355,387 research outputs found

    Pervasive business intelligence platform to improve the quality of decision process in primary and secondary education – A Portuguese case study

    Get PDF
    Business Intelligence (BI) can be seen as a method that gathers information and data from information systems in order to help companies to be more accurate in their decision-making process. Traditionally BI systems were associated with the use of Data Warehouses (DW). The prime purpose of DW is to serve as a repository that stores all the relevant information required for making the correct decision. The necessity to integrate streaming data became crucial with the need to improve the efficiency and effectiveness of the decision process. In primary and secondary education, there is a lack of BI solutions. Due to the schools reality the main purpose of this study is to provide a Pervasive BI solution able to monitoring the schools and student data anywhere and anytime in real-time as well as disseminating the information through ubiquitous devices. The first task consisted in gathering data regarding the different choices made by the student since his enrolment in a certain school year until the end of it. Thereafter a dimensional model was developed in order to be possible building a BI platform. This paper presents the dimensional model, a set of pre-defined indicators, the Pervasive Business Intelligence characteristics and the prototype designed. The main contribution of this study was to offer to the schools a tool that could help them to make accurate decisions in real-time. Data dissemination was achieved through a localized application that can be accessed anywhere and anytime.This work has been supported by FCT - Fundação para a Ciência e Tecnologia within the Project Scope UID/CEC/00319/2013

    Next Generation Internet of Things – Distributed Intelligence at the Edge and Human-Machine Interactions

    Get PDF
    This book provides an overview of the next generation Internet of Things (IoT), ranging from research, innovation, development priorities, to enabling technologies in a global context. It is intended as a standalone in a series covering the activities of the Internet of Things European Research Cluster (IERC), including research, technological innovation, validation, and deployment.The following chapters build on the ideas put forward by the European Research Cluster, the IoT European Platform Initiative (IoT–EPI), the IoT European Large-Scale Pilots Programme and the IoT European Security and Privacy Projects, presenting global views and state-of-the-art results regarding the next generation of IoT research, innovation, development, and deployment.The IoT and Industrial Internet of Things (IIoT) are evolving towards the next generation of Tactile IoT/IIoT, bringing together hyperconnectivity (5G and beyond), edge computing, Distributed Ledger Technologies (DLTs), virtual/ andaugmented reality (VR/AR), and artificial intelligence (AI) transformation.Following the wider adoption of consumer IoT, the next generation of IoT/IIoT innovation for business is driven by industries, addressing interoperability issues and providing new end-to-end security solutions to face continuous treats.The advances of AI technology in vision, speech recognition, natural language processing and dialog are enabling the development of end-to-end intelligent systems encapsulating multiple technologies, delivering services in real-time using limited resources. These developments are focusing on designing and delivering embedded and hierarchical AI solutions in IoT/IIoT, edge computing, using distributed architectures, DLTs platforms and distributed end-to-end security, which provide real-time decisions using less data and computational resources, while accessing each type of resource in a way that enhances the accuracy and performance of models in the various IoT/IIoT applications.The convergence and combination of IoT, AI and other related technologies to derive insights, decisions and revenue from sensor data provide new business models and sources of monetization. Meanwhile, scalable, IoT-enabled applications have become part of larger business objectives, enabling digital transformation with a focus on new services and applications.Serving the next generation of Tactile IoT/IIoT real-time use cases over 5G and Network Slicing technology is essential for consumer and industrial applications and support reducing operational costs, increasing efficiency and leveraging additional capabilities for real-time autonomous systems.New IoT distributed architectures, combined with system-level architectures for edge/fog computing, are evolving IoT platforms, including AI and DLTs, with embedded intelligence into the hyperconnectivity infrastructure.The next generation of IoT/IIoT technologies are highly transformational, enabling innovation at scale, and autonomous decision-making in various application domains such as healthcare, smart homes, smart buildings, smart cities, energy, agriculture, transportation and autonomous vehicles, the military, logistics and supply chain, retail and wholesale, manufacturing, mining and oil and gas

    Business intelligence-centered software as the main driver to migrate from spreadsheet-based analytics

    Get PDF
    Internship Report presented as the partial requirement for obtaining a Master's degree in Information Management, specialization in Knowledge Management and Business IntelligenceNowadays, companies are handling and managing data in a way that they weren’t ten years ago. The data deluge is, as a mere consequence of that, the constant day-to-day challenge for them - having to create agile and scalable data solutions to tackle this reality. The main trigger of this project was to support the decision-making process of a customer-centered marketing team (called Customer Voice) in the Company X by developing a complete, holistic Business Intelligence solution that goes all the way from ETL processes to data visualizations based on that team’s business needs. Having this context into consideration, the focus of the internship was to make use of BI, ETL techniques to migrate their data stored in spreadsheets — where they performed data analysis — and shift the way they see the data into a more dynamic, sophisticated, and suitable way in order to help them make data-driven strategic decisions. To ensure that there was credibility throughout the development of this project and its subsequent solution, it was necessary to make an exhaustive literature review to help me frame this project in a more realistic and logical way. That being said, this report made use of scientific literature that explained the evolution of the ETL workflows, tools, and limitations across different time periods and generations, how it was transformed from manual to real-time data tasks together with data warehouses, the importance of data quality and, finally, the relevance of ETL processes optimization and new ways of approaching data integrations by using modern, cloud architectures

    Next Generation Internet of Things – Distributed Intelligence at the Edge and Human-Machine Interactions

    Get PDF
    This book provides an overview of the next generation Internet of Things (IoT), ranging from research, innovation, development priorities, to enabling technologies in a global context. It is intended as a standalone in a series covering the activities of the Internet of Things European Research Cluster (IERC), including research, technological innovation, validation, and deployment.The following chapters build on the ideas put forward by the European Research Cluster, the IoT European Platform Initiative (IoT–EPI), the IoT European Large-Scale Pilots Programme and the IoT European Security and Privacy Projects, presenting global views and state-of-the-art results regarding the next generation of IoT research, innovation, development, and deployment.The IoT and Industrial Internet of Things (IIoT) are evolving towards the next generation of Tactile IoT/IIoT, bringing together hyperconnectivity (5G and beyond), edge computing, Distributed Ledger Technologies (DLTs), virtual/ andaugmented reality (VR/AR), and artificial intelligence (AI) transformation.Following the wider adoption of consumer IoT, the next generation of IoT/IIoT innovation for business is driven by industries, addressing interoperability issues and providing new end-to-end security solutions to face continuous treats.The advances of AI technology in vision, speech recognition, natural language processing and dialog are enabling the development of end-to-end intelligent systems encapsulating multiple technologies, delivering services in real-time using limited resources. These developments are focusing on designing and delivering embedded and hierarchical AI solutions in IoT/IIoT, edge computing, using distributed architectures, DLTs platforms and distributed end-to-end security, which provide real-time decisions using less data and computational resources, while accessing each type of resource in a way that enhances the accuracy and performance of models in the various IoT/IIoT applications.The convergence and combination of IoT, AI and other related technologies to derive insights, decisions and revenue from sensor data provide new business models and sources of monetization. Meanwhile, scalable, IoT-enabled applications have become part of larger business objectives, enabling digital transformation with a focus on new services and applications.Serving the next generation of Tactile IoT/IIoT real-time use cases over 5G and Network Slicing technology is essential for consumer and industrial applications and support reducing operational costs, increasing efficiency and leveraging additional capabilities for real-time autonomous systems.New IoT distributed architectures, combined with system-level architectures for edge/fog computing, are evolving IoT platforms, including AI and DLTs, with embedded intelligence into the hyperconnectivity infrastructure.The next generation of IoT/IIoT technologies are highly transformational, enabling innovation at scale, and autonomous decision-making in various application domains such as healthcare, smart homes, smart buildings, smart cities, energy, agriculture, transportation and autonomous vehicles, the military, logistics and supply chain, retail and wholesale, manufacturing, mining and oil and gas

    Cognitive Hyperconnected Digital Transformation

    Get PDF
    Cognitive Hyperconnected Digital Transformation provides an overview of the current Internet of Things (IoT) landscape, ranging from research, innovation and development priorities to enabling technologies in a global context. It is intended as a standalone book in a series that covers the Internet of Things activities of the IERC-Internet of Things European Research Cluster, including both research and technological innovation, validation and deployment. The book builds on the ideas put forward by the European Research Cluster, the IoT European Platform Initiative (IoT-EPI) and the IoT European Large-Scale Pilots Programme, presenting global views and state-of-the-art results regarding the challenges facing IoT research, innovation, development and deployment in the next years. Hyperconnected environments integrating industrial/business/consumer IoT technologies and applications require new IoT open systems architectures integrated with network architecture (a knowledge-centric network for IoT), IoT system design and open, horizontal and interoperable platforms managing things that are digital, automated and connected and that function in real-time with remote access and control based on Internet-enabled tools. The IoT is bridging the physical world with the virtual world by combining augmented reality (AR), virtual reality (VR), machine learning and artificial intelligence (AI) to support the physical-digital integrations in the Internet of mobile things based on sensors/actuators, communication, analytics technologies, cyber-physical systems, software, cognitive systems and IoT platforms with multiple functionalities. These IoT systems have the potential to understand, learn, predict, adapt and operate autonomously. They can change future behaviour, while the combination of extensive parallel processing power, advanced algorithms and data sets feed the cognitive algorithms that allow the IoT systems to develop new services and propose new solutions. IoT technologies are moving into the industrial space and enhancing traditional industrial platforms with solutions that break free of device-, operating system- and protocol-dependency. Secure edge computing solutions replace local networks, web services replace software, and devices with networked programmable logic controllers (NPLCs) based on Internet protocols replace devices that use proprietary protocols. Information captured by edge devices on the factory floor is secure and accessible from any location in real time, opening the communication gateway both vertically (connecting machines across the factory and enabling the instant availability of data to stakeholders within operational silos) and horizontally (with one framework for the entire supply chain, across departments, business units, global factory locations and other markets). End-to-end security and privacy solutions in IoT space require agile, context-aware and scalable components with mechanisms that are both fluid and adaptive. The convergence of IT (information technology) and OT (operational technology) makes security and privacy by default a new important element where security is addressed at the architecture level, across applications and domains, using multi-layered distributed security measures. Blockchain is transforming industry operating models by adding trust to untrusted environments, providing distributed security mechanisms and transparent access to the information in the chain. Digital technology platforms are evolving, with IoT platforms integrating complex information systems, customer experience, analytics and intelligence to enable new capabilities and business models for digital business

    State of the art of artificial intelligence in internal audit context

    Get PDF
    Artificial intelligence (AI) is a technological field that stands out for what can do and for the advantages that can provide to various sectors of activity. An internal audit could benefit from the introduction of AI in its tasks, namely though the automation of audit processes that make it faster and more efficient allowing an increase in the degree of complexity of the tasks that internal auditors may perform. This will enhance the skills of internal auditors in fields like the determination of business processes and associated risks and controls in anticipated detection of fraud and the following up of anomalies in real-time. This article features a set of technologies of AI and the set of benefits it adds to the internal audit. Two models of internal audit applied to artificial intelligence demonstrate how internal audit and internal auditors must adapt to the new reality of AI, by not losing their purpose and by bringing benefits to organizations.info:eu-repo/semantics/acceptedVersio

    Analysing Event Data through Process Mining

    Get PDF
    Most organizations create business processes, which are sometimes difficult to control and comprehend. Understanding these processes is however an absolute prerequisite prior to taking on any improvement initiative. Process mining provides a new perspective that makes easier and faster to get a complete and objective picture of business processes to better control and continuously improve them, by reducing their costs, production time and risks. This is made possible by analysing vast quantities of event data available in today’s information systems. Mainly, which activities are performed, when, and by whom. In that sense, process mining sits between computational intelligence and data mining on the one hand, and business process management on the other hand. The reference framework for process mining focuses on: (i) conceptual models describing processes, organizational structures, and the corresponding relevant data; and (ii) the real execution of processes, as reflected by the footprint of reality logged and stored by the information systems in use within an enterprise. For process mining to be applicable, such information has to be structured in the form of explicit event logs. In fact, all process mining techniques assume that it is possible to record the sequencing of relevant events occurred within an enterprise, such that each event refers to an activity (i.e., a well-defined step in some process) and is related to a particular case. Through process mining, decision makers can discover process models from event logs (process discovery), compare expected and actual behaviors (conformance checking), and enrich models with key information about their actual execution (process enhancement). This, in turn, provides the basis to understand, maintain, and enhance processes based on reality. In this tutorial, we introduce the process mining framework, the main process mining techniques and tools, and the different phases of event data analysis through process mining, discussing the various ways data and process analysts can make use of the mined models. Finally, we discuss common pitfalls and critical issues, and give suggestions on how to mitigate them

    Internet of robotic things : converging sensing/actuating, hypoconnectivity, artificial intelligence and IoT Platforms

    Get PDF
    The Internet of Things (IoT) concept is evolving rapidly and influencing newdevelopments in various application domains, such as the Internet of MobileThings (IoMT), Autonomous Internet of Things (A-IoT), Autonomous Systemof Things (ASoT), Internet of Autonomous Things (IoAT), Internetof Things Clouds (IoT-C) and the Internet of Robotic Things (IoRT) etc.that are progressing/advancing by using IoT technology. The IoT influencerepresents new development and deployment challenges in different areassuch as seamless platform integration, context based cognitive network integration,new mobile sensor/actuator network paradigms, things identification(addressing, naming in IoT) and dynamic things discoverability and manyothers. The IoRT represents new convergence challenges and their need to be addressed, in one side the programmability and the communication ofmultiple heterogeneous mobile/autonomous/robotic things for cooperating,their coordination, configuration, exchange of information, security, safetyand protection. Developments in IoT heterogeneous parallel processing/communication and dynamic systems based on parallelism and concurrencyrequire new ideas for integrating the intelligent “devices”, collaborativerobots (COBOTS), into IoT applications. Dynamic maintainability, selfhealing,self-repair of resources, changing resource state, (re-) configurationand context based IoT systems for service implementation and integrationwith IoT network service composition are of paramount importance whennew “cognitive devices” are becoming active participants in IoT applications.This chapter aims to be an overview of the IoRT concept, technologies,architectures and applications and to provide a comprehensive coverage offuture challenges, developments and applications
    corecore