
Editing Fluid Simulations with Jet
Particles

Julian Hodgson

A dissertation submitted in partial fulfillment

of the requirements for the degree of

Doctor of Engineering

at

University College London.

Department of Computer Science

University College London

March 5, 2018

2

I, Julian Hodgson, confirm that the work presented in this thesis is my own.

Where information has been derived from other sources, I confirm that this has

been indicated in the work.

Abstract

Fluid simulation is an important topic in computer graphics in the pursuit of adding

realism to films, video games and virtual environments. The results of a fluid

simulation are hard to edit in a way that provide a physically plausible solution.

Edits need to preserve the incompressibility condition in order to create natural

looking water and smoke simulations.

In this thesis we present an approach that allows a simple artist-friendly

interface for designing and editing complex fluid-like flows that are guaranteed to

be incompressible in two and three dimensions. Key to our method is a formulation

for the design of flows using jet particles.

Jet particles are Lagrangian solutions to a regularised form of Euler’s

equations, and their velocity fields are divergence-free which motivates their use in

computer graphics. We constrain their dynamics to design divergence-free flows

and utilise them effectively in a modern visual effects pipeline. Using just a handful

of jet particles we produce visually convincing flows that implicitly satisfy the

incompressibility condition. We demonstrate an interactive tool in two dimensions

for designing a range of divergence-free deformations.

Further we describe methods to couple these flows with existing simulations

in order to give the artist creative control beyond the initial outcome. We present

examples of local temporal edits to smoke simulations in 2D and 3D. The resulting

methods provide promising new ways to design and edit fluid-like deformations and

to create general deformations in 3D modelling.

We show how to represent existing divergence-free velocity fields using jet

particles, and design new vector fields for use in fluid control applications.

Abstract 4

Finally we provide an efficient implementation for deforming grids, meshes,

volumes, level sets, vectors and tensors, given a jet particle flow.

Acknowledgements

I would like to acknowledge and thank my supervisor Anthony Steed for steady

and solid support and advice, and my second supervisor Niloy Mitra for suggesting

the topic of fluid editing and for many motivating discussions during the project.

I would also like to thank Nils Thuerey for his support providing expert advice in

fluid dynamics and for his enthusiastic feedback.

I am indebted to Daryl Holm for inviting me to take his Geometric Mechan-

ics course at Imperial College and for my introduction to his group. Here I met

Henry Jacobs who I would like to thank for an explanation of jet particles, provid-

ing python code for evaluating the jet particle flow, and many helpful discussions

on the subject. Also from this group I would like to thank Dmitri Pavlov for discus-

sions on structure preserving flow, and Jaap Eldering for discussions on geometric

mechanics and providing useful feedback. Thanks also to Stefan Sommer for some

valuable conversations about jet particles.

From my time at Cinesite I would like to thank Jonathan Davies for his Houdini

expertise and valuable production experience, Don Boogert for many helpful tech-

nical discussions and support on the Cinesite pipeline, and my industrial supervisor

Michele Sciolette.

I would like to thank Andrew Ruhemann for sponsoring me at Passion Pictures

during the first part of my EngD, and Hugo Sands for his great efforts in helping

make the EngD work at Passion.

I would like to recognise the fantastic support of the 1851 Royal Commission

for sponsorship with their Industrial Fellowship, and the EPSRC for funding the

EngD at UCL.

Acknowledgements 6

I would like also to thank Cristin Barghiel at SideFX Software for providing

me with a research license for Houdini FX for simulation and rendering, and Alan

Trombla for donating an RV license for image and movie conversion and editing.

And I would like in particular to thank my wife Giovanna and my family who

have supported me throughout this adventure.

Contents

1 Introduction 17

1.1 Motivation . 17

1.2 Jet Particles . 18

1.3 Hypotheses . 19

1.4 Chapter Overview . 20

2 Background 22

2.1 Grid Based Solvers . 22

2.2 Smooth Particle Hydrodynamics 23

2.3 Particle in Cell Methods and FLIP 24

2.4 Fluid Control . 25

2.5 Model Reduction . 26

2.6 Turbulence . 29

2.7 Fluid Editing . 30

2.8 Space-time Methods . 32

2.9 LDDMM . 33

2.10 Jet Particles . 34

2.11 Vector Field Design . 35

3 Technical Background 37

3.1 Nomenclature . 37

3.2 Basic Definitions . 38

3.3 Introduction . 39

Contents 8

3.4 Matrix-valued Kernels . 40

3.5 Hamiltonian Dynamics . 43

3.6 Jet Particles . 46

3.6.1 Basic Definitions . 46

3.6.2 Equations of Motion . 47

3.6.3 Simulation Example . 48

3.7 Relationship with Eulerian Flow 50

4 Sketching Flows with Jet Particles 52

4.1 Sketching Flows Interactively . 52

4.2 Deformation with Constrained Particles 53

4.3 Constrained 0-Jet Particles . 54

4.4 Fluid Sketching Application . 55

4.5 Constrained 1-Jet Particles . 57

4.6 Keyframe Generation . 60

4.7 Dynamics of Jet Particles . 63

4.8 Conclusions and Future Work . 66

5 Editing Fluids with Jet Particles 69

5.1 Editing Existing Flows . 70

5.1.1 Comparison with Skinning 71

5.1.2 Deformation Metric . 73

5.1.3 Deforming 2D Smoke Simulations 73

5.1.4 Deforming 3D Smoke Simulations 77

5.2 Tracking Jet Particles . 80

5.3 Advecting Jet Particles . 83

5.4 Push-forward of Jet Particles . 84

5.5 Deformation Keyframes . 86

5.6 Jet Particle Rigs in Maya . 92

5.7 Conclusions and Future Work . 95

5.7.1 Coupling Rigid Bodies with Fluids 95

Contents 9

5.7.2 Up-Resing Existing Flows 95

6 Designing Vector Fields 97

6.1 Projection . 97

6.1.1 Motivation . 98

6.1.2 Project Velocity Field onto 0-Jet Particles 99

6.1.3 Project Velocity Field onto 1-Jet Particles 100

6.2 Vector Field Interpolation . 101

6.2.1 Examples . 102

6.2.2 Results . 103

6.2.3 Conclusions . 104

6.2.4 Future Work . 109

6.3 Vector Field Design . 109

6.3.1 Tangent Constraints . 110

6.3.2 Deformation Gradient Constraints 112

6.3.3 Controlling the Velocity and Gradient 113

6.3.4 Varying the Kernel Size 115

6.4 Conclusions and Future Work . 117

6.4.1 Representing Existing Velocity Fields with Jet Particles . . . 117

6.4.2 Designing Flows on Surfaces 118

6.4.3 Jet Particle Flow Rigs . 118

7 Deformations with Jet Particles 120

7.1 Forwards Deformation . 120

7.2 Backwards Flow . 124

7.3 Coarse Grid Optimisation . 126

7.4 Bezier Interpolation . 128

7.5 Point Cloud Deformation . 133

7.6 Conclusions . 137

8 Conclusions 139

8.1 Summary . 139

Contents 10

8.2 Future Work . 141

8.2.1 Deformation . 141

8.2.2 Jet Particle Simulations . 141

Appendices 143

A Tools 144

A.1 Manta . 144

A.2 Tensor Library . 144

A.3 OpenVDB . 145

A.3.1 Deformation of OpenVDB Files 146

A.3.2 Visualisation in Maya . 151

A.3.3 Deformation in Maya Rig 151

A.3.4 Calculating the Projection Matrix 152

A.3.5 Houdini Implementation 154

Bibliography 154

List of Figures

3.1 The vector fields of the matrix kernel from Equation (3.2) for

a = 0,0.5,1.0 with momenta (1,0) inserted, showing the Gaussian,

interpolated and divergence-free kernels from left to right 42

3.2 Hamiltonian particles. The arrows represent the momenta of the

particles. 45

3.3 A single 1-jet particle in 2D with momentum p = 0, and µ taking

the values spin, stretch and shear, illustrated from left to right 49

3.4 The velocity field generated by several 1-Jet particles. The colours

of the particles represent the vorticity of the particles, with red and

blue being positive and negative vorticity. 50

4.1 A constrained particle with a scalar kernel sketching a flow deform-

ing a grid . 56

4.2 A constrained 0-jet particle sketching a flow deforming a grid 56

4.3 A constrained 0-jet particle sketching a flow deforming a grid with

a = 0.5 . 56

4.4 Streamlines of 0-jet particles in 3D with momenta along the x, y and

z axes, from left to right. 57

4.5 A constrained 1-jet Spin particle sketching a flow deforming a grid . 59

4.6 A constrained 1-jet Scale particle sketching a flow deforming a grid 59

4.7 A constrained 1-jet Shear particle sketching a flow deforming a grid 59

4.8 1-Jet Particles in 3D. Top row Scale Sxy,Sxz,Syz, middle row Rota-

tion Rx,Ry,Rz and bottom row Shear Sh1,Sh2,Sh3. 61

4.9 Smoke density and velocity field edited with 0-jet and 1-jet particle . 62

List of Figures 12

4.10 0-Jet particle instabilities. A simulation of several 0-jet particles

displaying instabilities. 64

4.11 1-Jet particle simulation. A simulation of several 1-jet particles dis-

playing instabilities. 64

4.12 Initial conditions for the 0-jet particles 65

4.13 Unconstrained (left) vs constrained (right) 0-jet simulation after

identical initial conditions. The constraint targets the particle mo-

menta towards (1,0). 65

4.14 The velocity field from a simulation of 30 0-jet particles interacting

in 3D. 67

5.1 Comparison of a 0-jet flow with skinning by translation. The skin-

ning deformation is on the left and the 0-jet particle flow is on the

right. 72

5.2 Comparison of a 1-jet flow with skinning by rotation. The skinning

deformation is on the left and the 1-jet particle flow is on the right. . 72

5.3 Editing of the 2D smoke simulation with a 0-jet particle flow 75

5.4 Editing of the 2D smoke simulation with a 1-jet particle flow 76

5.5 Deformation of a 3D smoke simulation with a 0-jet particle flow . . 78

5.6 Deformation of a 3D smoke simulation with 1-jet particle flow . . . 79

5.7 The new jet particles Lα(s) are created by offsetting the jet particles

Jα(s) with the displacement vector dqα(t), given by the flow ϕt

applied at qα(0) . 81

5.8 Deformation of a 3D smoke simulation using advected jet particle

flow, showing 8 selected frames in increasing time in left-right mi-

nor and top-bottom major order. 83

5.9 The new jet particle flow Lα(s) is calculated by deforming the jet

particle flow Jα(s) with the cached flow ϕt 86

5.10 Deformation of an existing flow with turbulent 1-jet particles. The

original simulation density at a frame is shown on the right, with

the resulting deformed density displayed on the left. 87

List of Figures 13

5.11 The spline function β used for retracting the deformation. 88

5.12 Retracting the edit flow ψ(s) around time T , by applying the curve

β to the edit time s in the jet particle flow Lα(s, t). 88

5.13 A 2D smoke simulation deformed by a retracted 0-jet edit flow. The

advected jet particle flow path before retraction is indicated by dots.

Frames are in left-right minor and top-bottom major order. 90

5.14 A 2D smoke simulation deformed by a retracted 1-jet edit flow. The

advected jet particle flow path is indicated with a dot. Frames are in

left-right minor and top-bottom major order. 91

5.15 Smoke densities from a simulated smoke stack used in a shot in

production. 93

5.16 The deformed smoke densities found by applying the jet particle flow. 93

5.17 The jet particle rig in Maya, used to deform the smoke densities in

the simulation. The jet particle is constrained to a curve which is

placed and edited interactively. A deformed version of the densities

is shown in the viewport. 94

6.1 The known test velocity fields . 103

6.2 0-Jet particles representing a constant field with σ ∈ [0.25,5] 105

6.3 0-Jet particles representing a divergence-free rotational field with

σ ∈ [0.25,10] . 106

6.4 1-Jet particles representing a constant field with σ ∈ [0.25,4] 107

6.5 1-Jet particles representing a divergence-free rotational field with

σ ∈ [0.25,5] . 108

6.6 Vector field matching curve tangents, σ = 0.8 110

6.7 Vector field matching curve tangents, σ = 0.2 111

6.8 Vector field matching velocities along a closed curve 111

6.9 Vector field given by aligning µ = Ry with the Frenet frame 113

6.10 Vector field given by aligning µ with the Frenet frame and matching

u on γ . 115

6.11 Vector field generated by 0-jet particles with varying σβ 116

List of Figures 14

6.12 Vector field generating a tornado effect using eight 1-jet particles

with varying σβ . 117

7.1 Deformation of rest grid with a 0-jet particle 122

7.2 The Jacobian matrix maps the rest triangle TR to the triangle T de-

formed by the flow ϕ . 123

7.3 Flow by ϕ mapping x′ to x . 125

7.4 Bilinear interpolation to estimate undeformed position q′ from q

using frames Qi j and positions Xi j 127

7.5 Control points for a single bezier patch in 2D given the reverse flow

ϕ(·, t)−1 . 129

7.6 B-Spline surface consisting of four surface patches Bi j constructed

with frames Qi j . 130

7.7 Control points for a slice of a 3D bezier spline 134

7.8 Deforming a point p with a flow of a point cloud given by closest

deform particles αi := (Xi,Qi) . 136

A.1 The deformation algorithm preserves the sparsity of the density field 149

A.2 The delta vectors used for the deformation. These are defined

sparsely on a coarser grid than the data set being deformed. 150

List of Tables

3.1 An explanation of the symbols used throughout this document . . . 37

4.1 A basis for the Lie Algebra sl3(R). Note we mark Syz as red since

we must omit one element to form a basis. 60

List of Videos

4.1 Sketching with a scalar kernel . 55

4.2 Sketching with a divergence-free matrix kernel 55

4.3 Sketching with an interpolated matrix kernel 55

4.4 2D smoke editing application . 61

4.5 0-Jet particle simulation . 63

4.6 1-Jet particle simulation . 63

4.7 Jet particle constraints . 65

5.1 Comparison of 0-Jet flow with skinning by translation 71

5.2 Comparison of 1-jet flow with skinning by rotation 71

5.3 Original 2D Smoke Simulation . 74

5.4 Deformation of 2D Smoke with Static 0-jet particle 74

5.5 Original 3D smoke simulation . 77

5.6 3D smoke deformed with 0-jet particle 77

5.7 3D smoke deformed with 1-jet particle 77

5.8 3D smoke deformed with an advected 0-jet particle 81

5.9 3D smoke deformed with an advected 1-jet particle 82

5.10 3D smoke deformed with multiple advected 1-jet particles 82

5.11 Deforming an existing smoke simulation with a coupled 1-jet parti-

cle flow . 86

5.12 2D smoke 0-jet deformation keyframe edit 89

5.13 2D smoke 1-jet deformation keyframe edit 89

Chapter 1

Introduction

1.1 Motivation
Since the introduction of grid-based fluid solvers to the graphics community by Fos-

ter and Metaxas 1996 and Stam 1999, fluid simulations have been used extensively

to create content for virtual worlds. Mathematical models generate physically plau-

sible results and can add a level of realism that would otherwise be hard to achieve.

However, fluid simulations are hard to predict and control, and are expensive

to compute.

If an artist needs to make a small change to some aspect of a fluid simulation,

this typically requires the adjustment of constraints and the re-computation of the

equations of motion, which can cause substantial delays. In this thesis we propose

techniques that allow the artist to edit existing fluid simulations by enabling the user

to design and incorporate new volume preserving flows.

The principal contributions of this thesis are:

1. Finding a natural and computationally efficient way to generate volume pre-

serving flows that “behave like a fluid”

2. Coupling the new flow with an existing off-line simulation for fluid editing

3. Creating control rigs for designing and editing divergence-free velocity fields

for fluid control

1.2. Jet Particles 18

4. Implementation of deformations given by jet particle flow on sets of points,

vectors, volumes, meshes and frames

Our solution to (1) is obtained by using Lagrangian methods based upon ma-

chinery from the world of diffeomorphic medical image registration, in order to

create time-dependent deformations which are “fluid-like”. By using jet particles

we are able to give the user direct control over the deformation gradient at the par-

ticle positions.

We provide a solution to editing existing fluid flows (2) by advecting jet par-

ticles and their momenta with a divergence-free velocity field. The source of this

velocity field can be an existing off-line flow or a live fluid simulation.

In order to address (3) we propose methods for designing static divergence-

free velocity fields using jet particles that satisfy constraints on their gradients at

the particle positions. We outline how this may be useful for fluid control and

compression of existing divergence-free velocity fields.

Finally we identify as contribution (4) the development of efficient solutions

for implementing the above deformations given by the jet particle flow. These meth-

ods take advantage of the Hamiltonian nature of the flow to create large deforma-

tions without loss in accuracy.

As a secondary aim, this thesis also brings jet particle dynamics to the graphics

community.

1.2 Jet Particles
In mathematics, the k-jet of a function is a polynomial that matches the function up

to order k, found by truncating its Taylor series. On the other hand, jet particles are

Hamiltonian particles that carry higher order information about the flow with them.

Each particle carries information describing the local deformation of the flow up to

order k, and so they are named k-jet particles.

The dynamics of these particles serves as a model for generating regularised

incompressible fluid flow. The flows generated by these particles can be evaluated

without a velocity projection step, and the particles generate divergence-free veloc-

1.3. Hypotheses 19

ity fields, hence they create incompressible flows by definition.

Jet particles are a promising area to explore in computer graphics, and we

hope to demonstrate this by identifying and implementing natural and beneficial

examples of their use in fluid sketching and editing.

Although the main application of this thesis is to design and edit incompress-

ible fluid flow, the deformation techniques we describe are also well suited for shape

deformation, and may have a substantial role to play in other areas of computer

graphics.

We outline our first three contributions as Hypotheses 1,2 and 3 in the follow-

ing section.

1.3 Hypotheses
Hypothesis 1. Sketching Flows

We assert that jet particles can be used in a natural and efficient way to sketch

realistic flows. By constraining jet particles to move with an artist’s brush stroke,

new fluid-like flows can be designed easily and intuitively.

We demonstrate our system in Chapter 4 by creating a real-time application

for sketching fluid-like deformations. Further, we describe how to constrain simu-

lations of multiple jet particles in order to create more complex flows.

Hypothesis 2. Editing Simulations

We assert that jet particles bring a natural way to edit and augment existing

flows. By creating sketch-based edit flows at key frames in an off-line fluid sim-

ulation, new physically plausible fluid states can be created using jet particle flow.

Natural variations in the original fluid simulation can be produced by composing

the original flow with the sketched edit flow.

In Chapter 5 we propose different methods for coupling our designer flows

given by jet particles with cached simulated flows. Firstly we show how to de-

form the flow by deforming the simulation space directly. Then we show how to

track the coordinate system of the sketched flow with the cached flow using advec-

tion. Finally we develop a deeper coupling method where we generate a family of

1.4. Chapter Overview 20

deformations linked with the original flow, including a method for retracting the

deformation over time.

We show examples by means of smoke simulations including the use of scenes

generated from real visual effects shots in production.

Hypothesis 3. Designing Divergence-free Vector Fields

We assert that jet particles provide an intuitive system for designing and editing

divergence-free vector fields, that allows us direct control over the deformation gra-

dient at key positions in the fluid. Configurations of static jet particles create an in-

terpolated vector field over the surrounding space at arbitrary resolutions, and their

momenta can be manipulated to edit the vector field. Further, existing divergence-

free vector fields can be represented by jet particles.

In Chapter 6 we show how to project an existing divergence-free velocity field

onto arrangements of jet particles. We show how to modify the vector field around

the particles using the extra degrees of freedom provided by the 1-jet particles. In

this sense we create a flow control rig using jet particles for use in animation and

fluid control systems.

We note the difference between divergence-free vector fields and incompress-

ible flows and refer the reader to Definition 3.5 to make clear the links between the

two. Although controlling each has its own challenges, they are both valuable edit-

ing tools for use in fluid control and editing. We must design incompressible flows

in order to edit an existing fluid simulation over time. But static divergence-free

vector fields can be used as velocity constraints as well.

1.4 Chapter Overview
After we present the relevant background work in Chapter 2, this thesis begins with

an introduction to matrix kernels and jet particle dynamics in Chapter 3. The Sec-

tions therein introduce the mathematics that we shall use in the following chapters,

and are included here since we have not seen their use in computer graphics appli-

cations to date.

1.4. Chapter Overview 21

The substantive contributions from his thesis are presented in Chapters 4, 5, 6

and 7.

1. In Chapter 4 we introduce methods for designing smooth divergence-free

flows by using curves sketched by the user, in order to constrain jet particle

to create realistic flows.

2. In Chapter 5 we provide methods for editing fluid simulations with our

sketched flows, by propagating the jet particle’s deformation into existing

off-line flows.

3. In Chapter 6 we show how to use jet particles to design vector fields for

fluid control, by solving for configurations of jet particles that have prescribed

velocities and velocity gradients at given particle positions.

4. In Chapter 7 we present algorithms for implementing the deformations that

are required in the earlier chapters. This includes direct evaluation techniques,

as well as techniques for approximating the deformation on coarser grids,

point clouds and a higher order technique using splines.

We present the conclusions in Chapter 8 and we also suggest directions for

future research that builds on the work in this thesis.

Finally in Appendix A, we give details of the tools we have developed and how

they were used in practice in order to create our examples.

Chapter 2

Background

Fluid simulation was introduced to the graphics community by Foster and

Metaxas [1] and further popularised with the stable semi-Lagrangian advection

algorithm of Stam [2]. Complementary to these Eulerian, grid based approaches to

fluid simulation are the Lagrangian particle based methods such as Smooth Particle

Hydrodynamics [3] (see below). Both of these methods are effective in generating

realistic solutions for the purposes of computer graphics simulation.

Additionally there are hybrid schemes such as the Particle In Cell method,

which add a grid for use in the particles’ velocity projection step, and FLIP methods

that improve on this technique by reducing dissipation. See Zhu and Bridson [4] for

their introduction to computer graphics and references therein.

2.1 Grid Based Solvers
Foster and Metaxas [1] introduced a grid based solver for simulating liquids based

on the Navier-Stokes equations. The domain and boundaries are discretised into a

regular grid, and an iterative finite difference method is required to find new veloc-

ities at each time step that satisfy the divergence-free condition.

Stam [2] improve the stability of the advection with a technique known as

the method of characteristics, using a semi-Lagrangian scheme where the ad-

vected quantities are calculated by tracing back the properties of fluid parcels up-

stream using the velocity field. Additionally they solve the Poisson equation when

calculating the velocity projection, improving the accuracy of this step. How-

2.2. Smooth Particle Hydrodynamics 23

ever these improvements come at the expense of increasing numerical dissipation.

Lentine, Grétarsson, and Fedkiw [5] improve the accuracy and stability of the semi-

Lagrangian method by combining the scheme with an additional forwards advection

step, to guarantee the conservation of mass and momentum in incompressible flows.

Fluid flows on surfaces were introduced to the graphics community by Stam [6]

who created a stable Navier-Stokes solver on subdivision surfaces. Still in the dis-

crete surface setting, fluid flow is simulated on arbitrary simplicial complexes [7].

The action of flows on differential 1-forms can be calculated on regular grids [8].

This relates to our work as we seek to deform grids carrying density and vector

information with the flows designed in this thesis.

Solvers are not required to store velocities directly on the grid. As an example,

De Witt, Lessig, and Fiume [9] introduce a spectral method for solving the Navier-

Stokes equations using a spectral basis for the velocity calculated using eigenfunc-

tions of the Laplacian operator. In another direction, Azencot et al. demonstrate a

method for modelling fluid flow on triangle meshes using a variational integrator

storing vorticity, which conserves vorticity by construction.

2.2 Smooth Particle Hydrodynamics

Smooth Particle Hydrodynamics (SPH) is a Lagrangian approach to simulating flu-

ids which conserves mass that is carried on a discrete set of particles. The particles

carry additional physical values which are interpolated through the domain together

with their gradients, using a scalar smoothing kernel. See Ihmsen et al. [11] for a

recent STAR report.

SPH was initially developed in the astrophysics community by Monaghan [3].

It was first introduced into the animation community by Desbrun and Gascuel [12],

who demonstrate the technique by generating the flow of highly deformable objects.

The authors Müller, Charypar, and Gross [13] showed how the technique can be

used to simulate water with a free surface, whilst Alduán and Otaduy [14] show

how to apply SPH to the simulation of granular solids such as sand.

Using volume fractions to model multiphase flow allows for the mixing of

2.3. Particle in Cell Methods and FLIP 24

different fluids [15], and this approach is later extended to incorporate the coupling

between liquids and solids [16].

Recent advances in SPH include the use of a novel unified particle type, in-

troduced for representing fluids and liquid boundaries, and enabling phase change

effects to be implemented easily in the solver [17]. Further, a recent step forwards

in SPH simulation has brought speed improvements of up to two orders of magni-

tude by avoiding the simulation of ambient air particles [18]. Moreover an adaptive

SPH solver utilising a continuous distribution of particle sizes has been proposed,

allowing the efficient simulation of liquids using a range of resolutions [19].

Typically the SPH kernels should be close to Gaussian [3], although there are a

number of other properties that are desirable in the kernel function. These properties

are unity, compact support, positivity, decay, delta function property, symmetry and

smoothness [20].

The pressure at each particle is calculated based on the local change in den-

sity from the original, and the gradient of this pressure drives the advection of the

particles in a way that acts to restore the original density, and thus enforces incom-

pressibility.

The velocities calculated in an SPH solver are not divergence-free without tak-

ing additional steps, and so the flow generated will be compressible as the fluid

oscillates in a way to target its original density [11].

One issue with SPH is that its accuracy is proportional to the gradient in the

velocity field, and this in turn is sensitive to the spacing of the particles. Further,

SPH simulations can experience bunching of particles, so the accuracy is bound to

drift during simulation.

2.3 Particle in Cell Methods and FLIP
Particle in Cell (PIC) methods involve seeding the fluid domain with particles, by

adding around 8 to 12 particles placed randomly within each cell [21]. See Zhu and

Bridson [4] for their introduction to computer graphics.

At each time step the particle velocities are transferred to a grid using linear

2.4. Fluid Control 25

interpolation. The forces are integrated on this grid into velocities, and the veloc-

ity field is made divergence-free. Finally the velocities are then interpolated back

onto the particles. This process of moving data back and forth between the parti-

cles and the grid each time step creates extra numerical viscosity which is mostly

undesirable.

This decoupling of the particles from the grid is an example of a hybrid solver.

The particles take on the task of the advection term, and the grid is responsible for

the pressure projection.

The FLIP solver improves on PIC by mostly eliminating the loss of accuracy

that occurs during the transfer of data between the particles and the grid. To achieve

this, it is the difference between the original velocities that is interpolated back onto

the particles and used in the velocity update. In this way the loss of accuracy occurs

in the velocity deltas, and there is no smoothing of the original component of the

velocity.

Zhu and Bridson [4] suggest calculating both the PIC and the FLIP velocity on

the particles and allowing the user to interpolate between them in order to be able

to control the amount of numerical viscosity for artistic effect.

Hybrid solvers also exist where the FLIP particles velocities are transferred

to a particle grid consisting of SPH particles, and so the pressure calculation is

performed on a Lagrangian grid [22]. For liquid simulations the number of particles

required in the simulation can be significantly reduced if the particles are restricted

to a narrow band around the surface [23].

2.4 Fluid Control
In this section we review existing methods for controlling fluids and see how jet

particles can offer a novel approach.

Flow primitives such as sources, sinks and vortices are combined in two di-

mensions to design arbitrary divergence-free flows [24]. We can also use stationary

jet particles as flow primitives in two and three dimensions to create divergence-free

flows. Additionally we can use jet particles to control fluid flow during a simulation

2.5. Model Reduction 26

by using them as velocity constraints.

Flows can be created easily and quickly by generating low resolution simula-

tions. However there is no easy way to map the parameters used to the higher res-

olution grids in order to get the same quantitative results. One approach for smoke

is to couple the simulation with the low frequencies of a coarse or art directed flow,

whilst adding new higher frequencies during the simulation [25].

Instead of using the entire coarse flow to drive a new simulation, only the most

significant topological structures may first be extracted from the flow field. The

Lagrangian Coherent Structure field, representing the dynamic fluid skeleton of a

flow, can be used to create a force that targets the simulated smoke velocity to a low

resolution flow, but only in this critical region [26]. For liquid simulations, volumes

carrying velocity information can be extracted from a low resolution simulation

to guide the flow, whilst simulating the finer details [27]. Alternatively artists may

control fluid simulations more directly, using a technique to control the flux through

boundaries given by an animated surface [28].

Von Funck, Theisel, and Seidel [29] construct divergence-free vector fields in

three dimensions which they use to create an application for sculpting and editing

shapes, but they do not construct fluid-like flows for editing.

We will show how to sketch fluid-like flows with jet particles in Section 4.4,

and how to add turbulence-like effects to existing flows whilst implicitly enforcing

the incompressibility condition in Section 5.4.

2.5 Model Reduction
The degrees of freedom of the solution to an incompressible fluid solver can be

significantly reduced by calculating only the most significant bases for the velocities

in the domain. This is an example of model reduction, a technique to find solutions

on the full space of a system using a lower dimensional basis.

Using dimension reduction, Treuille, Lewis, and Popović [30] create a lower

dimensional space to represent the velocity vectors in the fluid domain, and use

Galerkin projection to find reduced operators for the fluid evolution equations. This

2.5. Model Reduction 27

allows a real-time interactive fluid simulation system, albeit at the cost of a loss of

accuracy.

The authors first create a set of example velocity vectors in a matrix U from

snapshots of off-line simulations. By construction these velocities are divergence-

free and satisfy the no-slip boundary conditions, as constraints of the simulation.

To construct the basis velocity vectors, only the most significant eigenvectors are

retained from UUT , corresponding to a principal component analysis. This gives

velocity vectors which satisfy the same velocity constraints as above.

Moving objects through the fluid domain represents a useful method of user

interaction with the flow. This is made possible in this setting by calculating a

reduced basis for the space of velocities that may be observed due to the presence

of a boundary object, and adding forces that enforce the boundary conditions at the

surface.

De Witt, Lessig, and Fiume [9] develop another method for the Galerkin pro-

jection of the Navier-Stokes equations using a spectral basis for the velocity. This

basis is calculated using eigenfunctions of the Laplacian operator on the fluid do-

main.

These eigenvectors are orthogonal, and larger eigenvalues correspond to veloc-

ity fields with smaller vortices. By truncating the range of eigenfunctions used, it is

possible to make a trade off between accuracy and efficiency by discarding the ve-

locity fields containing smaller vortices. Further, the structure coefficients used for

performing the advection are pre-calculated for efficiency. Moving obstacles may

be incorporated into this system without calculating an additional reduced basis for

the boundary velocities as in the previous method proposed by Treuille, Lewis, and

Popović [30]. This method works on regular grids or arbitrary meshes, and does not

require example velocity fields from simulation data to create its basis vectors.

Liu et al. [31] present a variational fluid integrator that extends the work of De

Witt, Lessig, and Fiume [9]. This method works with arbitrary embedded bound-

aries even when the domain is a regular grid [31] and gives improved numerical

results. The proposed variational integrator preserves energy and displays Kelvin’s

2.5. Model Reduction 28

circulation theorem.

The above approaches use basis vectors that are global and cover the whole

domain, but model reduction can also be implemented using a more local ap-

proach. By creating areas which capture local fluid behaviour, Wicke, Stanton,

and Treuille [32] cover the fluid domain with tiles, each one containing their own

velocity bases. They introduce constraint reduction to modify the basis vectors so

that velocities match between adjacent tiles. However their constraints do not guar-

antee smooth velocity fields across boundaries, and allow discontinuities tangential

to the boundaries.

Kim and Delaney [33] develop a subspace integration method that is able to

provide variations of previously calculated simulations. This allows efficient re-

simulations of the flow with modified parameters from the original. It uses a cu-

bature approach to compute the advection in the reduced space, requiring the pre-

computation of cubature points based on previous simulations.

Weißmann, Pinkall, and Schröder [34] propose a method for extracting vortex

filaments from existing flows. This method has applications for representing the

fluid as a sparse data set, and for providing an input for hybrid solvers that track

vortex filaments. Improving on this technique, a hierarchical representation of a

flow using vortex filaments can be calculated which represents the flow at multiple

scales [35].

Later we shall see that the flow by jet particles approximates Euler-α flow

under the assumption that the particle spacing remains close to the kernel size of

the particle [36]. So jet particle flow can also be viewed as a model reduction since

the high dimensional solution space is reduced and instead represented with a low

dimensional basis given by the particles and their state.

Further, jet particle flow is Hamiltonian and therefore reversible and energy

preserving.

2.6. Turbulence 29

2.6 Turbulence

Incorporating turbulence effects into fluid dynamics solvers is important in creating

convincing and realistic simulations.

Bridson, Houriham, and Nordenstam [37] show how to create procedural

divergence-free noise by calculating the curl of a vector-valued 3D noise func-

tion [37]. Any continuous function can be used as input, and Perlin noise [38]

is a good candidate as it is easy to compute and to control the frequencies in the

noise.

Jet particle simulations also create divergence-free velocity fields. Given any

random configuration of jet particles and momenta that we choose, the jet particle

velocity field can similarly be interpreted as divergence-free noise. However as we

shall see in Section 3.6 they can also provide a time varying noise function, by

adding the dynamics given by their equations of motion.

Regions of vorticity advected in the fluid contribute to the dynamics of the

flow, and have a major role to play in turbulence effects. The numerical dissipation

of vorticity in the Euler equations leads to artefacts in its solution. This dissipation

is addressed using vorticity confinement [39], by adding a new confinement term to

the Euler equations. The modification allows the preservation of vortical regions in

the flow even when diffusion is present, but it can lead to the unstable amplification

of vorticity in some cases.

Vorticity confinement is improved by coupling the flow with vortex parti-

cles [40]. Each vortex particle stores a vorticity value, and a vorticity field is in-

terpolated from them by summing the contributions from nearby particles. These

particles incorporate back the vorticity at larger scales than the vorticity confine-

ment, and are used to generate turbulence effects in smoke simulations.

In order to enhance the fluid re-scaling process, Kim et al. [41] add divergence-

free wavelet noise during the re-simulation of a lower resolution flow. The noise is

modelled according to the Kolmogorov turbulence spectrum [42], which presents a

model of how the energy behaves as it diffuses into smaller wavelengths. This ap-

proach generates physically plausible turbulence at the sub-grid level that is missing

2.7. Fluid Editing 30

from the input flow. The corresponding divergence-free noise field is advected with

the flow in order to augment the velocity field. This technique attracted a Techni-

cal Achievement Award from the Academy of Motion Picture Arts and Sciences in

2012.

Wavelet turbulence can be also be attached to particles [43] in order to augment

lower resolution fluid simulations. In this work the Launder and Sharma [44] energy

and dissipation model tracks the turbulence on the particles, which are advected

with the flow in order to synthesise additional turbulent noise, which is used as a

displacement offset during rendering.

Turbulence effects can also be added to existing water simulations by creating

wave simulations on liquid surfaces [45]. This idea was further extended to work

directly with particle based simulations without requiring a level set [46].

Jet particles may also have a significant role in adding turbulent detail at finer

scales to fluid simulations.

2.7 Fluid Editing
The ability to edit and manipulate a fluid simulation in visual effects is important to

animators and supervisors trying to achieve a precise vision of their ideas. This is

a hard problem to solve due to the infinite solution space and the chaotic nature of

fluid dynamics.

Editing a flow given by particles is addressed in Pighin, Cohen, and Shah [47]

using a deformation defined with radial basis functions that is advected with the

fluid. This method allows local edits to be propagated to nearby particles for a win-

dow in time using hierarchical B-splines, although the method used for interpolation

of the edits is not physically based.

Smoke simulations that hit predefined keyframes can be generated using con-

trol forces and non-linear optimisation methods [48], but this involves an expensive

forward gradient computation.

Editing incompressible fluids often requires the design of local control forces

or velocity fields that are divergence-free for use in constraints. Treuille et al. [48]

2.7. Fluid Editing 31

provide a method to create Gaussian wind and vortex forces that target the fluid to-

wards specific key frames. However these vector fields have to be made divergence-

free in an additional projection step. We will use divergence-free matrix kernels that

are intrinsically divergence-and free to generate our flows.

The simulation targeting method of Treuille et al. [48] is later improved by us-

ing the adjoint method, and applied to liquid and smoke simulations [49]. However

the method proposed requires a global optimisation which needs to be iterated over

the sequence, and they do not address how to create the target keyframes for the

simulation.

An alternative method for guiding liquid simulations uses proportional deriva-

tive (PD) control based on user input shapes. This produces good results without

requiring expensive non-linear optimisations [50]. Instead a divergence-free exter-

nal force field and a the gradient of a potential field drive the fluid towards the target

shape.

Raveendran et al. [22] propose a similar method for controlling liquids by pro-

viding a sparse sequence of control meshes. The meshes are first used to interpolate

a volume preserving flow from the input meshes. The velocities calculated from

this deformation are then used as boundary condtions on the grid during simulation

in order to achieve the constrained flow without using PD control.

Zhang et al. [51] describe a technique for controlling particle-based fluid sim-

ulations without requiring a grid based solver. Their method firstly generates a par-

ticle representation of the input shapes, and then creates a corresponding skeleton

motion using joints and weights for each particle. However the system requires the

user to provide the joint information as an input, which may not always be available.

A method for interactive editing of liquid simulations is described by Pan et

al. [52] that involves sketching an edit and propagating this into the flow whilst

simulating the new result. The input to the editing system is a set of points and

their edited positions. From this a divergence-free flow is generated by non-linear

optimisation of an objective function. This deformation is applied incrementally

over previous frames before the edit is incorporated as a constraint during a re-

2.8. Space-time Methods 32

simulation.

Our editing application differs from this approach as it allows realistic varia-

tions to be produced without a re-simulation. Moreover our edits do not need to be

made divergence-free using an optimisation step.

The hierarchical vorticity skeletons calculated by Eberhardt et al. [35] can be

used for editing the flow field of a single frame. They demonstrate this by means of

a spline that translates and rotates all neighbouring filaments, from which a new ve-

locity field can be calculated. However this technique does not guarantee temporal

coherence of the vortex filament structures, and so is not well suited for edits over

time. In contrast, our technique for editing the fluid flow allows edits to propagate

to neighbouring frames.

2.8 Space-time Methods
Space-time methods for fluids have become popular in recent years, taking advan-

tage of the fact that patterns reoccur at different times and positions within the fluid.

Raveendran et al. [53] use space-time interpolation to create blends between

pre-calculated liquid simulations using mesh surfaces extracted from the flow. How-

ever, the system relies on blending qualitatively similar features that have been

picked from each flow by hand. This technique is improved by performing match-

ing automatically using a five-dimensional optical flow technique [54]. The method

targets signed distance functions in order to interpolate between both liquid and

smoke simulations in space time.

Pan and Manocha [55] combine a space-time approach with optimal control

forces in an improved technique for guiding smoke simulations between keyframes

of density and velocity fields.

A system for sculpting liquid animations given a number of input meshes [56]

provides editing tools for combining space-time features. Liquid droplets are

spliced into an existing simulation after applying basic linear transformations.

Chu and Thuerey [57] adapt an algorithm developed from machine learning to

synthesise high resolution flow based on repositories of space-time simulation data

2.9. LDDMM 33

using convolutional neural networks.

2.9 LDDMM

The problem of finding correspondences between shapes occurs frequently in the

fields of computer vision, for example in optical flow and medical imaging. How-

ever a complication in finding a registration between image data using displacement

fields is its failure when the deformation required is large.

The large deformation diffeomorphic metric mapping framework (LDDMM)

approaches the non-linearity of this deformation space by generating the flow us-

ing particle methods [58]. These methods generate a deformation by combin-

ing linear combinations of basis functions defined around each particle. A vari-

ation of this framework, the large deformation diffeomorphic kernel bundle map-

ping (LDDKBM) framework [59], provide a registration algorithm that allows de-

formation at multiple scales by varying the particle kernel size, and the authors

provide an optimised implementation using the fast multipole method [60].

The related problem of finding a flow that transforms N particles or landmarks

from one configuration into another [61] gives rise to a Hamiltonian which is a

function of the particle’s momenta and a choice of kernel [62]. The equations of

motion for this Hamiltonian can be used to create incompressible fluid flows if the

kernel is chosen to be divergence-free.

By defining a metric given by particle’s flow, distances between shapes can

be calculated by finding the geodesic flow that transforms one set of points, or one

surface, onto another [63]. We use this metric to provide an estimate of the size of

the flows we sketch with our fluid editing tools.

The translation and rotation invariant (TRI) matrix kernels define a family of

localised vector fields that can vary smoothly between scalar Gaussian, divergence-

free or curl-free [62]. These matrix kernels provide the basis for our editing tools

by enforcing incompressibility easily, and the ability to soften the incompressibility

constraint as required is useful for more creative control.

2.10. Jet Particles 34

2.10 Jet Particles

An alternative description of incompressible fluid flow is given by Arnold [64] in

his famous paper in 1966. Arnold [64] shows that the flow of an ideal incompress-

ible fluid is equivalent to motion along a geodesic curve in the Lie group SDiff of

smooth volume preserving diffeomorphisms on the fluid domain. This is a fascinat-

ing viewpoint which links the physics of the fluid to the geometry of the flow.

The Lie algebra sl, defined as the tangent space to the group SDiff at the iden-

tity, consists of the vector space of divergence-free vector fields. These vector fields

are the infinitesimal generators of the group SDiff. Although SDiff is infinite, its

discretisation [65] leads to an Eulerian integrator for incompressible fluid flow [66]

that preserves energy, is unconditionally stable, has no numerical viscosity, and for

which Kelvin’s circulation theorem holds.

On the other hand, Lagrangian descriptions of Eulerian flow may be derived

using Lagrange-Poincaré reduction, where the particle relabelling symmetry allows

the equations of motion of an ideal fluid to be projected onto a finite set of particles

[67]. Cotter et al. [68] derive jet particles as one such reduction, yielding Hamilto-

nian particles which carry extra information about the deformation gradient of the

flow with them. Further, these jet particles represent a Lagrangian discretisation of

the diffeomorphism group SDiff [69], and induce a divergence-free vector field in

which the particles are carried.

We will see in Section 3.6 that jet particles move in velocity fields that are

intrinsically divergence-free, without requiring a pressure solve. The link between

the particles momenta and the vector field that generates the flow is established

using matrix-valued kernels [36, 62]. The vector fields they induce are divergence-

free, and hence generate incompressible flow. This contrasts for example with SPH

simulations, where the velocity fields are not divergence-free and the simulations

generate compressible flow.

Using ideas from geometric mechanics [70], Sommer and Jacobs [71] exam-

ine how jet particle flow and LDDMM methods for geometry matching are both

examples of the use of reduction by Lie group symmetry to generate particle meth-

2.11. Vector Field Design 35

ods. Moreover, jet particles that carry second order information can also be used to

construct flows that match images to higher order spatial accuracy [72].

The Euler-Poincaré equations (EPDiff) [70] are used in medical imaging to

estimate the geodesic distance of the flow that matches templates between different

medical scans [73]. See Miller, Trouvé, and Younes [74] for an approach to finding

such optimal deformations in computational anatomy using geodesic shooting. In

fact Euler’s equations of incompressible flow may be recognised as EPDiffVol , the

incompressible version of EPDiff [36]. Since jet particles are singular solutions to

the EPDiff equations, they are well suited to our application of sketching and editing

incompressible flows.

The connection between jet particle flow and the regularised Euler equations is

further explored in Cotter et al. [69]. They show simulations of collisions between

two 0-jet particles that result in the creation of a new 1-jet particle, and they provide

illustrations of the vector fields given by 2-jet particles. Jet particle simulations

have an issue with stability when the particles become too close [36]. We discuss

this later and show some stabilising constraints in Sections 4.3 and 4.5.

We are guaranteed the existence of geodesics connecting nearby diffeomor-

phisms for EPDiff [75], a theorem from Riemannian geometry. So in particular we

can connect edited flows to the original ones with a minimal smooth flow. We will

construct such deformations with jet particles.

It has been suggested that jet particles can be used to approximate velocity

fields that interpolate known velocities at their point positions for metrology [76]

but a method for doing so is not provided. We describe an implementation for this

in the case of divergence-free velocity fields in Chapter 6.

2.11 Vector Field Design
Designing vector fields is a problem that occurs frequently in computer graphics in

two and three dimensional spaces. The applications include fluid dynamics, texture

synthesis and non-photorealistic rendering.

For example Zhang, Mischaikow, and Turk [77] create a system for designing

2.11. Vector Field Design 36

vector fields by placing singularities on surfaces.

In the vector field interpolation problem, vectors are specified at a sparse set

of vertices, and these vectors are interpolated over the mesh. This is addressed

for tangent fields by interactively specifying tangent vectors at sparse vertices on a

triangle mesh using discrete external calculus [78].

Generalising vector fields to n-rosy fields [79] and n-direction fields [80] on

surfaces is also important, in particular when n is 4 for re-meshing and parame-

terisation. Direction fields can also be constructed on discrete surfaces by placing

isolated singularities and constructing a trivial connection [81] by solving a sparse

linear system.

These are relevant since we can interpolate vector fields given by a set of jet

particles at sparse positions in two and three dimensions to create divergence-free

vector fields. This is of particular interest in fluid sketching, simulation and editing.

Chapter 3

Technical Background

In this chapter we introduce the technical background used in this thesis, including

matrix kernels, hamiltonian dynamics and jet particles.

3.1 Nomenclature

Table 3.1 shows a list of common symbols used in this thesis and their meaning.

Symbol Meaning Representation
d Dimension of domain d ∈ N
n Number or particles n ∈ N
M Domain of motion Manifold M ⊂ Rd

N Number of time steps N ∈ N
i, j,k, l,m Tensor indices i, j,k, l,m ∈ {1, . . . ,d}

α,β Particle labels α,β ∈ {1, . . . ,n}
Id Identity matrix Identity matrix of size d×d
δ i j Kronecker delta δ i j := [i = j]
Ki j Matrix kernel tensor Rank 2 tensor in d dimensions

SDiff(Rd) Ideal fluid configuration space Group of volume preserving flows
Xdiv(Rd) Divergence-free vector fields Vector u ∈ Rd

SL(d;R) Special linear group in Rd Matrix of size d×d with det 1
sld(R) Lie algebra to SL(d;R) Matrix of size d×d with trace 0
ϕ(x, t) Flow function Function ϕ(x, t) : Rd×R→ Rd

Xi Discrete grid coordinate Position Xi ∈ Rd

D Density grid Function D : Xi→ R
U Velocity grid Function U : Xi→ Rd

Φ Deform grid Function Φ : Xi→ Rd×Rdxd

Table 3.1: An explanation of the symbols used throughout this document

3.2. Basic Definitions 38

We will use the Einstein summation convention, where repeated indices imply

summation over the index range.

3.2 Basic Definitions
It is assumed that the reader is familiar with the basic concept of manifolds. How-

ever in this thesis it is sufficient to consider a manifold M to be the same as the

space Rd , where the dimension d is either two or three. The interested reader who

would like to know more should refer to Abraham, Marsden, and Ratiu [82] for a

good introduction into the theory.

We use the following definitions frequently in this thesis:

Definition 3.1. Let M1 and M2 be two manifolds. A diffeomorphism is a continu-

ous bijective map ϕ : M1→M2 whose inverse ϕ−1 is also continuous.

Definition 3.2. Let ϕ : M1→M2 be a map between manifolds with f : M2→ R a

function on M2. Then the pull-back of f by ϕ is a function ϕ∗ f : M1→ R on M1

given by

ϕ
∗ f = f ◦ϕ

Definition 3.3. Let f : M1→M2 be a C1 continuous maps between two manifolds.

The tangent T f of f is the map

T f ([c]x) = [f ◦ c] f (x)

where [c]x is the equivalence class of curves c : [a,b]→M1 that have the same

tangent at x ∈M1.

Definition 3.4. Let ϕ : M1→M2 be a diffeomorphism map between manifolds and

U ∈ X(M1) a vector field in M1. Then the push-forward of U is a vector field

ϕ∗U ∈ X(M2) in M2 defined by

ϕ∗U = T ϕ ◦U ◦ϕ
−1

3.3. Introduction 39

We shall use the push-forward of vectors later in order to calculate the image

of velocity vectors under a deformation.

Definition 3.5. Let X(Rd) denote the space of vector fields on Rd and let u(t) ∈

X(Rd) be a time-dependent vector field where t ∈ [0,1]. Then the flow of u is the

time-dependent diffeomorphism ϕu
t : Rd → Rd defined by

ϕ
u
t (x0) = x(t)

where x(t) denotes the solution to the initial value problem

dx
dt

= u(x) x(0) = x0

If we restrict Xdiv(Rd) to the space of divergence-free vector fields then the flow ϕu
t

is volume preserving.

We denote the space of volume preserving diffeomorphisms by SDiff(Rd),

which under reasonable circumstances is a smooth infinite dimensional manifold.

Definition 3.6. The Lie derivative of a tensor field defines the change in the tensor

along the flow of a given vector field. Let X be a vector field, Y be a tensor field and

ϕX
t be the flow of X . Then the Lie derivative of Y with respect to X is

LXY (p) = lim
t→0

(ϕX
−t)∗Y (ϕ

X
t (p))−Y (p)
t

3.3 Introduction
Key to our method is the use of particles to design incompressible flows. In addition,

we seek deformations that are “fluid-like” in some sense.

It was shown by Arnold [64] that the solutions to the ideal fluid equations

are in fact geodesics on SDiff, the group of volume preserving diffeomorphisms,

for the right invariant L2 metric. Motivated by this, a number of regularised fluid

models have been proposed by giving SDiff stronger Riemannian metrics induced

by Sobelev norms [83, 36]. These models have a regularisation parameter σ , such

3.4. Matrix-valued Kernels 40

that its solutions converge to the ideal fluid equations in the limit, as σ tends towards

zero. Therefore when σ is small, their solutions will appear fluid-like over short

time-scales.

Most importantly, these regularised models exhibit “particle-like solutions”,

i.e. solutions obtained by solving a finite-dimensional ODE for the dynamics of the

particles. This is a massive reduction, as SDiff is an infinite dimensional Fréchet

manifold. The use of such solutions is our primary tool in obtaining deformations

which appear to be fluid-like. It is natural to ask how to link the dynamics of finitely

many particles with a full diffeomorphism, and matrix-valued kernels provide a key

link in this relationship.

3.4 Matrix-valued Kernels

Matrix-valued kernels are well studied in mathematics but have not yet been applied

in computer graphics to our knowledge, so we include some relevant technical back-

ground in this section.

A matrix-valued kernel is a mapping K : Rd×Rd → Rd×d such that K(x,y) is

positive-semidefinite symmetric, and K(x,x) is the identity matrix for all x,y ∈ Rd .

We can use matrix-valued kernels to generate vector fields, given a particle and its

momentum.

A particle with position q ∈ Rd and momentum p ∈ Rd has the state (q, p),

and moves in a phase space given by T ∗Rd ≡ Rd ×Rd . A particle at position q

then induces a matrix field K(·,q) over Rd . By multiplying the matrix at a point x

by the momentum p we produce a vector, and hence we define a vector field u(x)

over Rd when considering all points x. Hence there is a linear map (q, p) 7→ u(·)

from the particle’s phase space T ∗Rd to the space of vector fields X(Rd), given by

u(x) = K(x,q) · p.

This is important for us because there are matrix kernels available that are

easy to compute and that generate divergence-free vector fields. In particular if

K generates divergence-free vector fields, then any curve (q(t), p(t)) ∈ T ∗Rd will

generate a time-dependent divergence-free vector field u(x, t) = K(x,q(t)) · p(t).

3.4. Matrix-valued Kernels 41

The flow of u is then a volume preserving diffeomorphism (see Definition 3.5).

In this section we will introduce a family of matrix kernels following Micheli

and Glauns [62], please refer to the paper for more details. This family of matrix

kernels is equipped with a parameter which allows interpolation between a scalar

kernel and either a divergence-free or curl-free matrix kernel.

In our application we are interested particularly in kernels which are

divergence-free since we are dealing with incompressible flow. However, we men-

tion the family of kernels here since the ability to relax this condition will be useful

in our sketching application in Chapter 4.

We will consider here translation and rotation invariant kernels (also called

TRI kernels). A matrix-valued kernel is called translation invariant if K(x+ τ,y+

τ) = K(x,y) for any τ ∈ Rd . If K is translation invariant, we may write it using

an auxiliary function k : Rd → Rd×d which is related to K via K(x,y) = k(x− y).

Moreover, we say k is rotationally invariant if k(Rx) = RT K(x)R for any rotation

matrix R ∈ SO(R,d). In this case it can be shown [62] there must exist functions

k‖ : R+→ R and k⊥ : R+→ R which relate to k via

k(x) = k‖(‖x‖)Pr‖x + k⊥(‖x‖)Pr⊥x

where

Pr‖x =
xxT

‖x‖2

Pr⊥x = Id−
xxT

‖x‖2

for ‖x‖ > 0. Usually the extension to the origin x = 0 is achievable by enforcing

continuity [62, §3].

For example we may consider the family of kernels

k‖(r) = be−r2
k⊥(r) =

(
b−ar2)e−r2

3.4. Matrix-valued Kernels 42

Figure 3.1: The vector fields of the matrix kernel from Equation (3.2) for a = 0,0.5,1.0
with momenta (1,0) inserted, showing the Gaussian, interpolated and
divergence-free kernels from left to right

where r = ‖x‖ and a,b ∈ R which give positive definite kernels for the set

D =
{
(a,b)|b≥−(d−1)

a
2c

,a≥ 0
}

where d is the dimension [62]. Values in D such that

b = (d−1)
a
2c

guarantee that the kernel is divergence-free, so in particular the matrix-valued func-

tion

Ki j =

(
xix j

σ2 +

(
1− r2

σ2

)
δ

i j
)

e−r2/σ2
(3.1)

is a divergence-free kernel with kernel size σ [62]. Here i and j are tensor indices

taking values in the range [1,d], and we are using the Einstein convention to indicate

that repeated indices are summed over the index range automatically.

By leaving a as a parameter, we have a family of kernels

Ki j =

(
axix j

σ2 +

(
1− ar2

σ2

)
δ

i j
)

e−r2/σ2
. (3.2)

which gives the usual Gaussian kernel when a = 0, the divergence-free kernel when

a = 1, and interpolated versions for a ∈ (0,1) [62]. These kernels are useful for

relaxing the condition that the vector field is divergence-free. See Figure 3.1 for an

illustration of the vector field given values of a = 0,0.5,1.

See also Mumford and Michor [36] for a similar divergence-free matrix kernel

3.5. Hamiltonian Dynamics 43

and a discussion of its links with Eulerian flow.

3.5 Hamiltonian Dynamics
D’Arcy Thompson’s landmark book “On Growth and Form” [84] elegantly demon-

strates the link between mathematics and biological processes. It can be argued

that the application of the field of computational anatomy to medical imaging is a

realisation of the key ideas in this book. It is the use of Hamiltonian control that is

fundamental in deriving geodesic flows which drive image registration techniques.

See Miller, Trouvé, and Younes [85] for a review of this viewpoint and its applica-

tion to shape space.

The matrix-valued kernels from the previous section generalise scalar valued

kernels that are used to invert differential operators on scalar functions. Specifically,

these matrix-valued kernels are used to invert differential operators on vector fields.

Let A be a pseudo-differential operator and m be the momentum operator

given by so that m = A u(x) such that K is the Green’s function for the operator

A [68].

Then u = K ∗m where ∗ denotes the convolution operation

u(x) = (K ∗m)(x) =
∫
Rd

K(x,y) ·m(y)dy

and this equation provides the link between the velocity vector field and the mo-

mentum of the fluid.

Consider the evolution equation for a divergence-free vector field u given by

∂tm+£um = 0 , m = A u(x) (3.3)

where £u is the Lie-derivative operator [86].

In the case that A is the identity transformation, these equations of motion are

identical to Euler’s equations for an ideal fluid [64, 87].

However in the case that A = (1− α∆) for α > 0 we obtain the Euler-α

model of fluid turbulence [88, 83]. And in the case that A = (1− η

k ∆)k we obtain

3.5. Hamiltonian Dynamics 44

the model of Mumford and Michor [36].

In any case, the above evolution equation acts as a generalised model for fluid

dynamics [36]. If A admits a kernel K, then the function

h(m) =
1
2
〈m,K ∗m〉L2

is the Hamiltonian function for this evolution equation [68].

If A admits a Ck kernel, then Equation (3.3) admits particle like solutions [67].

This represents a key source of computational efficiency, since we can reduce a high

dimensional flow to a flow given by finitely many particles. We make use of this

observation in Chapter 4 by creating an application for sketching fluid-like flows

using constrained particles.

In particular we consider the Hamiltonian function defined on n particles H :

(T ∗Rd)n→ R given by

H(p,q) =
1
2

Ki j(qα ,qβ)pαi pβ j (3.4)

where the Hamiltonian is a function of the n particles indexed by particle labels

α,β , with each particle having position qα and momentum pα , and where K is a

matrix-valued kernel. Here i and j are the indices of the matrix K and the momen-

tum p. Note that the term is also summed over α and β , so all particle interactions

are included in the Hamiltonian.

The equations of motion of a Hamiltonian system are given by

q̇ =
∂H
∂ p

ṗ =−∂H
∂q

and so for this Hamiltonian the equations of motion are

q̇i
α = Ki j(qα ,qβ)pβ j

ṗαi =−pα j∂iK jk(qα ,qβ)pβk

(3.5)

3.5. Hamiltonian Dynamics 45

where ∂i is the partial derivative ∂/∂xi.

The key point here is that if the particle motion (q(t), p(t)) is a solution of

Equation (3.5), then the velocity field u(x, t) =K(x,q(t)) · p(t) is a solution to Equa-

tion (3.3) on the full manifold M [36, 67, 68]. Note that q̇(t) = u(q(t)), so that if

ϕ(x, t) is the flow of u, then q(t) = ϕ(q(0), t) and the particles are carried by this

flow.

The velocity field generated by the particles is given by

ui(x) = Ki j(qα ,x)pαi (3.6)

If K is a divergence-free matrix-kernel such as the one given in Equation (3.1) [68],

then the vector field u is divergence-free for all time, by nature of its being a sum of

divergence-free vector fields.

The velocity field generated by a single particle using a divergence-free matrix

kernel is shown in Figure 3.1 (right).

Figure 3.2: Hamiltonian particles. The arrows represent the momenta of the particles.

A collection of particles will interact using the equations of motion in Equation

(3.5), and each particle will move in the velocity field implied by the sum of the

contributions from all the particles. Figure 3.2 shows the velocity field generated

by a number of randomly placed particles with varying momenta.

3.6. Jet Particles 46

3.6 Jet Particles
Jet particles extend the dynamics given by the particles seen in the previous section,

by carrying extra information that describes the local change to the deformation

gradient. To our knowledge they have not been used in computer graphics appli-

cations at this time and we give a brief introduction to them here, following Cotter

et al. [68].

In particular, jet particles carry information from the truncation of the Taylor

series describing the local deformation gradient [68]. Here the term jet refers to

the jet of a function; a jet is an equivalence class of functions that match a given

function up to polynomial order k (see for example Kolár, Slovák, and Michor [89]).

And particles that carry information matching the deformation gradient up to order

k are named k-jetlets.

Jet particles interact with one another showing dynamics which conserve linear

and angular momentum. Their equations of motion are derived using Hamilton’s

principle [68, 69], and under a suitable choice of Lagrangian the solutions converge

to Euler’s equations given certain assumptions.

3.6.1 Basic Definitions

The Lagrangian description of an incompressible fluid is given by a time dependent

volume preserving map ϕ : Rd×R→ Rd describing the flow of particles, where d

is two or three in this thesis. In particular, the location of a particle at time t with

initial position x0 ∈ Rd is given by ϕ(x0, t).

The deformation gradient at x0 is the matrix

Q i
j :=

∂ϕ i

∂x j

∣∣∣∣
x=x0

and higher order deformation gradients are defined in a similar way.

In our case Q i
j must lie in SL(d,R) since the flow is incompressible, where

SL(d,R) is the special linear group of matrices acting on Rd with unit determinant.

Just as one can obtain solutions to Equation (3.3) by solving for particle trajec-

tories q(t), one can obtain richer solutions of Equations (3.3) by solving for systems

3.6. Jet Particles 47

which involve q(t) and the deformation gradient Q(t) [68].

These are jet particles, Hamiltonian particles that carry higher order informa-

tion about the deformation gradient of the flow with them. In the case of n jet

particles, the q(t) are in the space (Rd)n and the deformation gradients Q(t) are in

the space SL(d,R)n.

3.6.2 Equations of Motion

The phase space is then T ∗(Rd ×SL(d,R))n with canonical coordinates given by

(q,Q, p,P) where q denotes particle position, Q denotes the Jacobian matrices, and

p and P are their respective conjugate momenta.

Cotter et al. [68] show that the equations of motion for (q,Q, p,P) are Hamil-

tonian with respect to the Hamiltonian function H : T ∗(Rd×SL(d;R))n→R given

by

H(q,Q, p,P) =
1
2

pαi pβ j Ki j(qα ,qβ)

+ pβ j P `
αi Q k

α ` ∂kKi j(qα ,qβ)

− 1
2

P m
αi Q n

α mP `
β j Q k

β ` ∂nkKi j(qα ,qβ)

(3.7)

They show that the equations of motion can be simplified by writing them in terms

of the variables

µ
j

αi = P k
αi Q j

α k ∈ sl(d;R)∗ (3.8)

ξ
i

α j :=
∂ui

α

∂x j = pβk ∂ jKik(qα ,qβ)−µ
k

β` ∂ jkKi`(qα ,qβ) (3.9)

The variable µ is called the right-trivialised matrix momenta, because it is the

right trivialisation of the covector (Q,P) ∈ T ∗SL(d;R)n over the Lie group

SL(d;R) [68].

Using these new variables, the equations of motion may now be written in

terms of (qα , pα ,µα) [68] as

q̇i
α = pβ jK

i j(qα ,qβ)−µ
k

β j ∂kKi j(qα ,qβ) (3.10)

3.6. Jet Particles 48

ṗαi =−pαk pβ j∂iKk j(qα ,qβ)

+(pα`µ
k

β j − pβ`µ
k

α j)∂kiK` j(qα ,qβ)

+µ
j

αk µ
`

βm ∂i j`Kkm(qα ,qβ)

(3.11)

µ̇
j

αi = µ
k

αi ξ
j

α k −µ
j

αk ξ
k

α i (3.12)

and we can reconstruct the deformation gradient Qα using the formula

Q̇ i
α j = ξ

i
α k Q k

α j (3.13)

Note that the vector field u(x) induced by the set of 1-jet particles is given by

ui(x) = Ki j(qα ,x)pαi−µ
k

α j ∂kKi j(qα ,x) (3.14)

and this is also divergence-free [68].

3.6.3 Simulation Example

To illustrate the variety of vector fields that may be produced by 1-jet particles in

R2, we choose the following basis for sl2(R) given by

spin =
(

0 −1
1 0

)
, stretch =

(
1 0
0 −1

)
, shear =

(
0 1
0 0

)
This is not a unique basis for sl2(R), but it is useful to illustrate the behaviour of

the vector fields the jet particles can produce.

The velocity field generated by a 1-jet particle with zero momentum p, and µ

taking the each of the values spin, stretch and shear are shown in Figure 3.3.

The spin particle rotates the fluid locally, the stretch particle compresses the

particle in the y direction whilst expanding in the x direction, and the shear particle

creates a velocity field with a shearing flow along the x-axis. Each of these vector

fields is divergence-free by construction, and moreover any linear combination of

these µ values will generate divergence-free vector fields.

Hence jet particles with varying momentum p and varying µ may be arranged

arbitrarily to create divergence-free vector fields. And further, these particles will

3.6. Jet Particles 49

Figure 3.3: A single 1-jet particle in 2D with momentum p = 0, and µ taking the values
spin, stretch and shear, illustrated from left to right

interact with each other according to the equations of motion (3.10), (3.11) and

(3.12), as each particle moves in the summed velocity field given by all the particles

given by Equation (3.14).

We demonstrate this with a simple example in two dimensions. We initialise

the particles at random positions, and taking random values for p and µ . At each

time step the particles state is updated using forwards Euler integration. The al-

gorithm for simulating 1-jet particles using forward Euler integration is shown in

Algorithm 1.

Algorithm 1 Jet Particle Simulation
1: procedure INTEGRATE PARTICLES

2: q0← Initial position of particles
3: p0← Initial momentum of particles
4: µ0← Initial shape particles
5: t← 0
6: loop t < tmax:
7: qi+1← qi + q̇i dt Using Equation (3.10)
8: pi+1← pi + ṗi dt Using Equation (3.11)
9: µi+1← µi + µ̇i dt Using Equation (3.12)

10: t← t +dt.

Figure 3.4 shows the velocity field generated by a number of randomly placed

particles (qα , pα ,µα) with varying momenta p and varying µ . The full simulation

is shown in Video 4.6.

3.7. Relationship with Eulerian Flow 50

Figure 3.4: The velocity field generated by several 1-Jet particles. The colours of the par-
ticles represent the vorticity of the particles, with red and blue being positive
and negative vorticity.

3.7 Relationship with Eulerian Flow

In this section we motivate the use of jet particles for the sketching of fluid-like

motion by reviewing their links with Eulerian flow.

Using the Lagrangian given by the kinetic energy of the fluid

L (u) = ‖u‖2
L2 =

∫
|u|2dnx

then by Hamilton’s principle

δ

∫
L (u)dt = 0

it can be shown that the equations of motions correspond to Euler’s equations

ut +(u ·∇)u+∇p = 0

∇ ·u = 0

See Cotter and Holm [90] for the derivation of Euler’s equations using the Clebsch

3.7. Relationship with Eulerian Flow 51

variational principle.

If instead we consider the regularized Lagrangian given by

L (u) =
1
2

∫
u ·A u dnx

where

A =

(
1− σ2

k
∇

)k(
1− 1

ε

2
∇◦div

)

then it can be shown that the application of Hamilton’s principle gives the EPDiff

equations

∂tm+u ·∇m+(∇u)T ·m+m(divu) = 0

u = K ∗m
(3.15)

where u is the convolution of the Green’s function K for the operator A and m(x) :=

A u(x) is the momentum operator [68]. See Cotter et al. [68] and references therein

for more details.

In fact, the Euler equations are recovered in the limit of these more regularised

EPDiff equations [36]. In particular, in the limit as ε and σ go to zero, the solution

to these equations converge to the incompressible Euler equations [68]. Moreover,

when ε = 0 and k = 1 we recover the regularised Euler-α equations [87] for incom-

pressible fluids, where the activity is filtered below a length scale α .

Hence under certain assumptions, jet particle solutions can be considered so-

lutions of Euler’s fluid equations. However, instabilities are observed in jet particle

simulations that lead to particle collisions [36], which mean they cannot be used

reliably to simulate fluid flow without modification.

Despite the presence of these instabilities, jet particles are suitable for gener-

ating divergence-free fluid flows and are natural for controlling fluid simulations,

as we will demonstrate in this thesis. We go on to demonstrate their use in the

generation of flows via sketching in the next chapter.

Chapter 4

Sketching Flows with Jet Particles

Fluid simulations are hard to control, show chaotic behaviour with sensitivity to

initial conditions and are expensive to compute. It is for these reasons that designing

a fluid simulation is a difficult problem. As such, the ability to sketch flows easily

is an important technique in computer graphics. One relevant application of this is

the rapid prototyping of low resolution flows to be used as input for high resolution

fluid simulations [41].

Transforming a hand movement into a stable and realistic flow in an efficient

manner is a non-trivial problem. In this chapter we describe how to sketch such

flows in a simple fashion, using jet particles that are constrained to curves created by

an artist. We demonstrate the sketching technique in two dimensions and describe

how to extend it to three dimensions.

4.1 Sketching Flows Interactively
We seek to design a deformation that could have been the result of a fluid flow, and

to do this efficiently without resorting to the use of a fluid simulator. A natural way

to proceed is to take the artist’s mouse movement as the input to this system, or

equivalently a set of parameterised curves that have been designed for the purpose.

An important feature in our sketching application is that there should be a

minimal and sufficient number of controls to achieve the desired effect. Since the

space of possible output configurations of a fluid simulation is infinite, reducing the

parameter space to a finite number of particles gives a more practical and intuitive

4.2. Deformation with Constrained Particles 53

way to achieve our goal.

In our method we propose using a constrained Hamiltonian system to design a

deformation that is smooth, divergence-free and globally injective (so it is guaran-

teed not to fold). By recording a path of the artist’s input we define a space curve

representing her brush stroke, and in this section we use this as a constraint for a jet

particle system.

As we have seen in Chapter 3.5, jet particle systems defines a vector field which

is divergence-free, and that can be integrated to generate a deformation which will

have a fluid-like motion. We show how to propagate this deformation into the flow

and how to apply it to a fluid cache in Chapter 5.

4.2 Deformation with Constrained Particles
We first consider how to create a constrained flow using 0-jet particle dynamics in

two dimensions, and we show that the generalisation to three dimensions is trivial.

In our system, the artist selects a brush size for the edit by specifying a value

for σ to be used in the matrix kernel. We will interpret the brush stroke as a space

curve γ : I→Rd given by s 7→ (x(s),y(s)), where γ(s) is parameterised over an edit

time interval I = [0,S].

We will consider this curve to represent the dynamics of a reference particle

with state (q̄(s), p̄(s)) := (γ(s), dγ

ds). Of course a single particle without constraints

will travel in a straight line conserving momentum, but in contrast the artist’s brush

stroke is an arbitrary curve. Hence instead we may view the motion of q̄(s) to be the

constrained motion of a particle under external forces F(s) that provide the change

in its momentum.

By applying a constraint implied by the artists input, we can override the dy-

namics of the Hamiltonian to force q onto q̄. However we can also relax this con-

straint by providing a maximal force Fmax that is allowed. In this sense, the brush

stroke becomes a guide for the particle, and the motion of the particle is now viewed

as a constrained Hamiltonian system.

To proceed we will first update the particle with the equations of motion and

4.3. Constrained 0-Jet Particles 54

then apply the impulse from the constraint.

4.3 Constrained 0-Jet Particles
As the artist paints with their input device, we record the positions of the brush,

sampling at intervals of δ s at times si := iδ s. We store these positions as a discrete

curve Γ = {X1, . . . ,XN} with points Xi = γ(si) = (x(si),y(si)).

To initialise the dynamics of the particles we define the initial conditions to

be q0 = X0 and p0 = 0. In order to implement a hard constraint where the jet

particle q is exactly constrained to the brush particle q̄, we add an impulse Ji to the

system which acts over the edit time interval [si,si+1]. An impulse is a change of

momentum, and here it is precisely the change of momentum required to match the

velocity of the artist’s curve.

To achieve this constraint, we modify the integration steps as shown in Algo-

rithm 2 with the addition of the impulse Ji at each time step. This ensures that the

simulated particle q will exactly match the brush particle q̄.

Algorithm 2 Constrained Particle Simulation
1: procedure INTEGRATE PARTICLES

2: q0← initial brush position q̄0
3: p0← initial brush momentum p̄0
4: s← 0
5: loop s < smax:
6: qi+1← qi + q̇iδ s
7: pi+1← pi + ṗiδ s+ Ji
8: s← s+δ s

To achieve the full constraint we set Ji = p̄i− p̄i−1, while in order to relax the

constraint we clamp Ji such that Ji/δ s < Fmax.

To provide an interface for the artist where we do not need to specify Fmax,

we choose to interpolate linearly between the pi and p̄i at each time step using a

blending parameter b ∈ [0,1]. This has the effect of specifying how much to blend

the target particle’s momentum into the simulated particle:

pi+1← (1−b)(pi + ṗiδ s)+bp̄i

4.4. Fluid Sketching Application 55

From this point onwards we use this latter approach of blending the momenta, since

the blending parameter is more intuitive than the maximal force parameter, being

a scale independent parameter in the range [0,1]. We use this technique in Section

4.7 in order to stabilise the dynamics of multiple jet particles.

4.4 Fluid Sketching Application
We have created a fluid sketching application to allow the creation of flows with a

0-jet particle using the above techniques. To illustrate the sketching algorithm we

show how our application uses a constrained 0-jet particle to distort a grid.

The results are shown in Videos 4.1, 4.2 and 4.3.

Video 4.1 (Sketching with a scalar kernel). This shows the baseline flow that results

in Figure 4.1 using the scalar kernel. This flow is not incompressible and does not

use the matrix kernel.

Video 4.2 (Sketching with a divergence-free matrix kernel). Our application gener-

ates an incompressible flow that results in Figure 4.2, by constraining a 0-jet particle

to a user-generated curve sketched with a mouse.

Video 4.3 (Sketching with an interpolated matrix kernel). The result of using an

interpolated matrix kernel with a value of a = 0.5 is shown in Figure 4.3. The flow

is not incompressible, but may useful for stylistic effect.

In each case the deformation is designed using a mouse, by sketching an arc in

a simple clockwise movement from top to bottom.

Note that by using Equation (3.2) and retaining the parameter a ∈ [0,1]

when evaluating our matrix kernel, we are able to interpolate between scalar and

divergence-free deformations which will give the artist more creative control. The

result of using a value of a = 0.5 is shown in Figure 4.3.

We believe that this parameter will allow the user to change the stylistic effect

of the flow by altering the incompressibility in this way.

This application is a key component of our fluid editing system and we will

also use it later in Chapter 5 to generate keyframes for editing existing simulations.

4.4. Fluid Sketching Application 56

Figure 4.1: A constrained particle with a scalar kernel sketching a flow deforming a grid

Figure 4.2: A constrained 0-jet particle sketching a flow deforming a grid

Figure 4.3: A constrained 0-jet particle sketching a flow deforming a grid with a = 0.5

4.5. Constrained 1-Jet Particles 57

This technique is easily extended to three dimensions without complications.

If we now evaluate the velocity field with the same matrix kernel

ui(x) = Ki j(qα ,x)pαi (3.6 revisited)

in three dimensions, we still generate a divergence-free velocity. And as above we

can choose a brush size σ , and now constrain a 0-jet particle to an artist’s curve

defined in 3D.

The velocity field for a 0-jet particle in 3D is shown in Figure 4.4, with the

streamlines illustrated in three orthogonal views.

Figure 4.4: Streamlines of 0-jet particles in 3D with momenta along the x, y and z axes,
from left to right.

We use jet particle flow using these 3D matrix kernels in Chapter 5 to deform

existing flows.

4.5 Constrained 1-Jet Particles
If we want to design a flow which can locally rotate and scale the fluid as well as

translate it, we can use 1-jet particles to modify the deformation gradient at each

particle location. We will specify a target µ̄ ∈ sld(R) as a constraint for the 1-jet

particle dynamics to control the deformation. In this section we will either choose

our target µ̄ to be constant, or we may choose to align its matrix with the brush

stroke direction for more intuitive control.

In order to align a particular brush shape with the painting direction, we choose

a rest shape µ̄0 ∈ sld(R), which we choose in a local coordinate system. Then

4.5. Constrained 1-Jet Particles 58

we find a rotation matrix R which aligns it to the direction given by the particle’s

momentum p, so that R(ex) = p where ex is the unit vector in the x direction.

Now if we define our target µ̄i such that

µ̄i = Rµ̄0RT

then µ̄i will be oriented correctly with respect to the brush direction. The matrix µ̄i

is still in sld(R) since R ∈ SOd(R) is an orthogonal matrix, and so Tr(Rµ̄0RT) =

Tr(RT Rµ̄0) = Tr(µ̄0) = 0. Note that in three dimensions we will need to specify

another constraint on R in order to orient it uniquely with the brush direction, for

example R(ey) = r for some vector r orthogonal to p.

Now we apply an impulse Mi to µ . Again we may either override the dynamics

of µi entirely, clamp it to a maximum value, or linearly interpolate between µi and

µ̄i. The modification to Algorithm 2 is

µi+1← µi + µ̇iδ s+Mi

for applying the impulse and

µi+1← (1− c)(µi + µ̇iδ s)+ cµ̄i

for applying the control µ̄i with a blending parameter c ∈ (0,1).

As in Section 4.3 we choose the latter interpolation method over the impulse

method for a more intuitive control parameter.

Our fluid sketching application is extended to allow editing with 1-jet parti-

cles. We demonstrate the results by sketching with 1-jet particles, with Figure 4.5

showing a rotating flow, Figure 4.6 showing a scaling flow and Figure 4.7 showing

a shearing flow. In the last two images, the orientation of µ̄ has been linked with

the brush stroke direction to allow the user to align the vector field intuitively.

As with the 0-jet particle sketching, this technique is easily extended to three

4.5. Constrained 1-Jet Particles 59

Figure 4.5: A constrained 1-jet Spin particle sketching a flow deforming a grid

Figure 4.6: A constrained 1-jet Scale particle sketching a flow deforming a grid

Figure 4.7: A constrained 1-jet Shear particle sketching a flow deforming a grid

4.6. Keyframe Generation 60

dimensions. If we evaluate the velocity field with the same matrix kernel

ui(x) = Ki j(qα ,x)pαi−µ
k

α j ∂kKi j(qα ,x) (3.14 revisited)

but now evaluated in three dimensions, we still generate a divergence-free velocity

that is now parameterised additionally by µ . And as above we can choose a brush

size σ , and constrain a 1-jet particle to the artist’s 3D curve.

In R3 we can choose a basis for sl3(R) using matrices that represent scale,

rotation and shear. An example of such a basis is shown here in Table 4.1.

Scale Sxy =
(1 0 0

0 −1 0
0 0 0

)
Sxz =

(1 0 0
0 0 0
0 0 −1

)
Syz =

(0 0 0
0 1 0
0 0 −1

)
Rotation Rx =

(0 0 0
0 0 −1
0 1 0

)
Ry =

(0 0 −1
0 0 0
1 0 0

)
Rz =

(0 −1 0
1 0 0
0 0 0

)
Shear Sh1 =

(
0 1 0
0 0 0
0 0 0

)
Sh2 =

(
0 0 0
0 0 1
0 0 0

)
Sh3 =

(
0 0 1
0 0 0
0 0 0

)
Table 4.1: A basis for the Lie Algebra sl3(R). Note we mark Syz as red since we must omit

one element to form a basis.

Note that the dimension of sl(R3) is 8 since it corresponds to the sub lie algebra

of trace free matrices in gl(R3). Hence to strictly define a basis for sl(R3) we must

omit one element. We choose arbitrarily to remove Sxy as it can be generated from

Sxz and Sxy since Syz := Sxz−Sxy. For this reason we have marked it in red in Table

4.1. However all of the matrices in the table are useful to picture the space of vector

fields spanned by the matrix kernels.

The vector fields generated in 3D by the 1-jet particles with µ taking the ma-

trices defined above are shown in Figure 4.8. We use 1-jet particle flow in Chapter

5 to deform existing flows.

4.6 Keyframe Generation
We now show how we use the application we developed in Sections 4.3 and 4.5 for

sketching fluid flows in order to generate keyframe edits of fluid simulations.

To demonstrate sketching of flows with jet particles with real simulation data,

we extend our sketching application to allow editing of densities and velocities di-

4.6. Keyframe Generation 61

Figure 4.8: 1-Jet Particles in 3D. Top row Scale Sxy,Sxz,Syz, middle row Rotation Rx,Ry,Rz

and bottom row Shear Sh1,Sh2,Sh3.

rectly using a jet particle that is constrained to the users mouse. We have integrated

our application into the research simulation framework mantaflow [91] in order to

allow sculpting of the current simulation state with jet particles. The deformation

applies to the density and velocity fields stored at the frame being edited. It may

also act on level sets and so is suitable for deforming water simulations.

The following video show a smoke simulation and a demonstration of sculpting

edits interactively using our application.

Video 4.4 (2D smoke editing application). A movie showing example edits applied

to a 2D smoke simulation using 0-jet and 1-jet particles constrained to the mouse.

Figure 4.9 shows a single frame taken from the smoke simulation shown in

Video 5.3. This frame is firstly sculpted with a 0-jet particle on the right and left

4.6. Keyframe Generation 62

Figure 4.9: Smoke density and velocity field edited with 0-jet and 1-jet particle

side of the plume, before finally a 1-jet spin particle is used on the left side. The

brush is displayed as a purple circle and its size defines the radius of the jet particle

used. The size of the brush and the matrix µ̄ can be varied to sculpt the smoke as

desired.

In Video 4.4, examples of creating edits to frames from a paused smoke simu-

lation are shown. After each edit the simulation is restarted in its deformed state.

We believe that the ease with which this application enables us to sketch flows

supports our Hypothesis 1 concerning the sketching of realistic flows. Moreover,

once we have a jet particle simulation, we may define an edit to it by choosing a

frame and then changing their momentum or simply moving the particles. Further

particle constraints as discussed previously will give more sophisticated edits to the

flow.

4.7. Dynamics of Jet Particles 63

4.7 Dynamics of Jet Particles
In the previous sections, we have used the equations of motion for jet particles in

our constrained simulations for sketching with a single particle. We now seek to

create more complex interactions by leveraging the interaction between particles.

By solving the equations of motion given by Equations (3.10), (3.11) and

(3.12) at each frame, jet particle simulations create complex flows and interac-

tions. However, the dynamics are known to be unstable as we show in the following

videos.

Video 4.5 (0-Jet particle simulation). A video showing the simulation of several 0-

jet particles with random initial momenta. The dynamics show complex interactions

followed by particles coalescing as they become too close. The arrows represent the

particle momenta. See Figure 4.10 for a clip from this movie.

Video 4.6 (1-Jet particle simulation). A video showing the simulation of several 1-

jet particles with random initial momenta. The dynamics show complex interactions

followed by particles coalescing as they become too close. See Figure 4.11 for a

clip from this movie. The arrows represent the particle momenta and the colours

of the particles represent the vorticity of the particles, with red and blue indicating

positive and negative vorticity, found by taking the anti-symmetric part of µ .

See Videos 4.5 and 4.6 for a demonstration of their instabilities that arise after

a few seconds of simulation time. We have already seen clips from these videos as

Figures 3.2 and 3.4 from Chapter 3 to illustrate their velocity fields. Those clips

were taken from shortly after the start of the simulation.

In Figures 4.10 and 4.11 however, we show similar clips from the videos a few

seconds later, and we can see that the momenta are beginning to blow up for pairs

of particles that have become close.

When the particles get too close together they may become attracted to one

another. In the limit they collide together, whilst their individual momenta become

arbitrarily large [36] and this process can be seen in the videos. Moreover when the

particles are too close with respect to the kernel size σ , their solutions are no longer

close to Euler’s equations.

4.7. Dynamics of Jet Particles 64

Figure 4.10: 0-Jet particle instabilities. A simulation of several 0-jet particles displaying
instabilities.

Figure 4.11: 1-Jet particle simulation. A simulation of several 1-jet particles displaying
instabilities.

4.7. Dynamics of Jet Particles 65

Figure 4.12: Initial conditions for the 0-jet particles

Figure 4.13: Unconstrained (left) vs constrained (right) 0-jet simulation after identical ini-
tial conditions. The constraint targets the particle momenta towards (1,0).

However we show here that by adding constraints, we may keep the particle

stable for longer and maintain the particle separation. This will keep the flow given

by the particles closer to incompressible flow [36].

Video 4.7 (Jet particle constraints). Simulation of 0-jet particles without con-

straints, and then with constraints on the momenta. The constraints blend the p

towards the constant momenta of p0 = (1,0) in the x-direction, with a blend factor

of b = 0.1.

Two frames from the associated Video 4.7 are displayed in Figure 4.13. They

begin with the same initial conditions, shown in Figure 4.12. The images display

4.8. Conclusions and Future Work 66

two 0-jet simulations at a fixed time interval following identical these conditions.

All the particles start with constant momentum pα = (1,0), but the simulation

on the right has a constraint which blends in 0.1 of the constant momentum (1,0)

per time step as described in Section 4.3. This blending represents the constraint

of the simulated particles to a reference particle, using the momenta implied by the

brush’s motion.

The images show the progression of the simulation after a short interval, and

we conclude that the constrained simulation shows less variation in the particles

momenta and spacing because of our constraint.

Hence we can design flows with multiple particles in the following way. In-

stead of initialising one particle at the brush stroke position q̄0, we create N particles

qα scattered evenly within its radius. As before we solve the equations of motion

for the particles and add the impulses from the brush q̄ as a constraint. This time

however, the interactions between the particles due to the Hamiltonian come into

play as the velocity field of one particle affects another.

Multiple particles can also be used in three dimensions to create simulations

for fluid generation. Figure 4.14 shows 30 interacting 0-jet particles with random

momenta interacting in 3D, rendered with a trail to give an indication of their ve-

locity. The simulation was created in Houdini, with the velocity fields evaluated as

described in Appendix A.3.5.

This demonstrates that we can generate complex flows from a sparse represen-

tation of the fluid as jet particles. Further we can evaluate the velocity at arbitrary

resolutions, and the velocity field will always be divergence-free.

4.8 Conclusions and Future Work
It is an open question as to whether this system is completely sufficient for artists.

However, we have demonstrated a method to sketch fluid-like fluids in real-time at

arbitrary resolutions, independent of the number of particles, and without requiring

a simulation. Further, the velocity fields produced by Equation (3.5) is divergence-

free so will guarantee incompressible flow. Hence the flows designed with this

4.8. Conclusions and Future Work 67

Figure 4.14: The velocity field from a simulation of 30 0-jet particles interacting in 3D.

method can provide an input to a fluid simulation engine at a higher resolution or

can be combined with many existing techniques for adding turbulent detail [41].

Despite the fact that the jet particles become unstable as particles begin to

collide and stick, efforts to keep the particles well placed may be successful in cre-

ating real-time simulators. Adding separation forces, or periodically reseeding the

particles using techniques from Chapter 6.1 may allow the simulation to continue

without instabilities. Moving the particles to the center of their voronoi diagrams

[92] every few time-steps may be enough to keep the particle simulation stable and

hence keep the solutions close to Euler-α .

Compound brushes may also be defined to create more interesting flows. We

can constrain several jet particles to one brush stroke with different sizes and mo-

menta, for example we can combine a large 0-jet particle surrounded by smaller

1-jet satellite particles. This is similar to a method for combining several particles

to create a module as defined by Gris, Durrleman, and Trouvé [93] for building

deformations within the LDDMM framework.

Finally, if we sketch a flow with a multiple series of brush strokes, it would

useful to represent this composition of diffeomorphisms into a single flow given by

multiple particles in series instead of in parallel.

The next chapter goes on to find methods for editing existing flows, and we

4.8. Conclusions and Future Work 68

will use the fluid sketching approach developed in this chapter to augment existing

flows in a natural way.

Chapter 5

Editing Fluids with Jet Particles

Editing fluid simulations in a way that keeps the fluid-like appearance of the flow is

a hard problem to solve. We intend to show that jet particles bring a natural way to

edit flows, and we will demonstrate this by means of some concrete examples. To

this end, we take the techniques from the previous chapter for designing fluid flows

with jet particles, and couple them with existing fluid simulations to provide a fluid

editing system in a production environment.

In Section 5.1 we describe how to modify an existing flow with a jet parti-

cle flow acting on the left as a post deformation, and we give simple examples in

two and three dimensions. We compare the technique with the skeletal subspace

deformation method commonly used in computer graphics.

Section 5.2 describes a simple method for coupling jet particle flow with an

existing flow through a rigid transformation. Section 5.3 describes a natural way to

advect a flow given by jet particles using an existing simulation. And in Section 5.4

we generalise this idea by providing a method for pushing forward the jet particles

with a flow.

In Section 5.5 we show a way of treating the edit as a deformation keyframe,

which only affects the fluid cache locally in time. Finally in Section 5.6 we show

how this technique is used in a production environment to create variations of smoke

simulations.

5.1. Editing Existing Flows 70

5.1 Editing Existing Flows

In this section we take a single jet particle and sketch a fluid flow as in Chapter

4. We will now couple this flow with an off-line, or cached simulation to create a

simple edited flow.

The cached simulation may include grids storing densities and scalar fields

such as temperature and heat, as well as vector fields such as velocities. The most

natural way to achieve this coupling is to apply the sketched flow as a deformation

acting on the fluid’s domain. In Sections 5.2 to 5.5 we also require that the cached

input simulation should define a flow field. We will assume that this is provided as

velocity vectors for each frame, which we will use for advecting and coupling our

edits with the cached flow.

The application of the edit to the cached simulation is achieved by composing

the two flows. In particular the jet particle flow is composed on the left with the

original simulation: we flow with the cache, and then apply our edit as a secondary

flow. So for each frame of our cached simulation, we apply a deformation given by

the jet particle edit flow. At each subsequent frame of the cached simulation, we ap-

ply the whole edit again whilst adding a new frame from the jet particle simulation,

so that the effect of the edit will increase visibly over time. In this way we couple

the two times together, since the edit time is linked with the simulation time.

Any velocity field u(x, t) will create a flow over time given by the function

ϕ(x, t). The relationship between the flow and the velocity field is

u(ϕ(x, t), t) =
∂ϕ

∂ t
(x, t)

and since in our case u(·, t) is a divergence-free vector field we have that ϕ(·, t) ∈

Diffvol(Rd) is in the space of volume preserving diffeomorphisms. So we can think

of our cached fluid simulation as defining a flow ϕ(x, t).

In the same way, the velocities from a jet particle flow also create a flow which

we call ψ(x, t) : Rd×R→ Rd . This is another incompressible flow in Diffvol(Rd).

5.1. Editing Existing Flows 71

We now take the composition of the two flows ϕ ′(x, t) given by

ϕ
′(x, t) := ψ ◦ϕ(x, t) = ψ(ϕ(x, t), t)

to give our new edited flow, which is also volume preserving by construcution.

5.1.1 Comparison with Skinning

We propose to use jet particle flow to edit existing fluid simulations. To our knowl-

edge, jet particles have not been used to edit fluid simulations to date. However it

is our opinion that they give natural deformations for the purpose, as their flow is

strongly linked to Euler’s equations, as outlined in Section 3.7.

The most common technique in today’s animation pipelines for deforming ge-

ometry is skeleton-subspace deformation, also know as skinning. The skinning al-

gorithm is widely used and has not been published in the literature, but see Lewis,

Cordner, and Fong [94] for a review of skinning techniques and references therein.

The skinning method describes a deformation based on the transformation of a num-

ber of matrices often called bones and scalar blend weights that are assigned to each

point. Each matrix typically contains a translation, rotation and scaling element

only.

The videos that follow show a comparison of a simple translational and rota-

tional flow given by a single jet particle (marked by a circle) with the same corre-

sponding deformations achieved with skinning by a bone (marked with a square).

Video 5.1 (Comparison of 0-Jet flow with skinning by translation). This video

shows the baseline deformation given by skinning using one translating bone, and

compares it with the corresponding flow given by a 0-jet particle with the same

momentum as the bone. A clip from the video is shown in Figure 5.1.

Video 5.2 (Comparison of 1-jet flow with skinning by rotation). This video shows

the baseline deformation given by skinning using one rotating bone, and compares

it with the corresponding flow given by a 1-jet particle with a µ representing the

rotation. A clip from the video is shown in Figure 5.2.

5.1. Editing Existing Flows 72

Figure 5.1: Comparison of a 0-jet flow with skinning by translation. The skinning defor-
mation is on the left and the 0-jet particle flow is on the right.

Figure 5.2: Comparison of a 1-jet flow with skinning by rotation. The skinning deformation
is on the left and the 1-jet particle flow is on the right.

5.1. Editing Existing Flows 73

We can see from Videos 5.1 and 5.2 how the translating or rotating bone will

generate a similar flow to the jet particle flow initially.

However it is clear that the skinning deformation is not volume preserving, and

the mapping also fails to be injective after a short time, whereas the jet particle flow

stays injective and is incompressible. Hence we believe that jet particle flow repre-

sents a natural solution for creating deformations that are fluid-like, and is a good

candidate for editing existing flows compared to the existing skinning technique.

5.1.2 Deformation Metric

We can quantify the edit by calculating a length given by the flow using the reduced

metric on the jet particles

length =
∫

H(q,Q, p,P)1/2dt (5.1)

where the Hamiltonian for the 0-jet particles is given by Equation (3.4) and for 1-jet

particles by Equation (3.7).

So for example, in the case that we are only considering one 0-jet particle for

the fluid sketching, we can define the size of the edit as

length =
∫ (

pT K(0)p
)1/2

dt

which in this case is just
∫ (

pT p
)1/2 dt =

∫
|p|dt, which follows since K(0) = Id in

the case where we have only one particle.

This can be used to quantify the size of the deformation. As the brush stroke

is being recorded we can now indicate the size of the edit for the user by displaying

this length.

We now show examples of deforming some fluid flows in two and three dimen-

sions using this approach.

5.1.3 Deforming 2D Smoke Simulations

Here we show the result of deforming a frame from a 2D smoke simulation with the

Hamiltonian flow given by a single jet particle. In each example the upper image is

5.1. Editing Existing Flows 74

the original and the lower image is the deformed version.

Video 5.3 (Original 2D Smoke Simulation). This video shows a 2D smoke simu-

lation generated from a buoyant source at the bottom of the grid. A clip from the

video is shown in Figure 5.4a.

Video 5.4 (Deformation of 2D Smoke with Static 0-jet particle). This video shows

the previous 2D smoke simulation which has now been deformed with an edit given

by the flow of a 0-jet particle. A clip from the video is shown in Figure 5.3b.

The first example, shown in Video 5.4 shows a deformation that moves a vi-

sually significant feature of the smoke plume to the right, and our second example

rotates the same feature.

Figure 5.3 shows a frame from the original 2D smoke simulation and the result

of deforming it with the flow given by a 0-jet particle propagating along the x-axis.

Figure 5.4 shows the second example of a frame from a 2D smoke simulation and

the result of deforming it with the flow given by a 1-jet Spin particle with zero

momentum p.

These figures have been generated in a version of mantaflow[91] that we have

modified to use the forwards deformation techniqued described by Algorithm 7 in

Section 7.1. This includes the push-forward of the original velocity by the defor-

mation.

5.1. Editing Existing Flows 75

(a) Original smoke density, with the jet particle motion edit path indicated
with dots, and its momentum indicated with arrows

(b) Deformed smoke density with the 0-jet particle flow, with the jet par-
ticle edit path indicated with dots

Figure 5.3: Editing of the 2D smoke simulation with a 0-jet particle flow

5.1. Editing Existing Flows 76

(a) Original smoke density from the simulation

(b) Deformed smoke density with the 1-jet particle flow, given by a jet
particle at the position marked by the dot

Figure 5.4: Editing of the 2D smoke simulation with a 1-jet particle flow

5.1. Editing Existing Flows 77

5.1.4 Deforming 3D Smoke Simulations

We show a 3D smoke simulation in Video 5.5, and edited versions where it is de-

formed by the flow given by a 0-jet and a 1-jet particle simulation in Videos 5.6 and

5.7.

Video 5.5 (Original 3D smoke simulation). A video of a 3D smoke simulation sim-

ulated in Houdini. A clip from the video is shown in Figure 5.5a.

Video 5.6 (3D smoke deformed with 0-jet particle). The 3D smoke simulation with

the 0-jet flow applied as an edit. A clip from the video is shown in Figure 5.5b.

Video 5.7 (3D smoke deformed with 1-jet particle). The 3D smoke simulation with

the 1-jet flow applied as an edit. A clip from the video is shown in Figure 5.6b.

These videos illustrate how the jet particle flow can be coupled with the origi-

nal flow. The deformations are implemented using the technique described in Sec-

tion 7.3 where the edit flow is calculated on a sparse grid and then interpolated into

the rest of the grid.

Although we have demonstrated the editing of a fluid simulation, it is clear

from these videos that this basic application of the edit flow from the jet particles to

the original flow does not give physically plausible results. Recognising this fact,

we propose a method to track the edit flow with the off-line simulation in order to

link the fluid flows together in a physically significant way. We expand on this in

the next section.

5.1. Editing Existing Flows 78

(a) Original smoke density

(b) Deformed smoke density

Figure 5.5: Deformation of a 3D smoke simulation with a 0-jet particle flow

5.1. Editing Existing Flows 79

(a) Original smoke density

(b) Deformed smoke density

Figure 5.6: Deformation of a 3D smoke simulation with 1-jet particle flow

5.2. Tracking Jet Particles 80

5.2 Tracking Jet Particles
In Section 5.1 we created a new flow by composing the cached flow with one that

we designed using jet particles. However the results do not seem physically realistic

because there is no coupling between the two flows.

We can couple the original fluid flow with the sketched flow in a simple way,

by moving the coordinate frame of the sketched flow with the fluid. To this end, we

take the initial position of the sketched particle and advect it with the fluid.

The action of the sketched flow can be faded out over time, by retracting the

deformation over some simulation time interval. Alternatively the size of the par-

ticle kernel can be reduced to zero during simulation time although this leads to

sharper features, so we favour the first approach which we describe below.

The following method will simply pick up the deformation given by the jet

particles and pin it to the fluid:

• Choose an edit time for the deformation and call this time t = 0

• Sketch a flow with jet particles Jα(s) = (qα(s), pα(s),µα(s)) at time t

• Take the initial position of the jet particles qα(0) and advect it with flow

ϕ(x, t) to give the tracked position ϕt(qα(0)) where ϕt(x) := ϕ(x, t)

• Create a new 1-parameter family of jet particle flows, where s is the edit time

and t is the new parameter given by the flow:

Lα(s, t) = (qα(s)+dqα(t), pα(s),µα(s)) (5.2)

where

dqα(t) = ϕt(qα(0))−qα(0)

is the displacement vector, constant for each jet particle α at time t.

• Now for each time t we have a different jet particle edit which is tracked to

the fluid

• Write ψt(x,s) to be the flow induced by the jet particles Lα(s, t) at time t

• We now combine the flows by composition to give the new flow ψs ◦ϕt :=

5.2. Tracking Jet Particles 81

Figure 5.7: The new jet particles Lα(s) are created by offsetting the jet particles Jα(s) with
the displacement vector dqα(t), given by the flow ϕt applied at qα(0)

ψ(ϕ(x, t),s)

• This is a 2-parameter family of flows: flow by ϕ for simulation time t then

flow by ψ for edit time s.

• We can pick an edit by setting s := t and consider the flow ψt ◦ϕt

• This will simply take the particles J(s) tracked with the flow ϕ and incremen-

tally apply their deformation over time t.

Figure 5.7 shows a jet particle flow Jα moving rigidly as its base point is carried

with the flow. Note that the two curves Jα(s) and Lα(s) are deliberately drawn

as parallel, with fixed offset dqα(t). This is in order to indicate that the entire jet

particle flow is tracking rigidly with the off-line fluid cache.

We can choose a regularised velocity field to advect the edit simulation frame

to avoid picking up the high frequencies in the simulation velocity field. To do this

we can use the smoothing kernel described in Holm, Nitsche, and Putkaradze [95],

choosing a kernel size that is of the order brush size used for the edit. Alternatively

we can simply create a low resolution version of the flow using resampling in order

to advect the simulation frame, as we have done here.

The following Videos 5.8, 5.9 and 5.10 show examples of coupling edit flows

defined by jet particles with the 3D smoke simulation shown in Video 5.5.

5.2. Tracking Jet Particles 82

Video 5.8 (3D smoke deformed with an advected 0-jet particle). The 3D smoke

simulation with the 0-jet flow applied as an edit, which is tracked with the off-line

simulation to couple it with the flow. A clip from the video is shown in Figure 5.8b.

Video 5.9 (3D smoke deformed with an advected 1-jet particle). The 3D smoke

simulation with the 1-jet flow applied as an edit, which is tracked with the off-line

simulation to couple it with the flow. A clip from the video is shown in Figure 5.8c.

Video 5.10 (3D smoke deformed with multiple advected 1-jet particles). The 3D

smoke simulation with the multiple 1-jet flow applied as an edit, which is tracked

with the off-line simulation to couple it with the flow. A clip from the video is

shown in Figure 5.8d.

See Figure 5.8 for clips from these videos showing examples of coupling the

original smoke simulation with advected edits given by jet particle flow.

These figures show the original simulation in Figure 5.8a, the simulation cou-

pled with a 0-jet edit flow in Figure 5.8b, the simulation coupled with a rotating

1-jet edit flow in Figure 5.8c, and finally the simulation coupled with 64 random

rotating 1-jet particles in Figure 5.8d in order to model the effect of turbulence.

We believe that the coupling of a realistic sketched flow with an existing off-

line cache in this way supports our Hypothesis 2 concerning the realistic editing of

fluid flows.

5.3. Advecting Jet Particles 83

(a) Original simulation

(b) Simulation deformed with an advected 0-jet particle

(c) Simulation deformed with an advected 1-jet particle

(d) Simulation deformed with 64 advected 1-jet particles

Figure 5.8: Deformation of a 3D smoke simulation using advected jet particle flow, show-
ing 8 selected frames in increasing time in left-right minor and top-bottom ma-
jor order.

5.3 Advecting Jet Particles
In Section 5.2 we achieved our aim of coupling our jet particle flow with the cached

flow, by moving its coordinate frame rigidly with the flow. Now, in order to have

5.4. Push-forward of Jet Particles 84

a deeper coupling between the jet particles and the flow, we will advect the jet

particles for all edit times s.

The idea here is to start with an artist designed deformation from Chapter 4

and extrapolate it into the flow using advection.

When we advect the jet particle path with the input fluid simulation, the brush

stroke will become stretched and noisy due to turbulence. Neither of these prop-

erties is useful when designing a local deformation. We choose to minimise this

effect by using a regularised version of the flow: we use a low resolution version of

the velocities to remove frequencies smaller than the order of the kernel size used

for the edit.

In our implementation, we resample the space curve given by the artist’s brush

stroke X at equal intervals of edit time δ r to give m points Yi. We now advect the

points forwards and backwards into the flow to give m new points Yi(t) for each

time t ∈ (T − ε,T + ε). These points Yi(t) are hence functions of simulation cache

time t.

Now that we have a brush stroke defined for each time t, we can find an in-

compressible flow for each time t using the flow sketching method described in

Chapter 4.

The points Yi(t) are sufficient input for a constrained 0-jet simulation since the

positions Yi(t) provide a reference particle path (q̄(s, t), p̄(s, t)) := (Y (s, t), dY (s,t)
ds)

as before. Here the curve Y (s, t) interpolates the points Yi(t) for a time t held fixed,

and s ∈ (0,smax) as before.

In the case of a 1-jet constrained simulation we need to also provide a reference

µ̄(s, t) by the same method. Lastly if we are simulating multiple jet particles we

advect just their start positions with the flow and proceed as before to integrate the

vector fields into a flow but this time at time t 6= T .

5.4 Push-forward of Jet Particles
The method from the Section 5.3 can be generalised in a similar way to Section 5.2

by modifying Equation (5.2) with the advection of the jet particles J(s) flow ϕ .

5.4. Push-forward of Jet Particles 85

If we record the jet particles’ initial conditions, we can push them forward with

the flow before simulating the particle at the next frame.

We can push forward the momentum p with the deformation gradient Q to give

Qp. Note that µα has one-up index and one-down index, i.e. µ
j

αi , so it transforms

like µ̃
j

i = µ `
k ∂iφ

k(q)∂`φ j(q). Hence the push forward of µ by the flow is QµQᵀ.

So now we create a new jet particle flow L(s) defined by

Lα(s, t) = (ϕ(qα(s), t), ϕ∗(qα(s), t)◦ pα(s), ϕ∗(qα(s), t)µα(s)ϕ∗(qα(s), t)ᵀ)

= (ϕt(qα(s)), ϕt∗(qα(s))◦ pα(s), ϕt∗(qα(s))µα(s)ϕt∗(qα(s))ᵀ)

where we have pushed forward the entire jet particle flow Jα by ϕt . Now the whole

jet particle path is stretched by the flow.

In this way the momentum pα is calculated directly with the push-forward

rather than using the approximation given the next particle position pα+1. Also the

transformation of µα now takes the flow into account directly. In fact this is the

continuous formulation of the advection problem from Section 5.3 where we used

a discretised approach.

Figure 5.9 illustrates a jet particle path Jα deforming with the flow ϕt . Note

that the two curves Jα(s) and Lα(s) are no longer parallel due to the flow ϕt being

applied at each point.

5.5. Deformation Keyframes 86

Figure 5.9: The new jet particle flow Lα(s) is calculated by deforming the jet particle flow
Jα(s) with the cached flow ϕt

Video 5.11 (Deforming an existing smoke simulation with a coupled 1-jet particle

flow). We deform an existing smoke simulation with 32 turbulent 1-jet particles that

are advected with the flow. The original flow is on the right, and the deformed flow

is on the left. An image from the movie is shown in Figure 5.10.

Figure 5.10 shows a frame from Video 5.11 demonstrating an example from

production where an off-line smoke simulation has been deformed by 32 1-jet parti-

cles, seeded with random momenta and advected with the flow. This illustrates how

we can generate turbulence-like effects by the composition of an existing flow with

a jet particle flow.

5.5 Deformation Keyframes
In Sections 5.3 and 5.4 we advected jet particles that describe a deformation into an

existing flow ϕ .

In order to localise our modification to the flow in time, we suggest a method

for coupling the retraction of the jet particle deformation. To achieve this, after a

small window of time the edit is removed and we return to the original undeformed

fluid simulation.

Specifically if the artist designs a flow at time T , we would like to extrapolate

the deformation so that it acts over the interval (T −ε1,T +ε2) for some small time

5.5. Deformation Keyframes 87

Figure 5.10: Deformation of an existing flow with turbulent 1-jet particles. The original
simulation density at a frame is shown on the right, with the resulting de-
formed density displayed on the left.

deltas ε1,ε2 > 0. We will assume for simplicity that ε = ε1 = ε2 although this need

not be the case.

We seek a deformation that retracts while it is extrapolated into the flow, so

that at times T − ε and T + ε the original undeformed flow is restored.

In order to choose a way of blending in the deformation over time, we must first

specify a smooth curve β : [−ε,ε]→ [0,1] such that β (−ε) = β (ε) = 0, β (0) = 1

and β̇ (−ε) = β̇ (0) = β̇ (ε) = 0. We use a quadratic B-spline that satisfies the above

properties, shown in Figure 5.11.

We use this function to scale down the distance travelled by the jet particle

along the curve Y (s, t). In this way, the deformation is retracted over time ε .

Hence the retracting jet particle reference path at time t is given by the curve

Y (β (t−T)s, t)

at time t. In this way the deformation retracts as the curve is advected back and

forward in time from T .

5.5. Deformation Keyframes 88

Figure 5.11: The spline function β used for retracting the deformation.

Figure 5.12: Retracting the edit flow ψ(s) around time T , by applying the curve β to the
edit time s in the jet particle flow Lα(s, t).

We can formulate this edited flow in the language of Section 5.4 by defining

our new flow as

ψβ (t) ◦ϕt = ψ(ϕ(x, t),β (t))

where the function β (t) applies the jet particle flow L(s, t) only in a neighbourhood

of t = T .

See Figure 5.12 for an example of four different interpolated flows shown by

dotted lines, each generated in the neighbourhood of the edit at time T .

In order to demonstrate the retraction of the jet particle flow, we take the orig-

5.5. Deformation Keyframes 89

inal 2D smoke simulation from Video 5.3. By applying the edits shown in Figures

5.3 and 5.4 and retracting them into the flow, we create the following videos:

Video 5.12 (2D smoke 0-jet deformation keyframe edit). The 2D smoke simulation

with the 0-jet flow applied as an edit, which is advected and retracted with the off-

line simulation to define a localised keyframe edit of the flow. Some representative

frames from the video are shown in Figure 5.13.

Video 5.13 (2D smoke 1-jet deformation keyframe edit). The 2D smoke simulation

with the 1-jet flow applied as an edit, which is advected and retracted with the off-

line simulation to define a localised keyframe edit of the flow. Some representative

frames from the video are shown in Figure 5.14.

We extend and then retract the 0-jet and 1-jet edit flows into the off-line smoke

simulation, and show the results in Videos 5.12 and 5.13. See a sequential selection

of stills from these videos in Figures 5.13 and 5.14.

In the next section we show how to create edited flows in 3D using a curve rig.

5.5. Deformation Keyframes 90

Figure 5.13: A 2D smoke simulation deformed by a retracted 0-jet edit flow. The advected
jet particle flow path before retraction is indicated by dots. Frames are in
left-right minor and top-bottom major order.

5.5. Deformation Keyframes 91

Figure 5.14: A 2D smoke simulation deformed by a retracted 1-jet edit flow. The advected
jet particle flow path is indicated with a dot. Frames are in left-right minor
and top-bottom major order.

5.6. Jet Particle Rigs in Maya 92

5.6 Jet Particle Rigs in Maya
In order to be able to deform fluid caches easily for shot production, we designed a

simple work flow in Autodesk Maya 2016 for designing flows with jet particles.

To prepare the scene, the artist simply creates a curve representing the path of a

jet particle’s motion. Using the Maya representation of a motion path, the start and

end frame of the motion are configured easily. Additionally the µ parameter for the

1-jet particle can be set to be a combination of scale, rotate and shear as described

in Section 4.5.

In order to preview the effect of the deformation at interactive rates, a low res-

olution proxy version of the fluid cache is calculated automatically after simulation.

This is then deformed inside Maya as described in Section A.3.3. Finally the high

resolution deformed smoke grids are calculated directly on the artists machine or

sent to the render farm for remote processing.

In this section we show an example of a shot from a real world production,

from effects work on Independence Day 2 at Cinesite Studios. An image rendered

from the simulation is show in Figure 5.15. After the shot had been included in a

viewing session, feedback from the client was given that the smoke stack should

lean over as if being blown by a wind.

To address this, the simulation was run again with a wind force included. These

simulations were taking 9 hours to complete on an Intel i7, and creating density

grids of size 500×1000×500 voxels.

A realistic alternative to re-simulation is to apply a post deformation to the

fluid cache. By composing the flow with a simple deformation derived from 0-jet

particle flow, we are able to simulate the effect of the wind and generate a suitable

result for the shot. An advantage to this technique is that the results can be reviewed

and tweaked in low resolution efficiently, before calculating the final high quality

version.

See Figure 5.16 for a frame from the sequence with the deformation applied.

The deformation was designed such that the smoke, which was previously rising

almost vertically, would appear to be driven by a wind blowing from screen left.

5.6. Jet Particle Rigs in Maya 93

Figure 5.15: Smoke densities from a simulated smoke stack used in a shot in production.

Figure 5.16: The deformed smoke densities found by applying the jet particle flow.

5.6. Jet Particle Rigs in Maya 94

Figure 5.17: The jet particle rig in Maya, used to deform the smoke densities in the sim-
ulation. The jet particle is constrained to a curve which is placed and edited
interactively. A deformed version of the densities is shown in the viewport.

The curve rig for this deformation, shown in Figure 5.17, requires a motion

path in Maya defining the path of a jet particle. A deformation rig is created for

easy interaction, in order to create a divergence-free flow to shape the smoke. The

curve rig allows the size, particle path and momenta to be tweaked to find the ideal

deformation.

By using a lower resolution proxy for the density field and OpenGL shaders,

the rig updates at interactive rates enabling rapid feedback. See Section A.3.3 for

more details on how the deformation rig is setup in Maya.

Although this particular deformation could have been achieved with similar

results using skinning applied to volumetric data, the results of the skinning do

not give incompressible flow. Moreover our setup can produce complex fluid-like

deformations without painting weights or requiring bone assignments.

5.7. Conclusions and Future Work 95

5.7 Conclusions and Future Work
We have proposed a method for using jet particles to edit off-line fluid simulations.

We have demonstrated a system for deforming the fluid, for propagating the edit into

neighbouring frames using advection, and for retracting the deformation over time

for a localised effect. Smaller particles can be used to approximate turbulence-like

effects and larger particles are suitable for editing the bulk flow.

Further applications and research are suggested in the following sections.

5.7.1 Coupling Rigid Bodies with Fluids

It would be interesting to use 1-jet particles as a way to couple a rigid body simula-

tion with a fluid that had no previous interaction.

Given an off-line rigid body simulation, we can convert the positions, velocity

and angular velocity of each rigid body to a constrained 1-jet particle given by

(q, p,µ). This will require creating a particle with a µ that corresponds to a rigid

body’s angular velocity.

If we evaluate the corresponding divergence-free velocity field given by these

particles, we can either augment the fluid simulation as it progresses, or use it as a

post-process to deform the cached fluid flow. This latter may be useful to simulate

interactions with rigid bodies that were not coupled with the fluid simulation at the

time.

5.7.2 Up-Resing Existing Flows

The authors Kim et al. [41] perform an up-res process on an existing flow to add

missing turbulent detail. The use of divergence-free wavelet turbulence implies the

velocity projection step is not required.

The key idea here is that we can augment this framework by adding jet particles

to the low resolution flow during the up-res process. Again the velocity projection

step is not required since the additional velocities are divergence-free.

This extends our method of augmenting an existing flow described in Section

5.4 shown in Figure 5.10. Instead of deforming an off-line simulation with a jet

particle flow, we may use live jet particles for creating a higher resolution flow.

5.7. Conclusions and Future Work 96

The up-res process [41] is summarised as

• Simulate a fluid on a coarse resolution domain

• Calculate the kinetic energy of the fluid and use this to compute the wavelet

decomposition

• Create a uv coordinate system based on a regular grid and advect the uv co-

ordinates with the flow

• Create band limited, divergence-free velocity noise based on uv coordinates

• Re-simulate the fluid at higher resolution by upscaling the inflow condition,

velocity, and adding the divergence-free noise to the velocity field.

Our modification to this process would add velocities given by the jet particles,

which would themselves be advected with the flow. We may choose to add jet parti-

cles either representing key-frame edits, or smaller jet particles providing dynamic

turbulent detail.

Chapter 6

Designing Vector Fields

We have already seen in Chapter 4 how we can design flows by constraining a jet

particle’s motion to a curve, and in Chapter 5 how these flows can be used to edit

an existing fluid simulation. In this chapter we go on to investigate how jet particles

can be used to represent existing vector fields and to design new ones.

Section 6.1 describes how to solve for the momenta of jet particles given their

velocity field and its gradient. The next Section 6.2 describes how to represent

existing velocity fields with jet particles in a resolution independent way.

In Section 6.3 we use configurations of jet particles to design vector fields

using constraints and describe how to control the gradient of the velocity field. We

show how this technique can be used to design vector fields aligned with curves for

fluid control.

6.1 Projection
In this section we describe how to project a velocity field onto jet particle momenta

given the velocity field and its gradient at the particle positions.

We show how to recover the momenta pα for several 0-jet particles given their

velocity uα at their positions qα . And we implement an algorithm that solves for the

1-jet particles pα and µα given the velocity uα and its gradient duα at qα . Finally

we show examples of representing existing divergence-free velocity fields using this

technique.

We use this method in Section 6.3 to create vector fields constrained to follow

6.1. Projection 98

curves.

6.1.1 Motivation

Given a known velocity field, we seek to find a configuration of jet particles which

generate a velocity field that matches it.

If the given velocity field is known only at discrete points then we must take

these positions into account when we choose our set of approximating jet particles.

We may have an over constrained system where we have fewer jet particles

than velocity samples, and solve for the jet particles that minimise the error with

respect to the velocity field. Or we may have an under constrained system when

there are more jet particles than constraints if there are fewer velocity samples than

jet particles.

However we choose the positions of the jet particles to be the same as the

points on the known velocity grid, so we can find momenta for the jet particles that

reproduce the velocity field exactly.

If our known velocity field has a continuous representation then we are free to

choose a layout of jet particles. This can be a regular or a sparse set of points. How-

ever since our particles only represent frequencies at a given scale, it is important to

distribute the particles so they are spaced regularly at that frequency, such that their

kernels do not overlap significantly.

The obvious choices for grids are either a regular grid or an evenly spaced ir-

regular grid. An example of the latter is a random distribution of particles generated

with Poisson disk sampling [96], where new particles are added randomly using

dart throwing and rejected if they are too close to existing particles than a given

threshold.

A clear advantage of representing a velocity field with jet particles is that the

velocity field will be divergence-free at all points since we are using incompressible

matrix kernels.

6.1. Projection 99

6.1.2 Project Velocity Field onto 0-Jet Particles

We seek to find momenta pα such that the velocity field u(x) given by Equation

(3.6)

ui(x) = Ki j(x,qα)pαi (3.6 revisited)

matches a known velocity field ū at points qα , and interpolates a divergence-free

velocity field at all other points.

Since we chose Ki j to be a divergence-free matrix kernel, so the vector field

it generates will also be divergence-free since it is a sum of divergence-free vector

fields.

We can see that the right hand side of Equation (3.6) for the velocity field u(x)

involves a square matrix M of size nd×nd

[u] = [M][p] (6.1)

and that by construction, this is a block matrix of positive semi-definite symmetric

d×d matrices given by each matrix kernel Ki j. And further, the block diagonal of

this block matrix is the identity matrix since K(x,x) = Id , which can be verified for

our kernel by setting r = 0 in Equation (3.1).

As long as this matrix M is invertible, we can solve for the momenta pα of the

particles given the uα at the particle positions since [p] = [M]−1[u].

When σ is zero, M is exactly the identity matrix and therfore pα = uα . As σ

increases M becomes less invertible as the condition number increases. This is due

to the increasing influence of each particle’s velocity field over its neighbours.

See Listing A.2 in Section A.3.4.1 for implementation details showing code

that generates the matrix M.

It is interesting to note that even if the known velocities u(qα) do not come

from a divergence-free velocity field, the resulting vector field u(x) will always

be divergence-free by construction, since it is defined as a sum of divergence-free

matrix kernels.

6.1. Projection 100

6.1.3 Project Velocity Field onto 1-Jet Particles

We are given a velocity field ū that we would like to approximate using n jet parti-

cles. As mentioned above it is not necessary that ū ∈ Xdiv(Rd). We will use n jet

particles at positions qα ∈ Rd with momenta pα ∈ Rd and µα ∈ sld(R). The posi-

tions qα can be arbitrary particle positions or can be a regular grid but are assumed

to be unique. It is also assumed that we know the spatial derivatives of the velocity

field at qα .

The relationship between the velocity field and the particles, given the kernel

Kαβ is

ui(qα) = Kik (qα −qβ

)
pβk−∂kKil (qα −qβ

)
µ

k
β l (3.14 revisited)

and so the spatial derivative of the velocity is therefore

∂ jui(qα) = ∂ jKik (qα −qβ

)
pβk−∂k j Kil (qα −qβ

)
µ

k
β l (6.2)

where each µα ∈ sld(R) is a matrix of size d×d as before.

We would like to invert this relationship. So given velocities ū(qα) and their

spacial derivatives ∂ ū(qα) given at particle positions qα , we will calculate the mo-

mentum pα and reduced shape momentum µ
β

that induce the same velocity and

velocity gradient at qi.

We can write Equations (3.14) and (6.2) in block matrix form as ui(qα)

∂ jui(qα)

=

 Kik (qα −qβ

)
−∂kKil (qα −qβ

)
∂ jKik (qα −qβ

)
−∂k j Kil (qα −qβ

)
 pβk

µ k
β l

or ui(qα)

∂ jui(qα)

= [M]

 pβk

µ k
β l

In two dimensions the right hand side contains a 6n square matrix M and a 6n

column matrix contianing the unknowns pβ and µβ . In the general case this gives a

6.2. Vector Field Interpolation 101

linear system of equations with a square matrix M with nd+nd2 unknown variables,

where d is the dimension and n the number of particles.

When we first calculated this matrix M for a set of particles qα , we found

that the matrix had a very high condition number, even when the particles were

well placed with respect to the kernel size σ . Examining the matrix in the two

dimensional case, we found that the 1st and 4th row of the equations for each µβ

were linearly dependent. It became clear that the reason for this is that the matrix

kernel defines a divergence-free velocity field, and hence there is a redundancy in

the d2 unknown variables µβ . We need to include this information by modifying

the system of equations, and removing the redundancy to solve for p and µ .

We remark that since each matrix µ
β

is in sld(R), we know that it is trace

free. This implies that in two dimensions we can replace every 4th row (row nd +

4α) of the µ part of the matrix with the equation µii = 0. In two dimensions this

corresponds to setting µ1
1 + µ2

2 = 0. This now creates a full rank matrix that can

be solved for pβ and µβ .

In three dimensions, we replace the last row for each µα with the equation

µ1
1 +µ2

2 +µ3
3 = 0. See Listing A.3 in Section A.3.4.2 for an algorithm that will

generate the matrix M in the general case of d dimensions.

We are not aware that any other author has solved for the momenta of 1-jet

particles given a velocity field and its gradient at the time of writing.

For a given sigma, we can see from Equation (3.1) that this kernel falls off

exponentially as e−r2/σ2
. So this block matrix will be sparse to the extent that

the kernel K dissipates. Block cells that correspond to interactions between more

distant particles will be much smaller, with the exact relationship depending on the

value of σ .

6.2 Vector Field Interpolation
We have seen how jet particles can be used to construct divergence-free vector fields

by summation of their matrix-valued kernels. In this section we investigate how we

can approximate existing vector fields with configurations of jet particles.

6.2. Vector Field Interpolation 102

6.2.1 Examples

In order to understand how jet particles can interpolate vector fields, we choose two

known vector fields and reconstruct them with both 0-jet and 1-jet particles placed

on a regular grid.

We choose a constant vector field in the x-direction shown in Figure 6.1a and

a rotational divergence-free vector field, shown in Figure 6.1b.

We project these vector fields on to a regular grid of sixteen jet particles using

the methods from Section 6.1 and we use the implementation from Section A.3.4 to

find the particle momenta.

To illustrate the importance of the kernel size in the reconstruction, we vary

the particle size σ used to evaluate the matrix kernel in the range [0.25,5].

6.2. Vector Field Interpolation 103

(a) Constant vector field

(b) Rotational velocity field

Figure 6.1: The known test velocity fields

6.2.2 Results

Here we show the results of projecting the known vector fields.

Figures 6.2 and 6.3 show the 0-jet projections of the constant vector field (Fig-

ure 6.1a) and rotational divergence-free vector field (Figure 6.1b) respectively.

6.2. Vector Field Interpolation 104

Figures 6.4 and 6.5 show the 1-jet projections of the constant vector field (Fig-

ure 6.1a) and rotational divergence-free vector field (Figure 6.1b) respectively. Each

of these images show the reconstruction of the interpolated vector fields using only

the jet particles’ velocity fields.

We choose the range of sigma for each figure to include the point at which the

reconstructed momenta become chaotic.

The particles are coloured so that red and blue indicate positive and negative

vorticity, found by taking the anti-symmetric part of the reduced momentum µ .

6.2.3 Conclusions

Note from the figures the relationship between the kernel size σ and the spacing

between the particles. It is clearly important to choose the size of σ carefully in

order to reproduce the original vector field accurately.

When σ tends to zero, the particle momenta are equal to the velocities as there

is no interaction between particles. If σ is too small then the vector field is only

represented sparsely and cannot interpolate the target velocities in between the par-

ticle positions. As σ increases the vector field becomes resolved well in between

the particles. But as σ becomes large, the condition number for the matrix to be

inverted becomes higher, and numerical solutions to the momenta become less ac-

curate as more particles begin to affect each other. This yields solutions where the

momenta do not correspond to the underlying velocity field well.

So when σ is too large compared to the the particle separation, all particles

interact significantly and the momenta start look random and disconnected from the

underlying velocity field.

Note that by taking a divergence-free vector field and representing it with jet

particles, we are able to edit the vector field by using the jet particles as handles. We

create a new edited version by moving the jet particles or changing their momenta.

The velocity fields produced will always be divergence-free since we use Equations

(3.14) to evaluate them. Hence this represents a system for editing vector fields.

6.2. Vector Field Interpolation 105

Figure 6.2: 0-Jet particles representing a constant field with σ ∈ [0.25,5]

6.2. Vector Field Interpolation 106

Figure 6.3: 0-Jet particles representing a divergence-free rotational field with σ ∈ [0.25,10]

6.2. Vector Field Interpolation 107

Figure 6.4: 1-Jet particles representing a constant field with σ ∈ [0.25,4]

6.2. Vector Field Interpolation 108

Figure 6.5: 1-Jet particles representing a divergence-free rotational field with σ ∈ [0.25,5]

6.3. Vector Field Design 109

6.2.4 Future Work

It would be interesting to compare the interpolated velocity fields of the 0-jet and the

1-jet particles solved from the same underlying velocity fields with the same σ sized

particles. For example we could generate a random divergence-free vector fields

with curl noise in certain frequencies and then compare the interpolation schemes.

It seems intuitive that the 1-jet velocity field interpolation will have a higher order

accuracy since it is using a higher order approximation scheme.

A comparison with using scalar kernels would also be interesting, although the

interpolated vector field will not be divergence-free without the use of the matrix-

valued kernels, and both 0-jet and 1-jet particles should perform better.

This technique also has potential to offer compression of divergence-free ve-

locity fields. Given an existing divergence-free velocity field stored on a grid as

velocity vectors, it may be possible to represent the same velocity field to a given

error tolerance with less memory using jet particles.

However for the purposes of this chapter it is sufficient to have generated ve-

locity fields that are divergence-free, match a given velocity field at a set of points

when using 0-jet particles, and additionally match the velocity gradient when us-

ing 1-jet particles. Using this machinery we can proceed to Section 6.3 in order to

design useful velocity fields for use in fluid control and animation.

6.3 Vector Field Design

In computer graphics it is often useful to create vector fields for use in fluid control

and animation. We will show how to design vector fields that align with curves in

three dimensions using jet particles.

However, the projection method of Section 6.1 is agnostic to the positions of

the jet particles, and although we demonstrate this technique on points distributed

on a curve, it will work for points distributed on a regular grid in three dimensions.

Hence this technique may be suitable for controlling vector fields in volumes, in a

3D analogue of the examples in Section 6.2, but we do not demonstrate this here.

6.3. Vector Field Design 110

Figure 6.6: Vector field matching curve tangents, σ = 0.8

6.3.1 Tangent Constraints

If we define a space curve with a function γ(s) : I → R3 where I ⊂ R, then its

velocity is given by γ ′(s) = dγ(s)
dt . See Carmo [97] for an introduction to space

curves in differential geometry. We would like to define a smooth divergence-free

velocity field u(x) : R3→R3 such that its restriction to the image of the curve u|
γ(I)

is γ ′(s), so that it matches the velocity of the curve γ ′(si) at qi.

We can now solve this problem using the technique from Section 6.1.2 by

discretising the curve γ(I) into n particles at positions qi which occur at parameter

values si, so that γ(si) = qi with i ∈ {1, . . . ,n}.

Figure 6.6 shows an example where a curve is discretised into seven points, and

a divergence-free vector field is generated which aligns with the tangent vectors

of the curve. This is achieved by solving for the momenta pi which match the

velocities γ ′(si) at qi using a σ of size 0.8.

Figure 6.7 shows another example where σ is 0.2, too small to generate a

visually smooth vector field away from the curve. Having the point separation scale

with the kernel size σ keeps the velocity field well resolved away from the points.

We show another example with a closed curve in Figure 6.8. Here the points

6.3. Vector Field Design 111

Figure 6.7: Vector field matching curve tangents, σ = 0.2

Figure 6.8: Vector field matching velocities along a closed curve

are chosen to lie on a circle, with velocities along the tangent direction.

We summarise the method for matching the velocity field to the curve tangents

in Algorithm 3. Here the function TANGENTS evaluates the velocity field of the

curve γ at the point qα , while SOLVEMOMENTA solves Equation (6.1) for pα .

6.3. Vector Field Design 112

Algorithm 3 Constraining velocity field
1: procedure CONSTRAINED VELOCITY FIELD

2: uα ← TANGENTS(γ,qα)
3: pα ← SOLVEMOMENTA(uα)

6.3.2 Deformation Gradient Constraints

If we use 1-jet particles to generate the vector field then we are free to specify

an extra parameter µ which gives us control over the deformation gradient. The

velocity and its gradient are given by

ui(qα) = Kik (qα −qβ

)
pβk−∂kKil (qα −qβ

)
µ

k
β l (3.14 revisited)

∂ jui(qα) = ∂ jKik (qα −qβ

)
pβk−∂k j Kil (qα −qβ

)
µ

k
β l (6.2 revisited)

as functions of pα and µα .

Note that if pαi = 0 and the kernel size σ is small enough such that each parti-

cle does not influence its neighbour, then we can control each ∂ jui(qα) directly with

the corresponding µ
j

αi since ∂k j Kil(0,0) = δ il
k j . Note that this does not require a

matrix solve since in this case ∂ jui(qα) =−µ i
α j for each particle label α .

Just as in Section 4.5 where we align a matrix kernel with the brush stroke

input from an artist in two dimensions, we can now choose a matrix µ in sl3(R).

We may choose from the list of matrices in Table 4.1 representing rotation, scaling

or shear or take some linear combination thereof. The choice will be motivated by

the desire to rotate, scale or shear the flow along a particular axis.

Once we have chosen our µ value, we would like to align it with the curve.

To guide the alignment we require an orthonormal frame. Here we can choose

the Frenet frame consisting of the unit tangent, normal and binormal vectors

{t(s),n(s),b(s)} (see [97]). Alternatively we may use another frame defined along

the curve, for example the Bishop’s frame [98] or a user defined frame.

Since µ transforms like

µ̃
j

i = µ
`

k ∂iφ
k(q)∂`φ j(q)

6.3. Vector Field Design 113

Figure 6.9: Vector field given by aligning µ = Ry with the Frenet frame

where φ is the change in coordinates, then if we choose a frame R for alignment

then the matrix

µ̄ = RµRT

will align the deformation gradient given by µ such that it sits with the frame R

and is tangent to the curve. We use this approach in Section 4.5 to align µ with the

brush stroke.

Figure 6.9 shows the vector field resulting from aligning a µ given by Ry with

the Frenet frame of the curve, in order that the vector field generates a rotation

around the axis of the curve. This is in contrast to Figure 6.6 where the velocity

field follows the curve, since there we are using 0-jet particles and so not able to

control the deformation gradient directly.

6.3.3 Controlling the Velocity and Gradient

It is clearly useful to control the velocity as we have done in Section 6.3.1 and the

deformation gradient as seen in Section 6.3.2. However if we need to do both of

these at the same time then we can proceed as follows.

6.3. Vector Field Design 114

We calculate the momenta of 0-jet particles pα such that the velocity u matches

the space curve’s derivative as before. Now we calculate the deformation gradient

∂ jui of the velocity field of the particles with momenta pα . Finally we add the tar-

get deformation gradient given by our control parameters µα to give the combined

deformation gradient

∂ jui− µ̄
i

α j

Now we want to solve for new pα and µα such that

ui(qα) = Kik (qα −qβ

)
pβk−∂kKil (qα −qβ

)
µ

k
β l (3.14 revisited)

∂ jui− µ̄
i

α j = ∂ jKik (qα −qβ

)
pβk−∂k j Kil (qα −qβ

)
µ

k
β l (6.3)

As described in Section 6.1.3 we can view this equation as a square matrix of size

(nd +nd2)× (nd +nd2) as a block matrix of matrix kernels, and we now solve for

pα and µα given the left hand side.

As discussed previously we have to modify the system to make sure it is in-

vertible. Since we are in three dimensions and µ ∈ sl3(R) it will satisfy the trace

free condition µii = 0

µ11 +µ22 +µ33 = 0

so we replace every (3n+9α+8)th row (the row for µα33) with the above condition

for particle label α .

Now we can solve for a new set of jet particles that have the desired velocity

and user prescribed deformation gradient at the discretised points.

Figure 6.10 shows the vector field resulting from aligning µ = Ry with the

Frenet frame of the curve so that the vector field generates a rotation that twists

around the axis of the curve and its velocity vector matches the space curve γ(s).

It is also be natural to desire to control the local scaling perpendicular to the

6.3. Vector Field Design 115

Figure 6.10: Vector field given by aligning µ with the Frenet frame and matching u on γ

tangent of the curve in order to flatten or expand the vector field along the curve.

The following Algorithm 4 summarises the steps required to create the con-

strained velocity field. The function DEFORMATIONGRADIENT evaluates the de-

formation gradient given by 0-jet particles with momenta pα at positions qα . The

frame along the curve is provided by the function FRAME, and the 1-jet momenta

are solved with the two parameter version of the SOLVEMOMENTA function that

takes the additional argument of the velocity gradient.

Algorithm 4 Constraining deformation gradient and velocity field
1: procedure CONSTRAINED VELOCITY FIELD

2: uα ← TANGENTS(γ,qα)
3: pα ← SOLVEMOMENTA(uα)
4: ∂uα ← DEFORMATIONGRADIENT(pα ,qα)
5: Rα ← FRAME(γ,qα)
6: µ̄α ← Rα µαRT

α

7: pα ,µα ← SOLVEMOMENTA(uα ,∂uα − µ̄α)

6.3.4 Varying the Kernel Size

We may want to vary the kernel size of each particle in order to generate more

interesting and varied velocity fields, similar to the vector fields used to create multi-

6.3. Vector Field Design 116

Figure 6.11: Vector field generated by 0-jet particles with varying σβ

scale deformations in the LDDKBM framework [59]. Hence we may modify the

kernels to evaluate the velocity and its gradient with the matrix kernel Kσβ
which

now have size σβ which vary per particle label β .

ui(qα) = Kik
σβ

(
qα −qβ

)
pβk−∂kKil

σβ

(
qα −qβ

)
µ

k
β l (6.4)

∂ jui− µ̄
i

α j = ∂ jKik
σβ

(
qα −qβ

)
pβk−∂k j Kil

σβ

(
qα −qβ

)
µ

k
β l (6.5)

Figure 6.11 shows a closed curve where 1-jet particles have been placed around a

circle to create a velocity field that rotates around its circumference and the particle

size σ has doubled on the opposite side of the circle.

Finally we show an image in Figure 6.12 of a vector field that has been created

to approximate the effect of a tornado. Using only eight particles with varying ker-

nel sizes, it has a core velocity field rising along a helix with an additional rotating

component given by a 1-jet particle with a rotation only µ .

Note that since we have varied the kernel size of the particles we do not have

jet particles any more, but we can still find matrix kernels that solve for the velocity

and its gradient that are divergence-free.

6.4. Conclusions and Future Work 117

Figure 6.12: Vector field generating a tornado effect using eight 1-jet particles with varying
σβ

We believe that the tools presented in this section support our Hypothesis 3

concerning the creation and control of divergence-free vector fields.

6.4 Conclusions and Future Work

6.4.1 Representing Existing Velocity Fields with Jet Particles

One application of the techniques explored in this chapter is to compress the veloc-

ity vector fields from a cached simulation with jet particles.

The reduction of existing flows to sparse data sets such as vortex filaments [34]

offers opportunities for compression and creating reduced solvers, and a hierarchi-

cal versions of this approach provides a method for editing velocity fields in a nat-

ural way [35].

We believe that representing existing time-varying velocity fields as jet parti-

cles can offer similar benefits. Given a velocity field from a incompressible fluid

simulation, we can represent the velocities using jet particles by projecting the ve-

locity field onto particles momenta. Farrell, Gillow, and Wendland [99] develop a

multi-level technique for interpolating divergence-free vector fields from scattered

6.4. Conclusions and Future Work 118

data points using divergence-free matrix kernels, so there is a precedence for this

approach.

We would like to investigate how to compress vector fields from produc-

tion fluid simulations with jet particles using the matrix kernels we have dis-

cussed [62] [36] in Chapter 3. We would seek to minimise the reconstruction er-

ror [30] of the full vector field given the jet particles at given positions.

The jet particles can be kept on a static grid which is simplest as it keeps a good

sampling resolution. Alternatively the particles may move due to their equations

of motion and at each time step we can project the velocity fields again onto the

particles. This may provide a natural temporal basis for fluid editing by using jet

particles as handles.

6.4.2 Designing Flows on Surfaces

Another interesting topic is designing flows on surfaces. We may scatter jet particles

on a surface and interpolate their velocity field anywhere on the surface, providing

that the points are well placed with respect to the kernel size. There is also the added

advantage that the velocities can be trivially extended into the volume in a similar

way that Bhattacharya, Nielsen, and Bridson [100] extrapolate flux velocities into

the interior of a surface.

6.4.3 Jet Particle Flow Rigs

In order to design flows easily for computer games or animation, it may prove useful

to cache an existing flow onto a curve rig or grid over a period of time. Having

recorded the dynamics of the fluid onto the rig for some time interval, we are free

to treat the curve as a skeletal rig and animate it in order to create a new flow. The

momenta of the jet particles may be pushed forward with the animation of the curve

rig, and the original simulation may be played back in a new pose.

The basic idea is summarised as:

1. Cache a fluid simulation u(x, t)

2. Project the simulation onto a 1-jet particle grid (pα ,µα)

3. Design a secondary edit flow ϕ e.g. with a jet particle curve rig or skeletal

6.4. Conclusions and Future Work 119

animation

4. Find the push forward of the jet particle rig (ϕ(qα),ϕ∗(pα),ϕ∗(µα))

5. Calculate the new deformed velocity field

Chapter 7

Deformations with Jet Particles

In this chapter we develop efficient methods for realising the coordinate change

given by the jet particle flow. Here we develop the machinery that allows us to

implement the deformations we require in Chapters 4 and 5.

The first algorithm we develop in Section 7.1 allows us to deform the density

and also evaluate the push-forwards of the velocity vector with the flow. This is

useful for example to calculate motion blur for use during rendering. We improve

on the accuracy of the Jacobian calculation in Section 7.2 by using the reverse jet

particle flow on the dense target grid.

In Section 7.3 we reduce computation times significantly by using a coarse

grid to accelerate the direct approach, ensuring we are able to process the large

grids produced by current simulators. The accuracy of this method is improved

further by using cubic bezier interpolation in Section 7.4, enabling the use of still

coarser deformation grids.

Finally in order to create deformations from jet particle simulations not ini-

tialised on a regular grid, we develop a gridless deformation algorithm in Section

7.5.

7.1 Forwards Deformation
The first method developed here to deform fluid densities and velocities based on jet

particle flow was implemented in two dimensions in the software mantaflow [91].

The fluid domain is discretised into a regular grid and its vertices are flowed

7.1. Forwards Deformation 121

forward using the velocities induced by the jet particles. The velocities for each grid

point are calculated using the function EVALUATEVELOCITY defined in Algorithm

5, by accumulating the velocities from each jet particle calculated using Equation

(3.14).

Algorithm 5 Evaluate velocity
1: function EVALUATEVELOCITY(J,x)

Input: Jet Particles J = { j1, . . . , jn}
Input: Position to evaluate x ∈ Rd

Output: Velocity u
2: u← 0
3: for α ∈ {1, . . . ,n} do:
4: (qα , pα ,µα)← Jet Particle jα
5: u← u+u(x,qα , pα ,µα) Equation (3.14)

The flow of the vertices are calculated by time-stepping using forwards Euler

integration. Higher order techniques can be used for more accuracy.

Algorithm 6 Advection with flow from jet particles
1: function FLOWFORWARDS

Input: Jet Particles J(t) = { j1(t), . . . , jn(t)} at times t ∈ {t1, . . . , tN}
Input: Position to flow x ∈ Rd

Output: Deformed position x
2: for t ∈ {t1, . . . , tN} do:
3: u← EVALUATEVELOCITY(J(t),x)
4: x← x+udt

See Figure 7.1 showing the deformation of a regular grid from its rest domain

into deformed elements via the flow of a single 0-jet particle with momentum in the

x direction.

In order to use these grids to find the deformed densities and velocities from

the rest grid we proceed as follows:

For each deformed position p we find its containing triangle element T and

calculate the barycentric coordinates λi of p within T . We then find the rest position

pR for p by using the barycentric coordinates λi within the rest triangle element TR.

In order to push forward the velocity vector uR from the rest grid, we calculate

the Jacobian of the deformation in the triangle. This is done by finding the unique

7.1. Forwards Deformation 122

(a) Rest grid of trianglulated elements

(b) Grid deformed with 0-jet particle flow

Figure 7.1: Deformation of rest grid with a 0-jet particle

d× d matrix M that transforms the rest triangle TR into T , after translating each

triangle such that a corresponding reference vertex is at the origin. See Figure 7.2

showing how we approximate the push forward ϕ∗ with M.

Then the push forward of the rest velocity is just

u = M ·uR

This method is summarised in Algorithm 7 as the function PUSHFORWARD.

7.1. Forwards Deformation 123

Figure 7.2: The Jacobian matrix maps the rest triangle TR to the triangle T deformed by the
flow ϕ

Algorithm 7 Deform Density and Velocity
1: function PUSHFORWARD

Input: Position p ∈ Rd in deformed state
Input: Rest grid R carrying density dR and velocity uR values
Input: Deformed grid G
Output: Deformed density d at p
Output: Deformed velocity vector u at p

2: T ← Triangle containing p
3: λi← Barycentric coordinates of p in T
4: vi← Vertices of rest triangle TR
5: pR← Rest point position ∑λivi
6: di← Density values at triangle vertices vi
7: d← Density ∑i λivi
8: M← Jacobian d×d matrix that maps TR to T without translation
9: ui← Rest velocity values at triangle vertices vi

10: uR← Interpolated rest velocity ∑i λiui
11: u← Push forward M ·uR

The draw back of this method is that it requires us to maintain an accelera-

tion data structure to track which deformed triangle element T contains each point

p. Moreover the interpolation is only piecewise linear for the density within each

triangle, and only piecewise constant for the velocity, since the Jacobian matrix is

fixed for each triangle.

7.2. Backwards Flow 124

7.2 Backwards Flow
The idea here is to flow each point of interest back in time in order to find the pre-

image of the point under the flow, so we can look up the interpolated quantities in

the source grid directly.

To this end we create a new function EVALUATEDERIVATIVES in Algorithm

8 which allows us to calculate the change in the deformation gradient Q due to the

jet particles flow. Using this we create an updated function FLOWFORWARDS in

Algorithm 9 which integrates position and a frame describing how the fluid is being

deformed locally. We also create the corresponding function FLOWBACKWARDS

in Algorithm 10 which will solve for the reverse flow.

Algorithm 8 Evaluate derivatives
1: procedure EVALUATEDERIVATIVES(J,x)

Input: Jet Particles J = { j1, . . . , jn}
Input: Position evaluate x ∈ Rd

Output: Velocity u
Output: Time derivative of deformation gradient dQ

2: u← 0
3: dQ← 0d
4: for α ∈ {1, . . . ,n} do:
5: (qα , pα ,µα)← Jet Particle jα
6: u← u+u(x,qα , pα ,µα) Equation (3.14)
7: dQ← dQ+

∂ui
α

∂x j Equation (3.9)

Note the gradient ∂ui
α

∂x j is calculated using Equation (3.9).

Algorithm 9 Advection with flow from jet particles
1: procedure FLOWFORWARDS

Input: Jet Particles J(t) = { j1(t), . . . , jn(t)} at times t ∈ {t1, . . . , tN}
Input: Position to flow x ∈ Rd

Output: Deformed position x
Output: Deformation gradient Q

2: Q← Id
3: for t ∈ {t1, . . . , tn} do:
4: (u,dQ)← EVALUATEDERIVATIVES(J(t),x)
5: x← x+udt
6: Q← Q+dQ ·Qdt

The function FLOWBACKWARDS differs from FLOWFORWARDS in that that

7.2. Backwards Flow 125

Figure 7.3: Flow by ϕ mapping x′ to x

the Euler integration step uses the negative velocity and gradient to integrate over

the time steps in reverse.

Algorithm 10 Reverse advection with flow from jet particles
1: procedure FLOWBACKWARDS

Input: Jet Particles J(t) = { j1(t), . . . , jn(t)} for t in t1, . . . , tN
Input: Position to flow x ∈ Rd

Output: Deformed position x
Output: Deformation gradient Q

2: Q← Id
3: for t ∈ {tn, . . . , t1} do:
4: (u,dQ)← EVALUATEDERIVATIVES(J(t),x)
5: x← x−udt
6: Q← Q−dQ ·Qdt
7: return x,Q

For each position in the deformed grid where we wish to calculate the deformed

density and velocity vector, we initialise a unit frame and flow it backwards in time

to find the corresponding rest position and frame. We then use this rest position to

look up the density, and we use the deformed frame to push-forward the velocity.

See Figure 7.3 for an illustration.

Note that since the jet particle system is Hamiltonian, the flow is reversible.

And since we are using the incompressible matrix kernels, the matrix Q′ will be in

SL(d;R) so it is volume preserving.

If the identity matrix (x,Id) has the pre-image (x′,Q′) under this flow, we can

look up scalar quantities such as density by evaluating the field DENSITY(x′) di-

7.3. Coarse Grid Optimisation 126

rectly and use Q′ to evaluate the deformed velocities of the original flow.

Note that the transformation law for densities requires that we scale the result

using the determinant of Jacobian. We can omit this step since the Jacobian will

have determinant 1 due to the incompressible nature of the flow. This will always

be the case when we have a flow from particles that use the incompressible matrix

kernels.

If we have a vector field that we seek to deform with our edit ϕ (such as the

velocity field from an off-line fluid simulation), we can push it forward with the

edit flow as follows. The pre-image Q of the identity frame Id is just the inverse of

the Jacobian of the flow ϕ at x′. So given J = Q′−1 we can calculate the deformed

velocity vector as J ·u. Since Q′ and J are both determinant 1, the push forward of

the velocity field is guaranteed to keep the deformed vector field incompressible.

The advantage of this method compared to the previous method in Section 7.1

is that the density can be looked up at the exact point it was flowed from, rather

than interpolating it within a deformed element. Also the deformed velocity is now

smooth.

7.3 Coarse Grid Optimisation
As an alternative to evaluating every point in the deformed space, we will instead

evaluate the deformation only on a coarse grid. Then the deformed position can be

calculated by taking a linear combination of the estimates from each frame.

Given that we have a deformed region D at time t given by some flow ϕ(·, t)

that we want to evaluate numerically, we discretise D into a regular deform grid

with points Xi j. We also define unit frames Id at each point Xi j. Using the function

FLOWBACKWARDS defined in Algorithm 10, we flow back the grid points Xi j and

their frames to rest time t = 0.

For each point q in D that we would like to evaluate, we find ourselves in a

cell C of the deform grid. At the vertices Xi of this cell C (where i ∈ {1, . . . ,2d}) we

also know how the unit frames are deformed, since we know their push forwards Qi

from above. Hence we can approximate the reverse flow ϕ(·, t)−1 by finding the 2d

7.3. Coarse Grid Optimisation 127

Q01

Q11

Q00

Q10

y
q

x

q’

Figure 7.4: Bilinear interpolation to estimate undeformed position q′ from q using frames
Qi j and positions Xi j

different approximations of the flow and blending between the results.

We calculate the blend weights using bilinear or trilinear interpolation (when

d is 2 or 3 dimensions respectively) since our deform grid is a regular axis aligned

grid.

Figure 7.4 shows how we find the bilinear coordinates in the deform grid to

estimate the undeformed position q′ using the frames Qi j. The local coordinates

(x,y) shown are normalised to lie in the range [0,1]× [0,1].

We transform q once for each vertex Xi j of the cell using the matrix Qi j to get

2d estimates qi j of ϕ(·, t)−1(q)

q′i j = X ′i j +Qi j ·
(
q−Xi j

)
(7.1)

We then use bilinear or trilinear interpolation of the q′i j using weights based on the

position of x in the cell C. So in two dimensions we approximate q with bilinear

interpolation using

q = (1− x)(1− y)q′00 + x(1− y)q′10 +(1− x)yq′01 + xyq′11

7.4. Bezier Interpolation 128

and with a similar result in three dimensions based on the interpolants (x,y,z), using

trilinear interpolation.

In order to calculate the deformed velocity at q, we push forward the velocity

in the source grid at each vertex with the frames Qi j to evaluate the velocity on the

deform grid. We then interpolate the deformed velocity with the same bilinear or

trilinear interpolation scheme. The interpolation of the velocity may result in the

deformed velocity not being divergence-free within each cell.

It is also possible to calculate an interpolated frame Q with the same interpo-

lation method in the source grid

Q = (1− x)(1− y)Q′00 + x(1− y)Q′10 +(1− x)yQ′01 + xyQ′11

and use this frame to push forward an interpolated velocity vector. However this

interpolated matrix Q will not in general lie in SL(d;R). Hence the push forward

Q ·u may not be divergence-free in the interior of the cell.

These weights do not take any non-linearity of the deformation gradient into

account and so there may be better choices. However they give reasonable results,

are efficient to calculate, and are easy to implement.

This algorithm is summarised here in Algorithm 11 for the two dimensional

case.

7.4 Bezier Interpolation
A higher order approximation for deformation by the coarse deform grid is achieved

by using bezier spline interpolation. Since we know the deformation gradient at the

coarse grid points, we can use this information to generate control points for cubic

bezier interpolation that matches the deformation gradient.

The unit frames which have been deformed by the jet particle flow in Section

7.3 can be used to generate control points for a bezier cubic spline as in Figure 7.5.

It is natural to use a cubic spline since we have evaluated the deformation gradient

matrix at each point. This provides us with the information to create the tangents

that are the both necessary and sufficient to define the control points required for

7.4. Bezier Interpolation 129

Algorithm 11 Evaluate deformed position and frame using bilinear interpolation
Input: Deform grid Φ

Input: Point position p
Output: Deformed position q
Output: Deformed frame Q

1: function SAMPLEDEFORMGRID(G, p)
2: c← Cell containing p
3: Xi j← Vertices of c
4: (x,y,z)← Normalised coordinates of p in c
5: X ′i j← Deformation points at Xi j

6: Q′i j← Deformation frames at Xi j

7: q′i j← X ′i j +Q′i j ·
(
q−Xi j

)
8: q← (1− x)(1− y)q′00 + x(1− y)q′10 +(1− x)yq′01 + xyq′11
9: Q← (1− x)(1− y)Q′00 + x(1− y)Q′10 +(1− x)yQ′01 + xyQ′11

10: return q,Q

P00

Q01

Q10

Q00

P30

P20

P10

P13

P01

P02

P03

P11

P12

P23 P33

P21

P22

P32

P31

Q11

Figure 7.5: Control points for a single bezier patch in 2D given the reverse flow ϕ(·, t)−1

the Bezier spline volume.

Each cell in the coarse grid defines a cubic Bezier volume patch, and together

they create a cubic Bezier volume spline for the whole deformation. The method of

7.4. Bezier Interpolation 130

Q02

Q20

Q10

Q00

Q21

Q22Q12

Q01

Q11

B00

B01

B11

B10

Figure 7.6: B-Spline surface consisting of four surface patches Bi j constructed with frames
Qi j

construction guarantees that neighbouring patches have matching tangents, and the

B-Splines are guaranteed to have C2 continuity even where they join neighbouring

patches [101].

Figure 7.6 shows the a 2D cubic Bezier spline constructed from frames Qi j

calculated on a deform grid. We define the corner vertices of the Bezier patch

p00, p30, p03, p33 to be the positions X ′00,X
′
10,X

′
01,X

′
11 defined by the reverse flow of

the cell C respectively with ϕ(·, t)−1 as before.

Now we define the 16 vertices as follows (here we just define the lower two

7.4. Bezier Interpolation 131

rows of the control points as the other rows are similar).

p00 =X ′00 (7.2)

p10 =X ′00 +
1
3

Q00ex (7.3)

p20 =X ′10−
1
3

Q10ex (7.4)

p01 =X ′00 +
1
3

Q00ey (7.5)

p11 =X ′00 +
1
3

Q00ex +
1
3

Q00ey (7.6)

p21 =X ′10−
1
3

Q10ex +
1
3

Q00ey (7.7)

p31 =X ′10 +
1
3

Q00ey (7.8)

where ex,ey are unit vectors in the x and y directions. These define 4 parallelograms

based on each frame Qi j.

A similar calculation holds to compute the 64 control points pi jk required for

the Bezier volume patch in three dimensions for example

p000 =X ′00 (7.9)

p100 =X ′00 +
1
3

Q000 ex (7.10)

p110 =X ′00 +
1
3

Q000 ex +
1
3

Q000 ey (7.11)

p111 =X ′00 +
1
3

Q000 ex +
1
3

Q000 ey +
1
3

Q000 ez (7.12)

and so on, where we are using the unit vectors ex,ey,ez to calculate parallelepipeds

based on each frame Qi jk.

The values of 1/3 are chosen since in the case where the corner points X ′i j lie

on a unit square and the frames Qi j are identity matrices, then it can be shown easily

that the spline function corresponds to the identity map.

A point p in the Bezier surface patch can be evaluated with

p =
3

∑
i=0

3

∑
j=0

pi jB3,i(x)B3,i(y)

7.4. Bezier Interpolation 132

and the corresponding volume patch is evaluated with

p =
3

∑
i=0

3

∑
j=0

3

∑
k=0

pi jk B3,i(x)B3, j(y)B3,k(z)

Here the Bn,i are the Bernstein basis polynomial functions [102] are defined as

Bn,i(x) =
(

n
i

)
xi(1− x)n−i i = 0, . . . ,n

and for cubic splines we have

B3,0(x) =(1− x)3

B3,1(x) =3x(1− x)2

B3,2(x) =3x2(1− x)

B3,3(x) =x3

Finally we can calculate an interpolated frame Q(x,y,z) in the volume using the

derivatives

∂ p
∂x

=
3

∑
i=0

3

∑
j=0

3

∑
k=0

pi jkB′3,i(x)B3, j(y)B3,k(z)

∂ p
∂y

=
3

∑
i=0

3

∑
j=0

3

∑
k=0

pi jkB3,i(x)B′3, j(y)B3,k(z)

∂ p
∂ z

=
3

∑
i=0

3

∑
j=0

3

∑
k=0

pi jkB3,i(x)B3, j(y)B′3,k(z)

where B′3,k(x) is the derivative of B3,k(x), to calculate the deformation gradient

Q =
∂ pi

∂x j

See more discussion about calculating derivatives of bezier surfaces in Spitzmüller [103].

7.5. Point Cloud Deformation 133

Note that by evaluating these partial derivatives at (0,0,0) we have

∂ p
∂x

(0,0,0) = 3(p100− p000)

∂ p
∂y

(0,0,0) = 3(p010− p000)

∂ p
∂ z

(0,0,0) = 3(p001− p000)

When we substitute for the control points with our definitions from Equation (7.9)

and (7.10) and so on, we have that

∂ p
∂x

(0,0,0) = Q000 ex

∂ p
∂y

(0,0,0) = Q000 ey

∂ p
∂ z

(0,0,0) = Q000 ez

and so we find that

Q(0,0,0) = Q000

So we recover the original frame as required at (0,0,0) and the same will hold at

the other corners, and so Q(x,y,z) will interpolate the frame consistently within the

volume patch.

This matrix Q may not lie in SL(d;R) in general, but we can use it to push

forward velocity vectors into the deformed volume from the rest grid.

This algorithm is summarised here in Algorithm 11 for the two dimensional

case.

Figure 7.7 shows control points for a bezier volume spline in 3D, constructed

from a deform grid based on the deformation by a 1-jet particle.

7.5 Point Cloud Deformation
In Section 7.3 it is a pre-requisite that the deform grid is a regular grid. However this

method can be easily modified to work for a point cloud with no grid structure. This

7.5. Point Cloud Deformation 134

Figure 7.7: Control points for a slice of a 3D bezier spline

7.5. Point Cloud Deformation 135

Algorithm 12 SampleDeformGridBezier
Input: Deform grid Φ

Input: Point position p
Output: Deformed delta d p
Output: Deformed frame Q

1: function SAMPLEDEFORMGRID(G, p)
2: c← Cell containing p
3: Xi j← Vertices of c
4: (x,y,z)← Normalised coordinates of p in c
5: X ′i j← Deformation points at Xi j

6: Q′i j← Deformation frames at Xi j
7: pi j← Control points using Equations (7.2)
8: qi← ∑

3
i=0 ∑

3
j=0 pi jB3,i(x)B3,i(y)

9: Q← ∂qi
∂x j

10: return q,Q

is useful to calculate deformations between frames other than the initial deformation

frame, using the same jet particle flow data.

With this method, a jet particle flow is calculated from a regular grid and in-

tegrated with forwards flow as with the coarse grid, but now each deformed frame

need not evaluate the reverse flow for each frame.

To calculate the deformation of a point with respect to the flow of an ar-

bitrary point cloud, we proceed as follows. Consider a set of deform particles

αi := (Xi,Qi) ∈ Rd ×SL(d;R) initialised on a regular grid with an identity frame

and advected with some jet particle flow Ji over time steps ta, . . . , tb. The result is a

set of moving particles Xi that carry a deforming frame Qi over time.

We would like to apply the deformation implied by these particles over a subset

of the time steps t1, . . . , tn (where ta < t1 < tn < tb), but without running a new jet

particle simulation from a regular grid.

To proceed, for each point p to deform we find the set of K closest deform

particles and attach p to each deforming frame to estimate its new position. Finally

as in Section 7.3, we take a weighted linear combination of each estimate, using

blend weights based on a one over distance squared fall off. The process is described

in Algorithm 13 and illustrated in Figure 7.8.

7.5. Point Cloud Deformation 136

Figure 7.8: Deforming a point p with a flow of a point cloud given by closest deform par-
ticles αi := (Xi,Qi)

The estimate for the deformed position relative to each particle αi is

qi = Q′iQ
−1
i (p−Xi)+X ′i

which is modified from Equation (7.1) to include the inverse of the initial matrix Qi,

not the identity matrix.

In a similar way that the skinning algorithm uses bones and blend weights (see

Section 5.1.1) to approximate a deformation, we use our frames Qi as bones and

calculate suitable weights. The difference is that our bones will not be orthogonal

matrices since they have been deformed with the flow, and are instead in SL(d;R).

Hence we combine the K estimates for ϕ−1(p) with weights wi to give

q =
∑i wiqi

∑i wi

and we interpolate the deformed transformation matrix in the same way as

Q =
∑i wiQ′iQ

−1
i

∑i wi

Here the function CLOSESTPOINTS(x,{Xi}) returns k indices of up to K

7.6. Conclusions 137

Algorithm 13 Deform with point cloud
1: procedure DEFORMPOINTCLOUD

Input: Deform Particles α(t) = {α1(t), . . . ,αn(t)} for t in t1, . . . , tN
Input: Position q ∈ Rd at time t1
Output: Deformed position q ∈ Rd at time tN
Output: Deformation gradient Q ∈ SL(d;R)

2: I = { j1, . . . , jk}← CLOSESTPOINTS(x,α(t1))
3: (Xi,Qi)← α ji(t1)
4: wi←WEIGHT(p−Xi)
5: (X ′i ,Q

′
i)← α ji(tN)

6: qi← Q′iQ
−1
i (p−Xi)+X ′i

7: q← ∑wiqi/∑wi
8: Q← ∑wiQ′iQ

−1
i /∑wi

closest points to x. The weights are calculated with the WEIGHT function w(x) =

1/x2, although different functions can be used to tune the resulting deformation for

example w(x) = x−γ for γ > 1.

7.6 Conclusions
In this chapter we have presented the algorithms we developed in the order they

were required during this thesis.

The forward deformation technique requires a triangle look up, and is only

piecewise linear for density and piecewise constant for velocity interpolation. How-

ever it was useful for the initial investigations and proof of concept.

The backwards deformation technique allows a simpler interpolation of data

on the initial regular grid, and allows us to find pre-images for exactly the points

we need in our deformed space. However the large data sets in today’s productions

make it prohibitive to evaluate the jet particle flow on each point of interest.

Calculating the deformation instead on a coarse grid allows the greater effi-

ciency. The most intensive part of the calculation, namely evaluating the Hamil-

tonian flow of each point, can be reduced significantly. A reduction of the grid

resolution by a factor of k reduces the number of points requiring simulation by kd

for dimension d.

Taking advantage of the fact that we know the deformation gradient of the flow

7.6. Conclusions 138

at each deformed point as a by product of integrating the flow, we can use this to

calculate a bezier volume for the deformation. This takes full advantage of all the

data we have calculated and allows more accurate interpolation.

Finally, by removing the requirement for calculating the deformed points on a

regular grid and using an arbitrary point cloud to store the data, we can reuse the

deformation data for any frame. The jet particle flow can be calculated once and

stored off-line, after which the deformation between arbitrary frames can be calcu-

lated. This improves efficiently when calculating the deformation on a sequence of

frames sharing the same flow.

Without these techniques it would be prohibitively expensive to deform the

large data sets used in production today.

See the tools Section A.3.1 for the details of how we implement these algo-

rithms using the OpenVDB [104] toolkit. The implementation leverages and main-

tains the sparsity of the volume data which the OpenVDB library supports. The

ability to work directly with this toolkit allows us to integrate these methods easily

with current visual effects applications including SideFX HoudiniFX and Autodesk

Maya.

We are now able to create arbitrary deformations with jet particle flow which

we use particularly in Chapters 4 and 5.

Chapter 8

Conclusions

8.1 Summary
Here we summarise the main contributions of this thesis outlined in Chapter 1.

1. To support Hypothesis 1 we have demonstrated a method for sketching real-

istic, incompressible and fluid-like flows in real-time using jet particles as a

natural interface for the artist.

Using jet particle dynamics with a sparse number of particles, we can create

complex flows whose divergence-free velocity fields can be evaluated at ar-

bitrary resolutions. The velocity field produced is divergence-free and can be

evaluated efficiently without a projection step to enforce this condition.

Unlike the shape sculpting system of Von Funck, Theisel, and Seidel [29],

our edits are naturally fluid-like due to their links to Euler’s equations.

We have demonstrated instabilities observed in the dynamics of interacting jet

particles. To counter these, we have shown that the use of velocity constraints

can be effective in delaying their onset. We suggest further avenues in order

to resolve these issues below.

2. We have provided methods for deforming flows using jet particles in support

of Hypothesis 2. To this end, we have created a system for designing new

variations of existing flows in a production environment.

By providing a method of coupling the jet particles with a given flow, we show

8.1. Summary 140

how to create a local temporal edit to the fluid after which the fluid is allowed

to return its original configuration. In contrast to the liquid editing system

proposed by Pan et al. [52], our edits are incompressible without requiring an

optimisation step.

We have demonstrated fluid editing using smoke simulations in 3D from a

production environment, and we implement a solution for deforming fluid

caches in Maya using curve rigs to render new variations of the flow.

3. To support Hypothesis 3 we have demonstrated a method of using jet particles

to represent existing vector fields, and have shown how to design new ones

using constraints on the particle momenta. To achieve this aim we show a

method for solving the momenta of the jet particles given their velocity field

and the velocity gradient at the particle locations.

Using this method we show how to design vector fields that follow a given

curve, and we use the extra degrees of freedom of the 1-jet particles to con-

strain the deformation gradient around the curve to control the twisting of the

vector field’s flow.

The method does not require the points to lie on a curve however, and the jet

particles state can be used to edit the divergence-free vector field directly. In

this way the jet particles provide a more intuitive way to create divergence-

free vector fields than using curl-noise [37], since the input for that system

is a scalar field and it is not easy to control the direction of the vector field

directly.

4. In order to demonstrate the techniques in our sketching and editing applica-

tions for contributions (1-2) we have provided implementations for deforming

functions, densities, vector fields and tensors. This allows us to use the same

framework to transform meshes, fluid volumes, level sets and rigid bodies.

We have provided direct methods for calculating deformations and approxi-

mation methods for allowing the deformation to be evaluated efficiently on

sparse sets of points for use on large production data sets. These methods

8.2. Future Work 141

take advantage of a moving frame carried by the jet particle flow that shears

with the flow. Even large deformations are well represented without loss of

detail by the algorithms since the flow is Hamiltonian, and therefore energy

preserving, reversible and presents no numerical viscosity.

We think that there will be further uses of jet particles in computer graphics

and we outline ideas for future work in the next section.

8.2 Future Work
Ideas for future work are outlined below.

8.2.1 Deformation

A related work in shape deformation [29] constructs divergence-free vector fields

in 3D by taking the cross product of the gradient of two scalar functions ∇e×∇ f .

Solomon et al. [105] propose a method for sketching near-isometric deformations

by recording a brush stroke to accumulate a deformation, in similar way to our fluid

sketching application in Chapter 4.

Hence our work can have applications in shape modelling, since our edits have

the same desired properties: they are smooth, volume preserving, they do not gen-

erate self-intersections and they preserve high frequencies. Moreover the sketching

methods we have designed will work with surfaces defined by level sets, point cloud

data, meshes and volumes alike.

8.2.2 Jet Particle Simulations

We have demonstrated that we can use jet particles to model fluid-like flow, and we

have shown how to constrain the particles to increase stability and control the flow.

Further, jet particle simulations do not require a velocity projection step. For

other grid based fluid solvers, just this step alone can cost around one quarter of the

simulation time [106]. It would be fascinating to evaluate how suitable jet particles

are for fluid simulation in their own right, and whether they can be combined with

an SPH solver effectively.

We have seen that jet particle dynamics show instabilities and do not approxi-

8.2. Future Work 142

mate Eulerian flow well when they are not evenly spaced. It is an open question as to

whether we can stabilise jet particles simulations, but one possible line is to try the

re-positioning of the particles when they get too close, using a momenta projection

step as described in Chapter 4. The particles could be reset back to a regular grid as

in the particle mesh method of Cotter, Frank, and Reich [107]. Alternatively they

may be allowed to move dynamically with policies in place to keep them well dis-

tributed. Possible methods include moving the particles to the center of their power

diagrams as with the power particles method [92], or adding separation forces to

keep the particles separate to prevent blow up.

Moreover it may be possible to increase the efficiency of the of the pair-wise

evaluation of the matrix kernels by using FMM (Fast Multipole Method), a method

used by Angelidis [108] to create a multi-scale Lagrangian smoke solver. The FMM

approach has also been applied successfully in the multi-scale LDDKBM frame-

work [60] to accelerate the particle flows and to parallelise the problem with a GPU

implementation.

It may also be possible to include viscosity in the particle interaction as done

in SPH, by considering the Lagrangian formulation of the Navier-Stokes equations.

Another possibility is to use an interpolated matrix kernel to relax the divergence-

free condition (as discussed in Section 3.4) to model diffusion.

Jet particles may also have a significant role to play in adding turbulent detail

at finer scales to fluid simulations.

We may also seek to couple jet particle flow with another jet particle simula-

tion at a different resolution. We discussed the advection of jet particles to model

turbulence within a flow in Chapter 5, and this is an example of the coupling of one

flow with another dynamically.

Holm and Tronci [109] create a coupled model for fluid flow, where one fluid

flow is the mean flow for dynamics at a finer scale. This approach may be useful as

it allows simulations with different sized particles to interact. This is not possible

within a jet particle simulation as it breaks the particle relabelling symmetry. Hence

we may consider a multi-level jet particle simulation where each level is a constraint

8.2. Future Work 143

or background velocity field for the next, and so the conservation of momentum is

still upheld within each level. This model can provide two way interaction between

levels, modelling both back-scattering and forwards-scattering.

Appendix A

Tools

In the sections that follow we review the tools that we have created and used in the

previous chapters.

A.1 Manta
We used manta [91] as a basis for our fluid paint application shown in Video 4.4

in Chapter 4. To make this possible we extended manta to allow the sketching of

deformations interactively with 1-jet particles. Manta is also used to generate the

2D smoke simulations shown in Chapter 5.

A.2 Tensor Library
When developing the sketching application from Chapter 4 and the editing applica-

tions described in Chapter 5, we needed to evaluate the jet particle’s velocity fields

and simulate their interaction.

Calculating the velocities and solving the equations of motion for the jet parti-

cles requires evaluation of the matrix kernel and their derivatives. This in turn calls

for a high order tensor maths library.

When programming in scientific python, the arbitrary dimensional tensor li-

brary einsum is available. However, evaluation in C++ is required for the integration

into SideFX Houdini FX and Autodesk Maya 2016, and for our custom sketching

application. In addition to evaluating the velocity fields, fifth order tensors are re-

quired for evaluating the equations of motion for 1-jet particles in Equations (3.10),

A.3. OpenVDB 145

(3.11) and (3.12).

We evaluated the C++ tensor library Einsum [110], but it did not have the

necessary performance, and its requirements for tracking tensor indices made it

prohibitive to use. However, the solution we generated for tensor evaluation was

validated against Einsum as a reference implementation.

The most interesting alternative LTensor [111] is a tensor library written in C++

that uses templates. Operations are reduced in-line by the compiler and therefore it

has much better runtime performance, although the use of the higher order tensors

requires an increase in compile time.

However LTensor only supports operations on tensors up to order four. The

author confirmed that no code was available to extend the library source code, so

we extended the library using custom python code. This generated the C++ template

functions we needed for the fifth order tensor calculations we required.

A.3 OpenVDB
In Chapter 7 we described the algorithm for evaluating the deformation given by

jet particle flow, including a method for pushing forward velocity vectors. In this

Section we describe the implementation of these methods for use with OpenVDB

grids.

OpenVDB [104] is an open source C++ library for storing volume data in three

dimensions. It uses sparse hierarchical structures for efficiency and also provides

useful tools for data manipulation. The Tree data structure is responsible for storing

data at each (i, j,k) index of space, where each index is a 32-bit integer. By default

the data structure uses Leaf nodes to store an 8×8×8 voxel grid. Each OpenVDB

file may contain multiple grids, each with its own Tree structure.

Figure A.1a shows a visualisation of the leaf nodes for a smoke density grid

from an OpenVDB file. In designing our deformation algorithm, we take care to

minimise the deformation calculations and storage requirements. We do this by

taking the Tree data structure into account for each field stored in the OpenVDB

file. We outline the algorithms in the sections that follow.

A.3. OpenVDB 146

A.3.1 Deformation of OpenVDB Files

In order to keep the deformed data structures sparse, and to reduce computation in

the case when we have many overlapping grids, we proceed as follows.

Firstly we create a sparse region in space that contains the image of the defor-

mation of the source grid. This region can be strictly larger and coarser than the

exact image, since it will be used to create an empty deform grid Φ as outlined in

Section 7.3. Secondly we fill the deform grid Φ with the position deltas and ma-

trices describing the deformation. Finally we evaluate the deformed grids at each

potential point in the deformed region by applying Φ to each of the input grids.

Algorithm 14 VDB Deform Region
Input: Grid to deform G
Input: Deform grid voxel size dx
Output: Deform grid Φ

1: procedure DEFORMREGION

2: for i in NUMLEAFNODES(G) do:
3: L← Leaf node i of G
4: p j← Bounding box vertices of L
5: for j in 1, . . . ,2d do:
6: p j← FLOWFORWARDS(p j)

7: Bi←Bounding box of p j

8: Φ←Deform grid CREATEGRID(∪iBi,dx)
9: for all Bi do

10: for all cells c in Bi do
11: ACTIVATECELL(Φ,c)

In DEFORMREGION in Algorithm 14 we created a deform grid with voxel

width dx. Cells are tagged as active with the function ACTIVATECELL(Φ,c) if they

are an image of any leaf bounding box region of a source grid under the jet particle

flow.

Here the function NUMLEAFNODES(G) returns the number of leaf nodes in

the grid G, and CREATEGRID(B,dx) creates a grid with voxel size dx and a trans-

form based on the bounding box of the region B. Usually we choose a voxel size

around five times larger than the grid in order to reduce computation. This results

in very little loss of visual quality.

This method requires evaluating the FLOWFORWARDS function on each vertex

A.3. OpenVDB 147

of the leaf bounding box vertex, this set being significantly smaller than the number

of voxels in the source grid. However if the number of leaf box vertices becomes

significant we can still optimise this process by creating a coarse grid for the forward

deformation as outlined in Section 7.3. In our implementation we use only the leaf

bounding box vertices.

Algorithm 15 Create Deform Grid
Input: Empty deform grid Φ

Input: Jet Particles J(t) = { j1(t), . . . , jn(t)} for t in t1, . . . , tN
Input: Deform grid Φ

1: procedure FILLDEFORMGRID

2: for all Active cell c in grid Φ do
3: p← Center of cell c
4: (x′,Q)← FLOWBACKWARDS(J(t),x)
5: Φ[c]← (x′− x,Q)

In FILLDEFORMGRID from Algorithm 15, we calculate the deltas d p and the

deformation frame Q based on the backwards flow of the jet particles. These are

calculated for each active cell and stored as vectors in the deform grid Φ. See Figure

A.2 for an image showing the delta vectors calculated from the sparse smoke grid

shown in Figure A.1a, with a deformation defined by a stationery 1-jet particle

representing a rotation.

Algorithm 16 Create Deformed Grid
Input: Source grid G
Output: Deformed grid H

1: function DEFORMGRID(G)
2: for all Deformed leaf Bounding box Bi of grid G do
3: for all cells c in Bi do
4: ACTIVATECELL(H,c)
5: for all Active cell c in grid H do
6: p← Center of cell c
7: (d p,Q′)← SAMPLEDEFORMGRID(Φ, p)
8: d,u′← SAMPLEGRID(G, p)
9: u← Q′ ·u′

10: H[c,D]← d
11: H[c,U]← u
12: return H

Finally we apply the deformation stored in the deform grid Φ to each source

A.3. OpenVDB 148

grid in the OpenVDB file.

Using Algorithm 16, we find the set of cells that could be the image of cells

in the source grid under the flow, and trace each position back using the deform

grid Φ. This uses the function SAMPLEDEFORMGRID(Φ, p) which will return an

interpolated position delta and deformation frame, based on the trilinear or bezier

volume methods defined in Sections 7.3 and 7.4 respectively.

Figure A.1b shows a deformed version of the smoke density field from Figure

A.1a under the action of a 1-jet particle flow, calculated by applying the Φ shown

in A.2. Note how the leaf nodes have only been created where required to maintain

the sparse representation.

As a side, the functions defined above have been implemented to take advan-

tage of the multithreading using TBB [112]. Since the set of active voxels are

available, the OpenVDB framework will call our functions only with these voxels,

having split the work into blocks for multiple threads.

A.3. OpenVDB 149

(a) Leaf nodes for a smoke density field

(b) Leaf nodes for the deformed density field

Figure A.1: The deformation algorithm preserves the sparsity of the density field

A.3. OpenVDB 150

Figure A.2: The delta vectors used for the deformation. These are defined sparsely on a
coarser grid than the data set being deformed.

A.3. OpenVDB 151

A.3.2 Visualisation in Maya

In order to implement the Maya rigs described in Section 5.6, we implemented a

ray traced GLSL visualisation of the OpenVDB grids. The OpenVDB source code

provided a visualiser in Maya for OpenVDB files, but it did not use ray tracing and

so the results were hard to read.

In order to perform the fast evaluation of the volume deformation on the GPU,

the velocity field from the 1-jet particles must be evaluated. This requires calcu-

lating the first derivative of the matrix kernel and the contraction with µ , which

is a third order tensor operation. Although GLSL only supports matrix operations

natively, the use of a matrix array structure aids the writing of tensor arithmetic

functions.

Listing A.1 shows an example of GLSL code creating a third order tensor using

such a data structure.

Listing A.1: Momentum Matrix

s t r u c t t e n 3 {

mat3 a [3] ;

} ;

t e n 3 m i j v k (mat3 m, vec3 v)

{

t e n 3 r ;

f o r (i n t k =0; k<3; k ++) {

f o r (i n t j =0 ; j <3; j ++) {

f o r (i n t i =0 ; i <3; i ++) {

r . a [i] [j] [k] = m[i] [j]* v [k] ;

}

}

}

r e t u r n r ;

}

This allows the 1-jet velocity field to be calculated without extra complexity.

A.3.3 Deformation in Maya Rig

The steps required for implementing the deformer rig in Maya described in Section

5.6 are presented in this section.

The purpose of these tools is to allow a curve to be used to deform an openVDB

cache interactively with a low resolution proxy, since the production data set is very

large. Finally the deformation is calculated on the full resolution volume in software

A.3. OpenVDB 152

for rendering.

Firstly, OpenVDB proxy files are automatically computed as a post-process

after the fluid simulation is complete. Large grids are reduced to files no larger than

30×30×30 voxels so that it is still possible to visualise the files interactively over

the network.

Then the jet particle flow is loaded into memory, representing the edit flow. The

flow may be provided from the description of curves in the maya scene, or from a

network file. The jet particles are stored efficiently as a particle cache carrying extra

information. In particular we store an extra vector p, a matrix µ and a radius σ per

frame.

In order to carry out the deformation, we may use the C++ path described in

Section A.3.1. The GPU path is similar, except it is applied to proxy volume data

loaded as a 3D texture. The deformation is calculated using a compute shader in

GLSL that evaluates the velocity field sequentially, and integrates the jet particle

positions.

Finally to facilitate the rendering with Arnold, we wrote a volume translator

which deforms the OpenVDB file in software at render time.

A.3.4 Calculating the Projection Matrix

Here we show the C++ code used for calculating the block matrices M from Section

6.1.

We define the matrix eA and vector eB corresponding to the matrix M, and the

arrays v and dv representing the observed velocity data and gradient. We represent

the data structures using the Eigen C++ package [113].

A.3.4.1 Projection matrix for 0-Jet Particles

The code in Listing A.2 shows the algorithm for creating the matrix M from Section

6.1.2 used for projecting 0-jet particles.

Listing A.2: Momentum matrix for 0-jets

/ / F i l l Ma t r i x

f o r (i n t a =0; a<n ; a ++) {

f o r (i n t b =0; b<n ; b ++) {

f o r (i n t i =0 ; i<d ; i ++) {

A.3. OpenVDB 153

f o r (i n t j =0 ; j<d ; j ++) {

/ / K{ i j } p{k} [UL]

eA (a *d + i , b*d + j) = K(i , j) ;

}

}

/ / u

f o r (i n t a =0; a<n ; a ++) {

c o n s t Vector<d> &v e l = v [a] ;

f o r (i n t i =0 ; i<d ; i ++) {

eb (a *d + i) = v e l . d a t a () [i] ;

}

}

}

}

A.3.4.2 Projection matrix for 1-Jet Particles

The code in Listing A.3 shows the algorithm for creating the matrix M from Section

6.1.3 used for projecting 1-jet particles, including the application of the incompress-

ibility constraint.

Listing A.3: Momentum matrix for 1-jets

/ / F i l l Ma t r i x

f o r (i n t a =0; a<n ; a ++) {

f o r (i n t b =0; b<n ; b ++) {

f o r (i n t i =0 ; i<d ; i ++) {

f o r (i n t j =0 ; j<d ; j ++) {

/ / K{ i j } p{k} [Upper L e f t]

eA (a *d + i , b*d + j) = K(i , j) ;

f o r (i n t k =0; k<d ; k ++) {

/ / d{k}K{ i j } mu{ j k} [Upper R i g h t]

eA (a *d + i , n*d + b*d*d + j *d + k) = −DK(i , j , k) ;

/ / dv{ i}d{ j} = d{ j}K{ i k} p{k} [Bottom L e f t]

eA (n*d + a *d*d + i *d + j , b*d + k) = DK(i , k , j) ;

f o r (i n t l = 0 ; l < d ; l ++) {

/ / d{ j}u{ i} = −d{k j}K{ i l } mu{ l k} [Bottom R i g h t]

eA (n*d + a *d*d + i *d + j , n*d + b*d*d + l *d + k) = −D2K(i , l , k , j) ;

}

}

}

}

}

}

/ / I n c o m p r e s s i b i l i t y C o n d i t i o n

f o r (i n t a =0; a<n ; a ++) {

/ / u p d a t e row f o r t h e l a s t component o f mu a

f o r (i n t b =0; b<d*n + d*d*n ; b ++) {

/ / z e r o t h e whole d*d−1 row

eA (n*d + a *d*d + (d−1)*d + d−1, b) = 0 ;

}

f o r (i n t b =0; b<d ; b ++) {

/ / u p d a t e each mu bb c o e f f i c i e n t

eA (n*d + a *d*d + (d−1)*d + d−1, n*d + a *d*d + b*d + b) = 1 . ;

}

A.3. OpenVDB 154

}

/ / u and du

f o r (i n t a =0; a<n ; a ++) {

c o n s t Vector<d> &v e l = v [a] ;

c o n s t Matr ix<d> &dvdx = dv [a] ;

f o r (i n t i =0 ; i<d ; i ++) {

eb (a *d + i) = v e l . d a t a () [i] ;

f o r (i n t j = 0 ; j < d ; j ++) {

eb (n*d + a *d*d + i *d + j) = dvdx (i , j) ;

}

}

/ / I n c o m p r e s s i b i l i t y C o n d i t i o n f o r mu a (RHS)

eb (n*d + a *d*d + (d−1)*d + d−1) = 0 . ;

}

A.3.5 Houdini Implementation

We use an Attribute Wrangle SOP node to evaluate the velocity field and its gradient

on the points. The code, which uses the custom VEX matrixKernel function, is

described in Listing A.4 below. It collects the summed contributions from all of jet

particles at each point.

Listing A.4: Velocity and gradient evaluation

v e c t o r dq , v = {0 ,0 ,0} ;

m a t r i x 3 dv , dvdx = {0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0} ;

i n t h a n d l e = pcopen (@OpInput2 , ”P” , @P, max rad ius , m a x p o i n t s) ;

w h i l e (p c i t e r a t e (h a n d l e))

{

p c i m p o r t (hand le , ”P” , p2) ;

p c i m p o r t (hand le , ”mom” , mom2) ;

p c i m p o r t (hand le , ”mu” , mu2) ;

m a t r i x K e r n e l (@P, p2 , mom2, mu2 , sigma , dq , dv) ;

v += dq ;

dvdx += dv ;

}

v@v = v ;

3@dvdx = dvdx ;

In order to invert the matrix we implemented a custom Solve Momenta SOP

which builds the block matrices and inverts the linear system of equations using

Listing A.3.4.2 as described above in Section 6.3.3.

Bibliography

[1] N. Foster and D. Metaxas. “Realistic animation of liquids”. In: Graphical

models and image processing 58.5 (1996), pp. 471–483.

[2] J. Stam. “Stable fluids”. In: Proceedings of the 26th annual conference

on Computer graphics and interactive techniques. ACM Press/Addison-

Wesley Publishing Co. 1999, pp. 121–128.

[3] J. J. Monaghan. “Smoothed particle hydrodynamics”. In: Annual review of

astronomy and astrophysics 30 (1992), pp. 543–574.

[4] Y. Zhu and R. Bridson. “Animating sand as a fluid”. In: ACM Transactions

on Graphics (TOG). Vol. 24. 3. ACM. 2005, pp. 965–972.

[5] M. Lentine, J. T. Grétarsson, and R. Fedkiw. “An unconditionally stable

fully conservative semi-Lagrangian method”. In: Journal of computational

physics 230.8 (2011), pp. 2857–2879.

[6] J. Stam. “Flows on surfaces of arbitrary topology”. In: ACM Transactions

On Graphics (TOG). Vol. 22. 3. ACM. 2003, pp. 724–731.

[7] S. Elcott, Y. Tong, E. Kanso, P. Schröder, and M. Desbrun. “Stable,

circulation-preserving, simplicial fluids”. In: ACM Transactions on Graph-

ics (TOG) 26.1 (2007), p. 4.

[8] P. Mullen, A. McKenzie, D. Pavlov, L. Durant, Y. Tong, E. Kanso, J. E.

Marsden, and M. Desbrun. “Discrete Lie advection of differential forms”.

In: Foundations of Computational Mathematics 11.2 (2011), pp. 131–149.

BIBLIOGRAPHY 156

[9] T. De Witt, C. Lessig, and E. Fiume. “Fluid simulation using laplacian

eigenfunctions”. In: ACM Transactions on Graphics (TOG) 31.1 (2012),

p. 10.

[10] O. Azencot, S. Weißmann, M. Ovsjanikov, M. Wardetzky, and M. Ben-

Chen. “Functional fluids on surfaces”. In: Computer Graphics Forum.

Vol. 33. 5. Wiley Online Library. 2014, pp. 237–246.

[11] M. Ihmsen, J. Orthmann, B. Solenthaler, A. Kolb, and M. Teschner. “SPH

fluids in computer graphics”. In: (2014).

[12] M. Desbrun and M.-P. Gascuel. Smoothed particles: A new paradigm for

animating highly deformable bodies. Springer, 1996.

[13] M. Müller, D. Charypar, and M. Gross. “Particle-based fluid simulation for

interactive applications”. In: Proceedings of the 2003 ACM SIGGRAPH/Eu-

rographics symposium on Computer animation. Eurographics Association.

2003, pp. 154–159.

[14] I. Alduán and M. A. Otaduy. “SPH granular flow with friction and cohe-

sion”. In: Proceedings of the 2011 ACM SIGGRAPH/Eurographics sympo-

sium on computer animation. ACM. 2011, pp. 25–32.

[15] B. Ren, C. Li, X. Yan, M. C. Lin, J. Bonet, and S.-M. Hu. “Multiple-fluid

SPH simulation using a mixture model”. In: ACM Transactions on Graphics

(TOG) 33.5 (2014), p. 171.

[16] X. Yan, Y.-T. Jiang, C.-F. Li, R. R. Martin, and S.-M. Hu. “Multiphase

SPH simulation for interactive fluids and solids”. In: ACM Transactions on

Graphics (TOG) 35.4 (2016), p. 79.

[17] J. Cornelis, M. Ihmsen, A. Peer, and M. Teschner. “Liquid boundaries

for implicit incompressible SPH”. In: Computers & Graphics 52 (2015),

pp. 72–78.

[18] B. Ren, X. Yan, T. Yang, C.-f. Li, M. C. Lin, and S.-m. Hu. “Fast SPH sim-

ulation for gaseous fluids”. In: The Visual Computer 32.4 (2016), pp. 523–

534.

BIBLIOGRAPHY 157

[19] R. Winchenbach, H. Hochstetter, and A. Kolb. “Infinite continuous adaptiv-

ity for incompressible SPH”. In: vol. 36. 4. ACM, 2017, p. 102.

[20] M. B. Liu and G. R. Liu. “Smoothed Particle Hydrodynamics (SPH): an

Overview andRecent Developments”. In: Archives of Computational Meth-

ods in Engineering 17.1 (2010), pp. 25–76. ISSN: 1886-1784.

[21] J. Brackbill and H. Ruppel. “FLIP: A method for adaptively zoned, particle-

in-cell calculations of fluid flows in two dimensions”. In: Journal of Com-

putational Physics 65.2 (1986), pp. 314–343.

[22] K. Raveendran, N. Thuerey, C. Wojtan, and G. Turk. “Controlling liquids

using meshes”. In: Proceedings of the ACM SIGGRAPH/Eurographics Sym-

posium on Computer Animation. Eurographics Association. 2012, pp. 255–

264.

[23] F. Ferstl, R. Ando, C. Wojtan, R. Westermann, and N. Thuerey. “Narrow

band FLIP for liquid simulations”. In: Computer Graphics Forum. Vol. 35.

2. Wiley Online Library. 2016, pp. 225–232.

[24] J. Wejchert and D. Haumann. “Animation aerodynamics”. In: ACM SIG-

GRAPH Computer Graphics. Vol. 25. 4. ACM. 1991, pp. 19–22.

[25] M. B. Nielsen and B. B. Christensen. “Improved variational guiding of

smoke animations”. In: Computer Graphics Forum. Vol. 29. 2. Wiley Online

Library. 2010, pp. 705–712.

[26] Z. Yuan, F. Chen, and Y. Zhao. “Pattern-guided smoke animation with la-

grangian coherent structure”. In: ACM transactions on graphics (TOG).

Vol. 30. 6. ACM. 2011, p. 136.

[27] M. B. Nielsen and R. Bridson. “Guide shapes for high resolution naturalistic

liquid simulation”. In: ACM Transactions on Graphics (TOG) 30.4 (2011),

p. 83.

[28] A. Stomakhin and A. Selle. “Fluxed animated boundary method”. In:

vol. 36. 4. ACM, 2017, p. 68.

BIBLIOGRAPHY 158

[29] W. Von Funck, H. Theisel, and H.-P. Seidel. “Vector field based shape defor-

mations”. In: ACM Transactions on Graphics (TOG) 25.3 (2006), pp. 1118–

1125.

[30] A. Treuille, A. Lewis, and Z. Popović. “Model reduction for real-time flu-

ids”. In: ACM Transactions on Graphics (TOG). Vol. 25. 3. ACM. 2006,

pp. 826–834.

[31] B. Liu, G. Mason, J. Hodgson, Y. Tong, and M. Desbrun. “Model-reduced

variational fluid simulation”. In: ACM Transactions on Graphics (TOG)

34.6 (2015), p. 244.

[32] M. Wicke, M. Stanton, and A. Treuille. “Modular bases for fluid dynamics”.

In: ACM Transactions on Graphics (TOG). Vol. 28. 3. ACM. 2009, p. 39.

[33] T. Kim and J. Delaney. “Subspace Fluid Re-simulation”. In: ACM Trans.

Graph. 32.4 (July 2013), 62:1–62:9. ISSN: 0730-0301. DOI: 10.1145/

2461912.2461987. URL: http://doi.acm.org/10.1145/

2461912.2461987.

[34] S. Weißmann, U. Pinkall, and P. Schröder. “Smoke rings from smoke”. In:

ACM Transactions on Graphics (TOG) 33.4 (2014), p. 140.

[35] S. Eberhardt, S. Weissmann, U. Pinkall, and N. Thuerey. “Hierarchical vor-

ticity skeletons”. In: Proceedings of the ACM SIGGRAPH/Eurographics

Symposium on Computer Animation. ACM. 2017, p. 6.

[36] D Mumford and P. W. Michor. “On Euler’s equation and ‘EPDiff”’. In:

Journal of Geometric Mechanics 5.3 (2013). arXiv:1209.6576 [math.AP],

pp. 319–344.

[37] R. Bridson, J. Houriham, and M. Nordenstam. “Curl-noise for procedural

fluid flow”. In: ACM Transactions on Graphics (TOG) 26.3 (2007), p. 46.

[38] K. Perlin. “An image synthesizer”. In: ACM Siggraph Computer Graphics

19.3 (1985), pp. 287–296.

http://dx.doi.org/10.1145/2461912.2461987
http://dx.doi.org/10.1145/2461912.2461987
http://doi.acm.org/10.1145/2461912.2461987
http://doi.acm.org/10.1145/2461912.2461987

BIBLIOGRAPHY 159

[39] J. Steinhoff and D. Underhill. “Modification of the Euler equations for vor-

ticity confinement: Application to the computation of interacting vortex

rings”. In: Physics of Fluids 6.8 (1994), pp. 2738–2744.

[40] A. Selle, N. Rasmussen, and R. Fedkiw. “A vortex particle method for

smoke, water and explosions”. In: ACM Transactions on Graphics (TOG).

Vol. 24. 3. ACM. 2005, pp. 910–914.

[41] T. Kim, N. Thürey, D. James, and M. Gross. “Wavelet turbulence for fluid

simulation”. In: ACM Transactions on Graphics (TOG). Vol. 27. 3. ACM.

2008, p. 50.

[42] A. Tsinober. “Turbulence: The Legacy of A. N. Kolmogorov. By U. Frisch.

Cambridge University Press, 1995. 296 pp. ISBN 0 521 45713 0. 15.95.”

In: Journal of Fluid Mechanics 317 (1996), 407410. DOI: 10 . 1017 /

S0022112096210791.

[43] T. Pfaff, N. Thuerey, J. Cohen, S. Tariq, and M. Gross. “Scalable fluid sim-

ulation using anisotropic turbulence particles”. In: ACM Transactions on

Graphics (TOG) 29.6 (2010), p. 174.

[44] B. Launder and B. Sharma. “Application of the energy-dissipation model

of turbulence to the calculation of flow near a spinning disc”. In: Letters in

Heat and Mass Transfer 1.2 (1974), pp. 131 –137. ISSN: 0094-4548. DOI:

http://dx.doi.org/10.1016/0094-4548(74)90150-7.

URL: http://www.sciencedirect.com/science/article/

pii/0094454874901507.

[45] T. Kim, J. Tessendorf, and N. Thuerey. “Closest point turbulence for liquid

surfaces”. In: ACM Transactions on Graphics (TOG) 32.2 (2013), p. 15.

[46] O. Mercier, C. Beauchemin, N. Thuerey, T. Kim, and D. Nowrouzezahrai.

“Surface turbulence for particle-based liquid simulations”. In: ACM Trans-

actions on Graphics (TOG) 34.6 (2015), p. 202.

http://dx.doi.org/10.1017/S0022112096210791
http://dx.doi.org/10.1017/S0022112096210791
http://dx.doi.org/http://dx.doi.org/10.1016/0094-4548(74)90150-7
http://www.sciencedirect.com/science/article/pii/0094454874901507
http://www.sciencedirect.com/science/article/pii/0094454874901507

BIBLIOGRAPHY 160

[47] F. Pighin, J. M. Cohen, and M. Shah. “Modeling and editing flows using

advected radial basis functions”. In: Proceedings of the 2004 ACM SIG-

GRAPH/Eurographics symposium on Computer animation. Eurographics

Association. 2004, pp. 223–232.

[48] A. Treuille, A. McNamara, Z. Popović, and J. Stam. “Keyframe control of

smoke simulations”. In: ACM Transactions on Graphics (TOG). Vol. 22. 3.

ACM. 2003, pp. 716–723.

[49] A. McNamara, A. Treuille, Z. Popović, and J. Stam. “Fluid control using

the adjoint method”. In: ACM Transactions On Graphics (TOG). Vol. 23. 3.

ACM. 2004, pp. 449–456.

[50] L. Shi and Y. Yu. “Taming liquids for rapidly changing targets”. In: Pro-

ceedings of the 2005 ACM SIGGRAPH/Eurographics symposium on Com-

puter animation. ACM. 2005, pp. 229–236.

[51] S. Zhang, X. Yang, Z. Wu, and H. Liu. “Position-based fluid control”. In:

Proceedings of the 19th Symposium on Interactive 3D Graphics and Games.

ACM. 2015, pp. 61–68.

[52] Z. Pan, J. Huang, Y. Tong, C. Zheng, and H. Bao. “Interactive localized liq-

uid motion editing”. In: ACM Transactions on Graphics (TOG) 32.6 (2013),

p. 184.

[53] K. Raveendran, C. Wojtan, N. Thuerey, and G. Turk. “Blending liquids”. In:

ACM Transactions on Graphics (TOG) 33.4 (2014), p. 137.

[54] N. Thuerey. “Interpolations of smoke and liquid simulations”. In: ACM

Transactions on Graphics (TOG) 36.1 (2016), p. 3.

[55] Z. Pan and D. Manocha. “Efficient Optimal Control of Smoke using Space-

time Multigrid”. In: arXiv preprint arXiv:1608.01102 (2016).

[56] P.-L. Manteaux, U. Vimont, C. Wojtan, D. Rohmer, and M.-P. Cani. “Space-

time sculpting of liquid animation”. In: Proceedings of the 9th International

Conference on Motion in Games. ACM. 2016, pp. 61–71.

BIBLIOGRAPHY 161

[57] M. Chu and N. Thuerey. “Data-driven synthesis of smoke flows with CNN-

based feature descriptors”. In: arXiv preprint arXiv:1705.01425 (2017).

[58] L. Younes. Shapes and diffeomorphisms. Vol. 171. Springer Science &

Business Media, 2010.

[59] S. Sommer, M. Nielsen, F. Lauze, and X. Pennec. “A Multi-Scale kernel

bundle for LDDMM: towards sparse deformation description across space

and scales”. In: Information Processing in Medical Imaging. Springer. 2011,

pp. 624–635.

[60] S. Sommer. “Accelerating multi-scale flows for LDDKBM diffeomorphic

registration”. In: 2011 IEEE International Conference on Computer Vi-

sion Workshops (ICCV Workshops). 2011, pp. 499–505. DOI: 10.1109/

ICCVW.2011.6130284.

[61] S. C. Joshi and M. I. Miller. “Landmark matching via large deformation

diffeomorphisms”. In: Image Processing, IEEE Transactions on 9.8 (2000),

pp. 1357–1370.

[62] M. Micheli and J. Glauns. “Matrix-valued Kernels for Shape Deformation

Analysis”. In: IEEE Transactions on Visualization and Computer Graphics

(2013), pp. 1–48.

[63] M. Bauer, M. Bruveris, and P. W. Michor. “Overview of the geometries

of shape spaces and diffeomorphism groups”. In: Journal of Mathematical

Imaging and Vision 50.1-2 (2014), pp. 60–97.

[64] V. I. Arnold. “Sur la géométrie différentielle des groupes de Lie de dimen-

sion infinie et ses applications à l’hydrodynamique des fluides parfaits”. In:

Annales de l’Institute Fourier 16 (1966), pp. 316–361.

[65] D. Pavlov, P. Mullen, Y. Tong, E. Kanso, J. E. Marsden, and M. Desbrun.

“Structure-preserving discretization of incompressible fluids”. In: Physica

D: Nonlinear Phenomena 240.6 (2011), pp. 443–458.

http://dx.doi.org/10.1109/ICCVW.2011.6130284
http://dx.doi.org/10.1109/ICCVW.2011.6130284

BIBLIOGRAPHY 162

[66] P. Mullen, K. Crane, D. Pavlov, Y. Tong, and M. Desbrun. “Energy-

preserving integrators for fluid animation”. In: ACM Transactions on

Graphics (TOG). Vol. 28. 3. ACM. 2009, p. 38.

[67] H. O. Jacobs, T. S. Ratiu, and M. Desbrun. “On the coupling between an

ideal fluid and immersed particles”. In: Physica D: Nonlinear Phenomena

265 (2013), pp. 40–56.

[68] C. Cotter, D. Holm, H. Jacobs, and D. Meier. “A jetlet hierarchy for ideal

fluid dynamics”. In: Journal of Physics A: Mathematical and Theoretical

47.35 (2014), p. 352001.

[69] C. J. Cotter, J. Eldering, D. D. Holm, H. O. Jacobs, and D. M. Meier. “Weak

dual pairs and jetlet methods for ideal incompressible fluid models in n≥ 2

dimensions”. In: Journal of Nonlinear Science 26.6 (2016), pp. 1723–1765.

[70] D. D. Holm, T. Schmah, C. Stoica, and D. C. Ellis. Geometric mechan-

ics and symmetry: from finite to infinite dimensions. 12. Oxford University

Press London, 2009.

[71] S. Sommer and H. O. Jacobs. “Reduction by Lie Group Symmetries in Dif-

feomorphic Image Registration and Deformation Modelling”. In: Symmetry

7.2 (2015), pp. 599–624.

[72] H. O. Jacobs and S. Sommer. “Higher-order spatial accuracy in diffeomor-

phic image registration”. In: arXiv preprint arXiv:1412.7504 (2014).

[73] M. I. Miller, A. Trouvé, and L. Younes. “On the metrics and Euler-Lagrange

equations of computational anatomy”. In: Annual review of biomedical en-

gineering 4.1 (2002), pp. 375–405.

[74] M. I. Miller, A. Trouvé, and L. Younes. “Geodesic shooting for compu-

tational anatomy”. In: Journal of mathematical imaging and vision 24.2

(2006), pp. 209–228.

[75] D. D. Holm and J. E. Marsden. “Momentum maps and measure-valued so-

lutions (peakons, filaments, and sheets) for the EPDiff equation”. In: The

breadth of symplectic and Poisson geometry. Springer, 2005, pp. 203–235.

BIBLIOGRAPHY 163

[76] M. Farias, R. Teixeira, J Koiller, and A. Santos. “Brief review of uncertainty

quantification for particle image velocimetry”. In: Journal of Physics: Con-

ference Series. Vol. 733. 1. IOP Publishing. 2016, p. 012045.

[77] E. Zhang, K. Mischaikow, and G. Turk. “Vector field design on surfaces”.

In: ACM Transactions on Graphics (ToG) 25.4 (2006), pp. 1294–1326.

[78] M. Fisher, P. Schröder, M. Desbrun, and H. Hoppe. “Design of tangent vec-

tor fields”. In: ACM transactions on graphics (TOG). Vol. 26. 3. ACM.

2007, p. 56.

[79] J. Palacios and E. Zhang. “Rotational symmetry field design on surfaces”.

In: ACM Transactions on Graphics (TOG) 26.3 (2007), p. 55.

[80] F. Knöppel, K. Crane, U. Pinkall, and P. Schröder. “Globally optimal direc-

tion fields”. In: ACM Transactions on Graphics (TOG) 32.4 (2013), p. 59.

[81] K. Crane, M. Desbrun, and P. Schröder. “Trivial connections on discrete

surfaces”. In: Computer Graphics Forum. Vol. 29. 5. Wiley Online Library.

2010, pp. 1525–1533.

[82] R. Abraham, J. E. Marsden, and T. Ratiu. Manifolds, tensor analysis, and

applications. Vol. 75. Springer Science & Business Media, 2012.

[83] C. Foiasa, D. D. Holmb, and E. S. Titic. “The Navier–Stokes-alpha model

of fluid turbulence”. In: Physica D 152.153 (2001), pp. 505–519.

[84] D. W. Thompson et al. “On growth and form.” In: On growth and form.

(1942).

[85] M. I. Miller, A. Trouvé, and L. Younes. “Hamiltonian systems and optimal

control in computational anatomy: 100 years since D’Arcy Thompson”. In:

Annual review of biomedical engineering 17 (2015), pp. 447–509.

[86] S. Kobayashi and K. Nomizu. Foundations of differential geometry. Vol. I.

Wiley Classics Library. Reprint of the 1963 original, A Wiley-Interscience

Publication. John Wiley & Sons, Inc., New York, 1996, pp. xii+329. ISBN:

0-471-15733-3.

BIBLIOGRAPHY 164

[87] D. D. Holm, J. E. Marsden, and T. S. Ratiu. “Euler-Poincaré models of ideal

fluids with nonlinear dispersion”. In: Phys. Rev. Lett. 349 (1998), pp. 4173–

4177.

[88] S. Chen, C. Foias, D. D. Holm, E Olson, E. S. Titi, and S. Wynne. “The

Camassa–Holm equations and turbulence”. In: Physica D: Nonlinear Phe-

nomena 133.1 (1999), pp. 49–65.

[89] I. Kolár, J. Slovák, and P. W. Michor. “Natural operations in differential

geometry”. In: (1999).

[90] C. J. Cotter and D. D. Holm. “Continuous and discrete Clebsch variational

principles”. In: Foundations of Computational Mathematics 9.2 (2009),

pp. 221–242.

[91] T. Pfaff and N. Thuerey. “mantaflow”. In: http://mantaflow.ethz.ch/in-

dex.html (2009). URL: http://mantaflow.ethz.ch/index.

html.

[92] F. de Goes, C. Wallez, J. Huang, D. Pavlov, and M. Desbrun. “Power par-

ticles: an incompressible fluid solver based on power diagrams”. In: ACM

Transactions on Graphics (TOG) 34.4 (2015), p. 50.

[93] B. Gris, S. Durrleman, and A. Trouvé. “A sub-Riemannian modular ap-

proach for diffeomorphic deformations”. In: International Conference on

Networked Geometric Science of Information. Springer. 2015, pp. 39–47.

[94] J. P. Lewis, M. Cordner, and N. Fong. “Pose space deformation: a unified

approach to shape interpolation and skeleton-driven deformation”. In: Pro-

ceedings of the 27th annual conference on Computer graphics and interac-

tive techniques. ACM Press/Addison-Wesley Publishing Co. 2000, pp. 165–

172.

[95] D. D. Holm, M. Nitsche, and V. Putkaradze. “Euler-alpha and vortex blob

regularization of vortex filament and vortex sheet motion”. In: Journal of

Fluid Mechanics 555 (2006), pp. 149–176.

http://mantaflow.ethz.ch/index.html
http://mantaflow.ethz.ch/index.html

BIBLIOGRAPHY 165

[96] R. Bridson. “Fast Poisson disk sampling in arbitrary dimensions.” In: SIG-

GRAPH sketches. 2007, p. 22.

[97] M. do Carmo. Differential Geometry of Curves and Surfaces. Prentice-Hall,

1976. ISBN: 9780132125895.

[98] R. L. Bishop. “There is more than one way to frame a curve”. In: The Amer-

ican Mathematical Monthly 82.3 (1975), pp. 246–251.

[99] P. Farrell, K. Gillow, and H. Wendland. “Multilevel interpolation of

divergence-free vector fields”. In: IMA Journal of Numerical Analysis 37.1

(2017), pp. 332–353.

[100] H. Bhattacharya, M. B. Nielsen, and R. Bridson. “Steady State Stokes Flow

Interpolation for Fluid Control.” In: Eurographics (Short Papers). 2012,

pp. 57–60.

[101] J. F. Hughes, A. Van Dam, J. D. Foley, and S. K. Feiner. Computer graphics:

principles and practice. Pearson Education, 2014.

[102] G. Lorentz. Bernstein Polynomials. 1953.

[103] K. Spitzmüller. “Partial derivatives of Bezier surfaces”. In: Computer-Aided

Design 28.1 (1996), pp. 67–72.

[104] K. Museth, J. Lait, J. Johanson, J. Budsberg, R. Henderson, M. Alden, P.

Cucka, D. Hill, and A. Pearce. “OpenVDB: an open-source data structure

and toolkit for high-resolution volumes”. In: Acm siggraph 2013 courses.

ACM. 2013, p. 19.

[105] J. Solomon, M. Ben-Chen, A. Butscher, and L. Guibas. “As-Killing-As-

Possible Vector Fields for Planar Deformation”. In: Computer Graphics Fo-

rum. Vol. 30. 5. Wiley Online Library. 2011, pp. 1543–1552.

[106] F. Losasso, F. Gibou, and R. Fedkiw. “Simulating Water and Smoke with

an Octree Data Structure”. In: ACM SIGGRAPH 2004 Papers. SIGGRAPH

’04. Los Angeles, California: ACM, 2004, pp. 457–462. DOI: 10.1145/

http://dx.doi.org/10.1145/1186562.1015745

BIBLIOGRAPHY 166

1186562.1015745. URL: http://doi.acm.org/10.1145/

1186562.1015745.

[107] C. J. Cotter, J. Frank, and S. Reich. “The remapped particle-mesh semi-

Lagrangian advection scheme”. In: Quarterly Journal of the Royal Meteo-

rological Society 133.622 (2007), pp. 251–260.

[108] A. Angelidis. “Multi-scale vorticle fluids”. In: ACM Transactions on Graph-

ics (TOG) 36.4 (2017), p. 104.

[109] D. D. Holm and C. Tronci. “Multiscale turbulence models based on con-

vected fluid microstructure”. In: Journal of Mathematical Physics 53.11

(2012), p. 115614.

[110] K. Åhlander. “Supporting tensor symmetries in EinSum”. In: Computers &

Mathematics with Applications 45.4 (2003), pp. 789–803.

[111] A. Cardona, M. Storti, and C. Zuppa. “A tensor library for scientific com-

puting”. In: Journal Mecánica Computacional (AMCA) (2008).

[112] J. Reinders. Intel Threading Building Blocks. First. Sebastopol, CA, USA:

O’Reilly & Associates, Inc., 2007. ISBN: 9780596514808.

[113] G. Guennebaud, B. Jacob, et al. Eigen v3. http://eigen.tuxfamily.org. 2010.

http://dx.doi.org/10.1145/1186562.1015745
http://dx.doi.org/10.1145/1186562.1015745
http://doi.acm.org/10.1145/1186562.1015745
http://doi.acm.org/10.1145/1186562.1015745

	Introduction
	Motivation
	Jet Particles
	Hypotheses
	Chapter Overview

	Background
	Grid Based Solvers
	Smooth Particle Hydrodynamics
	Particle in Cell Methods and FLIP
	Fluid Control
	Model Reduction
	Turbulence
	Fluid Editing
	Space-time Methods
	LDDMM
	Jet Particles
	Vector Field Design

	Technical Background
	Nomenclature
	Basic Definitions
	Introduction
	Matrix-valued Kernels
	Hamiltonian Dynamics
	Jet Particles
	Basic Definitions
	Equations of Motion
	Simulation Example

	Relationship with Eulerian Flow

	Sketching Flows with Jet Particles
	Sketching Flows Interactively
	Deformation with Constrained Particles
	Constrained 0-Jet Particles
	Fluid Sketching Application
	Constrained 1-Jet Particles
	Keyframe Generation
	Dynamics of Jet Particles
	Conclusions and Future Work

	Editing Fluids with Jet Particles
	Editing Existing Flows
	Comparison with Skinning
	Deformation Metric
	Deforming 2D Smoke Simulations
	Deforming 3D Smoke Simulations

	Tracking Jet Particles
	Advecting Jet Particles
	Push-forward of Jet Particles
	Deformation Keyframes
	Jet Particle Rigs in Maya
	Conclusions and Future Work
	Coupling Rigid Bodies with Fluids
	Up-Resing Existing Flows

	Designing Vector Fields
	Projection
	Motivation
	Project Velocity Field onto 0-Jet Particles
	Project Velocity Field onto 1-Jet Particles

	Vector Field Interpolation
	Examples
	Results
	Conclusions
	Future Work

	Vector Field Design
	Tangent Constraints
	Deformation Gradient Constraints
	Controlling the Velocity and Gradient
	Varying the Kernel Size

	Conclusions and Future Work
	Representing Existing Velocity Fields with Jet Particles
	Designing Flows on Surfaces
	Jet Particle Flow Rigs

	Deformations with Jet Particles
	Forwards Deformation
	Backwards Flow
	Coarse Grid Optimisation
	Bezier Interpolation
	Point Cloud Deformation
	Conclusions

	Conclusions
	Summary
	Future Work
	Deformation
	Jet Particle Simulations

	Appendices
	Tools
	Manta
	Tensor Library
	OpenVDB
	Deformation of OpenVDB Files
	Visualisation in Maya
	Deformation in Maya Rig
	Calculating the Projection Matrix
	Houdini Implementation

	Bibliography

