

Citation for published version:
Mueller, E, Guo, X, Scheichl, R & Shi, S 2013, 'Matrix-free GPU implementation of a preconditioned conjugate
gradient solver for anisotropic elliptic PDEs', Computing and Visualization in Science, vol. 16, no. 2, pp. 41-58.
https://doi.org/10.1007/s00791-014-0223-x

DOI:
10.1007/s00791-014-0223-x

Publication date:
2013

Document Version
Peer reviewed version

Link to publication

The final publication is available at Springer via http://dx.doi.org/10.1007/s00791-014-0223-x

University of Bath

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 13. May. 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Bath Research Portal

https://core.ac.uk/display/161913521?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1007/s00791-014-0223-x
https://researchportal.bath.ac.uk/en/publications/matrixfree-gpu-implementation-of-a-preconditioned-conjugate-gradient-solver-for-anisotropic-elliptic-pdes(eb7ee95a-a3ed-4cc4-bc7f-78268a690b34).html

Noname manuscript No.
(will be inserted by the editor)

Matrix-free GPU implementation of a preconditioned
conjugate gradient solver for anisotropic elliptic PDEs

Eike Müller · Xu Guo · Robert Scheichl · Sinan Shi

the date of receipt and acceptance should be inserted later

Abstract Many problems in geophysical and atmo-
spheric modelling require the fast solution of elliptic
partial differential equations (PDEs) in “flat” three di-
mensional geometries. In particular, an anisotropic el-
liptic PDE for the pressure correction has to be solved
at every time step in the dynamical core of many nu-
merical weather prediction (NWP) models, and equa-
tions of a very similar structure arise in global ocean
models, subsurface flow simulations and gas and oil
reservoir modelling. The elliptic solve is often the bot-
tleneck of the forecast, and to meet operational re-
quirements an algorithmically optimal method has to
be used and implemented efficiently. Graphics Process-
ing Units (GPUs) have been shown to be highly effi-
cient (both in terms of absolute performance and power
consumption) for a wide range of applications in scien-
tific computing, and recently iterative solvers have been
parallelised on these architectures. In this article we de-
scribe the GPU implementation and optimisation of a
Preconditioned Conjugate Gradient (PCG) algorithm
for the solution of a three dimensional anisotropic el-
liptic PDE for the pressure correction in NWP. Our

Email: e.mueller@bath.ac.uk, Tel.: +44 1225 38 5633, Fax: +44
1225 38 6492

Eike Müller · Robert Scheichl
Department of Mathematical Sciences, University of Bath, Bath
BA2 7AY, United Kingdom

Xu Guo
Edinburgh Parallel Computing Centre (EPCC), The University
of Edinburgh, James Clerk Maxwell Building, Mayfield Road, Ed-
inburgh EH9 3JZ, United Kingdom

Sinan Shi
Edinburgh Parallel Computing Centre

Current address: OT-Med, Europôle Méditerranéen de l’Arbois,
Bâtiment du Cerege, BP 80 13545 Aix-en-Provence Cedex 4,
France

implementation exploits the strong vertical anisotropy
of the elliptic operator in the construction of a suit-
able preconditioner. As the algorithm is memory bound,
performance can be improved significantly by reducing
the amount of global memory access. We achieve this
by using a matrix-free implementation which does not
require explicit storage of the matrix and instead re-
calculates the local stencil. Global memory access can
also be reduced by rewriting the PCG algorithm us-
ing loop fusion and we show that this further reduces
the runtime on the GPU. We demonstrate the perfor-
mance of our matrix-free GPU code by comparing it
both to a sequential CPU implementation and to a
matrix-explicit GPU code which uses existing CUDA
libraries. The absolute performance of the algorithm for
different problem sizes is quantified in terms of floating
point throughput and global memory bandwidth.

Keywords

Mathematics Subject Classification (2000) 65F10 ·
65N22 · 65Y05 · 65Y10

CR Subject Classification Multicore architectures

PACS 92.60.-e

1 Introduction

Anisotropic elliptic PDEs arise in many areas of geo-
physical and atmospheric modelling, which are often
characterised by “flat” geometries: the horizontal ex-
tent of the domain of interest is much larger than its
vertical size. This is the case for global weather- and
climate prediction models. As the height of the atmo-
sphere is significantly smaller than the radius of the
earth, the horizontal resolution is of the order of 10-25

2 Eike Müller, Xu Guo, Robert Scheichl, Sinan Shi

kilometers but the vertical grid spacing is several tens or
hundreds of metres. Similar ranges of scales are encoun-
tered in models for simulating global ocean currents.
Due to the layered structure of geological formations,
oil and gas reservoir simulations and subsurface flow
models of aquifers are also typically carried out in “flat”
domains. After discretisation the cells of the computa-
tional grid are very flat and the resulting matrix stencil
is highly anisotropic, i.e. the coupling in the vertical
direction exceeds the horizontal coupling by several or-
ders of magnitude. To achieve optimal performance, it
is important to exploit the strong anisotropy of the sys-
tem when choosing an appropriate computational grid
and an efficient solver.

In this work we focus on the elliptic PDE for the
pressure correction arising in the dynamical core of nu-
merical weather- and climate- prediction models. In
many forecast models semi-implicit semi-Lagrangian time
stepping introduced in Kwizak and Robert (1971) and
Robert (1981) is used to advance the atmospheric fields
forward in time. In contrast to explicit time stepping
this method has a larger stability region and allows for
longer model time steps without compromising the ac-
curacy of the large scale dynamics, which can reduce
the overall model runtime. However, if this approach
is used to solve the fully compressible non-hydrostatic
Euler equations, a three dimensional PDE for the pres-
sure correction has to be solved at every time step as
discussed for example in Smolarkiewicz and Margolin
(1997); Thomas et al (1997); Skamarock et al (1997);
Davies et al (2005); Melvin et al (2010); Wood et al
(2013), which often forms the computationally most ex-
pensive proportion of the model runtime.

Algorithmically the most efficient solvers for large
elliptic PDEs are suitably preconditioned Krylov sub-
space- or multigrid methods (see e.g. Hestenes and Stiefel
(1952); Briggs et al (2000); Trottenberg et al (2001);
Saad (2003)). The strong anisotropy in the vertical di-
rection can be exploited to construct an efficient pre-
conditioner (or multigrid smoother) based on vertical
line relaxation as discussed in Thomas et al (1997); Ska-
marock et al (1997). In an related context Marshall et al
(1997) and Fringer and Gerritsen (2006) describe how
the equations of ocean flows can be discretised on a ten-
sor product grid which is unstructured in the horizontal
but consists of regular columns in the vertical direction.
Again the strong anisotropy is used in the construction
of an efficient preconditioner of the iterative solver. In
a similar fashion anisotropic elliptic PDEs arise in fully
implicit methods for gas- and oil reservoir modelling.
A “supercoarsening” multigrid algorithm for solving el-
liptic PDEs encountered in multiphase flow in porous
media is described by Lacroix et al (2003): while the

full three dimensional equation is solved on the finest
grid, any vertical variations are averaged out on the
coarser multigrid levels by collapsing vertical columns
to a single layer.

The exact hardware on which forecast models will
be implemented in the future is currently unknown, and
it is important to explore novel chip architectures in
addition to standard CPUs. Graphics Processing Units
(GPUs) are fast and power- efficient computing devices
and significant speedups relative to standard CPU im-
plementations have been achieved in the past for itera-
tive solvers for elliptic PDEs, as described in Bolz et al
(2003); Menon and Perot (2007); Carvalho et al (2010);
Ament et al (2010); Dehnavi et al (2011); Knibbe et al
(2011); de Jong (2012); Helfenstein and Koko (2012);
Reguly and Giles (2012); Li and Saad (2013).

While modern multicore CPUs contain several tens
of cores and have a peak floating point performance of
O(10− 100) GFLOPs, GPUs have several hundreds to
thousands of cores and applications have to make ef-
ficient use of the massively parallel SIMD architecture
and limited cache size per thread. The nVidia M2090
Fermi GPU, on which this work was carried out, has
a peak performance of 1.331/0.665 TFLOP/s in single
and double precision respectively and a global memory
bandwidth of 177GByte/s. By dividing the peak FLOP
rate by the memory bandwidth on the GPU, one can
deduce that the number of computations per floating
point variable read from memory is around 30, so com-
putations are essentially “free” and the performance is
limited by the speed with which data can be read from
global memory and how efficiently it can be kept in
cache.

In this article we describe a matrix-free GPU im-
plementation of a preconditioned Conjugate Gradient
(PCG) solver tailored towards the solution of anisotro-
pic PDEs with a tensor-product structure. The most
computationally intensive components of the iterative
solver are the evaluation of a large sparse matrix-vector
product (SpMV) and the inversion of a block-tridiagonal
matrix. Both kernels were ported to the GPU and the
memory access pattern and thread layout were adapted
to increase data throughput. In our implementation the
matrix is not stored explicitly but recalculated in every
grid cell, which reduces access to global memory com-
pared to the matrix-explicit code. However the stencil
we use is more complicated than the simple Poisson
stencil on a regular grid used in previous studies (see
Menon and Perot (2007); Ament et al (2010)). Due
to the tensor product structure of the equation and
the computational grid, the matrix can be written as
the product of a one dimensional vertical discretisation,
which is the same for every column and only needs to be

Matrix-free GPU implementation of a preconditioned conjugate gradient solver for anisotropic elliptic PDEs 3

calculated and stored once, and a horizontal stencil. As
the number of vertical levels is very large in atmospheric
applications, and the horizontal coupling only needs to
be calculated once for each vertical column, this cre-
ates only a small overhead. The vertical discretisation
requires the storage of four vectors of length nz, where
nz is the number of vertical levels. In total we store
4 × nz values to parametrise the matrix. With the ex-
ception of Menon and Perot (2007); Ament et al (2010),
all implementations discussed in the literature that we
are aware of, store the matrix explicitly, which requires
the storage of 7×nhoriz×nz matrix entries, where nhoriz
is the number of horizontal grid cells. This can have a
negative impact on the performance on bandwidth lim-
ited architectures as it requires reading the matrix sten-
cil from global memory in addition to the field vectors.
While the specific implementation described in this ar-
ticle is based on a three dimensional grid which can be
written as the tensor product of regular horizontal grid
and a graded vertical grid, the method we present can
also be applied to unstructured horizontal grids.

As the sparse matrix-vector product and precondi-
tioner solve are highly efficient in our GPU implemen-
tation, other parts of the main CG such as level 1 BLAS
vector updates and scalar products start to account for
a significant proportion of the runtime if they are imple-
mented using existing GPU libraries such as CUBLAS.
We find that to achieve further performance increases
it is not sufficient to optimise the kernels in isolation,
but rather several components of the main CG iteration
need to be considered together, as has been suggested
in Dehnavi et al (2011). In particular we find that the
number of memory references can be reduced further
by fusing the loops over the computational grid in the
main kernels with the BLAS operations and this can
lead to an additional performance gain of around 30%.
For the entire PCG algorithm we are able to obtain a
total speedup of a factor 60× for single precision arith-
metic on a nVidia Fermi M2090 card relative to one core
of an Intel Xeon Sandybridge E5-2620 CPU. For double
precision arithmetic the speedup was slightly smaller
with 48×. This includes time for setting up the dis-
cretisation and copying data between host and device.
To study the performance of our matrix-free GPU code
we compared it to an implementation which stores the
matrix explicitly in the compressed sparse row storage
(CSR) format using the CUSPARSE and CUBLAS li-
braries. Both are well established and widely used GPU
libraries; we refer the interested reader to the nVidia
webpage (see nVidia Corporation (2013)) for further
details and performance tests. Our matrix-free code is
significantly faster than the implementation based on
CRS data structures which does not exploit the regular

structure of the problem. We quantified the absolute
performance in terms of floating point operations per
second (FLOPs) and global memory bandwidth for dif-
ferent problem sizes, where the latter is the more rele-
vant measure for the performance of a memory bound
algorithm. The optimised matrix-free code achieves a
bandwidth of around 25%−50% of the theoretical peak
value, which is a sizeable proportion but shows that
theoretically there is still potential for additional im-
provements which could lead to a further speedup of a
factor 2×−4×. An idea of how this could be achieved
by increasing the granularity of the algorithm is dis-
cussed below. The floating point performance is 70-80
GFLOPs for single precision and 40-50 GFLOPs for
double precision, corresponding to around 5 − 8% of
the theoretical peak value.

Overview. This article is organised as follows: previous
GPU implementations of iterative solvers for PDEs are
reviewed in section 2. In section 3 the model equation
and its discretisation is described in detail with partic-
ular emphasis on the tensor-product structure of the
grid and the elliptic operator. Preconditioned Krylov-
subspace solvers and the matrix-free and interleaved
form of the PCG algorithm for solving the model equa-
tion are presented in section 4. A general overview over
the GPU architecture and the CUDA programming-
and execution model can be found in section 5, and our
CUDA implementation of the PCG solver is described
in section 6. Performance measurements are discussed
in section 7 where we also present comparisons to a
matrix-explicit implementation and quantify the abso-
lute performance. Our conclusions and a discussion of
planned further work can be found in section 8. For ref-
erence appendix A contains the explicit form of the two
most important kernels of our optimised algorithm.

2 Previous work

The GPU implementation of Krylov-subspace solvers
and in particular of the Preconditioned Conjugate Gra-
dient algorithm has been studied extensively in the lit-
erature, both for more general sparse matrices and for
matrices arising from the discretisation of elliptic PDEs.
As far as we are aware, all implementations discussed in
the literature (with the exception of Ament et al (2010)
and Menon and Perot (2007)) are based on matrix-
explicit representations. While some of the authors study
Poisson- or sign-positive Helmholtz equations, none of
the problems studied in the literature show the strong
anisotropy which characterises the elliptic operator we

4 Eike Müller, Xu Guo, Robert Scheichl, Sinan Shi

consider in this work, and hence the preconditioners in-
vestigated in the literature will not be optimal in our
case.

While the speedups presented in the following re-
view depend on the problem and on the hardware used
at a particular time and should only be used as an indi-
cator for achievable performance gains, almost all GPU
implementations are significantly faster than the cor-
responding CPU versions with speedups of 20×−40×
relative to the sequential code.

Some early work is presented in Bolz et al (2003)
where both a conjugate gradient and a multigrid solver
are implemented for solving the sign positive Helmholtz
equation −∆u + σu = g arising from an implicit time
discretisation of the incompressible Navier-Stokes equa-
tions on a regular two dimensional grid. However, for
both solvers the matrix is stored explicitly.

The compressed sparse row storage format (CSR) is
a very popular and general format which has been used
in a variety of recent GPU implementations of Krylov
subspace algorithms. A PCG solver for the same sign-
positive Helmholtz equation as in Bolz et al (2003) is
described in Helfenstein and Koko (2012) for two and
three dimensions. For the approximate inverse SSOR
preconditioner, which requires an additional matrix mul-
tiplication, a socket-to-socket speedup of more than 8×
is reported for the best implementation of the PCG al-
gorithm on an nVidia Tesla T10 card relative to the un-
preconditioned CG algorithm on an Intel Xeon Quad-
Core 2.66 GHz CPU. Although in contrast to Bolz et al
(2003) a three dimensional system is solved, the elliptic
operator considered is fully isotropic in both cases. In
Dehnavi et al (2011) a modified version of the Conju-
gate Gradient algorithm is used for solving a set of gen-
eral matrices from the University of Florida sparse ma-
trix collection described in Davis and Hu (2011). A sim-
ple Jacobi preconditioner is used and the performance
of the solver is optimised by using the prefetch CSR
sparse matrix-vector multiplication in Dehnavi et al
(2010) and fusing kernels in the main PCG loop. As
described in section 4.3 below we use a similar tech-
nique for fusing different kernels in our implementation
to improve the performance of the code. Together with
some other improvements the authors of Dehnavi et al
(2011) report that this led to a significant speedup com-
pared to a GPU implementation using the “Row per
warp” sparse matrix-vector multiplication described in
Bell and Garland (2009). One of the problems stud-
ied in Dehnavi et al (2011) is the “thermal2” matrix
which arises from an FEM discretisation of the sta-
tionary heat equation ∂x(k∂xT) + ∂y(k∂yT) = 0 on
an unstructured two dimensional grid. For this prob-
lem a speedup of 41× relative to a single core of a

Intel Core2 2.4GHz could be achieved on both nVidia
GT8800 and GTX280 GPUs. The GPU implementation
of a Krylov subspace solver for the (sign-indefinite) two
dimensional Helmholtz equation is described in Knibbe
et al (2011). A shifted Laplace multigrid preconditioner
is used to reduce the number of iterations and a speedup
of around 30× could be achieved on an nVidia GeForce
9800 GTX/9800 GTX+ GPU relative to the sequential
implementation on one core of an AMD Phenom 9850
CPU.

Other sparse matrix storage formats have also been
used to implement iterative solvers on GPUs. An im-
plementation of a CG solver for the two dimensional
PDE arising from the implicit time discretisation of
the heat equation is described in Michels (2011). The
ELLPACK-R data format, which is more suitable for
structured problems, was used for storing the matrix
and a speedup of a factor 26× could be achieved for
a two dimensional problem of size 2048 × 2048 on an
nVidia GeForce GTX 480 card, relative to the sequen-
tial implementation on an Intel Core i7 860 CPU with
2.80GHz. Although the structure of the five point nearest-
neighbour stencil arising from a finite-difference approx-
imation of the Poisson equation is similar to the stencil
we use in our discretisation, in contrast to our prob-
lem the elliptic PDE solved in Michels (2011) is two
dimensional and fully isotropic. The GPU implementa-
tion of preconditioned GMRES and Conjugate Gradi-
ent solvers for a range of problems and preconditioners
has been studied in Li and Saad (2013) and the per-
formance for different sparse matrix storage formats is
compared. While in some of the implementations only
the sparse-matrix vector product is carried out on the
device and the preconditioner is executed on the host,
preconditioners that are easier to parallelise are also
ported to the GPU. However, the authors find that
for a simple block-Jacobi preconditioner implemented
on the GPU the number of iterations is very large.
This should be compared to our implementation: for
the strongly anisotropic elliptic PDE we consider the
blocks have a direct physical interpretation as they de-
scribed the strong vertical coupling within one column,
which is much larger than the coupling between dif-
ferent blocks. As a result, the simple block-diagonal
preconditioner proved to be very efficient in our nu-
merical tests. In de Jong (2012) the GPU implementa-
tion of a Preconditioned Conjugate Gradient solver for
both a two dimensional Poisson problem and the ellip-
tic equation arising in the Variational Boussinesq Model
(VBM) is described. A Repeated Red Black (RRB) pre-
conditioner is used, but an incomplete Poisson precon-
ditioner with diagonal scaling is also considered. As for
the sparse approximate inverse used in Helfenstein and

Matrix-free GPU implementation of a preconditioned conjugate gradient solver for anisotropic elliptic PDEs 5

Koko (2012), the incomplete Poisson preconditioner can
be reduced to an additional sparse matrix product. The
sparse matrix-vector product is implemented by storing
the local five-point stencil at each gridpoint. For the
RRB preconditioner a speedup of around 40× could
be achieved for the Poisson test problem on an nVidia
GeForce GTX 580 card, relative to the sequential im-
plementation on an Intel Xeon W3520 CPU. However,
the costs for memory allocation and setup of the pre-
conditioner matrix take up around a third of the total
runtime. In contrast in our matrix free implementation
only a small amount of data has to be copied between
host and device and the matrix setup costs are neg-
ligible. For realistic problems the speedup reported in
de Jong (2012) is 20 × −30× for the RRB precondi-
tioner and 5 × −20× for the incomplete Poisson pre-
conditioner.

As far as we are aware, the only matrix-free imple-
mentation of a CG solver discussed in the literature are
Menon and Perot (2007); Ament et al (2010). In Menon
and Perot (2007) both the homogenous Poisson equa-
tion and the Navier Stokes equation are solved on an
unstructured mesh by implementing matrix-free gradi-
ent and divergence operations. On an nVidia a speedup
of around 3× was achieved on an nVidia 6600GT card
relative to an AMD Athlon 64 CPU. Note, however,
that the implementation is based on the low-level graph-
ics API and the hardware used in the study is quite
dated by current standards. The GPU implementation
of a matrix-free PCG solver for the homogenous Pois-
son equation in three dimensions is also described in
Ament et al (2010).

Due to its significance in many scientific applica-
tions and in particular iterative solvers, the performance
of sparse matrix-vector multiplications on its own has
been studied extensively in the literature: Various sparse
matrix formats are described in Bell and Garland (2009)
and their performance for a sparse matrix-vector multi-
plication is compared for both structured and unstruc-
tured matrices. While CSR is the most general format
and can be applied to matrices with widely varying row
sizes, the best performance for structured matrices aris-
ing from the discretisation of PDEs is obtained with the
DIA and ELLPACK formats. However, in Reguly and
Giles (2012) an efficient parameter dependent imple-
mentation of sparse matrix-vector multiplication based
on the CSR format on cache based GPUs is described.
Cache usage and performance can be improved signifi-
cantly by varying the number of threads processing each
row, the thread block size and number of rows processed
by one cooperating thread group. The authors find that
by tuning the parameters heuristically, the performance
of a Conjugate Gradient solver for a structured problem

arising from the finite element discretisation of a simple
elliptic Poisson problem using CSR storage is compa-
rable to the corresponding implementation using the
ELLPACK format. Both matrix-explicit versions are
beaten by an implementation which stores a small local
matrix on each element and assembles the global stiff-
ness matrix on-the-fly in each matrix-vector product as
described in Markall et al (2010); Cantwell et al (2011).
For other work on improved matrix-explicit implemen-
tations of the sparse matrix-vector product see the re-
view and references cited in Reguly and Giles (2012).

The number of iterations can often be reduced sig-
nificantly by using multigrid methods, and recently both
geometric and algebraic multigrid solvers have been
ported to GPUs, see e.g. Goodnight et al (2005); Geveler
et al (2011); Brannick et al (2013). The extension of our
PCG solver to a geometric multigrid solver for anisotro-
pic problems based on the tensor product idea in Börm
and Hiptmair (1999) is discussed in Müller and Scheichl
(2013) and we are currently working on a GPU imple-
mentation of the same matrix-free geometric multigrid
solver.

We finally remark that multiple-GPU implementa-
tions of iterative solvers have been described in the lit-
erature (see e.g. Cevahir et al (2009); Georgescu and
Okuda (2010); Ament et al (2010); Verschoor and Jalba
(2012)) and we are currently working on extending our
algorithm to clusters of GPU.

3 Model equation

Following Melvin et al (2010); Wood et al (2013) a
model equation which reproduces the most important
features of the full PDE for the pressure correction in a
NWP model, has been derived in Müller and Scheichl
(2013). The derivation of the full pressure correction
equation in atmospheric models can be found for exam-
ple in Smolarkiewicz and Margolin (1997); Thomas et al
(1997); Skamarock et al (1997); Davies et al (2005) and
is described for ocean models in Marshall et al (1997)
and Fringer and Gerritsen (2006). The model equation
we use is a symmetric positive definite PDE and can be
written in spherical coordinates as

−ω2

(
∆2d + λ2

1

r2
∂

∂r

(
r2
∂

∂r

))
u+ u = f (1)

where ∆2d denotes the two dimensional Laplacian on
the unit sphere. For simplicity all length scales are mea-
sured in units of the earth radius Rearth, and the equa-
tion is solved in a thin spherical shell r ∈ [1, 1 +Hatmos].
We write Hatmos = D/Rearth � 1 where D is the thick-
ness of the atmosphere. The model parameters ω2 and

6 Eike Müller, Xu Guo, Robert Scheichl, Sinan Shi

λ2 depend on the model time step size, in particular,
ω is proportional to the time step size. In our numeri-
cal experiments the parameters were adjusted to their
values for typical model resolutions in NWP with a
Courant number of around 10. An important feature
of the discretised PDE is the strong anisotropy in the
vertical direction: the depth of the atmosphere is about
two orders of magnitude smaller than the radius of the
earth and consequently the horizontal grid spacing ∆x
is significantly larger than the vertical grid spacing ∆z.
The strong grid aligned anisotropy in the vertical direc-
tion is given (approximately) by

γ2 =

(
λ ∆x

∆z

)2

, (2)

and as Hatmos � 1 we have ∆z � ∆x, so γ2 � 1.
This property can be used to construct a simple but
very efficient and parallelisable preconditioner for iter-
ative solvers of this equation, which solves the vertical
equation exactly but ignores the horizontal couplings.

The condition number of the preconditioned opera-
tor approaches a fixed value as the horizontal resolution
increases and does not diverge as for the Poisson equa-
tion. To see this, note that to keep the Courant number
constant, the time step size ∆t ∝ ω has to be chosen
to be proportional to the horizontal grid spacing, i.e.
∆t ∝ ∆x. The largest eigenvalue of the preconditioned
matrix is of the order ω2/∆x2 ∝ ∆t2/∆x2 and indepen-
dent of ∆x, whereas the smallest eigenvalue is 1 due to
the presence of the zero order term in (1).

After discretisation the elliptic operator in (1) can
be written abstractly in tensor product form as the sum
of three terms:

L = D(h) ⊗M (r) +M (h) ⊗D(r) + M̃ (h) ⊗ M̃ (r) (3)

Here M (h) and M̃ (h) (M (r) and M̃ (r)) are horizontal
(vertical) mass matrices which only contain couplings
in the horizontal (vertical) direction. D(h) (D(r)) are
second order derivate operators which contain couplings
in the horizontal (vertical) direction.

3.1 Discretisation

To discretise (1) we use a finite volume scheme on a
tensor-product grid, which consists of a (possibly un-
structured but conforming) two dimensional grid on the
unit sphere and a non-uniform (typically graded) one
dimensional grid in the vertical direction. The model
fields are defined as integrals in a grid cell given by
the horizontal grid element T and vertical index k =

0, . . . , nz − 1

u
(T)
k ≡

∫ rk+1

rk

∫
T

u(r,θ) r2dr dθ (4)

with θ denoting horizontal coordinates on the unit sphere
(throughout this work we use zero-based indexing as
all our implementations are in the C programming lan-
guage). Independent of the horizontal discretisation we
need to store a vector u(T) of length nz at each ele-
ment T . The vertical grid is defined by the grid points
rk where k = 0, . . . , nz. The number of vertical grid
cells is usually large, nz = O(100). In meteorological
applications a graded vertical grid with smaller grid
spacings near the ground is desirable and we use rk =

1 + (k/nz)
2 ·Hatmos.

Equation (1) is discretised using a finite volume
scheme, and schematically it can be written for each
horizontal grid element T as

(Au)(T) = ATu
(T) +

∑
T ′∈N (T)

AT,T ′u(T ′) = f
(T)

(5)

where N (T) is the set of neighbours of T . AT is a tridi-
agonal nz × nz matrix and AT,T ′ are diagonal nz × nz
matrices for each neighbouring element T ′. The matri-
ces AT,T ′ correspond to the off-diagonal couplings in
the horizontal derivative operator D(h) ⊗M (r) in (3)
and are given by the product

AT,T ′ = αT,T ′ diag(d) = αT,T ′


d0
d1

. . .
dnz−1

 . (6)

The coefficient αT,T ′ is the ratio between the length
ST,T ′ of the edge between the cells T and T ′ and the
distance between the midpoints rT and rT ′ of these
cells. We also define the diagonal coefficient αT as the
sum of the off-diagonal coefficients

αT ≡
∑

T ′∈N (T)

αT,T ′ . (7)

The (symmetric) tridiagonal matrix AT can be split
into a sum of three terms:

AT =


d̃0 b0

c1
.
. bnz−2

cnz−1 d̃nz−1


= |T |diag(a)− αT diag(d)

+ |T | tridiag (−(b+ c), b, c) ,

(8)

with d̃k = |T |(ak − bk − ck) − αijdk where |T | is the
area of the horizontal grid element T . The first term
corresponds to the product M̃ (h)⊗M̃ (r) in (3). The sec-
ond term is the diagonal contribution of D(h) ⊗M (r),

Matrix-free GPU implementation of a preconditioned conjugate gradient solver for anisotropic elliptic PDEs 7

((
Fig. 1 Structure of the matrix arising from the finite volume dis-
cretisation of (1) for nz = 4 vertical columns. Vertical couplings
are shown in red and horizontal couplings in blue.

and the third term corresponds to the vertical deriva-
tive termM (h)⊗D(r). While the finite volume discreti-
sation described so far leads to a seven-point nearest-
neighbour stencil on a regular grid, the same structure
also arises for other stencil types which include cou-
plings between grid cells which are not directly adja-
cent.

The vectors a, b, c and d do not depend on the grid
cell T and can be precomputed. On the other hand the
quantities |T | and αT,T ′ only need to be calculated once
per vertical column. These two important observations
will be exploited in the efficient matrix-free implemen-
tation of the PCG solver described below.

3.2 Global matrix representation

Assuming an ordering of the horizontal degrees of free-
dom, which maps each cell T to a linear index ν(T) ∈
0, . . . , nhoriz−1, one can write the full 3d solution vector
of length n = nhoriz × nz as

u =
{
u(0),u(1), . . . ,u(nhoriz)

}
(9)

with

u` = u
(T)
k where ` = nz · ν(T) + k. (10)

In this representation the discretised equation (5) can
be written in the familiar form as

Au = f (11)

and the structure of the matrix A is shown in Fig. 1.
Note that the matrix has a block structure, where each
of the blocks corresponds to one combination (T, T ′) of
neighbouring elements of the horizontal grid. Each of
the gray blocks is of size nz × nz, the dark gray blocks
(T ′ = T) describe the diagonal terms and vertical cou-
pling, whereas the light gray blocks (T 6= T ′ ∈ N (T))
describe the horizontal coupling. In the following we
work on one panel of a cubed sphere grid with gnomonic

Fig. 2 Cubed sphere grid. The model equation was discretised
on one logically rectangular panel of this grid.

projection (Fig. 2). This defines a mapping from Ω̃ =

[−1, 1]× [−1, 1] to spherical coordinates on one-sixth of
the entire sphere and each cell of the regular grid of size
nhoriz = m×m on Ω̃ can be labelled with an index pair
(i, j) ∈ [0,m− 1]× [0,m− 1]. In this case we have

u` = u
(i,j)
k where ` = nz (m · i+ j) + k (12)

and label each grid cell Tij by its horizontal indices.
We stress, however, that there is no algorithmic prob-
lem in extending our approach to unstructured horizon-
tal grids or to the entire spherical shell for example by
ordering the horizontal grid cells along a space-filling
curve.

4 Iterative solvers for elliptic PDEs

Typically the number of degrees of freedom per atmo-
spheric variable in current global forecast models is at
the order of several 10 millions. For next generation
forecast models global horizontal model resolutions of
around one kilometre are envisaged, which will require
the solution of PDEs with more than 1010 unknowns.
Clearly naive direct methods can not be used for the
solution of equations of this size and spectral methods
often require a regular underlying grid structure and
are hard to parallelise.

Krylov subspace methods (see e.g. Saad (2003)) are
very efficient iterative algorithms for solving sparse lin-
ear systems, in particular if they are suitably precon-
ditioned. These methods construct the approximation
u(k) of the exact solution u of (11) in a k-dimensional
Krylov-subspace

Kk = span
{
r,Ar,A2r, . . . ,Ak−1r

}
⊂ Rn, (13)

where r is the initial residual r = b − Au(0). They
are easy to parallelise as in addition to local operations

8 Eike Müller, Xu Guo, Robert Scheichl, Sinan Shi

such as sparse matrix-vector multiplications and axpy-
like vector updates they require only a small number of
global reductions.

4.1 Preconditioned Conjugate Gradient algorithm

The simplest Krylov subspace method, which can be
applied for symmetric positive definite matrices, is the
Conjugate Gradient (CG) algorithm introduced in Hestenes
and Stiefel (1952). At each step the approximate so-
lution vector u(k) is updated by adding a correction
proportional to the search direction p(k). The search
directions are chosen such that they are A- orthogonal
for different k, k′: 〈p(k),Ap(k′)〉 = 0 for k 6= k′. The
convergence rate depends on the spectral properties of
the matrix A, in particular on the condition number
κ, which is the ratio between the largest and smallest
eigenvalue, as derived in Saad (2003). For the system
arising from the discretisation of the Poisson equation,
κ grows rapidly with the inverse grid spacing 1/h and it
can be shown that asymptotically for h → 0 the num-
ber of iterations required to reduce the error by a factor
ε is

k ∝ log ε

h
. (14)

For anisotropic systems h is the smallest grid spacing in
the problem, for the highly anisotropic problem in this
work this is the vertical grid spacing ∆z � ∆x. The
dominant cost in each iteration is the sparse matrix-
vector multiplication y ←[Ax, which is of O(n) com-
putational complexity. Hence the total cost of the algo-
rithm is

Cost(CG) ∝ n

h
log ε. (15)

To solve non-symmetric systems, more general Krylov
space methods such as GMRES, BCG, BiCGStab and
GCR can be used. Although the number of sparse matrix-
vector products and intermediate vectors which need to
be stored changes between different Krylov subspace al-
gorithms, their general structure is very similar and in
this work we focus on the Conjugate Gradient algorithm
for simplicity.

An equivalent version of the linear system in (11)
can be obtained by multiplication with the inverse of
the matrix M ,

M−1Au =M−1f . (16)

This is generally referred to as left preconditioning.M
is a matrix which should be easy to invert (i.e. it should
be easy to solve the system Mx = y) and as similar
to A as possible, such that the preconditioned matrix

operation FLOPs MEM
scal 1 2
axpy 2 3
dot 2 2
nrm2 2 1
total (PCG) 13 16

Table 1 Number of floating point operations and memory refer-
ences per grid cell for different level 1 BLAS operations. The last
row shows the total number of FLOPs and memory references for
all BLAS operations in the PCG algorithm.

M−1A is well conditioned. Usually these two require-
ments are mutually exclusive and a tradeoff between
them has to be found. Initial profiling of the CPU code
revealed that the sparse matrix-vector multiplication
and preconditioner solve account for the largest pro-
portion of the runtime (80− 90%). In addition to these
operations each iteration requires three axpy-like vector
updates, one scal-operation and two scalar products
(dot). An additional norm calculation (nrm) is required
for the evaluation of the stopping criterion. The num-
ber of floating points operations and memory references
for the individual level 1 BLAS operations is given in
Tab. 1, the total number of FLOPS per grid cell for
all BLAS operations is 13 and the number of memory
references is 16, and hence this part of the algorithm is
clearly memory bound.

The strong anisotropy of the discretised PDE can
be used to construct an efficient preconditioner: if the
small horizontal couplings are ignored, the matrix A
shown in Fig. 1 is block-diagonal with each block corre-
sponding to one vertical column. Each of the tridiagonal
blocks can be inverted independently using the Thomas
algorithm written down explicitly in Press et al (2007).
More efficient block-SOR preconditioners can be used
as well, and require the inversion of the same block-
diagonal matrix plus an additional sparse matrix-vector
product.

This approach has been applied very successfully
for the pressure solver in the dynamical core of several
numerical weather- and climate prediction models, see
Smolarkiewicz and Margolin (1994); Skamarock et al
(1997); Davies et al (2005); Piotrowski et al (2011).
In particular the authors of Thomas et al (1997) show
the efficiency of a simple 1d line relaxation in compari-
son to other preconditioners such as 2d ADI or a three
dimensional pointwise SOR iteration. The good weak
and strong scaling on up to 65536 cores of the HEC-
ToR Cray supercomputer and more than 1010 degrees
of freedom is demonstrated for the model equation (1)
in Müller and Scheichl (2013).

As discussed in section 3, the condition number of
the preconditioned elliptic operator approaches a fixed

Matrix-free GPU implementation of a preconditioned conjugate gradient solver for anisotropic elliptic PDEs 9

value for physical choices of the parameter ω in (1)
as the horizontal grid spacing tends to zero. Hence for
these parameters Krylov subspace solvers for this equa-
tion are algorithmically stable in the sense that the
number of iterations does not diverge as the horizon-
tal resolution increases. However, as shown in Müller
and Scheichl (2013) the number of iterations and to-
tal solution time can be reduced significantly by using
(geometric) multigrid solvers.

4.2 Matrix-free implementation

Neither the matrix A nor the preconditioner matrix
M need to be stored explicitly in the algorithm, it is
sufficient to evaluate the sparse matrix-vector product
y ← [Ax and to solve the equation Mx = y for x. For
matrices arising from the discretisation of PDEs, such
as the one discussed in section 3, the local matrix stencil
only couples each grid cell to its neighbours. As mem-
ory access is significantly more expensive than floating
point operations on GPUs, it will be beneficial to re-
calculate the stencil whenever it is needed in the sparse
matrix-vector product or preconditioner solve. In each
horizontal grid cell (i, j) the diagonal matricesATij ,Ti′j′

in (6) (with Ti′j′ ∈ N (Tij)) and the tridiagonal matrix
ATij

in (8) are calculated from the precomputed vec-
tors a, b, c and d. For efficiency, we instead store the
vectors a′, b′, c′ and d with

a′k = ak/dk, b′k = bk/dk, c′k = ck/dk, (17)

as then the number of floating point operations in the
sparse matrix-vector multiplication can be further re-
duced. To reconstruct the matrix stencil the coefficients
|Tij | and αi′j′ are also needed (we write αij ≡ αTij

and αi′j′ ≡ αTij ,Ti′j′ for Ti′j′ ∈ N (Tij) for simplicity).
While these can be given by relatively complicated al-
gebraic expressions on complex geometries, such as the
spherical grid considered in this article, they only need
to be calculated once in each vertical column and for
large nz this will only lead to a small overhead.

On the regular horizontal grid which we use in our
implementation the sparse matrix-vector product y ←[
Ax can then be calculated in each grid cell (i, j, k) as

yijk ← [
[
((a′k − b′k − c′k) · |Tij | − αij) · xijk

+ |Tij | · b′k · xi,j,k+1 + |Tij | · c′k · xi,j,k−1
+ αi+1,j · xi+1,j,k + αi−1,j · xi−1,j,k

+ αi,j+1 · xi,j+1,k + αi,j−1 · xi,j−1,k
]
· dk

(18)

(with possible modifications at the boundary of the do-
main). For each (i, j, k) this requires 20 floating point

operations and 12 memory references (7 loads for x, 1
store for y and 4 loads for a′k, b

′
k, c

′
k and dk). How-

ever, as the vectors a′, b′, c′ and d do not change from
column to column these are likely to remain in cache,
reducing the number of memory references to 8. De-
pending on the innermost loop two of the values of x
(namely the ones belonging to the same vertical col-
umn which are needed at the next vertical level, i.e.
xijk and xij,k+1) will most likely stay in cache, which
reduces the number of memory references further to 6.
In contrast 14 floating point operations and 22 mem-
ory references are necessary if the matrix A is stored
in compressed sparse row storage (CSR) format. Again,
the actual number of memory references is likely to be
smaller as some of the variables are cached. However, in
this case caching is not possible for the matrix entries
which vary from one three dimensional grid cell to the
next.

For the construction of the preconditioner we drop
the second term in (5), which couples different vertical
columns, and write ATij

u(i,j) = b
(i,j)

(using (12) to
implicitly convert between the global vector represen-
tation and the column based representation in (4)). For
each column (i, j) the tridiagonal system ATij

x(i,j) =

y(i,j) defined by

|Tij | · dk ·
[

x
(i,j)
k−1 · c

′
k

+ x
(i,j)
k · ((a′k − b′k − c′k)− α̃ij)

+ x
(i,j)
k+1 · b

′
k

]
= y

(i,j)
k

(19)

with α̃ij ≡ αij/|Tij | needs to be solved for x(i,j). This
can be done efficiently in O(nz) time using the Thomas
algorithm, which is essentially Gaussian elimination ap-
plied to a tridiagonal system. The forward iteration re-
quires 8 memory references at each step (loading the
auxilliary vector φk−1 and y

(i,j)
k−1 and storing φk and

y
(i,j)
k plus four loads for a′k, b

′
k, c

′
k and dk). In each

step of the backward iteration 4 memory references are
needed. Hence the total number of memory references
is 12. Again, some of the data might be kept in cache. If
only the vectors a′, b′, c′ and d are cached the number
of memory references reduces to 8. If in addition any
data in the same vertical column can be kept in cache,
the number of memory references reduces further to 5.
As there are no dependencies in the horizontal direc-
tion, we can parallelise in this direction, i.e. the tridi-
agonal solve in each vertical column can be carried out
independently.

An additional advantage of the matrix free method
is the fact that there are no matrix setup costs; the cost
for precomputing the vectors a′, b′, c′, d and copying

10 Eike Müller, Xu Guo, Robert Scheichl, Sinan Shi

them to the device is neglible as these vectors only have
length nz.

4.3 Interleaved PCG algorithm

Field vectors are accessed in different components of the
PCG algorithm, for example the residual r is needed in
the preconditioner solve, in the update of the residual
and the calculation of the residual norm. In the stan-
dard implementation of the algorithm these operations
are carried out in separate loops over the grid, which
increases the number of memory references as data can
not be kept in cache. However, the main iteration of
the PCG algorithm can be rewritten such that it only
consists of two loops over the grid, each of which con-
tains either the sparse matrix-vector multiplication or
the tridiagonal solve and a number of BLAS operations.
Similar loop fusion for the a GPU implementation of the
PCG algorithm presented in Chronopoulos and Gear
(1989) has been discussed in Dehnavi et al (2011).

The main iteration of this modified algorithm is
shown in Algorithm 1. The kernels are written down ex-

Algorithm 1 Interleaved PCG loop
1: for k = 1,maxiter do
2: Interleaved preconditioner kernel: Calculate

r ← [r − αq, z = M−1r, ||r|| ← [
√
〈r, r〉, κ← [〈r,z〉

in a single iteration over the grid.
3: if (||r||/||r0|| < ε or ||r|| < τ) then Exit
4: β ←[κ/κold, κold ←[κ
5: Interleaved SpMV kernel: Calculate

u←[u+ αp, p←[z + βp, q ←[Az + βq, σ ← [〈p, q〉
in a single iteration over the grid.

6: α←[κold/σ
7: end for

plicitly for the matrix-free implementation in Appendix
A. The number of floating point operations and mem-
ory references for the matrix-free PCG algorithm and
for its interleaved version are shown in Tab. 2. For the
memory references we give three different values corre-
sponding to the following assumptions: (1) no data is
kept in cache, (2) only the vectors a′, b′, c′ and d are
cached and (3) in addition data in the same vertical
column is cached.

While the algorithm is still memory bound on the
GPU, the number of memory references is reduced in
the interleaved implementation, in particular if the cache
can be used efficiently.

algo- operation FLOPs Memory references
rithm no matrix columns

cache cached cached
PCG SpMV 20 12 8 6

prec 13 12 8 5
BLAS 13 16 16 16
total 46 40 32 27

Inter- SpMV 28 17 13 11
leaved prec 19 16 12 9
PCG total 47 33 25 20

Table 2 Number of floating point operations and memory refer-
ences per iteration and per grid point for different components of
the PCG and the interleaved PCG algorithm. Memory references
are shown without caching, with caching the vectors a′, b′, c′

and d only and assuming that all degrees of freedom in a vertical
column are cached as well.

5 Graphics Processing Units

In contrast to CPUs, on which most transistors are used
for advanced execution control units and cache hierar-
chies, GPUs have a very large number (several hundreds
to thousands) of lightweight compute cores which sup-
port SIMD parallelism for simple compute kernels and
are ideally suited for floating point intensive calcula-
tions on regular data. The clock speed of each individ-
ual core is smaller than on the CPU, which improves
the power efficiency.

The cores in the GPU are grouped into a number of
streaming multiprocessors (SMs). Data can be stored in
global on-chip GPU memory and in addition, each SM
has a smaller and faster shared memory. Each compute
core can also access an even smaller local memory in ad-
dition to a set of registers. Constants can be stored in
fast constant memory. Modern GPUs, such as the Fermi
architecture (see nVidia Corporation (2009)), also have
a hardware managed L1/L2 cache hierachy. Data trans-
fer between host and device memory has to be managed
explicitly by the user. As typically the PCIe bus has a
small bandwidth (at the order of ten GB/s), this is ex-
pensive and data should be calculated and kept on the
GPU as long as possible.

5.1 CUDA programming model

The CUDA programming model described in the CUDA
programming guide (nVidia Corporation (2012)) pro-
vides an extension of the C language. When writing
code for a GPU, the most computationally intensive
subroutines are parallelised by isolating them in sim-
ple kernels. On the GPU these kernels are executed by
lightweight threads which are run on the compute cores
of the SMs. Threads are grouped into blocks in a one-,
two- or three dimensional grid, which execute indepen-

Matrix-free GPU implementation of a preconditioned conjugate gradient solver for anisotropic elliptic PDEs 11

dently on one SM. Synchronisation and data exchange
is only possible between threads in the same block. In
each block the threads are arranged into a grid, i.e.
each thread is uniquely identified by its thread index
and block index. Threads are scheduled in groups of
size 32, called warps. The threads in each warp exe-
cute one common instruction at a time; if the execution
path diverges, for example due to an if-statement in
the kernel, both branches are executed. This is known
as thread divergence and should be avoided whenever
possible.

As our solver algorithm is memory bound, perfor-
mance can be increased by minimising latency and in-
creasing global memory bandwidth. If a warp stalls as
it is waiting for data from memory, it is paused and the
next warp which is ready for execution is launched by
the warp scheduler. In contrast to threads on a multi-
core CPU, the GPU scheduler is designed for launching
and switching threads with minimal overheads. Thus,
given the number of threads is large enough, memory
latency can be hidden. To achieve this the GPU usu-
ally has to be oversubscribed, i.e. the number of threads
launched at a single time should exceed the number of
compute cores.

For optimal efficiency, memory access for all threads
in one half-warp should be coalesced. Global memory
access is processed in segments of 128 bytes (which is
the size of one cache line) and all threads in a half-warp
should access the smallest possible number of different
segments. For example, if each of the 16 threads reads
a double precision (8 byte) floating point number from
global memory, this will require the transfer of one seg-
ment if these numbers are stored consecutively, but it
will require 16 separate memory transfers and thus in-
cur a big penalty if the numbers are more than 128 byte
apart in global memory.

6 CUDA implementation of the PCG algorithm

Both the standard PCG method and its interleaved
version were implemented in C and CUDA-C. In the
standard version the sparse matrix-vector multiplica-
tion and preconditioner were implemented as kernels
and the CUBLAS library was used for the level 1 BLAS
operations. Apart from the use of existing libraries such
as LAPACK, CUBLAS and CUSPARSE all software
used in this work was developed and implemented from
scratch by the authors.

To minimise memory transfers between host and de-
vice, data is kept on the device inside the entire PCG
loop and all operations are carried out on the GPU.
Host-device data transfers are only necessary for copy-
ing the initial solution and the right hand side to GPU

memory before the CG iteration and for copying the fi-
nal solution back to the host at the end. In addition, the
four vectors a′, b′, c′ and d describing the vertical dis-
cretisation need to be copied to the device once before
the main PCG iteration. However, as each vector only
has length nz, the amount of data tranferred is negligi-
ble in comparison to the size of the initial solution and
right hand side vector. In particular it is significantly
less than for matrix-explicit implementations.

6.1 Domain decomposition and data layout

Due to the inherently sequential nature of the Thomas
algorithm, parallelisation in the vertical direction is not
possible for the preconditioner. Instead the code is par-
allelised by assigning each vertical column to one thread
and organising these into threadblocks of size B =

Bx × By, each of which is launched on one stream-
ing multiprocessor. Parallelisation only in the horizon-
tal direction is common in atmospheric models where
data dependencies in the vertical direction are intro-
duced by physical processes such as radiative transfer.
To achieve a good occupancy the number of threads per
block should be large, in particular latency hiding can
only occur for B � 32.

In the code all three dimensional field vectors, such
as the solution vector u, are represented as one dimen-
sional arrays of size n = m ×m × nz which are stored
contiguously in memory. To access the entry uijk the
three dimensional index (i, j, k) ∈ [0,m − 1] × [0,m −
1]× [0, nz − 1] (where k is the vertical index) has to be
mapped to a linear index ` ∈ {0, . . . , n− 1}. To achieve
optimal cache usage on the CPU, vertical columns are
stored consecutively in memory in the C code, which
can be achieved by the mapping

`(C) = nz · (m · i+ j) + k (20)

already introduced in (12). However, on a GPU, the
data layout in (20) would lead to a significant amount
of uncoalesced memory access as the number of verti-
cal levels is large. For a typical nz of 128, consecutive
threads will access data which is 128 × sizeof(float)

bytes apart in memory. Although this problem can be
mitigated by use of the L1 cache (or manual prefetching
into shared memory at the beginning of each kernel),
on a GPU the L1 cache is shared between a large num-
ber of threads, which severly limits the cache size per
thread. As each thread processes an entire vertical col-
umn, efficient caching would only possible for relatively
small horizontal block sizes B: in the Thomas algorithm
two vectors of length nz need to be stored per column
in addition to the four vectors a′, b′, c′ and d which

12 Eike Müller, Xu Guo, Robert Scheichl, Sinan Shi

128 256

1

2

3 131

130

129 257

258

259 387

386

385

384

256

1 2 3

257 258 259

387386385384

x

z

0 0

128 131130129

Fig. 3 Memory layout and data access pattern. Data read by
all threads in a warp is shown with a gray background. If the
vertically continuous ordering of the degrees of freedom in (20)
is used, memory access is not coalesced between the threads in
one warp (left). The ordering degrees of freedom in (22) leads to
coalesced memory access between all threads in a warp (right).

describe the vertical discretisation. The total amount of
L1 cache on the Fermi architecture is limited to 48kB,
hence for single precision floating point numbers one
would have

48 kB ≥ (2B + 4)nz × sizeof(float) (21)

which would limit the number of threads per block to
44 for single precision and 22 for double precision cal-
culations if we assume that nz = 128.

An alternative approach is to change the storage
format of the fields. Instead of (20) we use

`(CUDA-C) = m · (nz · j + k) + i (22)

in the matrix-free CUDA-C code, i.e. the first horizontal
index runs fastest. This ensures that, provided the hori-
zontal block size Bx is larger than 16, memory access for
all threads in a half-warp is coalesced, as illustrated in
Fig. 3. In our numerical tests we found that the block-
size Bx = 64, By = 2 gave good results, in particular
the global load efficiency was almost 100% for the in-
terleaved preconditioner and larger than 88% for the
SpMV kernel. For this blocksize the data processed by
one block is too large to fit into cache. However, we find
that the L1 cache hit rate ranges between 33% for the
interleaved preconditioner and 56% for the interleaved
SpMV kernel. The total global memory bandwidth is
around 25% − 50% of the peak value for both kernels.
To reduce the number of cache misses further, a more
fine grained parallelisation would have to be used to re-
duce the data volume per thread and ensure that data
used by each thread block can be kept in shared mem-
ory.

The approach we are currently exploring (but which
is not used in the implementation described in this arti-
cle) is to use a different solver for the tridiagonal system
in the vertical direction. The substructuring method
discussed in Toselli and Widlund (2005) splits the nz×
nz problem into Bz smaller tridiagonal systems of size

≈ (nz/Bz) × (nz/Bz), which can be solved indepen-
dently by different threads. To obtain the global solu-
tion on the entire vector of length nz, a global tridiago-
nal system of size Bz×Bz for the interface points has to
be solved before the solutions of the small subsystems
can be combined to the total solution.

6.2 Matrix-explicit implementation

In addition to the matrix-free implementation described
in section 4.2 we also wrote a version of the code based
on an explicit representation of the matrix. Because
of its popularity in the literature on sparse matrix-
vector products and Krylov-subspace solvers (see the
discussion in section 2) we chose the CSR format. The
n × n tridiagonal matrix used in the preconditioner
was stored as a set of three vectors of length n. The
cusparse{S|D}csrmv() function from the CUSPARSE
library was used for the sparse matrix-vector multipli-
cation and the subroutine cusparse{S|D}gtsv() for
the tridiagonal solve in the preconditioner.

Setup of the matrix on the host and copying the
CSR representation to the device would create addi-
tional costs as host-device data transfers are expensive.
For a fair comparison the matrices were set up on the
device instead. Our numerical tests show that in this
case the setup costs only form a small part of the total
runtime. However, this might not be the case in other
applications where matrix has to be constructed on the
CPU.

In addition we wrote a CPU version using our own
hand-written CSR matrix-vector product and the LA-
PACK routines GTTRF, GTTRS for the tridiagonal solver.

7 Numerical experiments

7.1 Hardware and compilers

All runs were carried out on the GPU node of the
aquila cluster in Bath. The node contains an Intel
Xeon E5-2620 Sandybridge CPU with a clockspeed of
2.00GHz and an nVidia Fermi M2090 GPU. The the-
oretical peak performance of one core of the Sandy-
bridge CPU without AVX extensions is 8.0GFLOPs (4
floating point operations per cycle × 2.0 GHz). The
M2090 GPU contains 512 cores running at a clock-
speed of 1.3GHz which are organised into 16 stream-
ing multiprocessors with 32 cores each, as described in
the Fermi Architecture Whitepaper (nVidia Corpora-
tion (2009)). The total size of global GPU memory is
6GB, and each SM has 64kB of on-chip memory which
can be split between shared memory and the L1 cache

Matrix-free GPU implementation of a preconditioned conjugate gradient solver for anisotropic elliptic PDEs 13

as 48kB/16kB or 16kB/48kB. In our implementation
we used API calls to choose the optimal partitioning.
In addition the Fermi architecture has 768kB of global
L2 cache. The theoretical peak performance is quoted
as 1.331TFLOPs for single precision and 0.665 TFLOPs
for double precision while the peak bandwidth for ac-
cess to global memory is quoted as 177GB/sec. Dividing
the peak performance by the peak bandwidth implies
that around 30 floating point operations can be car-
ried out for each single/double precision variable read
from global memory. In practise the actual number of
floating point operations per accessed variable will of
course be different due to latency effects and as required
data might already be in L1 cache. However, this again
stresses the importance of optimising memory through-
put to achieve good performance.

In contrast, on the CPU the theoretical peak band-
width is 41.6GB/s, and the number of floating point
operations per value loaded from memory is 0.76 for
single- and 1.54 for double precision.

The nVidia nvcc compiler (release 5.0, V0.2.1221)
was used for compiling the CUDA code and we used
version 4.4.6 of the gnu C compiler for complilation of
the CPU code. To achieve the best possible performance
of the matrix-explicit CPU code, optimised BLAS and
LAPACK libraries based on the OpenBLAS implemen-
tation (see Zhang Xianyi (2012)) were used. AVX ex-
tensions were disabled on the CPU.

7.2 Results

We first study the performance and speedup of the indi-
vidual components of the PCG solver and of the entire
algorithm for a fixed problem of size 256 × 256 × 128

with ω2 = 6.71 · 10−4 and λ2 = 3.32 · 10−2, which is a
typical set of parameters in meteorological applications.
On the GPU we used a two-dimensional block layout
and each block has a size of Bx ×By = 64× 2 threads.
We found that this gives good results and varying the
block size did not increase the performance.

7.3 Matrix-vector multiplication and preconditioner

In Tab. 3 the times for a single sparse matrix-vector
multiplication and preconditioner solve are shown for
the matrix-explicit method. These times do not include
any costs for setting up the matrix or for transferring
data between host and device, as this is only required
once for each PCG solve, which consists of a large num-
ber of sparse matrix-vector multiplications and precon-
ditioner applications. The speedups shown in this ta-
ble are relative to the sequential CPU implementation.

matrix-explicit time per call speedup
kernel C CUDA C vs. CUDA
single precision
SpMV 170.6 6.91 25×
preconditioner 205.3 12.50 16×
double precision
SpMV 182.2 10.91 17×
preconditioner 249.7 23.20 11×

Table 3 Measured times and speedups for one sparse matrix-
vector multiplication (SpMV) y ← [Ax and one preconditioner
solve x←[M−1y on the CPU and GPU using the matrix-explicit
implementation. All times are given in milliseconds. The speedup
of the CUDA-C code relative to the sequential CPU implemen-
tation is shown in the last column for each case.

matrix-free time per call speedup
C vs. mat.-free

kernel C CUDA CUDA vs. CSR
single precision
SpMV 78.5 0.75 105× 9.2×
preconditioner 252.6 2.40 105× 5.2×
interlvd. SpMV 129.9 2.16 60× —
interlvd. prec. 253.1 3.34 76× —
double precision
SpMV 80.7 1.41 57× 7.7×
preconditioner 350.4 3.75 93× 6.2×
interlvd. SpMV 132.3 3.86 34× —
interlvd. prec. 351.3 4.86 72× —

Table 4 Measured times and speedups for one sparse matrix-
vector multiplication (SpMV) y ← [Ax and preconditioner solve
y ← [M−1x on the CPU and GPU using the matrix-free im-
plementation. All times are given in milliseconds. The last two
columns show the speedup of the matrix-free CUDA-C code rel-
ative to the corresponding sequential CPU implementation and
relative to the matrix-explicit CUDA-C version.

Assuming that the CPU code can be parallelised per-
fectly, the socket-to-socket speedup is a factor 6 smaller
as the CPU contains six processor cores.

The corresponding times for the matrix-free imple-
mentation are shown in Tab. 4, where we also show
the speedup of the matrix-free CUDA-C code relative
to the matrix-explicit CUDA-C code. On the CPU the
matrix-free sparse matrix-vector multiplication is more
than twice as fast as the matrix-explicit implementa-
tion. On the other hand, the matrix-explicit precon-
ditioner is 25% − 30% faster than the corresponding
matrix-free version. We currently have no explanation
for this, and it is contrary to what one would expect
from counting memory references alone. However, the
ratio of memory bandwith and FLOPs is smaller on
CPUs and we are using a LAPACK library code for the
matrix-explicit implementation, which has likely been
optimised.

On the GPU the matrix-free code is significantly
faster than the matrix-explicit version, both for the
sparse matrix-vector multiplication where the speedup

14 Eike Müller, Xu Guo, Robert Scheichl, Sinan Shi

is 9.2× for single precision and 7.7× for double pre-
cision. For the preconditioner the speedup is slightly
smaller with 5.2× and 6.2× for single- and double preci-
sion respectively. The speedup of both standalone matrix-
free GPU kernels relative to the sequential CPU code
is more than 100× in single precision. In double pre-
cision the speedup is 93× for the preconditioner and
57× for the sparse matrix-vector multiplication. While
the corresponding speedups for the interleaved kernels
are smaller, their performance has to be judged in the
context of the full PCG loop, which for the standalone
kernels also contains several level 1 BLAS operations.

We observe that for the matrix-free standalone SpMV
kernel the double precision implementation takes about
twice as long as the single precision version. This sug-
gests that the implementation is bandwidth limited and
less affected by cache efficiency, as the double precision
version requires transferring twice as much data from
global memory than the single precision implementa-
tion. This interpretation is also corroborated by the
relatively high cache hit rate for this kernel reported in
Tab. 7. The cache hit rate is smaller for the interleaved
sparse matrix-vector multiplication and the precondi-
tioner kernels, all of which show a smaller increase in
the runtime between single and double precision. A sim-
ilar drop of performance by nearly a factor of two when
going from single to double precision can be observed
for the matrix-explicit kernels, see Tab. 3.

7.4 PCG algorithm

We now analyse the performance of the entire PCG
solver and break down the time spent in a single itera-
tion of the algorithm.

7.4.1 Total solution time

We measured the time required to carry out in 100 PCG
iterations, which is sufficient to reduce the residual by
five orders or magnitude. Our measurements include
the time for the matrix setup and data transfer be-
tween host and device. The results are listed for three
different implementations of the algorithm in Tab. 5
where we also calculated the speedup of the matrix-
free CUDA-C code both relative to the C code and
relative to the matrix-explicit GPU code. The matrix-
free interleaved algorithm gives the best performance,
with a speedup of a factor of 60× (single precision)
and 48× (double precision) relative to the C code on
the CPU. It outperforms the matrix-explicit GPU code
by more than a factor of four. On the CPU the inter-
leaved algorithm is only slightly faster than standard
PCG for single precision and even slightly slower for

double precision. This is because in the sequential im-
plementation most of the time (80% − 90%) is spent
in the sparse matrix-vector multiplication and precon-
ditioner kernels, so fusing the kernels can only give a
speedup of no more than 10% − 20%. This is different
on the GPU, as will be discussed in section 7.4.2.

As expected the cost for setting up the vertical dis-
cretisation matrix (calculation of a′, b′, c′ and d) and
copying it to the device turned out to be negligible
(� 1ms). For the matrix-explicit code the matrix setup
time only accounts for a small proportion of the run-
time; on the GPU the matrix setup time is 6% and 4% of
the total solution time in single- and double precision
respectively. Although for the matrix-free interleaved
code host-device data transfer of the solution and right
hand side vector takes up only a small part of the run-
time (about 8% both in single- and double precision),
this is not true any longer if a smaller number of itera-
tions is used for example to only reduce the residual by
three orders of magnitude. We also found that on the
CPU the total solution time can be reduced by a factor
of around four if the Krylov- subspace solver is replaced
by a geometric solver multigrid, as is discussed in Müller
and Scheichl (2013). Again, this would increase the rel-
ative importance of the host-device memory transfer.

7.4.2 Time per iteration

The time per iteration is given for the three different
implementations of the PCG algorithm in Tab. 6 where
we also calculate the speedup of the matrix-free imple-
mentation relative to the matrix-explicit version. The
speedup relative to the C implementation is 66× for the
matrix-free interleaved implementation in single preci-
sion and 52× in double precision. In both cases it is
more than four times faster than the matrix-explicit
implementation on the GPU. Comparing the total time
per iteration for the matrix-free and the interleaved im-
plementation, we find that the ratio between the two is
0.69 in single precision and 0.63 in double precision,
which should be compared to the corresponding ratio
of memory references in Tab. 2, which is 33/40 = 0.83

without caching or 20/27 = 0.74 assuming that the vec-
tors a′, b′, c′ and d and all data in one vertical column
is cached (the ratio is 25/32 = 0.78 if only the a′, b′,
c′ and d are cached). To identify the remaining bot-
tlenecks, these times are further broken down for the
GPU code in Figs. 4 and 5 for single- and double pre-
cision arithmetic. Note that for the matrix-free code
the BLAS operations, and in particular the axpy up-
dates, make up a significant proportion of the time in
the matrix-free code. The plot clearly shows the ben-
efit of the interleaved implementation, which increases

Matrix-free GPU implementation of a preconditioned conjugate gradient solver for anisotropic elliptic PDEs 15

matrix and data total time speedup
preconditioner setup transfer C vs. matrix-free

implementation C CUDA CUDA C CUDA CUDA vs. CSR
single precision
matrix-explicit 0.55 0.15 0.047 43.72 2.54 17× —
matrix-free — — 0.047 37.00 0.87 43× 2.9×
matrix-free interleaved — — 0.047 37.39 0.62 60× 4.1×
double precision
matrix-explicit 0.72 0.16 0.073 50.50 4.41 11× —
matrix-free — — 0.073 49.37 1.48 33× 3.0×
matrix-free interleaved — — 0.073 45.78 0.96 48× 4.6×

Table 5 Total solution time for different implementations of the PCG algorithm. Costs for matrix setup and host-device data transfer
are listed separately and included in the total times. 100 iterations of the PCG main loop were carried out in all cases and all times
are given in seconds.

time per iteration speedup
C vs. mat.–free

implementation C CUDA CUDA vs. CSR
single precision
matrix-explicit 410.8 23.5 17× —
matrix-free 376.3 8.1 46× 2.9×
—"— interlvd. 370.6 5.6 66× 4.2×
double precision
matrix-explicit 494.6 41.4 12× —
matrix-free 491.5 13.9 35× 3.0×
—"— interlvd. 453.4 8.8 52× 4.7×

Table 6 Time per iteration for different implementations of the
conjugate gradient algorithm. All times are measured in millisec-
onds.

matrix-explicit matrix-free matrix-free
interleaved

0

10

20

30

40

50

ti
m

e
 [

m
s]

single precision SpMV

preconditioner

BLAS nrm2

BLAS dot

BLAS scal

BLAS axpy

Fig. 4 Time per iteration for different parts of the main CG loop
on the device using single precision. The BLAS-operations were
implemented with the CUBLAS library.

the performance by 28% in single precision and 35% in
double precision.

7.5 Absolute performance

While comparing the runtime of the CUDA-C code to
the corresponding sequential CPU implementation can
give an idea of the achievable performance gains, it is

matrix-explicit matrix-free matrix-free
interleaved

0

10

20

30

40

50

ti
m

e
 [

m
s]

double precision SpMV

preconditioner

BLAS nrm2

BLAS dot

BLAS scal

BLAS axpy

Fig. 5 Time per iteration for different parts of the main CG loop
on the device using double precision. The BLAS-operations were
implemented with the CUBLAS library.

somewhat arbitrary in that it depends on the exact
CPU which is used for this comparison. For this rea-
son we also quantified the absolute performance of the
matrix-free CUDA-C code.

Several performance indicators for the kernels of
the matrix-free code are shown in Tab. 7. The global
load efficiency measures the amount of coalesced global
memory access and the L1 hit rate quantifies the cache
efficiency. For all kernels load efficiency is very high due
to coalescence of global memory access as described in
section 6.1.

The floating point performance for one iteration of
the matrix-free interleaved PCG algorithm is plotted for
a range of problem sizes between 2.1 · 106 and 1.3 · 108
in Fig. 6. The nVidia M2090 Fermi GPU has a global
memory of 6GB, and as the PCG algorithm requires
the storage of 5 field vectors, which limits the prob-
lem size to less than 3 · 108 for single precision and
1.5 · 108 for double precision. In all cases the size of a
vertical column was kept fixed at nz = 128. The perfor-
mance is virtually independent of the problem size and

16 Eike Müller, Xu Guo, Robert Scheichl, Sinan Shi

GFLOPs memory global L1
bandwidth load ef- hit
[GB/s] ficency rate

single precision
SpMV 223.7 50.73 86.2% 76.7%
preconditioner 45.4 38.41 99.9% 40.4%
interlvd. SpMV 108.7 64.67 88.8% 56.5%
interlvd. prec. 47.7 46.16 99.6% 33.6%
double precision
SpMV 119.0 79.07 85% 74.0%
preconditioner 29.1 49.35 99.7% 40.1%
interlvd. SpMV 60.9 78.97 88.0% 57.5%
interlvd. prec. 32.8 64.58 99.8% 33.1%

Table 7 Performance measurements of the different matrix-free
kernels as reported by the nVidia visual profiler. The bandwidth
is the DRAM load bandwidth.

2.1 ·106 8.4 ·106 3.4 ·107 1.3 ·108

Problem size

0

20

40

60

80

100

Fl
o
a
ti

n
g
 p

o
in

t
p
e
rf

o
rm

a
n
ce

 [
G

FL
O

P
/s

]

Single precision

Double precision

Fig. 6 Floating point performance for different problem sizes for
the matrix-free interleaved PCG code on the GPU.

2.1 ·106 8.4 ·106 3.4 ·107 1.3 ·108

Problem size

0

50

100

150

200

G
lo

b
a
l
m

e
m

o
ry

 b
a
n
d
w

id
th

 [
G

B
/s

]

25%

50%

75%

100%

%
 o

f
p
e
a
k

SpMV [single precision]

Preconditioner [single precision

SpMV [double precision]

Preconditioner [double precision]

Peak bandwidth

Fig. 7 Global memory bandwidth (DRAM read bandwidth as
reported by the nVidia Visual Profiler) for different problem sizes
for the interleaved apply- and preconditioner kernels.

about 70-80 GFLOPs for single- and 40-50 GFLOPs for
double precision. As the algorithm is memory bound, a
more relevant measure is the global memory band width
which is shown for the interleaved kernels in Fig. 7. The
bandwidth increases slightly with the problem size and
25%− 50% of the peak value could be achieved.

8 Conclusions

In this article we described the matrix-free implemen-
tation of a Preconditioned Conjugate Gradient solver
for strongly anisotropic elliptic PDEs on a GPU. Equa-
tions of this type arise in many applications in atmo-
spheric and geophysical modelling if the problem is dis-
cretised in “flat” geometries. In particular the semi-
implicit semi-Lagrangian time discretisation of the non-
hydrostatic Euler equations in the dynamical core of
many weather- and climate prediction models leads to a
three dimensional PDE for the pressure correction and
due to the small thickness of the atmosphere the ellip-
tic operator has a very strong anisotropy in the vertical
direction. This anisotropy can be exploited to construct
a simple and efficient preconditioner based on vertical
line relaxation. The dependencies in each vertical col-
umn require a horizontal domain decomposition, which
has implementations for the data- and thread layout on
the GPU.

As the performance of the algorithm is limited by
the speed with which data can transferred from global
memory to the compute units, it is important to reduce
the number of memory references. We achieved this by
using a matrix-free implementation which recalculates
the local matrix stencil whenever it is needed instead
of reading it from memory. In addition, we reduced the
amount of data transfer by fusing several kernels in the
PCG loop, which gave an additional improvement of
28% in single precision and 35% in double precision. In
total we demonstrated that on an nVidia Fermi M2090
GPU the best matrix-free code achieved a speedup of
60× in single precision and 48× for double precision,
compared to the corresponding sequential implemen-
tation on an Intel Xeon E5-2620 Sandybridge CPU.
In terms of absolute times, the residual for a problem
with 8.3 · 106 degrees of freedom could be reduced by
more than five orders of magnitude in 0.62 seconds in
single precision. The double precision implementation
takes about 1.5 times longer, which demonstrates the
good double precision performance of modern GPUs.
Our matrix-free version is more than four times faster
than a matrix-explicit GPU implementation based on
the CUSPARSE and CUBLAS libraries using the CSR
matrix format which clearly demonstrates the benefit of
our approach. We measured the absolute performance
of our code for a range of problem sizes and achieved
a global memory bandwidth of 25%− 50% of the peak
rate for problem sizes between 2.1 · 106 and 1.3 · 108
degrees of freedom.

Global memory access was coalesced for the threads
within a half warp by numbering the degrees of free-
dom such that the horizontal index runs fastest. This

Matrix-free GPU implementation of a preconditioned conjugate gradient solver for anisotropic elliptic PDEs 17

is different from CPU implementations where vertical
columns are stored consecutively in memory for cache
efficiency. While the specific implementation discussed
in this article is based on a regular horizontal grid, our
method can be applied to any three dimensional grid
which can be written as the tensor product of possibly
unstructured horizontal grid and a non-uniform one di-
mensional grid in the vertical direction.

The achieved global memory bandwidth is a sizeable
fraction of the peak value, and it can be theoretically
improved by an additional factor 2× to 4× by mak-
ing better use of the GPU cache or shared memory.
This would require the parallelisation of the tridiago-
nal solver in the vertical direction, and we are currently
investigating the substructuring approach described in
Toselli and Widlund (2005).

With the planned increase in weather- and climate
model resolution, problems with more than 1010 de-
grees of freedom need to be solved. Clearly this is not
possible on a single GPU due to limited global memory
size. To solve problems of this size hundreds of GPUs
are necessary as each has limited memory. We are cur-
rently extending the algorithm to multi-GPU clusters
will introduce additional bottlenecks: unless data can
be copied directly between GPU memory, it has to be
transferred to the host at each iteration before it can
be sent through the standard MPI network. However, in
this case only halo data needs to be exchanged between
neighbouring devices and given that the local problem
size is not too small, this is significantly less than the
total data processed by one GPU.

The PCG solver described in this work requires around
hundred iterations to reduce the residual by five orders
of magnitude. In contrast, multigrid solvers can achieve
the same reduction in a much smaller number of itera-
tions, as has been demonstrated in Müller and Scheichl
(2013) for the elliptic PDE considered in this article.
The preconditioner used in this work can be used as a
multigrid smoother and the only missing components
are intergrid operators for restriction and prolongation,
which is the object of our current research.

Acknowledgements We would like to thank all members of
the GungHo! project and in particular Chris Maynard and David
Ham for useful and inspiring discussions. The numerical exper-
iments in this work were carried out on a node of the aquila
supercomputer at the University of Bath and we are grateful to
Steven Chapman for his continuous and tireless technical support
which was essential for the success of this project. The contribu-
tion of EM and RS was funded as part of the NERC project on
“Next Generation Weather and Climate Prediction” (NGWCP),
grant number NE/J005576/1.

A Interleaved PCG kernels

The kernels for the interleaved PCG algorithm described in sec-
tion 4.3 are shown in Algorithms 2 and 3. Using similar notation
as in section 3.1, the index pair (i′, j′) runs over all immedi-
ate neighbours of a horizontal cell (i, j), i.e. (i′, j′) ∈ N (i, j) =
{(i − 1, j), (i + 1, j), (i, j − 1), (i, j + 1)}, and we define αij =∑

(i′,j′)∈N(i,j) αi′j′ . The coefficients a′k, b
′
k and c′k are defined

in equation (17).
In the GPU implementation each thread calculates dot prod-

ucts and norms in one column. To obtain global sums, these need
to be reduced with an additional BLAS operation. However, as
this operation only operates on two-dimensional (horizontal) vec-
tors, its cost is very small (< 1% of the time per iteration).

Algorithm 2 Interleaved matrix-multiplication kernel.
Simultaneously calculate u ←[u + αp, p ← [z + βp,
q ←[Az + βq, σ ← [〈p, q〉 in a single iteration over the
grid.
1: for i = 0, . . . ,m do
2: for j = 0, . . . ,m do
3: Calculate |Tij | and αi′,j′ for all (i′, j′) ∈ N (i, j)
4: σ ←[0
5: for k = 0, . . . , nz − 1 do
6: p∗ ←[pijk, q∗ ←[qijk, z∗ ←[zijk
7: uijk ←[uijk + α · p∗
8: p∗ ←[β · p∗ + z∗, q∗ ←[β · q∗
9: pijk ← [p∗

10: δq ← [
(
(a′k − b

′
k − c

′
k) · |Tij | − αij

)
· z∗

+ b′k · |Tij | · zi,j,k+1 + c′k · |Tij | · zi,j,k−1

+ αi+1,j · zi+1,j,k + αi−1,j · zi−1,j,k

+ αi,j+1 · zi,j+1,k + αi,j−1 · zi,j−1,k

11: q∗ ←[q∗ + dk · δq, σ ←[σ + p∗ · q∗
12: qijk ←[q∗

13: end for
14: end for
15: end for

References

Ament M, Knittel G, Weiskopf D, Strasser W (2010) A Parallel
Preconditioned Conjugate Gradient Solver for the Poisson
Problem on a Multi-GPU Platform. In: Parallel, Distributed
and Network-Based Processing (PDP), 2010, 18th Euromicro
International Conference on, pp 583 –592

Bell N, Garland M (2009) Implementing sparse matrix-vector
multiplication on throughputoriented processors. In: Pro-
ceedings of the Conference on High Performance Comput-
ing Networking, Storage and Analysis, ACM, New York, NY,
USA, SC ’09, pp 18:1–18:11

Bolz J, Farmer I, Grinspun E, Schröder P (2003) Sparse Ma-
trix Solvers on the GPU: Conjugate Gradients and Multigrid.
ACM Transactions on Graphics 22:917–924

Börm S, Hiptmair R (1999) Analysis Of Tensor Product Multi-
grid. Numer Algorithms 26:200–1

Brannick J, Chen Y, Hu X, Zikatanov L (2013) Parallel Un-
smoothed Aggregation Algebraic Multigrid Algorithms on
GPUs. arXiv preprint arXiv:13022547

Briggs W, Henson V, McCormick S (2000) A Multigrid Tutorial.
Society for Industrial and Applied Mathematics

18 Eike Müller, Xu Guo, Robert Scheichl, Sinan Shi

Algorithm 3 Interleaved preconditioner kernel. Simul-
taneously calculate r ←[r − αq, R ≡ ||r|| ← [

√
〈r, r〉,

κ← [〈r, z〉 and solve Mz = r in a single iteration over
the grid.
1: for i = 0, . . . ,m do
2: for j = 0, . . . ,m do
3: Calculate αi,j , |Tij | and α′i,j ≡ αi,j/|Tij |
4: R←[0, κ←[0, D ← [(a′k − b

′
k − c

′
k)− α

′
ij , φ0 ← [b′k/D

5: r∗ ←[rij0 − α · qij0, R←[R+ r∗ · r∗
6: zij0 ←[r∗/(D · |Tij | · dk), rij0 ←[r∗

7: for k = 0, . . . , nz − 1 do
8: D ←[

(
(a′k − b

′
k − c

′
k)− α

′
ij

)
−φk−1 ·c′k, φk ←[b′k/D

9: r∗ ←[rijk − α · qijk, R←[R+ r∗ · r∗
10: zijk ←[

(
r∗/(|Tij | · dk)− c′k · zi,j,k−1

)
/D, rijk ← [r∗

11: end for
12: κ←[κ+ zi,j,nz−1 · ri,j,nz−1

13: for k = nz − 2, . . . , 0 do
14: z∗ ← [zijk − φk · zi,j,k+1, κ←[κ+ z∗ · rijk
15: zijk ←[z∗

16: end for
17: end for
18: end for
19: R←[

√
R

Cantwell C, Sherwin S, Kirby R, Kelly P (2011) From h to p effi-
ciently: Strategy selection for operator evaluation on hexahe-
dral and tetrahedral elements. Computers & Fluids 43(1):23
– 28, symposium on High Accuracy Flow Simulations. Special
Issue Dedicated to Prof. Michel Deville

Carvalho R, Martins C, Batalha R, Camargos A (2010) 3D par-
allel conjugate gradient solver optimized for GPUs. In: Elec-
tromagnetic Field Computation (CEFC), 2010, 14th Biennial
IEEE Conference on, p 1

Cevahir A, Nukada A, Matsuoka S (2009) Fast Conjugate Gradi-
ents with Multiple GPUs, Lecture Notes in Computer Sci-
ence, vol 5544. Springer Berlin Heidelberg, editors: Allen,
Gabrielle and Nabrzyski, Jarosław and Seidel, Edward and
Albada, GeertDick and Dongarra, Jack and Sloot, Peter M.A.

Chronopoulos A, Gear C (1989) s-step iterative methods for sym-
metric linear systems. Journal of Computational and Applied
Mathematics 25(2):153 – 168

nVidia Corporation (2009) Fermi architecture whitepaper. URL
http://www.nvidia.co.uk/content/PDF/fermi_white_pa-
pers/NVIDIA_Fermi_Compute_Architecture_Whitepa-
per.pdf, Accessed 9 February 2013

nVidia Corporation (2012) CUDA programming guide. URL
http://docs.nvidia.com/cuda/index.html, Accessed 9 Febru-
ary 2013

Davies T, Cullen MJP, Malcolm AJ, Mawson MH, Staniforth
A, White AA, Wood N (2005) A new dynamical core for
the Met Office’s global and regional modelling of the atmo-
sphere. Quarterly Journal of the Royal Meteorological Society
131(608):1759–1782

Davis TA, Hu Y (2011) The university of Florida sparse matrix
collection. ACM Trans Math Softw 38(1):1:1–1:25

Dehnavi M, Fernández D, Giannacopoulos D (2010) Finite-
Element Sparse Matrix Vector Multiplication on Graphic
Processing Units. Magnetics, IEEE Transactions on
46(8):2982 –2985

Dehnavi M, Fernández D, Giannacopoulos D (2011) Enhanc-
ing the Performance of Conjugate Gradient Solvers on
Graphic Processing Units. Magnetics, IEEE Transactions on
47(5):1162 –1165

Fringer OB, Gerritsen M (2006) An unstructured-grid, finite-
volume, nonhydrostatic, parallel coastal ocean simulator.
Ocean Modelling 14:139–173

Georgescu S, Okuda H (2010) Conjugate gradients on multiple
GPUs. International Journal for Numerical Methods in Flu-
ids 64(10-12):1254–1273

Geveler M, Ribbrock D, Göddeke D, Zajac P, Turek S (2011) Ef-
ficient finite element geometric multigrid solvers for unstruc-
tured grids on GPUs. Techn. Univ., Fak. für Mathematik

Goodnight N, Woolley C, Lewin G, Luebke D, Humphreys G
(2005) A multigrid solver for boundary value problems us-
ing programmable graphics hardware. In: ACM SIGGRAPH
2005 Courses, ACM, New York, NY, USA, SIGGRAPH ’05

Helfenstein R, Koko J (2012) Parallel preconditioned conjugate
gradient algorithm on GPU. Journal of Computational and
Applied Mathematics 236(15):3584 – 3590, Proceedings of
the Fifteenth International Congress on Computational and
Applied Mathematics (ICCAM-2010), Leuven, Belgium, 5-9
July, 2010

Hestenes MR, Stiefel E (1952) Methods of Conjugate Gradients
for Solving Linear Systems. Journal of Research of the Na-
tional Bureau of Standards 49(6):409–436

de Jong M (2012) Developing a CUDA solver for large sparse ma-
trices for MARIN. Master’s thesis, Delft Institute of Applied
Mathematics

Knibbe H, Oosterlee C, Vuik C (2011) GPU implementation of a
Helmholtz Krylov solver preconditioned by a shifted Laplace
multigrid method. Journal of Computational and Applied
Mathematics 236:281–293

Kwizak M, Robert AJ (1971) a Semi-Implicit Scheme for
Grid Point Atmospheric Models of the Primitive Equations.
Monthly Weather Review 99:32

Lacroix S, Vassilevski Y, Wheeler J, Wheeler M (2003) Iterative
Solution Methods for Modeling Multiphase Flow in Porous
Media Fully Implicitly. SIAM Journal on Scientific Comput-
ing 25(3):905–926

Li R, Saad Y (2013) GPU-accelerated preconditioned iterative
linear solvers. The Journal of Supercomputing 63:443–466

Markall GR, Ham DA, Kelly PH (2010) Towards generating op-
timised finite element solvers for GPUs from high-level speci-
fications. Procedia Computer Science 1(1):1815 – 1823, iCCS
2010

Marshall J, Adcroft A, Hill C, Perelman L, Heisey C (1997) A
finite-volume, incompressible Navier Stokes model for studies
of the ocean on parallel computers. Journal of Geophysical
Research 102:5753–5766

Melvin T, Dubal M, Wood N, Staniforth A, Zerroukat M (2010)
An inherently mass-conserving iterative semi-implicit semi-
Lagrangian discretization of the non-hydrostatic vertical-slice
equations. Quarterly Journal of the Royal Meteorological So-
ciety 136(648):799–814

Menon S, Perot J (2007) Implementation of an efficient conjugate
gradient algorithm for Poisson solutions on graphics proces-
sors. In: Proceedings of the 2007 Meeting of the Canadian
CFD Society, Toronto Canada

Michels D (2011) Sparse-matrix-cg-solver in cuda. In: Proceed-
ings of the 15th Central European Seminar on Computer
Graphics

Müller E, Scheichl R (2013) Massively parallel solvers for ellip-
tic PDEs in Numerical Weather- and Climate Prediction. in
preparation

nVidia Corporation (2013) CuSPARSE Library. URL
https://developer.nvidia.com/cusparse

Piotrowski Z, Wyszogrodzki A, Smolarkiewicz P (2011) Towards
petascale simulation of atmospheric circulations with sound-
proof equations. Acta Geophysica pp 1–18

Matrix-free GPU implementation of a preconditioned conjugate gradient solver for anisotropic elliptic PDEs 19

Press WH, Teukolsky SA, Vetterling WT, Flannery BP (2007)
Numerical Recipes 3rd Edition: The Art of Scientific Com-
puting, 3rd edn. Cambridge University Press, New York, NY,
USA

Reguly I, Giles M (2012) Efficient sparse matrix-vector multipli-
cation on cache-based GPUs. In: Innovative Parallel Com-
puting (InPar), 2012, pp 1 –12

Robert A (1981) A stable numerical integration scheme for
the primitive meteorological equations. Atmosphere-Ocean
19(1):35–46

Saad Y (2003) Iterative Methods for Sparse Linear Systems, 2nd
edn. Society for Industrial and Applied Mathematics

Skamarock WC, Smolarkiewicz PK, Klemp JB (1997) Pre-
conditioned conjugate-residual solvers for Helmholtz equa-
tions in nonhydrostatic models. Monthly Weather Review
125(4):587–599

Smolarkiewicz PK, Margolin LG (1994) Variational solver for el-
liptic problems in atmospheric flows. Appl Math and Comp
Sci 4:101–125

Smolarkiewicz PK, Margolin LG (1997) On forward-in-time dif-
ferencing in fluids: An Eulerian/semi-Lagrangian nonhydro-
static model for stratified flows. Atmosphere-Ocean special
vol. XXXV(1):127–152

Thomas SJ, Malevsky AV, Desgagne M, Benoit R, Pellerin P,
Valin M (1997) Massively Parallel Implementation of the
Mesoscale Compressible Community Model. Span pp 1–19

Toselli A, Widlund O (2005) Domain Decomposition Methods
- Algorithms and Theory. Springer Series in Computational
Mathematics, Springer

Trottenberg U, Oosterlee CW, Schüller A (2001) Multigrid. Aca-
demic Press

Verschoor M, Jalba AC (2012) Analysis and performance estima-
tion of the Conjugate Gradient method on multiple GPUs.
Parallel Comput 38(10-11):552–575

Wood N, Staniforth A, White A, Allen T, Diamantakis M, Gross
M, Melvin T, Smith C, Vosper S, Zerroukat M, Thuburn
J (2013) An inherently mass-conserving semi-implicit semi-
Lagrangian discretisation of the deep-atmosphere global non-
hydrostatic equations. submitted to Quarterly Journal of the
Royal Meteorological Society

Zhang Xianyi ZC Wang Qian (2012) OpenBLAS. URL
http://xianyi.github.com/OpenBLAS/, Accessed 9 February
2013

