281 research outputs found

    Extended Object Tracking: Introduction, Overview and Applications

    Full text link
    This article provides an elaborate overview of current research in extended object tracking. We provide a clear definition of the extended object tracking problem and discuss its delimitation to other types of object tracking. Next, different aspects of extended object modelling are extensively discussed. Subsequently, we give a tutorial introduction to two basic and well used extended object tracking approaches - the random matrix approach and the Kalman filter-based approach for star-convex shapes. The next part treats the tracking of multiple extended objects and elaborates how the large number of feasible association hypotheses can be tackled using both Random Finite Set (RFS) and Non-RFS multi-object trackers. The article concludes with a summary of current applications, where four example applications involving camera, X-band radar, light detection and ranging (lidar), red-green-blue-depth (RGB-D) sensors are highlighted.Comment: 30 pages, 19 figure

    Poisson multi-Bernoulli conjugate prior for multiple extended object filtering

    Full text link
    This paper presents a Poisson multi-Bernoulli mixture (PMBM) conjugate prior for multiple extended object filtering. A Poisson point process is used to describe the existence of yet undetected targets, while a multi-Bernoulli mixture describes the distribution of the targets that have been detected. The prediction and update equations are presented for the standard transition density and measurement likelihood. Both the prediction and the update preserve the PMBM form of the density, and in this sense the PMBM density is a conjugate prior. However, the unknown data associations lead to an intractably large number of terms in the PMBM density, and approximations are necessary for tractability. A gamma Gaussian inverse Wishart implementation is presented, along with methods to handle the data association problem. A simulation study shows that the extended target PMBM filter performs well in comparison to the extended target d-GLMB and LMB filters. An experiment with Lidar data illustrates the benefit of tracking both detected and undetected targets

    Bayesian multiple extended target tracking using labelled random finite sets and splines

    Get PDF
    In this paper, we propose a technique for the joint tracking and labelling of multiple extended targets. To achieve multiple extended target tracking using this technique, models for the target measurement rate, kinematic component and target extension are defined and jointly propagated in time under the generalised labelled multi-Bernoulli (GLMB) filter framework. In particular, we developed a Poisson mixture variational Bayesian (PMVB) model to simultaneously estimate the measurement rate of multiple extended targets and extended target extension was modelled using B-splines. We evaluated our proposed method with various performance metrics. Results demonstrate the effectiveness of our approach

    A Generalised Labelled Multi-Bernoulli Filter for Extended Multi-target Tracking

    Get PDF
    Abstract-This paper addresses extended multi-target tracking in clutter, i.e. tracking targets that may produce more than one measurement on each scan. We propose a new algorithm for solving this problem, that is capable of initiating and maintaining labelled estimates of the target kinematics, measurement rates and extents. Our proposed technique is based on modelling the multi-target state as a generalised labelled multi-Bernoulli (GLMB), combined with the gamma Gaussian inverse Wishart (GGIW) distribution for a single extended target. Previously, probability hypothesis density (PHD) and cardinalised PHD (CPHD) filters based on GGIW mixtures have been proposed to solve the extended target tracking problem. Although these are computationally cheaper, they involve significant approximations, as well as lacking the ability to maintain target tracks over time. Here, we compare our proposed GLMB-based approach to the extended target PHD/CPHD filters, and show that the GLMB has improved performance

    Group and extended target tracking with the probability hypothesis density filter

    Get PDF
    Multiple target tracking concerns the estimation of an unknown and time-varying number of objects (targets) as they dynamically evolve over time from a sequence of measurements obtained from sensors at discrete time intervals. In the Bayesian ltering framework the estimation problem incorporates natural phenomena such as false measurements and target birth/death. Though theoretically optimal, the generally intractable Bayesian lter requires suitable approximations. This thesis is particularly motivated by a rst-order moment approximation known as the Probability Hypothesis Density (PHD) lter. The emphasis in this thesis is on the further development of the PHD lter for handling more advanced target tracking problems, principally involving multiple group and extended targets. A group target is regarded as a collection of targets that share a common motion or characteristic, while an extended target is regarded as a target that potentially generates multiple measurements. The main contributions are the derivations of the PHD lter for multiple group and extended target tracking problems and their subsequent closed-form solutions. The proposed algorithms are applied in simulated scenarios and their estimate results demonstrate that accurate tracking performance is attainable for certain group/extended target tracking problems. The performance is further analysed with the use of suitable metrics.Engineering and Physical Sciences Research Council (EPSRC) Industrial CASE Award Studentshi

    Sound Source Separation

    Get PDF
    This is the author's accepted pre-print of the article, first published as G. Evangelista, S. Marchand, M. D. Plumbley and E. Vincent. Sound source separation. In U. Zölzer (ed.), DAFX: Digital Audio Effects, 2nd edition, Chapter 14, pp. 551-588. John Wiley & Sons, March 2011. ISBN 9781119991298. DOI: 10.1002/9781119991298.ch14file: Proof:e\EvangelistaMarchandPlumbleyV11-sound.pdf:PDF owner: markp timestamp: 2011.04.26file: Proof:e\EvangelistaMarchandPlumbleyV11-sound.pdf:PDF owner: markp timestamp: 2011.04.2

    A Collaborative Sensor Fusion Algorithm for Multi-Object Tracking Using a Gaussian Mixture Probability Hypothesis Density Filter

    Get PDF
    This paper presents a method for collaborative tracking of multiple vehicles that extends a Gaussian Mixture Probability Hypothesis Density (GM-PHD) filter with a collaborative fusion algorithm. Measurements are preprocessed in a detect-before-track fashion, and cars are tracked using a rectangular shape model. The proposed method successfully mitigates clutter and occlusion problems. In order to extend the field of view of individual vehicles and increase the estimation confidence in the areas where a target is observable by multiple vehicles, PHD intensities are exchanged between vehicles and fused in the Collaborative GM-PHD filter using a novel algorithm based on the Generalized Covariance Intersection. The method is extensively evaluated using a calibrated, high-fidelity simulator in scenarios where vehicles exhibit both straight and curved motion at different speeds

    Robust Multi-Object Tracking: A Labeled Random Finite Set Approach

    Get PDF
    The labeled random finite set based generalized multi-Bernoulli filter is a tractable analytic solution for the multi-object tracking problem. The robustness of this filter is dependent on certain knowledge regarding the multi-object system being available to the filter. This dissertation presents techniques for robust tracking, constructed upon the labeled random finite set framework, where complete information regarding the system is unavailable

    Data Association for Semantic World Modeling from Partial Views

    Get PDF
    Autonomous mobile-manipulation robots need to sense and interact with objects to accomplish high-level tasks such as preparing meals and searching for objects. To achieve such tasks, robots need semantic world models, defined as object-based representations of the world involving task-level attributes. In this work, we address the problem of estimating world models from semantic perception modules that provide noisy observations of attributes. Because attribute detections are sparse, ambiguous, and are aggregated across different viewpoints, it is unclear which attribute measurements are produced by the same object, so data association issues are prevalent. We present novel clustering-based approaches to this problem, which are more efficient and require less severe approximations compared to existing tracking-based approaches. These approaches are applied to data containing object type-and-pose detections from multiple viewpoints, and demonstrate comparable quality using a fraction of the computation time.National Science Foundation (U.S.) (NSF Grant No. 1117325)United States. Office of Naval Research (ONR MURI grant N00014-09-1-1051)United States. Air Force Office of Scientific Research (AFOSR grant FA2386-10-1-4135)Singapore. Ministry of Education (Grant to the the Singapore-MIT International Design Center
    • …
    corecore