15    261     36     11     36    0.0     36      0     36     20     35      0      0    0.0      0     96     96  
10314      MO  8-Aug-2011 06:15 06:30    263     31     43     31    0.1     31      0     31     19    109      0      0    0.0      0     97    102  

10314      MO  8-Aug-2011 06:30 06:45    224     35     38     35    0.2     35      0     35     27     99      0      0    0.0      0     94    102  
10314      MO  8-Aug-2011 06:45 07:00    443     31     67     31    0.3     31      0     31     37     99      0      0    0.0      0     95     96  
10314      MO  8-Aug-2011 07:00 07:15    451     36     65     36    0.3     36      0     36     43    109      0      0    0.0      0     95    106  
10314      MO  8-Aug-2011 07:15 07:30    735     31    194     31    0.8     31      0     31     67     99      0      0    0.0      0     98     99  
10314      MO  8-Aug-2011 07:30 07:45    611     44    158     44    0.4     44      0     44     58     97      0      0    0.0      0     97     98  
10314      MO  8-Aug-2011 07:45 08:00   1118     31    568     31    5.1     31      0     31     74     97      0      0    0.0      0     99    103  
10314      MO  8-Aug-2011 08:00 08:15   1157     36    487     36    3.3     36      0     36    105    106      0      0    0.0      0     98     99  
10314      MO  8-Aug-2011 08:15 08:30   1209     31    658     31    7.9     31      0     31    213    101      0      0    0.0      0     93    101  

10314      MO  8-Aug-2011 08:30 08:45    826     54    476     54    7.5     54      0     54    184     94      0      0    0.0      0     97    102  
10314      MO  8-Aug-2011 08:45 09:00    611     44    188     44    2.0     44      0     44    101    104      0      0    0.0      0     98     98  
10314      MO  8-Aug-2011 09:00 09:15   1028     36    390     36    3.6     36      0     36    344     99      0      0    0.0      0     93    101  
10314      MO  8-Aug-2011 09:15 09:30    747     45    236     45    2.4     45      0     45     83     96      0      0    0.0      0     98    101  
10314      MO  8-Aug-2011 09:30 09:45   1007     35    312     35    2.0     35      0     35     74    104      0      0    0.0      0     97     97  
10314      MO  8-Aug-2011 09:45 10:00   1031     31    420     31    2.5     31      0     31     82     96      0      0    0.0      0     92     99  
10314      MO  8-Aug-2011 10:00 10:15   1012     36    720     36   10.8     36      0     36    536    105      0      0    0.0      0     98    102  
10314      MO  8-Aug-2011 10:15 10:30   1085     31    448     31    6.5     31      0     31    162     90      0      0    0.0      0     96    103  

10314      MO  8-Aug-2011 10:30 10:45    991     35    259     35    1.6     35      0     35    176    107      0      0    0.0      0     96     96  
10314      MO  8-Aug-2011 10:45 11:00   1149     31    437     31    6.7     31      0     31     98    102      0      0    0.0      0     96    101  
10314      MO  8-Aug-2011 11:00 11:15   1130     36    313     36    1.7     36      0     36     91    101      0      0    0.0      0     95    102  
10314      MO  8-Aug-2011 11:15 11:30   1003     31    562     31    7.3     31      0     31    125     95      0      0    0.0      0     96     97  
10314      MO  8-Aug-2011 11:30 11:45   1122     35    616     35    6.6     35      0     35    124     97      0      0    0.0      0     94    105  
10314      MO  8-Aug-2011 11:45 12:00   1281     31    507     31    5.4     31      0     31    462    105      0      0    0.0      0     95     96  
10314      MO  8-Aug-2011 12:00 12:15   1324     36    472     36    3.9     36      0     36    128    100      0      0    0.0      0     97    101  
10314      MO  8-Aug-2011 12:15 12:30   1447     31    561     31    3.6     31      0     31    104     94      0      0    0.0      0     95    103  

10314      MO  8-Aug-2011 12:30 12:45   1378     35    546     35    6.5     35      0     35    138     97      0      0    0.0      0     96     97  
10314      MO  8-Aug-2011 12:45 13:00   1156     31    571     31    6.2     31      0     31    519    115      0      0    0.0      0     97    102  
10314      MO  8-Aug-2011 13:00 13:15   1120     36    626     36   10.4     36      0     36    426     87      0      0    0.0      0     94    100  
10314      MO  8-Aug-2011 13:15 13:30   1329     31    507     31    5.2     31      0     31    209    107      0      0    0.0      0     97     97  
10314      MO  8-Aug-2011 13:30 13:45   1234     35    418     35    7.8     35      0     35    745     98      0      0    0.0      0     94     99  
10314      MO  8-Aug-2011 13:45 14:00   1037     31    624     31   13.5     31      0     31   1838    107      0      0    0.0      0     97    104  
10314      MO  8-Aug-2011 14:00 14:15   1384     36    664     36    6.9     36      0     36    159     87      0      0    0.0      0     98     98  
10314      MO  8-Aug-2011 14:15 14:30    987     31    330     31    4.6     31      0     31    106    114      0      0    0.0      0     97    101  

10314      MO  8-Aug-2011 14:30 14:45   1175     35    596     35   13.2     35      0     35    568     97      0      0    0.0      0     93     99  
10314      MO  8-Aug-2011 14:45 15:00   1461     31    809     31    6.8     31      0     31    198     98      0      0    0.0      0     98     98  
10314      MO  8-Aug-2011 15:00 15:15   1297     36    476     36   10.1     36      0     36     82    102      0      0    0.0      0     96    100  
10314      MO  8-Aug-2011 15:15 15:30   1020     31    577     31   15.5     31      0     31    411    100      0      0    0.0      0     95    102  
10314      MO  8-Aug-2011 15:30 15:45   1419     35    817     35    7.9     35      0     35    199    103      0      0    0.0      0     96    101  
10314      MO  8-Aug-2011 15:45 16:00   1325     31    743     31    7.6     31      0     31    113     96      0      0    0.0      0     95    101  
10314      MO  8-Aug-2011 16:00 16:15   1460     36    585     36    4.4     36      0     36    106     99      0      0    0.0      0     96     95  
10314      MO  8-Aug-2011 16:15 16:30   1366     31    754     31    9.8     31      0     31    259    103      0      0    0.0      0     97    102  

10314      MO  8-Aug-2011 16:30 16:45   1299     35    683     35    8.0     35      0     35    237    102      0      0    0.0      0     95    102  
10314      MO  8-Aug-2011 16:45 17:00   1175     31    546     31    4.1     31      0     31    135     95      0      0    0.0      0     96     96  
10314      MO  8-Aug-2011 17:00 17:15   1152     36    674     36   12.9     36      0     36    322    103      0      0    0.0      0     97    101  
10314      MO  8-Aug-2011 17:15 17:30   1212     31    621     31    2.2     31      0     31    171     96      0      0    0.0      0     95    102  
10314      MO  8-Aug-2011 17:30 17:45   1309     35    680     35    4.1     35      0     35    125    104      0      0    0.0      0     96    102  
10314      MO  8-Aug-2011 17:45 18:00   1260     31    633     31    4.2     31      0     31    132     99      0      0    0.0      0     95    102  
10314      MO  8-Aug-2011 18:00 18:15   1306     36    776     36    3.6     36      0     36    191    103      0      0    0.0      0     96     96  
10314      MO  8-Aug-2011 18:15 18:30   1266     31    773     31    4.4     31      0     31    144     99      0      0    0.0      0     96    102  

10314      MO  8-Aug-2011 18:30 18:45   1015     35    484     35    1.5     35      0     35    111    100      0      0    0.0      0     95    102  
10314      MO  8-Aug-2011 18:45 19:00     14     22     14     22    0.2     22      0     22    125    100      0      0    0.0      0     96     96  
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10314      MO  8-Aug-2011 19:00 19:15      0      0      0      0    0.0      0      0      0    121     95      0      0    0.0      0     97    101  
10314      MO  8-Aug-2011 19:15 19:30      0      0      0      0    0.0      0      0      0     89    101      0      0    0.0      0     95    102  
10314      MO  8-Aug-2011 19:30 19:45      0      0      0      0    0.0      0      0      0     88    103      0      0    0.0      0     96    102  

10314      MO  8-Aug-2011 19:45 20:00      0      0      0      0    0.0      0      0      0     82    100      0      0    0.0      0     95    102  
10314      MO  8-Aug-2011 20:00 20:15      0      0      0      0    0.0      0      0      0     71     96      0      0    0.0      0     96     96  
10314      MO  8-Aug-2011 20:15 20:30      0      0      0      0    0.0      0      0      0     77    103      0      0    0.0      0     96    102  
10314      MO  8-Aug-2011 20:30 20:45      0      0      0      0    0.0      0      0      0     63    100      0      0    0.0      0     95    102  
10314      MO  8-Aug-2011 20:45 21:00      0      0      0      0    0.0      0      0      0     60     96      0      0    0.0      0     96     96  
10314      MO  8-Aug-2011 21:00 21:15      0      0      0      0    0.0      0      0      0     58    103      0      0    0.0      0     97    101  
10314      MO  8-Aug-2011 21:15 21:30      0      0      0      0    0.0      0      0      0     53    100      0      0    0.0      0     95    102  
10314      MO  8-Aug-2011 21:30 21:45      0      0      0      0    0.0      0      0      0     48    103      0      0    0.0      0     96    102  

10314      MO  8-Aug-2011 21:45 22:00      0      0      0      0    0.0      0      0      0     43    100      0      0    0.0      0     95    102  
10314      MO  8-Aug-2011 22:00 22:15      0      0      0      0    0.0      0      0      0     50     96      0      0    0.0      0     96     96  
10314      MO  8-Aug-2011 22:15 22:30      0      0      0      0    0.0      0      0      0     53    103      0      0    0.0      0     96    102  
10314      MO  8-Aug-2011 22:30 22:45      0      0      0      0    0.0      0      0      0     43    100      0      0    0.0      0     95    102  
10314      MO  8-Aug-2011 22:45 23:00      0      0      0      0    0.0      0      0      0     45     96      0      0    0.0      0     96     96  
10314      MO  8-Aug-2011 23:00 23:15      0      0      0      0    0.0      0      0      0     37    103      0      0    0.0      0     97    101  
10314      MO  8-Aug-2011 23:15 23:30      0      0      0      0    0.0      0      0      0     29    100      0      0    0.0      0     95    102  
10314      MO  8-Aug-2011 23:30 23:45      0      0      0      0    0.0      0      0      0     31    103      0      0    0.0      0     96    102  

10314      MO  8-Aug-2011 23:45 24:00      0      0      0      0    0.0      0      0      0     24    100      0      0    0.0      0     95    102 

 
 

Further data files containing historical traffic data are provided in “Appendix J, CD” 

 

 
Data analysis  
 
 
Legend to read charts:   

 
GREEN box means an increase of the flow in relation to the previous box. 
RED box means a decrease of the flow in relation to the previous box. 

 EMPTY box indicates that the system does not collect data at this time. 
 
 
 

The first set of times is from 07:00 to 10:00 
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  08:00 08:15 126 926 862 1136   
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  08:30 08:45 266 1048 1166 1212   

  08:45 09:00 115 1144 1203 1504   

  09:00 09:15 141 1241 1243 1990   

  09:15 09:30 484 1018 1330 1700   

  09:30 09:45 405 1208 1195 2373   

 

09:45 10:00 577 1659 1617 2557   
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07:00 07:15   332 261 282   

 

07:15 07:30   333 277 442 

 

 

07:30 07:45 87 467 303 443 

 

 

07:45 08:00 150 417 371   

 

 

08:00 08:15   548 396   

 

 

08:15 08:30 389 418 393   

 

 

08:30 08:45 105 471 599   

 

 

08:45 09:00 139 659 741   

 

 

09:00 09:15 251 641 631   

 

 

09:15 09:30   626 689   

 

 

09:30 09:45 136 965 904 1046 

 

 

09:45 10:00 320 1062 1188 1460 
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07:00 07:15 186 815 451 1292 
  

 
07:15 07:30 104 1351 735 1093 

 

 
07:30 07:45 268 1427 611 1270 

 

 
07:45 08:00 185 2099 1118 2005 

 

 
08:00 08:15 121 2162 1157 1714 

 

 
08:15 08:30 197 2289 1209 1752 

 

 
08:30 08:45 159 1864 826 1590 

 

 
08:45 09:00 331 1523 611 1654 

 

 
09:00 09:15 230 2000 1028 1595 

 

 
09:15 09:30 323 2088 747 1518 

 

 
09:30 09:45 373 1814 1007 1666 

 

 
09:45 10:00 373 1975 1031 1679 
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07:00 07:15 83 873 535 1348   

 

07:15 07:30 70 1673 633 1499 

 

 

07:30 07:45 226 1686 596 1397 

 

 

07:45 08:00 421 2367 1081 2332 

 

 

08:00 08:15 147 2026 1084 2700 

 

 

08:15 08:30 164 2158 1138 3582 

 

 

08:30 08:45 296 2031 1071 2374 

 

 

08:45 09:00 208 1702 951 3231 

 

 

09:00 09:15 187 1955 1039 2254 

 

 

09:15 09:30 370 1741 1339 1194 

 

 

09:30 09:45 364 1500 1354 1322 

 

 

09:45 10:00 322 1268 1597 1509 

 

 
 

The first set of times is from 16:00 to 19:00 
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16:00 16:15 650 1982 1703 1605 

16:15 16:30 635 2380 1758 1955 

16:30 16:45 688 2912 1853 2140 

16:45 17:00 561 2451 1603 2012 

17:00 17:15 425 2541 1774 2016 

17:15 17:30 540 2509 1607 1890 

17:30 17:45 682 2116 1650 2070 

17:45 18:00 835 2775 1912 3637 

18:00 18:15 417 1848 1514 2361 

18:15 18:30 625 1929 1608 3096 

18:30 18:45 533 1796 1467 2527 

18:45 19:00 583 1511 1299 2233 
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16:00 16:15 499 1882 1028 2695 

16:15 16:30 427 2114 1119 2667 

16:30 16:45 470 1675 880 2282 

16:45 17:00 419 1694 942 2557 

17:00 17:15 336 1733 1053 2742 

17:15 17:30 325 2175 1041 2495 

17:30 17:45 626 1668 916 2108 

17:45 18:00 659 1512 817 2094 

18:00 18:15 586 1525 834 2064 

18:15 18:30 318 963 529 1366 

18:30 18:45 495 1177 672 1698 

18:45 19:00 347 1581 882 1916 
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16:00 16:15 707 2766 1460 1893 

16:15 16:30 806 2664 1366 1863 

16:30 16:45 772 2340 1299 1875 

16:45 17:00 919 2283 1175 1722 

17:00 17:15 850 2195 1152 1759 

17:15 17:30 714 2290 1212 1881 

17:30 17:45 716 2513 1309 1767 

17:45 18:00 551 2364 1260 1824 

18:00 18:15 685 2416 1306 1785 

18:15 18:30 395 2292 1266 1992 

18:30 18:45 579 1879 1015 1415 

18:45 19:00 814     1465 
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The first set of times is from 07:00 to 10:00 

The curves are similar for the junctions 10314 & 10315 on Saturday and Sunday. However, on Monday and Tuesday some peaks were usually 

observed between 07:30 and 08:00 representing the morning rush hour traffic to the city centre. 

 

The first set of times is from 16:00 to 19:00 

 

The data from Saturday shows three phases of increase, with a high peak at around 17:45/18:00 for all junctions. The delay can be observed as 

the traffic that represents the peak was moving from the junction 10312 (1) to the junction 10352 (4). The red boxes indicate that the increase is 

shifting. Based on the observations of these curves, there are some peaks that can be detected because there are delays between the junctions.  
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Appendix M:  Schema XSD – Agent Message Structure  

 
 
element Agent-Message 

diagram 

 

properties content  complex 
 

children Sender-List Recipient-List Semantic-Content Conditions 

attributes Name   Type   Use   Default   Fixed   annotation 
Message-ID  derived by: 

xs:ID 
required           

Message-Type derived by: 
xs:string 

required           

Instruction-Type  derived by: 
xs:string 

required           

Conversation-ID  xs:string required           
TimeStamp  xs:dateTime required           
Priority  xs:string optional   Normal        
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Expires  derived by: 
xs:dateTime 

optional           

Acknowledgement  xs:boolean            
 

source <xs:element name="Agent-Message"> 
  <xs:complexType> 
    <xs:all> 
      <xs:element name="Sender-List"> 
        <xs:complexType> 
          <xs:sequence> 
            <xs:element name="Agent" maxOccurs="unbounded"> 
              <xs:complexType> 
                <xs:simpleContent> 
                  <xs:extension base="xs:string"> 
                    <xs:attribute name="ID" type="xs:ID" use="required"/> 
                    <xs:attribute name="IsCurrent-Owner" type="xs:boolean" use="required"/> 
                    <xs:attribute name="IsOrignator" type="xs:boolean"/> 
                    <xs:attribute name="Agent-Type" use="optional"/> 
                    <xs:attribute name="Agency-Number"/> 
                  </xs:extension> 
                </xs:simpleContent> 
              </xs:complexType> 
            </xs:element> 
          </xs:sequence> 
        </xs:complexType> 
      </xs:element> 
      <xs:element name="Recipient-List"> 
        <xs:complexType> 
          <xs:sequence> 
            <xs:element name="Agent" maxOccurs="unbounded"> 
              <xs:complexType> 
                <xs:simpleContent> 
                  <xs:extension base="xs:string"> 
                    <xs:attribute name="ID" type="xs:ID" use="required"/> 
                    <xs:attribute name="IsMandatory" type="xs:string" use="optional"/> 
                  </xs:extension> 
                </xs:simpleContent> 
              </xs:complexType> 
            </xs:element> 
          </xs:sequence> 
        </xs:complexType> 
      </xs:element> 
      <xs:element name="Semantic-Content" minOccurs="0"> 
        <xs:complexType mixed="false"> 
          <xs:sequence> 
            <xs:element name="Ontologies-List" minOccurs="0"> 
              <xs:complexType> 
                <xs:sequence> 
                  <xs:element name="Ontology" maxOccurs="unbounded"> 
                    <xs:complexType> 
                      <xs:simpleContent> 
                        <xs:extension base="xs:string"> 
                          <xs:attribute name="Priority-Order" type="xs:unsignedByte" 
use="optional"/> 
                        </xs:extension> 
                      </xs:simpleContent> 
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                    </xs:complexType> 
                  </xs:element> 
                </xs:sequence> 
              </xs:complexType> 
            </xs:element> 
            <xs:element name="Context-Expression-Value" minOccurs="0"> 
              <xs:complexType mixed="true"> 
                <xs:all minOccurs="0"/> 
              </xs:complexType> 
            </xs:element> 
            <xs:any namespace="##other" minOccurs="0" maxOccurs="unbounded"/> 
          </xs:sequence> 
          <xs:attribute name="Use-Ontology" type="xs:string" use="optional"/> 
          <xs:anyAttribute namespace="##any"/> 
        </xs:complexType> 
      </xs:element> 
      <xs:element name="Conditions" minOccurs="0"> 
        <xs:complexType> 
          <xs:choice> 
            <xs:element name="When" type="xs:string" minOccurs="0"/> 
            <xs:element name="If" type="xs:string" minOccurs="0"/> 
          </xs:choice> 
        </xs:complexType> 
      </xs:element> 
    </xs:all> 
    <xs:attribute name="Message-ID" use="required"> 
      <xs:simpleType> 
        <xs:restriction base="xs:ID"> 
          <xs:whiteSpace value="collapse"/> 
          <xs:maxLength value="30"/> 
        </xs:restriction> 
      </xs:simpleType> 
    </xs:attribute> 
    <xs:attribute name="Message-Type" use="required"> 
      <xs:simpleType> 
        <xs:restriction base="xs:string"> 
          <xs:enumeration value="Request"/> 
          <xs:enumeration value="Reply"/> 
          <xs:enumeration value="Cancel"/> 
          <xs:enumeration value="Forward-Request"/> 
          <xs:enumeration value="Inform"/> 
          <xs:enumeration value="Forward-Inform"/> 
          <xs:enumeration value="Subscribe"/> 
          <xs:enumeration value="Register"/> 
          <xs:enumeration value="Propose"/> 
        </xs:restriction> 
      </xs:simpleType> 
    </xs:attribute> 
    <xs:attribute name="Instruction-Type" use="required"> 
      <xs:simpleType> 
        <xs:restriction base="xs:string"> 
          <xs:enumeration value="Action"/> 
          <xs:enumeration value="Query"/> 
          <xs:enumeration value="Refuse"/> 
          <xs:enumeration value="Failure"/> 
          <xs:enumeration value="Response-Result"/> 
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          <xs:enumeration value="Agree"/> 
          <xs:enumeration value="Acknowledegment"/> 
          <xs:enumeration value="UnSubscribe"/> 
          <xs:enumeration value="UnRegister"/> 
        </xs:restriction> 
      </xs:simpleType> 
    </xs:attribute> 
    <xs:attribute name="Conversation-ID" type="xs:string" use="required"/> 
    <xs:attribute name="TimeStamp" type="xs:dateTime" use="required"/> 
    <xs:attribute name="Priority" type="xs:string" use="optional" default="Normal"/> 
    <xs:attribute name="Expires" use="optional"> 
      <xs:simpleType> 
        <xs:restriction base="xs:dateTime"> 
          <xs:pattern value=""/> 
        </xs:restriction> 
      </xs:simpleType> 
    </xs:attribute> 
    <xs:attribute name="Acknowledgement " type="xs:boolean"/> 
  </xs:complexType> 
</xs:element> 

 
 
attribute Agent-Message/@Message-ID 

type restriction of xs:ID 

properties isRef  0 
use  required 

 

facets maxLength  30 
whiteSpace  collapse 

 

source <xs:attribute name="Message-ID" use="required"> 
  <xs:simpleType> 
    <xs:restriction base="xs:ID"> 
      <xs:whiteSpace value="collapse"/> 
      <xs:maxLength value="30"/> 
    </xs:restriction> 
  </xs:simpleType> 
</xs:attribute> 

 
 
attribute Agent-Message/@Message-Type 

type restriction of xs:string 

properties isRef  0 
use  required 

 

facets enumeration  Request 
enumeration  Reply 
enumeration  Cancel 
enumeration  Forward-Request 
enumeration  Inform 
enumeration  Forward-Inform 
enumeration  Subscribe 
enumeration  Register 
enumeration  Propose 

 

source <xs:attribute name="Message-Type" use="required"> 
  <xs:simpleType> 
    <xs:restriction base="xs:string"> 
      <xs:enumeration value="Request"/> 
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      <xs:enumeration value="Reply"/> 
      <xs:enumeration value="Cancel"/> 
      <xs:enumeration value="Forward-Request"/> 
      <xs:enumeration value="Inform"/> 
      <xs:enumeration value="Forward-Inform"/> 
      <xs:enumeration value="Subscribe"/> 
      <xs:enumeration value="Register"/> 
      <xs:enumeration value="Propose"/> 
    </xs:restriction> 
  </xs:simpleType> 
</xs:attribute> 

 
 
attribute Agent-Message/@Instruction-Type 

type restriction of xs:string 

properties isRef  0 
use  required 

 

facets enumeration  Action 
enumeration  Query 
enumeration  Refuse 
enumeration  Failure 
enumeration  Response-Result 
enumeration  Agree 
enumeration  Acknowledegment 
enumeration  UnSubscribe 
enumeration  UnRegister 

 

source <xs:attribute name="Instruction-Type" use="required"> 
  <xs:simpleType> 
    <xs:restriction base="xs:string"> 
      <xs:enumeration value="Action"/> 
      <xs:enumeration value="Query"/> 
      <xs:enumeration value="Refuse"/> 
      <xs:enumeration value="Failure"/> 
      <xs:enumeration value="Response-Result"/> 
      <xs:enumeration value="Agree"/> 
      <xs:enumeration value="Acknowledegment"/> 
      <xs:enumeration value="UnSubscribe"/> 
      <xs:enumeration value="UnRegister"/> 
    </xs:restriction> 
  </xs:simpleType> 
</xs:attribute> 

 
 
attribute Agent-Message/@Conversation-ID 

type xs:string 

properties isRef  0 
use  required 

 

source <xs:attribute name="Conversation-ID" type="xs:string" use="required"/> 

 
 
attribute Agent-Message/@TimeStamp 

type xs:dateTime 

properties isRef  0 
use  required 
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source <xs:attribute name="TimeStamp" type="xs:dateTime" use="required"/> 

 
 
attribute Agent-Message/@Priority 

type xs:string 

properties isRef  0 
default  Normal 

use  optional 
 

source <xs:attribute name="Priority" type="xs:string" use="optional" default="Normal"/> 

 
 
attribute Agent-Message/@Expires 

type restriction of xs:dateTime 

properties isRef  0 
use  optional 

 

facets pattern   
 

source <xs:attribute name="Expires" use="optional"> 
  <xs:simpleType> 
    <xs:restriction base="xs:dateTime"> 
      <xs:pattern value=""/> 
    </xs:restriction> 
  </xs:simpleType> 
</xs:attribute> 

 
 
attribute Agent-Message/@Acknowledgement  

type xs:boolean 

properties isRef  0 
 

source <xs:attribute name="Acknowledgement " type="xs:boolean"/> 

 
 
element Agent-Message/Sender-List 

diagram 

 

properties isRef  0 
content  complex 

 

children Agent  

source <xs:element name="Sender-List"> 
  <xs:complexType> 
    <xs:sequence> 
      <xs:element name="Agent" maxOccurs="unbounded"> 
        <xs:complexType> 
          <xs:simpleContent> 
            <xs:extension base="xs:string"> 
              <xs:attribute name="ID" type="xs:ID" use="required"/> 
              <xs:attribute name="IsCurrent-Owner" type="xs:boolean" use="required"/> 
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              <xs:attribute name="IsOrignator" type="xs:boolean"/> 
              <xs:attribute name="Agent-Type" use="optional"/> 
              <xs:attribute name="Agency-Number"/> 
            </xs:extension> 
          </xs:simpleContent> 
        </xs:complexType> 
      </xs:element> 
    </xs:sequence> 
  </xs:complexType> 
</xs:element> 

 
 
element Agent-Message/Sender-List/Agent 

diagram 

 

type extension of xs:string 

properties isRef  0 
minOcc  1 
maxOcc  unbounded 
content  complex 

 

attributes Name   Type   Use   Default   Fixed   annotation 
ID  xs:ID required           
IsCurrent-Owner  xs:boolean required           
IsOrignator  xs:boolean            
Agent-Type  optional           
Agency-Number              

 

source <xs:element name="Agent" maxOccurs="unbounded"> 
  <xs:complexType> 
    <xs:simpleContent> 
      <xs:extension base="xs:string"> 
        <xs:attribute name="ID" type="xs:ID" use="required"/> 
        <xs:attribute name="IsCurrent-Owner" type="xs:boolean" use="required"/> 
        <xs:attribute name="IsOrignator" type="xs:boolean"/> 
        <xs:attribute name="Agent-Type" use="optional"/> 
        <xs:attribute name="Agency-Number"/> 
      </xs:extension> 
    </xs:simpleContent> 
  </xs:complexType> 
</xs:element> 
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attribute Agent-Message/Sender-List/Agent/@ID 

type xs:ID 

properties isRef  0 
use  required 

 

source <xs:attribute name="ID" type="xs:ID" use="required"/> 

 
 
attribute Agent-Message/Sender-List/Agent/@IsCurrent-Owner 

type xs:boolean 

properties isRef  0 
use  required 

 

source <xs:attribute name="IsCurrent-Owner" type="xs:boolean" use="required"/> 

 
 
attribute Agent-Message/Sender-List/Agent/@IsOrignator 

type xs:boolean 

properties isRef  0 
 

source <xs:attribute name="IsOrignator" type="xs:boolean"/> 

 
 
attribute Agent-Message/Sender-List/Agent/@Agent-Type 

properties isRef  0 
use  optional 

 

source <xs:attribute name="Agent-Type" use="optional"/> 

 
 
attribute Agent-Message/Sender-List/Agent/@Agency-Number 

properties isRef  0 
 

source <xs:attribute name="Agency-Number"/> 

 
 
element Agent-Message/Recipient-List 

diagram 

 

properties isRef  0 
content  complex 

 

children Agent  

source <xs:element name="Recipient-List"> 
  <xs:complexType> 
    <xs:sequence> 
      <xs:element name="Agent" maxOccurs="unbounded"> 
        <xs:complexType> 
          <xs:simpleContent> 
            <xs:extension base="xs:string"> 

file:///C:/Users/Dell/Desktop/test.docx%23Link043B4558


Appendix M: Schema XSD – Agent Message Structure  

 
 

              <xs:attribute name="ID" type="xs:ID" use="required"/> 
              <xs:attribute name="IsMandatory" type="xs:string" use="optional"/> 
            </xs:extension> 
          </xs:simpleContent> 
        </xs:complexType> 
      </xs:element> 
    </xs:sequence> 
  </xs:complexType> 
</xs:element> 

 
 
element Agent-Message/Recipient-List/Agent 

diagram 

 

type extension of xs:string 

properties isRef  0 
minOcc  1 
maxOcc  unbounded 
content  complex 

 

attributes Name   Type   Use   Default   Fixed   annotation 
ID  xs:ID required           
IsMandatory xs:string optional           

 

source <xs:element name="Agent" maxOccurs="unbounded"> 
  <xs:complexType> 
    <xs:simpleContent> 
      <xs:extension base="xs:string"> 
        <xs:attribute name="ID" type="xs:ID" use="required"/> 
        <xs:attribute name="IsMandatory" type="xs:string" use="optional"/> 
      </xs:extension> 
    </xs:simpleContent> 
  </xs:complexType> 
</xs:element> 

 
 
attribute Agent-Message/Recipient-List/Agent/@ID 

type xs:ID 

properties isRef  0 
use  required 

 

source <xs:attribute name="ID" type="xs:ID" use="required"/> 

 
 
attribute Agent-Message/Recipient-List/Agent/@IsMandatory 

type xs:string 

properties isRef  0 
use  optional 
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source <xs:attribute name="IsMandatory" type="xs:string" use="optional"/> 

 
 
element Agent-Message/Semantic-Content 

diagram 

 

properties isRef  0 
minOcc  0 
maxOcc  1 
content  complex 

mixed  false 
 

children Ontologies-List Context-Expression-Value 

attributes Name   Type   Use   Default   Fixed   annotation 
Use-Ontology  xs:string optional           

 

source <xs:element name="Semantic-Content" minOccurs="0"> 
  <xs:complexType mixed="false"> 
    <xs:sequence> 
      <xs:element name="Ontologies-List" minOccurs="0"> 
        <xs:complexType> 
          <xs:sequence> 
            <xs:element name="Ontology" maxOccurs="unbounded"> 
              <xs:complexType> 
                <xs:simpleContent> 
                  <xs:extension base="xs:string"> 
                    <xs:attribute name="Priority-Order" type="xs:unsignedByte" use="optional"/> 
                  </xs:extension> 
                </xs:simpleContent> 
              </xs:complexType> 
            </xs:element> 
          </xs:sequence> 
        </xs:complexType> 
      </xs:element> 
      <xs:element name="Context-Expression-Value" minOccurs="0"> 
        <xs:complexType mixed="true"> 
          <xs:all minOccurs="0"/> 
        </xs:complexType> 
      </xs:element> 
      <xs:any namespace="##other" minOccurs="0" maxOccurs="unbounded"/> 
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    </xs:sequence> 
    <xs:attribute name="Use-Ontology" type="xs:string" use="optional"/> 
    <xs:anyAttribute namespace="##any"/> 
  </xs:complexType> 
</xs:element> 

 
 
attribute Agent-Message/Semantic-Content/@Use-Ontology 

type xs:string 

properties isRef  0 
use  optional 

 

source <xs:attribute name="Use-Ontology" type="xs:string" use="optional"/> 

 
 
element Agent-Message/Semantic-Content/Ontologies-List 

diagram 

 

properties isRef  0 
minOcc  0 
maxOcc  1 
content  complex 

 

children Ontology  

source <xs:element name="Ontologies-List" minOccurs="0"> 
  <xs:complexType> 
    <xs:sequence> 
      <xs:element name="Ontology" maxOccurs="unbounded"> 
        <xs:complexType> 
          <xs:simpleContent> 
            <xs:extension base="xs:string"> 
              <xs:attribute name="Priority-Order" type="xs:unsignedByte" use="optional"/> 
            </xs:extension> 
          </xs:simpleContent> 
        </xs:complexType> 
      </xs:element> 
    </xs:sequence> 
  </xs:complexType> 
</xs:element> 

 
 
element Agent-Message/Semantic-Content/Ontologies-List/Ontology 

diagram 

 

type extension of xs:string 

properties isRef  0 
minOcc  1 
maxOcc  unbounded 
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content  complex 
 

attributes Name   Type   Use   Default   Fixed   annotation 
Priority-Order  xs:unsignedByte optional           

 

source <xs:element name="Ontology" maxOccurs="unbounded"> 
  <xs:complexType> 
    <xs:simpleContent> 
      <xs:extension base="xs:string"> 
        <xs:attribute name="Priority-Order" type="xs:unsignedByte" use="optional"/> 
      </xs:extension> 
    </xs:simpleContent> 
  </xs:complexType> 
</xs:element> 

 
 
attribute Agent-Message/Semantic-Content/Ontologies-List/Ontology/@Priority-Order 

type xs:unsignedByte 

properties isRef  0 
use  optional 

 

source <xs:attribute name="Priority-Order" type="xs:unsignedByte" use="optional"/> 

 
 
element Agent-Message/Semantic-Content/Context-Expression-Value 

diagram 

 

properties isRef  0 
minOcc  0 
maxOcc  1 
content  complex 

mixed  true 
 

source <xs:element name="Context-Expression-Value" minOccurs="0"> 
  <xs:complexType mixed="true"> 
    <xs:all minOccurs="0"/> 
  </xs:complexType> 
</xs:element> 

 
 
element Agent-Message/Conditions 

diagram 

 

properties isRef  0 
minOcc  0 
maxOcc  1 
content  complex 

 

children When If 

source <xs:element name="Conditions" minOccurs="0"> 
  <xs:complexType> 
    <xs:choice> 
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      <xs:element name="When" type="xs:string" minOccurs="0"/> 
      <xs:element name="If" type="xs:string" minOccurs="0"/> 
    </xs:choice> 
  </xs:complexType> 
</xs:element> 

 
 
element Agent-Message/Conditions/When 

diagram 

 

type xs:string 

properties isRef  0 
minOcc  0 
maxOcc  1 
content  simple 

 

source <xs:element name="When" type="xs:string" minOccurs="0"/> 

 
 
element Agent-Message/Conditions/If 

diagram 

 

type xs:string 

properties isRef  0 
minOcc  0 
maxOcc  1 
content  simple 

 

source <xs:element name="If" type="xs:string" minOccurs="0"/> 
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element Semantic-Content 

diagram 

 

properties content  complex 
mixed  false 

 

children Ontologies-List Context-Expression-Value Rules 

attributes Name   Type   Use   Default   Fixed   annotation 
Use-Ontology xs:string optional           

 

source <xs:element name="Semantic-Content"> 
  <xs:complexType mixed="false"> 
    <xs:sequence> 
      <xs:element name="Ontologies-List"> 
        <xs:complexType> 
          <xs:sequence> 
            <xs:element name="Ontology" minOccurs="0" maxOccurs="unbounded"> 
              <xs:complexType> 
                <xs:simpleContent> 
                  <xs:extension base="xs:string"> 
                    <xs:attribute name="Priority-Order" type="xs:unsignedByte" use="optional"/> 
                    <xs:attribute name="URI" type="xs:anyURI"/> 
                  </xs:extension> 
                </xs:simpleContent> 
              </xs:complexType> 
            </xs:element> 
          </xs:sequence> 
        </xs:complexType> 
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      </xs:element> 
      <xs:element name="Context-Expression-Value"> 
        <xs:complexType mixed="true"> 
          <xs:all/> 
        </xs:complexType> 
      </xs:element> 
      <xs:any namespace="##other" maxOccurs="unbounded"/> 
      <xs:element name="Rules" minOccurs="0"> 
        <xs:complexType> 
          <xs:all/> 
        </xs:complexType> 
      </xs:element> 
    </xs:sequence> 
    <xs:attribute name="Use-Ontology" type="xs:string" use="optional"/> 
    <xs:anyAttribute namespace="##any"/> 
  </xs:complexType> 
</xs:element> 

 
 
attribute Semantic-Content/@Use-Ontology 

type xs:string 

properties isRef  0 
use  optional 

 

source <xs:attribute name="Use-Ontology" type="xs:string" use="optional"/> 

 
 
element Semantic-Content/Ontologies-List 

diagram 

 

properties isRef  0 
content  complex 

 

children Ontology 

source <xs:element name="Ontologies-List"> 
  <xs:complexType> 
    <xs:sequence> 
      <xs:element name="Ontology" minOccurs="0" maxOccurs="unbounded"> 
        <xs:complexType> 
          <xs:simpleContent> 
            <xs:extension base="xs:string"> 
              <xs:attribute name="Priority-Order" type="xs:unsignedByte" use="optional"/> 
              <xs:attribute name="URI" type="xs:anyURI"/> 
            </xs:extension> 
          </xs:simpleContent> 
        </xs:complexType> 
      </xs:element> 
    </xs:sequence> 
  </xs:complexType> 
</xs:element> 

 



Appendix N: Schema XSD – Semantic Content Structure  

 
 

 

 
element Semantic-Content/Ontologies-List/Ontology 

diagram 

 

type extension of xs:string 

properties isRef  0 
minOcc  0 
maxOcc  unbounded 
content  complex 

 

attributes Name   Type   Use   Default   Fixed   annotation 
Priority-Order xs:unsignedByte optional           
URI xs:anyURI            

 

source <xs:element name="Ontology" minOccurs="0" maxOccurs="unbounded"> 
  <xs:complexType> 
    <xs:simpleContent> 
      <xs:extension base="xs:string"> 
        <xs:attribute name="Priority-Order" type="xs:unsignedByte" use="optional"/> 
        <xs:attribute name="URI" type="xs:anyURI"/> 
      </xs:extension> 
    </xs:simpleContent> 
  </xs:complexType> 
</xs:element> 

 
 
 
attribute Semantic-Content/Ontologies-List/Ontology/@Priority-Order 

type xs:unsignedByte 

properties isRef  0 
use  optional 

 

source <xs:attribute name="Priority-Order" type="xs:unsignedByte" use="optional"/> 

 
 
 
attribute Semantic-Content/Ontologies-List/Ontology/@URI 

type xs:anyURI 

properties isRef  0 
 

source <xs:attribute name="URI" type="xs:anyURI"/> 
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element Semantic-Content/Context-Expression-Value 

diagram 

 

properties isRef  0 
content  complex 

mixed  true 
 

source <xs:element name="Context-Expression-Value"> 
  <xs:complexType mixed="true"> 
    <xs:all/> 
  </xs:complexType> 
</xs:element> 

 
 
 
element Semantic-Content/Rules 

diagram 

 

properties isRef  0 
minOcc  0 
maxOcc  1 
content  complex 

 

source <xs:element name="Rules" minOccurs="0"> 
  <xs:complexType> 
    <xs:all/> 
  </xs:complexType> 
</xs:element> 

 
 
 
 



Appendix O: ITS@CU Ontology Structure  

 

Appendix O:  ITS@CU Ontology Structure  

 



Appendix O: ITS@CU Ontology Structure  

 

 



Appendix P:  ITS@CU Applications Screenshots  

 

Appendix P:  ITS@CU Applications Screenshots  
 

1. ITS@CU Management Application 

 
Figure 1: ITS@CU Management Application (Default Monitoring View with Grids display enabled) 

 

      

Figure 2: ITS@CU Management Application (Menu options) 
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Figure 3: Monitoring view with Traffic Controls on a route 

 

Adding new entities/components 

    

Figure 4: Adding new entities form 
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Figure 5: Adding a new Controller  

 

 

 

        

Figure 6: Adding a new Agent  
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Figure 7: Add a new Grid Area  

 

 
Figure 8: Add Grid Controller  

 

Click on map to draw 

a polygon 

Click on map to 

set a location 



Appendix P:  ITS@CU Applications Screenshots  

 

 

Route generation for diversion using Bing Map Service

 

Figure 9: Setting route diversion for simulation purpose 
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2. ITS@CU Traffic Controls Management  application (Grid Level) 
 

 

Figure 10: Traffic Controls Management (login Screen) 

 

 

Figure 11: Current Controls Status monitoring 

 

 

 

Figure 12: Controls Connectivity monitoring chart 
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Figure 13: Controller updates (Default-Logic/Agent-Logic update) 

 

  



Appendix P:  ITS@CU Applications Screenshots  

 

3. ITS@CU Simulation Utility 

 

Figure 14: Setup simulation entities (Agent view) 

 

 

 

Figure 15: Generate an Agent Message (behaviour testing/simulation) 

 

 

 

Figure 16: Generate Agent Commands/Ontologies/Rules  
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4. Controller Applications  

Using the MADF (described in chapter 7, section 7.4 ), A Controller simulation application was developed to 

simulate various traffic Controllers for example traffic lights Controllers, Variable message displays 

Controller, sensors Controller and dynamic traffic signs Controller.  

  

Figure 17: Controller Setup Screen – Select and 
Configure a traffic Controller type  

Figure 18: Controller Setup/Configuration Screen 
(Traffic Lights Controller Example) 

  

Figure 19: Controller properties Configuration 
(Traffic Lights Controller Example) 

Figure 20: Controller Status Monitoring  
(Traffic Lights Controller Example) 
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Figure 21: Hosted Control Agent Configuration and 
current Agents interaction status  

(Traffic Lights Controller Example) 

Figure 22: Agent Message composed by the hosted 
Control Agent on the Traffic Lights Controller 
application destined to an Operational Agent  

  

Figure 23: Controller Application management – 
Check for Agent-Logic update and clean local files 

Figure 24: Controller Setup/Configuration Screen 
(Vehicle Count Sensor Controller Example) 
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Figure 25: Controller properties Configuration 
(Vehicle Count Sensor Controller Example) 

Figure 26: Controller Status Monitoring  
(Vehicle Count Sensor Controller Example) 
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5. Traffic Controls simulation Application  

This application was develop using the MADF (described in chapter 7, section 7.4) in order to simulate the 

behaviour of various traffic Controls such as traffic lights, variable message displays, road sensors and 

dynamic speed limit signs. The traffic Controls are associated with Controllers (described in section 5 above) 

to function. 

  

Figure 27: Traffic Control Setup Screen –  
Select and Configure a type  

Figure 28: Control Setup/Configuration Screen  
(A Traffic Light Control Example associated with the 

Controller in Figure 18) 

  

Figure 29: Control current Status and properties  
Configuration (Traffic Light Example) 

Figure 30: Commands view – for sending test 
commands to other Controls within a range  
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Figure 31: Bluetooth Connection configuration:  
pairing with other similar Controls within a range  

Figure 32: Control Setup/Configuration Screen  
(A Variable Message Display Example) 

  

   
 

Figure 33: Control’s current 
Status and properties  

Configuration (Variable Message 
Display Example) 

 
 

Figure 34: Control 
Setup/Configuration Screen  

(Dynamic Speed Sign Example) 

 
 

Figure 35: Control’s current 
Status and properties  

Configuration (Dynamic Speed 
Sign Example) 
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6. Vehicle Controller Application  

Using the MADF (described in chapter 7, section 7.4), A Vehicle Controller application was developed to 

simulate on board vehicle Controller and its behaviour in the platform.  

         

Figure 36: Vehicle Application Login Screen  Figure 37: Setup/Configuration Screen  

  

  

Figure 38: Vehicle status monitoring Screen  Figure 39: A broadcast Message from a Grid 
Controller  
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Figure 40: Notification Screen (from an Operational 
Agent to inform road block ahead)  

Figure 41: In-App Navigation (TomTom 5) Software 
for automated Re-Routing based on the diversion 

route planned by Agents 

 

Figure 42: New Command Message from  
Grid Control Agent (Simulation view) 
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