280 research outputs found

    Material aging for game environments

    Get PDF
    We propose a software and work-flow to create 3D model imperfections and aging effects while adding very little overhead to the rendering time of the models. Specifically, we implement a tool that adds all these effects into the physically based rendering (PBR) textures of the input model

    Brain-Inspired Computing

    Get PDF
    This open access book constitutes revised selected papers from the 4th International Workshop on Brain-Inspired Computing, BrainComp 2019, held in Cetraro, Italy, in July 2019. The 11 papers presented in this volume were carefully reviewed and selected for inclusion in this book. They deal with research on brain atlasing, multi-scale models and simulation, HPC and data infra-structures for neuroscience as well as artificial and natural neural architectures

    Fundamentals

    Get PDF
    Volume 1 establishes the foundations of this new field. It goes through all the steps from data collection, their summary and clustering, to different aspects of resource-aware learning, i.e., hardware, memory, energy, and communication awareness. Machine learning methods are inspected with respect to resource requirements and how to enhance scalability on diverse computing architectures ranging from embedded systems to large computing clusters

    Efficient From-Point Visibility for Global Illumination in Virtual Scenes with Participating Media

    Get PDF
    Sichtbarkeitsbestimmung ist einer der fundamentalen Bausteine fotorealistischer Bildsynthese. Da die Berechnung der Sichtbarkeit allerdings äußerst kostspielig zu berechnen ist, wird nahezu die gesamte Berechnungszeit darauf verwendet. In dieser Arbeit stellen wir neue Methoden zur Speicherung, Berechnung und Approximation von Sichtbarkeit in Szenen mit streuenden Medien vor, die die Berechnung erheblich beschleunigen, dabei trotzdem qualitativ hochwertige und artefaktfreie Ergebnisse liefern

    Editing Fluid Simulations with Jet Particles

    Get PDF
    Fluid simulation is an important topic in computer graphics in the pursuit of adding realism to films, video games and virtual environments. The results of a fluid simulation are hard to edit in a way that provide a physically plausible solution. Edits need to preserve the incompressibility condition in order to create natural looking water and smoke simulations. In this thesis we present an approach that allows a simple artist-friendly interface for designing and editing complex fluid-like flows that are guaranteed to be incompressible in two and three dimensions. Key to our method is a formulation for the design of flows using jet particles. Jet particles are Lagrangian solutions to a regularised form of Euler’s equations, and their velocity fields are divergence-free which motivates their use in computer graphics. We constrain their dynamics to design divergence-free flows and utilise them effectively in a modern visual effects pipeline. Using just a handful of jet particles we produce visually convincing flows that implicitly satisfy the incompressibility condition. We demonstrate an interactive tool in two dimensions for designing a range of divergence-free deformations. Further we describe methods to couple these flows with existing simulations in order to give the artist creative control beyond the initial outcome. We present examples of local temporal edits to smoke simulations in 2D and 3D. The resulting methods provide promising new ways to design and edit fluid-like deformations and to create general deformations in 3D modelling. We show how to represent existing divergence-free velocity fields using jet particles, and design new vector fields for use in fluid control applications. Finally we provide an efficient implementation for deforming grids, meshes, volumes, level sets, vectors and tensors, given a jet particle flow

    Fundamentals

    Get PDF
    Volume 1 establishes the foundations of this new field. It goes through all the steps from data collection, their summary and clustering, to different aspects of resource-aware learning, i.e., hardware, memory, energy, and communication awareness. Machine learning methods are inspected with respect to resource requirements and how to enhance scalability on diverse computing architectures ranging from embedded systems to large computing clusters

    Development of Quantum-Crystallographic Methods for Chemical and Biochemical Applications

    Get PDF
    The field of crystallography is a key branch of natural sciences, important not only for physics, geology, biology or chemistry, but it also provides crucial information for life sciences and materials science. It laid the foundations of our textbook knowledge of matter in general. In this thesis, the field of quantum crystallography – a synergistic approach of crystallography and quantum mechanics – is used as a tool to predict and understand processes of molecules and their interactions. New methods are proposed and used that provide deeper insight into the influence of local molecular environments on molecules and allows advanced predictions of the biochemical effect of drugs. Ultimately, this means that we can now understand interactions between molecules in crystal structures more completely that were long thought to be fully characterized. As part of this work, new software was developed to handle theoretical simulations as well as experimental data – and also both of them together at the same time. The introduction of non-spherical refinements in standard software for crystallography opens the field of quantum crystallography to a wide audience and will hopefully strengthen the mutual ground between experimentalists and theoreticians. Specifically, we created a new native interface between Olex2 and non-spherical refinement techniques, which we called NoSpherA2. This interface has been designed in such a way that it can be used for any kind of non-spherical atom descriptions. This will allow refinement of modern diffraction data employing modern quantum crystallographic models, leaving behind the century old Independent Atom Model (IAM). New software was also developed to provide novel models and descriptors for understanding environmental effects on the electron density and electrostatic potential of a molecule. This so-called Quantum Crystallographic Toolbox (QCrT) provides a framework for the fast and easy implementation of various methods and descriptors. File conversion tools allow the interfacing with many existing software packages and might provide useful information for future method development, experimental setups and data evaluation, as well as chemical insight into intra- and intermolecular interactions. It is fully parallelized and portable to graphic card processors (GPUs), which provide extraordinary amounts of computational power with moderate resource requirements. Especially in the context of ultra-bright X-ray sources like X-ray free electron lasers and electron diffraction these new models become crucial to have a better description of experimental findings. In applying this new framework of quantum crystallographic methods, we analyze a type of bonding at the edge of conventional organic chemistry: The push-pull systems of ethylenes. We show how X-ray constrained bonding analysis leads to the unambiguous determination of the behavior and type of bonding present in a series of compounds which are contradicting the Lewis-picture of a double-bond. This new understanding has led to the development of a new potential drug, namely a silicon analogue of ibuprofen; one of the most important drugs known to humankind. We determined its physical properties, investigated its stability and potency as a more soluble and novel alternative of ibuprofen: While retaining the same pharmaceutical activity of ibuprofen, making it a bioisoster for ibuprofen, this material shows a better applicability in aqueous media

    Visually pleasing real-time global illumination rendering for fully-dynamic scenes

    Get PDF
    Global illumination (GI) rendering plays a crucial role in the photo-realistic rendering of virtual scenes. With the rapid development of graphics hardware, GI has become increasingly attractive even for real-time applications nowadays. However, the computation of physically-correct global illumination is time-consuming and cannot achieve real-time, or even interactive performance. Although the realtime GI is possible using a solution based on precomputation, such a solution cannot deal with fully-dynamic scenes. This dissertation focuses on solving these problems by introducing visually pleasing real-time global illumination rendering for fully-dynamic scenes. To this end, we develop a set of novel algorithms and techniques for rendering global illumination effects using the graphics hardware. All these algorithms not only result in real-time or interactive performance, but also generate comparable quality to the previous works in off-line rendering. First, we present a novel implicit visibility technique to circumvent expensive visibility queries in hierarchical radiosity by evaluating the visibility implicitly. Thereafter, we focus on rendering visually plausible soft shadows, which is the most important GI effect caused by the visibility determination. Based on the pre-filtering shadowmapping theory, wesuccessively propose two real-time soft shadow mapping methods: "convolution soft shadow mapping" (CSSM) and "variance soft shadow mapping" (VSSM). Furthermore, we successfully apply our CSSM method in computing the shadow effects for indirect lighting. Finally, to explore the GI rendering in participating media, we investigate a novel technique to interactively render volume caustics in the single-scattering participating media.Das Rendern globaler Beleuchtung ist für die fotorealistische Darstellung virtueller Szenen von entscheidender Bedeutung. Dank der rapiden Entwicklung der Grafik-Hardware wird die globale Beleuchtung heutzutage sogar für Echtzeitanwendungen immer attraktiver. Trotz allem ist die Berechnung physikalisch korrekter globaler Beleuchtung zeitintensiv und interaktive Laufzeiten können mit "standard Hardware" noch nicht erzielt werden. Obwohl das Rendering auf der Grundlage von Vorberechnungen in Echtzeit möglich ist, kann ein solcher Ansatz nicht auf voll-dynamische Szenen angewendet werden. Diese Dissertation zielt darauf ab, das Problem der globalen Beleuchtungsberechnung durch Einführung von neuen Techniken für voll-dynamische Szenen in Echtzeit zu lösen. Dazu stellen wir eine Reihe neuer Algorithmen vor, die die Effekte der globaler Beleuchtung auf der Grafik-Hardware berechnen. All diese Algorithmen erzielen nicht nur Echtzeit bzw. interaktive Laufzeiten sondern liefern auch eine Qualität, die mit bisherigen offline Methoden vergleichbar ist. Zunächst präsentieren wir eine neue Technik zur Berechnung impliziter Sichtbarkeit, die aufwändige Sichbarkeitstests in hierarchischen Radiosity-Datenstrukturen vermeidet. Anschliessend stellen wir eine Methode vor, die weiche Schatten, ein wichtiger Effekt für die globale Beleuchtung, in Echtzeit berechnet. Auf der Grundlage der Theorie über vorgefilterten Schattenwurf, zeigen wir nacheinander zwei Echtzeitmethoden zur Berechnung weicher Schattenwürfe: "Convolution Soft Shadow Mapping" (CSSM) und "Variance Soft Shadow Mapping" (VSSM). Darüber hinaus wenden wir unsere CSSM-Methode auch erfolgreich auf den Schatteneffekt in der indirekten Beleuchtung an. Abschliessend präsentieren wir eine neue Methode zum interaktiven Rendern von Volumen-Kaustiken in einfach streuenden, halbtransparenten Medien
    • …
    corecore