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Abstract—This paper presents a method for collaborative
tracking of multiple vehicles that extends a Gaussian Mix-
ture Probability Hypothesis Density (GM-PHD) filter with a
collaborative fusion algorithm. Measurements are preprocessed
in a detect-before-track fashion, and cars are tracked using
a rectangular shape model. The proposed method successfully
mitigates clutter and occlusion problems. In order to extend the
field of view of individual vehicles and increase the estimation
confidence in the areas where a target is observable by multiple
vehicles, PHD intensities are exchanged between vehicles and
fused in the Collaborative GM-PHD filter using a novel algorithm
based on the Generalized Covariance Intersection. The method is
extensively evaluated using a calibrated, high-fidelity simulator in
scenarios where vehicles exhibit both straight and curved motion
at different speeds.

I. INTRODUCTION

One of the key components of an intelligent vehicle is its
perception system. By having a precise representation of the
environment, the intelligent vehicle can identify hazards, assess
the level of danger, give warnings and recommendations to a
driver or perform evasive actions if the driver is unable to do
so in a timely fashion.

There often exist situations in which a vehicle does not
have a complete view of the environment surrounding it. For
instance, it can be due to occlusions, limited field of view
(FOV), or sensor range limitations. In these situations, informa-
tion coming from other vehicles or the road infrastructure
substantially improves the decision making process of the
intelligent vehicle. Information sharing is usually achieved
using wireless communication links. Communication can be
considered as a type of virtual sensor, such as in [1], [2]. For
example, it can enable vehicles to see behind corners, as the
wireless communication does not have the same line-of-sight
constraints as most conventional sensors have. Collaborative
fusion considers sharing of tracks or perception data (raw or
processed) among two or more vehicles. If a collaborative
vehicle uses simpler sensors (e.g., a speed sensor whose output
is available on the vehicle’s CAN bus), it can transmit sensory
raw data. However, in case of richer sensors (e.g., cameras
or lidars), due to data volume and communication channel
constraints, sharing only processed data (e.g., objects) and
filtered data (i.e., tracks) may be the only feasible option.
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Multiple-object tracking problems are concerned with mul-
tiple targets and multiple measurements, where the association
of measurements with appropriate targets is not known. Filters
based on the Global Nearest Neighbor (GNN) algorithm [3]
and Multiple Hypothesis Tracking (MHT) filters [4] involve
explicit association between measurements and targets. Issues
with such filters are related to having multiple observations of
a single object, clutter and occluded objects. Joint Probabilistic
Data Association (JPDA) filters [4] weight observations using
their association probabilities, but require the number of objects
to be known a priori. In our work the number of objects is
unknown and varies with time.

Another solution for multi-object tracking is based on
Random Finite Set (RFS) models, in which a set of objects of
variable cardinality is modeled as a random finite set. Filters
based on this theory, such as Probability Hypothesis Density
(PHD) filters and Cardinalized PHD (CPHD) filters, deal with
the measurement-to-track association implicitly [5]. They can
provide higher robustness and accuracy in scenarios where the
number of targets is variable and/or not known in advance.
Many different implementations of the PHD filter have been
developed and used for multi-object tracking; the most common
ones are the Gaussian Mixture PHD (GM-PHD) [6] and the
Sequential Monte Carlo PHD (SMC-PHD) filter [7]. Typical
implementations assume that, if a target is detected, it generates
only one measurement. Moreover, in [6] and [7], the shape of
the target is not taken into account.

Lidar sensors typically produce multiple measurements per
single object, depending on its distance and angle. Targets
that are assumed to generate multiple measurements are called
extended targets Granstrom et al. have extended a GM-PHD
framework to handle extended targets [8], [9]. Estimation of the
target shape was also included in the GM-PHD framework. For
instance, a thin stick model was used for bicycle tracking in
[10] and tracking of rectangular and elliptical extended targets
was addressed in [11]. The drawbacks of these two approaches
are the unconventional framework where the measurement
model depends on the current set of measurements, as well as
a high degree of non-linearity which makes the state update
using an Extended or Unscented Kalman Filter difficult. In [12]
Swain and Clark tracked the kinematic state of elliptical targets
along with their shape parameters by considering hierarchical
point process representations of multiple extended targets.
The particle representation was used for the shape, while the
Gaussian mixture formulation was used as a representation
of a kinematic state per particle. Given that in collaborative
fusion, information needs to be exchanged between vehicles,
and that the GM implementation requires less communication
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bandwidth than its SMC counterpart, we find approaches based
solely on GM better suited for the problem at hand.

In our approach, we use a detection algorithm prior to
tracking to extract features from the observed sensor data. These
features are then used as measurements during the GM-PHD
update. Our detection algorithm, explained in Section III-B, is
similar to the approach presented in [3]. However, to the best
of our knowledge, this approach has not been used in the RFS
framework so far.

Two major problems related to collaborative fusion are
temporal and spatial alignment [13]. Temporal alignment
deals with variable delays of wireless communication links.
Authors of [14] report that the typical delay of 802.11p
wireless communication protocol is in the order of 100-150 ms.
Consequently, variables received through communication may
not represent faithfully the state of objects at the time they were
received. Ideally, vehicle receiving observations should help to
predict the evolution of the objects’ state between the original
measurement time and that of reception. This is obviously
more difficult if raw measurements are communicated instead
of tracks. Moreover, spatial alignment considers differences in
coordinate systems of the sending and receiving vehicles. The
difficulty here lies in the uncertainty of sending and receiving
vehicle locations.

When using a PHD filter for tracking, communicating tracks
is reduced to communicating the PHD intensities. A method for
fusing PHD intensity functions is given in [15]. A distributed
fusion of SMC-CPHD filters via exponential mixture densities
(EMD) has been presented by Uney et al. in [16]. Battistelli et al.
used EMD for distributed fusion of GM-CPHD densities [17].
In all three works, it has been assumed that all PHD filters work
in the same domain, i.e., that all agents share a common FOV
in which targets are sensed. This is a very limiting assumption
for the application of aforementioned methods in the field of
(moving) vehicles.

In this paper we address the problem of collaborative
object tracking. Specifically, we focus on tracking of cars (and
not vehicles in general, such as trucks or bicycles). Multiple
cars are equipped with sensors and track other cars that are
located in their respective FOVs. Cars have the ability to
cooperate, i.e., share and fuse object estimates among each
other. The contributions of our paper are two-fold. Firstly, we
propose a complete method for vehicle tracking based on the
GM-PHD filter and a car detection model that takes the car
shape into account. Secondly, we present a general method for
collaborative fusion of GM-PHD densities, in which vehicles’
FOVs do not need to overlap. Our approach enables extending
the FOV of a single vehicle beyond the limits of its sensors by
using communication, and decreasing uncertainty of estimation
where a target is observed by multiple vehicles.

II. COLLABORATIVE GM-PHD FILTER

To tackle the problem of collaborative multi-object tracking,
we propose a Collaborative GM-PHD (C-GM-PHD) filter. It
extends the GM-PHD filter from [6] with the fusion block,
that has the ability to fuse PHD intensities coming from other
GM-PHD or C-GM-PHD filters with its own PHD intensity,
therefore increasing its estimation confidence and extending its
FOV. The concept is illustrated in Fig. 1.
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Fig. 1. Block diagram of C-GM-PHD steps. It fuses the intensity received
from a GM-PHD (or C-GM-PHD) filter, if available.

Assume that the posterior intensity at time k − 1 is a
Gaussian mixture of Jk−1 components with weights wk−1,
means mk−1 and covariances Pk−1 of the form

vk−1(x) =

Jk−1∑
i=1

w
(i)
k−1N (x;m

(i)
k−1, P

(i)
k−1) (1)

In order to compute the posterior vk(x), the C-GM-PHD filter
contains five fundamental steps, as described below. While steps
1), 2), 3), and 5) are taken from [6], step 4) is our contribution
towards the C-GM-PHD filter.

1) Prediction: The predicted intensity for time k is also a
Gaussian mixture
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(j)
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where γk(x) is the birth intensity with Jγ,k components given
by

γk(x) =

Jγ,k∑
i=1

w
(i)
γ,kN (x;m

(i)
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(i)
γ,k) (3)

and pS,k(m
(j)
k|k−1) is the probability of survival of Gaussian

component j at time k. Note that, for simplicity, we do not
include spawning of targets in our filter implementation.

The predicted mean and covariance of estimated GM
components can be computed using any Bayesian estimator. In
our work we use an Unscented Kalman Filter (UKF):

mk|k−1 =

2Λ∑
i=0

Υ(i)χ
(i)

k|k−1
(4)
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where χ(i)
k|k−1 is a sigma point computed by the Unscented

Transform and Υ(i) its associated weight. The number of state
dimensions is denoted by Λ, and the total number of sigma
points used by UKF is 2Λ + 1.

2) Update: For a set of measurements Zk, the update step
yields a posterior intensity given by:
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Jk−1∑
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The parameters used in the update step are the clutter level
κk(z), the probability of detection pD,k(m

(i)
k|k−1) dependent on

the mean of the Gaussian component i, the observation model
Hk and the observation noise covariance Rk.

3) Pruning and Merging: After the update step, the number
of Gaussian components increases quadratically with the
number of measurements. It is therefore necessary to limit
the number of Gaussians, as to keep the problem tractable. A
good approximation of the Gaussian mixture posterior intensity
can be obtained by truncating components with weak weights.
In other words, only a set containing Gaussian components
I = {i = 1, . . . , Jk|w(i)

k > Tp} with weights higher than a
certain pruning threshold Tp are kept.

Furthermore, all Gaussian components that are close to
each other can be approximated by a single Gaussian. This
is done by selecting a Gaussian component with a highest
weight, and finding all Gaussians whose mean is within the
Mahalanobis distance U from the selected Gaussian. This yields
a set L = {i ∈ I|(m(i)

k −m
(j)
k )>(P
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(j)
k ) ≤ U}

of Gaussian components that are merged as follows:
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4) Fusion: After information (in the form of the GM-PHD
intensity) has been received from the collaborative vehicle C
over the communication link, it needs to be fused with the
local intensity of the ego vehicle E .

The first step is to transform the intensity from the collab-
orative vechicle’s coordinate frame to the ego vehicle-centered
frame. However, the transformation between the two frames
is not exactly known, due to the pose uncertainty of the
two vehicles. Hence, we will refer to it as an approximate
transformation. Approximate transformations [18] allow for
calculating the nominal location and associated error of any
object relative to any other object. In Fig. 2 we first describe
the coordinates xWNC of a non-collaborative vehicle NC (target)
with respect to the world reference frame W , by carrying out
transformations from W to the collaborative vehicle frame
C (xWC ) and from the frame of C to the target (xCNC). If the
explicit transformation is given by a vector function

xWNC = f(xWC ,x
C
NC) (15)

W

Fig. 2. A sequence of approximate transformations. The transformation from
the world frame W to the collaborative vehicle frame C is denoted by xWC .
Collaborative vehicle tracks a target NC in its own frame; the target’s position
is defined by the transformation xCNC . The location of the tracked target can
be expressed in the world frame using the transformation xWNC = xWC +xCNC .
The transformation xENC can be obtained as xEW +xWNC , where xEW = −xWE .
Reference frames other than W are omitted for clarity.

and the vector function is approximated by a first-order Taylor
series expansion about the means of the variables, the mean
value of the approximate transformation is obtained by applying
the function to variable means, i.e., x̂WNC = f(x̂WC , x̂

C
NC). The

covariance matrix of this transformation is

P3 = J

(
P1 0

0 P2

)
J> = HP1H

> +KP2K
> (16)

where P1 and P2 are respectively covariances of transformations
xWC and xCNC , and J is the Jacobian of the transformation

J =

(
∂f

∂xWC

∣∣∣∣ ∂f

∂xCNC

)
= [H|K] (17)

Transformation xEW (see Fig. 2) is obtained by reversing the
transformation from W to E (xWE ), and the covariance matrix
for the reversed transformation (e.g., P ′) is estimated from the
given covariance matrix of the transformation xWE (e.g., matrix
P ) as

P ′ = R · P ·R> (18)

where R is the Jacobian of the reversed transformation
equations. Finally, the transformation from E to the target (xENC)
and its covariance matrix are obtained using the transformations
xEW and xWNC , similarly as in the case of the transformation xWNC
being obtained from the transformations xWC and xCNC .

We use the above method to perform coordinate transfor-
mations. Once the means and covariances of all Gaussians are
expressed in the local reference frame of the ego vehicle, they
can be fused with the local C-GM-PHD intensity.

Optimal (Bayesian) fusion techniques require statistically
independent information, but this assumption does not hold
if multiple sources are exchanging information between each
other. If the common information across the sources is not
known and cannot be canceled out, optimal fusion would lead
to over-confidence [17]. Covariance Intersection (CI) [19] is
a conservative method for fusing two Gaussian distributions,
whose cross-correlation is unknown. CI is known to estimate the
fused uncertainty that will neither be too small (over-confidence)
nor too large (under-confidence). In [20], Mahler proposed a
generalized method for fusion of multi-object functions, called
Generalized Covariance Intersection (GCI). It is shown in [15]



that the location density of the two fused GM-PHD posteriors
becomes

vW (x) =
vW

1 (x)v1−W
2 (x)∫

vW
1 (y)v1−W

2 (y)dy
(19)

where v1 and v2 are the two individual GM-PHD posterior
intensities and 0 ≤ W ≤ 1 is a fusion parameter.

Given that posterior intensities are Gaussian Mixture Mod-
els, the following approximation of the Exponential Gaussian
Mixture is used in order to preserve the GM form of the location
PDF [17], [21]:[

Jk∑
j=1

wjN (x;mj , Pj)

]W
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[wjN (x;mj , Pj)]
W

=

Jk∑
j=1

wW
j

[det(2πPjW
−1)]

1
2

[det(2πPj)]
W
2

N (x,mj , Pj/W ) (20)

Using (20), GCI fusion reduces to applying CI to each pair
of Gaussian components from v1 and v2 in turn, resulting in
the total number of Jk(v1)× Jk(v2) components in the fused
intensity.

The aforementioned approach was developed for fusion of
sensors whose FOVs overlap completely, and it does not work
well in the general case, when the domains over which GMs
are defined are not the same (i.e., when the FOVs of different
sensors do not entirely overlap). It is evident that GCI assigns
significant weight only to components located in the common
FOV of multiple sensors.

Our fusion algorithm is given in Algorithm I. We apply CI
only to Gaussian components that are close to each other (lines
5-17), while keeping the rest of Gaussian components intact
(lines 19-23). Closeness of Gaussian components is expressed
through Mahalanobis distance with the threshold UF (line 7).
The cardinality of the fused set is computed as the weighted
cardinality of the two initial sets (line 18). After fusing, we
merge the components that are close to each other, similar to
Sec. II-3. This approach enables us to have the same fusion
experience in the common FOV of the two sensors as when
GCI is used, while at the same time keeping track of all the
targets that are in the FOV of only one sensor. We note that
the accuracy of vehicles’ pose plays an important role in the
sensor fusion step.

5) Extraction: The extraction of multiple-target state esti-
mates is straightforward from the GM representation of RFS
intensity. According to [6], means of Gaussians that have
weights greater than some threshold Te (e.g., Te > 0.5) are
extracted and represent the most likely estimates.

III. COLLABORATIVE CAR TRACKING

Section II shows a general method that can be applied to
tracking of any kind of object using any sensor modality. In
this section, we provide additional details and models that we
use to perform tracking of cars using lidars.

A. Kinematic state and motion model

Since in this paper we focus on car tracking, we can afford
to use a rectangular model for representing targets, whose

ALGORITHM I. FUSION ALGORITHM

Require: {m(i)
1 , P

(i)
1 , w

(i)
1 }

N1
i=1

, {m(j)
2 , P
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2 , w

(j)
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, UF ,W
1: IF = JF = m = ∅
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15: end if
16: end for
17: end for
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20: m12 = m12 ∪m(i)

1 ∪m
(j)
2
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2
23: end for
24: return {m(n)

12 , P
(n)
12 , w

(n)
12 }

N12
n=1

state space is a combination of kinematic and shape parametric
variables

x = [x, y, ν, θ, ω, L,W ]> (21)

where x and y are the Euclidean coordinates of the center of the
rectangle, ν is the speed, θ denotes the heading angle and ω is
the turn rate. Length and width of the rectangle are denoted by
L and W , respectively. For state propagation we have selected
a constant turn rate and velocity (CTRV) motion model, in
literature also known as coordinated turn with polar velocity
(see for example [22]–[24]), which we have augmented with
object dimensions, assumed to be constant. The dynamic state
equation is given by

xk+1 = f(xk) +G(xk)ξk (22)

where

f(x) =



x+
(

2ν
ω

)
sin
(
ωt
2

)
cos
(
θ + ωt

2

)
y +

(
2ν
ω

)
sin
(
ωt
2

)
sin
(
θ + ωt

2

)
ν

θ + ωt
ω
L
W


(23)

G =

[
t2

2
cos(θ) t2

2
sin(θ) t 0 0 0 0

0 0 0 t2

2
t 0 0

]>
(24)

ξ =
[
a α

]>
=
[
dv
dt

dω
dt

]>
(25)

Input noise on linear and rotation acceleration a and α are
threated as uncorrelated random variables with zero mean and
standard deviations σa m/s2 and σα rad/s2, and t represents
time.



ALGORITHM II. OBJECT DETECTION ALGORITHM

Require: {[r(i), β(i)]>, R
(i)

r,β
}Npts
i=1

{set of range & bearing measurement points}
1: for each i do {augment points with Cartesian coordinates}
2: ([x(i), y(i)]>) = Polar-to-Cartesian([r(i), β(i)]>)
3: end for
4: clusters = DBSCAN([x, y]>)
5: for each cluster in clusters do
6: Fit a line
7: Fit a corner (corner point is point with largest distance to the line connecting first

and last measurement point)
8: Choose a fit (line or corner) with smaller RMS error
9: Fit a rectangle (with constant L,W ) to a chosen line/corner

10: Extract rectangle features x, y, θ
11: Construct measurement covariance Rx,y,θ
12: end for
13: return {[x(j), y(j), θ(j)]>, R(j)

x,y}
Nobj
j=1

{set of object observations}

B. Measurement Model

At each time step, a lidar returns a set of measurement points
(a point cloud). Each point is defined in polar coordinates in 2D
(using range r and bearing β), and the uncertainty is expressed
through the covariance matrix R =

[
σr 0
0 σβ

]
. It is assumed that

range and bearing measurements are mutually independent. The
point cloud is preprocessed using an object detection algorithm
(Algorithm II) in order to obtain measurements of a form
z = [x, y, θ]>, where one measurement corresponds to what is
believed to be one object (x and y represent the center of the
object rectangle, and θ its orientation). The PHD intensity is
updated using the UKF and object measurements z.

Object detection is accomplished in several steps: (i) conver-
sion of measurement points from polar to Cartesian coordinates,
(ii) clustering using the DBSCAN algorithm [25], while
ignoring clusters with less than two points, (iii) line and corner
fitting to each of the clusters, and (iv) rectangle fitting and
feature point extraction. A processed measurement contains
the center and orientation of one rectangle. The measurement
noise (including the noise of the detection algorithm) in
the observation space [x, y, θ]> is evaluated empirically in
simulation using object ground truth data.

Measurements of rectangle center are directly used to update
x and y variables of the state vector x. The rectangle orientation
has a π rad ambiguity (from a static lidar scan one cannot
determine object heading but only its orientation). Therefore,
before updating the heading θx in the state vector, we adapt the
orientation measurement θz such that the difference between
the orientation measurement and the state heading is wrapped
to the interval [−π2 ,

π
2 ]:

δ = mod (θz − θx +
π

2
, π)− π

2
θz = θx + δ

(26)

C. Occlusion and FOV Model

The aim of the occlusion and FOV model is to enable
tracking of objects that are temporarily occluded or are located
at the boundaries of the sensing FOV. This is achieved by
setting the probability of detection pD,k(m

(i)
k|k−1) to a low

value for targets that are not likely to be detected by a sensor.
If this is not performed, the C-GM-PHD filter would quickly
decrease weights of those targets and discard them.

We adapt the occlusion model of Granstrom et al. [26]
by verifying occlusions for the two rectangle corners (with

ALGORITHM III. OCCLUSION AND FOV MODEL

Require: Object of interest x, set of all object estimates {x̂(i)}Ni=1 with weights w(i),
sensor range rs and FOV βs

1: Gaussian kernel: g(x;µ, σ) = 0.5 exp(−((x− µ)/σ)2)
2: pD = 0, σrs = 1m, σβs = 0.25deg, σβ = 1.5deg
3: Compute range and bearing to object corners: rj , βj , j = 1, 2, 3, 4
4: Minimum/maximum bearings: j− = argminj βj ; j+ = argmaxj βj
5: Mean range: r+− = 0.5(rj+ + rj− )

6: Object at the boundary of the FOV:
7: if −βS/2 ≤ βj− ≤ βS/2 then
8: pD = pD + (0.5− g(βj− ;−βs/2, σβs )− g(βj− ; βs/2, σβs ))

9: end if
10: if −βS/2 ≤ βj+ ≤ βS/2 then
11: pD = pD + (0.5− g(βj+ ;−βs/2, σβs )− g(βj+ ; βs/2, σβs ))

12: end if
13: Enforce maximum probability of detection: pD = min{pD, p

max
D }

14: if r+− ≥ rS then
15: pD = 0
16: else
17: pD = pD − 2g(r+−; rs, σrs )

18: end if
19: Object occluded:
20: for i = 1, . . . , N do
21: Range/bearing to corners of estimate: r̂(i)

k
, β̂

(i)

k
, k = 1, 2, 3, 4

22: Minimum/maximum bearings: k− = argmink β̂k, k+ = argmaxk β̂k
23: Mean range: r̂+− = 0.5(r̂

(i)

k+
+ r̂

(i)

k−
)

24: if r̂+− < r+− and β̂(i)

k−
≤ βj− ≤ β̂

(i)

k+
then

25: pD = pD − (0.5− g(βj− ; β̂
(i)

k−
, σβ)− g(βj− ; β̂

(i)

k+
, σβ))

26: end if
27: if r̂+− < r+− and β̂(i)

k−
≤ βj+ ≤ β̂

(i)

k+
then

28: pD = pD − (0.5− g(βj+ ; β̂
(i)

k−
, σβ)− g(βj+ ; β̂

(i)

k+
, σβ))

29: end if
30: Enforce minimum probability of detection: pD = max{pD, p

min
D }

31: end for
32: return Probability of detection pD for object of interest

the smallest and the largest bearing angle), and augment it
with FOV verification. Occlusions are verified against all other
objects that are estimated to be in-between the sensor and
the object of interest. The decrease in probability of detection
is proportional to the weight of the estimate. One occluded
corner decreases pD by maximum 0.5. Gaussian kernels are
used to smooth the transition from visible to occluded area.
To keep track of targets that are outside of a sensor’s FOV
(through collaboration), we place the Gaussian kernels along
the boundary of the sensor’s FOV. They decrease pD for targets
that are at the boundary or outside of the FOV. The algorithm
is described in Algorithm III.

IV. EXPERIMENTS

Experiments are performed in Webots [27], a submicro-
scopic high-fidelity robotic simulator that we have recently
updated with a number of automotive features1. We use
simulated Citroën C-ZERO cars that are created using a CAD
model of the real C-ZERO and calibrated using the real car.
Each car used for sensing is equipped with a front-facing
Ibeo LUX lidar, a GNSS device, a compass and a wireless
communication device. Resolution, accuracy, range, and other
sensors’ characteristics are calibrated using sensors’ data sheets.
This setup allows us to reproduce the real world realistically.
Fig. 3 shows a screenshot of our simulation environment and
simulated cars and sensors.

Our dataset contains the data we collected during 20
distinctive simulation runs. In each run, vehicles ran an

1See http://disal.epfl.ch/RO2IVSim



open-loop controller following pre-defined trajectories. Actuator
and sensor (e.g., lidar) noise contribute to the randomness of
the generated sensing data.

We then run the proposed C-GM-PHD filter in Matlab,
feeding it with measurements from the dataset. We vary the
localization accuracy by adding Gaussian noise with zero mean
and standard deviation (SD) of σl ∈ {0, 0.5, 1} to outputs of
GNSS and compass devices (in m and deg, respectively). We
also vary the communication rate relatively to the sensing rate.
In particular, we consider T ∈ {1, 2, 5}, with a communication
rate of T = n meaning that information is exchanged between
cars each n samplings of the lidars. The lidar sampling rate is
instead constant (80 ms) and corresponds to a simulation step
in Webots. For the sake of simplicity, there is no package loss
and no communication delay in our current implementation (but
dealing with communication delays is straightforward when
tracks and motion models are shared).

The tracking parameters were the same in all runs. The
maximum number of Gaussian components per filter Jmax is
limited to 30. The birth model for the GM-PHD filter is a
sum of eight Gaussian components with weight 0.001 located
around the sensory FOV boundary. The birth speed is 8 m/s, the
heading is normal to the FOV boundary with direction towards
inside of the FOV, and the turn rate is set to 0.025 rad/s. The SD
for a birth component is 50 m for the lateral and 30 m for the
longitudinal position, 6 m/s for the speed, π rad for the heading,
and 0.2 rad/s for the turn rate. A new target entering the sensing
FOV is very likely to be contained within one SD from one
of the birth component means. The SD for the noise in the
motion model is set to σa = 1 m/s2 and σα = 0.1 rad/s2. The
measurement noise is determined empirically and is modeled as
a Gaussian with SD σx = 2 m, σy = 2 m, and σθ = 0.78 rad.
The clutter model uses a Poisson distribution with an expected
cardinality of 10 measurements per sensor surveillance area.
The merging parameter U = 6 and a Gaussian component is
pruned if its weight is less than Tp = 10−5. The extraction
threshold Te is set to 0.5. The fusion distance parameter UF
is empirically set to 50. The Ibeo LUX lidar has a FOV of
110 deg and a range of 200 m. The probability of survival in
the joint FOV is set to 0.99. The probabilities of detection are
set as follows: pmaxD = 0.98 and pminD = 0.02. The shape of
the object is assumed to be rectangular, with length of 3.5 m
and width of 1.5 m.

The literature suggests optimization methods for choosing
a good value for the CI fusion weight W [16], as well as
approximate solutions based on the fused covariance trace or de-
terminant minimization [28]. However, Uney et al. [29] suggest
that fixing W at 0.5 produces near optimal results on average.
Therefore, the value for W is set to 0.5 in our experiments.

A. Scenarios2

The first scenario includes one stationary ego (E), one
stationary collaborative (C), and three moving non-collaborative
cars (NCi, i ∈ {1, 2, 3}) in an open space. Two sensing cars
are sufficient to showcase the proposed method, although the
method supports multiple sensing cars. Cars E and C have
a forward-facing lidar, localization sensors (a GNSS and a

2A video showing the two scenarios can be viewed at
http://disal.epfl.ch/NetworkedIV

Fig. 3. A screenshot from the Webots simulator. A Citroën C-ZERO car
with an Ibeo LUX lidar in the front (left) and a road segment scenario with
multiple cars (right).
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Fig. 4. Ground truth trajectories shown in the local frame of E . Time is color
coded, being black at 0 s and orange at 80 s. Cars NC1 and NC2 move
on a straight line, while NC3 moves with rotational motion. Cars E and C
and their fields of view are shown in yellow and gray, respectively. Note: car
rectangles are scaled up 3x for visibility reasons.

compass), and a wireless communication device on-board. Car
C sends its PHD intensity augmented by its own state to E . NC
cars do not have any sensors and do not share any information.
Poses and trajectories of cars are described in Fig. 4.

The second scenario includes E , C and seven NC cars
that are driving on a straight road segment. Due to limited
space, we provide results for the first scenario only, which is
more general and is valid for most real-world situations. Both
scenarios are shown in the accompanying video. Given that
this paper focuses on car tracking, the scenarios contain no
other objects. Tracking is performed in the local frame of E .

B. Results

We evaluate the performance of the C-GM-PHD filter by
comparing its output to the ground truth data. For multi-object
performance evaluation we use the Optimal SubPattern As-
signment (OSPA) metric [30]. OSPA is comprised of two
components, the first accounting for localization and the second
for cardinality errors of the estimates. We choose the sensitivity
of the metric in penalizing estimated position p = 2, and the
cut-off parameter for cardinality errors penalties c = 60. The
distance metric in OSPA is the Euclidean distance between
estimated and ground truth position.

Fig. 5 displays the OSPA error for a single run of
C-GM-PHD filter, for σl = 0 and T = 1. Fig. 6 shows the
localization and cardinality OSPA components. The target set
cardinality was correctly estimated 91% of time. Short periods
of wrong cardinality estimation, as shown in Fig. 6, are the
result of the filter delay (multiple consecutive observations of a
new object are needed for the filter to give birth to a new target),
transitions between the FOV of E and C vehicles, and occlusions.
When a target goes from the FOV of only one filter to the
common FOV, the C-GM-PHD filter might lose track of it for a
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Fig. 5. OSPA distance versus time for a single run.
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Fig. 6. Separate OSPA components for a single run. (Top) localization
component versus time; (Bottom) cardinality component versus time.

short moment. This is due to fusing two Gaussian components,
one with w ≈ 1 and the second one with a low weight (e.g.,
target in the birth phase). For a chosen value of W = 0.5, CI
gives equal weights to the two Gaussian components, hence the
weight of the fused component may get lower than the extraction
threshold Te = 0.5. Notably, an optimization of W is needed
to correctly tackle this issue. The occlusion and FOV model
presented in Sec. III-C is dependent on the targets’ position
estimate error, and it happens that a detectable target is assigned
low pD or vice-versa. This can as well happen when the target is
near to the boundaries of the FOV. Nevertheless, it is important
to note that all wrong cardinality estimates represent false
negatives, which is desirable when driver assistance systems
are considered. The DBSCAN clustering algorithm discards all
clusters with less than two measurements. In cases when two
or more clutter measurements fall next to each other, the PHD
filter successfully filters them out. Statistics over 20 runs for
all combinations of σl and T is given in Fig. 7. As expected,
OSPA error increases with localization error and decreases with
higher communication rate.

The estimated position of car NC1 is shown in Fig. 8,
together with its associated uncertainty, for σl = 1 and
T = 5. Uncertainty is notably higher at around t = 10 s,
when NC1 was occluded and therefore no measurement-based
corrections were applied. After t = 30 s, NC1 leaves the FOV
of car E , and is thus only observable by car C. The estimated
position uncertainty is significantly higher in this region due
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Fig. 7. OSPA statistics for 20 runs, for various values of localization (GNSS
and compass) white noise standard deviation σl, and communication rate T
parameters. GP, MP, BP stand for good, medium and bad positioning, i.e.,
σl = 0, 0.5 and 1, respectively. HCR, MCR and LCR stand for high, medium
and low communication rate, i.e., T = 1, 2 and 5, respectively.
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Fig. 8. The estimated trajectory of target NC1 with associated uncertainty,
for a single run with parameters σl = 1 and T = 5. For periods in which the
target is lost (e.g., at around t = 32 s), the estimated trajectory is not drawn,
whereas the uncertainty is interpolated.

to localization uncertainties of cars C and E , as expected.

The performance of the C-GM-PHD filter is further com-
pared to the performance of the non-collaborative GM-PHD
filter, and the result is shown in Fig. 9. A fair comparison can
only be done in the FOV of E (because a non-collaborative filter
does not track objects outside of this area). Thus, ground truth
targets are considered only in this region, and the C-GM-PHD
filter is modified to perform the collaborative fusion only if
targets are found in the FOV of E . We observe that, thanks
to collaboration, the C-GM-PHD filter needs less time to start
tracking the first target, C. With the exception of two peaks
(moments when the C-GM-PHD briefly loses targets), the
C-GM-PHD filter performs consistently better or equal than
its non-collaborative version. The total tracking time of all
objects is listed in Table I. We can observe the added value of
the extended FOV and filter reactiveness that is offered by the
C-GM-PHD filter.

V. CONCLUSION

We have presented a complete approach for tracking
multiple vehicles using lidars, based on the GM-PHD filter.
Moreover, we have proposed a general approach for fusion
of GM-PHD intensities whose definition domains do not
completely overlap. The two contributions together form a
novel C-GM-PHD filter, that is capable of tracking cars in
the FOV of its ego sensor, as well as tracking targets outside
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Fig. 9. Difference between a non-collaborative GM-PHD filter and a
C-GM-PHD filter expressed using OSPA. Red line is a marker at zero.

TABLE I. TOTAL TRACKING TIME PER TARGET

C NC1 NC2 NC3
GM-PHD 78.7 s 24.1 s 18.6 s 33.5 s
C-GM-PHD 79.9 s 37.9 s 47.3 s 53.5 s

of its FOV by using communication as a remote sensor. We
exemplify the method using cars and one lidar per car. The
approach is evaluated in simulation and it shows promising
results: most of the time, a C-GM-PHD filter yields a more
accurate estimate than its non-collaborative version, with the
added value that the ego vehicle is no longer limited to tracking
targets that are in its FOV.

To further improve the performance of the proposed
C-GM-PHD filter, a GCI weight optimization for the Poisson
target cardinality will be investigated. Moreover, using a
cardinalized PHD filter could improve cardinality estimates, as
it would drop the assumption that the cardinality is Poisson
distributed. To further validate the proposed approach, we
plan to use real sensors, real GNSS devices, and real Citroën
C-ZERO cars, and compare the results with the simulation. We
will consider in the future a generalization of our approach for
more complex scenarios including pedestrians, trees, etc.
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