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SUMMARY

Many problems in fluid modelling require the efficient sabmtiof highly anisotropic elliptic partial
differential equations (PDEs) in “flat” domains. For exagph numerical weather- and climate-prediction
an elliptic PDE for the pressure correction has to be solveevary time step in a thin spherical shell
representing the global atmosphere. This elliptic solvelm@one of the computationally most demanding
components in semi-implicit semi-Lagrangian time steppirethods which are very popular as they allow
for larger model time steps and better overall performaWgth increasing model resolution, algorithmically
efficient and scalable algorithms are essential to run tle cmder tight operational time constraints. We
discuss the theory and practical application of bespokengéac multigrid preconditioners for equations of
this type. The algorithms deal with the strong anisotropj&vertical direction by using the tensor-product
approach originally analysed bydBn and Hiptmair [Numer. Algorithms, 26/3 (2001), pp. 21242 We
extend the analysis to three dimensions under slightly eeat assumptions, and numerically demonstrate
its efficiency for the solution of the elliptic PDE for the ¢lal pressure correction in atmospheric forecast
models. For this we compare the performance of differentigrid preconditioners on a tensor-product grid
with a semi-structured and quasi-uniform horizontal mestha@one dimensional vertical grid. The code is
implemented in the Distributed and Unified Numerics Envin@mt (DUNE), which provides an easy-to-use
and scalable environment for algorithms operating on tepsaduct grids. Parallel scalability of our solvers
on up to 20,480 cores is demonstrated on the HECToR supettemg@opyright© 0000 John Wiley &
Sons, Ltd.

Received ...
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convergence analysis

1. INTRODUCTION

Highly efficient solvers for elliptic partial differential equations (PDE) eequired in many areas
of fluid modelling, such as numerical weather- and climate- prediction (N\&)surface flow

simulations [1] and global ocean models [2, 3]. Often these equationstodexsolved in “flat”

domains with high aspect ratio, representing a subsurface aquifer Battiés atmosphere. In both
cases the horizontal extent of the area of interest is much larger thaartiwabsize. For example,
the Euler equations, which describe the large scale atmospheric flowiotseohtegrated efficiently
in the dynamical core of NWP codes like the Met Office Unified Model [4Mdny forecast centres
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2 A. DEDNER ET AL.

such as the Met Office and European Centre for Medium-Range Wedaiherasts (ECMWF) use
semi-implicit semi-Lagrangian (SISL) time stepping [6,7] to advance the atredsgields forward
in time because it allows for larger model time steps and thus better computatificianey.
However, this method requires the solution of an anisotropic elliptic PDE fqrgssure correction
in a thin spherical shell at every time step. In this paper we solve a disoreteof this PDE based
on a first order accurate cell-centred finite volume scheme. As the elliptie salv account for a
significant fraction of the total model runtime, it is important to use algorithmicdfigient and
parallel scalable algorithms.

Suitably preconditioned Krylov-subspace and multigrid methods (see €9{). [i@ve been shown
to be highly efficient for the solution of elliptic PDEs encountered in numenczdther- and
climate prediction (see [4,10-21] and the comprehensive review in. [RR])Xigrid methods are
algorithmically optimal, i.e. the number of iterations required to solve a PDE to theamcof the
discretisation error is independent of the grid resolution. Howeverarasfwe are aware - multigrid
algorithms are currently not widely implemented operationally in atmospheric maddlsne of
the aims of this paper is to demonstrate that they can be used very sultg@ss$fuid simulations
at high aspect ratio. Whereas “black-box” algebraic multigrid (AMG), 228 solvers such as the
ones implemented in the DUNE-ISTL [25] and Hypre [26, 27] libraries camplied under very
general circumstances on unstructured grids and automatically adagétdigloanisotropies, they
suffer from additional setup costs and lead to larger matrix stencils on #isectevels. On (semi-)
structured grids which are typical in many atmospheric and oceanograpplications, geometric
multigrid algorithms usually give much better performance, as they can béeadapthe structure
of the problem by the developer. In contrast to AMG algorithms which explistdye the matrix on
each level, it is possible to use a matrix-free approach: instead of reth@ingatrix from memory;, it
is reconstructed on-the-fly from a small number of “profiles”. This lgadsmore regular memory
access pattern and significantly reduces the storage costs, in partictiaséf profiles can be
factorised into a horizontal and vertical component. As the code is memodwldth limited this
also has a direct impact on the performance of the solver. Robust géomeliigrid methods, such
as the one in Hypre [28, 29], adapt the smoother or coarse grid traopdeators to deal with very
general anisotropies in the problem (see also [30-35]). Howevenadbistness comes at a price
and these methods are often computationally expensive and difficult titepaea

In the problems we consider, the tensor-product structure of the lymdpmesh and the grid-
aligned anisotropy make it possible to use the much simpler but highly efficiesort@roduct
multigrid approach described for example in [36, 37]: line-relaxation in thengly coupled
direction is combined with semi-coarsening in the other directions only. The imptatien is
straightforward: in addition to an obvious modification of the intergrid opesa&very smoother
application requires the solution of a tridiagonal system of sizén each vertical column with
n, grid cells. The tridiagonal solve requiréXn,.) operations and hence the total cost per iteration
is still proportional to the total number of unknowns. The method is also intigrparallel as in
atmospheric applications domain decomposition is typically in the horizontal dinemti.

In [38] this method was analysed theoretically for equations with a strorigakeanisotropy on
a two dimensional tensor-product grid. The authors show that optimakogence of the tensor-
product multigrid algorithm in two dimensions follows from the optimal convecgef the standard
multigrid algorithm for a set of one-dimensional elliptic problems in the horizatitattion. While
the original work in [38] applies in two dimensions, it has been extended & tHimensions
in [39] and the algorithm has recently been applied successfully to threensiomal problems
in atmospheric modelling in [20, 21]. Although the proof in [38] relies on thefficients in the
PDE to factorise exactly into horizontal-only and vertical-only contributioms,stress that this
property is not required anywhere in the implementation of the multigrid algorithrprdctice
we expect the algorithm to work well also for approximately factorising fawehts and under
suitable assumptions we are able to also prove this rigorously. To demorikisateimerically,
we carry out experiments for the elliptic PDE arising from semi-implicit semi-aagian time
stepping in the dynamical core of atmospheric models such as the Met OffifedJModel
[4, 5], where the coefficients only factorise approximately but the multigritvergence is largely
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MULTIGRID PRECONDITIONERS FOR ATMOSPHERIC FLOW AT HIGH ASECT RATIO 3

unaffected. Alternatively, we also investigate approximate factorisaticthe @tmospheric profiles
and then apply the tensor product multigrid algorithm to the resulting, pedymiessure equation
to precondition iterative methods for the original system, such as a simplerBscimaiteration or

BiCGStab [40]. As the operator is usually “well behaved” in this direction (i.es smooth and

does not have large variations on small length scales), the multigrid algoritthrmowerge in a

very small number of iterations.

An additional advantage of applying the multigrid method only to the perturbellgm with
factorised profiles is the significant reduction in storage requirementshéomatrix. As the
algorithm is memory bound and the cost of a matrix application or a tridiagoha sepends
on the efficiency with which the matrix can be read from memory this leads torpeathce gains
in the preconditioner: we find that the time per iteration can be reduced byp@26%, but this has
to be balanced with a possibly worse convergence rate. Neverthelgssymerical experiments
show, that in some cases the factorised preconditioner can be fastall.ob® novel manycore
computer architectures, such as GPUs, where around 30-40 floatimgpperations can be carried
out per global memory access, we expect the performance gains fiomatrix-free tensor-product
implementation to be even more dramatic. If the matrix is stored in tensor prodowtfand the
local stencil is calculated on-the-fly, the costs for the matrix constructioessentially be neglected
compared to the cost of reading fields from memory.

For example, consider the sparse matrix-vector productAu and assume that only the,.
non-zero entries of the x n matrix A are stored. In particular for a finite volume discretisation on
a three dimensional grid there will be on average= n,,./n = 7 nonzero entries per matrix row.
If we assume perfect caching of the input veaiothen a matrix-explicit implementation requires
n reads to load the vectas, n writes to store the resulting vecterandn,,. reads to load the
non-zero matrix entries, and henge + n,,, memory transactions in total. This is reduce®to
for a matrix-free implementation wheté does not have to be read from memory, resulting in a
speedup off%== = 1 4+ %=, which is4.5 for the finite-volume discretisation. If we assume the
other extreme, i.e. no caching of the input veatpthen loading this vector requires,. memory
reads instead of. In this case the gain from the matrix-free implementatiof-igr= — 20
i.e. 1.875 in the finite volume case. The benefits of this matrix-free implementation on GRids ha
recently been shown in a similar context in [41,42].

In state-of-the-art global weather prediction models the horizontdutesois of the order of tens
of kilometres with the aim of reducing this to around one kilometre in the nexidgethe number
of vertical grid cells is typically around00). The resulting problems witih0? — 10! degrees of
freedom can only be solved on operational timescales if their scalability eaguaranteed on
massively parallel computers. In addition to the sequential algorithmic peafuce we demonstrate
the parallel scalability of our solvers on HECToR, the UK’s national stquaputer which is hosted
and managed by the Edinburgh Parallel Computing Centre (EPCC). We &ihduhsolvers show
very good weak scaling on up to 20,480 AMD Opteron cores and can adivear system with 11
billion unknowns in less than 5 seconds (reducing the residual by fier®od magnitude).

The work presented here builds on our earlier papers, in particulawB2re we investigated the
performance and parallel scalability of different solvers for a chiarstic elliptic model problem
which reproduces the main characteristics of the atmospheric pressueetiom equation in a
simplified geometry (one panel of a cubed sphere grid). We modelled thmy steotical anisotropy
and correct dependence of the coefficients on the resolution and tinsizstepNe compared
different solvers, including AMG solvers from the DUNE- and hyprerdiles to matrix free single-
level and geometric multigrid algorithms based on [38]. We found that multigridedstare faster
than Krylov subspace iterations with single level preconditioners, sueBrésal line relaxation.
Since it avoids explicit storage of the matrix, the matrix-free implementation of tis®tgroduct
geometric multigrid algorithm turned out to be significantly faster than the AM@sadd showed
very good weak- and strong scalability on up to 65,536 CPU cores. [htfd? was extended
to a multi-GPU implementation of the tensor-product multigrid solver and the peafoce and
scalability was demonstrated by solving equations wishx 102 unknowns on up to 16,384 GPUs
of the TITAN supercomputer. We quantified the absolute performanceeoéltiorithm and find
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4 A. DEDNER ET AL.

that we can achieve a “useful bandwidth” 2if% — 50% of the peak (guaranteed-not-to-exceed)
value. The measured floating point performance was just below onelRx®af a socket-to-socket
comparison, the K40 Kepler GPUs on Titan were abbufaster than the AMD Opteron CPUs on
HECToR.

Here we extend the work in [22, 42] by studying the full pressure ctime equation with
representative background profiles which arise from the linearisatithie dNavier-Stokes equations
around a reference state. The same equation is used in the Met Offic&&N® Dynamical
core [5]. The problem is discretised in a thin spherical shell describmglibbal atmosphere; this
is realised by an extruded icosahedral mesh.

Due to the increased complexity of the problem we based our code on ancady
C++ framework for grid-based calculations. To achieve good perfocmavhile keeping the
implementation modular and maintainable, the algorithms used in this paper are impkimente
the Distributed and Unified Numerics Environment (DUNE) [43, 44]. DUNEnsobject oriented
C++ framework and provides easy to use interfaces to common paralleigriementations such
as ALUGrid [45—-47] and UG [48]. Due to the modular structure of the Iypeard because we can
rely on the underlying parallel grid implementations, the implementation of ourrsobvetensor-
product grids is straightforward. Throughout the code performéngearanteed by using generic
metaprogramming based on C++ templates. Most importantly this approach aveiisads from
the very frequent calls to short methods. They can be inlined at compile tiroe aihnecessary
information is provided via templates, while at the same time allowing the user to writéy hig
modular code. The efficiency of this approach was demonstrated invjié}e the overhead of the
object oriented DUNE interface layer was quantified, and the efficiehityedUNE library is also
confirmed by our performance results in section 5.3 below.

Structure This paper is organised as follows. In Section 2 we describe the peesstrection
equation arising in semi-implicit semi-Lagrangian time stepping in atmospheric modktiszuss
the discretisation of the resulting linear PDE with particular emphasis on theferoehuct structure
of the grid. The theory of the tensor-product multigrid algorithm is reviewe8ection 3 where
we extend the analysis in [38] to three dimensions following [39]. In this seatie also prove
the convergence of the preconditioned Richardson iteration for radarfsing profiles. The grid
structure and the discretisation of the equation as well as the implementatiom afgouthms
in the DUNE framework are described in Section 4. Numerical results fterdiit test cases are
presented together with parallel scaling tests in Section 5. We concludees®hpideas for future
work in Section 6. Some more technical aspects can be found in the appbngdaxticular, the
intergrid operators of the multigrid algorithm are described in detail in Appeid

2. ELLIPTIC PDE FOR PRESSURE CORRECTION IN ATMOSPHERIC MAE=

The elliptic PDE which arises in semi-Lagrangian semi-implicit time stepping in atmasphe
forecast models is derived for example in [5] for the ENDGame dynamimad of the Unified
Model. The work in this paper is based on a cell-centred finite volume disatietis We assume
that the diffusion coefficient is known everywhere in space and cavéakated at the cell faces.
In the following, we outline the main steps in the construction of the correspgtidear algebraic
problem.

The Euler equations describe large scale atmospheric flow as a set pleadawon-linear
differential equations for the velocity, (Exner-) pressure, potential temperaturé and density

Copyright© 0000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluid§0000)
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MULTIGRID PRECONDITIONERS FOR ATMOSPHERIC FLOW AT HIGH ASECT RATIO 5

p.
D .
ﬁ;} =—c,0Vr+ R, (Momentum equation)
Do . .
— =Ry (Thermodynamic equation)
Dt @)
Dp .
o -pV v (Mass conservation)

pb =T (Equation of state)

The R-terms describe external- and sub-gridscale- forcings such as grawityunresolved
convection. The constanksand~ are defined as

1—k
1—‘Ep()/}z(h T = ) ’%ERd/CIN (2)

K

wherep is a reference pressurg, and R, are the specific heat capacity and specific gas constant
of dry air. System (1) can be written schematically for the state vdeter{v, r, 0, p} as

Do

iy (z,t) = NP (x,)]. 3
Advection is described in the semi-Lagrangian [7] framework, i.e. materialdengativesD® / Dt
are replaced by

D® PUHAD () — d1) ()

Dt (@) = At “)
wherexp, is the departure point of a parcel of air at timehich is advected to positioa at time
t + At. The right-hand-side of (3) is treated semi-implicitly [6]. Because of the svedtical grid
spacing and the resulting large Courant number of vertical sound ywaartisal advection needs to
be treated fully implicitly, but some of the other terms are evaluated at the psetiina step and
thus treated explicitly; we write/ = A/(MPL) - A7(exPl) We use the)-method with off-centering
parametey. for implicit time stepping and replace

N[®(x,t)] = NP (D (2, £)] + N EP [D (2, 1))

s HN(impI.) [q)(t+At) (m)] + (1 - M)N(impl.) [(I)(t) (.’I})] +N(eXp|') [(I)(t) (.’1})] (5)
and in the following we always assume that= 3 which corresponds to the scheme described
in [49]. By eliminating the potential temperature, density and all velocities froenrésulting
equation, one (non-linear) equation for the pressuteé®?) at the next time step can be obtaifed
To solve this equation via (inexact) Newton iteration, all fields are linearisednd a suitable
reference state (which can for example be the atmospheric fields at theusréme step) denoted
by subscript “ref”. To this end the pressure at the next time step is writteft 8t (z) = 7(x) =

Teet () + 7' (2) With analogous expressions fér+2% and p(t+21); the reference velocities,.

are assumed to be zero. It should, however, be kept in mind that theidetgzm does not need to
be “exact” as the non-linear equation can be solved with an inexact Netgtation. In particular,
some terms can be moved to the right hand side which is equivalent to treatmgeiudicitly

or lagging them in the non-linear iteration. Naturally, there will be a tradeeffvben faster
convergence of the Newton iteration and the cost of the inversion of the loperator; for example,

in [5] all couplings to non-direct neighbours, which can be large in tise cd steep orography, are
moved to the RHS to reduce the size of the stencil of the linear operator. Wsle tonsiderations
are relevant for the optimisation of the non-linear solve in a particular mod#isiarticle we focus

on the solution of the linear equation, which is the computationally most exgeosimponent of
the Newton iteration.

fMathematically this is equivalent to forming the pressure Schumplement of the equation.

Copyright© 0000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluid§0000)
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6 A. DEDNER ET AL.

Once the Exner pressuré 2% has been calculated, the evaluation of the remaining atmospheric

fields at the next time step is straightforward and does not require aitjoadti(non-)linear solves.

In contrast to explicit time stepping methods the Courant number can bencsigsdicantly larger
than 1, which makes semi-implicit semi-Lagrangian time stepping very popularéaraignal
models. However, because of the short advective time scale and tedhatilarge scale flow

is described correctly, the Courant number is usually limited to around 1@hé&eamplicit time

step size is no more than one order of magnitude larger than what would edlio an explicit
method. To evaluate the overall performance of the method, the benefitargeatime step would
have to be balanced against the additional cost for the elliptic solve.

2.1. Linear equation

For ease of notation we simply write= 7(**4% in the following and drop the time indices. Then
the non linear equation for is of the form

N(m)=TR. (6)

To solve this equation iteratively we expand all fields around a referstate (which can, for
example, be given by the fields at the previous time step) to obtain a lineatoperAs discussed
above, in practise some terms might be lagged in the non-linear iteration, i.ed nwtlee right
hand side of the linear equation. At each stepf the nonlinear iteration we write;, = .. + 7,
for the approximate solution to (6) and update the pressure as follows:

Solve L7}, = Ri_1:= (R — Lryet) — 6N (mp_1) form, with SN =N — L,
Update 7y = Tyef + 7).

Every iteration requires the solution of a linear equatibtj, = Ry_1 for the pressure correction
m;., which we denote as’ in the following. To construct the linear operat6rwe proceed as
follows: starting from (1) the semi-Lagrangian framework in (4) is usedéwizontal advection and
vertical advection is treated implicitly (to ensure that mass is exactly consexeekction is treated
implicitly in all three spatial dimensions in the mass equation). The right hand aidesxpanded
according to (5). We linearise around reference profilgs .. andp.¢ which fulfil the equation of
stateprerbrer = (mrer)”, i.€. Write = 0, + 0 etc. and assume that the velocity expansion is around
zerowv,s = 0. If we split up the velocity into a tangential- and vertical- component (vs, w) the
time-discretised Euler equations in (1) finally become in a spherical geometry

1
vs = R'/u,s - MAtcp; (Oret Vsm' + (Vismrer)0') (")
w o= R, pAic, Grerdyn + (Omen)?). (®)
0 = Ry — uAt(0,0rer)w, ®)
1 1
p' = R/p — /LAt (ﬂar (szref’w) + ; (VS ’ (pref'US))> ) (10)
. / /
S Tref < P + o > , (11)
Y Pref eref

where 9, = (n, V) is the normal component of the derivative ald = r (V — (n, V)) is the
component tangential to a unit sph&evith outer normak:. Any terms that depend on the current
time step are absorbed in ti¥-terms. We then rewrite (11) as a functiongfind insert it together
with (7) into (10) to obtain an equation with, o’ and=’ only

o’ / 8r 2 vof
T g ag O per)
Orer Trref r 7"2,0ref
, , (12)
2 Vs - (preferef(vsﬂ' )) + Vs - (ﬂref(VSﬂ'ref)H )
+ (BAt) e, 2 :
< Pref
Copyright© 0000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluid§0000)
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MULTIGRID PRECONDITIONERS FOR ATMOSPHERIC FLOW AT HIGH ASECT RATIO 7

By solving (8) and (9) forw andé’ we obtain
w = Aref (f2 - NAthoref(a7’7r/)) y 0 = Aref (f3 + (,UAt)QCperef(areref)(arﬂ—/)) (13)

-1
whereA, . = (1 + (pAt)? (Nref)2) arises from the implicit treatment of vertical advection and
the (squared) vertical buoyancy (or Brun&sala-) frequency is given by

8rere
(Nref)2 = _cp(arﬂ-ref)(ar‘gref) =49 0 ff~ (14)

The functionsf, and f; only depend on the fields at the current time step. We rescale the
vertical coordinate by the radius of the eartR...;, and the potential temperature by a reference
temperaturdy at ground level to make it dimensionless. Finally, we multiply equation (12).hy

and denote the typical horizontal velocity by

ch = /¢ where ¢, = /¢, To /v

is the speed of sound in a parcel of air with temperatfige Furthermore we introduce the
dimensionless quantity

cr ALt
w = . 15
Rearth ( )
After eliminatingw and# from (12) with the help of (13) we obtain a second order equation for the

pressure correction’:

- w2 {Arefpref(areref)(arﬂ-/) + 712 [87“ <T2Arefpref‘9ref(ar7r/)) + VS : (preferef(vsﬂ-/»] }
(16)
- w4ri2VS . (Arcfprcf(VSTrrcf)(8r€rcf)(ar77/)) + ’Y%ﬁiﬂ/ =RHS
re

The O(w?) term arises due to the last term in (7). In [5] this term is not included in therlinea
operator since all terms which stem from reference profiles that doaperdl exclusively on the
vertical coordinate are neglected. To be consistent with this approacty,(tht) term is assumed
to be moved to the right hand side of the linear equation in the following. Theiiosterms in the
curly brackets are the sum of a vertical advection and a vertical difiusion.

In contrast, in [5], the linear pressure correction equation is deri@d the discretised Euler
equations. However, it can be shown that (16) is identical to the contitimibtof equation (67)
in [5] if the latter is written down explicitly in spherical coordinates. Denotingithknown pressure
corrections’ by u, as is common in the mathematical literature, the elliptic operator can be written
as

Lu = —w?V - (aVu) — w?€ - Vu + Bu

T O ar 87 (17)
— w2 (0, tve)" T u—wt(en )", ) utBu
0 asldaxe +Vs ~Vs

T

whereld, o is the 2 x 2 identity matrix. The equation is solved in a thin spherical shelk
S x[1,14+ H] and H = D/Rc.tn < 1 is the ratio of the thickness of the atmosphere and the
radius of the earth. The solutian= u(r, ) depends on the coordinates [1,1 + H] andr € S.
In contrast to global latitude-longitude grids, on quasi-uniform grids dtie between the smallest
and largest grid spacing is bounded. To ensure that the horizontadtac@ourant numbex w/h
(whereh is the smallest grid spacing) remains unchanged as the horizontal resadutioreased,
the time step sizé\t has to decrease linearly with A simple scaling argument shows that the
vertical advection term is much smaller than the diffusion term at high resolution

The functionsy,.(r, 7), as(r, ), & (r,7) and5(r, 7-) are referred to as “profiles” in the following
and can be obtained from the background fields, 6..; andp,.; by comparing the elliptic operators
in (16) and (17):

Oy = TQArefpreferef (: ’I"QArefOéS) , s = prefereﬁ gr = Arefpref (areref); ﬁ = ’ypref . (18)

ref

Copyright© 0000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluid§0000)
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8 A. DEDNER ET AL.

2.2. lterative solvers

After discretisation, the Helmholtz equation in (17) can be written as a largbraigesystem of the
form
Au="f. (29)

where the finite-dimensional field vectar represents the pressure correction in the entire
atmosphere. If we assume that the horizontal resolution is around 1 kiloaret@(100) vertical
grid levels are used, each atmospheric variablethd®'®) degrees of freedom. Problems of this
size can only be solved with highly efficient iterative solvers and on malggparallel computers.
Current forecast models, such as the Met Office Unified Model, utabéei preconditioned Krylov
subspace methods (see e.g. [8] for an overview) such as BiCGStab0J4@ue to the flatness
of the domain the equation is highly anisotropic: typical grid spacings in thiedrgal direction
are at the order of tens of kilometres, whereas the distance betweemMent&ls can be as small
as a few metres close to the ground. While this anisotropy is partially compérisathe ratio
as/a, = r—2A;e} in (18), it remains large in particular for small time stefpsfor which A,..; — 1
(recall that we chose units such that 1).

As discussed in the literature [4,16,17,19], a highly efficient preitimmer for Krylov methods
in this case is vertical line relaxation. This amounts to a block Jacobi or blogkigration where
the degrees of freedom in one vertical column are relaxed simultanegusty\ing a tridiagonal
equation. However, (geometric) multigrid algorithms have also been coadibgrthe atmospheric
modelling community [10-15, 18, 20, 21, 51] and recently some of the auttames demonstrated
their superior behaviour for a simplified model equation [22,42].

For the problems considered here we find that while the multigrid-algorithmbigstaas the
Courant number increases, this is not the case for a Krylov-subspeiteod with a single-level
preconditioner, which even breaks down for large Courant numidlen® detailed numerical results
of this comparison are given in Section 5.5.

3. TENSOR-PRODUCT MULTIGRID FOR ANISOTROPIC PROBLEMS

Efficient algorithms for the solution of anisotropic equations have beenestaxtensively in the
multigrid literature. For general anisotropies in convection dominated problerbgst schemes
have been designed by adapting the smoother (see e.g. [30, 31]) avdteeming strategy and
the restriction/prolongation operators (see e.g. [29, 35]). For examplf82-34] alternating
approximate plane- and line- smoothers are discussed. Alternativelyebraig multigrid (AMG)
[23, 24] is used, the coarse grids and smoothers will automatically adapytarésotropies and
the method can even be applied on unstructured grids. However, AM@dditional setup costs
for the coarse grids and explicitly stores the coarse grid matrices. Thia kagificant impact
on the performance in bandwidth-dominated applications. While these “blaxckapproaches
work well for very general problems and do not require anisotropidsetgrid-aligned, they can
be computationally expensive and are more challenging to parallelise. tNeless, impressive
results have recently been achieved with the AMG solvers both in the DUREB$ and Hypre
libraries [54], which have been shown to scale to 100,000s of CPU.cbineproblem is simplified
significantly in the case of grid-aligned anisotropies, which are typical in spimeric- and ocean-
modelling applications. It has long been known that if the problem is anigotione direction
only, this can be dealt with effectively by either adapting the smoother asenig strategy (see
e.g. [55-57] and also the discussion for simple anisotropic model problef®B.in

Both methods can be combined as for example discussed in [36—38] whkeselthion of two
dimensional anisotropic problems with grid-aligned anisotropies is studiedsiBy line-relaxation
in the r-direction together with semi-coarsening in thalirection only, the multigrid solver is
robust with respect to anisotropies in both theandr-direction as long as they are grid-aligned.
In the following we will refer to multigrid algorithms which combine horizontal sem@sening
with vertical line relaxation in the strongly coupled directiont@ssor product multigrid TPMG)
methods (both in 2D and in 3D).
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MULTIGRID PRECONDITIONERS FOR ATMOSPHERIC FLOW AT HIGH ASECT RATIO 9

In [38] the convergence of such a tensor-product multigrid solvezlfiptic equations of the form

Lu = —div(agradu) = — (0, 0;) (aT(g, z) aw((; x)) (g:) u(r,z) = f(r,x)
in a two dimensional domairf2 = [0,1] x [0,1] is analysed under the assumption that the
coefficients in the diagonal x 2 matrix can be factorised, i.e.
ar(r, x) = ag(r)ey(z), g (r, z) = g (r)ag(z). (20)
The authors show that the tensor product multigrid algorithm applied to thidgmoconverges

uniformly provided the standard multigrid algorithm with point relaxation andasmifcoarsening
converges uniformly for one dimensional (horizontal) operators ofdha f

LE(Aj)u* () = =0, (i (2)0pu®(2)) + X o (2)u” (2)

where the positive values; are the eigenvalues of the vertical Galerkin matrices. In particular, they
analyse the strongly anisotropic casengf> «,, which arises for example in the case of a polar
grid on a disk with a (small) hole at the origin.

3.1. Tensor-product multigrid preconditioners

Based on these observations, we propose two approaches for sdtengressure correction
equation in (17). In both cases we use an iterative method such as a dRichateration or
BiCGStab and precondition it with the tensor-product multigrid algorithm.

Tensor-product multigrid with full, non-factorising profiles ( TPMG®!))  Often the profiles
encountered in atmospheric flow simulations only factorise approximately. Ugthdhe theory
in [38] applies only if the coefficient functions, (r, ) anda,,(r, ) can be written as the product
of a vertical and a horizontal function as in (20), this assumption is nal asgwhere in the
implementation. Our numerical experiments demonstrate that good convergamde achieved
even in the non-factorising case where we use the full operator in the naiftigrconditioner.

Tensor-product multigrid with approximately factorised profiles (TPMG®) Given a set of
profiles, we explicitly construct an approximate factorisation and use thdtireg operator in the
multigrid preconditioner; we apply a matrix-free approach, where the kieatil is reconstructed
on-the-fly from the profiles. Depending on the quality of the factorisatibis, may lead to a
slight increase in the number of iterations of the underlying iterative sal@wever, in terms

of computational cost this increase is usually offset by a reduction in themoddata that needs
to be transferred from main memory. As the algorithm is memory bound, this wililate directly
into performance gains. If the profiles factorise, for each horizorgkland edgeO(1) entries
which describe the horizontal coupling need to be stored. In the veriiregition four vectors of
lengthn,. are requiredor the entire grid Hence, in this case the matrix can be reconstructed from
O(n,) + O(ngs) values whereus is the number of horizontal grid cells. This should be compared
to O(n, x ns) data transfers for constructing the matrix in th@MG!) approach. We also
prove formally in the following section that the Richardson iteration WitV G® preconditioner
converges if the non-factorising part of the operator is small.

3.2. Convergence of Tensor-product multigrid

The convergence theory for conforming finite element discretisationsaarfdctorising profiles
in a spherical shell is a straightforward generalisation of the two dimerisiasa in [38] and is
written down in detail in [39] based on the multigrid convergence theory ih [6&he following
we outline the proof for the pressure correction in (17). This is done irsteyos: we first argue that
if the profiles factorise and the advection term is dropped, the resulting siyiopesitive definite
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10 A. DEDNER ET AL.

equation can be solved efficiently with a tensor-product multigrid iteratiorthéf@eshow that if this
factorising operator is used as a preconditioner for a Richardson itertiiemethod converges also
for the non-factorising equation provided the non-factorising contrihuicufficiently small.

For the numerical experiments presented in this paper we use a cell-cénitedvolume
discretisation, which is typical in many atmospheric modelling codes, but gifieem the
conforming finite element discretisation which is assumed in the proof. Howesgealready
remarked in [38], in many cases finite difference and finite volume schegnes with finite element
schemes if a specific quadrature formula is used. In particular, in [39)shasvn that the finite-
volume scheme on a orthogonal cubic grid is equivalent to a trilinear finite atetiseretisation
on a shifted grid, if a suitable quadrature rule is used. For this reasoeliggdthat the theoretical
analysis below also gives a good justification as to why the method works arell h

3.2.1. Factorising caseConsider the following PDE in the spherical shel= S x [1,1 + H]:
LOU = —w?V - [a(r,#)Vu(r, #)] + B(r, #)u(r,#) = f(r,7) (22)

with » € [1,1+ H], 7 € S. This should be compared to (17); for simplicity we do not consider
the vertical advection term in this section, as it may in general destroy thévpadefiniteness

of the problem. However, for high horizontal resolution this term is small@mbe treated as a
perturbation. We further assume that the 3 matrix « and the functiors have the following form
that factorises into the product of a horizontal and a vertical function:

_ (ar(r,?) 0 B al(r)as (7) 0 e
( 0 @s(hﬂ)( 0 o@(r)gﬁ(%))’ Blr,#) = B (r)B~(F).

We also require thags(#) = o (+), which is satisfied for all factorisations that we use in our
numerical experiments. Thex 2 matrix o2 is required to be symmetric positive definite and we
assumexy, al, as, 8" > 0.

To discretise the problem, we choose finite element specesver S and V" over[1,1 + H]
and tensorise them to obtain the product spédce V" ® V< overQ. We writen, = dim V" and
ns = dim V<. For any two functions(r, #) = u” (r)u® (#), v(r, #) = v"(r)vS(#) in V the bilinear
forma: V x V — R associated with the operatd® in (21) can be expressed in terms of the
bilinear forms

o (o) = /1 T o (o () .

v = [ T ) dr,

m (") = /1 T n ey () a, (22)
al (u®,v%) =/S<a§(f’)Vgu‘s(f'),V3v5(f~)> di and

m®(u®,v%) = / of (#)u® (#)v® () dr
s
as
a(u,v) = (w?a"(u",v") + b"(u",v")) mS (uS,v5) + w?m” (u", v")a® (u, vo).
Using the Kronecker product, the Galerkin-matrix representatidmf the bilinear formu(-, -) can
then be expressed in terms of the Galerkin matrices of the bilinear forms in.€2)

A® = (w?A" + B") @ M® + w?M" @ A°.

Here A", M", B" € R"*"r correspond ta"(-,-), m"(-,-) andb” (-, -) respectively and describe the
vertical derivative- and mass- matrices. Analogously the derivatigeraass matrix in the horizontal
direction are described by®, M € Rms*"s which correspond ta®(-,-) andmS(-, -).
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MULTIGRID PRECONDITIONERS FOR ATMOSPHERIC FLOW AT HIGH ASECT RATIO 11

To use the tensor-product multigrid approach, we further assume thatisreenested sequence
Vecvsc...cvf=vS (23)

of finite element spaces ov&r where the subscrigtdenotes the multigrid level; for the icosahedral
and cubed sphere grid this hierarchy naturally exists. We thenVuseV” @ V,° to discretise
the full three dimensional problem on the multigrid le¥el.e. we do not coarsen in the vertical
direction. The line smoother then corresponds to collectively relaxing glegs of freedom in
each of the:,-dimensional subspacegan {{, 1} ® V"} wherey, ;, are the nodal basis functions
on level/.

The two-dimensional prolongatioR® : V,° — V5, and restrictionky = (PS) VS, = VE
naturally induce intergrid transfer operators between the three dlmehspmaasw andVy, by
P, =1d®Py, Ry =1d®R?. On each muItlgrld level the matriA}’ can be constructed recursively
using the Galerkin produet® = R,A% . P, and itis easy to see thﬂl,;@ and the (block-)smoother
W2 can be written as

{41

AP = (w?A"+ B") @ M{ + WM™ ® A7,
W = (WA"+ B") @ WM + Mo Wi,
In the case of weighted block-Jacobi relaxation, for example, the matfiges andiv,/*® are the

weighted diagonals af7® and AS. One V-cycle of the tensor product multigrid algonthm can now
be written down compactly as foIIows

Algorithm 1 Tensor Product Multigrid V-cycle. Input: system matrixA?, RHSf,, initial guess
uy

: Pre-Smoothingr}'® steps ofu, — (W2)~'f, + (I — (W2) LAY )u,
if £ > 0then
Residual Calculationt, = f, — ASu,
RecursionApply algorithm WithAg‘{l, fro1=Ry_1rp,up_1 =0
Coarse Grid Correctionu, — uy + Pr_qus_y
. end if
. Post-Smoothingz}**'steps ofu, — (W)~ ', + (I — (W2) 1 AP)u,

\‘C”.U.":'?P?!\."‘

On the finest leveL, this V-cycle is applied to the right hand sifle= f of the original problem
until the residual error is reduced below a certain tolerance. We typicadigse the numbers of
smoothing steps to be’® = 2 and P = 2, for ¢ > 0, andf"® + /' = 1 on the coarsest grid.

To simply apply a few steps of the smoother on the coarsest grld is suffloématuse the CFL
condition ensures that the system mattix on the coarsest grid is dominated by the mass matrix
term B ® M? and thus well-conditioned. For more details on the algorithm which was used fo

our numerical experiments see Section 4.2.

Reduction of the theory to two dimensions The crucial idea in [38] is now that it is possible to
construct a set of.,. invariantns-dimensional subspaces such that the convergence of the tensor
product multigrid method for the problem in c R? can be analysed by independently studying
the convergence of a standard multigrid algorithm in each of these sisspaerS ¢ R?. This

can be seen as follows: because hathand A" are positive definite, there exists an eigenbajis
j=1,...,n,, of V" and a corresponding set of strictly positive eigenvaluesuch that

(W*A" + B") e} = A\;M"e], (M€} er) = b;k forall j,ke{l,...,N}. (24)
It follows from simple identities for the inner product on tensor produetsg that
(ef @u®, AT (e} @ v9)) = (e}, ®u®, (w?A" + B") e ® M{vS + M"e] ® A7v®)
= 0jk <u57 ()\jMf + A?) v$>
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12 A. DEDNER ET AL.

and so the subspaces spanned by the diffef;eateA;@-orthogonal, with a similar property for the
smoother matriXV,;°. As we do not coarsen in the vertical direction, the intergrid operatoesd
R, do not mix different subspaces. For egcthe spacepan{e’} @ V2 is trivially isomorphic to
V2 and each of the,. independent subspaces corresponds to a two dimensional problgmwitm
the following matrix representation of the linear operator and smoother:

A‘Zj = szZS + )\jMf, WZ,j = w2WéA’S n )\jWgM’S.

In particular, A;?:j is the Galerkin matrix which is obtained from discretising the bilinear form
w?a®(u®,v%) + A;mS(u®,v®) on V2. This bilinear form is the weak formulation of the following
two dimensional operator:

L3508 () = —w? Vs - (a3 (P)Vsu® (7)) + Ajal (#)u® () (25)
Convergence of two dimensional multigrid According to Theorem 10.7.15 in [59], the multigrid

V-cycle converges for each of the two dimensional operafﬁr,sj =1,...,N if there exists &4
such that the smoothing property

AT < WP (26)
and the approximation property
-1 -1 -1
0< (A7) — PP (A7) RP<Ca(Wia)) (27)

are satisfied on all levels=1, ..., L.

The smoothing property (26) is automatically satisfied for (sufficiently danpeuht Jacobi
and SOR smoothers (Remark 4.6.5 in [39]). To see this, denote the matristoanenly of the
diagonal entries oft7; by D7 and useV, = p;.1., D3 ;, i.e. weighted point Jacobi relaxation.
The relaxation parameter is chosen such that. < ||(D2j)_1Azj||_1 where|| - || is the spectral
norm. Then (26) follows by definition from the equivaleneéd < X < 1d < || X|| < 1 applied to
X =(Wg)tA7,.

A proof of the approximation property is significantly harder and we will gige it here (see
Lemma 10.7.8 and Remark 10.7.13 in [59]). It depends on some minimal regalssitynptions on
the profilesal(#) and oS (#). The constant’4 may depend on the contrast, i.e. the maximum
variation of the profiles. We stress again that we use quasi-uniform fpid¢he horizontal
discretisation (see the review in [60] for a discussion of grids consideremeteorological
application). In contrast to latitude-longitude grids, where the conveigy@h lines near the pole
introduce an additional horizontal anisotropy, the ratio between the smellé$irgest grid spacing
is bounded from below in the grids we consider. Hence the simple blodbtilaad block-SOR
smoothers which relax all degrees of freedom in one vertical column sineoltsty will be efficient
and no additional horizontal plane smoothing or selective semi-coarsasidgscribed in [20] is
required.

As the two dimensional equations are solved on the unit sphere, the crpéfadmuld become
near-singular if\; — 0. However, it is easy to see that this is not the case. As noted in Section 2.1
we require the scaling o« At < hy, to keep the Courant number fixed as the horizontal resolution
increases. Therefore the second order term in (25) is of drded hence the relative importance of
the two terms in (25) is independent of grid resolution. It follows that all theresalues\; of (24)
are of order 1. Itis a reasonable assumption that the prefflés), o5 () are “well-behaved” in the
sense that they are dominated by large scale variations due to global m®atteans, small scale
phenomena such as strong local variations carry substantially lesy.dnetgs case we expect the
spectrum of/:f to be bounded from above and below by two constants which are indepieoi
hr.

Convergence of three dimensional multigrid As argued above, the three dimensional problem
can be decoupled into a set of two-dimensional problems. Due to the particular form of the
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smoother and of the prolongation/restriction matrices, it is in fact easy tg/thet the smoothing
property and the approximation property

A7 <Wp2 and 0< (Aﬁl)_l - P (AZ@)_I Ry < Ca (Wﬁl)_l7
for the tensor product multigrid algorithm for the original 3D problem(diollow directly from
the respective properties (26) and (27) for the 2D problemS,dar all j = 1,..., N.

Theorem 1
Let us assume that (26) and (27) are satisfied, for all1,..., N, and letM® denote the iteration
matrix for one step of the tensor product multigrid V-cycle defined above, i.e

u—uj — M®(u-u})
whereu}, is the exact solution of the equatictu;, = f. Then the convergence rate

Ca
Pa =1l lae < CA—FQ(Vpre“" Vpost)

independent of ., where|| - || 4o is the energy norm induced by®.

This is the main result given and proved for the two dimensional case i f@&rem 2]. As we
have seen above, the proof extends directly also to three dimensions @ndai@ssure correction
problem here. In that case the assumptions of the theorem are satisliedussed above.

3.2.2. Non-factorising cas&/e now assume that the matrik can be written as the sum of a
perfectly factorising symmetric positive definite matri%® and a small correctiod A, namely

A = A® 4 §A. We quantify the deviation from perfect factorisation Ay= || (A®) ™' §A|| 4o and
assume that\ < 1. We also assume that the theory in Section 3.2.1 applies and the multigrid
iteration for the factorising operatot® converges, i.e. the error is reduced by a fagtr< 1

in every multigrid V-cycle. The Richardson iteration for the full operatopreconditioned with:
multigrid V-cycle cycles forA® can then formally be written as

uk ) = u® 4 [1d - (M®)"] (49) 7 (f - Au<k>) .
Then at every step the erraf*) — u* to the exact solutiom* := A~'f is reduced by a factor

pa = ||Td—[1d— (M®)"] (A%) ™" 4| 40
< |[(A®) T A=TdJae + MO0 (A®) T Allae < A+ (1+A) (9. (28)

Thus, for an arbitrary\ < 1 the convergence rate, is less than 1, provided the number of V-
cyclesu > logp§ ((1=A)/(1+ A)). Onthe other hand, if we only apply one V-cycle-£ 1), then

a convergence raje, < 1 can still be guaranteed providéd< (1 — p%)/(1 + p%). Similar results
can also be proved for the convergence of Krylov solvers, such@s®tab, preconditioned with
w multigrid V-cycle cycles ford®.

It is usually difficult to quantifyA for a specific problem, but in Section 5.2 we study a model
problem where we vary the size ¢&f via an explicit parameter and study the performance of the
solver asA increases.

4. DISCRETISATION AND IMPLEMENTATION
In practise, and as we demonstrate in the following, the tensor produmbrmtitioners will be
efficient for a wider range of problems not covered by the formal theéde now describe the

discretisation and DUNE implementation of the solvers we used in our numexjzaiiments.
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4.1. Grid structure and discretisation

For simplicity we use a simple finite volume discretisation for all numerical expetsriarthis
work. More complex schemes such as mimetic mixed finite elements are alsotiyutneder
consideration for the development of dynamical cores [61, 62] and méghuire the solution of
the equation in a different pressure space, such as higher ordepd2@. However, the basic ideas
described in this work can still be applied.

Grids used in meteorological applications (and also in many ocean mode]} (2L@lly have
a tensor-product structure. They consist of a semi-structured two diareai horizontal grid on
the surface of the sphere and a one-dimensional vertical grid whichtas gfaded to achieve
higher resolution near the surface. In particular, each three dimehgiodacell £ = (T, k) can
be uniquely identified by the corresponding horizontal @eknd a vertical index € 1,...,n,.
This tensor-product structure in itself has important implications for theopwgnce of any
implementation: while it might be necessary to use indirect indexing for the draekgrid, the
vertical grid can always be addressed directly. As typically the numbegenvical levels is large
with n,. 2 100, the cost of indirect addressing in the horizontal direction can be “hitfs3], a
phenomenon which we have confirmed numerically for our solvers in SebtionFurthermore
fields can be stored such that the levels in each column are stored diredgdn memory, which
leads to efficient cache utilisation (however, as discussed in [41] aafiffenemory layout has to
be used on GPU architectures where the vertically-consecutive stai@gd prevent coalesced
memory access in the tridiagonal solve). To be able to use the geometric muligedssdescribed
in this work, we also assume that the horizontal grid has a natural higratgk is true for the
icosahedral grids which are used in our numerical tests where eachuldarcoarse grid cell
consist of four smaller triangles on the next-finer multigrid level. In contmatsimple longitude-
latitude grid, these semi-structured grids have no pole-problem, i.e. the edtie@dn the size of
the largest and smallest grid spacing is bounded. This implies that there dslitioal horizontal
anisotropy which would further complicate the construction of a solver ¢iwvew as has been shown
in [20, 21], the tensor-product multigrid approach can still be applietbfugitude-latitude grids if
the horizontal coarsening strategy is adapted appropriately).

In the finite volume discretisation any continuous field, ) is approximated by its average
value in a grid cell. In particular, for ea¢torizontalgrid cell 7" we store one vectai of lengthn,.
representing the field in the vertical column. In this cell the discrete equadt®rfdr then,.-vector
ur can be written as

(Au)r = Apur + Z Arpur = fr, (29)
T'eN(T)

where the sum runs over all horizontal neighbdlirs A/ (T) of T In this expressiod , and A,
aren,. x n, tridiagonal- and diagonal matrices of the form

AT = tridiag(aT, bT, CT), ATT’ = diag(dTT/). (30)

Both matrices can be reconstructed on-the-fly from a number of scatattijes, which are
obtained from a discrete approximation of the profiles in (18) and geomattork. This on-the-
fly reconstruction of matrix elements reduces the amount of main memory aacgssticular
if the factorising profiles in th&PMG® preconditioner are used. For each horizontal &ethe
explicit expressions of the diagonals, drr and upper- and lower- subdiagonals, ¢ depend
on whether the profiles can be factorised or not and are given explicitiginext section. A block-
SOR iteration with overrelaxation factpy..x can then be written as

Uz 4 ur + pretax (Ar) " (br — (Au),) (31)

and requires a tridiagonal solve in each vertical column to apply the ingéthe matrixA,. to the
residual. This can be implemented using the Thomas algorithm [64].
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4.2. Multigrid algorithm

In the multigrid algorithm the operator is re-discretised on every grid leves iStstraightforward
since we assume that the profiles, as, & and s are known at every point in space. In practice
the profiles are relatively smooth (i.e. without large, high-contrast jumpd)can be obtained as
a linear interpolation of data from a Unified Model run. Re-discretising gerator on every grid
level also leads to much smaller stencils than the Galerkin product approA&tGn

Unless otherwise stated, in our numerical experiments we always use 6 rdu#igrs with two
vertical line-SOR pre- and post- smoothing steps on each Ie¥& POt = 2); the overrelaxation
factor in the smoother was set Rjax = 1. One smoother iteration is used to solve the coarse grid
problem. We use linear interpolation to prolongate the solution to the next-fiig(2¢ — h). The
right hand side, which in each cell represents a cell-integral of a fielesisicted to the next-
coarser leveli{ — 2h) by summing the fine grid values of all four fine grid cells comprising the
coarse grid cell. Thus, these intergrid-operations, which are deddnbmore detail in Appendix
A, only require interpolation and summation in the horizontal direction.

4.3. Matrix-free DUNE Implementation

All code was implemented using the DUNE library [43, 44], which providesteo C++ classes
for solving PDEs using grid based methods. In particular, it providesfaues to (parallel) grid
implementations such as ALUGrid [45-47] and UGGrid [48]. The implementatidheogrids is
separated from data which is attached to the grid by the user via mappgofsizetween different
grid entities (cells, edges, vertices) and the local data arrays. In earvea used the DUNE-grid
module to implement a two dimensional host grid and then attached a whole colulengtt

n,. to each horizontal grid cell'. We represent the matrix as follows: in the non-factorising case
(TPMG D), we store a vectoB, of lengthn, at each horizontal cell to represent the zero order
term, two vectorga,.)r and(€, ) of lengthn,. + 1 to represent the vertical diffusion and advection
terms, and one vect@és) 1 of lengthn,. at each horizontal eddgT”. The explicit form of these
vectors is obtained by a standard finite volume discretisation of the problesrvéldtorsar, b,

cp anddy in (30) are

drr e = —(&s)rr k) dry = Z drri
T'eN(T)
. . . : (32)
bry = —(&p)rr+1 — (&) k41, erg = — (&) ks + (&)1 kt1s

ary = BT,k — (brg + ek + drk)-

In the factorising caselPMG®) it is only necessary to stosealarss, ()7, (£5)r and(aS)rr
on the horizontal cells and edges. In addition to this, four vectors of lengamdn,. + 1 (,6'7 , &,

Q. andé':.) which arise from the vertical discretisation need to be stored once fartie grid.
Similarly to (32) the matrix entries in (30) can be calculated on the fly as

drr ke = —(65)e(68) 1, dre= Y drrog
T'eN(T) (33)
brp = —(A0)k41(65) 7 — (EDks1(E)r, e = — (@01 (65) 7 + (ED)s1 (€5) 7,

ary = BEBY — (brg + crp + dr ).

The scalarg’d, (a8)r, (£5)r and(a$)rr only need to be read once per vertical column and the
associated cost can be hidden together with the cost of indirect atdressthe horizontal grid
for large enough,.. Moreover, the vector@r, as, @&, and 5: require only a small amount of
memory and can be cached. In summary, the cost of memory access forttheisniely to be
significantly smaller than the cost of accessing field vectors suety-@ndbs when solving the
tridiagonal system in (31) or in the matrix vector product.

The DUNE-grid interface provides iterators over the horizontal grid egltsover the neighbours
of each cell. To implement for example the sparse matrix vector product\{ppM?29) we iterate
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over all horizontal grid cell§”, and then in each cell we loop over the ed@&s for all neighbours
T’ to read the profiles stored on the cells and edges from memory and cornis&runatricesA .
andA .. These are then applied to the local veciorsanduy- to evaluate Au),, which requires
inner loops over the vertical levels. Of all grids that are currently availtirough the DUNE
interface we found that only ALUGrid can be used to represent a twordiioeal sphere embedded
in three dimensional space. Unfortunately the scalability of ALUGrid is very lunitecause in a
parallel implementation the entire grid is stored on each processor. Altesiyaive used a three
dimensional UGGrid implementation for a thin spherical shell consisting of entical layer to
represent the unit sphere. Based on the coarsest grid, finer multigeid lean be constructed by
refinement in the horizontal direction only. Any geometric quantities in this theetdimensional
grid can then be related to the corresponding values on the two dimensi@hbygimple scaling
factors. We implemented both a gnomonic cubed sphere grid [65] and amexiral grid, for which
the grid points are projected onto the sphere, and all numerical resutide@pn this work were
obtained with the icosahedral grid. We assume that on each multigrid leveéliseot the two-
dimensional grid are flat, i.e. strictly speaking the grid is a polyhedron. Whigediffers from
curvilinear grids where the interior of each cell is projected onto the spliers a very good
approximation for high resolution. In particular it does not cause anbl@ness on the coarser
multigrid levels since those are only used to accelerate the fine grid solution.

As is typical in atmospheric applications, parallel domain decomposition is in thizohtal
direction only. As the DUNE host grids that we used are already inherpatbllel, parallelisation
of the code was straightforward by calling the relevant halo exchang@es when necessary. Load
balancing was achieved by choosing the problem size such that the nahdadls on the coarsest
level is identical to the number of processors and each processos™@me coarse grid cell and
the corresponding child cells. While at first sight this might cause a profwetarge core counts
because the coarsest level still has a relatively large number of degfreeedom and the multigrid
hierarchy is very shallow, it turns out that the zero order term in the Hdtmbquation (17) averts
potential problems. This is because relative to the zero order term the imp@éthe horizontal
diffusion term decreases with a factor of four on each coarse levélsarafter a small number
of coarsening steps the problem is well conditioned and can be solveddry amall number of
smoothing iterations. An alternative and more physical explanation is thahteractions in the
continuous PDE in (17) are exponentially damped with an intrinsic length scaled hence it
is not necessary to coarsen the grid beyond this scale. This has bde@med numerically for a
simplified test problem in [22], where it has been shown that as little as folirgna levels still
give very good convergence for typical grid spacings and time stegp. $izthe parallel scaling tests
in this work we typically used 6 or 7 multigrid levels and one iteration of the smodtthslve the
coarse grid problem.

5. NUMERICAL RESULTS
In the following we study the performance of the two tensor-productgritionersTPMG (1)
and TPMG® described in Section 3.1 applied to two test cases in atmospheric flow simulation.
We confirm the optimality and robustnessi?PMG ™'Y even for non-factorising profiles, compare
the performance of the two variants and study their parallel scalability. E/staged otherwise, all
runs (including the sequential tests) were carried out on the phasdiguwration of the HECToR
supercomputer, which consists 2816 compute nodes with two 16-core Ager@ 2.3GHz
Interlagos processors each. The entire cluster contains 90,112rctoed. The code was compiled
with version 4.6.3 of the gnu C compiler.

The tolerance in the iterative solver was setlto®, i.e. we iterate until the residual has been
reduced by at least five orders of magnitude. The number of verticalslevas set ta:, = 128,
which is typical for current meteorological applications. We note, howdhat all runtimes are
directly proportional ta,..
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Figure 1. Time per iteration for different numbersof vertical levels for two grid implementations (UGGrid
in red, open squares and ALUGrid in blue, filled circles) oniasahedral grid; results for shown both for

the TPMG (™) (dashed lines) andPMG® (solid lines) preconditioner.

5.1. Overhead from indirect addressing

While data in one vertical column is stored consecutively in memory and cacidoessed directly,
in general indirect addressing has to be used in the horizontal direddongver, as the horizontal
lookup is only required once per column, the relative penalty for this will éry gmall provided
n,. is large enough. As discussed in [63], in this case the overhead framéhdddressing can be
“hidden” behind work in the vertical direction. To verify this we ran oulveo with two different
DUNE grid implementations and measured the time per iteration for different nsrobgertical
levels. We expect this time to dependonas follows

Liter (grid7 nr) = (CO + Cgrid) +q-n, (34)

whereCq,iq is the overhead of indirect addressing and depends on the grid implemeni&ti®
constantC, encapsulates any other work which is only done once per column andjcdimd
the slopey are independent of the horizontal grid. Figure 1 shows the resultsddkltklGrid and
UGGrid implementation and confirms the linear dependency in (34). As cagelpefiom this plot,
for both preconditioner@PMG“"“) and TPMG® the overhead from indirect addressiogiq
and the additional overhead, together are at the order of less thzi, as soon as,. = 100.
Incidentally both DUNE grid implementations that we tested are equally efficiensti#ss that in
both grids data in adjacent vertical columns is not necessarily storedadively in memory. Not
surprisingly, the slope is larger for the more expensi@PMG ™) preconditioner. The results in
this section also confirm that performance tests carried out on a direcligss®d horizontal grid,
such as the results in [22], can be generalised to indirectly addresdsd gr

5.2. Test Case |: Balanced zonal flow

We first test our solver with the profiles from a simplified meteorological tesblpm which
corresponds to a balanced atmosphere with constant buoyancyrfoycarel zonal flow with one jet
in each hemisphere. The advantage of this test case is that the deviatieratfibspheric profiles
from a perfect factorisation can be controlled by varying a single paeanie [66] it is shown that
under the assumption that the velocity field points in the longitudinal directiortrenduoyancy
frequencyN defined in (14) is constant, a solution of the Euler equations is given by

S T
(i, r) = SELOET), O(.1) = To (ES(0)E"(1) "
) 1+e€ (35)
plir) = 5 w0 ES(O)E" (1), (i, r) = us(9)
d10o
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Figure 2. Left: Velocity fieldu(¢) and jet functionF" defined in eqns. (36) and (37) fav = 0.028s~*

(e = 1.23). Right: Exner pressure and relative differencéf% in the (¢, z)-plane for the same value of
N. The height above ground is measured in units of the depthecitmosphere.

where the function&®(¢) andE"(r) are defined as

2 2
PS(0) = exp |~y Flo)|. B (1) = exp | - ey
g g

In the horizontal direction the profiles only vary in the latitudinal directjoa [—7/2,7/2]. The
parametek is related to the buoyancy frequency by (- )2 — 1 with N* = Y20 _ . The
function F'(¢) is related to the velocity fields(¢) as

dF .

dﬁ(f)@ = 2RearttharthuS(¢) S ¢ + u$(¢)2 tan ¢ (36)

with angular velocityQe..., = 27/(24 - 3600)s~*. For our numerical experiments we choose the
velocity such that it corresponds to two jets with peak velogity= 100ms~! in the mid latitudes
(Qﬁ]w = 7T/4, o= 01)

cos Gy 202

us(6) = o cos ¢ exp (cos ¢ — cos ppr)? (37)

as plotted together with the correspondif@p) in Figure 2. If we fix the reference pressure and
temperature to physically realistic valugs= 10,000Pa andTy = 273K, the only free parameter
in (35) is the buoyancy frequency. In particulaiNfis identical toN*, i.e. e = 0, the first term in
the expression for the Exner pressure in (35) vanishes and all prizfdtorise exactly.

In the following we present numerical results for a range of buoyaneguencies between
N = N* =0.01873s~' and N = 0.028s~'. As a preconditioner we use both a multigrid algorithm
with the full model operator and the tensor-product multigrid algorithm with ppraimate
factorisation of the Exner pressure

e+ E"(r)
1+e

which reduces to the expression in (35) et 0. Both the Exner pressure and the relative difference
”®T*”, which is an indicator of the quality of the factorisation, are plotted¥os 0.0285~! in the
(z, ¢) plane in Figure 2. As can be seen from this figure, the relative differbatween the profiles
can be larger than 15%.

The time per iteration is shown in Figure 3 (left) for two grid implementations. Both a
preconditioned Richardson iteration and BiCGStab are used with one multigeictly as a
preconditioner. It is important to note that BICGStab requires two applicabitihe preconditioner

7@ (1) = 7S (#)n" (r) =

- E5(9) (38)
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Figure 3. Breakdown of the time per iteration for two diffieréerative solvers and grid implementations
(left) and number of iterations (right) to reduce the refatiesidual by at least five orders of magnitude for
the idealised balanced flow testcase. The multigrid preifionér is used with both the full, non-factorising

profiles PMG(™ | blue columns and dashed curves) and the approximate ifation (ITPMG®,

hatched green columns and solid curves) in (38). A mater-implementation was used for all parts of

the algorithm; for the SpMV operation we always used the famerising code. In all cases a problem with
nr = 128 and2.6 - 10° total degrees of freedom was solved sequentially on HECToR.

and two sparse matrix-vector products per iteration, while the Richardsatiote only requires
one of each, and not surprisingly the figure demonstrates that most tifmés taken up by the
multigrid preconditioner in all cases. The number of iterations for each aftminations is plotted
in Figure 3 (right) for a range af

First of all we note the almost perfect robustness of the full preconeitioi MG ) for this
test problem where the profiles strongly deviate from the factorising, ¢agethe convergence
of preconditioned Richardson iteration and preconditioned BiCGStabsaentally not affected.
The practically observed convergence rate for the V-cycle (in the Risba iteration) is around
pa = 0.1. This confirms the theoretical results in Sections 3.2.1 and 3.2.2. BiCGStabrgen
in approximately half the number of iterations than Richardson, as expéctems of time per
iteration, the multigrid preconditioner with factorised profil@PMG®) can be up t®@5% faster
than the algorithm with non-factorising profileB®MG(™'V). However, this comes at the expense
of an increase in the number of iterations for larger valuestb&t can be seen in Figure 3 (right).
While for the Richardson iteration the increase is almost threefdld®¥IG® is used, this is much
less dramatic for BICGStab whe®@MG® only requires twice as many iterations BBEMG 1)
for the largest.

Finally, the total solution time is shown in Figure 4. As expected, the total solutiorfadinselvers
with TPMG® preconditioner grows asincreases. However, as the time per iteration is about 25%
smaller for this preconditioner, for smalthe total solution time is also reduced by a similar factor.
The most robust solver appears to be BiCGStab, which gives the stilqerformance for large
¢, even with the factorising precondition@PMG®.

5.3. Performance analysis

To analyse the gains that can be obtained with the factorising implementatiomuméed the
number of floating point operations and memory references in our cdtefdiothe factorising-
and the non-factorising implementation. The relevant numbers for caroyingne sparse matrix-
vector product (SpMV) and one cycle of the multigrid algorithm are givemahble 1. We always
assume perfect caching for the vectors, i.e. each entry is only readfivaiitte per iteration over the
grid, any memory bandwidth derived from this number is known as “ussintlwidth” and should
be interpreted as a conservative lower bound. We also assume thatactibrésing implementation
the cost of reading the matrix from memory can be neglected. As can bdreeethis table, the
number of memory references is reduced by almost a factor two in theigetpimplementation,

Copyright@© 0000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluid§0000)
Prepared usindldauth.cls DOI: 10.1002/fld



20 A. DEDNER ET AL.

16—
145
w1z
[
E 10
c | e --A--@T
o gt
E
3 e Richardson |
© .
|§ a —e BIiCGStab
--- TPMGHN
2,
— TPMG®

00 02 04 06 08 10
e = deviation from perfect factorization

Figure 4. Total time required to reduce the relative redidiyaat least five orders of magnitude for the
idealised balanced flow testcase. The multigrid precamtti is used with both the full, non-factorising
profiles (PMG )| dashed curves) and the approximate factorisafld\(G®, solid curves) in (38). In

all cases a problem with, = 128 and2.6 - 10° total degrees of freedom was solved sequentially on one
node of the HECTOR supercomputer.

Table I. Number of FLOPs and memory references per cell osgiarse matrix-vector product (SpMV) and
one multigrid V-cycle. The arithmetic intensity (numberrifOPs per memory reference) is shown in the

last row.
SpMV Multigrid
factorising non-factorising TPM& TPMG™D
# FLOPs / cell 25.00 17.00 301.33 205.33
# memory references / cell 2.00 9.00 72.00 136.00
Arithmetic intensity 12.50 1.89 4.19 151

Table 1l. Measured floating point performance and useful orgrbandwidth for the sparse matrix-vector
product (SpMV) and one multigrid V-cycle

SpMV Multigrid
factorising non-factorising TPM& TPMGMD
Performance [GFLOPs/s] 0.94 0.37 0.88 0.43
Useful memory Bandwidth [GB/s] 0.60 1.57 1.68 2.28

while the arithmetic intensity is significantly increasédi for SpMV and2.8x for the multigrid
V-cycle). Note, however, that we assume perfect caching, so in réality as suggested by our
measurements) the arithmetic intensity will be lower. On modern processorally@¢10) floating
point operations can be carried out in the time it takes to read one doulgisiprenumber from
memory. We hence believe that the factorising implementation is still not arithmetictlysine
enough to be classified as compute bound.

Using those numbers we then quantified the floating point performance s&fdl imemory
bandwidth in Table Il by dividing by the measured times in Figure 3. Not varprssingly the
floating point performance is more than doubled for the factorising implementafiee useful
bandwidth is about 1GB/s which indicates that our assumption of perfebinzpis probably too
simplistic since the theoretical peak bandwidtidisl0 GB/s).
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Figure 5. Left: Dependency of the horizontal average oedéht profiles with height (solid lines, from top to

bottom: 3, as, & anda;). The horizontal variation is also represented by gray bdatween the minimum

and maximum value on each grid level (dashed curves). Rigna-order terng = ~vp/7 on the lowest grid
level. The horizontal variation in the field is at the orden 0.

5.4. Test Case II: Aquaplanet

While the runs in the previous section were carried out under idealisedamecessarily realistic
conditions, we also tested our solver for profiles obtained from common rok&igial test cases.
We first obtained the profiles, 6 and p from an aquaplanet run of the Met Office Unified
Modek. While these fields contain significantly more variation than the idealised prdékesibed
in Section 5.2 and also describe phenomena such as convection neaouhd gnd baroclinic
instabilities, they are largely “well behaved” in the sense that most of thembeafactorised
approximately into a horizontal and a vertical variation. To quantify this &rttve plot for each
of the profiles the average, minimum and maximum over the horizontal gridamwestical level
in Figure 5 (right). For most profiles the horizontal variation is small and veeage value decays
exponentially with height; see for example Figure 5 (left), which shows tb&lg@ on the lowest
grid level. The only exception is,. which shows significant horizontal variation in the lower
atmosphere. This is mainly due to the fact that, as can be seen from the exptiissions in
(18), this profile contains the buoyancy frequency and hence ved@aralatives of the potential
temperature, which can vary significantly from column to column due to ctiovein the lower
atmosphere.

We found that for these more typical profiles the factorising precondititRé1G® causes both
solvers to diverge. An easy fix for this is to factorise all profiles exegpiVe denote the resulting
preconditioner with partial factorisation, where we keep the full noteféging profile fora,., as
TPMGP*tial) - As Table Ill demonstrates, this increases the time per iteration by justs6ier
relative to the fully factorising cas@PMG®), but it is still significantly smaller than in the non-
factorised casel(PMG (D),

The numbers of iterations and total solution times are shown in Table IV. Wehaicgain the
tensor product multigrid method converges extremely fast and robustiytkbaagh the profiles do
not factorise, needing no more than 5 to 7 V-cycles to reduce the resigBabrders of magnitude.
In this case the problem is solved fastest with the BiCGStab solver andBheG (Prtia)
preconditioner. In total we find that, as in the idealised test case with srttal (partially) factorised
multigrid preconditioner can again lead to performance gains. As outlined inttbeluction, these
gains may be more significant on novel manycore architectures, sucRlas, @here the cost of
memory references relative to one floating point operation is even larger.

*For technical reasons we used the wet density, such that théauabstate is not satisfied, but this should not have a
significant impact on our conclusions.
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Table IlI. Time per iteration and speedups relativatoMG (™) for different solvers and preconditioners.
In all cases a problem with, = 128 and2.6 - 10° total degrees of freedom was solved sequentially on one
node of HECToR using the ALUGrid implementation.

Solver TPMGED  ppMGPartial) TPMG®
titer Speedup titer Speedup titer Speedup

Richardson 1.43 — 111 1.29x 1.05 1.36x

BIiCGStab 2.88 — 226 127x 2.14 1.35%

Table IV. Performance of different solvers for an aquaplana. A problem withn, = 128 and2.6 - 10°
total degrees of freedom was solved sequentially on HECRifguhe ALUGrid implementation.

# iterations [|r||/||7o]]) total time
Solver TPMGEY  TpMGeatal  pppGEID TPy GPartial)
Richardson 54.1-107% 7 (4.8-107°) 7.94 7.28
BiCGStab 3§4.1-1077) 3(5.2-1079) 8.81 6.94

Preconditioner Courant numbermiie,  titer  trotal

~ 2 2 199 4.10
Multigrid ~4 3 201 617
~ 8 3 200 6.12
~ 2 7 128 9.07
Single level ~ 4 12 1.33 16.08
~ 8 - - —

Table V. Efficiency and performance of a single-level smeotand the multigrid-preconditioner for
different values of the Courant number; for the largest @otinumber the single-level preconditioner did
not converge. All runs were carried out on a single core otel E8400 3.0GHz processor.

5.5. Comparison to single-level method

We also compared the efficiency of our multigrid-preconditioner with a silaylel method. For
this we use the same aquaplanet setup as in the previous section, but in G&t8iCsolver we
replace the multigrid preconditioner by 4 iterations of the vertical line smootbeal{ that we also
use 4 smoothing steps in the multigrid algorithm). In both preconditioners coedigethis section
we do not factorise the profiles, i.e. we use MG ™ setup in the multigrid iteration. In Tab.
V the number of iterations, time per iteration and the total solution times are shovdifferent
values of the Courant-numberA¢/Ax. Note that for all other numerical experiments in this paper
we use a Courant-number of around 8, i.e. the largest value in the taléiicn the single-level
method does not converge. For smaller Courant numbers the multigrichglieoaer is still at least
twice as fast as the single level method.

5.6. Parallel scaling tests

In addition to studying the sequential performance of the solvers, andtioyar ensuring that they
are algorithmically efficient, it is crucial to guarantee their parallel scalabilityange computer
clusters. For this we carried out scaling tests of our solvers for the dedeftow testcase described

in Section 5.2 withe = 0.14; in contrast to the previous runs we always used 7 multigrid levels so
that on the coarsest level each processor stores one vertical cofuhataoln Figure 6 (left) the
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Figure 6. Weak scaling of the time per iteration (left) anthtesolution time (right) on the HECToR
supercomputer. The number of degrees of freedom variesIfbmillion to 11 billion.

weak scaling of the time per iteration on the HECToR supercomputer is showp fo 20,480
cores, the largest problem that was solved has just tW€r degrees of freedom. Each node of
HECToR consists of two 16 core AMD Opteron 2.3GHz Interlagos pracesgrocessors; for
the runs we always requested all cores per négteBS -1 nppnppn=32). We find that the
number of iterations does not increase with the core count, and eves irgq@me cases. The
Richardson solver requires seven iterations to reduce the residuakbgyrélers of magnitude for
both preconditioners, whereas BiCGStab require¥BMG®) and 3 (PMG ™) iterations for
the same residual reduction. Consequently the total solution time in Figurén§ gfpws the same
excellent weak scaling.

6. CONCLUSION

In this work we discussed several multigrid preconditioners for anisiatrppblems in flow
simulations in “flat” domains with high aspect ratio. The algorithms are based enetisor-
product multigrid approach proposed and analysed for two-dimenspwoblems with separable
coefficients in [38]. We extended the method and its analysis to three dimahpi@blems and
via a perturbation argument also to non-separable coefficients. We deated the excellent
performance of tensor-product multigrid for two model PDEs arising in sepiicit semi-
Lagrangian time stepping in atmospheric modelling. The numerical tests conérthebretically
predicted optimality and effectivity of the method. The practically observeslargence rates are
aroundp4 = 0.1. The tests also show that under certain conditions a preconditioner basau
approximate factorisation of the atmospheric profiles can reduce the tatabadime. We found
this to be the case both for an idealised flow scenario and for a more realjgtiplanet test case.
We also demonstrated the excellent weak parallel scaling on up to 20,489 afothe HECToR
supercomputer. Overall our work demonstrates that bespoke multigicdrmigioners are highly

efficient for solving the pressure correction equation encounteretiR Kodels.

There are several ways to further improve this work: so far all teste ha&en carried out
without any orography. It is known that steep gradients can lead toiaketiéng performance of
the non-linear iteration and we plan to study this by looking at the full non{lisele for more
realistic model problems. For simplicity we used a finite volume discretisation, b atvanced
approaches such as higher-order mixed finite elements can also be ubé&dframework. This
will require the solution of a suitable pressure correction equation in higiter FEM spaces.
The parallel performance can also be further improved by, for exaropéglapping calculations
and communications and strong scaling tests should also be carried out.,Rhimalberformance
gains from approximate factorisations of the matrix are expected to be sagntifitiigher on GPU
systems and hence on such architectures its use may be more justified aredfitierd for a wider
class of profiles.
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A. INTERGRID OPERATORS

In this appendix we describe the prolongation and restrictiperations in our multigrid algorithm. Recall
that the grids we use are polygonal and not curvilinear, ane kas to be taken when prolongating fields to
the next-finer grid level. The schemes described in thevatig work on grids with an arbitrary numbeg,

of neighbours and any numbegq of fine grid cells per coarse grid cell, in particular for tlhesahedral
grids used in this paper. We also successfully tested owe cnctubed sphere grids.

A.1. Prolongation: Linear interpolation scheme

To prolongate the fields on one multigrid level to the nextrflaeel we use the following linear interpolation.
For a given coarse grid cell on the horizontal host grid;clgéff be the coordinate of its centre am(;ﬂ),

with 7 =1,..., nnp, the coordinates of the centres of its neighbours. Furtbmmetuéc) be the field value

associated with the coarse grid cell andd?’t) be the values of the field at the centres of the neighbouring

cells. Similarly for each of the fine children cells which qanise the coarse cell, Ieigf), 7 =1,...,nchilds

be the coordinates of their centres. To calculate the qooreting valuem§f) on the fine grid we proceed
as follows:
Let IT be the two-dimensional plane defined by the (flat) coarseagdid Denote with

("”‘w((f% H ©)

T o~ || — X
(=)0,

the orthogonal projection 1) of any point = onto II, followed by scaling with the factor
2/H(m —a:((f)>LH which guarantees thatP(z)||, = Hm —a:(c)‘ K where || - [|2 is the
2

(39)

2

-

Euclidean norm. Note in particular thﬁ’t(a:éc)) =0 and thatP(z) ~ (93 — :chc)>L on the finer levels as

h — 0 and the curvature decreases. For each fine grid;jcddit mﬁﬁ), :cflz), ay,az € {1,...,nnp} be the
centres;cff) of the coarse grid neighbour cells for whiHIP(acg.f)) - P(acgf))H2 is minimal, see Figure 7.
The fine grid valum§f) is then chosen such that the po@ﬁt(mgf)), u§f)) € II x R lies in the plane defined

by the three vector(sP(méC)),uéc)), (P(2$), ul?) and (P (), u). In other words, for each fine grid
cell we identify the two coarse grid neighbour cells whichk alosest to this cell; we then obtain the fine
grid value as a linear interpolation of the data on those warse grid neighbour cells and the parent cell.

A.2. Restriction: Cell integral
To restrict the fields we use a simple cell summation
Tchild

S ull) (40)

(e) _

)
=1

For vanishing curvature this operation conserves the mgral for linear functions.
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coarse grid cell

P(x9)=0

Figure 7. ProjectionP(x) (left) and linear interpolation (right). Centres of the mgrid cell and its
neighbours are marked by solid red circles; centres of tleediiid cells are shown as empty blue squares.
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