1,657 research outputs found

    Parallel Gaussian elimination of a block tridiagonal matrix using multiple microcomputers

    Get PDF
    The solution of a block tridiagonal matrix using parallel processing is demonstrated. The multiprocessor system on which results were obtained and the software environment used to program that system are described. Theoretical partitioning and resource allocation for the Gaussian elimination method used to solve the matrix are discussed. The results obtained from running 1, 2 and 3 processor versions of the block tridiagonal solver are presented. The PASCAL source code for these solvers is given in the appendix, and may be transportable to other shared memory parallel processors provided that the synchronization outlines are reproduced on the target system

    Efficient Multigrid Preconditioners for Atmospheric Flow Simulations at High Aspect Ratio

    Get PDF
    Many problems in fluid modelling require the efficient solution of highly anisotropic elliptic partial differential equations (PDEs) in "flat" domains. For example, in numerical weather- and climate-prediction an elliptic PDE for the pressure correction has to be solved at every time step in a thin spherical shell representing the global atmosphere. This elliptic solve can be one of the computationally most demanding components in semi-implicit semi-Lagrangian time stepping methods which are very popular as they allow for larger model time steps and better overall performance. With increasing model resolution, algorithmically efficient and scalable algorithms are essential to run the code under tight operational time constraints. We discuss the theory and practical application of bespoke geometric multigrid preconditioners for equations of this type. The algorithms deal with the strong anisotropy in the vertical direction by using the tensor-product approach originally analysed by B\"{o}rm and Hiptmair [Numer. Algorithms, 26/3 (2001), pp. 219-234]. We extend the analysis to three dimensions under slightly weakened assumptions, and numerically demonstrate its efficiency for the solution of the elliptic PDE for the global pressure correction in atmospheric forecast models. For this we compare the performance of different multigrid preconditioners on a tensor-product grid with a semi-structured and quasi-uniform horizontal mesh and a one dimensional vertical grid. The code is implemented in the Distributed and Unified Numerics Environment (DUNE), which provides an easy-to-use and scalable environment for algorithms operating on tensor-product grids. Parallel scalability of our solvers on up to 20,480 cores is demonstrated on the HECToR supercomputer.Comment: 22 pages, 6 Figures, 2 Table

    Solution of partial differential equations on vector and parallel computers

    Get PDF
    The present status of numerical methods for partial differential equations on vector and parallel computers was reviewed. The relevant aspects of these computers are discussed and a brief review of their development is included, with particular attention paid to those characteristics that influence algorithm selection. Both direct and iterative methods are given for elliptic equations as well as explicit and implicit methods for initial boundary value problems. The intent is to point out attractive methods as well as areas where this class of computer architecture cannot be fully utilized because of either hardware restrictions or the lack of adequate algorithms. Application areas utilizing these computers are briefly discussed

    Simulating the behavior of the human brain on GPUS

    Get PDF
    The simulation of the behavior of the Human Brain is one of the most important challenges in computing today. The main problem consists of finding efficient ways to manipulate and compute the huge volume of data that this kind of simulations need, using the current technology. In this sense, this work is focused on one of the main steps of such simulation, which consists of computing the Voltage on neurons’ morphology. This is carried out using the Hines Algorithm and, although this algorithm is the optimum method in terms of number of operations, it is in need of non-trivial modifications to be efficiently parallelized on GPUs. We proposed several optimizations to accelerate this algorithm on GPU-based architectures, exploring the limitations of both, method and architecture, to be able to solve efficiently a high number of Hines systems (neurons). Each of the optimizations are deeply analyzed and described. Two different approaches are studied, one for mono-morphology simulations (batch of neurons with the same shape) and one for multi-morphology simulations (batch of neurons where every neuron has a different shape). In mono-morphology simulations we obtain a good performance using just a single kernel to compute all the neurons. However this turns out to be inefficient on multi-morphology simulations. Unlike the previous scenario, in multi-morphology simulations a much more complex implementation is necessary to obtain a good performance. In this case, we must execute more than one single GPU kernel. In every execution (kernel call) one specific part of the batch of the neurons is solved. These parts can be seen as multiple and independent tridiagonal systems. Although the present paper is focused on the simulation of the behavior of the Human Brain, some of these techniques, in particular those related to the solving of tridiagonal systems, can be also used for multiple oil and gas simulations. Our studies have proven that the optimizations proposed in the present work can achieve high performance on those computations with a high number of neurons, being our GPU implementations about 4× and 8× faster than the OpenMP multicore implementation (16 cores), using one and two NVIDIA K80 GPUs respectively. Also, it is important to highlight that these optimizations can continue scaling, even when dealing with a very high number of neurons.This project has received funding from the European Union’s Horizon 2020 Research and Innovation Programme under Grant Agreement No. 720270 (HBP SGA1), from the Spanish Ministry of Economy and Competitiveness under the project Computación de Altas Prestaciones VII (TIN2015-65316-P), the Departament d’Innovació, Universitats i Empresa de la Generalitat de Catalunya, under project MPEXPAR: Models de Programació i Entorns d’Execució Parallels (2014-SGR-1051). We thank the support of NVIDIA through the BSC/UPC NVIDIA GPU Center of Excellence, and the European Union’s Horizon 2020 Research and Innovation Program under the Marie Sklodowska-Curie Grant Agreement No. 749516.Peer ReviewedPostprint (published version

    Matrix-free GPU implementation of a preconditioned conjugate gradient solver for anisotropic elliptic PDEs

    Get PDF
    Many problems in geophysical and atmospheric modelling require the fast solution of elliptic partial differential equations (PDEs) in "flat" three dimensional geometries. In particular, an anisotropic elliptic PDE for the pressure correction has to be solved at every time step in the dynamical core of many numerical weather prediction models, and equations of a very similar structure arise in global ocean models, subsurface flow simulations and gas and oil reservoir modelling. The elliptic solve is often the bottleneck of the forecast, and an algorithmically optimal method has to be used and implemented efficiently. Graphics Processing Units have been shown to be highly efficient for a wide range of applications in scientific computing, and recently iterative solvers have been parallelised on these architectures. We describe the GPU implementation and optimisation of a Preconditioned Conjugate Gradient (PCG) algorithm for the solution of a three dimensional anisotropic elliptic PDE for the pressure correction in NWP. Our implementation exploits the strong vertical anisotropy of the elliptic operator in the construction of a suitable preconditioner. As the algorithm is memory bound, performance can be improved significantly by reducing the amount of global memory access. We achieve this by using a matrix-free implementation which does not require explicit storage of the matrix and instead recalculates the local stencil. Global memory access can also be reduced by rewriting the algorithm using loop fusion and we show that this further reduces the runtime on the GPU. We demonstrate the performance of our matrix-free GPU code by comparing it to a sequential CPU implementation and to a matrix-explicit GPU code which uses existing libraries. The absolute performance of the algorithm for different problem sizes is quantified in terms of floating point throughput and global memory bandwidth.Comment: 18 pages, 7 figure

    Fine-sorting One-dimensional Particle-In-Cell Algorithm with Monte-Carlo Collisions on a Graphics Processing Unit

    Full text link
    Particle-in-cell (PIC) simulations with Monte-Carlo collisions are used in plasma science to explore a variety of kinetic effects. One major problem is the long run-time of such simulations. Even on modern computer systems, PIC codes take a considerable amount of time for convergence. Most of the computations can be massively parallelized, since particles behave independently of each other within one time step. Current graphics processing units (GPUs) offer an attractive means for execution of the parallelized code. In this contribution we show a one-dimensional PIC code running on Nvidia GPUs using the CUDA environment. A distinctive feature of the code is that size of the cells that the code uses to sort the particles with respect to their coordinates is comparable to size of the grid cells used for discretization of the electric field. Hence, we call the corresponding algorithm "fine-sorting". Implementation details and optimization of the code are discussed and the speed-up compared to classical CPU approaches is computed
    • …
    corecore