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SUMMARY

Many problems in fluid modelling require the efficient solution of highly anisotropic elliptic partial
differential equations (PDEs) in “flat” domains. For example, in numerical weather- and climate-prediction
an elliptic PDE for the pressure correction has to be solved at every time step in a thin spherical shell
representing the global atmosphere. This elliptic solve can be one of the computationally most demanding
components in semi-implicit semi-Lagrangian time stepping methods which are very popular as they allow
for larger model time steps and better overall performance.With increasing model resolution, algorithmically
efficient and scalable algorithms are essential to run the code under tight operational time constraints. We
discuss the theory and practical application of bespoke geometric multigrid preconditioners for equations of
this type. The algorithms deal with the strong anisotropy inthe vertical direction by using the tensor-product
approach originally analysed by Börm and Hiptmair [Numer. Algorithms, 26/3 (2001), pp. 219-234]. We
extend the analysis to three dimensions under slightly weakened assumptions, and numerically demonstrate
its efficiency for the solution of the elliptic PDE for the global pressure correction in atmospheric forecast
models. For this we compare the performance of different multigrid preconditioners on a tensor-product grid
with a semi-structured and quasi-uniform horizontal mesh and a one dimensional vertical grid. The code is
implemented in the Distributed and Unified Numerics Environment (DUNE), which provides an easy-to-use
and scalable environment for algorithms operating on tensor-product grids. Parallel scalability of our solvers
on up to 20,480 cores is demonstrated on the HECToR supercomputer. Copyright c© 0000 John Wiley &
Sons, Ltd.

Received . . .
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1. INTRODUCTION

Highly efficient solvers for elliptic partial differential equations (PDEs) are required in many areas
of fluid modelling, such as numerical weather- and climate- prediction (NWP),subsurface flow
simulations [1] and global ocean models [2, 3]. Often these equations needto be solved in “flat”
domains with high aspect ratio, representing a subsurface aquifer or theEarth’s atmosphere. In both
cases the horizontal extent of the area of interest is much larger than the vertical size. For example,
the Euler equations, which describe the large scale atmospheric flow, needto be integrated efficiently
in the dynamical core of NWP codes like the Met Office Unified Model [4,5]. Many forecast centres
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2 A. DEDNER ET AL.

such as the Met Office and European Centre for Medium-Range WeatherForecasts (ECMWF) use
semi-implicit semi-Lagrangian (SISL) time stepping [6,7] to advance the atmospheric fields forward
in time because it allows for larger model time steps and thus better computational efficiency.
However, this method requires the solution of an anisotropic elliptic PDE for thepressure correction
in a thin spherical shell at every time step. In this paper we solve a discrete form of this PDE based
on a first order accurate cell-centred finite volume scheme. As the elliptic solve can account for a
significant fraction of the total model runtime, it is important to use algorithmically efficient and
parallel scalable algorithms.

Suitably preconditioned Krylov-subspace and multigrid methods (see e.g. [8,9]) have been shown
to be highly efficient for the solution of elliptic PDEs encountered in numericalweather- and
climate prediction (see [4, 10–21] and the comprehensive review in [22]). Multigrid methods are
algorithmically optimal, i.e. the number of iterations required to solve a PDE to the accuracy of the
discretisation error is independent of the grid resolution. However - as far as we are aware - multigrid
algorithms are currently not widely implemented operationally in atmospheric modelsand one of
the aims of this paper is to demonstrate that they can be used very successfully in fluid simulations
at high aspect ratio. Whereas “black-box” algebraic multigrid (AMG) [23, 24] solvers such as the
ones implemented in the DUNE-ISTL [25] and Hypre [26, 27] libraries can be applied under very
general circumstances on unstructured grids and automatically adapt to potential anisotropies, they
suffer from additional setup costs and lead to larger matrix stencils on the coarse levels. On (semi-)
structured grids which are typical in many atmospheric and oceanographicapplications, geometric
multigrid algorithms usually give much better performance, as they can be adapted to the structure
of the problem by the developer. In contrast to AMG algorithms which explicitlystore the matrix on
each level, it is possible to use a matrix-free approach: instead of readingthe matrix from memory, it
is reconstructed on-the-fly from a small number of “profiles”. This leadsto a more regular memory
access pattern and significantly reduces the storage costs, in particular ifthese profiles can be
factorised into a horizontal and vertical component. As the code is memory bandwidth limited this
also has a direct impact on the performance of the solver. Robust geometric multigrid methods, such
as the one in Hypre [28, 29], adapt the smoother or coarse grid transfer operators to deal with very
general anisotropies in the problem (see also [30–35]). However, thisrobustness comes at a price
and these methods are often computationally expensive and difficult to parallelise.

In the problems we consider, the tensor-product structure of the underlying mesh and the grid-
aligned anisotropy make it possible to use the much simpler but highly efficient tensor-product
multigrid approach described for example in [36, 37]: line-relaxation in the strongly coupled
direction is combined with semi-coarsening in the other directions only. The implementation is
straightforward: in addition to an obvious modification of the intergrid operators, every smoother
application requires the solution of a tridiagonal system of sizenr in each vertical column with
nr grid cells. The tridiagonal solve requiresO(nr) operations and hence the total cost per iteration
is still proportional to the total number of unknowns. The method is also inherently parallel as in
atmospheric applications domain decomposition is typically in the horizontal direction only.

In [38] this method was analysed theoretically for equations with a strong vertical anisotropy on
a two dimensional tensor-product grid. The authors show that optimal convergence of the tensor-
product multigrid algorithm in two dimensions follows from the optimal convergence of the standard
multigrid algorithm for a set of one-dimensional elliptic problems in the horizontaldirection. While
the original work in [38] applies in two dimensions, it has been extended to three dimensions
in [39] and the algorithm has recently been applied successfully to three dimensional problems
in atmospheric modelling in [20, 21]. Although the proof in [38] relies on the coefficients in the
PDE to factorise exactly into horizontal-only and vertical-only contributions,we stress that this
property is not required anywhere in the implementation of the multigrid algorithm. In practice
we expect the algorithm to work well also for approximately factorising coefficients and under
suitable assumptions we are able to also prove this rigorously. To demonstratethis numerically,
we carry out experiments for the elliptic PDE arising from semi-implicit semi-Lagrangian time
stepping in the dynamical core of atmospheric models such as the Met Office Unified Model
[4, 5], where the coefficients only factorise approximately but the multigrid convergence is largely
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MULTIGRID PRECONDITIONERS FOR ATMOSPHERIC FLOW AT HIGH ASPECT RATIO 3

unaffected. Alternatively, we also investigate approximate factorisations of the atmospheric profiles
and then apply the tensor product multigrid algorithm to the resulting, perturbed pressure equation
to precondition iterative methods for the original system, such as a simple Richardson iteration or
BiCGStab [40]. As the operator is usually “well behaved” in this direction (i.e. it is smooth and
does not have large variations on small length scales), the multigrid algorithm will converge in a
very small number of iterations.

An additional advantage of applying the multigrid method only to the perturbed problem with
factorised profiles is the significant reduction in storage requirements forthe matrix. As the
algorithm is memory bound and the cost of a matrix application or a tridiagonal solve depends
on the efficiency with which the matrix can be read from memory this leads to performance gains
in the preconditioner: we find that the time per iteration can be reduced by around20%, but this has
to be balanced with a possibly worse convergence rate. Nevertheless, our numerical experiments
show, that in some cases the factorised preconditioner can be faster overall. On novel manycore
computer architectures, such as GPUs, where around 30-40 floating point operations can be carried
out per global memory access, we expect the performance gains from this matrix-free tensor-product
implementation to be even more dramatic. If the matrix is stored in tensor product format and the
local stencil is calculated on-the-fly, the costs for the matrix construction can essentially be neglected
compared to the cost of reading fields from memory.

For example, consider the sparse matrix-vector productv = Au and assume that only thennz
non-zero entries of then× n matrixA are stored. In particular for a finite volume discretisation on
a three dimensional grid there will be on averagens = nnz/n = 7 nonzero entries per matrix row.
If we assume perfect caching of the input vectoru, then a matrix-explicit implementation requires
n reads to load the vectoru, n writes to store the resulting vectorv andnnz reads to load the
non-zero matrix entries, and hence2n+ nnz memory transactions in total. This is reduced to2n
for a matrix-free implementation whereA does not have to be read from memory, resulting in a
speedup of2n+nnz

2n = 1 + ns

2 , which is 4.5 for the finite-volume discretisation. If we assume the
other extreme, i.e. no caching of the input vectoru, then loading this vector requiresnnz memory
reads instead ofn. In this case the gain from the matrix-free implementation isn+2nnz

n+nnz
= 1+2ns

1+ns
,

i.e. 1.875 in the finite volume case. The benefits of this matrix-free implementation on GPUs have
recently been shown in a similar context in [41,42].

In state-of-the-art global weather prediction models the horizontal resolution is of the order of tens
of kilometres with the aim of reducing this to around one kilometre in the next decade (the number
of vertical grid cells is typically around100). The resulting problems with109 − 1011 degrees of
freedom can only be solved on operational timescales if their scalability can be guaranteed on
massively parallel computers. In addition to the sequential algorithmic performance we demonstrate
the parallel scalability of our solvers on HECToR, the UK’s national supercomputer which is hosted
and managed by the Edinburgh Parallel Computing Centre (EPCC). We find that our solvers show
very good weak scaling on up to 20,480 AMD Opteron cores and can solvea linear system with 11
billion unknowns in less than 5 seconds (reducing the residual by five orders of magnitude).

The work presented here builds on our earlier papers, in particular [22], where we investigated the
performance and parallel scalability of different solvers for a characteristic elliptic model problem
which reproduces the main characteristics of the atmospheric pressure correction equation in a
simplified geometry (one panel of a cubed sphere grid). We modelled the strong vertical anisotropy
and correct dependence of the coefficients on the resolution and timestep-size. We compared
different solvers, including AMG solvers from the DUNE- and hypre- libraries to matrix free single-
level and geometric multigrid algorithms based on [38]. We found that multigrid methods are faster
than Krylov subspace iterations with single level preconditioners, such asvertical line relaxation.
Since it avoids explicit storage of the matrix, the matrix-free implementation of the tensor-product
geometric multigrid algorithm turned out to be significantly faster than the AMG codes and showed
very good weak- and strong scalability on up to 65,536 CPU cores. In [42] this was extended
to a multi-GPU implementation of the tensor-product multigrid solver and the performance and
scalability was demonstrated by solving equations with0.5× 1012 unknowns on up to 16,384 GPUs
of the TITAN supercomputer. We quantified the absolute performance of the algorithm and find
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4 A. DEDNER ET AL.

that we can achieve a “useful bandwidth” of25%− 50% of the peak (guaranteed-not-to-exceed)
value. The measured floating point performance was just below one PetaFLOP. In a socket-to-socket
comparison, the K40 Kepler GPUs on Titan were about4× faster than the AMD Opteron CPUs on
HECToR.

Here we extend the work in [22, 42] by studying the full pressure correction equation with
representative background profiles which arise from the linearisation of the Navier-Stokes equations
around a reference state. The same equation is used in the Met Office ENDGame Dynamical
core [5]. The problem is discretised in a thin spherical shell describing the global atmosphere; this
is realised by an extruded icosahedral mesh.

Due to the increased complexity of the problem we based our code on an advanced
C++ framework for grid-based calculations. To achieve good performance while keeping the
implementation modular and maintainable, the algorithms used in this paper are implemented in
the Distributed and Unified Numerics Environment (DUNE) [43, 44]. DUNE isan object oriented
C++ framework and provides easy to use interfaces to common parallel gridimplementations such
as ALUGrid [45–47] and UG [48]. Due to the modular structure of the library and because we can
rely on the underlying parallel grid implementations, the implementation of our solvers on tensor-
product grids is straightforward. Throughout the code performanceis guaranteed by using generic
metaprogramming based on C++ templates. Most importantly this approach avoids overheads from
the very frequent calls to short methods. They can be inlined at compile time since all necessary
information is provided via templates, while at the same time allowing the user to write highly
modular code. The efficiency of this approach was demonstrated in [44],where the overhead of the
object oriented DUNE interface layer was quantified, and the efficiency of the DUNE library is also
confirmed by our performance results in section 5.3 below.

Structure This paper is organised as follows. In Section 2 we describe the pressure correction
equation arising in semi-implicit semi-Lagrangian time stepping in atmospheric models and discuss
the discretisation of the resulting linear PDE with particular emphasis on the tensor-product structure
of the grid. The theory of the tensor-product multigrid algorithm is reviewedin Section 3 where
we extend the analysis in [38] to three dimensions following [39]. In this section we also prove
the convergence of the preconditioned Richardson iteration for non-factorising profiles. The grid
structure and the discretisation of the equation as well as the implementation of our algorithms
in the DUNE framework are described in Section 4. Numerical results for different test cases are
presented together with parallel scaling tests in Section 5. We conclude and present ideas for future
work in Section 6. Some more technical aspects can be found in the appendix. In particular, the
intergrid operators of the multigrid algorithm are described in detail in Appendix A.

2. ELLIPTIC PDE FOR PRESSURE CORRECTION IN ATMOSPHERIC MODELS

The elliptic PDE which arises in semi-Lagrangian semi-implicit time stepping in atmospheric
forecast models is derived for example in [5] for the ENDGame dynamical core of the Unified
Model. The work in this paper is based on a cell-centred finite volume discretisation. We assume
that the diffusion coefficient is known everywhere in space and can beevaluated at the cell faces.
In the following, we outline the main steps in the construction of the corresponding linear algebraic
problem.

The Euler equations describe large scale atmospheric flow as a set of coupled non-linear
differential equations for the velocityv, (Exner-) pressureπ, potential temperatureθ and density

Copyright c© 0000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids(0000)
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MULTIGRID PRECONDITIONERS FOR ATMOSPHERIC FLOW AT HIGH ASPECT RATIO 5

ρ.
Dv

Dt
= −cpθ∇π +Rv (Momentum equation)

Dθ

Dt
= Rθ (Thermodynamic equation)

Dρ

Dt
= −ρ∇ · v (Mass conservation)

ρθ = Γπγ (Equation of state)

(1)

The R-terms describe external- and sub-gridscale- forcings such as gravityand unresolved
convection. The constantsΓ andγ are defined as

Γ ≡ p0/Rd, γ ≡ 1− κ
κ

, κ ≡ Rd/cp, (2)

wherep0 is a reference pressure;cp andRd are the specific heat capacity and specific gas constant
of dry air. System (1) can be written schematically for the state vectorΦ = {v, π, θ, ρ} as

DΦ

Dt
(x, t) = N [Φ(x, t)]. (3)

Advection is described in the semi-Lagrangian [7] framework, i.e. material timederivativesDΦ/Dt
are replaced by

DΦ

Dt
(x, t) 7→ Φ(t+∆t)(x)− Φ(t)(xD)

∆t
(4)

wherexD is the departure point of a parcel of air at timet which is advected to positionx at time
t+∆t. The right-hand-side of (3) is treated semi-implicitly [6]. Because of the smallvertical grid
spacing and the resulting large Courant number of vertical sound waves, vertical advection needs to
be treated fully implicitly, but some of the other terms are evaluated at the previous time step and
thus treated explicitly; we writeN = N (impl.) +N (expl.). We use theθ-method with off-centering
parameterµ for implicit time stepping and replace

N [Φ(x, t)] = N (impl.)[Φ(x, t)] +N (expl.)[Φ(x, t)]

7→ µN (impl.)[Φ(t+∆t)(x)] + (1− µ)N (impl.)[Φ(t)(x)] +N (expl.)[Φ(t)(x)]
(5)

and in the following we always assume thatµ = 1
2 which corresponds to the scheme described

in [49]. By eliminating the potential temperature, density and all velocities from the resulting
equation, one (non-linear) equation for the pressureπ(t+∆t) at the next time step can be obtained†.
To solve this equation via (inexact) Newton iteration, all fields are linearised around a suitable
reference state (which can for example be the atmospheric fields at the previous time step) denoted
by subscript “ref”. To this end the pressure at the next time step is written asπ(t+∆t)(x) ≡ π(x) =
πref(x) + π′(x) with analogous expressions forθ(t+∆t) andρ(t+∆t); the reference velocitiesvref

are assumed to be zero. It should, however, be kept in mind that the linearisation does not need to
be “exact” as the non-linear equation can be solved with an inexact Newtoniteration. In particular,
some terms can be moved to the right hand side which is equivalent to treating them explicitly
or lagging them in the non-linear iteration. Naturally, there will be a tradeoff between faster
convergence of the Newton iteration and the cost of the inversion of the linear operator; for example,
in [5] all couplings to non-direct neighbours, which can be large in the case of steep orography, are
moved to the RHS to reduce the size of the stencil of the linear operator. While these considerations
are relevant for the optimisation of the non-linear solve in a particular model, inthis article we focus
on the solution of the linear equation, which is the computationally most expensive component of
the Newton iteration.

†Mathematically this is equivalent to forming the pressure Schurcomplement of the equation.

Copyright c© 0000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids(0000)
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6 A. DEDNER ET AL.

Once the Exner pressureπ(t+∆t) has been calculated, the evaluation of the remaining atmospheric
fields at the next time step is straightforward and does not require any additional (non-)linear solves.
In contrast to explicit time stepping methods the Courant number can be chosen significantly larger
than 1, which makes semi-implicit semi-Lagrangian time stepping very popular in operational
models. However, because of the short advective time scale and to ensure that large scale flow
is described correctly, the Courant number is usually limited to around 10, i.e.the implicit time
step size is no more than one order of magnitude larger than what would be allowed in an explicit
method. To evaluate the overall performance of the method, the benefits of alarger time step would
have to be balanced against the additional cost for the elliptic solve.

2.1. Linear equation

For ease of notation we simply writeπ ≡ π(t+∆t) in the following and drop the time indices. Then
the non linear equation forπ is of the form

N (π) = R. (6)

To solve this equation iteratively we expand all fields around a referencestate (which can, for
example, be given by the fields at the previous time step) to obtain a linear operatorL. As discussed
above, in practise some terms might be lagged in the non-linear iteration, i.e. moved to the right
hand side of the linear equation. At each stepk of the nonlinear iteration we writeπk = πref + π′

k

for the approximate solution to (6) and update the pressure as follows:

Solve Lπ′
k = R̃k−1 := (R−Lπref)− δN (πk−1) for π′

k with δN ≡ N − L,
Update πk = πref + π′

k.

Every iteration requires the solution of a linear equationLπ′
k = R̃k−1 for the pressure correction

π′
k, which we denote asπ′ in the following. To construct the linear operatorL we proceed as

follows: starting from (1) the semi-Lagrangian framework in (4) is used for horizontal advection and
vertical advection is treated implicitly (to ensure that mass is exactly conserved, advection is treated
implicitly in all three spatial dimensions in the mass equation). The right hand sidesare expanded
according to (5). We linearise around reference profilesθref , πref andρref which fulfil the equation of
stateρrefθref = (πref)

γ , i.e. writeθ = θref + θ′ etc. and assume that the velocity expansion is around
zerovref = 0. If we split up the velocity into a tangential- and vertical- componentv = (vS , w) the
time-discretised Euler equations in (1) finally become in a spherical geometry

vS = R′
uS
− µ∆tcp

1

r
(θref∇Sπ

′ + (∇Sπref)θ
′) , (7)

w = R′
w − µ∆tcp (θref∂rπ′ + (∂rπref)θ

′) , (8)

θ′ = R′
θ − µ∆t(∂rθref)w, (9)

ρ′ = R′
ρ − µ∆t

(

1

r2
∂r
(

r2ρrefw
)

+
1

r
(∇S · (ρrefvS))

)

, (10)

π′ =
πref
γ

(

ρ′

ρref
+

θ′

θref

)

, (11)

where∂r = 〈n̂,∇〉 is the normal component of the derivative and∇S = r (∇− 〈n̂,∇〉) is the
component tangential to a unit sphereS with outer normal̂n. Any terms that depend on the current
time step are absorbed in theR′-terms. We then rewrite (11) as a function ofρ′ and insert it together
with (7) into (10) to obtain an equation withw, ρ′ andπ′ only

− θ′

θref
+ γ

π′

πref
= R′′

ρ − µ∆t
∂r(r

2ρrefw)

r2ρref

+ (µ∆t)2cp
∇S · (ρrefθref(∇Sπ

′)) +∇S · (ρref(∇Sπref)θ
′)

r2ρref
.

(12)

Copyright c© 0000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids(0000)
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MULTIGRID PRECONDITIONERS FOR ATMOSPHERIC FLOW AT HIGH ASPECT RATIO 7

By solving (8) and (9) forw andθ′ we obtain

w = Λref (f2 − µ∆tcpθref(∂rπ′)) , θ′ = Λref

(

f3 + (µ∆t)2cpθref(∂rθref)(∂rπ
′)
)

(13)

whereΛref =
(

1 + (µ∆t)2 (Nref)
2
)−1

arises from the implicit treatment of vertical advection and

the (squared) vertical buoyancy (or Brunt-Väis̈alä-) frequency is given by

(Nref)
2
= −cp(∂rπref)(∂rθref) = g

∂rθref
θref

. (14)

The functionsf2 and f3 only depend on the fields at the current time step. We rescale the
vertical coordinater by the radius of the earthRearth and the potential temperature by a reference
temperatureT0 at ground level to make it dimensionless. Finally, we multiply equation (12) byρref
and denote the typical horizontal velocity by

ch ≡
√
γcs where cs =

√

cpT0/γ

is the speed of sound in a parcel of air with temperatureT0. Furthermore we introduce the
dimensionless quantity

ω =
chµ∆t

Rearth
. (15)

After eliminatingw andθ from (12) with the help of (13) we obtain a second order equation for the
pressure correctionπ′:

− ω2

{

Λrefρref(∂rθref)(∂rπ
′) +

1

r2
[

∂r
(

r2Λrefρrefθref(∂rπ
′)
)

+∇S · (ρrefθref(∇Sπ
′))
]

}

− ω4 1

r2
∇S · (Λrefρref(∇Sπref)(∂rθref)(∂rπ

′)) + γ
ρref
πref

π′ = RHS

(16)

TheO(ω4) term arises due to the last term in (7). In [5] this term is not included in the linear
operator since all terms which stem from reference profiles that do not depend exclusively on the
vertical coordinate are neglected. To be consistent with this approach, theO(ω4) term is assumed
to be moved to the right hand side of the linear equation in the following. The first two terms in the
curly brackets are the sum of a vertical advection and a vertical diffusion term.

In contrast, in [5], the linear pressure correction equation is derived from the discretised Euler
equations. However, it can be shown that (16) is identical to the continuumlimit of equation (67)
in [5] if the latter is written down explicitly in spherical coordinates. Denoting theunknown pressure
correctionπ′ by u, as is common in the mathematical literature, the elliptic operator can be written
as

Lu = −ω2
∇ · (α∇u)− ω2ξ ·∇u+ βu

= −ω2
(

∂r,
1
r
∇S

)T

(

αr 0

0 αS Id2×2

)(

∂r
1
r
∇S

)

u− ω2
(

ξr, 0
)T

(

∂r
1
r
∇S

)

u+ βu
(17)

where Id2×2 is the 2× 2 identity matrix. The equation is solved in a thin spherical shell,Ω =
S × [1, 1 +H] andH = D/Rearth ≪ 1 is the ratio of the thickness of the atmosphere and the
radius of the earth. The solutionu = u(r, r̂) depends on the coordinatesr ∈ [1, 1 +H] andr̂ ∈ S.
In contrast to global latitude-longitude grids, on quasi-uniform grids the ratio between the smallest
and largest grid spacing is bounded. To ensure that the horizontal acoustic Courant number≈ ω/h
(whereh is the smallest grid spacing) remains unchanged as the horizontal resolutionis increased,
the time step size∆t has to decrease linearly withh. A simple scaling argument shows that the
vertical advection term is much smaller than the diffusion term at high resolution.

The functionsαr(r, r̂), αS(r, r̂), ξr(r, r̂) andβ(r, r̂) are referred to as “profiles” in the following
and can be obtained from the background fieldsπref , θref andρref by comparing the elliptic operators
in (16) and (17):

αr = r2Λrefρrefθref
(

= r2ΛrefαS

)

, αS = ρrefθref , ξr = Λrefρref(∂rθref), β = γ
ρref
πref

. (18)

Copyright c© 0000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids(0000)
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8 A. DEDNER ET AL.

2.2. Iterative solvers

After discretisation, the Helmholtz equation in (17) can be written as a large algebraic system of the
form

Au = f . (19)

where the finite-dimensional field vectoru represents the pressure correction in the entire
atmosphere. If we assume that the horizontal resolution is around 1 kilometreandO(100) vertical
grid levels are used, each atmospheric variable hasO(1010) degrees of freedom. Problems of this
size can only be solved with highly efficient iterative solvers and on massively parallel computers.
Current forecast models, such as the Met Office Unified Model, use suitable preconditioned Krylov
subspace methods (see e.g. [8] for an overview) such as BiCGStab [40, 50]. Due to the flatness
of the domain the equation is highly anisotropic: typical grid spacings in the horizontal direction
are at the order of tens of kilometres, whereas the distance between vertical levels can be as small
as a few metres close to the ground. While this anisotropy is partially compensated by the ratio
αS/αr = r−2Λ−1

ref in (18), it remains large in particular for small time steps∆t for whichΛref → 1
(recall that we chose units such thatr ≈ 1).

As discussed in the literature [4,16,17,19], a highly efficient preconditioner for Krylov methods
in this case is vertical line relaxation. This amounts to a block Jacobi or block SOR iteration where
the degrees of freedom in one vertical column are relaxed simultaneously by solving a tridiagonal
equation. However, (geometric) multigrid algorithms have also been considered by the atmospheric
modelling community [10–15, 18, 20, 21, 51] and recently some of the authorshave demonstrated
their superior behaviour for a simplified model equation [22,42].

For the problems considered here we find that while the multigrid-algorithm is robust as the
Courant number increases, this is not the case for a Krylov-subspacemethod with a single-level
preconditioner, which even breaks down for large Courant numbers.More detailed numerical results
of this comparison are given in Section 5.5.

3. TENSOR-PRODUCT MULTIGRID FOR ANISOTROPIC PROBLEMS

Efficient algorithms for the solution of anisotropic equations have been studied extensively in the
multigrid literature. For general anisotropies in convection dominated problems, robust schemes
have been designed by adapting the smoother (see e.g. [30, 31]) or the coarsening strategy and
the restriction/prolongation operators (see e.g. [29, 35]). For example,in [32–34] alternating
approximate plane- and line- smoothers are discussed. Alternatively, if algebraic multigrid (AMG)
[23, 24] is used, the coarse grids and smoothers will automatically adapt to any anisotropies and
the method can even be applied on unstructured grids. However, AMG hasadditional setup costs
for the coarse grids and explicitly stores the coarse grid matrices. This hasa significant impact
on the performance in bandwidth-dominated applications. While these “black-box” approaches
work well for very general problems and do not require anisotropies tobe grid-aligned, they can
be computationally expensive and are more challenging to parallelise. Nevertheless, impressive
results have recently been achieved with the AMG solvers both in the DUNE [52, 53] and Hypre
libraries [54], which have been shown to scale to 100,000s of CPU cores. The problem is simplified
significantly in the case of grid-aligned anisotropies, which are typical in atmospheric- and ocean-
modelling applications. It has long been known that if the problem is anisotropic in one direction
only, this can be dealt with effectively by either adapting the smoother or coarsening strategy (see
e.g. [55–57] and also the discussion for simple anisotropic model problems in[9]).

Both methods can be combined as for example discussed in [36–38] where the solution of two
dimensional anisotropic problems with grid-aligned anisotropies is studied. Byusing line-relaxation
in the r-direction together with semi-coarsening in thex-direction only, the multigrid solver is
robust with respect to anisotropies in both thex- andr-direction as long as they are grid-aligned.
In the following we will refer to multigrid algorithms which combine horizontal semi-coarsening
with vertical line relaxation in the strongly coupled direction astensor product multigrid(TPMG)
methods (both in 2D and in 3D).
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In [38] the convergence of such a tensor-product multigrid solver forelliptic equations of the form

Lu = − div (α gradu) = −
(

∂r ∂x
)

(

αr(r, x) 0
0 αx(r, x)

)(

∂r
∂x

)

u(r, x) = f(r, x)

in a two dimensional domainΩ = [0, 1]× [0, 1] is analysed under the assumption that the
coefficients in the diagonal2× 2 matrix can be factorised, i.e.

αr(r, x) = αr
r(r)α

x
r (x), αx(r, x) = αr

x(r)α
x
x(x). (20)

The authors show that the tensor product multigrid algorithm applied to this problem converges
uniformly provided the standard multigrid algorithm with point relaxation and uniform coarsening
converges uniformly for one dimensional (horizontal) operators of the form

Lx(λj)u
x(x) = −∂x (αx

r (x)∂xu
x(x)) + λj α

x
x(x)u

x(x)

where the positive valuesλj are the eigenvalues of the vertical Galerkin matrices. In particular, they
analyse the strongly anisotropic case ofαr ≫ αx, which arises for example in the case of a polar
grid on a disk with a (small) hole at the origin.

3.1. Tensor-product multigrid preconditioners

Based on these observations, we propose two approaches for solvingthe pressure correction
equation in (17). In both cases we use an iterative method such as a Richardson iteration or
BiCGStab and precondition it with the tensor-product multigrid algorithm.

Tensor-product multigrid with full, non-factorising profiles ( TPMG(full)) Often the profiles
encountered in atmospheric flow simulations only factorise approximately. Although the theory
in [38] applies only if the coefficient functionsαr(r, x) andαx(r, x) can be written as the product
of a vertical and a horizontal function as in (20), this assumption is not used anywhere in the
implementation. Our numerical experiments demonstrate that good convergence can be achieved
even in the non-factorising case where we use the full operator in the multigrid preconditioner.

Tensor-product multigrid with approximately factorised profiles (TPMG⊗) Given a set of
profiles, we explicitly construct an approximate factorisation and use the resulting operator in the
multigrid preconditioner; we apply a matrix-free approach, where the localstencil is reconstructed
on-the-fly from the profiles. Depending on the quality of the factorisation,this may lead to a
slight increase in the number of iterations of the underlying iterative solver.However, in terms
of computational cost this increase is usually offset by a reduction in the amount of data that needs
to be transferred from main memory. As the algorithm is memory bound, this will translate directly
into performance gains. If the profiles factorise, for each horizontal cell and edge,O(1) entries
which describe the horizontal coupling need to be stored. In the vertical direction four vectors of
lengthnr are requiredfor the entire grid. Hence, in this case the matrix can be reconstructed from
O(nr) +O(nS) values wherenS is the number of horizontal grid cells. This should be compared
to O(nr × nS) data transfers for constructing the matrix in theTPMG(full) approach. We also
prove formally in the following section that the Richardson iteration withTPMG⊗ preconditioner
converges if the non-factorising part of the operator is small.

3.2. Convergence of Tensor-product multigrid

The convergence theory for conforming finite element discretisations andfor factorising profiles
in a spherical shell is a straightforward generalisation of the two dimensional case in [38] and is
written down in detail in [39] based on the multigrid convergence theory in [58]. In the following
we outline the proof for the pressure correction in (17). This is done in twosteps: we first argue that
if the profiles factorise and the advection term is dropped, the resulting symmetric positive definite
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10 A. DEDNER ET AL.

equation can be solved efficiently with a tensor-product multigrid iteration. Wethen show that if this
factorising operator is used as a preconditioner for a Richardson iteration, the method converges also
for the non-factorising equation provided the non-factorising contribution is sufficiently small.

For the numerical experiments presented in this paper we use a cell-centredfinite volume
discretisation, which is typical in many atmospheric modelling codes, but differs from the
conforming finite element discretisation which is assumed in the proof. However, as already
remarked in [38], in many cases finite difference and finite volume schemes agree with finite element
schemes if a specific quadrature formula is used. In particular, in [39] it isshown that the finite-
volume scheme on a orthogonal cubic grid is equivalent to a trilinear finite element discretisation
on a shifted grid, if a suitable quadrature rule is used. For this reason we believe that the theoretical
analysis below also gives a good justification as to why the method works well here.

3.2.1. Factorising caseConsider the following PDE in the spherical shellΩ = S × [1, 1 +H]:

L⊗u = −ω2
∇ · [α(r, r̂)∇u(r, r̂)] + β(r, r̂)u(r, r̂) = f(r, r̂) (21)

with r ∈ [1, 1 +H], r̂ ∈ S. This should be compared to (17); for simplicity we do not consider
the vertical advection term in this section, as it may in general destroy the positive definiteness
of the problem. However, for high horizontal resolution this term is small andcan be treated as a
perturbation. We further assume that the3× 3 matrixα and the functionβ have the following form
that factorises into the product of a horizontal and a vertical function:

α =

(

αr(r, r̂) 0

0 αS(r, r̂)

)

=

(

αr
r(r)α

S
r (r̂) 0

0 αr
S(r)α

S
S(r̂)

)

, β(r, r̂) = βr(r)βS(r̂).

We also require thatβS(r̂) = αS
r (r̂), which is satisfied for all factorisations that we use in our

numerical experiments. The2× 2 matrix αS
S is required to be symmetric positive definite and we

assumeαr
S , α

r
r, α

S
r , β

r > 0.
To discretise the problem, we choose finite element spacesV S overS andV r over [1, 1 +H]

and tensorise them to obtain the product spaceV ≡ V r ⊗ V S overΩ. We writenr ≡ dimV r and
nS ≡ dimV S . For any two functionsu(r, r̂) = ur(r)uS(r̂), v(r, r̂) = vr(r)vS(r̂) in V the bilinear
form a : V × V → R associated with the operatorL⊗ in (21) can be expressed in terms of the
bilinear forms

ar(ur, vr) ≡
∫ 1+H

1

αr
r(r)∂ru

r(r)∂rv
r(r) dr,

br(ur, vr) ≡
∫ 1+H

1

βr(r)ur(r)vr(r) dr,

mr(ur, vr) ≡
∫ 1+H

1

αr
S(r)u

r(r)vr(r) dr,

aS(uS , vS) ≡
∫

S

〈

αS
S(r̂)∇Su

S(r̂),∇Sv
S(r̂)

〉

dr̂ and

mS(uS , vS) ≡
∫

S

αS
r (r̂)u

S(r̂)vS(r̂) dr̂

(22)

as
a(u, v) =

(

ω2ar(ur, vr) + br(ur, vr)
)

mS(uS , vS) + ω2mr(ur, vr)aS(uS , vS).

Using the Kronecker product, the Galerkin-matrix representationA⊗ of the bilinear forma(·, ·) can
then be expressed in terms of the Galerkin matrices of the bilinear forms in (22), i.e.

A⊗ =
(

ω2Ar +Br
)

⊗MS + ω2Mr ⊗AS .

HereAr,Mr, Br ∈ R
nr×nr correspond toar(·, ·),mr(·, ·) andbr(·, ·) respectively and describe the

vertical derivative- and mass- matrices. Analogously the derivative and mass matrix in the horizontal
direction are described byAS ,MS ∈ R

nS×nS , which correspond toaS(·, ·) andmS(·, ·).
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To use the tensor-product multigrid approach, we further assume that there is a nested sequence

V S
0 ⊂ V S

1 ⊂ · · · ⊂ V S
L ≡ V S (23)

of finite element spaces overS, where the subscriptℓ denotes the multigrid level; for the icosahedral
and cubed sphere grid this hierarchy naturally exists. We then useVℓ ≡ V r ⊗ V S

ℓ to discretise
the full three dimensional problem on the multigrid levelℓ, i.e. we do not coarsen in the vertical
direction. The line smoother then corresponds to collectively relaxing all degrees of freedom in
each of thenr-dimensional subspacesspan {{ψℓ,k} ⊗ V r} whereψℓ,k are the nodal basis functions
on levelℓ.

The two-dimensional prolongationPS
ℓ : V S

ℓ → V S
ℓ+1 and restrictionRS

ℓ ≡
(

PS
ℓ

)T
: V S

ℓ+1 → V S
ℓ

naturally induce intergrid transfer operators between the three dimensional spacesVℓ andVℓ+1 by
Pℓ ≡ Id⊗PS

ℓ ,Rℓ ≡ Id⊗RS
ℓ . On each multigrid level the matrixA⊗

ℓ can be constructed recursively
using the Galerkin productA⊗

ℓ ≡ RℓA
⊗
ℓ+1Pℓ and it is easy to see thatA⊗

ℓ and the (block-)smoother
W⊗

ℓ can be written as

A⊗
ℓ =

(

ω2Ar +Br
)

⊗MS
ℓ + ω2Mr ⊗AS

ℓ ,

W⊗
ℓ =

(

ω2Ar +Br
)

⊗WM,S
ℓ + ω2Mr ⊗WA,S

ℓ .

In the case of weighted block-Jacobi relaxation, for example, the matricesWM,S
ℓ andWA,S

ℓ are the
weighted diagonals ofMS

ℓ andAS
ℓ . One V-cycle of the tensor product multigrid algorithm can now

be written down compactly as follows.

Algorithm 1 Tensor Product Multigrid V-cycle. Input: system matrixA⊗
ℓ , RHS fℓ, initial guess

uℓ

1: Pre-Smoothing:νpre
ℓ steps ofuℓ → (W⊗

ℓ )−1
fℓ +

(

I − (W⊗
ℓ )−1A⊗

ℓ

)

uℓ

2: if ℓ > 0 then
3: Residual Calculation:rℓ = fℓ −A⊗

ℓ uℓ

4: Recursion:Apply algorithm withA⊗
ℓ−1, fℓ−1 = Rℓ−1rℓ, uℓ−1 = 0

5: Coarse Grid Correction:uℓ → uℓ + Pℓ−1uℓ−1

6: end if
7: Post-Smoothing:νpost

ℓ steps ofuℓ → (W⊗
ℓ )−1

fℓ +
(

I − (W⊗
ℓ )−1A⊗

ℓ

)

uℓ

On the finest levelL, this V-cycle is applied to the right hand sidefL = f of the original problem
until the residual error is reduced below a certain tolerance. We typically choose the numbers of
smoothing steps to beνpre

ℓ = 2 andνpost
ℓ = 2, for ℓ > 0, andνpre

0 + ν
post
0 = 1 on the coarsest grid.

To simply apply a few steps of the smoother on the coarsest grid is sufficientbecause the CFL
condition ensures that the system matrixA⊗

0 on the coarsest grid is dominated by the mass matrix
termBr

ℓ ⊗MS
ℓ and thus well-conditioned. For more details on the algorithm which was used for

our numerical experiments see Section 4.2.

Reduction of the theory to two dimensions The crucial idea in [38] is now that it is possible to
construct a set ofnr invariantnS-dimensional subspaces such that the convergence of the tensor
product multigrid method for the problem inΩ ⊂ R

3 can be analysed by independently studying
the convergence of a standard multigrid algorithm in each of these subspaces overS ⊂ R

2. This
can be seen as follows: because bothAr andMr are positive definite, there exists an eigenbasise

r
j ,

j = 1, . . . , nr, of V r and a corresponding set of strictly positive eigenvaluesλj such that
(

ω2Ar +Br
)

e
r
j = λjM

r
e
r
j ,

〈

Mr
e
r
j , e

r
k

〉

= δj,k for all j, k ∈ {1, . . . , N}. (24)

It follows from simple identities for the inner product on tensor product spaces that
〈

e
r
k ⊗ u

S , A⊗
ℓ (e

r
j ⊗ v

S)
〉

=
〈

e
r
k ⊗ u

S ,
(

ω2Ar +Br
)

e
r
j ⊗MS

ℓ v
S +Mr

e
r
j ⊗AS

ℓ v
S
〉

= δjk
〈

u
S ,
(

λjM
S
ℓ +AS

ℓ

)

v
S
〉
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12 A. DEDNER ET AL.

and so the subspaces spanned by the differente
r
j areA⊗

ℓ -orthogonal, with a similar property for the
smoother matrixW⊗

ℓ . As we do not coarsen in the vertical direction, the intergrid operatorsPℓ and
Rℓ do not mix different subspaces. For eachj the spacespan{erj} ⊗ V S

ℓ is trivially isomorphic to
V S
ℓ and each of thenr independent subspaces corresponds to a two dimensional problem onS with

the following matrix representation of the linear operator and smoother:

AS
ℓ,j ≡ ω2AS

ℓ + λjM
S
ℓ , WS

ℓ,j ≡ ω2WA,S
ℓ + λjW

M,S
ℓ .

In particular,AS
ℓ,j is the Galerkin matrix which is obtained from discretising the bilinear form

ω2aS(uS , vS) + λjm
S(uS , vS) onV S

ℓ . This bilinear form is the weak formulation of the following
two dimensional operator:

LS
j u

S(r̂) = −ω2
∇S ·

(

αS
S(r̂)∇Su

S(r̂)
)

+ λjα
S
r (r̂)u

S(r̂) (25)

Convergence of two dimensional multigrid According to Theorem 10.7.15 in [59], the multigrid
V-cycle converges for each of the two dimensional operatorsLS

j , j = 1, . . . , N if there exists aCA

such that the smoothing property
AS

ℓ,j ≤WS
ℓ,j (26)

and the approximation property

0 ≤
(

AS
ℓ+1,j

)−1 − PS
ℓ

(

AS
ℓ,j

)−1
RS

ℓ ≤ CA

(

WS
ℓ+1,j

)−1
(27)

are satisfied on all levelsℓ = 1, . . . , L.
The smoothing property (26) is automatically satisfied for (sufficiently damped) point Jacobi

and SOR smoothers (Remark 4.6.5 in [39]). To see this, denote the matrix consisting only of the
diagonal entries ofAS

ℓ,j by DS
ℓ,j and useWS

ℓ,j = ρ−1
relaxD

S
d,j , i.e. weighted point Jacobi relaxation.

The relaxation parameter is chosen such thatρrelax ≤ ||(DS
ℓ,j)

−1AS
ℓ,j ||−1 where|| · || is the spectral

norm. Then (26) follows by definition from the equivalence− Id ≤ X ≤ Id⇔ ||X|| ≤ 1 applied to
X = (WS

ℓ,j)
−1AS

ℓ,j .
A proof of the approximation property is significantly harder and we will notgive it here (see

Lemma 10.7.8 and Remark 10.7.13 in [59]). It depends on some minimal regularityassumptions on
the profilesαS

S(r̂) andαS
r (r̂). The constantCA may depend on the contrast, i.e. the maximum

variation of the profiles. We stress again that we use quasi-uniform gridsfor the horizontal
discretisation (see the review in [60] for a discussion of grids considered in meteorological
application). In contrast to latitude-longitude grids, where the convergent grid lines near the pole
introduce an additional horizontal anisotropy, the ratio between the smallestand largest grid spacing
is bounded from below in the grids we consider. Hence the simple block-Jacobi and block-SOR
smoothers which relax all degrees of freedom in one vertical column simultaneously will be efficient
and no additional horizontal plane smoothing or selective semi-coarseningas described in [20] is
required.

As the two dimensional equations are solved on the unit sphere, the operator LS
j could become

near-singular ifλj → 0. However, it is easy to see that this is not the case. As noted in Section 2.1
we require the scalingω ∝ ∆t ∝ hL to keep the Courant number fixed as the horizontal resolution
increases. Therefore the second order term in (25) is of order1 and hence the relative importance of
the two terms in (25) is independent of grid resolution. It follows that all the eigenvaluesλj of (24)
are of order 1. It is a reasonable assumption that the profilesαS

S(r̂), α
S
r (r̂) are “well-behaved” in the

sense that they are dominated by large scale variations due to global weather systems, small scale
phenomena such as strong local variations carry substantially less energy. In this case we expect the
spectrum ofLS

j to be bounded from above and below by two constants which are independent of
hL.

Convergence of three dimensional multigrid As argued above, the three dimensional problem
can be decoupled into a set ofnr two-dimensional problems. Due to the particular form of the
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smoother and of the prolongation/restriction matrices, it is in fact easy to verify that the smoothing
property and the approximation property

A⊗
ℓ ≤W⊗

ℓ and 0 ≤
(

A⊗
ℓ+1

)−1 − Ph
ℓ

(

A⊗
ℓ

)−1
Rh

ℓ ≤ CA

(

W⊗
ℓ+1

)−1
,

for the tensor product multigrid algorithm for the original 3D problem onΩ follow directly from
the respective properties (26) and (27) for the 2D problems onS, for all j = 1, . . . , N .

Theorem 1
Let us assume that (26) and (27) are satisfied, for allj = 1, . . . , N , and letM⊗ denote the iteration
matrix for one step of the tensor product multigrid V-cycle defined above, i.e.

u− u
∗
⊗ 7→ M⊗

(

u− u
∗
⊗

)

whereu∗
⊗ is the exact solution of the equationA⊗

u
∗
⊗ = f . Then the convergence rate

ρ⊗A = ||M⊗||A⊗ ≤ CA

CA + 2(νpre+ νpost)
< 1

independent ofhL, where|| · ||A⊗ is the energy norm induced byA⊗.

This is the main result given and proved for the two dimensional case in [38,Theorem 2]. As we
have seen above, the proof extends directly also to three dimensions and toour pressure correction
problem here. In that case the assumptions of the theorem are satisfied asdiscussed above.

3.2.2. Non-factorising caseWe now assume that the matrixA can be written as the sum of a
perfectly factorising symmetric positive definite matrixA⊗ and a small correctionδA, namely
A = A⊗ + δA. We quantify the deviation from perfect factorisation by∆ = || (A⊗)

−1
δA||A⊗ and

assume that∆ < 1. We also assume that the theory in Section 3.2.1 applies and the multigrid
iteration for the factorising operatorA⊗ converges, i.e. the error is reduced by a factorρ⊗A < 1
in every multigrid V-cycle. The Richardson iteration for the full operatorA preconditioned withµ
multigrid V-cycle cycles forA⊗ can then formally be written as

u
(k+1) = u

(k) +
[

Id−
(

M⊗
)µ] (

A⊗
)−1

(

f −Au(k)
)

.

Then at every step the erroru(k) − u
∗ to the exact solutionu∗ := A−1

f is reduced by a factor

ρA = || Id−
[

Id−
(

M⊗
)µ] (

A⊗
)−1

A||A⊗

≤ ||
(

A⊗
)−1

A− Id ||A⊗ + ||M⊗||µ
A⊗ ||

(

A⊗
)−1

A||A⊗ ≤ ∆+ (1 +∆)(ρ⊗A)
µ. (28)

Thus, for an arbitrary∆ < 1 the convergence rateρA is less than 1, provided the number of V-
cyclesµ > logρ⊗

A
((1−∆)/(1 + ∆)). On the other hand, if we only apply one V-cycle (µ = 1), then

a convergence rateρA < 1 can still be guaranteed provided∆ < (1− ρ⊗A)/(1 + ρ⊗A). Similar results
can also be proved for the convergence of Krylov solvers, such as BiCGStab, preconditioned with
µ multigrid V-cycle cycles forA⊗.

It is usually difficult to quantify∆ for a specific problem, but in Section 5.2 we study a model
problem where we vary the size of∆ via an explicit parameter and study the performance of the
solver as∆ increases.

4. DISCRETISATION AND IMPLEMENTATION

In practise, and as we demonstrate in the following, the tensor product preconditioners will be
efficient for a wider range of problems not covered by the formal theory. We now describe the
discretisation and DUNE implementation of the solvers we used in our numerical experiments.
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4.1. Grid structure and discretisation

For simplicity we use a simple finite volume discretisation for all numerical experiments in this
work. More complex schemes such as mimetic mixed finite elements are also currently under
consideration for the development of dynamical cores [61, 62] and mightrequire the solution of
the equation in a different pressure space, such as higher order DG space. However, the basic ideas
described in this work can still be applied.

Grids used in meteorological applications (and also in many ocean models [2, 3]) usually have
a tensor-product structure. They consist of a semi-structured two dimensional horizontal grid on
the surface of the sphere and a one-dimensional vertical grid which is often graded to achieve
higher resolution near the surface. In particular, each three dimensional grid cell E = (T, k) can
be uniquely identified by the corresponding horizontal cellT and a vertical indexk ∈ 1, . . . , nr.
This tensor-product structure in itself has important implications for the performance of any
implementation: while it might be necessary to use indirect indexing for the horizontal grid, the
vertical grid can always be addressed directly. As typically the number ofvertical levels is large
with nr & 100, the cost of indirect addressing in the horizontal direction can be “hidden” [63], a
phenomenon which we have confirmed numerically for our solvers in Section5.1. Furthermore
fields can be stored such that the levels in each column are stored consecutively in memory, which
leads to efficient cache utilisation (however, as discussed in [41] a different memory layout has to
be used on GPU architectures where the vertically-consecutive storagewould prevent coalesced
memory access in the tridiagonal solve). To be able to use the geometric multigrid solvers described
in this work, we also assume that the horizontal grid has a natural hierarchy; this is true for the
icosahedral grids which are used in our numerical tests where each triangular coarse grid cell
consist of four smaller triangles on the next-finer multigrid level. In contrastto a simple longitude-
latitude grid, these semi-structured grids have no pole-problem, i.e. the ratio between the size of
the largest and smallest grid spacing is bounded. This implies that there is no additional horizontal
anisotropy which would further complicate the construction of a solver (however, as has been shown
in [20, 21], the tensor-product multigrid approach can still be applied forlongitude-latitude grids if
the horizontal coarsening strategy is adapted appropriately).

In the finite volume discretisation any continuous fieldu(r, r̂) is approximated by its average
value in a grid cell. In particular, for eachhorizontalgrid cellT we store one vectoruT of lengthnr
representing the field in the vertical column. In this cell the discrete equation (19) for thenr-vector
uT can be written as

(Au)T = ATuT +
∑

T ′∈N (T )

ATT ′uT ′ = fT , (29)

where the sum runs over all horizontal neighboursT ′ ∈ N (T ) of T . In this expressionAT andATT ′

arenr × nr tridiagonal- and diagonal matrices of the form

AT = tridiag(aT ,bT , cT ), ATT ′ = diag(dTT ′). (30)

Both matrices can be reconstructed on-the-fly from a number of scalar quantities, which are
obtained from a discrete approximation of the profiles in (18) and geometric factors. This on-the-
fly reconstruction of matrix elements reduces the amount of main memory access, in particular
if the factorising profiles in theTPMG⊗ preconditioner are used. For each horizontal cellT the
explicit expressions of the diagonalsaT , dTT ′ and upper- and lower- subdiagonalsbT , cT depend
on whether the profiles can be factorised or not and are given explicitly inthe next section. A block-
SOR iteration with overrelaxation factorρrelax can then be written as

uT ← [ uT + ρrelax (AT )
−1

(bT − (Au)T ) (31)

and requires a tridiagonal solve in each vertical column to apply the inverseof the matrixAT to the
residual. This can be implemented using the Thomas algorithm [64].
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4.2. Multigrid algorithm

In the multigrid algorithm the operator is re-discretised on every grid level. This is straightforward
since we assume that the profilesαr, αS , ξr andβ are known at every point in space. In practice
the profiles are relatively smooth (i.e. without large, high-contrast jumps) and can be obtained as
a linear interpolation of data from a Unified Model run. Re-discretising the operator on every grid
level also leads to much smaller stencils than the Galerkin product approach inAMG.

Unless otherwise stated, in our numerical experiments we always use 6 multigrid levels with two
vertical line-SOR pre- and post- smoothing steps on each level (νpre = νpost= 2); the overrelaxation
factor in the smoother was set toρrelax = 1. One smoother iteration is used to solve the coarse grid
problem. We use linear interpolation to prolongate the solution to the next-finer grid (2h 7→ h). The
right hand side, which in each cell represents a cell-integral of a field, isrestricted to the next-
coarser level (h 7→ 2h) by summing the fine grid values of all four fine grid cells comprising the
coarse grid cell. Thus, these intergrid-operations, which are described in more detail in Appendix
A, only require interpolation and summation in the horizontal direction.

4.3. Matrix-free DUNE Implementation

All code was implemented using the DUNE library [43, 44], which provides a set of C++ classes
for solving PDEs using grid based methods. In particular, it provides interfaces to (parallel) grid
implementations such as ALUGrid [45–47] and UGGrid [48]. The implementation of the grids is
separated from data which is attached to the grid by the user via mapper functions between different
grid entities (cells, edges, vertices) and the local data arrays. In our case we used the DUNE-grid
module to implement a two dimensional host grid and then attached a whole column oflength
nr to each horizontal grid cellT . We represent the matrix as follows: in the non-factorising case
(TPMG(full)), we store a vector̂βT of lengthnr at each horizontal cell to represent the zero order
term, two vectors(α̂r)T and(ξ̂r)T of lengthnr + 1 to represent the vertical diffusion and advection
terms, and one vector(α̂S)TT ′ of lengthnr at each horizontal edgeTT ′. The explicit form of these
vectors is obtained by a standard finite volume discretisation of the problem. The vectorsaT , bT ,
cT anddTT ′ in (30) are

dTT ′,k = −(α̂S)TT ′,k, dT,k =
∑

T ′∈N (T )

d̃TT ′,k,

bT,k = −(α̂r)T,k+1 − (ξ̂r)T,k+1, cT,k = −(α̂r)T,k+1 + (ξ̂r)T,k+1,

aT,k = β̂T,k − (bT,k + cT,k + dT,k).

(32)

In the factorising case (TPMG⊗) it is only necessary to storescalarsβ̂S
T , (α̂S

r )T , (ξ̂Sr )T and(α̂S
S)TT ′

on the horizontal cells and edges. In addition to this, four vectors of lengthnr andnr + 1 (β̂
r
, α̂r

S ,
α̂

r
r and ξ̂

r

r) which arise from the vertical discretisation need to be stored once for theentire grid.
Similarly to (32) the matrix entries in (30) can be calculated on the fly as

dTT ′,k = −(α̂r
S)k(α̂

S
S)TT ′ , dT,k =

∑

T ′∈N (T )

d̃TT ′,k

bT,k = −(α̂r
r)k+1(α̂

S
r )T − (ξ̂rr )k+1(ξ̂

S
r )T , cT,k = −(α̂r

r)k+1(α̂
S
r )T + (ξ̂rr )k+1(ξ̂

S
r )T ,

aT,k = β̂r
kβ̂

S
T − (bT,k + cT,k + dT,k).

(33)

The scalarŝβS
T , (α̂S

r )T , (ξ̂Sr )T and(α̂S
S)TT ′ only need to be read once per vertical column and the

associated cost can be hidden together with the cost of indirect addressing on the horizontal grid
for large enoughnr. Moreover, the vectorŝβ

r
, α̂r

S , α̂r
r and ξ̂

r

r require only a small amount of
memory and can be cached. In summary, the cost of memory access for the matrix is likely to be
significantly smaller than the cost of accessing field vectors such asuT andbT when solving the
tridiagonal system in (31) or in the matrix vector product.

The DUNE-grid interface provides iterators over the horizontal grid cellsand over the neighbours
of each cell. To implement for example the sparse matrix vector product (SpMV) in (29) we iterate
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over all horizontal grid cellsT , and then in each cell we loop over the edgesTT ′ for all neighbours
T ′ to read the profiles stored on the cells and edges from memory and construct the matricesAT

andATT ′ . These are then applied to the local vectorsuT anduT ′ to evaluate(Au)T , which requires
inner loops over the vertical levels. Of all grids that are currently available through the DUNE
interface we found that only ALUGrid can be used to represent a two-dimensional sphere embedded
in three dimensional space. Unfortunately the scalability of ALUGrid is very limited because in a
parallel implementation the entire grid is stored on each processor. Alternatively we used a three
dimensional UGGrid implementation for a thin spherical shell consisting of one vertical layer to
represent the unit sphere. Based on the coarsest grid, finer multigrid levels can be constructed by
refinement in the horizontal direction only. Any geometric quantities in this thin three dimensional
grid can then be related to the corresponding values on the two dimensional grid by simple scaling
factors. We implemented both a gnomonic cubed sphere grid [65] and an icosahedral grid, for which
the grid points are projected onto the sphere, and all numerical results reported in this work were
obtained with the icosahedral grid. We assume that on each multigrid level the cells of the two-
dimensional grid are flat, i.e. strictly speaking the grid is a polyhedron. While this differs from
curvilinear grids where the interior of each cell is projected onto the sphere, it is a very good
approximation for high resolution. In particular it does not cause any problems on the coarser
multigrid levels since those are only used to accelerate the fine grid solution.

As is typical in atmospheric applications, parallel domain decomposition is in the horizontal
direction only. As the DUNE host grids that we used are already inherentlyparallel, parallelisation
of the code was straightforward by calling the relevant halo exchange routines when necessary. Load
balancing was achieved by choosing the problem size such that the numberof cells on the coarsest
level is identical to the number of processors and each processor “owns” one coarse grid cell and
the corresponding child cells. While at first sight this might cause a problemfor large core counts
because the coarsest level still has a relatively large number of degrees of freedom and the multigrid
hierarchy is very shallow, it turns out that the zero order term in the Helmholtz equation (17) averts
potential problems. This is because relative to the zero order term the importance of the horizontal
diffusion term decreases with a factor of four on each coarse level, and so after a small number
of coarsening steps the problem is well conditioned and can be solved by avery small number of
smoothing iterations. An alternative and more physical explanation is that anyinteractions in the
continuous PDE in (17) are exponentially damped with an intrinsic length scaleω and hence it
is not necessary to coarsen the grid beyond this scale. This has been confirmed numerically for a
simplified test problem in [22], where it has been shown that as little as four multigrid levels still
give very good convergence for typical grid spacings and time step sizes. In the parallel scaling tests
in this work we typically used 6 or 7 multigrid levels and one iteration of the smootherto solve the
coarse grid problem.

5. NUMERICAL RESULTS

In the following we study the performance of the two tensor-product preconditionersTPMG(full)

andTPMG⊗ described in Section 3.1 applied to two test cases in atmospheric flow simulation.
We confirm the optimality and robustness ofTPMG(full) even for non-factorising profiles, compare
the performance of the two variants and study their parallel scalability. Unless stated otherwise, all
runs (including the sequential tests) were carried out on the phase 3 configuration of the HECToR
supercomputer, which consists 2816 compute nodes with two 16-core AMD Opteron 2.3GHz
Interlagos processors each. The entire cluster contains 90,112 coresin total. The code was compiled
with version 4.6.3 of the gnu C compiler.

The tolerance in the iterative solver was set to10−5, i.e. we iterate until the residual has been
reduced by at least five orders of magnitude. The number of vertical levels was set tonr = 128,
which is typical for current meteorological applications. We note, however, that all runtimes are
directly proportional tonr.
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Figure 1. Time per iteration for different numbersnr of vertical levels for two grid implementations (UGGrid
in red, open squares and ALUGrid in blue, filled circles) on anicosahedral grid; results for shown both for

theTPMG(full) (dashed lines) andTPMG⊗ (solid lines) preconditioner.

5.1. Overhead from indirect addressing

While data in one vertical column is stored consecutively in memory and can be addressed directly,
in general indirect addressing has to be used in the horizontal directions. However, as the horizontal
lookup is only required once per column, the relative penalty for this will be very small provided
nr is large enough. As discussed in [63], in this case the overhead from indirect addressing can be
“hidden” behind work in the vertical direction. To verify this we ran our solver with two different
DUNE grid implementations and measured the time per iteration for different numbers of vertical
levels. We expect this time to depend onnr as follows

titer(grid, nr) = (C0 + Cgrid) + q · nr (34)

whereCgrid is the overhead of indirect addressing and depends on the grid implementation. The
constantC0 encapsulates any other work which is only done once per column and bothC0 and
the slopeq are independent of the horizontal grid. Figure 1 shows the results for the ALUGrid and
UGGrid implementation and confirms the linear dependency in (34). As can be seen from this plot,
for both preconditionersTPMG(full) andTPMG⊗ the overhead from indirect addressingCgrid

and the additional overheadC0 together are at the order of less than20% as soon asnr & 100.
Incidentally both DUNE grid implementations that we tested are equally efficient. We stress that in
both grids data in adjacent vertical columns is not necessarily stored consecutively in memory. Not
surprisingly, the slopeq is larger for the more expensiveTPMG(full) preconditioner. The results in
this section also confirm that performance tests carried out on a directly addressed horizontal grid,
such as the results in [22], can be generalised to indirectly addressed grids.

5.2. Test Case I: Balanced zonal flow

We first test our solver with the profiles from a simplified meteorological test problem which
corresponds to a balanced atmosphere with constant buoyancy frequency and zonal flow with one jet
in each hemisphere. The advantage of this test case is that the deviation of the atmospheric profiles
from a perfect factorisation can be controlled by varying a single parameter. In [66] it is shown that
under the assumption that the velocity field points in the longitudinal direction andthe buoyancy
frequencyN defined in (14) is constant, a solution of the Euler equations is given by

π(r̂, r) =
ǫ+ ES(φ)Er(r)

1 + ǫ
, θ(r̂, r) = T0

(

ES(φ)Er(r)
)−1

,

ρ(r̂, r) =
p0

RdT0
[π(r̂, r)]

γ
ES(φ)Er(r), u(r̂, r) = uS(φ)

(35)
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Figure 2. Left: Velocity fieldu(φ) and jet functionF defined in eqns. (36) and (37) forN = 0.028s−1

(ǫ = 1.23). Right: Exner pressureπ and relative differenceπ
⊗−π
π in the (φ, z)-plane for the same value of

N . The height above ground is measured in units of the depth of the atmosphere.

where the functionsES(φ) andEr(r) are defined as

ES(φ) = exp

[

−N
2

g2
F (φ)

]

, Er(r) = exp

[

−N
2Rearth

g
(r − 1)

]

.

In the horizontal direction the profiles only vary in the latitudinal directionφ ∈ [−π/2, π/2]. The

parameterǫ is related to the buoyancy frequency byǫ ≡
(

N
N∗

)2 − 1 with N∗ ≡
√

cpT0

g
= ch

g
. The

functionF (φ) is related to the velocity fielduS(φ) as

dF (φ)

dφ
= 2RearthΩearthuS(φ) sinφ+ uS(φ)

2 tanφ (36)

with angular velocityΩearth = 2π/(24 · 3600)s−1. For our numerical experiments we choose the
velocity such that it corresponds to two jets with peak velocityu0 = 100ms−1 in the mid latitudes
(φM = π/4, σ = 0.1):

uS(φ) = u0
cosφ

cosφM
exp

[

− (cosφ− cosφM )2

2σ2

]

(37)

as plotted together with the correspondingF (φ) in Figure 2. If we fix the reference pressure and
temperature to physically realistic valuesp0 = 10, 000Pa andT0 = 273K, the only free parameter
in (35) is the buoyancy frequency. In particular ifN is identical toN∗, i.e. ǫ = 0, the first term in
the expression for the Exner pressure in (35) vanishes and all profiles factorise exactly.

In the following we present numerical results for a range of buoyancy frequencies between
N = N∗ = 0.01873s−1 andN = 0.028s−1. As a preconditioner we use both a multigrid algorithm
with the full model operator and the tensor-product multigrid algorithm with an approximate
factorisation of the Exner pressure

π⊗(r̂, r) = πS(r̂)πr(r) ≡ ǫ+ Er(r)

1 + ǫ
· ES(φ) (38)

which reduces to the expression in (35) forǫ = 0. Both the Exner pressure and the relative difference
π⊗−π

π
, which is an indicator of the quality of the factorisation, are plotted forN = 0.028s−1 in the

(z, φ) plane in Figure 2. As can be seen from this figure, the relative difference between the profiles
can be larger than 15%.

The time per iteration is shown in Figure 3 (left) for two grid implementations. Both a
preconditioned Richardson iteration and BiCGStab are used with one multigrid V-cycle as a
preconditioner. It is important to note that BiCGStab requires two applicationsof the preconditioner

Copyright c© 0000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids(0000)
Prepared usingfldauth.cls DOI: 10.1002/fld



MULTIGRID PRECONDITIONERS FOR ATMOSPHERIC FLOW AT HIGH ASPECT RATIO 19

Richardson BiCGStab
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

ti
m

e
 p

e
r 

it
e
ra

ti
o
n
 [

s
]

ALU

ALU

UG

UGTPMG(full)

TPMG⊗

SpMV

Other [BLAS]

0.0 0.2 0.4 0.6 0.8 1.0
ǫ = deviation from perfect factorization

0

5

10

15

20

N
u
m

b
e
r 

o
f 

it
e
ra

ti
o
n
s

Richardson

BiCGStab

TPMG(full)

TPMG⊗

Figure 3. Breakdown of the time per iteration for two different iterative solvers and grid implementations
(left) and number of iterations (right) to reduce the relative residual by at least five orders of magnitude for
the idealised balanced flow testcase. The multigrid preconditioner is used with both the full, non-factorising
profiles (TPMG(full), blue columns and dashed curves) and the approximate factorisation (TPMG⊗,
hatched green columns and solid curves) in (38). A matrix-free implementation was used for all parts of
the algorithm; for the SpMV operation we always used the non-factorising code. In all cases a problem with

nr = 128 and2.6 · 106 total degrees of freedom was solved sequentially on HECToR.

and two sparse matrix-vector products per iteration, while the Richardson iteration only requires
one of each, and not surprisingly the figure demonstrates that most of thetime is taken up by the
multigrid preconditioner in all cases. The number of iterations for each of thecombinations is plotted
in Figure 3 (right) for a range ofǫ.

First of all we note the almost perfect robustness of the full preconditioner TPMG(full) for this
test problem where the profiles strongly deviate from the factorising case, but the convergence
of preconditioned Richardson iteration and preconditioned BiCGStab are essentially not affected.
The practically observed convergence rate for the V-cycle (in the Richardson iteration) is around
ρA = 0.1. This confirms the theoretical results in Sections 3.2.1 and 3.2.2. BiCGStab converges
in approximately half the number of iterations than Richardson, as expected.In terms of time per
iteration, the multigrid preconditioner with factorised profiles (TPMG⊗) can be up to25% faster
than the algorithm with non-factorising profiles (TPMG(full)). However, this comes at the expense
of an increase in the number of iterations for larger values ofǫ that can be seen in Figure 3 (right).
While for the Richardson iteration the increase is almost threefold ifTPMG⊗ is used, this is much
less dramatic for BiCGStab whereTPMG⊗ only requires twice as many iterations asTPMG(full)

for the largestǫ.
Finally, the total solution time is shown in Figure 4. As expected, the total solution timefor solvers

with TPMG⊗ preconditioner grows asǫ increases. However, as the time per iteration is about 25%
smaller for this preconditioner, for smallǫ the total solution time is also reduced by a similar factor.
The most robust solver appears to be BiCGStab, which gives the best overall performance for large
ǫ, even with the factorising preconditionerTPMG⊗.

5.3. Performance analysis

To analyse the gains that can be obtained with the factorising implementation, we counted the
number of floating point operations and memory references in our code both for the factorising-
and the non-factorising implementation. The relevant numbers for carryingout one sparse matrix-
vector product (SpMV) and one cycle of the multigrid algorithm are given inTable I. We always
assume perfect caching for the vectors, i.e. each entry is only read/written once per iteration over the
grid, any memory bandwidth derived from this number is known as “usefulbandwidth” and should
be interpreted as a conservative lower bound. We also assume that in the factorising implementation
the cost of reading the matrix from memory can be neglected. As can be seenfrom this table, the
number of memory references is reduced by almost a factor two in the factorising implementation,
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Figure 4. Total time required to reduce the relative residual by at least five orders of magnitude for the
idealised balanced flow testcase. The multigrid preconditioner is used with both the full, non-factorising
profiles (TPMG(full), dashed curves) and the approximate factorisation (TPMG⊗, solid curves) in (38). In
all cases a problem withnr = 128 and2.6 · 106 total degrees of freedom was solved sequentially on one

node of the HECToR supercomputer.

Table I. Number of FLOPs and memory references per cell for the sparse matrix-vector product (SpMV) and
one multigrid V-cycle. The arithmetic intensity (number ofFLOPs per memory reference) is shown in the

last row.

SpMV Multigrid
factorising non-factorising TPMG⊗ TPMG(full)

# FLOPs / cell 25.00 17.00 301.33 205.33
# memory references / cell 2.00 9.00 72.00 136.00
Arithmetic intensity 12.50 1.89 4.19 1.51

Table II. Measured floating point performance and useful memory bandwidth for the sparse matrix-vector
product (SpMV) and one multigrid V-cycle

SpMV Multigrid
factorising non-factorising TPMG⊗ TPMG(full)

Performance [GFLOPs/s] 0.94 0.37 0.88 0.43
Useful memory Bandwidth [GB/s] 0.60 1.57 1.68 2.28

while the arithmetic intensity is significantly increased (6.6× for SpMV and2.8× for the multigrid
V-cycle). Note, however, that we assume perfect caching, so in reality(and as suggested by our
measurements) the arithmetic intensity will be lower. On modern processors typicallyO(10) floating
point operations can be carried out in the time it takes to read one double precision number from
memory. We hence believe that the factorising implementation is still not arithmetically intensive
enough to be classified as compute bound.

Using those numbers we then quantified the floating point performance and useful memory
bandwidth in Table II by dividing by the measured times in Figure 3. Not very surprisingly the
floating point performance is more than doubled for the factorising implementation. The useful
bandwidth is about 1GB/s which indicates that our assumption of perfect caching is probably too
simplistic since the theoretical peak bandwidth isO(10GB/s).
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Figure 5. Left: Dependency of the horizontal average of different profiles with height (solid lines, from top to
bottom:β, αS , ξr andαr). The horizontal variation is also represented by gray bands between the minimum
and maximum value on each grid level (dashed curves). Right:Zero-order termβ = γρ/π on the lowest grid

level. The horizontal variation in the field is at the order of10%.

5.4. Test Case II: Aquaplanet

While the runs in the previous section were carried out under idealised andnot necessarily realistic
conditions, we also tested our solver for profiles obtained from common meteorological test cases.
We first obtained the profilesπ, θ and ρ from an aquaplanet run of the Met Office Unified
Model‡. While these fields contain significantly more variation than the idealised profilesdescribed
in Section 5.2 and also describe phenomena such as convection near the ground and baroclinic
instabilities, they are largely “well behaved” in the sense that most of them can be factorised
approximately into a horizontal and a vertical variation. To quantify this further, we plot for each
of the profiles the average, minimum and maximum over the horizontal grid on each vertical level
in Figure 5 (right). For most profiles the horizontal variation is small and the average value decays
exponentially with height; see for example Figure 5 (left), which shows the profile β on the lowest
grid level. The only exception isαr which shows significant horizontal variation in the lower
atmosphere. This is mainly due to the fact that, as can be seen from the explicitexpressions in
(18), this profile contains the buoyancy frequency and hence verticalderivatives of the potential
temperature, which can vary significantly from column to column due to convection in the lower
atmosphere.

We found that for these more typical profiles the factorising preconditioner TPMG⊗ causes both
solvers to diverge. An easy fix for this is to factorise all profiles exceptαr. We denote the resulting
preconditioner with partial factorisation, where we keep the full non-factorising profile forαr, as
TPMG(partial). As Table III demonstrates, this increases the time per iteration by just over5%
relative to the fully factorising case (TPMG⊗), but it is still significantly smaller than in the non-
factorised case (TPMG(full)).

The numbers of iterations and total solution times are shown in Table IV. We findthat again the
tensor product multigrid method converges extremely fast and robustly even though the profiles do
not factorise, needing no more than 5 to 7 V-cycles to reduce the residualby 5 orders of magnitude.
In this case the problem is solved fastest with the BiCGStab solver and theTPMG(partial)

preconditioner. In total we find that, as in the idealised test case with smallǫ, the (partially) factorised
multigrid preconditioner can again lead to performance gains. As outlined in theintroduction, these
gains may be more significant on novel manycore architectures, such as GPUs, where the cost of
memory references relative to one floating point operation is even larger.

‡For technical reasons we used the wet density, such that the equation of state is not satisfied, but this should not have a
significant impact on our conclusions.
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Table III. Time per iteration and speedups relative toTPMG(full) for different solvers and preconditioners.
In all cases a problem withnr = 128 and2.6 · 106 total degrees of freedom was solved sequentially on one

node of HECToR using the ALUGrid implementation.

Solver TPMG(full) TPMG(partial) TPMG⊗

titer speedup titer speedup titer speedup

Richardson 1.43 — 1.11 1.29× 1.05 1.36×
BiCGStab 2.88 — 2.26 1.27× 2.14 1.35×

Table IV. Performance of different solvers for an aquaplanet run. A problem withnr = 128 and2.6 · 106

total degrees of freedom was solved sequentially on HECToR using the ALUGrid implementation.

# iterations (||r||/||r0||) total time
Solver TPMG(full) TPMG(partial) TPMG(full) TPMG(partial)

Richardson 5 (9.1 · 10−6) 7 (4.8 · 10−6) 7.94 7.28
BiCGStab 3 (5.1 · 10−7) 3 (5.2 · 10−6) 8.81 6.94

Preconditioner Courant numberniter titer ttotal

Multigrid
≈ 2 2 1.99 4.10
≈ 4 3 2.01 6.17
≈ 8 3 2.00 6.12

Single level
≈ 2 7 1.28 9.07
≈ 4 12 1.33 16.08
≈ 8 — — —

Table V. Efficiency and performance of a single-level smoother and the multigrid-preconditioner for
different values of the Courant number; for the largest Courant number the single-level preconditioner did

not converge. All runs were carried out on a single core of a Intel E8400 3.0GHz processor.

5.5. Comparison to single-level method

We also compared the efficiency of our multigrid-preconditioner with a single-level method. For
this we use the same aquaplanet setup as in the previous section, but in the BiCGStab solver we
replace the multigrid preconditioner by 4 iterations of the vertical line smoother (recall that we also
use 4 smoothing steps in the multigrid algorithm). In both preconditioners considered in this section
we do not factorise the profiles, i.e. we use theTPMG(full) setup in the multigrid iteration. In Tab.
V the number of iterations, time per iteration and the total solution times are shown for different
values of the Courant-numbercs∆t/∆x. Note that for all other numerical experiments in this paper
we use a Courant-number of around 8, i.e. the largest value in the table forwhich the single-level
method does not converge. For smaller Courant numbers the multigrid preconditioner is still at least
twice as fast as the single level method.

5.6. Parallel scaling tests

In addition to studying the sequential performance of the solvers, and in particular ensuring that they
are algorithmically efficient, it is crucial to guarantee their parallel scalability on large computer
clusters. For this we carried out scaling tests of our solvers for the balanced flow testcase described
in Section 5.2 withǫ = 0.14; in contrast to the previous runs we always used 7 multigrid levels so
that on the coarsest level each processor stores one vertical column of data. In Figure 6 (left) the
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Figure 6. Weak scaling of the time per iteration (left) and total solution time (right) on the HECToR
supercomputer. The number of degrees of freedom varies from10 million to 11 billion.

weak scaling of the time per iteration on the HECToR supercomputer is shown for up to 20,480
cores, the largest problem that was solved has just over1010 degrees of freedom. Each node of
HECToR consists of two 16 core AMD Opteron 2.3GHz Interlagos processors processors; for
the runs we always requested all cores per node (#PBS -l mppnppn=32). We find that the
number of iterations does not increase with the core count, and even drops in some cases. The
Richardson solver requires seven iterations to reduce the residual by five orders of magnitude for
both preconditioners, whereas BiCGStab requires 4 (TPMG⊗) and 3 (TPMG(full)) iterations for
the same residual reduction. Consequently the total solution time in Figure 6 (right) shows the same
excellent weak scaling.

6. CONCLUSION

In this work we discussed several multigrid preconditioners for anisotropic problems in flow
simulations in “flat” domains with high aspect ratio. The algorithms are based on the tensor-
product multigrid approach proposed and analysed for two-dimensionalproblems with separable
coefficients in [38]. We extended the method and its analysis to three dimensional problems and
via a perturbation argument also to non-separable coefficients. We demonstrated the excellent
performance of tensor-product multigrid for two model PDEs arising in semi-implicit semi-
Lagrangian time stepping in atmospheric modelling. The numerical tests confirm the theoretically
predicted optimality and effectivity of the method. The practically observed convergence rates are
aroundρA = 0.1. The tests also show that under certain conditions a preconditioner basedon an
approximate factorisation of the atmospheric profiles can reduce the total solution time. We found
this to be the case both for an idealised flow scenario and for a more realistic aquaplanet test case.
We also demonstrated the excellent weak parallel scaling on up to 20,480 cores of the HECToR
supercomputer. Overall our work demonstrates that bespoke multigrid preconditioners are highly
efficient for solving the pressure correction equation encountered in NWP models.

There are several ways to further improve this work: so far all tests have been carried out
without any orography. It is known that steep gradients can lead to deteriorating performance of
the non-linear iteration and we plan to study this by looking at the full non-linear solve for more
realistic model problems. For simplicity we used a finite volume discretisation, but more advanced
approaches such as higher-order mixed finite elements can also be used inthis framework. This
will require the solution of a suitable pressure correction equation in higherorder FEM spaces.
The parallel performance can also be further improved by, for example,overlapping calculations
and communications and strong scaling tests should also be carried out. Finally, the performance
gains from approximate factorisations of the matrix are expected to be significantly higher on GPU
systems and hence on such architectures its use may be more justified and moreefficient for a wider
class of profiles.
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A. INTERGRID OPERATORS

In this appendix we describe the prolongation and restriction operations in our multigrid algorithm. Recall
that the grids we use are polygonal and not curvilinear, and care has to be taken when prolongating fields to
the next-finer grid level. The schemes described in the following work on grids with an arbitrary numbernNb
of neighbours and any numbernchild of fine grid cells per coarse grid cell, in particular for the icosahedral
grids used in this paper. We also successfully tested our code on cubed sphere grids.

A.1. Prolongation: Linear interpolation scheme

To prolongate the fields on one multigrid level to the next finer level we use the following linear interpolation.
For a given coarse grid cell on the horizontal host grid, letx

(c)
0 be the coordinate of its centre andx(c)

i ,

with i = 1, . . . , nNb, the coordinates of the centres of its neighbours. Furthermore, letu(c)0 be the field value

associated with the coarse grid cell and letu
(c)
i be the values of the field at the centres of the neighbouring

cells. Similarly for each of the fine children cells which comprise the coarse cell, letx(f)
j , j = 1, . . . , nchild,

be the coordinates of their centres. To calculate the corresponding valuesu(f)j on the fine grid we proceed
as follows:

Let Π be the two-dimensional plane defined by the (flat) coarse gridcell. Denote with
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the orthogonal projection (⊥) of any point x onto Π, followed by scaling with the factor
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, where || · ||2 is the

Euclidean norm. Note in particular thatP (x
(c)
0 ) = 0 and thatP (x) ≈

(

x− x
(c)
0

)

⊥
on the finer levels as

h → 0 and the curvature decreases. For each fine grid cellj, let x(c)
a1

, x(c)
a2

, a1, a2 ∈ {1, . . . , nNb} be the

centresx(c)
a of the coarse grid neighbour cells for which
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∣
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is minimal, see Figure 7.

The fine grid valueu(f)j is then chosen such that the point(P (x
(f)
j ), u

(f)
j ) ∈ Π× R lies in the plane defined

by the three vectors(P (x
(c)
0 ), u

(c)
0 ), (P (x

(c)
a1

), u
(c)
a1

) and(P (x
(c)
a2

), u
(c)
a2

). In other words, for each fine grid
cell we identify the two coarse grid neighbour cells which are closest to this cell; we then obtain the fine
grid value as a linear interpolation of the data on those two coarse grid neighbour cells and the parent cell.

A.2. Restriction: Cell integral

To restrict the fields we use a simple cell summation

u
(c)
0 =

nchild
∑

j=1

u
(f)
j . (40)

For vanishing curvature this operation conserves the cell integral for linear functions.
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Figure 7. ProjectionP (x) (left) and linear interpolation (right). Centres of the coarse grid cell and its
neighbours are marked by solid red circles; centres of the fine grid cells are shown as empty blue squares.
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