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Abstract

Multiple target tracking concerns the estimation of an unknown and time-varying

number of objects (targets) as they dynamically evolve over time from a sequence

of measurements obtained from sensors at discrete time intervals. In the Bayesian

filtering framework the estimation problem incorporates natural phenomena such

as false measurements and target birth/death. Though theoretically optimal, the

generally intractable Bayesian filter requires suitable approximations. This thesis

is particularly motivated by a first-order moment approximation known as the

Probability Hypothesis Density (PHD) filter.

The emphasis in this thesis is on the further development of the PHD filter for

handling more advanced target tracking problems, principally involving multiple

group and extended targets. A group target is regarded as a collection of targets

that share a common motion or characteristic, while an extended target is regarded

as a target that potentially generates multiple measurements.

The main contributions are the derivations of the PHD filter for multiple group

and extended target tracking problems and their subsequent closed-form solutions.

The proposed algorithms are applied in simulated scenarios and their estimate

results demonstrate that accurate tracking performance is attainable for certain

group/extended target tracking problems. The performance is further analysed

with the use of suitable metrics.
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Chapter 1

Introduction

1.1 Motivation

The research area motivating the work documented in this thesis is that of target

tracking, which concerns the estimation of a dynamic target under surveillance

based on a noise corrupted sensor measurement. In a Bayesian filtering framework

the state representing the target and the measurement are regarded as random

variables, so that the target state is estimated recursively via its probability den-

sity. The extension to multiple target tracking is of particular interest, whereby the

state now represents a multi-target system and is regarded as a set-valued random

variable in the optimal Bayesian filtering framework. Specifically, multiple target

tracking concerns the joint estimation of an unknown and varying number of dy-

namic targets and their states. The multi-target estimation problem requires the

processing of multiple measurements, some of which may not be target generated

and referred to as false alarms or clutter. The origin of each measurement is subse-

quently unknown and some targets may not even generate a measurement, which

gives rise to detection uncertainty.

Sub-optimal filtering approaches to multiple target tracking are more favourable

in practice. Section 1.1.1 introduces one such approach, significant with regards to

this thesis, namely the Probability Hypothesis Density (PHD) filter, and reviews

some of its recent developments. To conclude the motivational section of this

chapter, two types of advanced multiple target tracking problems are introduced,

group target tracking in Section 1.1.2 and extended target tracking in Section 1.1.3.

1.1.1 Multiple target tracking with the PHD filter

Proposed by Mahler in [1], the PHD filter is an approximation to the multi-target

Bayesian filter that recursively propagates the first-order moment density, or in-

tensity, instead of the full probability density. The recursive equations in the PHD

filter account for natural phenomena such as target birth and death, as well as false

1



alarms and missed detections. The expected number of targets are uniquely de-

termined from the propagated intensities in the recursion such that the PHD filter

is also first-order in target number. This sub-optimal filter has been successfully

demonstrated in a number of applications, such as sonar [2, 3, 4], acoustics [5],

radar [6, 7, 8, 9, 10] and computer vision [11, 12].

The PHD filter has been shown to handle maneuvering targets as demonstrated

in [13, 14, 15, 16, 17, 18]. Specifically, in [13, 14], Punithakumar, Kirubarajan &

Sinha resolve dynamic model uncertainty by assuming multiple models for possible

motion modes and then combining the mode-dependent estimates in a similar man-

ner to that used in the interacting multiple model estimator [19]. Alternatively,

jump Markov system models have been utilised for tracking maneuvering targets

using the PHD filter as proposed by Pasha, Vo, et. al. [16, 17, 18].

The PHD filter is association free, i.e. the state estimates of the individual tar-

gets given by the PHD filter have no labels associated with them. This lack of

association renders the PHD filter unable to provide individual target track esti-

mates, which is potentially problematic in the event of target trajectories crossing

each other. Further development of the PHD filter to address this issue of track

labelling has thus been the consideration in [20, 21, 22, 23, 24, 25, 26, 27]. Early

attempts at incorporating data association with the PHD filter has been consid-

ered independently in [20] and [21]. Schemes presented by Panta, Vo, et. al. in

[21], and more recently [22], propose the use of the PHD filter to reduce the size

of the measurement sets on which data association techniques are applied. In con-

trast, a peak-to-track association is proposed by Lin, Bar-Shalom & Kirubarajan

[20], whereby associations are established between peaks of the intensity func-

tion in the PHD filter over two subsequent time intervals in order to construct

tracks. Examples of such track management schemes in practice can be found in

[23, 24, 25, 26, 27].

In many tracking problems, the measurements received from a sensor, such as

radar or sonar, often contain a signal strength (amplitude) along with position

observations. The strength of the signal from a target is typically stronger than

those from false alarms and provides a valuable source of information which can

be incorporated into the PHD filter, as proposed independently by Clark, Ristic,

et. al. [28] and Punithakumar, Kirubarajan & Sinha [29].

Most implementations of the PHD filter (see Chapter 2 for a description of

typical implementations) assume that it is known a priori where the new targets

are likely to appear. However, recent examples of multiple target tracking using the

PHD filter can be found in [30, 31, 32], when there is no a priori spatial information
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available on where new targets can appear. Motivated by the idea that targets are

more likely to appear around measurements, the use of a diffuse target birth model

is demonstrated by Houssineau & Laneuville [30] and Ristic, Clark & Vo [31, 32].

Specifically, in [31, 32], a new formulation of the PHD filter is presented which

distinguishes between persistent and newly appearing targets.

The core results for the recursive equations in the PHD filter [1] address only

single sensor scenarios. An approximation was proposed by Mahler [1, p. 1169]

to extend the results to multi-sensor scenarios, that involves performing the PHD

update iteratively for each set of measurements received from the multiple sensors,

and referred to as the iterated-corrector approximation. This approximation is

known to have a peculiarity, that changing the order each sensor’s measurements

are iterated, results in different update intensities. This was further investigated

by Nagappa & Clark in [33], where a multi-sensor scenario was considered in which

a single poor quality sensor (modelled with a low probability of detection) was

used in combination with good sensors. Theoretically rigorous formulae for the

multi-sensor PHD filter, though computationally intractable, can be derived as

shown for the two sensor case by Mahler in [34] and for any number of sensors by

Delande, Duflos et. al. in [35]. A simplification was also introduced in [35] that

took into account the sensors’ field-of-views, some of which may not overlap each

other, resulting in tractable solutions.

1.1.2 Group target tracking

A group target is considered to be a collection of individual targets, each with

dynamics that are no longer strictly independent of one another. Examples of

group targets include: a formation of vehicles/aircraft; a flock of migrating birds;

a shoal of fish, etc. Group target tracking, therefore, concerns the estimation

of a dynamic system that consists of an unknown number of groups each with

an unknown number of constituent targets. The estimation problem can present a

substantial theoretical and practical challenge which is due, in part, to the difficulty

that arises from processing measurements that are generated from the groups’

constituents rather than the groups themselves.

Most existing approaches that address the group target tracking problem as-

sume that the strong interdependencies observed between individual measurement

data are due to a group formation pattern, whereby the individual target dynam-

ics are superimposed on a common group effect. Such an approach was proposed

by Gordon & Salmond in [36], and later applied in [37], in a Bayesian filtering

framework where the state variable incorporates a vector representing the state of
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all individual targets in the group and a vector representing the ‘bulk’ behaviour

of the group. The number of targets in this application was considered to be con-

stant and known a priori. A further application of this approach is demonstrated

by Ristic, Arulampalam & Gordon in [38], where the ‘bulk’ vector describing the

common motion allows for translation, rotation and scaling of the group target.

A more general approach to group target tracking is considered by Mahler in

[39, 40], whereby a systematic statistical representation is proposed which provides

the foundation for a natural generalisation of the multi-target Bayesian filter to

group targets tracking problems. Furthermore, Mahler proposes approximation

strategies based on generalisations of the PHD which will be revisited in more

detail in this thesis (Chapter 3).

1.1.3 Extended target tracking

In extended target tracking, targets potentially produce more than one measure-

ment per time-step, which may occur in scenarios where targets are close to a

sensor, resulting in back-reflections. When back-reflections occur, the observation

of a target consists of multiple point detections. The collection of measurements

generated by each target can be modelled in such a way that they resemble a

cluster of points, an approach proposed by Gilholm, Salmond et. al. [41, 42] (see

Chapter 2 for details). However, the consideration of a structured arrangement of

target generated measurements allows for the possibility of estimating the extent

of targets, i.e. their shape and size (this consideration is formalised in Chapter 3

using the same statistical representation as for multiple group target systems).

Several approaches have been proposed in recent years for target extent esti-

mation. One such approach, introduced by Koch [43], employs the use of random

matrices whereby the extent of elliptical shaped targets are modelled by means of

a symmetric positive definite matrix and is assumed to follow an inverse Wishart

density. Further developed by Feldmann & Fränken [44, 45], regarding an ex-

tended target as a special case of a group target, the random matrices approach

was demonstrated on a simulated example involving a group formation consisting

of 5 individual targets travelling with constant velocity. An alternative approach

was proposed by Baum, Hanebeck, et. al. [46] for modelling an elliptic extent using

a so-called Random Hypersurface Model, previously introduced in [47] for arbi-

trary shapes and later developed for multiple extended targets [48] by the same

principal authors. A detailed comparison of the random matrices approach and

Random Hypersurface Model method is given in [49]. Both these approaches aug-

ment the target state into kinematic and extent parameter components. Such an
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augmented state is considered in [50], where an extension of the standard Bayesian

filter for single target tracking is proposed which bounds the target generated mea-

surements by a circular region. Finally, objects which are line shaped or curved

can be modelled using polynomials and tracked as extended targets, where the

state estimates consist of the polynomial coefficients, as proposed by Lundquist,

Orguner & Gustafsson [51] and applied to a road map estimation problem.

Methods based on the same mathematical foundation for which the multi-target

Bayesian filter is formalised and from which the PHD filter is derived, have also been

proposed by Granström, Lundquist & Orguner [52, 53] for estimating the extent. In

[52], an implementation of the PHD filter for non-standard (extended) targets (see

Chapter 2) is proposed, which involves calculating a likelihood function that relates

a set of measurements, potentially, to a target whose structure resembles that of a

rectangle or an ellipse. In [53], an augmented state representation of an extended

target is considered, that consists of linear and non-linear components. The PHD

filter is then applied for jointly estimating this target state and a set of measurement

generating points defined on the boundary of each target’s geometrically structured

shape.

1.2 Scope of Thesis

The PHD filter has been the subject of great interest in the tracking community and

proven to be applicable in a variety of different multiple target tracking scenarios, as

emphasised in Section 1.1.1. The scope of this thesis is in the further development

of the PHD filter for handling advanced multiple target systems, specifically those

involving multiple group and extended targets as described in Sections 1.1.2 and

1.1.3 respectively. The focus is on developing such extensions of the PHD filter for

the single sensor case only. This section provides an outline of the thesis’ structure,

along with the key contributions and related publications.

1.2.1 Organisation

Background material is provided in Chapter 2 which covers the notion of Bayesian

filtering for the estimation problem in the context target tracking and particularly

the fundamental theory behind the generalisation to multiple target problems. The

same mathematical concepts needed to formulate the multi-target Bayesian filter

are used in the derivation of the PHD filter, the resulting recursion for which is

presented in Chapter 2.

Chapter 3 focuses on the extension of the PHD filter to group and extended
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target tracking problems. Explicit formulae are derived for the recursive equations

of these PHD filter extensions and constitute the main results of this thesis. Though

the PHD filter results presented in Chapter 3 offer improved tractability over the

generalised Bayesian filter for group/extended target problems, there still remains

computational challenges in their potential implementations. Chapter 3 therefore

concludes with a discussion on such limitations and a review of various methods

available to address them.

Chapter 4 proposes a closed-form solution to the PHD filter for group targets

and demonstrates its efficiency via simulations, while Chapter 5 considers a special

case applicable to the PHD filter for extended targets. A direct application of

the subsequent closed-form solution presented in Chapter 5 is demonstrated on a

simulated example and its performance is assessed. An implementation of the PHD

filter for extended targets is also proposed in Chapter 5 which incorporates target

extent estimation with the addition of variable shape parameters.

The final chapter summarises the work presented in this thesis and discusses

current related research.

1.2.2 Contributions

This thesis contributes to the development of the PHD filter, specifically in multiple

group and extended target applications. The key original contributions are:

• The derivation of explicit formulae for the recursive equations in the PHD

filters for group and extended targets.

• The formulation of closed-form solutions for the respective PHD filters.

• The successful implementation of the closed-form solutions, demonstrated via

simulations.

• A novel implementation of the PHD filter for extended targets with estimable

extent shape parameters.

1.2.3 Publications

The following papers (listed in chronological order) have been published based on

the work presented in this thesis:

1. A. Swain and D. E. Clark, “First-moment filters for spatial independent clus-

ter processes”, in Proc. SPIE, vol. 7697, 2010.
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2. A. Swain and D. E. Clark, “Extended object filtering using spatial indepen-

dent cluster processes”, in 13th Int. Conf. on Information Fusion, (Edin-

burgh, UK), July 2010.

3. A. Swain and D. E. Clark, “Bayesian estimation of the intensity for indepen-

dent cluster point processes: an analytic solution”, Procedia Environmental

Sciences, (Special Issue: Spatial Statistics 2011, Mapping Global Change),

vol. 7, pp. 56–61, 2011.

4. A. Swain and D. E. Clark, “The single group PHD filter: an analytic so-

lution”, in 14th Int. Conf. on Information Fusion, (Chicago, Illinois, USA),

pp. 592–599, July 2011.

5. A. Swain and D. E. Clark, “The PHD filter for extended target tracking with

estimable extent shape parameters of varying size”, in 15th Int. Conf. on

Information Fusion, (Singapore), pp. 1111–1118, July 2012.
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Chapter 2

Background

The notion of Bayesian filtering is essential to the development of this thesis. Stan-

dard Bayesian filtering, applicable to single target tracking problems, concerns the

estimation of a random vector via its probability density given a sequence of mea-

surement vectors. The non-trivial extension to multiple target tracking problems

requires the notion of a random finite set and its probabilistic descriptor.

This chapter presents the random finite set formalism of the multiple target

tracking problem in a Bayesian filtering framework and provides the fundamental

basis for the focus of this thesis. Section 2.1 introduces the estimation problem in

the context of target tracking and the standard Bayesian filter. A brief overview

on the mathematical background of random finite sets is given in Section 2.2,

including probabilistic descriptions and a few useful instances. Section 2.3 presents

the formulation of the Bayesian filter for multiple target tracking in the random

finite set framework, and discusses its general intractability as well as common

approximations. The Probability Hypothesis Density (PHD) filter, a first-order

moment approximation to the generalised Bayesian filter, is presented in Section

2.4, along with the cardinalized variant. Finally, performance evaluation for single

and multiple target tracking is reviewed in Section 2.5.

2.1 Estimation and Target Tracking

Estimation is simply defined as the problem of estimating an unknown state x

from a noisy observation z. In the context of target tracking, the state is a vector

containing information about a target under surveillance such as its position and

velocity, while the observation, also a vector, is a noise corrupted sensor measure-

ment such as a radar return. In the Bayesian filtering framework, the state and

measurement are treated as random variables and the state is estimated via its

probability density as summarised in Section 2.1.1.
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2.1.1 Bayesian filtering

The following summary of the Bayesian filter considers the estimation problem in

discrete time. The time evolution of the state vector is defined by the dynamic

equation:

xk = fk(xk−1,vk−1), (2.1)

where fk is a function that transforms any given state vector xk−1 and process noise

vk−1 at time k− 1 into a new state vector x at time k. The vector vk−1 represents

the uncertainty of the target’s motion. This dynamic model can also be described,

probabilistically, by the Markov transition density fk|k−1(xk |xk−1). The relation

between the measurement and the state is defined by the measurement equation:

zk = hk(xk,wk), (2.2)

where hk is a function that transforms any given state vector xk and observation

noise wk at time k into a measurement vector zk. The vector wk represents the

observation error. This measurement model can also be described, probabilistically,

by the likelihood function gk(zk |xk). Note that the process and observation noise

are uncorrelated.

The Bayesian filter estimates the state vector recursively in time via the proba-

bility density pk(xk | z1:k) given a sequence of measurements vectors z1:k = z1, . . . , zk.

Suppose the prior density pk−1(xk−1 | z1:k−1) at time k− 1 is known, then the stan-

dard Bayesian filter recursion is given by the predicted and updated densities

pk|k−1(xk | z1:k−1) =

∫
fk|k−1(xk |xk−1) pk−1(xk−1 | z1:k−1) dxk−1, (2.3)

pk(xk | z1:k) =
gk(zk |xk) pk|k−1(xk | z1:k−1)∫
gk(zk |xk) pk|k−1(xk | z1:k−1) dxk

, (2.4)

and illustrated by the following diagram:

· · · → pk−1(xk−1 | z1:k−1)
prediction−−−−−−→ pk|k−1(xk | z1:k−1)

update−−−−→ pk(xk | z1:k)→ · · ·

Solutions to the Bayesian recursion vary, depending on certain dynamic and

measurement model specifications. A closed-form solution exists under linear Gaus-

sian model assumptions as shown in Section 2.1.2, while Section 2.1.3 discusses

non-linear approaches.
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2.1.2 Linear estimation with the Kalman filter

When the dynamic and measurement models are linear transformations with ad-

ditive Gaussian noise then the estimation problem given in the Bayesian filter has

a closed-form solution known as the Kalman filter [54, 55, 56]. Specifically, the

Kalman filter assumes the dynamic and measurement equations are given as

xk = Fk−1xk−1 + vk−1, (2.5)

zk = Hkxk + wk, (2.6)

where Fk−1 is a transition matrix, Hk is a projection matrix, while vk−1 and wk

are independent zero-mean Gaussian noise variables with covariances matrices Qk−1

and Rk respectively. Hence, the transition density and likelihood function are

fk|k−1(xk |xk−1) = N (xk ; Fk−1 xk−1,Qk−1) , (2.7)

gk(zk |xk) = N (zk ; Hk xk,Rk) , (2.8)

where N (· ; m,P) denotes a Gaussian density with mean and covariance m and P

respectively.

Under these assumptions, the Kalman filter recursion proceeds as follows. Given

the prior probability density is a Gaussian function of the form

pk−1(xk−1 | z1:k−1) = N (xk−1 ; mk−1,Pk−1) , (2.9)

the predicted probability density is also a Gaussian function of the form

pk|k−1(xk | z1:k) = N
(
xk ; mk|k−1,Pk|k−1

)
, (2.10)

where the corresponding mean and covariance are given by

mk|k−1 = Fk−1 mk−1, Pk|k−1 = Fk−1Pk−1F
T
k−1 + Qk−1, (2.11)

and subsequently the updated probability density is a Gaussian of the form

pk(xk | z1:k) = N (xk ; mk,Pk) , (2.12)

where the corresponding mean and covariance are given by

mk = mk|k−1 + Kk

(
zk −Hk mk|k−1

)
, Pk = (I−Kk Hk) Pk|k−1. (2.13)
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The matrix Kk is referred to as the Kalman gain and is given by

Kk = Pk|k−1H
T
k

(
Hk Pk|k−1 HT

k + Rk

)−1
. (2.14)

Essentially, given linear Gaussian dynamic and measurement models, the Kalman

filter propagates the probability density as a Gaussian function over time.

2.1.3 Non-linear estimation

The Kalman filter is not applicable when the dynamic and/or measurement models

are non-linear. For non-linear estimation problems, approximations are necessary.

A selected number of approximate methods are discussed here, further details of

which can be found, collectively, in [38].

One such method assumes the process and observation noise are still indepen-

dent zero-mean Gaussian variables and approximates the non-linear functions in

the dynamic and measurement equations by the first term in their Taylor series ex-

pansions. This approximate method is known as the extended Kalman filter (EKF)

[56] and it simply linearises the non-linear functions in the model equations so that

the Kalman filter can be applied.

Rather than approximating the non-linear functions in the model equations, an

alternative method known as the unscented Kalman filter (UKF) [57], approximates

the probability density propagated in the Bayesian filter with a Gaussian function

which is represented by a set of deterministically chosen sample points. As non-

linear approximations of the Kalman filter, the EKF and UKF both operate in the

framework of a Gaussian approximation for the probability density pk(xk | z1:k) so

that their implementation is simple.

Other approximate methods worth mentioning for non-linear estimation include

Gaussian sum filters and particle filters. Gaussian sum filters [58, 59] approximate

the probability density pk(xk | z1:k) with a Gaussian mixture (a weighted sum of

Gaussian functions, such that the weights sum to 1). Approximations of this type

are applicable when the probability density is multimodal, such as is applicable

for tracking a manoeuvring target. Particle filters [60] on the other hand perform

sequential Monte Carlo (SMC) estimation based on an approximate particle repre-

sentation of the probability density. The particles are random sample points, typ-

ically drawn from the transition density. Particle filters are very computationally

demanding and in practice are generally used when other methods for non-linear

estimation, such as the EKF and UKF, produce unsatisfactory results.
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2.1.4 Traditional multiple target tracking methods

Early development of multiple target tracking techniques combined correlation with

Kalman filtering theory [61, 62, 63, 64]. Correlation refers the process of determin-

ing a one-to-one assignment of targets and observations, based on the fundamental

assumption that each target generates at most one observation. The correlation

procedure consists of two stages and is performed in parallel with Kalman filtering

methods. The first stage in the correlation procedure is gating, used to deter-

mine which observations have potentially been generated by each target, given

the predicted target state estimates obtained from performing multiple Kalman

predictions, as illustrated in Figure 2.1.

Figure 2.1: An example of gating for two targets where their predicted positions
are indicated with black crosses.

The next step is to make final observation-to-target assignments and perform

multiple Kalman updates. In the case where a single observation is within the gate

of a single target, the assignment is trivial. However for closely spaced targets, as

shown in the example illustrated in Figure 2.2, the one-to-one assignment is less

trivial. Conflict situations arise when multiple observations fall within the same

gate (or gates) and when observations fall within the gates of more than one target.

The most common approach to this assignment problem is the nearest neighbour

Figure 2.2: An example of gating for two closely spaced targets.

approach which looks for unique pairings that minimises the total summed distance

between observations and their assigned targets. Two computationally efficient
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suboptimal solutions to this assignment problem based on the nearest neighbour

approach were reviewed by Blackman in [65] and shown to often produce differing

solutions to one another. Data association methods, discussed next, further develop

the concept of observation-to-target assignment.

The data association problem concerns the optimal assignment of observations

into tracks. Multiple hypothesis tracking (MHT) [62, 66] is a data association based

method that considers all possible combinations of such assignments (referred to

as hypotheses) for all observations recevied up to the current time step in order to

determine the most likely tracks. Alternatively the joint probabilistic data asso-

ciation (JPDA) method [64], an extension of probabilistic data association (PDA)

proposed by Bar-Shalom and Tse in [67] for tracking a single target in a cluttered

environment, uses joint association events and probabilities to avoid conflicting hy-

potheses in the presence of multiple targets. JPDA can be regarded as a special

case of MHT that does not require the storage of past observations nor multiple

hypotheses.

Data association methods suffer from the combinatorial growth in the number

of hypotheses with the number of observations and targets. For this reason JPDA

and MHT methods can not feasibly be considered for tracking scenarios that involve

dense target environments and will not be pursued further in this thesis. Instead

the remainder of this chapter focuses on association free methods based on the

theory of random finite sets.

2.2 Random Finite Sets

Fundamental to the formulation of the Bayesian filter for multiple target tracking,

is the idea of regarding states and observations as random finite sets. This section

reviews the theory behind random finite sets, which was introduced by Matheron

[68], in the context of integral geometry, and exploited by Mahler [69] for multiple

target tracking.

2.2.1 Definition and probabilistic descriptor

A random finite set (RFS) is simply a random variable that takes values as (un-

ordered) finite sets, i.e. a finite-set valued random variable. Essentially, a RFS

consists of a random number of constituent points (cardinality) and the points

themselves are random, distinct and unordered. Note that, since a RFS Ξ is with-

out ordering, an instance Ξ = X = {x1, . . . ,xn}, where the constituents x1, . . . ,xn

are distinct, is equivalently represented by n! random vectors in the augmented
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product space Xn = X× · · · × X by arbitrarily permuting x1, . . . ,xn ∈ X. For ex-

ample, consider the instance where n = 2 and X = Rd for d ≥ 1, i.e. X = {x1,x2}
where x1,x2 ∈ Rd. This instance can be equivalently represented by the two dif-

ferent random vectors
[
x1 x2

]T
and

[
x2 x1

]T
. The importance of this property is

shown in the following probabilistic description for a RFS.

Let C(X) be the class of closed subsets of X1. The probability density of a RFS

Ξ is the function pΞ(X) such that∫
S

pΞ(X) δX = Pr(Ξ ⊆ S), (2.15)

for all S ∈ C(X). Setting S = X gives∫
X

pΞ(X) δX = Pr(Ξ ⊆ X) = 1. (2.16)

Furthermore, since the number of constituents of X is unknown, the probability

Pr(Ξ ⊆ S) in equation (2.15) becomes

Pr(Ξ ⊆ S) =
∞∑
n=0

Pr(Ξ ⊆ S, |Ξ| = n)

=
∞∑
n=0

∫
Sn
pΞ(x1, . . . ,xn) dx1, . . . , dxn,

(2.17)

where pΞ(x1, . . . ,xn) denotes the joint probability density of the random vectors

x1, . . . ,xn ∈ X and Sn = S×· · ·×S denotes the product space for positive integer

n. Since the same finite set X = {x1, . . . ,xn} is obtained for all n! permutations

of x1, . . . ,xn, the probability assigned to X must be equally distributed among the

n! vector permutations. That is, the probability density of the finite set X is

pΞ(X) = pΞ({x1, . . . ,xn}) = n! pΞ(x1, . . . ,xn). (2.18)

The definition of a set integral follows immediately from equations (2.15), (2.17)

and (2.18).

2.2.2 Set integral

Given a real-valued function f(X) of a finite-set variable X, its integral over a

region S ⊆ X is

1A closed subset S ∈ C(X) is not strictly finite
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∫
S

f(X) δX :=
∞∑
n=0

1

n!

∫
Sn
f({x1, . . .xn}) dx1, . . . , dxn

= f(∅) +

∫
S

f({x}) dx +
1

2

∫
S×S

f({x1,x2}) dx1 dx2 + · · · .
(2.19)

Note that the set integral in equation (2.19) accounts for the random variability of

the number of constituents in X, hence the sum in (2.19) has, in general, an infinite

number of terms. Furthermore, the scaling factor 1/n! arises as a consequence of

the relation given in equation (2.18).

2.2.3 The point process theory equivalence

The key concepts presented so far in this section for random finite sets have an

equivalence in point process theory [70]. That is, any point process in which the

total number of points is finite with probability 1, is referred to as a finite point

process. Intuitively, such a point process is considered as a finite multi-set con-

sisting of random points, with possible repetition, i.e. Y = {y1, . . . ,yn} where the

constituent points y1, . . . ,yn are not distinct. The statistical behaviour of a finite

point process is characterised by Janossy densities [70, p. 137]. A finite point pro-

cess is simple if and only if its Janossy densities exist (i.e. are finite-value functions)

and vanish whenever yi = yj for some 1 ≤ i 6= j ≤ n (i.e are completely symmetric

in all arguments). A simple finite point process is therefore equivalent to a random

finite set and the Janossy densities actually coincide with the probability densities

pΞ({x1, . . .xn}) given in equation (2.18).

This relation between random finite sets and finite point processes was described

by Mahler in the context of multiple target tracking [69], having been theoretically

established by Ripley earlier in [71]. The decision whether to adopt one formalism

over the other is simply a matter of preference and the RFS formalism will be

maintained throughout this thesis hereafter. However, an important concept in

point process theory is of particular interest with regards to the scope of this thesis

and subject to further investigation in the next chapter.

2.2.4 Useful instances of random finite sets

A selected number of important RFS classes, which are commonly encountered in

filtering methods for multiple target tracking and frequently referred to hereafter,

are summarised below.
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Independent identically distributed clusters

An independent identically distributed (i.i.d.) cluster RFS Ξ on X, with instance

Ξ = X = {x1, . . . ,xn}, is uniquely characterised by its cardinality distribution

denoted by ρ(n) = Pr(|Ξ| = n) and probability density functions p(xi) for i =

1, . . . , n. The probability density of an i.i.d. cluster RFS Ξ is then written as

pΞ(X) = n! ρ(n)
n∏
i=1

p(xi). (2.20)

Poisson

A Poisson RFS Ξ on X is a particular type of i.i.d. cluster in which the cardinality

distribution is Poisson, i.e. ρ(n) = e−λ λn/n! with Poisson rate λ. The probability

density of a Poisson RFS Ξ is then written as

pΞ(X) = e−λ λn
n∏
i=1

p(xi) = e−λ
n∏
i=1

λ p(xi). (2.21)

A Poisson RFS Ξ is uniquely characterised by its intensity function denoted by

v(x) = λ p(x).

Bernoulli

A Bernoulli RFS Ξ on X has probability 1 − ρ of being empty and probability ρ

of consisting of only one element, which is distributed according to the probability

density p(·) defined on X. The probability density of a Bernoulli RFS Ξ is then

pΞ(X) =


1− ρ if X = ∅,

ρ p(x) if X = {x},

0 otherwise,

(2.22)

where ρ = Pr(|Ξ| = 1) can be interpreted as an existence probability. Thus in this

case, the cardinality distribution of RFS Ξ is Bernoulli with parameter ρ.

Multi-Bernoulli

A multi-Bernoulli RFS Ξ on X is a union of a fixed number of independent Bernoulli

RFS classes Ξ(i) with existence probability ρ(i) and probability density p(i) defined

on X for i = 1, . . . , N . That is Ξ = Ξ(1) ∪ · · · ∪ Ξ(N) and the probability density of

a multi-Bernoulli RFS Ξ is
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pΞ(X) =



N∏
i=1

(
1− ρ(i)

)
if X = ∅,

N∏
i=1

(
1− ρ(i)

) ∑
1≤i1 6=···6=in≤N

n∏
j=1

ρ(ij) p(ij)(xj)

1− ρ(ij)
if |X| = n ≤ N,

0 otherwise.

(2.23)

A multi-Bernoulli RFS is therefore completely described by the corresponding

multi-Bernoulli parameter set {ρ(i), p(i)}Ni=1.

2.3 Multiple Target Tracking using Random Finite Sets

The formulation of the Bayesian filter for multiple target tracking presented in this

section regards the unknown number of targets and their states as well as the col-

lection of measurements as random finite sets. Let Xk = {x1,k, . . . ,xn,k} denote the

multi-target set at time-step k, whose constituent target states x1,k, . . . ,xn,k ∈ Rdx

are vectors with known dimension dx. Further, let Zk = {z1,k, . . . , zm,k} denote

the measurement set at time-step k, whose constituent observation measurements

z1,k, . . . zm,k ∈ Rdz , received from multiple sensors, are vectors with known dimen-

sion dz.

The objective of multiple target tracking is to estimate the RFS Xk, i.e. its

cardinality |Xk| = n and constituent target states xi,k for i = 1, . . . , n, at each

time-step k given a sequence of measurement sets received up to time k, denoted

by Z1:k = Z1, . . . , Zk. In the Bayesian filtering framework, the multi-target RFS Xk

is estimated, as it evolves over time, via the posterior distribution pk(Xk |Z1:k). The

posterior distributions assume the probabilistic description given in Section 2.2, i.e.

Figure 2.3: Visualisation of the observed multi-target set evolution over two con-
secutive time-steps
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the probability density of a RFS p(X) (noting that the subscript Ξ is dropped for

simplicity and brevity). The time evolution of the observed multi-target set is

depicted over two consecutive time intervals in Figure 2.3.

The RFS framework naturally allows for the incorporation of target birth and

death, false measurements and detection uncertainty into the estimation problem

described above. Such occurrences can be incorporated into the dynamic and

measurement model as shown in the following two subsections.

2.3.1 Dynamic model

Multi-target dynamics involves a time-varying number of targets due to the appear-

ance of new targets (‘birth’) and/or the disappearance of existing targets (‘death’).

The time evolution of the multi-target RFS is described by another RFS which is

modelled as follows.

For a given multi-target RFS Xk−1 at time k − 1, the survival of each target

state xk−1 ∈ Xk−1 is modelled by the RFS

Ψk|k−1(xk−1) =

{xk} when the target survives,

∅ otherwise.
(2.24)

New targets at time k appear due to spontaneous births, which are modelled by

the RFS Γk. The time evolution of the multi-target RFS from time k − 1 to k,

depicted in Figure 2.4, is modelled by the RFS Xk which is given by the union of

the surviving targets and the spontaneous births, i.e.

Figure 2.4: Visualisation of the dynamic model
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Xk =

 ⋃
x∈Xk−1

Ψk|k−1(x)

 ∪ Γk. (2.25)

The RFSs constituting the union in equation (2.25) are assumed to be independent

of each other and the randomness of this multi-target evolution is captured in the

multi-target transition density fk|k−1(Xk |Xk−1).

2.3.2 Measurement model

The RFS measurement model accounts for detection uncertainty and false mea-

surements and is described as follows. For a given multi-target RFS Xk at time k,

the detection of each target state xk ∈ Xk is modelled by the following RFS

Θk(xk) =

{zk} when a target is detected,

∅ otherwise,
(2.26)

which is representative of most standard multiple target tracking problems where

each target generates no more than one measurement. Those measurements that

are not target generated are considered to be false measurements, or clutter, and

modelled by the RFS Kk. The collection of measurements, modelled by the RFS

Zk and depicted in Figure 2.5, is therefore given by the union of target generated

measurements and clutter, i.e.

Zk =

( ⋃
x∈Xk

Θk(x)

)
∪Kk. (2.27)

Figure 2.5: Visualisation of the measurement model
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The RFSs constituting the union in equation (2.27) are assumed to be independent

of each other and the randomness of the observations is captured in the multi-target

likelihood gk(Zk |Xk).

2.3.3 Bayesian filter

By modelling the multi-target state and the measurements as RFSs and given the

previously defined notions of the probability density of a RFS and the set integral,

the Bayesian filter for multiple target tracking is formulated as follows. Suppose

that the prior density pk−1(Xk−1 |Z1:k−1) is known, then the multi-target Bayesian

filter recursion is given by the predicted and updated probability densities

pk|k−1(Xk |Z1:k−1) =

∫
fk|k−1(Xk |Xk−1) pk−1(Xk−1 |Z1:k−1) δXk−1, (2.28)

pk(Xk |Z1:k) =
gk(Zk |Xk) pk|k−1(Xk |Z1:k−1)∫
gk(Zk |Xk) pk|k−1(Xk |Z1:k−1) δXk

. (2.29)

That is, the Bayesian filter for multiple target tracking propagates the probability

density of the multi-target RFS over time, given a sequence of measurement sets,

as depicted in the following diagram:

· · · → pk−1(Xk−1 |Z1:k−1)
prediction−−−−−−→ pk|k−1(Xk |Z1:k−1)

update−−−−→ pk(Xk |Z1:k)→ · · ·

In general, the multi-target Bayesian filter is intractable for a variable number

of targets due to the combinatorial nature of set integrals (see Section 2.2.2), the

computation of which is required in the recursive equations (2.28)-(2.29). None-the-

less, there exist several examples of the multi-target Bayesian filter having been

applied to a small number of targets [72, 73, 74, 75]. However, for applications

involving higher numbers of targets and/or measurements, approximations of the

filter are necessary.

2.3.4 Approximations to the Bayesian filter

In principle, the multi-target Bayesian filter recursion can be implemented us-

ing sequential Monte Carlo (SMC) techniques [76] for approximating the poste-

rior probability density pk(Xk |Z1:k) with a large number of weighted particles.

Such SMC methods are predominantly employed for the applications addressed in

[72, 73, 74, 75]. Suppose the number of targets, say n, is known, then a particle

representation of the multi-target Bayesian filter requires the order of n!Np oper-
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ations where Np is the number of particles used, which generally needs to be a

large number. Consequently, for large n also, SMC implementations via particle

representations alone can be impractical for applications of multi-target Bayesian

filtering, due to the combinatorial nature of the factor n!.

A more tractable approximation to the multi-target Bayesian filter was pro-

posed by Mahler in [69] using the multi-Bernoulli RFS and so called the Multi-

target Multi-Bernoulli (MeMBer) filter. Intuitively, the MeMBer filter propagates

the posterior probability density in time by propagating a finite but time-varying

number of target estimates, each characterised by the probability of existence and

the probability density of the current estimated target state, i.e. the parameter

set {ρ(i), p(i)}Ni=1 describing the multi-Bernoulli RFS (see Section 2.2.4). SMC im-

plementations of the MeMBer fiter can be found in [77, 78, 79], and a recent

modification of the MeMBer filter was proposed in [80] to incorporate unknown

clutter and sensor field-of-view models.

It has been analytically shown in [81], that the MeMBer filter suffers from

an over-estimation in the number of targets, a bias caused by the multi-Bernoulli

approximation in the update step and resulting in a high number of false tracks. A

novel multi-Bernoulli approximation was therefore proposed in [81, 82], called the

cardinality-balanced (CB-)MeMBer filter, that alleviates the bias problem. The

CB-MeMBer filter has recently been modified for the application of audio-visual

multiple target tracking [83].

It is, however, the earlier first-order approximations proposed by Mahler, the

Probability Hypothesis Density (PHD) filter [1] and, to a lesser extent, the cardi-

nalized PHD (CPHD) filter [84], that are of particular interest with regards to this

thesis. Such approximations to the mulit-target Bayesian filter, introduced in the

next section, alleviate the intractability of propagating full posterior probability

densities by instead propagating first-order moments which operate on the space

occupying a single target.

2.4 Probability Hypothesis Density Filtering

This section summarises the concept of a probability hypothesis density, presents

the recursion equations and describes its typical implementations, before briefly

introducing the cardinalized PHD filter. The extension of the PHD filter to a

non-standard target problem, specifically involving targets that generate multiple

measurements (known as extended targets), is also presented.
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2.4.1 The PHD filter recursion

The first-order moment density of a RFS Ξ is defined by the following expectation

vΞ(x) = E [δΞ(x)] =

∫
δX(x) pΞ(X) δX, (2.30)

where δX(x) = 0 if X = ∅ and, otherwise, δX(x) =
∑

w∈X δx(w) is a sum of Dirac

delta functions δx(w) concentrated at x ∈ X. It was shown by Mahler [69], that

equation (2.30) gives rise to the following formula

vΞ(x) =

∫
pΞ({x} ∪W ) δW =

∫
X3x

pΞ(X) δX. (2.31)

From the expression given in equations (2.30) and (2.31), the function vΞ : X→ R
can be interpreted as the density of targets at x and is so called the probability hy-

pothesis density (PHD) or intensity. The PHD is not a probability density though,

since the integral of vξ(x) in any region S ⊆ X gives the expected number of targets

of Ξ in that region, i.e. ∫
S

vΞ(x) dx = E [|Ξ ∩ S|] . (2.32)

Further details on Dirac delta functions, and the derivations of the expressions for

the first-order moment density of a RFS Ξ and its integral over S, can be found in

Appendix A.

The PHD filter [1] approximates the predicted and updated probability den-

sities pk|k−1(Xk) = pk|k−1(Xk |Z1:k−1) and pk(Xk) = pk(Xk |Z1:k) with the respec-

tive first-order moment densities, denoted by vk|k−1(xk) = vk|k−1(xk |Z1:k−1) and

vk(xk) = vk(xk |Z1:k), which are propagated over time as depicted in the following

diagram:

· · · −−−→ pk−1(Xk−1)
prediction−−−−−→ pk|k−1(Xk)

update−−−−→ pk(Xk) −−−→ · · ·
↓ ↓ ↓

· · · −−−→ vk−1(xk−1)
prediction−−−−−→ vk|k−1(xk)

update−−−−→ vk(xk) −−−→ · · ·

Then, based on the following assumptions,

• each target evolves and generates measurements independently of one an-

other, and independent of target births and clutter respectively,

• the RFS Ψk|k−1 modelling the survival uncertainty for each target evolving
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from state xk−1 to xk, is Bernoulli with parameter pS(xk−1) and transition

density fk|k−1(xk |xk−1) describing its evolution,

• the RFS Θk modelling the detection uncertainty for each target xk ∈ Xk,

is also Bernoulli with parameter pD(xk) and a likelihood that zk is observed

from xk given by gk(zk |xk),

• the clutter RFS Kk is Poisson with intensity κk(·),

• the predicted multi-target RFS Xk is approximated with a Poisson RFS prior

to the measurement update,

the PHD recursion is given by

vk|k−1(xk) = γk(xk) +

∫
pS(xk−1) fk|k−1(xk |xk−1) vk−1(xk−1) dxk−1, (2.33)

vk(xk) =
(
1− pD(xk)

)
vk|k−1(xk) +

∑
z∈Zk

pD(xk) gk(z |xk) vk|k−1(xk)

κk(z) + vk|k−1[pD gk(z | ·)]
. (2.34)

The intensity of the birth RFS Γk is denoted by γk(xk) in equation (2.33) and

vk|k−1 [pD gk(z | ·)] =
∫
pD(x) gk(z |x) vk|k−1(x) dx in equation (2.34). The deriva-

tion of the PHD recursion requires the use of probability generating functionals, an

important concept in the theory of point processes which applies to random finite

sets (see Appendix A). Full details on the derivation can be found in [1].

2.4.2 Implementations of the PHD filter

The PHD filter is typically implemented using a particle representation, i.e. sequen-

tial Monte Carlo (SMC) techniques [85, 86, 87, 76, 88], or with a Gaussian mixture

formulation [89, 90, 91, 92]. Particle filtering methods have been independently

proposed for the PHD filter in [85] and [86], which can be considered as special

cases of the generalised SMC implementation of the PHD filter, so called the SMC-

PHD filter, proposed in [87, 76]. SMC implementations approximate the PHD filter

using a weighted set of particles at each iteration of the recursion. Alternatively,

a closed-form solution to the PHD filter was established in [89, 90] under linear

Gaussian model assumptions. The resulting filter is a recursion of Gaussian mix-

tures and so called the GM-PHD filter. Convergence results have been established

for the particle PHD filter in [93, 94] and for the GM-PHD filter in [95].

While the GM-PHD filter is typically applied to linear estimation problems,

variations have been developed for non-linear dynamic models in [92] and using
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bearings-only measurements in [91]. A hybrid implementation of the PHD filter

has also been proposed in [96], in which the Gaussian components in the GM-PHD

filter are represented with Gaussian particle filters [97] similar to the Gaussian sum

particle filter proposed in [98]. This hybrid implementation is applicable for non-

linear estimation problems and results in a filter that no longer has a closed form

solution and requires Monte Carlo integration for its approximation.

2.4.3 The cardinalized PHD filter

The propagated intensities of the PHD filter recursion have the unique property

that their integral over any region of state space equates to the expected number

of targets contained in that region, as shown by equation (2.32). That is, the PHD

filter is not only first-order in the multiple target states, but also first-order in

target number, since it propagates cardinality information with only a single pa-

rameter (the mean). As a result, the cardinality distribution is approximated with

a Poisson distribution. Consequently, since the mean and variance of a Poisson

distribution are equal, when the true cardinality is high the corresponding esti-

mate has high variance, potentially leading to oversensitive cardinality estimates

in practice, particularly when the probability of detection is low.

A generalisation of the PHD filter was therefore proposed by Mahler in [84]

which remains first-order in the target states, but relaxes the first-order assumption

on the number of targets, and is known as the cardinalized PHD filter. Not only

does the CPHD filter propagate first-order moment densities over time, but also

the cardinality distribution, as depicted in the following diagram:

· · · −−−→ pk−1(Xk−1)
prediction−−−−−→ pk|k−1(Xk)

update−−−−→ pk(Xk) −−−→ · · ·
↓ ↓ ↓

· · · −−−→

vk−1(xk−1)

ρk−1(n)

prediction−−−−−→

vk|k−1(xk)

ρk|k−1(n)

update−−−−→

vk(xk)ρk(n)
−−−→ · · ·

The Cardinalized Probability Hypothesis Density (CPHD) filter generalises the

PHD filter by relaxing the Poisson assumption on the number of targets and instead

approximating the multi-target RFS with an i.i.d. cluster RFS (see Section 2.2.4).

The prediction and update equations for the CPHD recursion are explicitly given in

[84] along with details on their derivations, and a Gaussian mixture implementation

can be found in [99].
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2.4.4 The PHD filter for non-standard targets

Most standard multiple target tracking applications, including the PHD and CPHD

filters, assume that each target generates no more than one measurement. Suppose,

however, that targets potentially produce more than one measurement, so that the

RFS modelling target generated measurements is now given by

Θk(xk) =

Zx,k when a target is detected,

∅ otherwise,
(2.35)

where Zx,k is also a RFS. Targets that generate measurement sets in this way are

otherwise known as extended targets. An extension of the PHD filter that handles

extended targets was introduced by Mahler in [100], where the RFS Zx,k is modelled

with a Poisson RFS, as was first proposed in [41, 42].

The PHD filter recursion for extended target tracking and the recursion given

in Section 2.4.1, only differ in the update equation. Based on the following as-

sumptions,

• each target generates a set of measurements independently of one another,

and independent of clutter,

• the clutter RFS Kk is Poisson with intensity κk(·),

• the RFS Θk modelling the detection uncertainty for each target xk ∈ Xk,

is Bernoulli with parameter pD(xk) and a likelihood that the set Z = Zx,k

is observed from xk given by gk(Z |xk) = e−α(xk)
∏

z∈Z α(xk) l(z |xk), where

α(xk) is the expected number of measurements generated by xk and l(z |xk)
is the single-measurement likelihood,

• the predicted multi-target RFS Xk is approximated with a Poisson RFS,

the update equation in the RFS filter for extended targets is then

vk(xk) = vk|k−1(xk)

{
1− pD(xk) + pD(xk) e−α(xk) (2.36)

+
∑
π∈ΠZk

$π

∑
ϕ∈π

pD(xk) e−α(xk)
(∏

z∈ϕ α(xk) l(z |xk)/κk(z)
)

δ|ϕ|,1 + vk|k−1

[
pD e−α

(∏
z∈ϕ α lz /κk(z)

)] } ,
denoting lz = l(z | ·). The summation

∑
π∈ΠZk

is taken over all possible partitions

of the measurement set Zk, denoted by ΠZk . A single partition, denoted by π,
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contains subsets ϕ ∈ π whose constituent elements consist of measurements in Zk

such that
⋃
ϕ∈π ϕ = Zk. Partitioning of the measurement set will be looked at

in more detail in the next chapter. The partition weights are denoted by $π and

given by

$π =

∏
ϕ∈π

(
δ|ϕ|,1 + vk|k−1

[
pD e−α

(∏
z∈ϕ α lz /κk(z)

)])
∑

π′∈ΠZk

∏
ϕ′∈π′

(
δ|ϕ′|,1 + vk|k−1

[
pD e−α

(∏
z∈ϕ′ α lz /κk(z)

)]) , (2.37)

where δ|ϕ|,1 is the Kronecker delta2. For details on the derivation refer to [100]. A

GM implementation of the PHD filter for extended targets can be found in [101].

A cardinalized variant of the PHD filter for extended target tracking has since

been proposed in [102, 103], whereby the Poisson assumption on the number of

targets and the number of measurements is relaxed. Like the CPHD filter, the

multi-target RFS is modelled as an i.i.d. cluster RFS and in addition the RFS of

target generated measurements is also modelled as an i.i.d. cluster. This so called

CPHD filter for extended targets has been implemented with a Gaussian mixture

formulation in [104].

2.5 Performance Evaluation

Assessing the performance of a filter, whether for single or multiple target estima-

tion/tracking problems, requires the notion of a metric describing the error between

the true and estimated target state(s). For single target estimation, such a notion

is well established in the form of, for example, the root mean squared error, the

details of which are given in Section 2.5.1. On the other hand, for multiple target

tracking problems, a suitable metric describing the error between set-valued states

must account for errors in the cardinality as well as the state estimation error. One

such method is introduced in Section 2.5.2.

2.5.1 The root mean squared error

The following details for the root mean squared error (RMSE) can be found in

[64], which provides an appropriate metric for describing the state estimation error,

especially in linear estimation problems. Let x and y be the true and estimated

state vectors respectively, then the root mean squared error is given by

2The Kronecker delta is defined to be δ|W |,1 = 1 if |W | = 1 and δ|W |,1 = 0 otherwise
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RMSE(y) =
√

MSE(y), (2.38)

where MSE(y) = ‖x− y‖2 is the mean squared error defined by the squared norm

of the estimation error, so that

RMSE(y) = ‖x− y‖. (2.39)

For linear estimation errors, the Euclidean distance is suitable for evaluating the

norm, i.e.

‖x− y‖ =
√

(x− y)T (x− y). (2.40)

2.5.2 The OSPA metric

The optimal subpattern assignment (OSPA) metric, proposed in [105], accounts

for differences in the cardinality and the individual elements between two finite

sets in a mathematically consistent way, that allows for a meaningful physical

interpretation. Its definition is given as follows.

Let d(c)(x,y) := min(c, ‖x − y‖) denote the distance between x,y ∈ X with

a cut-off at c > 0 and Ωk denote the set of permutations on {1, 2, . . . , k} for any

positive integer k. Then the OSPA metric, denoted by d̄
(c)
p , for p ≥ 1, c > 0 and

arbitrary finite subsets X = {x1, . . . ,xm} and Y = {y1, . . . ,yn} is given by

d̄(c)
p (X, Y ) :=

(
1

n

(
min
ς∈Ωn

m∑
i=1

d(c)(xi,yς(i))
p + c p(n−m)

))1/p

, (2.41)

if m ≤ n, and d̄
(c)
p (X, Y ) := d̄

(c)
p (Y,X) if m > n (d̄

(c)
p (X, Y ) = d̄

(c)
p (Y,X) = 0 if

m = n = 0). The OSPA distance is interpreted as a pth-order per-target error,

comprised of a pth-order per-target localisation error and a pth-order per-target

cardinality error, defined respectively as follows

ē
(c)
loc(X, Y ) :=

(
1

n
min
ς∈Ωn

m∑
i=1

d(c)(xi,yς(i))
p

)1/p

,

ē
(c)
card(X, Y ) :=

(
c p(n−m)

n

)1/p

,

(2.42)

if m ≤ n, and ē
(c)
loc(X, Y ) := ē

(c)
loc(Y,X), ē

(c)
card(X, Y ) := ē

(c)
card(Y,X) if m > n. The

order parameter p determines the sensitivity of the metric to outliers, and the
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cut-off parameter c determines the relative weighting of the penalties assigned to

cardinality and localisation errors. When p = 1, the OSPA distance is equal to the

sum of the ‘per-target’ localisation and cardinality components, which facilitates a

direct interpretation of the metric. The choice of the cut-off parameter c depends

on whether the accurate estimation of the the number of objects is more or less

important than accurate position estimates and can be decided upon using the

following guidelines.

Small values of c which corresponds to the magnitude of a typical localisation er-

ror, determined by, for example, the observation noise, has the effect of emphasising

cardinality errors. Large values of c which corresponds to the maximal distance be-

tween targets has the effect of emphasising localisation errors. Any moderate value

of c which is significantly larger than a typical localization error, but significantly

less than the maximal distance between targets, maintains a balance between the

two components.

28



Chapter 3

Group and Extended Target Tracking

Random finite sets provide a natural and rigourous framework for multi-target

Bayesian filtering and its approximations, including the Probability Hypothesis

Density (PHD) filter. The focus of this chapter is on the further development of

the PHD filter for handling more advanced target tracking problems. In particu-

lar, the advanced target tracking problems of interest are those involving multiple

group/extended targets. A group target is regarded as a collection of targets that

share a common motion or characteristic, while an extended target is regarded as

a target that potentially generates multiple measurements. The PHD filter results

presented in this chapter provide a computationally tractable basis for group and

extended target tracking, the implementations of which are the subject of subse-

quent chapters.

Section 3.1 introduces hierarchical RFS formalisms, based on a fundamental

concept from point process theory, of group and extended target tracking problems

in a Bayesian filtering framework. Section 3.1 concludes with considerations for

first-order moment approximations based on generalisations of the PHD. Section

3.2 presents the recursive equations of the PHD filter for group target tracking and

subsequent special cases, including the extended target tracking problem. Finally,

limitations of the first-order moment filters for group and extended target systems

are discussed in Section 3.3.

3.1 Bayesian Filter for Group and Extended Targets

The generalisation of the Bayesian filter to group (and extended) target tracking

requires a systematic statistical representation based on an important concept in

the theory of point processes, known as the cluster process. This foundation is

introduced in the next subsection before specifying the RFS analogue in the repre-

sentation of a multiple group (or extended) target system whose estimation is the

objective of the corresponding Bayesian filter.
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3.1.1 Cluster processes

Cluster processes are an essential concept in the theory of point processes [70],

stochastic geometry [106] and spatial population processes [107]. A cluster process

is a doubly-stochastic process and can be described as a hierarchical point process

in which individual points are grouped into independent clusters. An early example

of this can be found in [108] where Neyman and Scott proposed the stochastic pro-

cess of clustering, specifically a Poisson cluster process, as a mathematical model

of the Universe. Here the so called Neyman-Scott process model consists of a Pois-

son distributed number of independent and identically spatially distributed cluster

centres, which collectively form an unseen Poisson point process. Each cluster cen-

tre has associated with it a random number of points that are independent from

one another and identically distributed about the centre, which collectively form a

subsidiary i.i.d. cluster process. Figure 3.1 illustrates a realisation of the Thomas

cluster process, a special case of the Neyman-Scott process in which the cluster

centres are distributed uniformly and each cluster consists of a Poisson distributed

number of points whose positions are isotropic Gaussian displacements from the

centre, i.e. the subsidiary processes are Poisson.

Figure 3.1: A realisation of the Thomas cluster process with Poisson rate 6 for
the cluster centre process, Poisson rate 12 and standard deviation 0.04 for each
subsidiary process.

There exist numerous applications of statistical inference for cluster processes,

some of which were discussed by Neyman and Scott in [109]. For example popu-

lation dynamics, an application referring to the development of a biological popu-

lation such as weeds, insects or bacteria. It was noted by Harris in [110] that the

process of clustering for the application in population dynamics is closely related
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to general branching processes, which concerns the sequence of the number of indi-

viduals in generations of a population. A cluster process is regarded as a segment

of a branching process, which consists of only two generations, the cluster centres

constitute the parent generation and collectively their descendants constitute the

next generation. For this reason, the process of cluster centres will be frequently

referred to hereafter as the parent and the subsidiary processes as daughters.

Cluster processes provide an appropriate statistical representation of multiple

group/extended target systems, whereby the constituent members of the parent

process represent the group states while the constituent members of each daughter

process represent the individual target states belonging to a single group. This rep-

resentation can be written in terms of random finite sets as shown in the following

subsection.

3.1.2 Group and extended target cluster models

The estimation problem for a multiple group target system, unlike the multiple

target problem in the previous chapter, consists of three levels: a doubly hidden

parent level (the measurable space in which the unknown group states occupy);

a singularly hidden daughter level (the measurable space in which the unknown

individual target states occupy); and a visible observation level (the measurable

space in which the known observation measurements occupy). This is illustrated

in Figure 3.2. In this problem, the system of unknown quantities can be represented

by a cluster process and written in terms of the RFS framework as follows.

Figure 3.2: Visualisation of the multiple group estimation problem. The known
measurements are direct observations of the unknown individual target states and
indirect observations of the unknown group states.
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Underlying everything is the RFS Υ (parent process), a random variable with

instance Υ = X = {x1, . . . ,xn} where X is a finite set containing group state

vectors x1, . . . ,xn ∈ Rdx . Each group state xi has a dependent RFS Ei (daughter

process), a random variable with instance Ei = Ξi = {ξ1, . . . , ξni} where Ξi is a

finite set containing individual target state vectors ξ1, . . . , ξni ∈ Rdξ . The multi-

group set X is indirectly observable, since those measurements in the finite set

Z = {z1, . . . , zm} that have been generated by targets are observations of the

individual targets ξ1, . . . , ξni for i = 1, . . . , |X|.
The complete state of a multiple group target system can be specified in one

of two ways. The first specifies the complete state as a finite set given by X =

{(x1,Ξ1), . . . , (xn,Ξn)}. The statistical representation of a system with instance

X is therefore the random finite subset X =
⋃

x∈Υ{(x, Ex)} on the space of pairs,

where Ex is the RFS on individual target space associated with group x. This is

consistent with Moyal’s definition of a cluster process found in [107, p. 24].

An alternative specification for the complete state of a multiple group target

system is the finite set now given by X = {Ξx
1 , . . . ,Ξ

x
n}, where for i = 1, . . . , n

the set of points Ξx
i may or may not include the state vector xi with which it is

associated. If the state vector xi is included in the set Ξx
i then it can be considered

as the leader of group i, otherwise xi can be regarded as the virtual leader of

the individual targets ξ1, . . . , ξni ∈ Ξx
i . The statistical representation is now the

random finite set X =
⋃

x∈Υ Ex, where Ex is the RFS associated with group x and

defined solely on the individual target space regardless of its inclusion/exclusion of

x. This representation is consistent with definitions given by Daley & Vere-Jones

in [70] and Stoyan et. al. in [106] for cluster processes.

Either cluster model is applicable to multiple extended target systems. The

state vectors x1, . . . ,xn, which collectively form the parent process (RFS Υ), in-

stead represent the targets, while the state vectors ξ1, . . . , ξni , which collectively

form the dependent daughter process (RFS Ei) for each target state xi, instead

represent the feature points of a target’s extent.

3.1.3 Bayesian recursion

The objective of group/extended target tracking is to estimate the RFS Xk with

instance Xk = {(x1,k,Ξ1,k), . . . , (xn,k,Ξn,k)} (or Xk = {Ξx
1,k, . . . ,Ξ

x
n,k}) at each

time-step k given a sequence of measurement sets received up to time k (Z1:k =

Z1, . . . , Zk). In the Bayesian filtering framework the estimation of RFS Xk is prop-

agated via the posterior distribution pk(Xk |Z1:k).

The posterior distribution at time-step k is either given by the probability
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density of RFS Xk =
⋃

x∈Υk
{(x, Ex)}, which satisfies∫

Sx×Snξ

pk(Xk |Z1:k) δXk = Pr(Υk ⊆ Sx, E1,k ⊆ Sξ, . . . , En,k ⊆ Sξ |Z1:k), (3.1)

for Xk = {(x1,k,Ξ1,k), . . . , (xn,k,Ξn,k)}, or by the probability density of RFS Xk =⋃
x∈Υk

Ex, which satisfies∫
Snξ

pk(Xk |Z1:k) δXk = Pr(Ex1,k ⊆ Sξ, . . . , Exn,k ⊆ Sξ |Z1:k), (3.2)

for Xk = {Ξx
1,k, . . . ,Ξ

x
n,k}, and for all Sx ⊆ C(Rdx), Sξ ⊆ C(Rdξ). The expressions

in equations (3.1) and (3.2) are generalisations of that in equation (2.15) such that

the integrals are given by∫
f(X) δX =

∞∑
n=0

1

n!

∫
f({(x1,Ξ1), . . . , (xn,Ξn)}) dx1 · · · dxn δΞ1 · · · δΞn, (3.3)∫

f(X) δX =
∞∑
n=0

1

n!

∫
f({Ξx

1 , . . . ,Ξ
x
n}) dx1 · · · dxn δΞ1 · · · δΞn, (3.4)

respectively, where each of the indicated integrals
∫
· δΞi are a set integral as given

in equation (2.19).

The Bayesian filter recursion for group/extended target tracking is a generali-

sation of the recursion given in Section 2.3.3 and is formulated as follows. Suppose

the multiple group/extended target system has a cluster process representation,

written in terms of either RFS model described in Section 3.1.2, and that the prior

distribution pk−1(Xk−1 |Z1:k−1) is known. Then the multi-group/extended target

Bayesian filter recursion is given by the predicted and updated posterior distribu-

tions

pk|k−1(Xk |Z1:k−1) =

∫
fk|k−1(Xk |Xk−1) pk−1(Xk−1 |Z1:k−1) δXk−1, (3.5)

pk(Xk |Z1:k) =
gk(Zk |Xk) pk|k−1(Xk |Z1:k−1)∫
gk(Zk |Xk) pk|k−1(Xk |Z1:k−1) δXk

, (3.6)

where fk|k−1(Xk |Xk−1) denotes the Markov transition density encapsulating the

randomness of the cluster model’s evolution and gk(Zk |Xk) denotes the cluster

model likelihood encapsulating the randomness of the observations received at

time-step k. That is, the Bayesian filter for group/extended target tracking prop-
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agates the probability density of the RFS Xk with instance Xk, given a sequence

of measurement sets, as depicted in the following diagram:

· · · → pk−1(Xk−1 |Z1:k−1)
prediction−−−−−−→ pk|k−1(Xk |Z1:k−1)

update−−−−→ pk(Xk |Z1:k)→ · · ·

While the multi-target Bayesian filter is computationally intractable for all but

the simplest problems, the practical implementation of its generalisation to group

and extended target tracking problems, given by the recursive equations (3.5)–

(3.6), is essentially impossible under almost all circumstances. Consequently, suit-

able approximations are even more crucial for group and extended target tracking

problems. This section concludes with a review of possible strategies for practical

implementation, based on generalisations of the first-order moment approximation

introduced in Section 2.4 to group and extended target tracking problems.

3.1.4 First-order moment approximations

The following strategies are based on generalisations of the PHD, first proposed by

Mahler in [39].

The total group target PHD (Mahler [39])

Denoted by vk(x,Ξ |Z1:k), this is defined as the first-order moment of the RFS

X =
⋃

x∈Υ{(x, Ex)} whose probability density is pk(X |Z1:k), given the instance

X = {(x1,Ξ1), . . . , (xn,Ξn)}. That is

vk(x,Ξ |Z1:k) =

∫
X3(x,Ξ)

pk(X |Z1:k) δX, (3.7)

which operates on the space occupying the single pair (x,Ξ), where x denotes the

group state whose actual target set is Ξ.

The condensed group target PHD

Denoted by vk(x, ξ |Z1:k), this is defined as the first-order moment of the RFS

X =
⋃

x∈Υ Ex whose probability density is pk(X |Z1:k), given the instance X =

{Ξx
1 , . . . ,Ξ

x
n}. That is

vk(x, ξ |Z1:k) =

∫
X3Ξx,
Ξx3ξ

pk(X |Z1:k) δX, (3.8)

which operates on the space occupying the single group and single individual target

states jointly.
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The marginal group target PHD

Denoted by vk(x |Z1:k), this is defined as the marginal density of the group target

PHD. That is

vk(x |Z1:k) =

∫
vk(x,Ξ |Z1:k) δΞ =

∫
X3x

pk(X |Z1:k) δX, (3.9)

where pk(X |Z1:k) is the probability density of the RFS Υ (parent process) and

vk(x |Z1:k) is its first-order moment, which operates on the space solely occupying

the single group state.

Any recursion that propagates the total group target PHD over time will still

be computationally intractable in general. This can be accounted for by the sup-

port of the density vk(x,Ξ |Z1:k) being the space occupying a single pair (x,Ξ),

which contains the multi-target set Ξ. Essentially the filtering equations of such

a recursion will have similar complexity as those for the multi-target Bayesian re-

cursion given in Section 2.3.3. Consequently, it will be recursions that instead

propagate the condensed group target PHD (as depicted over time in the diagram

below1) that provide tractable solutions to the group target tracking problem and

such will be the focus of the next section.

· · · → pk−1(Xk−1 |Z1:k−1)
prediction−−−−−→ pk|k−1(Xk |Z1:k−1)

update−−−−→ pk(Xk |Z1:k)→ · · ·
↓ ↓ ↓

· · · → vk−1(xk−1, ξk−1)
prediction−−−−−→ vk|k−1(xk, ξk)

update−−−−→ vk(xk, ξk) → · · ·

Finally, any recursion that propagates the marginal group target PHD is of

interest for estimation problems that only concern the group states and not the

individual targets that comprise the groups, which is most applicable to extended

target tracking problems. Such a recursion (as depicted over time in the diagram

below) will therefore also be considered in the next section for an extended target

tracking application.

· · · → pk−1(Xk−1 |Z1:k−1)
prediction−−−−−→ pk|k−1(Xk |Z1:k−1)

update−−−−→ pk(Xk |Z1:k)→ · · ·
↓ ↓ ↓

· · · → vk−1(xk−1 |Z1:k−1)
prediction−−−−−→ vk|k−1(xk |Z1:k−1)

update−−−−→ vk(xk |Z1:k) → · · ·

1Denoting the predicted and updated intensities by vk|k−1(xk, ξk) = vk|k−1(xk, ξk |Z1:k−1)
and vk(xk ξk) = vk(xk ξk |Z1:k) respectively.
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3.2 PHD Filtering for Group and Extended Targets

This section presents the filtering equations of the PHD recursions for specific group

and extended target tracking applications, the derivations of which are given in

Appendix B. The results for the filtering equations in Sections 3.2.3 and 3.2.6 are

based on similar results in the author’s conference papers [111] and [112] respec-

tively2, while Sections 3.2.4 and 3.2.5 present special cases of the filter equations

in Section 3.2.3.

3.2.1 Dynamic model

The hierarchical RFS representation Xk−1 =
⋃

x∈Υk−1
Exk−1 allows for the incorpo-

ration of group and individual target birth and death, which is encapsulated in the

Markov transition density fk|k−1(Xk |Xk−1) as follows.

For a given parent RFS Υk−1 at time-step k−1 with instance Xk−1, the survival

of each cluster, i.e. each subsidiary RFS Exk−1, associated with xk−1 ∈ Xk−1 whose

instance is Ξx
k−1 is modelled by the RFS

Φk|k−1(Ξx
k−1) =

Ξx
k when xk−1 survives,

∅ otherwise.
(3.10)

If a group survives, the time evolution of its corresponding multi-target set Ξx
k−1 is

modelled by the RFS Ξx
k given by

Ξx
k =

(⋃
ξ∈Ξx

k−1

Ψk|k−1(ξ)

)
∪ Γx

ξ,k, (3.11)

where Ψk|k−1 is the same RFS as given in equation (2.24), that now models in-

dividual target survival, and Γx
ξ,k is the RFS that models the appearance of new

individual targets. New clusters (groups) appear at time k due to spontaneous

births, which are modelled by the hierarchical RFS Γk. The time evolution of the

cluster model Xk−1 is then given by

Xk =

(⋃
x∈Υk−1

Φk|k−1(Ξx
k−1)

)
∪ Γk. (3.12)

2These papers primarily presented results for the predicted and updated intensities in first-
order moment filters for group and extended target tracking, each regarded as an extension of
the multi-target CPHD filter. In [111], the main updated intensity result assumed a simplistic
group tracking scenario in which there were no false alarms and no missed detections, while in
[112], the considered extended target scenarios also included the case in which false alarms and
missed detections were present.
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The RFSs constituting the unions in equations (3.11) and (3.12) are assumed to

be statistically independent of each other.

3.2.2 Measurement model

The RFS measurement model accounts for group and individual target detection

uncertainty, as well as false measurements, and is specified as follows. For a given

parent RFS Υk with instance Xk in the cluster model Xk =
⋃

x∈Υk
Exk at time-step

k, the detection of each cluster, i.e. each subsidiary RFS Exk with instance Ξx
k ,

associated with xk ∈ Xk is modelled by the RFS

Θ1,k(Ξ
x
k) =

Zx,k when xk is detected,

∅ otherwise.
(3.13)

The collection of measurement generated from a detected group is modelled by the

RFS Zx,k given by

Zx,k =
⋃
ξ∈Ξx

k

Θ2,k(ξ |xk), (3.14)

where the RFS Θ2,k models the detection of each individual target ξ ∈ Ξx
k and is

given by

Θ2,k(ξk |xk) =

{zk} when an individual target ξk in group xk is detected,

∅ otherwise.

(3.15)

Those measurements that are not target generated are considered to be false alarms,

or clutter, and modelled by the RFS Kk. The total collection of measurements,

modelled by the RFS Zk, is then given by

Zk =
(⋃

x∈Xk
Θ1,k(Ξ

x
k)
)
∪Kk. (3.16)

The clutter and target generated measurements are assumed to be independent

and the randomness of the observations is captured in the likelihood gk(Zk |Xk).

The cluster model for RFS Xk results in target generated measurements that

naturally appear in clusters. It is convenient then to also apply cluster modelling

to the clutter. A more general measurement model can be obtained by assum-

ing a cluster model for RFS Kk. To illustrate, consider the two realisations of
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(a) Example 1 (b) Example 2

Figure 3.3: Realisations of measurement sets

the measurement set Zk in Figure 3.3. Example 1 (Figure 3.3a) clearly shows a

measurement set that consists of a collection of measurement clusters, which is

representative of a measurement model that includes cluster clutter. Example 2

(Figure 3.3b) shows a measurement set where the clutter appears not to be dis-

tributed in clusters. However each false measurement in the second example can

simply be considered as a cluster that consists of only one component, so that the

cluster model for RFS Kk is still valid.

3.2.3 A PHD filter for group targets

The propagation of the predicted intensity in the condensed group target PHD

recursion, presented in Theorem 3.1, requires the following assumptions regarding

the group and individual target dynamics:

• each group evolves independently of one another and independently of group

births;

• the RFS Φk|k−1 modelling the survival uncertainty for each group evolving

from state xk−1 to xk is Bernoulli with parameter pS,1(xk−1) and transition

density fk|k−1(xk |xk−1) describing its evolution;

• each individual target, though conditioned on a group, evolves independently

of other individual targets in that group and independently of births;

• the RFS Ψk|k−1 modelling the survival uncertainty of each individual target

evolving from state ξk−1 to ξk is also Bernoulli with parameter pS,2(ξk−1) and
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transition density fk|k−1(ξk | ξk−1,xk−1) describing its evolution, which is also

dependent on a group state xk−1.

Theorem 3.1 (Multi-group PHD prediction). Given the listed assumptions

and a prior intensity which satisfies the following factorisation vk−1(xk−1, ξk−1) =

vk−1(xk−1)× vk−1(ξk−1 |xk−1), then the predicted intensity is

vk|k−1(xk, ξk) = γk(xk, ξk) + (3.17)∫
pS,1(xk−1) fk|k−1(xk |xk−1) vk|k−1(ξk |xk,xk−1) vk−1(xk−1) dxk−1,

where the conditional predicted intensity of each RFS Ek is

vk|k−1(ξk |xk,xk−1) = γξ,k(ξk |xk) + (3.18)∫
pS,2(ξk−1) fk|k−1(ξk | ξk−1,xk−1) vk−1(ξk−1 |xk−1) dξk−1.

Note that γk(xk, ξk) denotes the intensity of the RFS Γk and γξ,k(ξk |xk) denotes

the conditional intensity of the RFS Γξ,k.

Proof. Details on the derivation of this result are given in Appendix B (Section

B.3.1).

To complete the condensed group target PHD recursion, the propagation of the

updated intensity, presented in Theorem 3.2, requires the following assumptions:

• each group generates a set of measurements independently of one another,

and independently of clutter;

• the RFS Θ1,k modelling the detection uncertainty for each group xk ∈ Xk is

Bernoulli with parameter pD,1(xk) and a likelihood that the set Z = Zx,k is

observed from xk given by gk(Z |xk,Ξk);

• each individual target in a group generates measurements independently of

one another;

• the RFS Θ2,k modelling the detection uncertainty for each individual target

ξk ∈ Ξk, where Ξk is the multi-target set corresponding to a group xk, is

Bernoulli with parameter pD,2(ξk) and a likelihood that zk is observed from

ξk in group xk given by gk(zk | ξk,xk);
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• the RFS Υk and each RFS Ek in the hierarchical RFS representation of the

predicted multi-group state are both approximated with a Poisson RFS.

The final assumption concerns the clutter in the measurement model. As al-

luded to in Section 3.2.2, the clutter is modelled so that they appear in clusters.

Specifically, the clutter RFS Kk is modelled with the same hierarchical RFS rep-

resentation as for the predicted multi-group state. The probability density of the

clutter RFS is then given by

pκ(Kk) = exp

(
−
∫
κ1(uϕκ) duϕκ

) ∑
πκ∈ΠKk

( ∏
ϕκ∈πκ

Λ(ϕκ)

)
, (3.19)

where the following notation is introduced

Λ(ϕκ) =

∫
exp

(
−
∫
κ2(z |uϕκ) dz

)(∏
z∈ϕκ

κ2(z |uϕκ)

)
κ1(uϕκ) duϕκ . (3.20)

In (3.19), ΠKk denotes the set of all partitions of the RFS Kk and πκ denotes

a single partition containing subsets ϕκ ∈ πκ such that
⋃
ϕκ∈πκ ϕκ = Kk. The

underlying Poisson RFS consisting of cluster centres uϕκ for each subset ϕκ in

a possible partition πκ is characterised by the intensity κ1(uϕκ), and κ2(z |uϕκ)

denotes the intensity of the corresponding dependent Poisson RFS. The probability

density given by equations (3.19)–(3.20), discussed further in Appendix B (Section

B.2.2), closely resembles the probability density for the example of a cluster process

presented by van Lieshout in [113], where the parent and daughter processes are

also Poisson.

Theorem 3.2 (Multi-group PHD update). Suppose a new set of measure-

ments, denoted by Z = Zk, is received at time-step k then, given the preceding

assumptions hold, the updated intensity is

vk(xk, ξk) = vk|k−1(xk, ξk)
{

1− pD,1(xk)

+ pD,1(xk)
(

exp
(
−vk|k−1[pD,2 |xk]

)(
1− pD,2(ξk)

))}
+
∑
π∈ΠZ

$π

∑
ϕ∈π

pD,1(xk)Lϕ(xk) vk|k−1(xk)

vk|k−1[pD,1 Lϕ] + Λ(ϕ)
vk(ξk |xk)ϕ ,

(3.21)

where the conditional updated intensity for each possible RFS Ek coinciding with
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subset ϕ ∈ π is

vk(ξk |xk)ϕ =

(
1− pD,2(ξk) +

∑
z∈ϕ

pD,2(ξk) gk(z | ξk,xk)
vk|k−1[pD,2 lz |xk]

)
vk|k−1(ξk |xk), (3.22)

denoting lz = gk(z | ξk,xk). The summation
∑

π∈ΠZ
is taken over all possible parti-

tions of the entire measurement set Z, denoted by ΠZ. A single partition π contains

subsets ϕ ∈ π such that
⋃
ϕ∈π ϕ = Z The partition weights are given by

$π =

∏
ϕ∈π

(
vk|k−1[pD,1 Lϕ] + Λ(ϕ)

)
∑
π′∈ΠZ

∏
ϕ′∈π′

(
vk|k−1[pD,1 Lϕ′ ] + Λ(ϕ′)

) , (3.23)

and Lϕ = Lϕ(xk) denotes the pseudo multiple measurement likelihood for the subset

ϕ given by

Lϕ(xk) = exp
(
−vk|k−1[pD,2 |xk ]

)∏
z∈ϕ

vk|k−1[pD,2 lz |xk]. (3.24)

The clutter term Λ(ϕ) is as defined in equation (3.20).

Proof. Details on the derivation of this result are given in Appendix B (Section

B.3.2).

Theorems 3.1 and 3.2 are, respectively, the prediction and update step in the

condensed group target PHD recursion, which will be referred to hereafter as the

multi-group PHD filter recursion. The result for the multi-group PHD predic-

tion can simply be interpreted as a doubly-stochastic version of the multi-target

PHD prediction, consisting of predicted components for group and individual target

states from equations (3.17) and (3.18) conditionally. The result for the multi-group

PHD update, however, is more complex. The update equation (3.21) consists of

one missed group detection term and |ΠZk |×|π| group detection terms. Each group

detection term relates to a subset ϕ in a possible partition π of the measurement

set Zk, in which a group state is updated with the pseudo multiple measurement

likelihood Lϕ. A group detection term also includes the update equation for an in-

dividual target state, given by equation (3.22), which is similar to the multi-target

PHD update and consists of one missed detection term as well as |ϕ| detection

terms (relating to the number of detections in the subset ϕ).
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3.2.4 Special case 1: single group target

A single group target is a special case of the multiple group target system and

the corresponding state representation is such that the underlying RFS Υ strictly

contains a single group state. That is, the complete state specification is given by

X = {(x,Ξ)} with group state vector x and finite set Ξ of individual target state

vectors ξ1, . . . , ξn.

The single group RFS representation is equivalent to fixing the group cardinality

at |X| = 1 in the complete state specification for the multiple group target system.

As a consequence of this restriction on the group cardinality, the dynamic and

measurement model specifications for a single group target system are simplified.

Firstly, the group cardinality restriction does not allow group births or death

in the dynamic model. That is, there is no survival uncertainty for the cluster

associated with the group state xk−1 so that Φk|k−1(Ξx
k−1) = {Ξx

k} with probability

fk|k−1(xk |xk−1). The time evolution of the complete state Xk−1 for the single group

target scenario is therefore given by Xk = {Ξx
k} where Ξx

k is the RFS that models

the time evolution of the multi-target set Ξk−1 conditioned on group state x, which

is given by the same union of RFSs as shown in equation (3.11).

Likewise for the measurement model, it is assumed there is no detection uncer-

tainty for the cluster associated with the group state xk so that Θ1,k(Ξ
x
k) = Zx,k

with likelihood gk(Z |xk,Ξk), where Z = Zx,k still denotes the collection of mea-

surements generated by the cluster Ξx
k given by equation (3.14), and the total

collection of measurements, modelled by the RFS Zk, becomes

Zk = Θ1,k(Ξ
x
k) ∪Kk. (3.25)

Finally, it was natural to assume, for the multiple group target scenario, that the

measurements appear in clusters and either a cluster of measurements are target

generated or otherwise clutter. This assumption is not necessarily appropriate for

a single group scenario and instead the clutter RFS Kk is modelled with a Poisson

RFS characterised its intensity κ(·).
The remaining assumptions required for the propagation of the filtering equa-

tions in the condensed group target PHD recursion for this single group special

case, presented in Corollary 3.1 and Theorem 3.3, are as follows:

• each individual target, though conditional on the single group, evolves inde-

pendently of other individual targets and independently of births;

• the RFS Ψk|k−1 modelling the survival uncertainty of each individual target
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evolving from state ξk−1 to ξk is Bernoulli with parameter pS(ξk−1) and

transition density fk|k−1(ξk | ξk−1,xk−1), which is again also dependent on

group state xk−1;

• each individual target within the single group generates measurements inde-

pendently of one another and independently of clutter;

• the RFS Θ2,k modelling the detection uncertainty of each individual target

ξk ∈ Ξx
k is Bernoulli with parameter pD(ξk) and and a likelihood that zk is

observed from ξk given by gk(zk | ξk,xk);

• the RFS Ek in the RFS representation of the predicted single group state is

approximated with a Poisson RFS.

Corollary 3.1 (Single group PHD prediction). Given the preceding assump-

tions regarding the group and individual target dynamics and a prior intensity which

satisfies the factorisation vk−1(xk−1, ξk−1) = pk−1(xk−1)×vk−1(ξk−1 |xk−1), then the

predicted intensity for the single group special case follows immediately from equa-

tion (3.17), though a detailed derivation is given in Appendix B (Section B.4.1).

That is

vk|k−1(xk, ξk) =

∫
fk|k−1(xk |xk−1) vk|k−1(ξk |xk,xk−1) pk−1(xk−1) dxk−1, (3.26)

and vk|k−1(ξk |xk,xk−1) is the conditional predicted intensity of the RFS Ek as given

in equation (3.18), where the probability of individual target survival is instead

denoted by pS(ξk−1).

Theorem 3.3 (Single group PHD update). Suppose a new set of measurements

Zk is received at time-step k then, given the assumptions regarding the observations

and the RFS representation of the predicted state hold, the updated intensity for

the single group special case is

vk(xk, ξk) =
LZk(xk) pk|k−1(xk)∫
LZk(xk) pk|k−1(xk) dxk

vk(ξk |xk), (3.27)

where LZk(xk) is a pseudo multiple measurement likelihood given by

LZk(xk) = exp
(
−vk|k−1[pD |xk]

) ∏
z∈Zk

(
κ(z) + vk|k−1[pD lz |xk]

)
, (3.28)
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again denoting lz = gk(z | ξk,xk). The conditional updated intensity for the RFS

Ek is given by

vk(ξk |xk) =

(
1− pD(ξk) +

∑
z∈Zk

pD(ξk) gk(z | ξk,xk)
κ(z) + vk|k−1[pD lz |xk]

)
vk|k−1(ξk |xk). (3.29)

Proof. Details on the derivation are given in Appendix B (Section B.4.2).

3.2.5 Special case 2: single cluster existence model

The scenario considered now is a generalisation of the joint target-detection and

tracking (JoTT) filter [69, Section 14.7, pp. 514–528] to group targets, which

describes an interesting problem of detecting the existence of a collection of targets

evolving over time in a heavily cluttered environment. Referred to hereafter as the

single cluster existence model, its corresponding state representation is such that the

underlying RFS Υ either contains a single group state or is empty. Consequently,

the dynamic model specification for the single cluster existence model differs again

from those given in Sections 3.2.1 and 3.2.4.

Since the group cardinality restriction described in Section 3.2.4 is relaxed to

also include |X| = 0, the dynamic model can incorporate group survival uncertainty

and birth which are modelled by the RFS Xk = Φk|k−1 where for a given hierarchical

RFS representation Xk−1 at time-step k − 1

Φk|k−1(Xk−1) =

Φk|k−1(Ξx
k−1) when a group exists at time k − 1,

Γk when a group does not exist at time k − 1.
(3.30)

That is, when Xk−1 = {Ξx
k−1}, Φk|k−1(Xk−1) = Φk|k−1(Ξx

k−1) where Φk|k−1 is the

RFS modelling the survival uncertainty of the cluster associated with the group

state xk−1 as given by equation (3.10). When Xk−1 = ∅, Φk|k−1(Xk−1) = Γk where

Γk is the RFS modelling the group birth given by

Γk =

{Ξx
k} when a new group appears at time k,

∅ when no new group appears at time k.
(3.31)

The remaining assumptions required for the propagation of the prediction equa-

tion in the condensed group target PHD recursion for the single cluster existence

model, presented in Theorem 3.4, are as follows:

• the RFS Φk|k−1 is modelled with a Bernoulli RFS with parameters ρk−1;
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• the RFS Φk|k−1 is modelled with a Bernoulli RFS with parameter pS,1(xk−1)

and transition density fk|k−1(xk |xk−1);

• each individual target within the single group, if it exists at time k − 1 and

survives to the next time-step, evolves independently of one another and

independently of births;

• the RFS Ψk|k−1 is modelled with a Bernoulli RFS with parameter pS,1(ξk−1)

and transition density fk|k−1(ξk | ξk−1,xk−1);

• the RFS Γk is a cluster model whose parent process is approximated with a

Bernoulli RFS with parameter pB;

Theorem 3.4 (Single cluster existence prediction). Given the listed assump-

tions and a prior intensity which satisfies the factorisation vk−1(xk−1, ξk−1) =

pk−1(xk−1) × vk−1(ξk−1 |xk−1), then the predicted intensity for the single cluster

existence model is

vk|k−1(xk, ξk) = (1− ρk−1) γk(xk, ξk) (3.32)

+ ρk−1

∫
pS,1(xk−1) fk|k−1(xk |xk−1) vk|k−1(ξk |xk,xk−1) pk−1(xk−1) dxk−1,

where γk(xk, ξk) = pB pγ,k(xk) γξ,k(ξk |xk) is the intensity of the group birth RFS Γk

and vk|k−1(ξk |xk,xk−1) is the conditional predicted intensity of the RFS Ek, which

has precisely the same expression as given in equation (3.18).

The predicted probability of existence ρk|k−1 is also propagated and is given by

ρk|k−1 = (1− ρk−1) pB + ρk−1

∫
pS,1(xk−1) pk−1(xk−1) dxk−1. (3.33)

Proof. Details on the derivation are given in Appendix B (Section B.5.1).

To complete the recursion, note that the measurement model specification for

the single cluster existence model also differs from those given in Sections 3.2.2 and

3.2.4. The collection of measurements is modelled by the RFS Zk given by

Zk =

Z̃k when a group exists at time k,

Kk when a group does not exist at time k,
(3.34)

where Z̃k is given by the same union of RFSs as shown in equation (3.25) and Kk

is the clutter RFS.
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The remaining assumptions required for the propagation of the update equation

in the condensed group target PHD recursion for the single cluster existence model,

presented in Theorem 3.5, are as follows:

• the RFS Θ1,k, constituting the union in the RFS Z̃k (along with RFS Kk) and

modelling the detection uncertainty of a single group xk, is Bernoulli with

parameter pD,1(xk) and a likelihood that the set Z = Zx,k is observed from

xk given by gk(Z |xk,Ξk);

• each individual target within the single group, if it exists at time k, generates

measurements independently of one another;

• the RFS Θ2,k modelling the detection uncertainty for each individual target

ξk ∈ Ξk, where Ξk denotes the multi-target set corresponding to the single

group xk, is Bernoulli with parameter pD,2(ξk) and a likelihood that zk is

observed from ξk in the group xk given by gk(zk | ξk,xk);

• the RFS Kk is modelled with a Poisson RFS characterised by intensity κ;

• the RFS Υk in the RFS representation of the predicted state for the single

cluster existence model is approximated by a Bernoulli RFS with parame-

ter ρk|k−1 and the subsidiary RFS Ek is approximated with a Poisson RFS.

Likewise for the RFS representation at time k − 1 with Bernoulli parameter

ρk−1.

Theorem 3.5 (Single cluster existence update). Suppose a new set of mea-

surements Zk is received at time-step k then, given the listed assumptions hold, the

updated intensity for the single cluster existence model is

vk(xk, ξk) = (3.35)

ρk|k−1

{
(1− pD,1(xk)) vk|k−1(ξk |xk) + pD,1(xk) L̃Zk(xk) vk(ξk |xk)

}
pk|k−1(xk)

1− ρk|k−1 + ρk|k−1

∫ (
1− pD,1(xk) + pD,1(xk) L̃Zk(xk)

)
pk|k−1(xk) dxk

,

where vk(ξk |xk) is given by equation (3.29) and, given non-empty subsets W ⊆ Zk,

L̃Zk(xk) = exp
(
−vk|k−1[pD,2 |xk]

) ∑
W⊆Zk

∏
z∈W

vk|k−1[pD,2 lz |xk]
κ(z)

, (3.36)

is the pseudo multiple measurement likelihood.
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The updated probability of existence is also propagated and is given by

ρk =
ρk|k−1

∫ (
1− pD,1(xk) + pD,1(xk) L̃Zk(xk)

)
pk|k−1(xk) dxk

1− ρk|k−1 + ρk|k−1

∫ (
1− pD,1(xk) + pD,1(xk)L̃Zk(xk)

)
pk|k−1(xk) dxk

.

(3.37)

Proof. Details on the derivation are given in Appendix B (Section B.5.2).

3.2.6 A PHD filter for extended targets

As suggested in Section 3.1.4, the marginal group target PHD recursion is now

considered for the multiple extended target tracking problem given the hierarchical

RFS representation described in Section 3.1.2. The propagation of the filtering

equations in the recursion, presented in Theorems 3.6 and 3.7 respectively, require

the following assumptions:

• each target evolves independently of one another and independently of target

births;

• the RFS Φk|k−1, now modelling the survival uncertainty for each target evolv-

ing from state xk−1 to xk, is Bernoulli with parameter pS(xk−1) and transition

density fk|k−1(xk |xk−1);

• each target generates a set of measurements independently of one another

and independently of clutter;

• the RFS Θ1,k now modelling the detection uncertainty for each extended

target xk ∈ Xk is Bernoulli with parameter pD,1(xk) and a likelihood that

the set Z = Zx,k is observed from the collection of feature points associated

with xk given by gk(Z |xk,Ξk);

• each feature point, on the extents of independently observed targets, gen-

erates measurements independently of one another, and independently of

clutter;

• the RFS Θ2,k now modelling the detection uncertainty of each feature point

ξk ∈ Ξk is Bernoulli with parameter pD,2(ξk) and a likelihood that zk is

observed from ξk on the extent of target xk given by gk(zk | ξk,xk);

• the RFS Kk is modelled with a hierarchical RFS representation whose prob-

ability density is given by equations (3.19) and (3.20);
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• the RFS Υk in the hierarchical RFS representation of the predicted state is

approximated with a Poisson RFS, and likewise each subsidiary RFS Ek is also

approximated with a Poisson RFS whose intensity is an arbitrary function

denoted by µ(ξk |xk).

Note that the assumptions regarding the target dynamics only consider the evolu-

tion of members in the RFS Υk−1, since there is no interest in the evolution of the

feature points constituting the subsidiary RFSs Ek−1.

Theorem 3.6 (PHD prediction for extended targets). Given the listed as-

sumptions regarding target dynamics and a prior marginal intensity denoted by

vk−1(xk−1) = vk−1(xk−1 |Z1:k−1), then the predicted marginal intensity, denoted by

vk|k−1(xk) = vk|k−1(xk |Z1:k−1), is

vk|k−1(xk) = γk(xk) +

∫
pS(xk−1) fk|k−1(xk |xk−1) vk−1(xk−1) dxk−1, (3.38)

where γk(xk) is the intensity of target births.

Proof. Details on the derivation are given in Appendix B (Section B.6.1).

Theorem 3.7 (PHD update for extended targets). Suppose a new set of

measurements, denoted by Z = Zk, is received at time-step k then, given the as-

sumptions regarding the observations and the RFS representation of the predicted

state hold, the updated marginal intensity, denoted by vk(xk) = vk(xk |Z1:k), is

vk(xk) = vk|k−1(xk)

{
1− pD,1(xk) + pD,1(xk) exp (−µ[pD,2 |xk])

+
∑
π∈ΠZ

$π

∑
ϕ∈π

pD,1(xk)Lϕ(xk)

vk|k−1[pD,1 Lϕ] + Λ(ϕ)

}
.

(3.39)

The summation
∑

π∈ΠZ
is taken over all possible partitions of the measurement set

Z and the partition weights are given by the same expression in equation (3.23).

The pseudo multiple measurement likelihood also has the same expression as given

in equation (3.24) except with µ replacing vk|k−1, and the clutter term Λ(ϕ) is as

defined in equation (3.20).

Proof. Details on the derivation are given in Appendix B (Section B.6.2).

Note that the result in Theorem 3.6 is precisely the multi-target PHD prediction

and the result in Theorem 3.7 is closely related to the PHD update for non-standard

targets given by equation (2.36).

48



3.3 Limitations

Despite the first-order moment approximations operating on the joint single group,

single individual target space in group target tracking problems (single target space

in extended target tracking problems) their implementation still presents a com-

putational challenge due to the combinatorial nature of the update equations in

particular. This section provides further explanation as to the origin of this combi-

natorial complexity and a review of various techniques available in addressing the

problem.

3.3.1 Partitioning of the measurement set

An integral part of group and extended target tracking via first-order moment

approximations is the partitioning of the measurement set. The update equations

(3.21) for multiple group targets and (3.39) for multiple extended targets, involve

the summation over all possible partitions ΠZ of the measurement set Z = Zk,

where a single partition π contains subsets ϕ consisting of measurements in Z

such that
⋃
ϕ∈π ϕ = Z. To illustrate, consider the partitions of Z1 = {z1, z2} and

Z2 = {z1, z2, z3}. For the measurement set containing two measurements, Z1, there

are only two possible partitions:

π1 = {z1, z2}; π2 = {z1}, {z2}. (3.40)

The partitions of the measurement set Z2 can be determined from the partitions

of Z1 ∪ {z3} as follows. Firstly, consider taking a single partition π ∈ ΠZ1 and

appending the subset {z3} to get π ∪ {z3}. Repeating for all partitions of Z1 gives

π1 = {z1, z2}, {z3}; π2 = {z1}, {z2}, {z3}. (3.41)

The remaining partitions of Z2 = Z1∪{z3} are found by replacing a subset ϕ from

a single partition π ∈ ΠZ1 with ϕ ∪ {z3}, repeating for each subset ϕ ∈ π to get a

new set of partitions {(π \ ϕ) ∪ (ϕ ∪ {z3}) : ∀ϕ ∈ π}, and then repeating for all

partitions of Z1 to give

π3 = {z1, z2, z3}; π4 = {z1, z3}, {z2}; π5 = {z1}, {z2, z3}. (3.42)

Hence there are a total of five possible partitions of the measurement set containing

three measurements. Note that the approach, demonstrated above, for determining

the partitions of a set whose size is n+ 1 from the known partitions of a set whose
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size is n is utilised in the inductive derivation of the PHD update equation for

extended targets in [100] and more recently in the CPHD update equation for group

targets in [111]. Furthermore, the number of partitions |ΠZ | for a measurement set

of size |Z| = n is in fact given by the nth Bell number, Bn [114]. Table 3.1 lists

the Bell numbers for n = 1, . . . , 10 and shows how combinatorially complex the

operation of summing over all possible partitions of Z becomes for a large number

of measurements. However, there exist various clustering techniques for addressing

the partitioning problem.

Centroid based clustering assumes clusters are represented by a central vector,

not necessarily a point in the measurement set. When the number of clusters is fixed

to say k, the k-means algorithm can be applied [115], which finds k cluster centres

and assigns points to the nearest centre. The resulting partition is equivalent

to the Voronoi tessellation [116], which given a set of distinct central vectors in

the Euclidean plane, associates all locations in that space with the closet member

of the central vector set, so that the plane is partitioned into k regions. The

drawbacks of this clustering technique are that it requires the number of clusters

k to be specified in advance and prefers clusters to be approximately similar sizes,

otherwise the borders between clusters (i.e. the boundaries of the regions in the

Voronoi tessellation) are likely to be ill-defined. Such a technique would not be

appropriate for partitioning a measurement set that incorporates clutter.

Connectivity based clustering, otherwise referred to as hierarchical clustering, is

a technique that involves connecting points to form clusters based on their distance,

for example nearest neighbour methods [117]. As such, a cluster is described by

the maximum distance needed to connect points in the cluster. Different distance

choices give different cluster formations and so unique partitioning of the measure-

ment set is not always achievable. An example of such a technique, is a nearest

neighbour approach proposed for determining the partitions of measurement sets

in the Gaussian mixture application of the PHD filter for extended targets in [101].

In this proposed approach, the measurement set is divided into Nd sub-partitions

|Z| |ΠZ | = Bn |Z| |ΠZ | = Bn

1 1 6 203
2 2 7 877
3 5 8 4,140
4 15 9 21, 147
5 52 10 115,975

Table 3.1: List of the number of partitions |ΠZ |, where |Z| = n, for n = 1, . . . , 10
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with distance thresholds {di}Ndi=1 where di < di+1, ∀ i, such that partition i consists

of subsets containing measurements that are no more than di metres apart from

their nearest neighbours.

Density based clustering techniques [118] are often similar to connectivity based

clustering, and assume clusters are defined as areas of higher density than the re-

mainder of the measurement set. That is, points are connected to form clusters

based on a certain distance threshold and whether they satisfy a density criterion.

Measurement points in sparse areas (outlying the areas of high density) are con-

sidered to be clutter. The main drawback of density based clustering is that the

cluster densities are expected to drop in order to determine distinct clusters, which

is a problem when clusters are close or overlapping. However, this is a common

problem in cluster analysis/set partitioning, and one which is not so easy to deal

with, whatever technique is employed.

Distribution based clustering refers to statistical approaches to clustering, where

clusters are defined from point measurements that most likely belong to the same

distribution, which often closely resembles the way simulated measurement sets

are generated. One such approach is the well known expectation-maximization

(EM) clustering method [119, 120], which models the measurement set with a

fixed number of Gaussian distributions, employed recently as a mixture reduction

method in extended target tracking [121]. In ‘hard’ clustering (each measurement

belongs to a cluster or not), measurements are assigned to the Gaussian distribution

they most likely belong to, whereas in ‘soft’ clustering each measurement is assigned

to each Gaussian distribution and weighted according to their likelihood. The

appropriateness of distribution-based clustering techniques in general depends on

the choice of distribution models to describe the measurement set.

In the following chapters, Gaussian mixture implementations of the PHD filter

are presented for group and extended targets, formulated under linear Gaussian

assumptions, so the focus is on the latter type of clustering techniques. In par-

ticular, a procedure that validates measurements lying within a region defined by

a Gaussian ellipse for each estimated cluster centre, the details of which will be

provided with the Gaussian mixture (GM) formulations later. Known as valida-

tion or gating technique [64], the procedure has previously been applied to the

partitioning of the set of measurements for defining groups of targets in [122]. The

main attraction of gating is that it results in a single partition π, hence removing

the summation
∑

π∈ΠZ
(and weights $π) in the update equations (3.21) for group

targets and (3.39) for extended targets.
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3.3.2 Multiple measurement likelihood

The partitioning problem which arises from implementing the first-order moment

approximations of the Bayesian filter for multiple group/extended targets, specif-

ically in the update equations (3.21) & (3.39), is not present in the special case

of the single group target. However, there is an aspect of the update equations

given in Theorem 3.3 (and Theorem 3.5) which does present a similar computa-

tional challenge at the implementation stage, namely the multiple measurement

likelihood.

Consider the expression for this multiple measurement likelihood LZ( · ) given

by equation (3.28). In order to implement either of the single group target update

intensities the product term in LZ( · ) needs to be re-written as

∏
z∈Z

(
κ(z) + vk|k−1[pD,2 lz | ·]

)
=
∑
W⊆Z

( ∏
z∈Z\W

κ(z)

)(∏
w∈W

vk|k−1[pD,2 lw | ·]

)

=

(∏
z∈Z

κ(z)

) ∑
W⊆Z

∏
w∈W

vk|k−1[pD,2 lw | ·]
κ(w)

. (3.43)

That is, LZ( · ) can be written in terms of the multiple measurement likelihood as-

sociated with the single cluster existence update, i.e. LZ( · ) =
(∏

z∈Z
κ(z)

)
L̃Z( · ).

Computation of LZ( · ) written in this form now involves the summation over all

possible non-empty subsets W in the entire measurement set Z, the order of which

is O(2n) for |Z| = n, inclusive of the empty subset W = ∅.
The combinatorial complexity here can be overcome by performing the gating

procedure mentioned earlier for addressing the partitioning problem. Gating in

this case will filter out the majority of the clutter, leaving measurements (some of

which still may be clutter) more closely related to the single group target within

the validation region. The validated measurements constitute a single subset, say

W , and consequently the summation
∑

W⊆Z is removed from the equation (3.43),

so that now the multiple measurement likelihood is denoted by LW ( · ). This useful

gating procedure significantly reduces the computational demand for the single

group target update and considered for the illustrative example presented in the

next chapter. It can also be applied in the single cluster existence update as

demonstrated for the closely related Bernoulli filter proposed by Ristic and Sherrah

[123, 124] for the joint detection and tracking of an extended target, a generalisation

of the JoTT filter.
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Chapter 4

GM implementation of the PHD filter for Group Targets

In general, the recursion for the multi-group PHD filter in Section 3.2.3 has no

closed-form solutions. However, under linear Gaussian assumptions on the dynamic

and observation models, a closed-form solution exists that formulates the posterior

intensity at any time-step as a Gaussian mixture. Since the group states and

individual target states are jointly estimated via the first-order moments in this

recursion, the components in the mixture are formulated as joint Gaussian functions

whose means, covariances and weights are analytically propagated in time.

A Gaussian mixture (GM) formulation for the multi-group PHD filter recursion

is proposed in Section 4.1, whose implementation requires the careful management

of the number of Gaussian components as considered in Section 4.2. For illustration

purposes, the implementation of a similar GM formulation for the special case, the

single group PHD filter, is shown in Section 4.3 with a simulated example and its

performance is analysed.

4.1 The Multi-Group GM-PHD Filter

A closed-form solution exists for the multi-group PHD filter recursion under certain

Gaussian assumptions shown in Sections 4.1.1–4.1.4. The resulting multi-group

GM-PHD filter recursion is then presented in Sections 4.1.5 and 4.1.6.

4.1.1 GM prior intensity

Suppose that at the beginning of each iteration of the filter, the prior intensity is

known and formulated with the following Gaussian mixture

vk−1(xk−1, ξk−1) =

Jk−1∑
i=1

ν
(i)
k−1

J
(i)
k−1∑
j=1

ω
(j)
k−1 N

(
Xk−1 ;µ

(i,j)
k−1,Σ

(i,j)
k−1

)
, (4.1)
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where the components are joint Gaussian functions with Xk−1 =
[
ξk−1 xk−1

]T
and

µ
(i,j)
k−1 =

[
m

(j|i)
ξ,k−1 m

(i)
x,k−1

]T
, Σ

(i,j)
k−1 =

 P
(j|i)
11,k−1 P

(j|i)
12,k−1(

P
(j|i)
12,k−1

)T
P

(i)
22,k−1

 . (4.2)

The notationN ( · ;µ,Σ) is used to denote a Gaussian distribution with mean vector

µ and covariance matrix Σ. Furthermore, m
(i)
x,k−1, P

(i)
22,k−1 are the means and co-

variances for the Gaussian components corresponding to group states, and m
(j|i)
ξ,k−1,

P
(j|i)
11,k−1 are the means and covariances for the Gaussian components corresponding

to individual target states for each group. The cross diagonal covariances P
(j|i)
12,k−1

relate to the strength of dependence each group has on its constituent targets.

The Gaussian mixture formulation in equation (4.1) satisfies the factorisation of

the joint prior intensity given by vk−1(xk−1, ξk−1) = vk−1(xk−1)× vk−1(ξk−1 |xk−1)

so that

vk−1(xk−1) =

Jk−1∑
i=1

ν
(i)
k−1 N

(
xk−1 ; m

(i)
x,k−1,P

(i)
22,k−1

)
, (4.3)

vk−1(ξk−1 |xk−1) =

J
(i)
k−1∑
j=1

ω
(j)
k−1 N

(
ξk−1 ;µ

(i,j)
ξ|x,k−1,Σ

(i,j)
ξ|x,k−1

)
. (4.4)

The Gaussian components in (4.4) are conditional Gaussian realisations from the

joint Gaussian components in (4.1), with means and covariances given by

µ
(i,j)
ξ|x,k−1 = m

(j|i)
ξ,k−1 + P

(j|i)
12,k−1

(
P

(i)
22,k−1

)−1 (
xk−1 −m

(i)
x,k−1

)
,

Σ
(i,j)
ξ|x,k−1 = P

(j|i)
11,k−1 −P

(j|i)
12,k−1

(
P

(i)
22,k−1

)−1 (
P

(j|i)
12,k−1

)T
.

(4.5)

Further details on the formulation of conditional Gaussian functions are given in

the appendix.

4.1.2 Linear Gaussian dynamics

Given the hierarchical RFS representation of the multiple group target system at

time k− 1, the evolution of each independent group state and a constituent target

state to the next time-step is characterised by the joint Markov transition density,

denoted by fk|k−1(xk, ξk |xk−1, ξk−1). Suppose the joint Markov transition density
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is modelled with the following linear Gaussian

fk|k−1(xk, ξk |xk−1, ξk−1) = N (Xk ; Fk−1Xk−1,Qk−1) , (4.6)

where Xk =
[
ξk xk

]T
and

Fk−1 =

[
F11 F12

0 F22

]
, Qk−1 =

[
Q11 Q12

QT
12 Q22

]
. (4.7)

The transition matrix F22 describes the group target dynamics, F11 describes the

individual target dynamics and F12 is the transition matrix for the daughter process

due to the group target dynamics.

The linear Gaussian model in equation (4.6) satisfies the following factorisation

fk|k−1(xk, ξk |xk−1, ξk−1) = fk|k−1(xk |xk−1)× fk|k−1(ξk | ξk−1,xk−1) so that

fk|k−1(xk |xk−1) = N (xk ; F22xk−1,Q22) , (4.8)

fk|k−1(ξk | ξk−1,xk−1) = N
(
ξk ; F11ξk−1+ F12xk−1+ Q12Q

−1
22 (xk− F22xk−1),QSchur

)
,

(4.9)

where QSchur = Q11 − Q12Q
−1
22 QT

12 given process noise covariance matrices Q11,

Q12 & Q22. Note that fk|k−1(xk |xk−1) and fk|k−1(ξk | ξk−1,xk−1) denote the single-

group and single-individual target Markov transition densities given in equations

(3.17) and (3.18) respectively. In addition, suppose the probabilities of survival,

given by pS,1(xk−1) and pS,2(ξk−1) in equations (3.17) and (3.18) respectively, are

state independent, i.e. they are arbitrary constants denoted now by pS,1 and pS,2

respectively.

4.1.3 GM birth intensities

The intensity of the RFS Γk modelling the group births and the conditional inten-

sity of the RFS Γξ,k modelling the birth of new individual targets are formulated

with the following Gaussian mixtures

γk(xk, ξk) =

Jγ,k∑
i=1

ν
(i)
γ,k

J
(i)
γ,k∑
j=1

ω
(j)
γ,k N

(
Xk ;µ

(i,j)
γ,k ,Σ

(i,j)
γ,k

)
, (4.10)

γk(ξk |xk) =

J
(i)
γ,k∑
j=1

ω
(j)
γ,k N

(
ξk ;µ

(i,j)
γ,ξ,k,Σ

(i,j)
γ,ξ,k

)
. (4.11)
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In equation (4.10), the means and covariances of the Gaussian components in the

mixture are given by

µ
(i,j)
γ,k =

[
m

(j|i)
γ,ξ,k m

(i)
γ,x,k

]T
, Σ

(i,j)
γ,k =

 P
(j|i)
γ,11,k P

(j|i)
γ,12,k(

P
(j|i)
γ,12,k

)T
P

(i)
γ,22,k

 . (4.12)

while in equation (4.11), the means and covariances of the Gaussian components

in the mixture are given by

µ
(i,j)
γ,ξ,k = m

(j|i)
γ,ξ,k + P

(j|i)
γ,12,k

(
P

(i)
22,k|k−1

)−1 (
xk−1 −m

(i)
x,k|k−1

)
,

Σ
(i,j)
γ,ξ,k = P

(j|i)
γ,11,k −P

(j|i)
γ,12,k

(
P

(i)
22,k|k−1

)−1 (
P

(j|i)
γ,12,k

)T
.

(4.13)

The Gaussian components in (4.11) are further conditional Gaussian realisa-

tions, this time from the joint Gaussian components with means and covariances

given by

µ
(i,j)
γ,k =

[
m

(j|i)
γ,ξ,k m

(i)
x,k|k−1

]T
, Σ

(i,j)
γ,k =

 P
(j|i)
γ,11,k P

(j|i)
γ,12,k(

P
(j|i)
γ,12,k

)T
P

(i)
22,k|k−1

 , (4.14)

for i = 1, . . . , Jk−1, where m
(i)
x,k|k−1, P

(i)
22,k|k−1 are the predicted means and covariance

of the Gaussian components corresponding to group states in the mixture to be

determined for the predicted intensity.

4.1.4 Linear Gaussian measurement likelihood

The final model assumption concerns the single measurement likelihood, denoted

by gk(z | ξk,xk) in equation (3.22). Suppose this likelihood function is modelled

with the following factorisation of linear Gaussian functions

gk(z | ξk,xk) = N (z ; Hξk,R1)×N (z ; Ĥxk,R2), (4.15)

where N (z ; Hξk,R1) is the likelihood that the measurement vector z is related to

individual target ξk, with projection matrix H and observation noise covariance

matrix R1, and N (z ; Ĥxk,R2) is the likelihood that the measurement z relates

to group target xk, with projection matrix Ĥ and observation noise covariance

matrix R2. In addition, suppose the probabilities of detection, given by pD,1(xk)

and pD,2(ξk) in equations (3.21) and (3.22) respectively, are state independent, i.e.

they are arbitrary constants denoted now by pD,1 and pD,2 respectively.
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4.1.5 The multi-group GM-PHD prediction

Given the linear Gaussian assumptions on the dynamics along with the GM formu-

lations of the birth intensities and prior intensity described in Sections 4.1.1–4.1.3,

the predicted intensity from Theorem 3.1 can be formulated as a Gaussian mixture,

as proposed in the following.

Proposition 4.1. Suppose that the assumptions on the dynamics and the probabil-

ities of survival hold. Then, given the Gaussian mixture formulations of the prior

intensity and birth intensities in equations (4.1), (4.10) and (4.11) respectively, the

predicted intensity is also a Gaussian mixture of the form

vk|k−1(xk, ξk) =

Jk|k−1∑
ı̄=1

ν
(ı̄)
k|k−1

J
(ı̄)
k|k−1∑
̄=1

ω
(̄)
k|k−1 N

(
Xk ;µ

(ı̄,̄)
k|k−1,Σ

(ı̄,̄)
k|k−1

)
, (4.16)

with means and covariances given by

µ
(ı̄,̄)
k|k−1 =

[
m

(̄|̄ı)
ξ,k|k−1 m

(ı̄)
x,k|k−1

]T
, Σ

(ı̄,̄)
k|k−1 =

 P
(̄|̄ı)
11,k|k−1 P

(̄|̄ı)
12,k|k−1(

P
(̄|̄ı)
12,k|k−1

)T
P

(ı̄)
22,k|k−1

 , (4.17)

and Jk|k−1 = Jγ,k+Jk−1. For new group targets {xk,̄ı : ı̄ = i = 1, . . . , Jγ,k} with new

individual targets {ξk,̄ : ̄ = j = 1, . . . , J
(i)
γ,k}, the weights, means and covariances

in equation (4.16) are given by

ν
(ı̄)
k|k−1 = ν

(i)
γ,k , ω

(̄)
k|k−1 = ω

(j)
γ,k , µ

(ı̄,̄)
k|k−1 = µ

(i,j)
γ,k , Σ

(ı̄,̄)
k|k−1 = Σ

(i,j)
γ,k , (4.18)

and J
(ı̄)
k|k−1 = J

(i)
γ,k. For persistent group targets {xk,̄ı : ı̄ = Jγ,k + i for i =

1, . . . , Jk−1} the weights, means and covariances of the Gaussian components in

equation (4.16) corresponding to the group states are given by

ν
(ı̄)
k|k−1 = pS,1 ν

(i)
k−1 ,

m
(ı̄)
x,k|k−1 = F22m

(i)
x,k−1 , P

(ı̄)
22,k|k−1 = F22P

(i)
22,k−1F

T
22 + Q22 ,

(4.19)

with J
(ı̄)
k|k−1 = J

(i)
γ,k+J

(i)
k−1, while the weights, means and covariances of the Gaussian

components corresponding to new individual targets {ξk,̄ : ̄ = j = 1, . . . , J
(i)
γ,k} are

given by

ω
(̄)
k|k−1 = ω

(j)
γ,k , m

(̄|̄ı)
ξ,k|k−1 = m

(j|i)
γ,ξ,k , P

(̄|̄ı)
11,k|k−1 = P

(j|i)
γ,11,k , (4.20)
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and those corresponding to persistent individual targets {ξk,̄ : ̄ = J
(i)
γ,k + j for j =

1, . . . , J
(i)
k−1} are given by

ω
(̄)
k|k−1 = pS,2 ω

(j)
k−1,

m
(̄|̄ı)
ξ,k|k−1 = F11m

(j|i)
ξ,k−1 + F12m

(i)
x,k−1,

P
(̄|̄ı)
11,k|k−1 = F11P

(j|i)
11,k−1F

T
11 +

(
F11P

(j|i)
12,k−1F

T
12

)T
+ F11P

(i)
12,k−1F

T
12 + F12P

(j|i)
22,k−1F

T
12 + Q11.

(4.21)

The respective cross diagonal covariances corresponding to new and persistent in-

dividual targets in persistent groups are given by P
(̄|̄ı)
12,k|k−1 = P

(j|i)
γ,12,k and

P
(̄|̄ı)
12,k|k−1 = F11P

(j|i)
12,k−1F

T
22 + F12P

(i)
22,k−1F

T
22 + Q12. (4.22)

Details on how the GM formulation in Proposition 4.1 can be established are

given in Appendix C (Sections C.2.1).

4.1.6 The multi-group GM-PHD update

Given the remaining assumption described in Section 4.1.4 and the GM formulation

for the predicted intensity proposed in Section 4.1.5, the updated intensity from

Theorem 3.2 can also be formulated as a Gaussian mixture as proposed in the

following.

Proposition 4.2. Suppose that the assumptions on the single-measurement like-

lihood and probabilities of detections hold. Then, given the GM formulation of

the predicted intensity in equation (4.16), the updated intensity is also a Gaussian

mixture of the form

vk(xk, ξk) = (4.23)(
1− pD,1 + pD,1 e−pD,2 α (1− pD,2)

)
vk|k−1(xk, ξk) +

∑
π∈ΠZ

$π

∑
ϕ∈π

vD,k(xk, ξk)ϕ,

where α =
∑J

(i)
k|k−1

j=1 ω
(j)
k|k−1; and

vD,k(xk, ξk)ϕ =

Jk|k−1∑
i=1

∑
j1:|ϕ|

ν
(j1:|ϕ|,i)

ϕ,k

J
(1:|ϕ|,i)
k∑
̄=1

ω
(̄)
k N

(
Xk ;µ

(j1:|ϕ|,i,̄)

k ,Σ
(j1:|ϕ|,i,̄)

k

)
, (4.24)
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with the means and covariances

µ
(j1:|ϕ|,i,̄)

k =
[
m

(j1:|ϕ|,i,̄)

ξ,k m
(j1:|ϕ|,i)

x,k

]T
, Σ

(j1:|ϕ|,i,̄)

k =

 P
(j1:|ϕ|,i,̄)

11,k P
(j1:|ϕ|,i,̄)

12,k(
P

(j1:|ϕ|,i,̄)

12,k

)T
P

(j1:|ϕ|,i)

22,k

,
(4.25)

and J
(1:|ϕ|,i)
k = J

(i)
k|k−1 + |ϕ|×J (i)

k|k−1. In equation (4.24), the sum
∑

j1:|ϕ|
is taken over

all permutations, denoted by j1:|ϕ| = (j1, . . . , j|ϕ|), of the indices j` = 1, . . . , J
(i)
k|k−1

for ` = 1, . . . , |ϕ|.
The weights, means and covariances of the Gaussian components in (4.24) re-

lating to detected group states are ν
(j1:|ϕ|,i)

ϕ,k , m
(j1:|ϕ|,i)

x,k and P
(j1:|ϕ|,i)

22,k . More precisely,

for 1 ≤ ` ≤ |ϕ|,

m
(j1:`,i)
x,k = η

(j1:`,i)
x,k + P (j1:`,i)

22,k

(
A

(i,j`)
k

)T(
S

(j1:`,i)
1

)−1(
z` − b

(j1:`,i)
1

)
+ K

(j1:`,i)
x,k

(
z` − b

(j1:`,i)
2

)
,

P
(j1:`,i)
22,k =

(
I−K

(j1:`,i)
x,k Ĥ

)(
I−P (j1:`,i)

22,k

(
A

(i,j`)
k

)T(
S

(j1:`,i)
1

)−1

A
(i,j`)
k

)
P (j1:`,i)

22,k ,

K
(j1:`,i)
x,k =

(
I−P (j1:`,i)

22,k

(
A

(i,j`)
k

)T(
S

(j1:`,i)
1

)−1

A
(i,j`)
k

)
P (j1:`,i)

22,k ĤT
(
S

(j1:`,i)
2

)−1

,

(4.26)

denoting A
(i,j`)
k = HP

(j`|i)
12,k|k−1

(
P

(i)
22,k|k−1

)−1

, where

b
(j1:`,i)
1 = Hm

(j`|i)
ξ,k|k−1 + A

(i,j`)
k

(
η

(j1:`,i)
x,k −m

(i)
x,k|k−1

)
,

S
(j1:`,i)
1 = A

(i,j`)
k P (j1:`,i)

22,k

(
A

(i,j`)
k

)T
+ R̃

(i,j`)
k ,

 (4.27)

b
(j1:`,i)
2 = Ĥη

(j1:`,i)
x,k + ĤP (j1:`,i)

22,k

(
A

(i,j`)
k

)T(
S

(j1:`,i)
1

)−1(
z` − b

(j1:`,i)
1

)
,

S
(j1:`,i)
2 = Ĥ

(
I−P (j1:`,i)

22,k

(
A

(i,j`)
k

)T(
S

(j1:`,i)
1

)−1

A
(i,j`)
k

)
P (j1:`,i)

22,k ĤT + R2.

 (4.28)

In (4.26) and (4.27), η
(j1:`,i)
x,k and P (j1:`,i)

22,k are iteratively propagated means and co-

variances relating to group targets, given by

η
(j1:`,i)
x,k =

m
(i)
x,k|k−1 for ` = 1,

m
(j1:`−1,i)
x,k for 1 < ` ≤ |ϕ|,

P (j1:`,i)
22,k =

P
(i)
22,k|k−1 for ` = 1,

P
(j1:`−1,i)
22,k for 1 < ` ≤ |ϕ|.

(4.29)
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The weights ν
(j1:|ϕ|,i)

ϕ,k are evaluated as follows

ν
(j1:|ϕ|,i)

ϕ,k =
pD,1 ν

(i)
k|k−1e−pD,2 α L

(i)
j1:|ϕ|

Λ(ϕ) +
∑Jk|k−1

i=1

∑
j1:|ϕ|

pD,1 ν
(i)
k|k−1e−pD,2 α L

(i)
j1:|ϕ|

, (4.30)

where L
(i)
j1:|ϕ|

denotes the multiple measurement likelihood given by

L
(i)
j1:|ϕ|

=

|ϕ|∏
`=1

ω
(j`)
k|k−1 pD,2 q

(j1:`,i)
1 (z`) q

(j1:`,i)
2 (z`), (4.31)

and, for 1 ≤ ` ≤ |ϕ|,

q
(j1:`,i)
1 (z`) = N

(
z` ; b

(j1:`,i)
1 ,S

(j1:`,i)
1

)
,

q
(j1:`,i)
2 (z`) = N

(
z` ; b

(j1:`,i)
2 ,S

(j1:`,i)
2

)
.

(4.32)

The weights, means and covariances of the Gaussian components in (4.24) re-

lating to individual targets are ω
(̄)
k , m

(j1:|ϕ|,i,̄)

ξ,k and P
(j1:|ϕ|,i,̄)

11,k , for missed detections,

i.e. ̄ = j = 1, . . . , J
(i)
k|k−1,

m
(j1:|ϕ|,i,̄)

ξ,k = m
(j|i)
ξ,k|k−1 + P

(j1:|ϕ|,i,̄)

12,k

(
P

(j1:|ϕ|,i)

22,k

)−1(
m

(j1:|ϕ|,i)

x,k −m
(i)
x,k|k−1

)
,

P
(j1:|ϕ|,i,̄)

11,k = P
(j|i)
11,k|k−1 −P

(j1:|ϕ|,i,̄)

12,k

(
P

(j1:|ϕ|,i)

22,k

)−1(
P

(j|i)
12,k|k−1 −P

(j1:|ϕ|,i,̄)

12,k

)T
,

(4.33)

with weights ω
(̄)
k = (1− pD,2)ω

(j)
k|k−1 and cross diagonal covariances given by

P
(j1:|ϕ|,i,̄)

12,k = P
(j|i)
12,k|k−1

(
P

(i)
22,k|k−1

)−1

P
(j1:|ϕ|,i)

22,k . (4.34)

For detections, i.e. ̄ = J
(i)
k|k−1 + (` − 1) × J

(i)
k|k−1 + j` for j` = 1, . . . , J

(i)
k|k−1 and

` = 1, . . . , |ϕ|,

m
(j1:|ϕ|,i,̄)

ξ,k = m̃
(i,j`)
ξ,k + P

(j1:|ϕ|,i,̄)

12,k

(
P

(j1:|ϕ|,i)

22,k

)−1(
m

(j1:|ϕ|,i)

x,k −m
(i)
x,k|k−1

)
,

P
(j1:|ϕ|,i,̄)

11,k = P̃
(i,j`)
11,k −P

(j1:|ϕ|,i,̄)

12,k

(
P

(j1:|ϕ|,i)

22,k

)−1 (
P̃

(i,j`)
12,k −P

(j1:|ϕ|,i,̄)

12,k

)T
,

(4.35)

with cross diagonal covariances given by

P
(j1:|ϕ|,i,̄)

12,k = P̃
(i,j`)
12,k

(
P

(i)
22,k|k−1

)−1

P
(j1:|ϕ|,i)

22,k , (4.36)
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where

m̃
(i,j`)
ξ,k = m

(j`|i)
ξ,k|k−1 + K

(i,j`)
ξ,k

(
z` −Hm

(j`|i)
ξ,k|k−1

)
,

P̃
(i,j`)
11,k =

(
I−K

(i,j`)
ξ,k H

)
P

(j`|i)
11,k|k−1− P̃

(i,j`)
12,k

(
P

(i)
22,k|k−1

)−1(
K

(i,j`)
ξ,k HP

(j`|i)
12,k|k−1

)T
,

P̃
(i,j`)
12,k =

(
I−K

(i,j`)
ξ,k H

)
P

(j`|i)
12,k|k−1,

K
(i,j`)
ξ,k = Σ

(i,j`)
ξ|x,k|k−1H

T
(
R̃

(i,j`)
k

)−1

,

(4.37)

and weights evaluated as follows

ω
(̄)
k =

pD,2 ω
(j`)
k|k−1 q

(j1:`,i)
1 (z`) q

(j1:`,i)
2 (z`)∑J

(i)
k|k−1

j`=1
pD,2 ω

(j`)
k|k−1 q

(j1:`,i)
1 (z`) q

(j1:`,i)
2 (z`)

. (4.38)

Finally, the partition weights are given by

$π =

∏
ϕ∈π

(
Λ(ϕ) +

∑Jk|k−1

i=1

∑
j1:|ϕ|

pD,1 ν
(i)
k|k−1 e−pD,2 α L

(i)
j1:|ϕ|

)
∑
π′∈ΠZ

∏
ϕ′∈π′

(
Λ(ϕ′) +

∑Jk|k−1

i=1

∑
j1:|ϕ′|

pD,1 ν
(i)
k|k−1 e−pD,2 α L

(i)
j1:|ϕ′|

) . (4.39)

Details on how the GM formulation in Proposition 4.2 can be established are

given in Appendix C (Section C.2.2).

4.1.7 Remarks on the GM-PHD recursion for group targets

Propositions 4.1 and 4.2 present a closed-form solution to the PHD filter recursion

for multiple group targets, the resulting algorithm for which is given in Tables 4.1

and 4.2. It follows from Proposition 4.1 and 4.2 that, given the intensity at the

initial time-step k = 0 is formulated with a Gaussian mixture, subsequent predicted

and posterior intensities are also GM formulations.

The expected number of groups Nk|k−1 and the expected number of individual

targets N
(ı̄)
k|k−1, for each group, associated with the predicted intensity vk|k−1 are

obtained by summing the appropriate mixture weights. That is

Nk|k−1 = pS,1Nk−1 +

Jγ,k∑
i=1

ν
(i)
γ,k, (4.40)

where Nk−1 =
∑Jk−1

i=1 ν
(i)
k−1, and for ı̄ = 1, . . . , Jk|k−1
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given
{
ν

(i)
k−1,

{
ω

(j)
k−1,µ

(i,j)
k−1 ,Σ

(i,j)
k−1

}J(i)
k−1

j=1

}Jk−1

i=1

prediction
ı̄ := 0.
for i = 1, . . . , Jγ,k (New group targets)

ı̄ := ı̄+ 1, ν
(ı̄)
k|k−1 := ν

(i)
γ,k,

̄ := 0,

for j = 1, . . . , J
(i)
γ,k

̄ := ̄+ 1,

ω
(̄)
k|k−1 := ω

(j)
γ,k, µ

(ı̄,̄)
k|k−1 := µ

(i,j)
γ,k , Σ

(ı̄,̄)
k|k−1 := Σ

(i,j)
γ,k .

end
J

(ı̄)
k|k−1 := ̄.

end
for i = 1, . . . Jk−1 (Persistent group targets)

ı̄ := ı̄+ 1,

ν
(ı̄)
k|k−1, m

(ı̄)
x,k|k−1, P

(ı̄)
22,k|k−1 are formulated as per equation (4.19),

̄ := 0.

for j = 1, . . . , J
(i)
γ,k (New individual targets)

̄ := ̄+ 1,

ω
(̄|̄ı)
k|k−1, m

(̄|̄ı)
ξ,k|k−1, P

(̄|̄ı)
11,k|k−1 are formulated as per equation (4.20),

and P
̄|̄ı)
12,k|k−1 := P

(j|i)
γ,12,k.

end
for j = 1, . . . , J

(i)
k−1 (Persistent individual targets)

̄ := ̄+ 1,

ω
(̄)
k|k−1, m

(̄|̄ı)
ξ,k|k−1, P

(̄|̄ı)
11,k|k−1 and P

(̄|̄ı)
12,k|k−1 are formulated

as per equations (4.21)–(4.22).
end
J

(ı̄)
k|k−1 := ̄.

end
Jk|k−1 := ı̄.

output
{
ν

(i)
k|k−1,

{
ω

(j)
k|k−1,µ

(i,j)
k|k−1,Σ

(i,j)
k|k−1

}J(i)

k|k−1

j=1

}Jk|k−1

i=1

Table 4.1: Pseudo-code for the multi-group GM-PHD prediction

N
(ı̄)
k|k−1 =



J
(i)
γ,k∑
j=1

ω
(j)
γ,k for ı̄ = 1, . . . , Jγ,k,

pS,2N
(i)
k−1 +

J
(i)
γ,k∑
j=1

ω
(j)
γ,k for ı̄ = Jγ,k + i & i = 1, . . . , Jk−1,

(4.41)

where N
(i)
k−1 =

∑J
(i)
k−1

j=1 ω
(j)
k−1 for i = 1, . . . , Jk−1. Likewise for the expected number

of groups Nk and the expected number of individual targets N
(ı̄)
k , for each group,

associated with the updated intensity vk.
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given
{
ν

(i)
k|k−1,

{
ω

(j)
k|k−1,µ

(i,j)
k|k−1,Σ

(i,j)
k|k−1

}J(i)

k|k−1

j=1

}Jk|k−1

i=1

update
ı̄ := 0.
for i = 1, . . . , Jk|k−1 (Missed detected group targets)

ı̄ := ı̄+ 1,

ν
(ı̄)
k := (1− pD,1 + pD,1 e−pD,2 α (1− pD,2)) ν

(i)
k|k−1, (where α =

∑J
(i)

k|k−1

j=1
ω

(j)
k|k−1)

for j = 1, . . . , J
(i)
k|k−1

̄ := ̄+ 1,

ω
(̄)
k := ω

(j)
k|k−1, µ

(ı̄,̄)
k := µ

(i,j)
k|k−1, Σ

(ı̄,̄)
k := Σ

(i,j)
k|k−1.

end
J

(ı̄)
k := ̄.

end
for each partition π ∈ ΠZk (Detected group targets)

for each subset ϕ ∈ π
for i = 1, . . . , Jk|k−1

for each permutation j1:|ϕ| = (j1, . . . , j|ϕ|) (where j` = 1, . . . , J
(i)
k|k−1)

ı̄ := ı̄+ 1,

ν
(ı̄)
k := ν

(j1:|ϕ|,i)

ϕ,k , m
(ı̄)
x,k := m

(j1:|ϕ|,i)

x,k , P
(ı̄)
22,k := P

(j1:|ϕ|,i)

22,k ,

where the formulae for ν
(j1:|ϕ|,i)

ϕ,k , m
(j1:|ϕ|,i)

x,k , P
(j1:|ϕ,i)

22,k are given in
equations (4.26)–(4.32).
̄ := 0.

for j = 1, . . . , J
(i)
k|k−1 (Missed detected individual targets)

̄ := ̄+ 1, ω
(̄)
k := (1− pD,2)ω

(j)
k|k−1,

m
(̄|̄ı)
ξ,k := m

(j1:|ϕ|,i,j)

ξ,k , P
(̄|̄ı)
11,k := P

(j1:|ϕ,i,j)

11,k , P
(̄|̄ı)
12,k := P

(j1:|ϕ|,i,j)

12,k ,

where the formulae for m
(j1:|ϕ|,i,j)

ξ,k , P
(j1:|ϕ|,i,j)

11,k , P
(j1:|ϕ|,i,j)

12,k are given in
equations (4.33)–(4.34).

end
for ` = 1, . . . , |ϕ| (Detected individual targets)

for j` = 1, . . . , J
(i)
k|k−1

̄ := ̄+ 1,

m
(̄|̄ı)
ξ,k := m

(j1:|ϕ|,i,̄)

ξ,k , P
(̄|̄ı)
11,k := P

(j1:|ϕ|,i,̄)

11,k , P
(̄|̄ı)
12,k := P

(j1:|ϕ|,i,̄)

12,k ,

where the formulae for m
(j1:|ϕ|,i,̄)

ξ,k , P
(j1:|ϕ|,i,̄)

11,k , P
(j1:|ϕ|,i,̄)

12,k are given in
equations (4.35)–(4.37).

Each weight ω
(̄)
k is formulated as per equation (4.38).

end
end
J

(ı̄)
k := ̄.

end
end

end
Each partition weight ωπ is formulated as per equation (4.39).

end
Jk := ı̄.

output
{
ν

(i)
k ,
{
ω

(j)
k ,µ

(i,j)
k ,Σ

(i,j)
k

}J(i)
k

j=1

}Jk
i=1

Table 4.2: Pseudo-code for the multi-group GM-PHD update

63



That is

Nk =
(
1− pD,1 + pD,1 e−pD,2 α

)
Nk|k−1 +

∑
π∈ΠZ

$π

∑
ϕ∈π

Jk|k−1∑
i=1

∑
j1:|ϕ|

ν
(j1:|ϕ|,i)

ϕ,k , (4.42)

and for ı̄ = 1, . . . , Jk

N
(ı̄)
k =


N

(i)
k|k−1 + (1− pD,2)N

(i)
k|k−1 for ı̄ = i = 1, . . . , Jk|k−1,

(1− pD,2)N
(i)
k|k−1 + pD,2

∑
z∈ϕr

J
(i)
k|k−1∑
̄=1

ω
(̄)
k

for ı̄ = Jk|k−1 + J
(t,r,i)
k + j,

& j = 1, . . . , |ϕr| × J (i)
k|k−1,

(4.43)

where, for t = 1, . . . , |ΠZ |, r = 1, . . . , |πt| and i = 1, . . . , Jk|k−1,

J
(t,r,i)
k =

(r + |π|×1:t−1− 1
)
× Jk|k−1 ×

r−1∏
`=1

(
|ϕ`| ×

Jk|k−1∏
i′=1

J
(i′)
k|k−1

)+
(
|ϕr| × J (1:i−1)

k|k−1

)
,

(4.44)

denoting |π|×1:t−1 = |π1| × · · · × |πt−1| and J
(1:i−1)
k|k−1 = J

(1)
k|k−1 × · · · × J

(i−1)
k|k−1 (such that

|π|×1:t−1 = 0 and J
(1:i−1)
k|k−1 = 0 when t = 1 and i = 1 respectively).

It can be deduced from equations (4.40) and (4.42) that the GM-PHD filter for

multiple group targets, at any time-step k, requires

Jk = Jk|k−1 +
∏
π∈ΠZ

∏
ϕ∈π

Jk|k−1∏
ı̄=1

|ϕ| × J (ı̄)
k|k−1, (4.45)

Gaussian components relating to group states in vk, where Jk|k−1 = Jγ,k + Jk−1

is the number of components relating to group states in vk|k−1 and the number of

components relating to individual targets in vk|k−1 is given by

J
(ı̄)
k|k−1 =

J
(i)
γ,k for ı̄ = i, . . . , Jγ,k,

J
(i)
γ,k + J

(i)
k−1 for ı̄ = Jγ,k + i and i = 1, . . . , Jk−1,

(4.46)

given that the number of components relating to group and individual target states

in vk−1 are Jk−1 and J
(i)
k−1 respectively. It is clear from equation (4.45) that the

number of Gaussian components (relating to group states alone) in the posterior

intensities increases without bound over time. The next section focuses on methods

for reducing the number of Gaussian components and presents various procedures

with this in mind.
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4.2 Mixture Reduction Procedures

This section addresses implementation issues with the multi-group GM-PHD fil-

ter, in particular the potential for exponential growth in the number of Gaussian

components at the update step.

4.2.1 Reducing the number of partitions of the measurement set

The number of partitions of a measurement set contributes significantly to the

increase in the number of Gaussian components in the posterior intensities. As

established in the previous chapter (Section 3.3), the operation of partitioning

the measurement presents a substantial computational challenge. To address the

partitioning problem a gating procedure is considered which reduces the number

of partitions to |ΠZ | = 1 as follows.

Based on the validation or gating technique [64], the pre-update procedure,

whose details are given in Table 4.3, assigns measurements to subsets of a single par-

tition π. Each subset ϕ ∈ π consists of those measurements in Zk which lie within a

given
{
ν

(i)
k|k−1,m

(i)
x,k|k−1,P

(i)
22,k|k−1

}Jk|k−1

i=1
, measurement set Zk, projection matrix Ĥ,

noise covariance matrix RG ∝ R2 and gating threshold T2.
procedure

Set π = ∅, n = 0 and I = {i = 1, . . . , Jk|k−1}.
repeat

imax := arg max
i∈I

ν
(i)
k|k−1

µ := Ĥm
(imax)
x,k|k−1, Σ = ĤP

(imax)
22,k|k−1Ĥ

T + RG,

W :=
{

z ∈ Zk
∣∣∣(z− µ)T Σ−1 (z− µ) ≤ T2

}
.

if W 6= ∅
n := n+ 1,
ϕn := W ,
π := {π, ϕn},
Zk := Zk \ ϕn.

end
I := I \ {imax}.

until I = ∅.
for each remaining measurement z ∈ Zk

n := n+ 1,
ϕn := {z}.

end

output π = {ϕi}ni=1.

Table 4.3: Gating procedure for partitioning the measurement set
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Figure 4.1: A measurement set partitioned according to the gating procedure in
Table 4.3. Observations are indicated by black ‘circles’, predicted group target
estimates are indicated by red ‘crosses’ and gates are indicated by blue ‘lines’.

validation region for each predicted group target estimate. The validation or gating

regions are defined by the Gaussian ellipses from N (z ; Ĥm
(i)
x,k|k−1, ĤP

(i)
22,k|k−1Ĥ

T +

RG) for i = 1, . . . , Jk|k−1.1 Any remaining measurements in Zk are each individually

assigned to a subset in π, as illustrated in Figure 4.1. As a result, this procedure

removes the summation over all partitions
∑

π∈ΠZ
in equations (4.23) and (4.42),

leaving instead the following expressions for the updated intensity

vk(xk, ξk) =
(
1− pD,1 + pD,1 e−pD,2 α (1− pD,2)

)
vk|k−1(xk, ξk) +

∑
ϕ∈π

vD,k(xk, ξk)ϕ,

(4.47)

and the expected number of group targets associated with vk

Nk =
(
1− pD,1 + pD,1 e−pD,2 α

)
Nk|k−1 +

∑
ϕ∈π

Jk|k−1∑
i=1

∑
j1:|ϕ|

ν
(j1:|ϕ|,i)

ϕ,k . (4.48)

4.2.2 Validating measurements

Besides the number of partitions of the measurement set, the other significant

contributor of the increase in the number of Gaussian components is the pseudo

multiple measurement likelihood Lϕ. Another validation technique based proce-

dure, whose details are given in Table 4.4, can be performed (during the update

step) for each subset ϕ of a partition π, that validates measurements lying within a

1The Gaussian N (z ; Ĥm
(i)
x,k|k−1, ĤP

(i)
22,k|k−1Ĥ

T + RG) is interpreted as the updated

single measurement likelihood in relation to group targets, which is obtained by
applying the standard result given in Lemma C.2 (Appendix C) to the product

N (z ; Ĥxk,RG)N (xk ; m
(i)
x,k|k−1,P

(i)
22,k|k−1).
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given
{{

m
(j|i)
ξ,k|k−1,P

(j|i)
11,k|k−1,P

(j|i)
12,k|k−1

}J(i)
k|k−1

j=1

}Jk|k−1

i=1
, a partition π,

projection matrix H, observation noise covariance matrix R1, and
gating threshold T1.

procedure
π̃ := π.
for each ϕ ∈ π

Jϕ,k|k−1 := 0.
for i = 1, . . . , Jk|k−1

nϕ := 0.
for ` = 1, . . . , |ϕ|

L` := ∅,
for j = 1, . . . , J

(i)
k|k−1

Let µ := Hm
(j|i)
ξ,k|k−1 and Σ := HP

(j|i)
11,k|k−1H

T + R1.

if (z` − µ)T (Σ)−1 (z` − µ) ≤ T1

L` := {L`, j},
end

end
if L` 6= ∅

nϕ := nϕ + 1, znϕ := z`, J
(i)
nϕ := |L`|.

for ̄ = 1, . . . , J
(i)
nϕ

m
(̄|i)
ξ = m

(L`,̄|i)
ξ,k|k−1,

P
(̄|i)
11 = P

(L`,̄|i)
11,k|k−1, P

(̄|i)
12 = P

(L`,̄|i)
12,k|k−1,

(where L`,̄ denotes the ̄th entry in the set L`)
end

end
end
if nϕ > 0

Jϕ,k|k−1 := Jϕ,k|k−1 + 1.
end

end
if Jϕ,k|k−1 = 0

π̃ := π̃ \ ϕ.
end

end

output
{{{

m
(̄|i)
ξ ,P

(̄|i)
11 ,P

(̄|i)
12

}J(i)
l

̄=1

}nϕ
l=1

}Jϕ,k|k−1

i=1
for each ϕ ∈ π̃.

Table 4.4: Gating procedure for validating measurement in each subset ϕ of a
partition π
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region defined by Gaussian ellipses from N (z ; Hm
(j|i)
ξ,k|k−1,HP

(j|i)
11,k|k−1H

T + R1) for

i = 1, . . . , Jk|k−1 and j = 1, . . . , J
(i)
k|k−1.2 To start with let π̃ = π, then those subsets

ϕ̄ ∈ π whose constituent measurements do not lie within any validation region for

all i = 1, . . . , Jk|k−1 and j = 1, . . . , J
(i)
k|k−1 are stricken from the partition π̃. For each

remaining subset ϕ ∈ π̃, the procedure not only reduces the number of Gaussian

components relating to group states in the expression corresponding to detections

vD,k(xk, ξk) in equation (4.24) to Jϕ,k|k−1 ≤ Jk|k−1, but also reduces the summation

over permutations j1:|ϕ| in equation (4.24) to
∑

j1:nϕ
where j1:nϕ = (j1, . . . , jnϕ)

denotes permutations of the indices jl = 1, . . . , J
(i)
l for l = 1, . . . , nϕ, such that

J
(i)
l ≤ J

(i)
k|k−1 and nϕ ≤ |ϕ|. As a result, the expression corresponding to detections

in equation (4.47) becomes

vD,k(xk, ξk)ϕ =

Jϕ,k|k−1∑
i=1

∑
j1:nϕ

ν
(j1:nϕ ,i)

ϕ,k

J̃
(i)
nϕ,k∑
̄=1

ω
(̄)
k N

(
Xk ;µ

(j1:nϕ ,i,̄)

k ,Σ
(j1:nϕ ,i,̄)

k

)
, (4.49)

where J̃
(i)
nϕ,k

= J
(i)
k|k−1 +

∏nϕ
l=1 J

(i)
l . In addition to performing the gating procedure

in Table 4.3, the expected number of groups associated with vk given by equation

(4.47) is now

Nk =
(
1− pD,1 + pD,1 e−pD,2 α

)
Nk|k−1 +

∑
ϕ∈π̃

Jϕ,k|k−1∑
i=1

∑
j1:nϕ

ν
(j1:nϕ ,i)

ϕ,k . (4.50)

Consequently, the multi-group GM-PHD filter, incorporating both gating pro-

cedures (Tables 4.3 and 4.4) at every time-step k, now requires

J̃k = Jk|k−1 +
∏
ϕ∈π̃

Jϕ,k|k−1∏
i=1

nϕ∏
l=1

J
(i)
l , (4.51)

Gaussian components relating to group targets in vk and for ı̄ = 1, . . . , J̃k

J̃
(ı̄)
k =

J
(i)
k|k−1 for ı̄ = i = 1, . . . , Jk|k−1,

J̃
(i)
nϕ,k

for ı̄ = Jk|k−1 + J
(r,i)
k + j and j = 1, . . . , J

(i)
nϕ,k

,
(4.52)

2The Gaussian N (z ; Hm
(j|i)
ξ,k|k−1,HP

(j|i)
11,k|k−1H

T +R1) can be interpreted as the updated single

measurement obtained by applying the standard result given in Lemma C.2 (Appendix C) to the

product N (z ; Hξk,R1)N (ξk ; m
(j|i)
ξ,k|k−1,P

(j|i)
11,k|k−1).
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where J
(i)
nϕ,k

=
∏nϕ

l=1 J
(i)
l and

J
(r,i)
k =

r−1∏
`=1

( Jϕ`,k|k−1∏
i′=1

( nϕ∏̀
l=1

J
(i′)
l

))
+

i∏
i′=1

(
nϕr∏
l=1

J
(i′)
l

)
, (4.53)

for r = 1, . . . , |π̃| and i = 1, . . . , Jϕr,k|k−1.

4.2.3 State extraction

Having reduced the number of Gaussian components, the next task is to extract

the group and individual target state estimates, which is straightforward since the

means of the remaining Gaussian components are local maxima of vk, provided

that they are reasonably well separated. Closely spaced Gaussian components can

be merged, as shown in Table 4.5, based on the pruning algorithm proposed in

[90]. Gaussian components are judged to be closely spaced or not based on the

Mahalanobis distance measure [125], given appropriate thresholds3.

The Mahalanobis distance is usually a suitable distance measure for Gaussian

functions whose covariances are identical. However, the covariances of the Gaussian

components in vk, prior to merging, may be very different and the use of the

Mahalanobis distance could then lead to the merging of such Gaussian components,

resulting in less than accurate representations of the group and individual target

states. To avoid this, it is perhaps worth considering an alternative measure of

distance which takes into account differing covariances.

The Hellinger distance [126], for example, quantifies the difference between two

probability distributions, say f and g, given by the following expression

dH(f, g) =
√

1− ρB(f, g), (4.54)

where ρB(f, g) denotes the Bhatacharyya coefficient [126] given by

ρB(f, g) =

∫ √
f(x) g(x) dx. (4.55)

Unlike the Mahalanobis distance, the Hellinger distance is constrained to 0 ≤
dH ≤ 1, where the maximum distance is achieved when the two distributions do

not overlap. For two Gaussian distributions f(x) = N (x ; m1,P1) and g(x) =

3See [64] for further explanation on threshold values.
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given
{
ν

(i)
k ,m

(i)
x,k,P

(i)
22,k,

{
ω

(j)
k ,m

(j|i)
ξ,k ,P

(j|i)
11,k ,P

(j|i)
12,k

}J̃(i)
k

j=1

}J̃k
i=1

, truncation thresholds τ1, τ2,

merging thresholds U1, U2 and maximum allowable number of Gaussian components.

relating to group and individual targets respectively Jmax,1, Jmax,2.

Set ı̄ = 0, and Ix,k =
{
i = 1, . . . , J̃k

∣∣∣ ν(i)
k > τ1

}
.

repeat (Merging of parent components)

ı̄ := ı̄+ 1, imax := arg max
i∈Ix,k

ν
(i)
k ,

Īx,k :=

{
i ∈ Ix,k

∣∣∣∣(m
(i)
x,k −m

(imax)
x,k

)T (
P

(i)
22,k

)−1 (
m

(i)
x,k −m

(imax)
x,k

)
≤ U1

}
,

ν̃
(ı̄)
k :=

∑
i∈Īx,k

ν
(i)
k , m̃

(ı̄)
x,k :=

1

ν̃
(ı̄)
k

∑
i∈Īx,k

ν
(i)
k m

(i)
x,k, P̃

(ı̄)
22,k :=

1

ν̃
(ı̄)
k

∑
i∈Īx,k

ν
(i)
k P

(i)
22,k,

` := 0.
for all i ∈ Īx,k

for j = 1, . . . , J̃
(i)
k

` := `+ 1, ω
(`)
k := ω

(j)
k ,

m
(`|̄ı)
ξ,k := m

(j|i)
ξ,k + P

(`|̄ı)
12,k

(
P̃

(ı̄)
22,k

)−1(
m̃

(`)
x,k −m

(i)
x,k

)
,

P
(`|̄ı)
11,k := P

(j|i)
11,k −P

(`|̄ı)
12,k

(
P̃

(ı̄)
22,k

)−1(
P

(j|i)
12,k −P

(`|̄ı)
12,k

)T
,

P
(`|̄ı)
12,k := P

(j|i)
12,k

(
P

(i)
22,k

)−1

P̃
(ı̄)
22,k.

end
end

J̃
(ı̄)
new,k := `.

Set ̄ = 0, and Iξ,k =
{
j = 1, . . . , J̃

(ı̄)
new,k

∣∣∣ω(j)
k > τ2

}
.

repeat (Merging of daughter components)

̄ := ̄+ 1, jmax := arg max
j∈Iξ,k

ω
(j)
k ,

Īξ,k :=

{
j ∈ Iξ,k

∣∣∣∣(m
(j |̄ı)
ξ,k −m

(jmax |̄ı)
ξ,k

)T (
P

(j |̄ı)
11,k

)−1 (
m

(j |̄ı)
ξ,k −m

(jmax |̄ı)
ξ,k

)
≤ U2

}
,

ω̃
(̄)
k :=

∑
j∈Īξ,k

ω
(j)
k , m̃

(̄|̄ı)
ξ,k :=

1

ω̃
(`)
k

∑
j∈Īξ,k

ω
(j)
k m

(j |̄ı)
ξ,k ,

P̃
(̄|̄ı)
11,k :=

1

ω̃
(`)
k

∑
j∈Īξ,k

ω
(j)
k P

(j |̄ı)
11,k , P̃

(̄|̄ı)
12,k :=

1

ω̃
(`)
k

∑
j∈Īξ,k

ω
(j)
k P

(j |̄ı)
12,k ,

Iξ,k := Iξ,k \ Īξ,k.

until Iξ,k = ∅.
J̃

(ı̄)
new,k := ̄, Ix,k := Ix,k \ Īx,k.

until Ix,k = ∅.
If ı̄ > Jmax,1 then replace

{
ν̃

(i)
k , m̃

(i)
x,k, P̃

(i)
22,k

}ı̄
i=1

by those Jmax,1 Gaussian components with

the largest weights, setting J̃new,k = Jmax,1 (otherwise set J̃new,k := ı̄), and if, for each

i = 1, . . . , J̃new,k, J̃
(i)
new,k > Jmax,2 then replace

{
ω̃

(j)
k , m̃

(j)
ξ,k, P̃

(j)
11,k, P̃

(j)
12,k

}J̃(i)
new,k

j=1
by those

Jmax,2 Gaussian components with the largest weights, re-setting J̃
(i)
new,k = Jmax,2.

output
{
ν̃

(i)
k , m̃

(i)
x,k, P̃

(i)
22,k

{
ω̃

(j)
k , m̃

(j|i)
ξ,k , P̃

(j|i)
11,k , P̃

(j|i)
12,k

}J̃(i)
new,k

j=1

}J̃new,k
i=1

.

Table 4.5: Merging closely spaced Gaussian components
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N (x ; m2,P2), the Bhatacharyya coefficient admits a closed form solution given by

ρB(f, g) =

√ √
det(P1 P2)

det
(

1
2
(P1 + P2)

) exp

{
−1

4
(m1 −m2)T (P1 + P2)−1(m1 −m2)

}
,

(4.56)

from which the Hellinger distance immediately follows. Consequently, using the

Hellinger distance rather than the Mahalanobis distance, the set of indices Īx,k in

Table 4.5 is now set to be

Īx,k :=
{
i ∈ Ix,k

∣∣∣ dH(N(x ; m
(i)
x,k,P

(i)
22,k

)
, f
)
≤ U1

}
, (4.57)

where f(x) = N
(
x ; m

(imax)
x,k ,P

(imax)
22,k

)
and 0 < U1 < 1 (likewise for Īξ,k).

Depending on the value set for thresholds U1, U2, merging of Gaussian compo-

nents, using the Hellinger distance, may be minimal, potentially leaving a number

of Gaussian components with low weights. Therefore to extract strong state es-

timates, it is desirable to select the means of those Gaussian components with

weights that are greater than some appropriate thresholds νTh, ωTh > 0, as shown

in Table 4.6, whether or not merging has been performed.

given
{
ν

(i)
k ,m

(i)
x,k,P

(i)
22,k,

{
ω

(j)
k ,m

(j|i)
ξ,k ,P

(j|i)
11,k ,P

(j|i)
12,k

}J(i)
k

j=1

}Jk
i=1

and thresholds νTh, ωTh.

Set X̃k = ∅, and ` = 0.
for i = 1, . . . , Jk

if ν
(i)
k > νTh

` := `+ 1, X̃k :=
{
X̃k,m

(i)
x,k

}
, Ξ̃

(`)
k := ∅.

for j = 1, . . . , J
(i)
k

if ω
(j)
k > ωTh

Ξ̃
(`)
k :=

{
Ξ̃

(`)
k ,m

(j|i)
ξ,k

}
.

end
end

end
end
output X̃k as the multiple group target state estimate and

Ξ̃
(ı̄)
k as the multiple individual target state estimate associated with each state

estimate in X̃k, for ı̄ = 1, . . . , `.

Table 4.6: Group and individual target state extractions
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4.3 The Single Group GM-PHD Filter

This section concerns the implementation of a similar Gaussian mixture formulation

for the single group PHD filter. An overview of this formulation is presented in

Section 4.3.1, which is applied to the simulated example described in Section 4.3.2.

The simulation results are then presented in Section 4.3.3.

4.3.1 The single group GM-PHD recursion

Under linear Gaussian assumptions on the dynamic and measurement model, pre-

cisely those given in Sections 4.1.2 and 4.1.4 for the multi-group GM-PHD filter

(with pS,1 = 1 and pS = pS,2), a closed-form solution to the single group PHD filter

exists that formulates the predicted and posterior intensities as Gaussian mixture

as illustrated in the following diagram:

...
...

↓ ↓

vk−1(xk−1, ξk−1) =

Jk−1∑
i=1

ω
(i)
k−1N

(
Xk−1 ;µ

(i)
k−1,Σ

(i)
k−1

)
↓ ↓

Prediction: vk|k−1(xk, ξk) =

Jk|k−1∑
i=1

ω
(i)
k|k−1N

(
Xk ;µ

(i)
k|k−1,Σ

(i)
k|k−1

)
↓ ↓

Update: vk(xk, ξk) =

Jk∑
i=1

ω
(i)
k N

(
Xk ;µ

(i)
k ,Σ

(i)
k

)
↓ ↓
...

...

The components in each of the mixtures formulating the predicted and posterior

intensities at each iteration are joint Gaussian functions with state variable Xk =[
ξk xk

]T
, with respective means given by

µ
(i)
k|k−1 =

[
m

(i)
ξ,k|k−1 mx,k|k−1

]T
, µ

(i)
k =

[
m

(i)
ξ,k mx,k

]T
, (4.58)

and with respective covariances given by the following block matrices

Σ
(i)
k|k−1 =

 P
(i)
11,k|k−1 P

(i)
12,k|k−1(

P
(i)
12,k|k−1

)T
P22,k|k−1

 , Σ
(i)
k =

 P
(i)
11,k P

(i)
12,k(

P
(i)
12,k

)T
P22,k

 , (4.59)
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as denoted for time-step k. Further details on the closed-form expressions for

computing these means and covariances, along with the respective weights, in vk|k−1

and vk are given in Appendix D (Section D.1).

4.3.2 Simulation set-up

The single group target scenario considered for demonstrating the implementation

of the single group GM-PHD filter, using simulated data, consists of 10 individual

targets whose positions do not change relative to the centroid defining the group

state. The group target is observed via measurements that are generated by its

constituent targets over a surveillance region [0 500]×[0 500] and its trajectory is

shown in Figure 4.2.
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Trajectory path

Trajectory start point
at time k=1

Trajectory end point
at time k=100
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position at time k=15

Individual target state
positions at time k=15

Figure 4.2: The group target trajectory (line) with its starting position at time
k = 1 indicated by the blue ‘filled diamond’ and its terminal position at time
k = 100 indicated by the blue ‘filled square’. The group target state position and
the individual target state positions at time k = 15 are indicated by the ‘unfilled
diamond’ and the ’asterisks’ respectively.

The group target state xk =
[
xk,1 xk,2 xk,3 xk,4

]T
consists of two-dimensional

Cartesian co-ordinate position vector
[
xk,1 xk,3

]T
and velocity vector

[
xk,2 xk,4

]T
at time-step k. It follows the linear Gaussian dynamic model given in equation

(4.8) with

F22 =

[
F̂k−1 02

02 F̂k−1

]
, Q22 = σ2

x

[
Q̂k−1 02

02 Q̂k−1

]
, (4.60)
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such that, for sampling period t = 1s,

F̂k−1 =

[
1 t

0 1

]
, Q̂k−1 =

[
t3/ 3 t2/ 2

t2/ 2 t

]
, (4.61)

where 02 denotes the 2×2 zero matrix and σ2
x =
√

0.8 m/s2 is the standard deviation

of the parent process noise.

Each individual target state ξk =
[
ξk,1 ξk,2

]T
is strictly a two-dimensional

Cartesian co-ordinate position vector. They each follow the linear Gaussian dy-

namic model given in equation (4.9) with F11 = I2, F12 = Ĥ(F22 − I4), where I2

and I4 denote the 2× 2 and 4× 4 identity matrices respectively, and for t = 1 s,

Q11 = σ2
x

1

3
t3 I2, Q12 = σ2

x

[t3/ 3 t2/ 2
]

02×1

02×1

[
t3/ 3 t2/ 2

], (4.62)

where 02×1 denotes the 2× 1 zero matrix. (Appendix D.4 gives further details on

the expressions for the noise covariance matrices Q11, Q12 and Q22.)

The Cartesian point measurements z =
[
z1 z2

]T ∈ Zk relate to individual

targets ξk according to the likelihoodN (z ; Hξk,R1) in equation (4.15) with H = I2

and R1 = σ2
1 I2 where σ1 =

√
10 m. They relate to the single group target xk

according to the likelihood N (z ; Ĥxk,R2) in equation (4.15) with

Ĥ =

[
1 0 0 0

0 0 1 0

]
, (4.63)

and R2 = σ2
2 I2 where σ2 =

√
44 m. The measurement set Zk includes false alarms

which are modelled as a Poisson point process with intensity κ(z) = λU(z) where

U(·) is the uniform density over the surveillance region and λ denotes the average

number of false alarms over this area. Figure 4.3 shows simulated measurements

plotted with the individual target trajectories against time with λ = 50. At each

iteration, the simulated measurements undergo two stages of validation, similar to

the procedures shown in Tables 4.3 (Section 4.2.1) and 4.4 (Section 4.2.2). The

precise details of the first of these validation procedures, illustrated in Figure 4.4,

are given in Appendix D (Section D.2).

The filter is initialised at time-step k = 1 with the intensity v1(x, ξ), which is

formulated as the following Gaussian mixture

74



0 10 20 30 40 50 60 70 80 90 100
0

100

200

300

400

500

Time−step

x 
(in

 m
)

0 10 20 30 40 50 60 70 80 90 100
0

100

200

300

400

500

Time−step

y 
(in

 m
)

Figure 4.3: Measurements (green ‘×’) and individual target trajectories (lines).
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Figure 4.4: Illustrating the use of the validation procedure detailed in Section D.2
on the simulated measurements shown in Figure 4.3 at time-steps k = 1 (left) and
k = 31 (right)
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v1(x, ξ) =

J1∑
i=1

ω(i)N

[ξ
x

]
;

[
m

(i)
ξ

mx

]
,

 P
(i)
11 P

(i)
12(

P
(i)
12

)T
P12

 . (4.64)

Full details on the initialisation of the weights ω(i), means m
(i)
ξ , mx and covariances

P
(i)
11 , P

(i)
12 , P22 in the above mixture are given in Appendix D (Section D.3).

The birth of newly appearing individual targets in the group at time-steps k > 1

are modelled by the following Gaussian mixture

γξ,k(ξk |xk) =

Jγ,k∑
i=1

ω
(i)
γ,kN

(
ξk ;µ

(i)
γ,ξ,k,Σ

(i)
γ,ξ,k

)
, (4.65)

with means and covariances respectively given by

µ
(i)
γ,ξ,k = m

(i)
γ,ξ,k + P

(i)
γ,12,kP

−1
22,k|k−1

(
xk −mx,k|k−1

)
,

Σ
(i)
γ,ξ,k = P

(i)
γ,11,k −P

(i)
γ,12,kP

−1
22,k|k−1

(
P

(i)
γ,12,k

)T
.

(4.66)

The initialisation of the means m
(i)
γ,ξ,k and covariances P

(i)
γ,11,k, P

(i)
γ,12,k in the above

expressions are dealt with in a similar way to those for the initial intensity, full

details of which are given in Appendix D (Section D.3).

4.3.3 Principal results

The single group GM-PHD filter is applied to the scenario described in Section

4.3.2 with probabilities of survival and detection pS = pD = 0.9 and clutter rate

λ = 50. The mixture reduction procedures detailed in Appendix D (Section D.2)

are applied with parameters T2 = 9, RG = 5 × R2 and Jmin = 5 (see Tables D.6

& D.7). An additional reduction technique, similar to the procedure shown in

Table 4.4, is also applied with parameter T1 = 4. Finally, closely spaced Gaussian

components relating to the individual targets are merged, as shown in Table 4.5 for

those corresponding components, using the Hellinger distance given by equations

(4.54) and (4.56) and with parameters τ2 = 10−2, U2 = 0.4 (satisfying 0 ≤ U2 ≤ 1)

and Jmax = Jmax,2 = 10.

From the position estimates shown in Figure 4.5, it can be seen that the single

group GM-PHD filter provides accurate estimation of this group formation as it

evolves over time. The filter not only accurately estimates the position of the group

target state, defined by the centroid of the formation, it successfully detects, on
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average, 90% of the individual targets.
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Figure 4.5: Position estimates from the single group GM-PHD filter (with pS =
pD = 0.9) for the individual target states (blue ‘circles’) and for the group target
state (red ‘crosses’)
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The performance of the single group GM-PHD filter is now examined for this

scenario, by calculating the RMSE between the estimated and true single group

target state over time. It useful, for performance analysis of a filter, to benchmark

error results against those of an alternative/existing method that is applicable

to the same problem. For this purpose, the GM-PHD filter proposed in [90] for

multiple target systems, referred to hereafter as the multi-target GM-PHD filter,

will serve as an appropriate benchmark. The multi-target GM-PHD filter can be

applied to the multiple constituent targets of the single group, whose state estimate

can then be obtained by averaging the means of the Gaussian components in the

updated intensity at each iteration.
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Time−step
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Figure 4.6: The mean errors (RMSE) for the single group target state over 50 MC
runs of the multi-target GM-PHD filter (black line ‘–×–’) and the single group
GM-PHD filter (blue line ‘– + –’)

Figure 4.6 shows the calculated mean errors for 50 Monte Carlo simulations

of both single group and multi-target GM-PHD filters. Note that high errors at

the beginning and end of the simulations for both filters occur when constituent

targets in the single group move beyond the observation region. As expected the

results in Figure 4.6 show that the single group GM-PHD filter performs better

than the multi-target GM-PHD filter in estimating a group target state, since the

single group GM-PHD filter actually accounts for such a state in the cluster model

representation of the group target system rather than simply averaging the multiple

constituent target estimates.

Furthermore, the peformance of the multi-target GM-PHD filter is known to

suffer when the parameter value for the probability of detection pD is lowered [90].

Even with pD = 0.9 the results in Figure 4.6 show that the mean errors of the group
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target state for the mulit-target GM-PHD filter are higher than those for the single

group GM-PHD filter, and lowering the probability of detection in this scenario

would likely result in an increase of mean errors for both filters. But how much

would the performance of the single group GM-PHD filter for this scenario suffer by

lowering the probability of detection (or changing some of the other parameters)?

This is the subject of further investigation in the following section.

4.3.4 Sensitivity studies

The single group GM-PHD filter is re-applied to the scenario described in Sec-

tion 4.3.2 with various different parameter settings for the probabilities of sur-

vival/detection, clutter rate and validation threshold, in particular. The impact

these changes to the parameter settings have on the performance of the filter for this

scenario are then analysed based on the estimation results from the simulations.

Lower probabilities of survival and detection

Figure 4.7 shows the position estimate results for the group target state from the

simulation run with pS = 0.9 and pD = 0.7. Figure 4.8 shows the position estimate

results for the group target state from the simulation run with pS = 0.6 and

pD = 0.5. All other parameter settings specified in Section 4.3.3 remain the same.
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Figure 4.7: Position estimates from the single group GM-PHD filter, with pS = 0.9
and pD = 0.7, for the group target state (red ‘crosses’)
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Figure 4.8: Position estimates from the single group GM-PHD filter, with pS = 0.6
and pD = 0.5, for the group target state (red ‘crosses’)
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Figure 4.9: Cardinality estimates from each application of the single group GM-
PHD filter with the different settings for the probabilities of survival/detection

From the results in Figures 4.7 & 4.8 it can be seen that lowering the probability

of detection (and probability of survival) has a nominal affect on the accuracy of

the group state estimation. However, it does have an impact on the individual

target cardinality estimates as shown in Figure 4.9. The estimation accuracy in
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the number of constituent targets in the group deteriorates as the probabilities

of survival/detection are lowered. This gives an indication as to how poorly the

multi-target GM-PHD filter would perform for this scenario with these parameter

changes, since it relies on the multiple constituent target estimates to provide an

estimate for the group target state.

Higher clutter rate

Figure 4.10 shows the position estimate results for the group target state from the

simulation run with clutter rate λ = 100. Figure 4.11 shows the position estimate

results for the group target state from the simulation run with clutter rate λ = 250.

All other parameter settings specified in Section 4.3.3 remain the same. From the

results in Figures 4.10 & 4.11 it can be seen that increasing the clutter rate has

more of an impact on the accuracy of the group state estimation than lowering the

probabilities of survival/detection.

The affect that increasing the clutter rate has on the individual target cardi-

nality estimates is shown in Figure 4.12. In contrast to the cardinality results from

the simulations with lower probability of survival/detection (Figure 4.9), increas-

ing the clutter rate appears to improve the estimation accuracy in the number of

constituent targets in the group. However these results are somewhat deceptive

since the number of false estimates will increase by virtue of the increase in clut-
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Figure 4.10: Position estimates from the single group GM-PHD filter, with λ = 100,
for the group target state (red ‘crosses’)
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Figure 4.11: Position estimates from the single group GM-PHD filter, with λ = 250,
for the group target state (red ‘crosses’)
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Figure 4.12: Cardinality estimates from each application of the single group GM-
PHD filter with the different settings for the clutter rate

ter rate. In other words the apparent improvement in cardinality estimation due

to the increase in clutter rate may just be a consequence of extracting more false

estimates for the group’s constituent targets. For instance, consider the simulated

measurements shown in Figure 4.13. The higher the clutter rate the more likely
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Figure 4.13: Examples of the simulated measurements and validation gates at
time-step k = 53 with clutter rates λ = 100 (left) and λ = 250 (right)

false measurements will be validated in the gating procedure which inevitably leads

to false estimates. Hence the multi-target GM-PHD filter approach to this scenario

with these parameter changes would again unreliable.

Lower validation threshold

Figures 4.14 & 4.15 show the cardinality and position estimate results from the

simulation run with the gating threshold in the validation procedure detailed in

Appendix D (Section D.2) reduced to T2 = 4 and with Jmin = 2. All other param-

eter settings specified in Section 4.3.3 remain the same.
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Figure 4.14: Cardinality estimates from the single group GM-PHD filter with lower
gating threshold parameters
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Figure 4.15: Position estimates from the single group GM-PHD filter, with lower
gating threshold parameters, for the individual target states (blue ‘circles’) and for
the group target state (red ‘crosses’)
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From the results in Figures 4.14 & 4.15 it can be seen that lowering the gating

threshold has a detrimental affect on the accuracy of the group and individual target

state estimation as well as on the estimation accuracy in the number of constituent

targets. By lowering the gating threshold the validation region is decreased, as

can be seen when comparing Figure 4.16 below with Figures 4.4 and 4.13. As

a consequence of decreased validation regions fewer potentially target generated

measurements are validated, resulting in fewer individual target state estimates

being extracted and less accurate group state estimates.
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Figure 4.16: Simulated measurements and validation gates at time-step k = 8 with
threshold T2 = 4 and Jmin = 2 (see Table D.7)

In an attempt to compensate for decreased validation regions, the validation

procedure allows for multiple gates to be considered. The number of validation

gates is determined from the ratio of the number of individual target related Gaus-

sian components at the previous time-step against the minimum allowable number

of such Gaussian components and rounded to the nearest integer. Only validation

gates containing measurements that haven’t already been validated are kept for

consideration. Figure 4.16 shows two such gates (out of a total possible number of

two) from the set of simulated measurements at time-step k = 8. This is reason for

reducing the parameter setting for the minimum allowable number of individual

target related Gaussian components Jmin along with lowering the gating threshold

for this simulation. It increases the chances of multiple gates being considered in

the validation procedure, which potentially expands the region for validation over

multiple gates that are reduced in size. Without this compensation in the vali-

dation procedure the estimation results would potentially suffer more so than the
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results shown in Figures 4.14 & 4.15, with lower gating thresholds. Full details of

the algoirthm for this validation procedure are given in Table D.7 (Section D.2,

Appendix D).

4.4 Discussion

This chapter presented a closed-form solution to the multi-group PHD filter under

linear Gaussian conditions, called the multi-group GM-PHD filter. Adapted from

this closed-form solution, the single group GM-PHD filter was applied to a single

group formation scenario and tested for robustness against changes to certain pa-

rameter settings, in particular for the probabilities of survival/detection, clutter

rate and validation threshold.

Now, rather than implement the full multi-group GM-PHD filter and demon-

strate its application on a similar scenario, the focus will instead shift to the im-

plementation of the multiple extended target special case, which is covered in the

next chapter. For extended target tracking, the concern of the estimation prob-

lem is not necessarily on target kinematic states solely, but also on the size and

shape of the targets, i.e. the target extents. Extent estimation has been the subject

of great interest in tracking literature of late, as discussed in Chapter 1 (Section

1.1.3), and cluster models provide a novel approach to the problem. This aspect of

the estimation problem can also apply to group target tracking. The size of group

targets may be of interest along with the positions and velocities of groups and

their constituent targets. However, to consider this aspect of the estimation prob-

lem for group target tracking using cluster models and PHD filtering would require

jointly estimating some shape parametric state as well as two levels of kinematic

states relating to each group and its constituent targets. Since the PHD filter for

extended targets (Section 3.2.6) is a recursion that propagates the marginal group

target PHD, there is no interest in the estimation of feature points under the clus-

ter model representation, so the consideration of extent estimation is more feasible

for this special case and will be further explored in Chapter 5.
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Chapter 5

Implementations of the PHD filter for Extended Targets

It was reasoned in Chapter 3 that extended targets can be mathematically repre-

sented in the same way as group targets and that the corresponding PHD filter

is a special case of the multi-group PHD filter. Firstly, the hierarchical RFS rep-

resentation considered in Section 3.1.2, allows for the construction of a geometric

shaped extent for each target, as illustrated in Figure 5.1, which is an appropriate

consideration in certain scenarios where targets generate multiple point detections

that appear in structured arrangements. The additional introduction of variable

shape parameters then gives rise to the possibility of estimating the size of each

target’s extent.

So it is, that the purpose of this chapter is to demonstrate the PHD filter

for extended targets presented in Section 3.2.6 with two extended target tracking

scenarios. The first, considered in Section 5.2, is a multiple extended target scenario

in which the size and shape of each target’s extent is fixed, while in Section 5.3 a

second multiple extended target scenario is considered with estimable extent shape

Figure 5.1: Visualisation of a multiple extended target tracking problem under the
cluster model representation
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parameters of varying size. Simulated examples are included for both scenarios.

To start with though, a special case of the multi-group GM-PHD filter proposed

in the previous chapter, is introduced in Section 5.1.

5.1 The GM-PHD Filter for Extended Targets

The PHD filter for extended targets presented in Section 3.2.6 is considered a

special case of the multi-group PHD filter. It propagates the marginal group target

PHD vk(xk) of the hierarchical RFS, which mathematically represents a multiple

group/extended target system, while the multi-group PHD filter propagates the

condensed group target PHD vk(xk, ξk). It follows that a closed-form solution

to the PHD filter for extended targets exists that formulates the predicted and

posterior intensities as Gaussian mixture and is a special case of the multi-group

GM-PHD filter as shown in Sections 5.1.1 and 5.1.2.

5.1.1 The recursion

...
...

↓ ↓

vk−1(xk−1) =

Jk−1∑
i=1

ω
(i)
k−1N

(
xk−1 ; m

(i)
k−1,P

(i)
k−1

)
| |

prediction prediction

↓ ↓

vk|k−1(xk) =

Jk|k−1∑
i=1

ω
(i)
k|k−1N

(
xk ; m

(i)
k|k−1,P

(i)
k|k−1

)
| |

update update

↓ ↓

vk(xk) =

Jk∑
i=1

ω
(i)
k N

(
xk ; m

(i)
k ,P

(i)
k

)
↓ ↓
...

...

At each iteration of the multi-group GM-PHD filter the predicted and poste-

rior intensities satisfy the respective factorisations: vk|k−1(xk, ξk) = vk|k−1(xk) ×
vk|k−1(ξk |xk) and vk(xk, ξk) = vk(xk)×vk(ξk |xk), given the formulations in Propo-
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sitions 4.1 and 4.2. The GM-PHD recursion for extended targets is illustrated in

the diagram on the previous page, where the predicted and updated intensities

are formulated as mixtures of the Gaussian components relating to the state xk in

Propositions 4.1 and 4.2 respectively. The closed-form expression for the weights,

means and covariances of the Gaussian components in these formulations are sub-

ject to slight changes where appropriate for the extended target tracking problem,

the precise details of which are given in Section 5.1.2.

5.1.2 The algorithm

Suppose the dynamics relating to the state vector xk−1 is modelled with the linear

Gaussian given in equation (4.8) (Section 4.1.2), instead denoting Fk = F22 &

Qk = Q22, and the birth model is formulated with the following Gaussian mixture

γk(xk) =

Jγ,k∑
i=1

ω
(i)
γ,kN

(
xk ; m

(i)
γ,k,P

(i)
γ,k

)
. (5.1)

Then, given the prior intensity vk−1(xk−1) is a Gaussian mixture, the predicted

intensity vk(xk) is also a Gaussian mixture, each with the respective forms as

illustrated in the diagram on the previous page. The closed-form expressions of

the predicted weights, means and covariances are detailed in Table 5.1 and are the

same as those relating to the group states in the multi-group GM-PHD prediction

given
{
ω

(i)
k−1,m

(i)
k−1,P

(i)
k−1

}Jk−1

i=1
, transition matrix Fk−1 (= F22),

noise covariance matrix Qk−1 (= Q22), and probability of survival pS (= pS,1).
prediction

ı̄ := 0.
for i = 1, . . . , Jγ,k (i.e. for extended target births)

ı̄ := ı̄+ 1,

ω
(ı̄)
k|k−1 := ω

(i)
γ,k, m

(ı̄)
k|k−1 := m

(i)
γ,k, P

(ı̄)
k|k−1 := P

(i)
γ,k.

end
for i = 1, . . . , Jk−1 (i.e. for persistent extended targets)

ı̄ := ı̄+ 1,

ω
(ı̄)
k|k−1 := pS ω

(i)
k−1,

m
(ı̄)
k|k−1 := Fk−1m

(i)
k−1, P

(ı̄)
k|k−1 := Fk−1P

(i)
k−1F

T
k−1 + Qk−1.

end
Jk|k−1 := ı̄.

output
{
ω

(ı̄)
k|k−1,m

(ı̄)
k|k−1,P

(ı̄)
k|k−1

}Jk|k−1

ı̄=1
.

Table 5.1: Pseudo-code for the GM-PHD prediction for multiple extended targets
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(Proposition 4.1). Although note that now ω
(i)
k−1 = ν

(i)
k−1, m

(i)
k−1 = m

(i)
x,k−1, P

(i)
k−1 =

P
(i)
22,k−1, ω

(i)
k|k−1 = ν

(i)
k|k−1, m

(i)
k|k−1 = m

(i)
x,k|k−1 and P

(i)
k|k−1 = P

(i)
22,k|k−1.

To complete the recursion, suppose the measurement model is given by fac-

torisation of linear Gaussian functions in equation (4.15) (Section 4.1.4), and the

arbitrary intensity of each subsidiary RFS Ek in the hierarchical RFS representation

is formulated with the following Gaussian mixture

µ(ξk |xk) =

J
(i)
ξ∑
j=1

N
(
ξk ;µ

(i,j)
ξ|x,k|k−1,Σ

(i,j)
ξ|x,k|k−1

)
, (5.2)

where the means and covariances are given by

µ
(i,j)
ξ|x,k|k−1 = m

(j|i)
ξ + P

(i|j)
ξ|x

(
P

(i)
k|k−1

)−1(
xk −m

(i)
k|k−1

)
,

Σ
(i|j)
ξ|x,k|k−1 = P

(i|j)
ξ −P

(i|j)
ξ|x

(
P

(i)
k|k−1

)−1(
P

(i|j)
ξ|x

)T
,

(5.3)

for i = 1, . . . , Jk|k−1. Note that, due to the arbitrariness of the intensity µ(ξk |xk),
the number of Gaussian components J

(i)
ξ in the mixture given by equation (5.2) can

be considered as fixed, negating the need to assign a weight to each component.

Then, given the GM formulation of the predicted intensity vk|k−1(xk), the updated

intensity vk(xk) is also a Gaussian mixture of the form shown in the illustrative

diagram in Section 5.1.1.

The closed-form expressions of the updated weights, means and covariances

are detailed in Tables 5.2 and 5.3. The means and covariances given in Tables

5.2 and 5.3 have the same expressions as those relating to the group states in the

multi-group GM-PHD update (Proposition 4.2), although now m
(i)
k = m

(i)
x,k and

P
(i)
k = P

(i)
22,k. However, the expressions for the weights differ slightly from those

relating to the group states in Proposition 4.2 and now denoted by ω
(i)
k = ν

(i)
k . In

particular, for missed detections (see Table 5.2), the updated weight now does not

include the factor 1 − pD,2, while for detections (see Table 5.3), the computation

of the multiple measurement likelihood, which is present in the updated weights,

does not now include any weights associated with Gaussian components relating

to individual target states (feature points in the case of extended targets).

The GM formulation of the PHD filter for extended targets provides the fol-

lowing expected number of targets

Nk|k−1 = pS Nk−1 +

Jγ,k∑
i=1

ω
(i)
γ,k, (5.4)
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Nk =
(
1− pD,1 + pD,1 e−pD,2 α

)
Nk|k−1 +

∑
π∈ΠZk

$π

∑
ϕ∈π

Jk|k−1∑
i=1

∑
j1:|ϕ|

ω̃
(i)
ϕ,k, (5.5)

associated with the predicted and the updated intensities, vk|k−1 and vk respectively,

where j1:|ϕ| = (j1, . . . , j|ϕ|) denotes a permutation of the indices j` = 1, . . . , J
(i)
ξ for

` = 1, . . . , |ϕ| and

ω̃
(i)
ϕ,k =

pD,1 ω
(i)
k|k−1 e−pD,2 α

∏|ϕ|

`=1
L

(i)
`

Λ(ϕ) + pD,1 e−pD,2 α
∑Jk|k−1

i=1
ω

(i)
k|k−1

∑
j1:|ϕ|

∏|ϕ|

`=1
L

(i)
`

. (5.6)

It can be deduced from the expressions for Nk|k−1 and Nk in (5.4) and (5.5) re-

spectively, that the GM-PHD filter for extended targets requires, at any time-step

k,

Jk = Jk|k−1 +
∏

π∈ΠZk

∏
ϕ∈π

Jk|k−1∏
i=1

|ϕ| × J (i)
ξ , (5.7)

Gaussian components in vk, where Jk|k−1 = Jγ,k+Jk−1 is the number of components

in vk|k−1.

given
{
ω

(i)
k|k−1,m

(i)
k|k−1,P

(i)
k|k−1

{
m

(j|i)
ξ ,P

(j|i)
ξ ,P

(j|i)
ξ|x

}J(i)
ξ

j=1

}Jk|k−1

i=1
.

step 1. (Update for missed detections)
ı̄ := 0.
for i = 1, . . . , Jk|k−1

ı̄ := ı̄+ 1, α = J
(i)
ξ ,

ω
(ı̄)
k := (1− pD,1 + pD,1 e−pD,2 α)ω

(i)
k|k−1, m

(ı̄)
k := m

(i)
k|k−1, P

(ı̄)
k := P

(i)
k|k−1.

end
step 2. (Construction of GM-PHD update components)

for i = 1, . . . , Jk|k−1

for j = 1, . . . , J
(i)
ξ

R̃(i,j) := HΣ
(i,j)
ξ|x,k|k−1H

T + R1, A
(i,j)
k := HP

(j|i)
ξ|x

(
P

(i)
k|k−1

)−1

,

where Σ
(i,j)
ξ|x,k|k−1 is given by the expression in (5.3).

end
end
Jk := ı̄.

output
{
ω

(i)
k ,m

(i)
k ,P

(i)
k

}Jk
i=1

,
{{

R̃(i,j),A
(i,j)
k

}J(i)
ξ

j=1

}Jk|k−1

i=1
.

Table 5.2: Pseudo-code for steps 1 & 2 of the GM-PHD update for multiple ex-
tended targets
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given
{
ω

(i)
k|k−1,m

(i)
k|k−1,P

(i)
k|k−1

{
m

(j|i)
ξ , R̃(i,j),A

(i,j)
k

}J(i)
ξ

j=1

}Jk|k−1

i=1
,
{
ω

(i)
k ,m

(i)
k ,P

(i)
k

}Jk
i=1

,

measurement set Zk and the set of all possible partitions ΠZk ,
step 3. (Update for detections)

ı̄ := Jk,
for each partition π ∈ ΠZk

for iπ = 1, . . . , |π| (i.e. for each subset ϕiπ ∈ π)
m := |ϕiπ |, n := ı̄.
for i = 1, . . . , Jk|k−1

for each permutation j1:m = (j1, . . . , jm) (such that j` = 1, . . . , J
(i)
` )

ı̄ := ı̄+ 1, η
(j1,i)
k := m

(i)
k|k−1, P(j1,i)

k := P
(i)
k|k−1.

for ` = 1, . . . ,m

b
(j1:`,i)
1 := Hm

(j`|i)
ξ + A

(i,j`)
k

(
η

(j1:`,i)
k −m

(i)
k|k−1

)
,

S
(j1:`,i)
1 := A

(i,j`)
k P(j1:`,i)

k

(
A

(i,j`)
k

)T
+ R̃

(i,j`)
k ,

K̃
(j1:`,i)
k := P(j1:`,i)

k

(
A

(i,j`)
k

)T (
S

(j1:`,i)
1

)−1

,

m̃
(j1:`,i)
k := η

(j1:`,i)
k + K̃

(j1:`,i)
k

(
z` − b

(j1:`,i)
1

)
,

P̃
(j1:`,i)
k :=

(
I− K̃

(j1:`,i)
k A

(i,j`)
k

)
P(j1:`,i)
k ,

(where η
(j1:`,i)
k = η

(j1,i)
k and P(j1:`,i)

k = P(j1,i)
k for ` = 1)

S
(j1:`,i)
2 := ĤP̃

(j1:`,i)
k ĤT + R2, K

(j1:`,i)
k := P̃

(j1:`,i)
k ĤT

(
S

(j1:`,i)
2

)−1

,

η
(j1:`,i)
k := m̃

(j1:`,i)
k + K

(j1:`,i)
k

(
z` − Ĥm̃

(j1:`,i)
k

)
,

P(j1:`,i)
k :=

(
I−K

(j1:`,i)
k Ĥ

)
P̃

(j1:`,i)
k ,

L
(i)
` := pD,2N

(
z` ; b

(j1:`,i)
1 ,S

(j1:`,i)
1

)
N
(
z` ; Ĥm̃

(j1:`,i)
k ,S

(j1:`,i)
2

)
.

end
m

(ı̄)
k := η

(j1:m,i)
k , P

(ı̄)
k := P(j1:m,i)

k ,

α := J
(i)
ξ , ω̃

(ı̄)
k := pD,1 ω

(i)
k|k−1 e−pD,2 α

∏m

`=1
L

(i)
` .

end
end

ω
(iπ)
ϕ := Λ(ϕiπ ) +

∑ı̄

i=n
ω̃

(i)
k .

for i = n, . . . , ı̄

ω
(i)
k := ω̃

(i)
k

/
ω

(iπ)
ϕ .

end
end

$̃π :=
∏|π|

iπ=1
ω(iπ)
ϕ .

end
for each π ∈ ΠZk

$π := $̃π

/∑
π∈ΠZk

$̃π .

end
Jk := ı̄.

output
{
ω

(i)
k ,m

(i)
k ,P

(i)
k

}Jk
i=1

.

Table 5.3: Pseudo-code for step 3 of the GM-PHD update for multiple extended
targets
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It is clear from equation (5.7) that the number of Gaussian components in the

posterior intensity increases without bound over time. In fact, the rate of increase

is equivalent to that of the number of Gaussian components relating to group states

in the multi-group GM-PHD filter, due to the similarities between the expression

given in equations (4.45) and (5.7). Consequently, mixture reduction procedures

are once again considered, as discussed in Section 5.1.3.

5.1.3 Mixture reduction procedures

Like the multi-group GM-PHD filter in the previous chapter, the most significant

contributor to the unbounded increase in the number of Gaussian components at

each iteration of the algorithm shown in Section 5.1.2, is potentially the number

of partitions of a measurement set. This accounts for the products
∏

π∈ΠZk
and∏

ϕ∈π in equation (5.7). The computational intractability associated with finding

all possible partitions of a measurement set, particularly if that set contains a large

number of measurements, is addressed by adopting the same gating procedure

detailed in Table 4.3, noting the changes in notation for the weights, means and

covariances as alluded to in Section 5.1.2.

The other significant contributor to the increase in the number of Gaussian com-

ponents is the pseudo multiple measurement likelihood Lϕ(xk), which accounts

for the product |ϕ| × J
(i)
ξ in equation (5.7). To alleviate the computational de-

mand associated with updating the state xk (by multiplying the predicted intensity

vk|k−1(xk) with Lϕ(xk)), the same gating procedure detailed in Table 4.4 can be

performed, noting the changes in notation for the means and covariances as now

found in (5.3), due to the formulation for µ(ξk |xk) given in equation (5.2). In the

case of extended targets, the procedure validates measurements in each subset ϕ

of a partition π for the feature points {ξk,j : j = 1, . . . , J
(i)
ξ } ∀ i = 1, . . . , Jk|k−1.

As a result of performing both gating procedures, the expected number of tar-

gets associated with vk becomes

Nk =
(
1− pD,1 + pD,1 e−pD,2 α

)
Nk|k−1 +

∑
ϕ∈π̃

Jk|k−1∑
i=1

∑
j1:nϕ

ω̃
(i)
ϕ,k, (5.8)

from which it follows that the number of Gaussian components reduces to

J̃k = Jk|k−1 +
∏
ϕ∈π̃

Jk|k−1∏
i=1

nϕ∏
`=1

J
(i)
ξ,` , (5.9)

93



where j1:nϕ =(j1, . . . , jnϕ) now denotes the permutation of the indices j` = 1, . . . , J
(i)
ξ,`

for ` = 1, . . . , nϕ, such that J
(i)
ξ,` ≤ J

(i)
ξ and nϕ ≤ |ϕ|, which alters the expression for

ω̃
(i)
ϕ,k in equation (5.6) accordingly. Those of the remaining J̃k Gaussian components

which are closely spaced can be merged using a similar method to that shown in

Table 4.5, the details of which are given in Table 5.4. Finally, extended target state

estimates are extracted from the means of the Gaussian components whose weights

are greater than some threshold as shown in Table 5.5.

given
{
ω

(i)
k ,m

(i)
k ,P

(i)
k

}J̃k
i=1

, truncation threshold τ , merging threshold UMah (or UHel),

and maximum allowable number of Gaussian components Jmax.

Set ı̄ = 0 and I =
{
i = 1, . . . , J̃k

∣∣∣ω(i)
k > τ

}
.

repeat

ı̄ := ı̄+ 1, imax := arg max
i∈I

ω
(i)
k ,

Ī :=

{
i ∈ I

∣∣∣∣(m
(i)
k −m

(imax)
k

)T (
P

(i)
k

)−1 (
m

(i)
k −m

(imax)
k

)
≤ UMah

}
,(

or Ī :=
{
i ∈ I

∣∣∣ dH (N(xk ; m
(i)
k ,P

(i)
k

)
, N
(
xk ; m

(imax)
k ,P

(imax)
k

))
≤ UHel

})
ω̃

(ı̄)
k :=

∑
i∈Ī

ω
(i)
k , m̃

(ı̄)
k :=

1

ω̃
(ı̄)
k

∑
i∈Ī

ω
(i)
k m

(i)
k , P̃

(ı̄)
k :=

1

ω̃
(ı̄)
k

∑
i∈Ī

ω
(i)
k P

(i)
k ,

I := I \ Ī.
until I = ∅.
If ı̄ > Jmax then replace

{
ω̃

(i)
k , m̃

(i)
k , P̃

(i)
k

}ı̄
i=1

by those Jmax Gaussian components

with the largest weights and setting Jnew,k = Jmax (otherwise set Jnew,k = ı̄).

output
{
ω̃

(i)
k , m̃

(i)
k , P̃

(i)
k

}Jnew,k

i=1
.

Table 5.4: Merging closely spaced Gaussian components

given
{
ω

(i)
k ,m

(i)
k ,P

(i)
k

}Jk
i=1

and threshold ωTh.

Set X̃k = ∅.
for i = 1, . . . , Jk

if ω
(i)
k > ωTh

X̃k :=
{
X̃k,m

(i)
k

}
,

end
end

output X̃k as the multiple extended target state estimate.

Table 5.5: Extended target state extractions
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5.2 Scenario 1: Extended Target Tracking with Fixed Extent

A direct application of the GM-PHD filter presented in the previous section, is

demonstrated in this section on the extended target tracking scenario described

in Section 5.2.1 with a simulated example. The simulation results for the estima-

tion problem are then presented in Section 5.2.2, along with results for the filter’s

performance evaluation.

5.2.1 Simulation set-up

The GM-PHD filter presented in this section applies to extended targets whose

extents have any structural shape in general. For illustration purposes, a multiple

extended target scenario is considered in which the extents are elliptical in shape

and the filter is tested on simulated data. The generated target trajectories and

elliptical extents for this scenario are shown in Figure 5.2. The elliptical shaped

extents are parameterized by the major and minor axes, which are fixed at values

rmajor = 20 m and rminor = 15 m respectively.

0 100 200 300 400 500
0

100

200

300

400

500

x (in m)

y 
(in

 m
)

Figure 5.2: The extended target trajectories (line) whose start and end positions
are indicated by: blue ‘diamonds’ for Trajectory 1 at k = 1 and k = 100; red
‘downward triangles’ for Trajectory 2 at k = 26 and k = 125; and green ‘upward
triangles’ for Trajectory 3 at k = 51 and k = 150.

Each extended target state xk =
[
xk,1 xk,2 xk,3 xk,4

]T
consists of two-

dimensional Cartesian co-ordinate position vector
[
xk,1 xk,3

]T
(i.e. the centre of

the ellipse) and velocity vector
[
xk,2 xk,4

]T
at time-step k. It follows the linear
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Gaussian dynamic model given by equation (4.8) with

Fk−1 =

[
F̂k−1 02

02 F̂k−1

]
, Qk−1 = σ2 Γk−1 ΓT

k−1, (5.10)

where F̂k−1 has the same expression as given in (4.61) and

Γk−1 =

[
t2/ 2 t 0 0

0 0 t2/ 2 t

]
, (5.11)

with sampling period t = 1 s, noting the changes in notation for the transition and

process noise covariance matrices, as alluded to in Section 5.1.2.

The Cartesian point measurements z =
[
z1 z2

]T ∈ Zk relate to feature points ξk

of a target according to the likelihood N (z ; Hξk,R1) in equation (4.15) with H =

I2 and R1 = σ2
1 I2 where σ1 =

√
10 m. The probability of detecting these feature

points is pD,2 = 0.78. The measurements relate to the target states xk according

to the likelihood N (z ; Ĥxk,R2) in (4.15) with Ĥ as defined in equation (4.63)

and R2 = σ2
2 I2 where σ2 =

√
rmajor + σ2

1 m. As was noted in [100], the effective

probability of target detection takes into account both the number of feature points

α (= 9) and pD,1 (= 0.9). The measurement set Zk includes false alarms which

are modelled with the hierarchical RFS representation whose probability density

is given by equations (3.19) and (3.20) with κ1(duϕ) = λ1 U(uϕ) and κ2(z |uϕ) =

λ2N (z ; uϕ,Rκ), where U(·) is the uniform density over the surveillance region [0

500]×[0 500], λ1 = 50 is the expected number of false measurement clusters, λ2 = 1

is the average number of measurement per cluster and Rκ = 5 × I2. Figure 5.3

shows the cluttered measurements plotted with the target trajectories against time.

The arbitrary intensity µ(ξk |xk) for each target has the Gaussian mixture form

given in equation (5.2) with J
(i)
ξ = α for i = 1, . . . , Jk|k−1 and for j = 1, . . . , J

(i)
ξ

m
(j|i)
ξ = Ĥm

(i)
k|k−1 + r

(j|i)
k|k−1, P

(j|i)
ξ = R1 + P

(j|i)
ξ|x

(
P

(i)
k|k−1

)−1(
P

(j|i)
ξ|x

)T
, (5.12)

where the cross diagonal covariance matrices are given by P
(j|i)
ξ|x = ĤP

(i)
k|k−1. The

means m
(j|i)
ξ relate to the feature points distributed along the perimeter of the

target’s elliptical shaped extent at fixed intervals where

r
(j|i)
k|k−1 =

[
rmajor cos(θj) cos(φ

(i)
k|k−1) + rminor sin(θj) sin(φ

(i)
k|k−1)

rmajor cos(θj) sin(φ
(i)
k|k−1) + rminor sin(θj) cos(φ

(i)
k|k−1)

]
, (5.13)
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Figure 5.3: Measurements (green ‘crosses’) and target trajectories (lines)

with θj = 2πj/α and φ
(i)
k|k−1 = arctan(m

(i)
k|k−1,4/m

(i)
k|k−1,2), denoting m

(i)
k|k−1,n as the

nth element of the mean vector m
(i)
k|k−1, which relate to the velocities for n = 2, 4.

The angles φ
(i)
k|k−1 relate to the rotation of the elliptical extents which depend on

the direction of the targets’ trajectories.

The filter is initialised at time-step k = 1 with the intensity γk(xk), so that the

predicted intensity consists solely of target births, as shown in Table 5.6. For this

initialisation procedure, the point of origin for targets and the initial number of

Gaussian components are set to be msource = [0 35]T and Jinitial = 5 respectively,

while the probability of target birth is pB = 0.1.

At subsequent time-steps k > 1, the weights, means and covariances of the

Gaussian components relating to persistent targets in vk|k−1 are computed first so

that, for i = 1, . . . , Jk−1, ω
(i)
k|k−1, m

(i)
k|k−1 and P

(i)
k|k−1 have the closed-form expressions

shown in Table 5.1. Target births, at time-steps k > 1, are measurement driven and

determined with respect to the single partition π of the measurement set, obtained

as a result of performing the gating procedure in Table 4.3 as discussed in Section

5.1.3. Details for such a procedure are given in Table 5.7.
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given an initial number of Gaussian components Jinitial,
a point of origin for targets msource,
an observation region [a, b]× [c, d] and noise covariance matrix R2 = σ2

2 I2,
and probability of target birth pB.

procedure At time-step k = 1
n := 0.
for i = 1, . . . , Jinitial

Sample m̃
(i)
γ,k =

[
m̃

(i)
γ,k,1 m̃

(i)
γ,k,2

]T ∼ N (xk ; msource,R2), so that a ≤ m̃(i)
γ,k,1 ≤ b

and c ≤ m̃(i)
γ,k,2 ≤ d,

n = n+ 1, ω
(n)
k|k−1 := pB,

m
(n)
k|k−1 :=

[
m̃

(i)
γ,k,1 0 m̃

(i)
γ,k,2 0

]T
, P

(n)
k|k−1 := diag([σ2

2, 2, σ
2
2, 2]).

end
Jk|k−1 := n.

output
{
ω

(i)
k|k−1,m

(i)
k|k−1,P

(i)
k|k−1

}Jk|k−1

i=1
.

Table 5.6: Initialisation of the GM-PHD filter for multiple extended targets

given a single partition π of the measurement set Zk,
a point of origin for targets msource, noise covariance matrix RG ∝ R2

and gating threshold T2.
procedure

Set W = ∅ and π̃ = π.
for each ϕ ∈ π such that |ϕ| = 1

W := W ∪ ϕ, π̃ := π̃ \ ϕ.
end
n := |π̃|,
ϕ̃ :=

{
z ∈W

∣∣∣(z−msource)
T R−1

G (z−msource) ≤ T2

}
.

if |ϕ̃| > 1
n := n+ 1,
ϕn := ϕ̃, π̃ := {π̃, ϕn},
W := W \ ϕn.

Create Gaussian components for target births
{
ω

(i)
γ,k,m

(i)
γ,k,P

(i)
γ,k

}Jγ,k
i=1

following the initialisation procedure in Table 5.6 with Jγ,k = Jinitial.
end
for each remaining measurement z ∈W

n := n+ 1,
ϕn := {z}, π̃ := {π̃, ϕn}.

end

output π̃ = {ϕj}nj=1 and
{
ω

(i)
γ,k,m

(i)
γ,k,P

(i)
γ,k

}Jγ,k
i=1

.

Table 5.7: Procedure for determining target births at time-steps k > 1.
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5.2.2 Results

The GM-PHD filter for extended targets, presented in Section 5.1, is applied to

the scenario described in Section 5.2.1, with parameters T2 = 9, RG = 5×R2 (see

Tables 4.3 and 5.7), T1 = 4 (see Table 4.4), τ = 10−4, UMah = 9, Jmax = 10 (see

Table 5.4) and ωTh = 0.5 (see Table 5.5). From the position estimates in Figure

5.4, it can be seen that the GM-PHD filter for extended targets provides accurate

tracking performance for this scenario.

The filter does generate the occasional spurious estimate at the source or after a

target has moved outside the surveillance region. False estimates at the source can

be accounted for by the appearance of more than one measurement lying within the

gate centred on msource (see Table 5.7), thus generating target births. Likewise for

false estimates appearing in areas close to where a target has recently moved beyond

the surveillance region. These false estimates occur when enough measurements lie

within gates centred on the predicted means of Gaussian components relating to

targets whose weights may still be large enough for them to continue their estimated

existence. However, both types of false estimates soon disappear when there are

no further observations in subsequent iterations to maintain the spurious tracks.

Increasing the minimum limit on the size of subset ϕ̃ in Table 5.7, hence introducing
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Figure 5.4: Position estimates from the GM-PHD filter for extended targets (blue
‘circles’) and the trajectories (lines)
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a greater restriction on the generation of target births, should eliminate the false

estimates appearing at the source altogether.

To assess the performance of the GM-PHD filter for extended targets, an ap-

propriate benchmark is necessary. For this purpose, a Gaussian mixture implemen-

tation of a PHD filter similar to that introduced in Section 2.4.4 is considered, a

summary of which is given in Appendix E. 50 Monte Carlo (MC) trials were run for

each filter with the same trajectories shown in Figure 5.2 but with independently

generated measurements for each trial and their performance was evaluated using

the OSPA metric with order p = 1 and cut-off c = 75 > σ2
2 (see Section 2.5.2).

The MC average of the OSPA distance, as well as the localisation and cardinality

components of the metric, are shown in Figure 5.5.

The OSPA results in Figure 5.5 illustrate how much the benchmark filter is

penalised for cardinality errors. It is clear that in a scenario where measurements

are generated from feature points which have a geometric structure such as an

ellipse, the proposed GM-PHD filter for extended targets in Section 5.1 performs

better than the other with regards the estimation of the number of targets. The

restriction of the elliptical shaped extent in the cluster process model does however
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Figure 5.5: The average OSPA error results, with localisation and cardinality com-
ponents, from 50 MC runs of the GM-PHD filter for extended targets with and
without the cluster process representation (blue line ‘– + –’ and black line ‘–×–’
respectively)
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result in slightly larger localisation errors for the proposed GM-PHD filter, though

the majority of localisation errors for both filters are less the standard deviation of

the observation noise (for the parent process). The increases in localisation errors

at time intervals k = 25 and 50 coincide with the appearance of new targets in

the surveillance region and increases leading up to time intervals k = 100, 125 and

150 coincide with the approach of existing targets to the edge of the surveillance

region.

5.3 Scenario 2: Extended Target Tracking with Variable Extent

The hierarchical RFS approach to extended target tracking not only allows for the

construction of geometric shaped extents, improving the estimation capabilities

of the PHD filter in scenarios where targets generated measurements that appear

in structured arrangements, but also allows for the estimation of variable shape

parameters. To do so requires adapting the PHD filter for extended targets as

shown in Section 5.3.1, the implementation of which further develops the GM

formulation given in Section 5.1 as shown in Section 5.3.2. A simulated example is

considered in Section 5.3.3 and the results are presented in Section 5.3.4.

5.3.1 Adapting the PHD filter

Consider the target state Xk, which now consists of the random vector xk defining

the kinematic state and the random vector sk defining the variable shape parame-

ters, i.e. Xk =
[
xk sk

]T
. The PHD filter for extended targets jointly estimates the

kinematic state and variable shape parameters through the propagation of intensi-

ties which can be factorised as follows

vk(xk, sk) = vk(sk)× vk(xk | sk). (5.14)

The factorisation above holds true under the assumption that the estimation of

the kinematic state depends on the variable shape parameters and not conversely.

This assumption holds for the multiple extended target scenario considered in this

section, in which the construction of the geometric shaped extent for each target

is partly determined by the variable shape parameters and the measurements gen-

erated from the feature points along the extent boundaries update the kinematic

states.

Now suppose that the position and shape of each target evolve independently of

one another so that the dynamics can be factorised as fk|k−1(xk, sk |xk−1, sk−1) =
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fk|k−1(sk | sk−1)× fk|k−1(xk |xk−1), where fk|k−1(sk | sk−1) denotes the Markov tran-

sition density for the variable shape parameters and fk|k−1(xk |xk−1) denotes the

Markov transition density of the kinematic state from one time-step to the next.

This is representative of the scenario under consideration, where the variable shape

parameters do not include the angle of rotation, which is instead determined by a

target’s velocities, included in the kinematic state. The predicted intensity in

the corresponding PHD filter is then given by

vk|k−1(xk, sk) = vk|k−1(sk)× vk|k−1(xk | sk), (5.15)

where the predicted intensity of the variable shape parameters is

vk|k−1(sk) =

∫
vk−1(sk−1) fk|k−1(sk | sk−1)dsk−1, (5.16)

the predicted intensity of the kinematic state is

vk|k−1(xk | sk) = γk(xk | sk) +

∫
pS(xk−1) fk|k−1(xk |xk−1) vk−1(xk−1 | sk−1) dxk−1,

(5.17)

which corresponds to the expression given in equation (3.38), with γk(xk | sk) de-

noting the intensity of birth targets. The probability of target survival pS(xk−1) is

also assumed to be shape independent.

Given a new set of measurements Zk, the updated intensity in the corre-

sponding PHD filter is then given by

vk(xk, sk) =
LZk(xk, sk) vk|k−1(sk) vk|k−1(xk | sk)∫∫

LZk(xk, sk) vk|k−1(sk) vk|k−1(xk | sk) dsk dxk
, (5.18)

where the joint pseudo-likelihood is

LZk(xk, sk) = 1− pD,1(xk, sk) + pD,1(xk, sk) exp (−µ[pD,2 |xk, sk])

+
∑
π∈ΠZk

$π(sk)
∑
ϕ∈π

pD,1(xk, sk)Lϕ(xk, sk)

Λ(ϕ) + vk|k−1 [pD,1 Lϕ | sk]
.

(5.19)

The joint pseudo-likelihood above corresponds to the expression within the brackets

in equation (3.39), except it now updates both the kinematic state and the variable

shape parameters. The partition weights, denoted by$π(sk) in LZk(xk, sk), are now
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given by

$π(sk) =

∏
ϕ∈π

(
Λ(ϕ) + vk|k−1 [pD,1 Lϕ | sk]

)
∑

π′∈ΠZk

∏
ϕ′∈π′

(
Λ(ϕ) + vk|k−1 [pD,1 Lϕ′ | sk]

) , (5.20)

and the multiple measurement likelihood is now

Lϕ(xk, sk) = exp (−µ[pD,2 |xk, sk])
∏
z∈ϕ

µ [pD,2 lz |xk, sk] , (5.21)

where µ[pD,2 |xk, sk] =
∫
pD,2(ξ)µ(ξ |xk, sk) dξ for some arbitrary intensity µ of

each subsidiary Poisson RFS Ek representing the feature points, which is condi-

tioned on both xk and sk. The clutter term Λ(ϕ) is as defined in equation (3.20).

If a single partition of the measurement set, denoted by π, can be determined

then the joint pseudo-likelihood reduces to

LZk(xk, sk) = 1− pD,1(xk, sk) (5.22)

+ pD,1(xk, sk) exp (−µ[pD,2 |xk, sk]) +
∑
ϕ∈π

pD,1(xk, sk)Lϕ(xk, sk)

Λ(ϕ) + vk|k−1 [pD,1 Lϕ | sk]
.

For simplicity, it will be assumed hereafter that such a partition π exists for each

measurement set and is known.

5.3.2 Implementation

To implement the PHD filter described in Section 5.3.1, a Dirac mixture model is

considered for the intensity of the variable shape parameters and each component

of this has associated with a GM formulation for the intensity of the kinematic

state conditioned on that particular component. That is, at the beginning of each

iteration of the filter, the prior intensities are modelled as follows

vk−1(sk−1) =

Nk−1∑
i=1

ν
(i)
k−1 δ(sk−1 − s

(i)
k−1), (5.23)

vk−1(xk−1 | s(i)
k−1) =

J
(i)
k−1∑
j=1

ω
(j|i)
k−1 N

(
xk−1 | s(i)

k−1 ; m
(j|i)
k−1,P

(j|i)
k−1

)
. (5.24)

The mixture in (5.23) defines a particle representation of vk−1(sk−1) which can be

expressed as the set of weighted particles {ν(i)
k−1, s

(i)
k−1}

Nk−1

i=1 .
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To start with then, Nk−1 particles are sampled from the Markov transition

density describing the change in the shape parameters, i.e. for i = 1, . . . , Nk−1,

sample s̃
(i)
k ∼ fk|k−1(sk | s(i)

k−1). For each sampled particle, the predicted and up-

dated intensities for the kinematic state are formulated as GMs of the following

forms

vk|k−1(xk | s̃(i)
k ) =

J
(i)
k|k−1∑
j=1

ω
(j|i)
k|k−1N

(
xk | s̃(i)

k ; m
(j|i)
k|k−1,P

(j|i)
k|k−1

)
, (5.25)

vk(xk | s̃(i)
k ) =

J
(i)
k∑
j=1

ω
(j|i)
k N

(
xk | s̃(i)

k ; m
(j|i)
k ,P

(j|i)
k

)
, (5.26)

where the weights, means and covariances of the respective Gaussian components

have the same closed-form expressions as detailed in Tables 5.1 – 5.3, taking into

account the slight change in indexing due to the dependency on particle i. Note that

the updated intensity for the kinematic state follows from the equation vk(xk | s̃(i)
k ) =

LZk(xk, s̃
(i)
k ) vk|k−1(xk | s̃(i)

k ), where LZk(xk, s̃
(i)
k ) is the joint pseudo-likelihood found

in equation (5.18) and given by equation (5.22). The weights in the Dirac mixture

are then updated as follows

ν̃
(i)
k =

LZk(s̃
(i)
k )∑Nk−1

i=1
LZk(s̃

(i)
k )

ν
(i)
k−1, (5.27)

where LZk(s̃
(i)
k ) is determined by summing the weights in the mixture for the

updated intensity vk(xk | s̃(i)
k ). Finally, a resampling procedure is applied, which

makes Nk copies of {ν̃(i)
k , s̃

(i)
k }

Nk−1

i=1 and eliminates low-weighted particles to give

{ν(i)
k , s

(i)
k }

Nk
i=1.

5.3.3 Simulation set-up

The implementation described in Section 5.3.2 applies to extended targets whose

extents have any structural shape in general. For illustration purposes, the same

multiple extended target scenario from Section 5.2.1 is considered in which the

elliptical extents now gradually reduce in size over time, as shown for one of the

trajectories in Figure 5.6.

Each target state Xk consists of the kinematic state xk =
[
xk,1 xk,2 xk,3 xk,4

]T
and variable shape parameters sk =

[
sk,1 sk,2 sk,3 sk,4

]T
, where

[
xk,1 xk,3

]T
is the

position vector,
[
xk,2 xk,4

]T
is the velocity vector, sk,1 & sk,3 are the magnitudes of
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Figure 5.6: The multiple target trajectories (‘solid’ and ‘dashed’ lines) and an
example of the size varying elliptical extents. Start and end positions are indicated
by: blue ‘diamonds’ for Trajectory 1 at k = 1 and k = 100; ‘red ‘downward
triangles’ for Trajectory 2 at k = 26 and k = 150; and green ‘upward triangles’ for
Trajectory 3 at k = 51 and k = 125.

the major and minor axes of the target’s elliptical extent respectively, and sk,2 &

sk,4 are the rates of change in the major and minor axes’ magnitudes respectively.

Targets follow the same linear Gaussian dynamics given by equation (4.8) with

transition matrix Fk−1 (= F22) and process noise covariance matrix Qk−1 (= Q22)

as defined in equations (5.10)–(5.11). The probability of survival is assumed to be

state independent and has the following constant value pS = 0.9.

Point measurements z =
[
z1 z2

]T
are simulated at each iteration using the

single measurement likelihood given in equation (4.15) and from the hierarchical

RFS model, whose probability density is given by equations (3.19) and (3.20),

for false measurements. The projection matrices H, Ĥ and the observation noise

covariance matrices R1, R2 have the same definitions as given in Section 5.2.1 and

the corresponding standard deviations now have the following values σ1 =
√

5 m

and σ2 =
√

32 m. The number of feature points for each target is α = 11 and the

probabilities of detecting targets and their feature points are pD,1 = pD,2 = 0.99.

The intensities in the clutter term (3.20), κ1 and κ2, are modelled in the same

way as given in Section 5.2.1, with the same Poisson rates. Figure 5.7 shows the

cluttered measurements plotted with the target trajectories against time.

The filter is initialised with the birth intensity γk(xk | s̃(i)
k ) at time-step k = 1,

whose Gaussian components are driven by the measurements received at that time-

step and specifically determined from those subsets ϕ ∈ π, where π is the known
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Figure 5.7: Measurements (green ‘crosses’) and target trajectories (lines)

partition of the measurement set Zk, that contain more than one measurement.

That is, for j = 1, . . . , J
(i)
γ,k, where J

(i)
γ,k = |π̃| and π̃ = {ϕ ∈ π : |ϕ| > 1}, ω(j|i)

γ,k =

pB = 0.1, P
(j|i)
γ,k = diag([5σ2

2, 2, 5σ
2
2, 2]) and

m
(j|i)
γ,k =

[
1

|ϕ̃j|
∑
z∈ϕ̃j

z1 0
1

|ϕ̃j|
∑
z∈ϕ̃j

z2 0

]T
, (5.28)

for each particle i.

The variable shape parameters for new targets are sampled from a truncated

linear Gaussian. Specifically, sample c̃
(i)
k =

[
c̃

(i)
k,1 c̃

(i)
k,2

]T ∼ N (ck ;µinitial,Σinitial)

such that c̃
(i)
k lies within the interval (ainitial,binitial), given the initial mean µinitial =

binitial and initial covariance Σinitial = σ2
initialI2, where ainitial =

[
19 14

]T
, binitial =[

32 21
]T

and σ2
initial =

√
2 m, to give s̃

(i)
k =

[
c̃

(i)
k,1 0 c̃

(i)
k,2 0

]T
. Similarly for

persistent targets, sample s̃
(i)
k ∼ N (sk ; Fk−1 s

(i)
k−1, Q̃k−1) such that s̃

(i)
k lies within

the interval (a,b) where a =
[
19 − 0.2 14 − 0.1

]T
, b =

[
32 0 21 0

]T
, Fk−1 is
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as defined in equation (5.10) and

Q̃k−1 = Γk−1 Σs ΓT
k−1, Σs = diag([σ2

s,1, σ
2
s,2, σ

2
s,3, σ

2
s,4]), (5.29)

for σs,1 =
√

2 m, σs,2 =
√

0.2 m, σs,3 =
√

1 m, σs,4 =
√

0.1 m and Γk−1 as defined in

equation (5.11).

Finally, for each particle i and kinematic state j, the arbitrary intensity µ(ξk,xk)

has a similar Gaussian mixture form to that given in equation (5.2) with J
(j|i)
ξ = α

and for t = 1, . . . , J
(j|i)
ξ the means m

(t|i,j)
ξ and covariances P

t|i,j)
ξ have equivalent

expressions to those given in (5.12) in which the cross diagonal covariance matrices

are given by P
(t|i,j)
ξ|x = ĤP

(j|i)
k|k−1. Once again, the means m

(t|i,j)
ξ relate to the feature

points distributed along the perimeter of the target’s elliptical shaped extent at

fixed intervals now where

r
(t|i,j)
k|k−1 =

[
s̃

(i)
k,1 cos(θt) cos(φ

(j|i)
k|k−1) + s̃

(i)
k,3 sin(θt) sin(φ

(j|i)
k|k−1)

s̃
(i)
k,1 cos(θt) sin(φ

(j|i)
k|k−1) + s̃

(i)
k,3 sin(θt) cos(φ

(j|i)
k|k−1)

]
, (5.30)

with θt = 2πt/α and φ
(j)
k|k−1 = arctan(m

(j)
k|k−1,4/m

(j)
k|k−1,2), which is equivalent to the

angle of rotation specified in Section 5.2.1.

5.3.4 Results

The implementation outlined in Section 5.3.2 for the PHD filter presented in Sec-

tion 5.3.1 is applied to the scenario described in Section 5.3.3 using, in addition, the

pruning algorithm given in Table 5.4 for merging closely spaced Gaussian compo-

nents with parameters τ = 10−4, UMah = 9 and Jmax = 10. The estimation results

shown in Figure 5.8 are from a simulation run with 500 particles for each target.

At each iteration, the state and error estimates are obtained by applying a

similar clustering technique as demonstrated in [31] whereby the weights, means

and covariances of the Gaussian components resulting from target detections in vk

are re-indexed for each subset ϕ ∈ π, i.e. ω
(n|i)
k , m

(n|i)
k and P

(n|i)
k for n = 1, . . . , N

(i)
ϕ

where N
(i)
ϕ = J

(i)
k|k−1 × |ϕ| × α and i = 1, . . . , Nk−1. The corresponding weights for

each subset ϕ are then summed to give

Wϕ,k =

Nk−1∑
i=1

Nϕ∑
n=1

ω
(n|i)
k , (5.31)

and if Wϕ,k ≥ T , for some threshold T , the position and shape parameter estimates
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Figure 5.8: Position and shape parameter estimates (blue ‘circles’), uncertainty
(grey shaded area) and target trajectories (line).
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are calculated respectively as

m̂ϕ,k =

Nk−1∑
i=1

Nϕ∑
n=1

ω
(n|i)
k m

(n|i)
k , ŝϕ,k =

Nk−1∑
i=1

Nϕ∑
n=1

ω
(n|i)
k s̃

(i)
k , (5.32)

and the corresponding errors are calculated as

P̂ϕ,k =

Nk−1∑
i=1

Nϕ∑
n=1

ω
(n|i)
k

(
P

(n|i)
k + (m

(n|i)
k − m̂ϕ,k)(m

(n|i)
k − m̂ϕ,k)

T
)
,

ŝerr
ϕ,k =

Nk−1∑
n=1

Nϕ∑
n=1

ω
(n|i)
k (s̃

(i)
k − ŝϕ,k)(s̃

(i)
k − ŝϕ,k)

T .

(5.33)

Tracks are maintained by labelling each particle set corresponding to a target.

Figure 5.8 shows early results for the position estimates (5.8a, 5.8c & 5.8e) and

the shape parameter estimates (5.8b, 5.8d & 5.8f). Where the targets approach the

boundary of the observation region towards the end of their existence, so that the

extents are only partially visible, the estimation accuracy suffers as a result. Overall

the accuracy of this approach, particularly in estimating the shape parameter, is

reliant on the choice of sampling distribution and the truncated Gaussian used

to sample particles for this simulated example is perhaps too restrictive. Better

results could be acheived with the use of random matrices as incorporated in the

PHD filtering methods for the extended target tracking problem by Granström,

Orguner et. al. [127, 128]. This will discussed further in the following concluding

chapter.
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Chapter 6

Discussion

6.1 Thesis Summary

This thesis focused on extending the PHD filter to multiple group and extended

target tracking problems. A fundamental concept in point process theory, known

as cluster processes, was explored in Chapter 3 from which hierarchical RFS for-

malisms were introduced to represent the multiple group/extended target system.

These so called cluster models allow for the generalisation of the Bayesian filter to

group and extended target tracking problems and their first-order moments provide

suitable approximations for practical implementation when recursively propagated

in the extension of the PHD filter to such tracking problems. The results pre-

sented in Chapter 3 for the filtering equations in the recursion of the PHD filter

for group targets, so called the multi-group PHD filter, along with their derivation

in Appendix B, constituted the principal contribution of this thesis. The filtering

equations of three special cases, including the PHD filter for extended targets, were

also explicitly derived.

A closed-form solution to the multi-group PHD filter was proposed in Chapter

4, under certain linear Gaussian conditions, which resulted in a Gaussian mixture

formulation. The implementation of a similar GM formulation for the single group

special case was demonstrated with a simulated example and shown to perform

better than simply using the multi-target GM-PHD filter [90], taking an aggregated

estimate of the group state.

Chapter 5 concerned the implementation of the PHD filter for extended targets,

a special case of the multi-group PHD filter. The closed-form solution presented

in Chapter 5 is subsequently a special case of the GM formulation proposed in

Chapter 4. Its implementation was demonstrated with a simulated example, in

which the multiple detections for each target have a structured appearance, and

shown to perform better than a GM implementation of an alternative PHD filter for

non-standard targets (see Appendix E), similar to that proposed in [101]. A novel
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implementation of the PHD filter for extended targets was also proposed in Chapter

5 which incorporated variable shape parameters for target extent estimation using

a particle representation.

6.2 Current Research

The PHD filters presented in this thesis are not only just applicable to group and

extended target tracking problems. In particular, the single group PHD filter has

been applied to the Simultaneous Localisation and Mapping (SLAM) problem by

Lee, Clark et. al. [129, 130]. The hierarchical RFS representation in this case

consists of a set (map) of multiple landmarks conditioned on a single vehicle state.

The single group PHD filter, referred to by the authors as the single cluster PHD

filter, is implemented using a combination of Dirac mixture and Gaussian mixture

models for the vehicle state and landmark estimations respectively. This approach

has since been extended by the same authors to include dynamic targets amongst

the multiple landmarks in [131].

Similarly, Ristic and Clark et. al. have recently demonstrated a further applica-

tion of the single group (cluster) PHD filter in a collection of papers [132, 133, 134],

namely for the joint estimation of multiple dynamic targets and a multi-sensor bias.

The underlying process in the hierarchical RFS representation consists of a single

(multi-sensor bias) state vector on which the set of multiple targets are conditioned.

The authors adopt a particle implementation of the single cluster PHD filter using

a Dirac mixture model for both the multi-sensor bias state and the target state

estimations.

Finally, the derivation of the multi-group PHD update requires the use of an

induction proof as alluded to to in Appendix B (Proof of Lemma B.2, Section

B.3.2). However, recently, a more general approach to PHD filtering has been

introduced by Clark and Mahler [135], which removes the need for an induction

proof. A general chain rule is introduced in [135], based on the general version of

Faà di Bruno’s formula for variational calculus proposed by Clark and Houssineau

[136, 137], which provides a more direct approach to deriving PHD filter results.

This is demonstrated in [135] where general PHD filters are derived using the

general chain rule.

6.3 Future Research Directions

This section discusses interesting directions for future work that moves beyond the

scope of this thesis. The majority of the suggested research directions involve ex-
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tensions and adaptations of existing or newly introduced work from other authors.

6.3.1 Extensions to non-linear models

The closed-form solution to the multi-group PHD filter proposed in this thesis,

as well as the single group and extended target special cases, is based on linear

Gaussian assumptions for the dynamic and measurement models. This section dis-

cusses possible extensions of the multi-group GM-PHD filter to non-linear models,

principally, but the same extensions apply to the single group and extended target

special cases. Specifically, this would require the state independent assumptions on

the probabilities of survival and detection to remain as specified in Sections 4.1.2

and 4.1.4 respectively, as well as the same GM formulation for the birth intensities

specified in Section 4.1.3. The extension to non-linearity occurs in the dynamic

and measurement model equations which could be expressed as non-linear func-

tions with zero-mean Gaussian process and observation noise whose covariances

are still defined as the matrices Q11, Q22 and R11, R22 respectively. This would

be straightforward enough for the group dynamics and measurement model, but

extra care may need to be taken with such non-linear individual target dynamics

due to the dependency on the group dynamics and the additional process noise

with covariance Q12. The multi-group GM-PHD filter could then be adapted to

accommodate such non-linear Gaussian models following the extended Kalman or

unscented Kalman approximations in a similar manner to that proposed for the

multi-target GM-PHD filter in [90].

For extensions to non-linear non-Gaussian models, particle representations us-

ing SMC techniques would need to be considered. To consider a full particle rep-

resentation for the multiple group target problem, where the individual target dy-

namics are dependent on the group dynamics, would be extremely computationally

demanding. However, for some applications which consider independent dynamics,

a hybrid implementation involving a combination of particle representation and

GM formulation is possible, as shown for the SLAM problem in [129].

6.3.2 Incorporating unknown detection profile

In a recent paper by Mahler, Vo & Vo [138] unknown detection probability was

incorporated into PHD/CPHD filtering by augmenting the target states to accom-

modate non-uniform detection profiles. Estimation of the augmented target states

via the expanded PHD or CPHD recursions yields information on the number of

targets, as well as the individual kinematic states and the unknown detection prob-
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ability for each target. Analytic implementations of such PHD/CPHD recursions

are acheived by modelling the augmented part with Beta distributions, resulting

in so-called Beta Gaussian mixtures.

The same approach can be applied to incorporate unknown detection probabil-

ity into PHD filtering for group and extended targets, and therefore relaxing the

state independent assumptions on the probabilities of detection in the proposed

GM implementations. Each group and individual target state would need to be

augmented separately, which may intuitively lead to Beta-Beta-Gaussian mixture

formulations. A similar approach could also be applied to instead incorporate

unknown survival probability with appropriately augmented states.

6.3.3 Shape estimation using random matrices

The implementation of the PHD filter for extended targets which incorporated

shape estimation, proposed in Chapter 5 (Section 5.3), had one minor flaw. That

was identified as the restriction imposed by the choice of sampling distribution

for the particle representation. One method worth investigating, to improve on

the results presented in this thesis, involves modelling the shape parametric as a

random matrix. With the use of random matrices, the shape parametric can be

represented by an inverse Wishart distribution and can be incorporated into an

implementation of the PHD filter for extended targets with shape estimation in

two possible ways.

Firstly, following the implementation proposed in Section 5.3, the inverse Wishart

representation for the shape parametric can be used as the sample distribution.

This approach would require checking that the assumptions made in the adaption

of the PHD filter still held for a shape paramteric modelled as a random matrix.

Secondly, the inverse Wishart distribution can simply be incorporated into the

GM-PHD filter for extended targets presented in Section 5.2, following a similar

application presented by Granström, Orguner et. al. in [127]. This latter approach

allows the assumption that the kinematic and shape parametric dynamics are in-

dependent, which was imposed for the implementation presented in Section 5.3, to

be relaxed. Either way the incorporation of a random matrix model for the shape

parametric would potentially yield better estimation results.

6.3.4 Group classification and identification

Currently the framework for group target tracking presented in this thesis does

not consider spawining of targets, either group or individual targets. Since the
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PHD filter for multiple target tracking already considers spawning [1], introducing

individual target spawning in the multi-group PHD filter provides little in the way

novel contribution to tracking research. Considering the spawning of whole groups

on the other hand may be of more interest in terms of future research. This is

representative of scenario in which members of an existing group separate from the

rest and form a new group. The introduction of group spawning leads the concept

of group classification, i.e. determining the difference between group targets.

The final interesting research direction to mention is based on the concept of

group identification. That is, identifying when a number of individual targets begin

to share a common characteristic so that the collection of targets can be regarded as

a group target. The main point of interest attached to idea of group identification,

specifically with regards to the contents of this thesis, would be how to model the

transition from the use of the multi-target PHD filter to the single/multi-group

PHD filter or hybrid of both.
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Appendix A

Additional Background Material

A.1 Dirac Delta Functions

The Dirac delta concentrated at x is a function, denoted δx(y), with the following

major properties. If y 6= x, then δx(y) = 0 otherwise∫
h(y) δx(y) dy = h(x), (A.1)

for any function h(·) continuous at y = x. It satisfies∫
S

δx(y) dy = 1S(x), and

∫
δx(y) dy = 1, (A.2)

where 1S(·) denotes the indicator function which is defined as

1S(x) =

1 if x ∈ S,

0 if x /∈ S.
(A.3)

A.2 Campbell’s Theorem [106, page 103]

Let h be a measurable function on Rd. Then for any RFS Ξ with instance Ξ = Y ,

probability density pΞ and first-order moment density vΞ, the expected value of the

sum of h(y) over y ∈ Y is given by

E

[∑
y∈Y

h(y)

]
=

∫ (∑
y∈Y

h(y)

)
pΞ(Y ) δY =

∫
h(y) vΞ(y) dy. (A.4)

The expression for the first-order moment density of a RFS given in equation (2.30)

follows as direct application of the result in equation (A.4) with h(y) = δx(y).
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A.3 Expressions for the PHD of a RFS and its Integral

The specific formula for the first-order moment density of a RFS Ξ given in equation

(2.31) can be established by applying the formula for a set integral (see Section

2.2.2) to the expression in equation (2.30), then expanding the sum of Dirac delta

functions and making use of the properties in Section A.1 as follows.

vΞ(x) =

∫ (∑
w∈X

δx(w)

)
pΞ(X) δX

=
∞∑
n=0

1

n!

∫
(δx(x1) + · · ·+ δx(xn)) pΞ({x1, . . . ,xn}) dx1 · · · dxn

=
∞∑
n=1

n

n!

∫
pΞ({x,w1, . . . ,wn−1}) dw1 · · · dwn−1

=
∞∑
n=1

1

(n− 1)!

∫
pΞ({x,w1, . . . ,wn−1}) dw1 · · · dwn−1

=
∞∑
i=0

1

i!

∫
pΞ({x,w1, . . . ,wi}) dw1 · · · dwi =

∫
pΞ({x} ∪W ) δW. (A.5)

Further, the statement for the integral of vΞ in any region S ⊆ X given in equation

(2.32) can be proven as follows. Note that

E [|Ξ ∩ S|] =

∫
|X ∩ S| pΞ(X) δX =

∫ (∑
x∈X

1S(x)

)
pΞ(X) δX, (A.6)

where 1S(x) is the indicator function defined in Section A.1. Applying the formula

for a set integral to the expression in equation (A.6) and expanding the sum of

indicator functions gives

E [|Ξ ∩ S|] =
∞∑
n=0

1

n!

∫
(1S(x1) + · · ·+ 1S(xn)) pΞ({x1, . . . ,xn}) dx1 · · · dxn

=
∞∑
n=1

n

n!

∫
1S(x) pΞ({x,w1, . . . ,wn−1}) dx dw1 · · · dwn−1

=
∞∑
n=1

1

(n− 1)!

∫
1S(x) pΞ({x,w1, . . . ,wn−1}) dx dw1 · · · dwn−1

=

∫
1S(x)

(
∞∑
j=0

1

j!

∫
pΞ({x,w1, . . . ,wj}) dw1 · · · dwj

)
dx.
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Then the statement in equation (2.32) immediately follows as a result of the last

line in equation (A.5), i.e.

E [|Ξ ∩ S|] =

∫
1S(x)

(∫
pΞ({x} ∪W ) δW

)
dx =

∫
S

vΞ(x) dx.

A.4 Probability Generating Functionals

The probability generating functional (p.g.fl.) plays a fundamental role in the study

of point processes, the early use of which was demonstrated by Moyal in [107] for

stochastic population processes. The RFS analogue plays an important role in the

derivation of the PHD filter recursion, which was presented in Section 2.4.1, and is

defined as follows.

Let X ⊆ X be any finite set and let h(x) be a test function defined on X such

that 0 ≤ h(x) ≤ 1. Then the probability generating functional of a RFS Ξ whose

probability density is pΞ(X) is given by the following expectation value

GΞ[h] = E

[ ∏
x∈X

h(x)

]
=

∫ (∏
x∈X

h(x)

)
pΞ(X) δX, (A.7)

where the function
∏

x∈X h(x) is symmetric and measurable. The p.g.fl. GΞ[h] has

the following properties:

GΞ[h] =


pΞ(∅) for h(x) = 0, ∀x ∈ X;∫
pΞ(X) δX = 1 for h(x) = 1, ∀x ∈ X;∫
S

pΞ(X) δX = Pr(Ξ ⊆ S) for h(x) = 1S(x), ∀x ∈ X.

(A.8)

Finally, consider the union Ξ = Ξ1 ∪ · · · ∪ Ξn where Ξ1, . . . ,Ξn are statistically

independent. Then the p.g.fl. GΞ satisfies the property, for all h,

GΞ[h] = GΞ1 [h] · · ·GΞn [h], (A.9)

The probability generating functionals for some of the RFS classes presented

in Section 2.2.4 can easily be determined by applying the formula for set integrals

to equation (A.7), followed by direct substitution of the respective probability

densities given by equation (2.20)–(2.22). For example, the p.g.fl. of an i.i.d.
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cluster RFS Ξ is found to be

GΞ[h] =
∞∑
n=0

1

n!

∫
h(x1) · · ·h(xn) pΞ({x1, . . . ,xn}) dx1 · · · dxn

=
∞∑
n=0

ρ(n)

∫
h(x1) · · ·h(xn) p(x1) · · · p(xn) dx1 · · · dxn

=
∞∑
n=0

ρ(n)

(∫
h(x) p(x) dx

)n
. (A.10)

Similarly, the p.g.fl. of a Poisson RFS Ξ with intensity v is found to be

GΞ[h] = exp

(∫
(h(x)− 1) v(x) dx

)
. (A.11)

and the p.g.fl. of a Bernoulli RFS Ξ with existence probability ρ is

GΞ[h] = 1− ρ+ ρ

∫
h(x) p(x) dx. (A.12)

A.5 Functional Derivatives

Let F [h] be a functional on X, whose argument is an ordinary function h. The

functional derivative of F [h] in the direction η is defined by

δF [h ; η] = lim
ε→0+

1

ε
(F [h+ εη]− F [h]) . (A.13)

The kth-order functional derivative of F [h] in the directions η1, . . . , ηk is defined

iteratively by

δkF [h ; η1, . . . , ηk] = lim
ε→0+

1

ε

(
δk−1F [h+ εηk ; η1, . . . , ηk−1]− δk−1F [h ; η1, . . . , ηk−1]

)
.

(A.14)

Importantly, the probability density and first-order moment density of a RFS Ξ

can be recovered from the functional derivatives of its p.g.fl. GΞ. That is, given X =

{x1, . . . ,xn}, the nth-order functional derivative of GΞ in the directions δx1 , . . . δxn ,

evaluated at h = 0, gives

pΞ(X) = δnGΞ[0 ; δx1 , . . . , δxn ], (A.15)
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and the functional derivative of GΞ in the direction δx, evaluated at h = 1, gives

vΞ(x) = δGΞ[1 ; δx], (A.16)

where δx, δx1 , . . . , δxn denote Dirac delta functions. To illustrate the result for

the first-order moment of a RFS given in equation (A.16), consider the functional

derivative of the p.g.fl. of a Poisson RFS in the direction δx, i.e. from equation

(A.11),

δGΞ[h ; δx] = exp (v[h− 1]) δv[h− 1 ; δx], (A.17)

where v[h− 1] =
∫

(h(x)− 1) v(x) dx. Note that

δv[h− 1 ; δx] = lim
ε→0+

1

ε
(v[h− 1 + εδx]− v[h− 1])

= lim
ε→0+

1

ε
(v[h− 1] + εv[δx]− v[h− 1])

= v[δx] = v(x),

which follows from Dirac delta properties in Section (A.1). Equation (A.17) can

then be written as

δGΞ[h ; δx] = exp (v[h− 1]) v(x) = GΞ[h] v(x), (A.18)

and setting h = 1 gives δGΞ[1 ; δx] = v(x) as expected.
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Appendix B

PHD Derivations for Group and Extended Target Tracking

This chapter provides details on the derivations of the filtering equations for the

PHD recursions presented in Section 3.2. The derivations are based on the multi-

target PHD filter derivation [1] and requires the concept of probability generating

functionals for cluster processes, i.e. p.g.fl. of the multiple group/extended target

system RFS representations as shown in the next section. The first-order moment

approximations of the Bayesian filter for group/extended targets can then be de-

rived from the functional derivatives of such probability generating functionals, as

demonstrated in Section B.2.

B.1 Probability Generating Functionals of Cluster Processes

The p.g.fl. of a cluster process which is characterised by the superposition of or-

dered pairs1 was proposed by Moyal in [107]. Such a cluster process is equiva-

lent to the multiple group/extended target system RFS representation given by

X =
⋃

x∈Υ{(x, Ex)}, as defined in Section 3.1.2, where Υ is the RFS of group

states and Ex is the subsidiary RFS of individual target states for each x ∈ Υ. The

p.g.fl. of a RFS X is defined as follows.

Let the finite sets X and Ξ be instances of the RFS Υ and a subsidiary RFS E
respectively. Furthermore, let h(x,Ξ) be a test function defined on the space of all

ordered pairs, for x ∈ X, such that 0 ≤ h(x,Ξ) ≤ 1. Then the p.g.fl. of a RFS X
is given by the following expectation value

GX [h] = GΥ [GE [h | · ]] = E

[ ∏
x∈X

GE [h |x]

]
=

∫ (∏
x∈X

GE [h |x]

)
pΥ(X) δX, (B.1)

where pΥ(X) denotes the probability density of the RFS Υ and

1An ordered pair is defined in [107] by (x, yn), where x is the characteristic of the cluster as
a whole and yn means that the cluster contains n individuals with states y1, . . . , yn.
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GE [h |x] =

∫
h(x,Ξ) pE(Ξ |x) δΞ, (B.2)

where pE(Ξ |x) is the conditional probability density of each subsidiary RFS E .

Consider the alternative characterisation of a cluster process found in [70, Sec-

tion 6.3] and [106, Section 5.1], which has an equivalent RFS representation given

by X =
⋃

x∈Υ Ex. Let the finite sets X and Ξ be instances of the RFS Υ and a

subsidiary RFS E respectively. Furthermore, let h(ξ) be a test function defined on

the individual target space, for ξ ∈ Ξ, such that 0 ≤ h(ξ) ≤ 1. Then the p.g.fl. of

a RFS X is then given by the same expectation value defined in equation (B.1),

except now GE [h |x] is the p.g.fl. of the RFS E given by the following expectation

value

GE [h |x] = E

[∏
ξ∈Ξ

h(ξ)
∣∣∣x] =

∫ (∏
ξ∈Ξ

h(ξ)

)
pE(Ξ |x) δΞ. (B.3)

Suppose the RFS Υ is Poisson with intensity vΥ, then the p.g.fl. of X is given

by

GX [h] = exp

(∫
(GE [h |x]− 1) vΥ(x) dx

)
, (B.4)

and the point process equivalence of such a RFS is referred to in point process liter-

ature as a Poisson cluster process. Furthermore, suppose also that each subsidiary

RFS E is i.i.d., then the RFS X is equivalent to the Neyman-Scott process [108].

For the purpose of deriving the filtering equations for the PHD recursions pre-

sented in Section 3.2 for group and extended target tracking applications, it is nec-

essary to introduce an additional test function in the p.g.fl. of RFS X =
⋃

x∈Υ Ex.

Let h̄(x) be a test function defined on the group state space, for x ∈ X, such that

0 ≤ h̄(x) ≤ 1. Then the joint p.g.fl. of RFS X is given the following expectation

value

GX [h̄, h] = GΥ

[
h̄ GE [h | ·]

]
= E

[∏
x∈X

h̄(x)GE [h |x]

]

=

∫ (∏
x∈X

h̄(x)GE [h | ·]

)
pΥ(x) δX, (B.5)

where GE [h |x] is still the p.g.fl. of RFS E given by equation (B.3). In addition,

the RFS Υ and subsidiary RFSs E will each be approximated with a Poisson RFS
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for the derivations in Sections 3.2-B.6. The joint p.g.fl. of the corresponding RFS

X is then given by

GX [h̄, h] = exp
(
vΥ

[
h̄ exp (vE [h− 1 | ·])− 1

])
= exp

(∫ (
h̄(x) exp

(∫
(h(ξ)− 1) vE(ξ |x) dξ

)
− 1

)
vΥ(x) dx

)
.

(B.6)

B.2 First-Order Moments of Cluster Processes

The specific formula for the first-order moment of the RFS X =
⋃

x∈Υ{(x, Ex)},
referred to as the total group target PHD and given by equation (3.7) in Section

3.1.4, can be established in a similar way as demonstrated in Section A.3. That is,

vX (x,Ξ)

=

∫ (∑
(x′,Ξ′)∈X

δ(x,Ξ)(x
′,Ξ′)

)
pX (X) δX

=
∞∑
n=0

1

n!

∫ (
δ(x,Ξ)(x1,Ξ1) + · · ·+ δ(x,Ξ)(xn,Ξn)

)
×

pX ({(x1,Ξ1), . . . , (xn,Ξn)}) dx1 · · · dxn δΞ1 · · · δΞn

=
∞∑
n=1

n

n!

∫
pX ({(x,Ξ), (x′1,Ξ

′
1), . . . , (x′n−1,Ξ

′
n−1)}) dx′1 · · · dx′n−1 δΞ

′
1 · · · δΞ′n−1

=
∞∑
n=1

1

(n− 1)!

∫
pX ({(x,Ξ), (x′1,Ξ

′
1), . . . , (x′n−1,Ξ

′
n−1)}) dx′1 · · · dx′n−1 δΞ

′
1 · · · δΞ′n−1

=

∫
pX ({(x,Ξ)} ∪ X′) δX′ =

∫
X3(x,Ξ)

pX (X) δX.

Similarly, the first-order moment of the RFS X =
⋃

x∈Υ Ex, referred to as the

condensed group target PHD and given by equation (3.8), can be established as

follows:

vX (x, ξ)

=

∫ (∑
Ξw∈X, ξ′∈Ξw

δx(w) δξ(ξ
′)

)
pX (X) δX

=
∞∑
n=0

1

n!

∫ (
δx(x1)

∑
ξ′1∈Ξx

1

δξ(ξ
′
1) + · · ·+ δx(xn)

∑
ξ′n∈Ξx

n

δξ(ξ
′
n)

)
× pX ({Ξx

1 , . . . ,Ξ
x
n}) dx1 · · · dxn δΞ

x
1 · · · δΞx

n
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=
∞∑
n=1

n

n!

∫ (∑
ξ′∈Ξx

δξ(ξ
′)
)

× pX ({Ξx,Ξw
1 , . . . ,Ξ

w
n−1}) dw1, · · · dwn−1 δΞ

x δΞw
1 · · · δΞ

w
n−1

=

∫ (∑
ξ′∈Ξx

δξ(ξ
′)
)
pX ({Ξx} ∪W) δΞx δW

=
∞∑
m=0

1

m!

∫
(δξ(ξ1) + · · ·+ δξ(ξm)) pX ({ξ1, . . . , ξm}

x ∪W) dξ1 · · · dξm δW

=
∞∑
m=1

m

m!

∫
pX ({ξ, ξ′1, . . . , ξ′m−1}

x ∪W) dξ′1 · · · dξ′m−1 δW

=

∫
pX
(
{{ξ} ∪ Ξ′}x ∪W

)
δΞ′ δW =

∫
X3Ξx,Ξx3ξ

pX (X) δX.

As discussed in Section 3.1.4, recursions that propagate the first-order moment

of the RFS X =
⋃

x∈Υ Ex will provide tractable solutions to the group target

tracking problem. The derivations of the filtering equations for such recursions are

detailed in Sections B.3–B.6 based on the property relating the first-order moment

of RFS X with the functional derivative of the joint p.g.fl. GX as given in Section

B.2.2 (and Section B.2.3). Before that, an important result is introduced regarding

the functional derivative of a composite functional.

B.2.1 The chain rule for functional derivatives

Since the joint p.g.fl. GX [h̄, h] is given by the composition GΥ

[
h̄, GE [h | ·]

]
, its func-

tional derivative in the direction η requires the following result.

Lemma B.1 (Chain rule). Let GΥ and GE be differentiable functionals, then the

functional derivative of the composition GX [h] = GΥ [GE [h | ·]] in the direction η is

δGX [h ; η] = δGΥ [GE [h | ·] ; η] = δGΥ [GE [h | ·] ; δGE [h | · ; η]] . (B.7)

Proof. Details on how this result is established can be found in [135], where the

direction is evaluated at η = δy.

Given the Dirac delta function δx,ξ concentrated at x and ξ such that δx,ξ =

δx(x′)δξ(ξ
′), it follows from the chain rule that the functional derivative of the

joint p.g.fl. GX [h̄, h] in the direction δx,ξ is

δGX [h̄, h ; δx,ξ] = δGΥ

[
h̄ GE [h | ·] ; δGE [h | · ; δξ] δx

]
. (B.8)
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B.2.2 The condensed group target PHD

The functional derivative of the joint p.g.fl. GX [h̄, h] in the direction δx,ξ, evaluated

at h̄ = 1 and h = 1, gives the first-order moment of the RFS X , i.e.

vX (x, ξ) = δGX [1, 1 ; δx,ξ], (B.9)

To illustrate this result, consider the functional derivative, in the direction δx,ξ,

of joint the p.g.fl. GX given in equation (B.6). To start with, since the RFS E is

Poisson, the functional derivative of its p.g.fl. GE in the direction δξ is given by

δGE [h | · ; δξ] = exp (vE [h− 1 | ·]) vE(ξ | ·).

It then follows from the chain rule (Lemma B.1) and equation (B.5), that the

functional derivative of the joint p.g.fl. in the direction δx,ξ is

δGX [h̄, h ; δx,ξ] = δGΥ

[
h̄ GE [h | ·] ; exp(vE [h− 1 | ·]) vE(ξ | ·) δx

]
= exp

(
vΥ

[
h̄ GE [h | ·]− 1

])
δvΥ

[
h̄ GE [h | ·]− 1 ;GE [h | ·] vE(ξ | ·) δx

]
,

(B.10)

since the RFS Υ is also Poisson. Finally, note that,

δ vΥ

[
h̄ GE [h | ·]− 1 ;GE [h | ·] vE(ξ | ·) δx

]
= lim

ε→0+

1

ε

(
vΥ

[
h̄ GE [h | ·]− 1 + εGE [h | ·]vE(ξ | ·) δx

]
− vΥ

[
h̄ GE [h | ·]− 1

])
= lim

ε→0+

1

ε

(
vΥ

[
h̄ GE [h | ·]− 1

]
+ ε vΥ[GE [h | ·] vE(ξ | ·) δx]− vΥ

[
h̄ GE [h | ·]− 1

])
= vΥ[GE [h | ·] vE(ξ | ·) δx] = exp (vE [h− 1 |x]) vE(ξ |x) vΥ(x),

so that equation (B.10) becomes

δGX [h̄, h ; δx,ξ] = exp
(
vΥ

[
h̄ GE [h | ·]− 1

])
exp (vE [h− 1 |x]) vΥ(x) vE(ξ |x).

Finally, evaluating at h̄ = 1 and h = 1 gives δGX [1, 1 ; δx,ξ] = vΥ(x) vE(ξ |x).

The first-order moment of the RFS X is a joint density satisfying the factorisation

vX (x, ξ) = vΥ(x) × vE(ξ |x) given the dependence of ξ ∈ E on x ∈ Υ. Hence the

relation given by equation (B.9) is satisfied for a RFS X whose joint p.g.fl. is given

by equation (B.6).

Note that the probability density of RFS X can also be recovered from the

functional derivative of the joint p.g.fl. That is, given X = {Ξx
1 , . . . ,Ξ

x
n} where
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Ξx
i = {ξi,1, . . . , ξi,ni} for i = 1, . . . , |X| and X = {x1, . . . ,xn}, the N th-order

functional derivative of GX [h̄, h], where

N =

|X|∏
i=1

ni,

in the directions δΞx
1
, . . . , δΞx

n
(denoting δΞx

i
= δxi,ξi,1 , . . . , δxi,ξi,ni for i = 1, . . . , |X|),

evaluated at h̄ = 0 and h = 0, gives

pX (X) = δNGX
[
0, 0 ; δΞx

1
, . . . , δΞx

n

]
. (B.11)

The probability density presented in Section 3.2.3 for a RFS whose parent and

daughter processes are Poisson RFSs can be derived from equation (B.11) given its

p.g.fl. has the same form as that in equation (B.6).

B.2.3 The marginal group target PHD

The functional derivative the joint p.g.fl. GX [h̄, h] in the direction of δx, evaluated

at h̄ = 1 and h = 1, gives the first-order moment density of the RFS Υ, i.e.

vΥ(x) = δGX [1, 1 ; δx], (B.12)

where δx is the Dirac delta function concentrated at x. To illustrate this result,

given by equation (B.12), again consider the functional derivative, this time in the

direction δx, of the joint p.g.fl. given in equation (B.6). That is

δGX [h̄, h ; δx] = δGΥ

[
h̄ GE [h | ·] ; δx

]
= exp

(
vΥ

[
h̄ GE [h | ·]− 1

])
δvΥ

[
h̄ GE [h | ·]− 1 ; δx

]
, (B.13)

since the direction is strictly parameterised by x ∈ Υ. Note that

δvΥ

[
h̄ GE [h | ·]− 1 ; δx

]
= lim

ε→0+

1

ε

(
vΥ

[
h̄ GE [h | ·]− 1 + ε δx

]
− vΥ

[
h̄ GE [h | ·]− 1

])
= vΥ[δx] = vΥ(x).

Equation (B.13) becomes δGX [h̄, h ; δx] = exp
(
vΥ

[
h̄ GE [h | ·]− 1

])
vΥ(x) then set-

ting h̄ = 1 and h = 1 gives δGX [1, 1 ; δx] = vΥ(x) as expected.
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B.3 Derivation of the Multi-Group PHD Filter Recursion

This section summarises the derivation of the multi-group PHD filter recursion

presented in Section 3.2.3. Sketch proofs are given in Sections B.3.1 and B.3.2

respectively for the results of the prediction and update equations.

B.3.1 Multi-group PHD prediction

The joint p.g.fl. of the RFS representation of the multiple group target system,

i.e. Xk−1 =
⋃

x∈Υk−1
Exk−1, is given by Gk−1[h̄, h] = GΥ,k−1

[
h̄ GE,k−1[h | · ]

]
. Then,

given the dynamic model specified in Section 3.2.1, the p.g.fl. corresponding to the

predicted posterior in the multi-group Bayesian filter recursion can be written as

Gk|k−1[h̄, h] = GΓ,k[h̄, h]

∫  ∏
x′∈Xk−1

GΦ,k|k−1

[
h̄ GE,k|k−1[h | ·, : ]

∣∣x′]
pk−1(Xk−1) δXk−1,

where

GE,k|k−1[h | ·, : ] = GΓ,ξ,k[h | · ]
∫  ∏

ξ′∈Ξk−1

GΨ,k|k−1[h | ξ′, : ]

 pk−1(Ξk−1) δΞk−1.

That is, the predicted p.g.fl. is given by

Gk|k−1[h̄, h] = GΓ,k[h̄, h]GΥ,k−1

[
h̄ GΦ,k|k−1

[
GE,k|k−1[h | ·, : ]

∣∣ : ]] , (B.14)

where GE,k|k−1[h | ·, : ] = GΓ,ξ,k[h | · ]GE,k−1

[
GΨ,k|k−1[h | ··, : ]

∣∣ : ].
The result for the predicted intensity follows from the relation given in equation

(B.9). That is, taking the functional derivative of Gk|k−1 in the direction δx,ξ then

evaluating at h̄ = 1 and h = 1, as follows. Given the expression for Gk|k−1 in

equation (B.14), δGk|k−1[h̄, h ; δx,ξ] is written as

δGk|k−1[h̄, h ; δx,ξ] = δGΓ,k[h̄, h ; δx,ξ]GΥ,k−1

[
GΦ,k|k−1

[
h̄ GE,k|k−1[h | ·, : ]

∣∣ : ]]
+GΓ,k[h̄, h] δGΥ,k−1

[
GΦ,k|k−1

[
h̄ GE,k|k−1[h | ·, : ]

∣∣ : ] ; δx,ξ
]
.

(B.15)

By applying the chain rule (Lemma B.1) it follows that

δGΥ,k−1

[
GΦ,k|k−1

[
h̄ GE,k|k−1[h | ·, : ]

∣∣ : ] ; δx,ξ
]

= δGΥ,k−1

[
GΦ,k|k−1

[
h̄ GE,k|k−1[h | ·, : ]

∣∣ : ] ; δGΦ,k|k−1

[
h̄ GE,k|k−1[h | ·, : ] ; δx,ξ

∣∣ : ]]
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=

∫  ∑
x′∈Xk−1

δGΦ,k|k−1

[
h̄ GE,k|k−1[h | ·, : ] ; δx,ξ

∣∣x′] (B.16)

×

|Xk−1|−1∏
i=1

GΦ,k|k−1

[
h̄ GE,k|k−1[h | ·, : ]

∣∣x′i]
 pk−1(Xk−1) δXk−1.

The assumption on the RFS Φk|k−1 described in Section 3.2.3 implies that the joint

p.g.fl. GΦ,k|k−1

[
h̄ GE,k|k−1[h | ·, : ]

∣∣ : ] has the following form

GΦ,k|k−1

[
h̄ GE,k|k−1[h | ·, : ]

∣∣ : ]
= 1− pS,1( : ) + pS,1( : )

∫
h̄(xk)GE,k|k−1[h |xk, : ] fk|k−1(xk | : ) dxk,

(B.17)

so that

δGΦ,k|k−1

[
h̄ GE,k|k−1[h | ·, : ] ; δx,ξ

∣∣ : ]
= δGΦ,k|k−1

[
h̄ GE,k|k−1[h | ·, : ] ; δGE,k|k−1[h ; δξ | ·, : ] δx

∣∣ : ]
= pS,1( : ) fk|k−1(x | : ) δGE,k|k−1[h ; δξ |x, : ]

(B.18)

Furthermore, given the expression for GE,k|k−1, it follows that

δGE,k|k−1[h ; δξ |x, : ] = δGΓ,ξ,k[h ; δξ |x]GE,k−1

[
GΨ,k|k−1[h | ··, : ]

∣∣ : ]
+GΓ,ξ,k[h |x] δGE,k−1

[
GΨ,k|k−1[h | ··, : ] ; δξ

∣∣ : ] ,
where, applying the chain rule once again,

δGE,k−1

[
GΨ,k|k−1[h | ··, : ] ; δξ

∣∣ : ]
= δGE,k−1

[
GΨ,k|k−1[h | ··, : ] ; δGΨ,k|k−1[h ; δξ | ··, : ]

∣∣ : ] ,
which can be written in a similar form as the expression given in equation (B.16).

The assumption on the RFS Ψk|k−1 described in Section 3.2.3 implies that its

p.g.fl. has a similar form to that given in equation (B.17) so that

δGΨ,k|k−1[h ; δξ | ··, : ] = pS,2(··) fk|k−1(ξ | ··, : ).

Hence, by substitution, the functional derivative of GE,k−1

[
GΨ,k|k−1[h | ··, : ]

∣∣ : ] in

the direction δξ, evaluated at h = 1, becomes
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δGE,k−1

[
GΨ,k|k−1[1 | ··, : ] ; pS,2(··) fk|k−1(ξ | ··)

]
=

∫
pS,2(ξk−1) fk|k−1(ξ | ξk−1, : ) vk−1(ξk−1 | : ) dξk−1,

which follows from Campbell’s theorem (Section A.2). From the relation given in

equation (B.9) it also follows that δGΓ,ξ,k[1 ; δξ |x] = γξ,k(ξ |x) and so

δGE,k|k−1[1 ; δξ |x, : ] = vk|k−1(ξ |x, : ), (B.19)

where vk|k−1(ξ |x, : ) is the conditional predicted intensity given in equation (3.18).

Therefore, it follows from equation (B.19), that setting h̄ = 1 and h = 1 in equation

(B.18) gives

δGΦ,k|k−1

[
GE,k|k−1[1 | ·, : ] ; δx,ξ

∣∣ : ] = pS,1( : ) fk|k−1(x | : ) vk|k−1(ξ |x , : ).

Subsequently setting h̄ = 1 and h = 1 in equation (B.16) gives

δGΥ,k−1

[
1 ; δGΦ,k|k−1

[
GE,k|k−1[1 | ·, : ] ; δx,ξ

∣∣ :
]]

=

∫
pS,1(xk−1) fk|k−1(x |xk−1) vk|k−1(ξ |x,xk−1) vk−1(xk−1) dxk−1,

which again follows from Campbell’s theorem (Section A.2). The above expres-

sion gives the second term, setting h̄ = 1 and h = 1, in equation (B.15), and

the predicted intensity given in equation (3.17) follows by further noting that

δGΓ,k[1, 1 ; δx,ξ] = γk(x, ξ).

B.3.2 Multi-group PHD update

Under the RFS representation of the multiple group target system given by Xk =⋃
x∈Υk

Exk with instance Xk, the corresponding joint p.g.fl. for the updated posterior

in the multi-group Bayesian filter recursion is given by

Gk[h̄, h] =

∫ (∏
x∈Xk

h̄(x)

(∏
ξ∈Ξx

k

h(ξ)

))
gk(Zk |Xk) pk|k−1(Xk) δXk∫

gk(Zk |Xk) pk|k−1(Xk) δXk

.

Note that the likelihood gk(Zk |Xk) can be recovered from its p.g.fl. That is, given

a measurement set Zk = {z1, . . . , zm}, gk(Zk |Xk) = δmGZ,k[0 ; δz1 , . . . , δzm |Xk].
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Therefore, the following trivariate p.g.fl. is introduced

F [g, h̄, h] =

∫ (∏
x∈Xk

h̄(x)

(∏
ξ∈Ξx

k

h(ξ)

))
GZ,k[g |Xk] pk|k−1(Xk) δXk, (B.20)

the mth-order functional derivative of which in the directions δz1 , . . . , δzm is given

by

δmF [g, h̄, h | δz1 , . . . , δzm ]

=

∫ (∏
x∈Xk

h̄(x)

(∏
ξ∈Ξx

k

h(ξ)

))
δmGZ,k[g ; δz1 , . . . , δzm |Xk] pk|k−1(Xk) δXk,

so that the updated joint p.g.fl. can be written as

Gk[h̄, h] =
δmF [0, h̄, h ; δz1 , . . . , δzm ]

δmF [0, 1, 1 ; δz1 , . . . , δzm ]
(B.21)

The following Lemma shows the specific formulation of the updated joint p.g.fl. given

the measurement model specified in Section 3.2.2 and the corresponding assump-

tions described in Section 3.2.3.

Lemma B.2. Under the conditions specified in Section 3.2.2 for the measurement

model and the corresponding assumptions described in Section 3.2.3, the updated

joint p.g.fl. is given by

Gk[h̄, h] =
exp

(
vΥ,k|k−1

[
h̄ (1− pD,1) exp

(
vE,k|k−1[h− 1 | · ]

)])
exp

(
vΥ,k|k−1[1− pD,1]

)
×

exp
(
vΥ,k|k−1

[
h̄ pD,1 exp

(
vE,k|k−1[h(1− pD,2)− 1 | · ]

)])
exp

(
vΥ,k|k−1

[
pD,1 exp

(
−vE,k|k−1[pD,2 | · ]

)])
×

∑
π∈ΠZk

∏
ϕ∈π

(
Λ(ϕ) + vΥ,k|k−1

[
h̄ pD,1 ∆ϕ[h | · ]

])
∑

π′∈ΠZk

∏
ϕ′∈π′

(
Λ(ϕ′) + vΥ,k|k−1[pD,1 Lϕ′ ]

) .

(B.22)

Proof. Given the measurement model specified in Section 3.2.2, the p.g.fl. corre-

sponding to the likelihood gk(Zk |Xk) is given by

GZ,k[g |Xk] = GK,k[g]
∏
x∈Xk

GΘ,1,k[g |x,Ξk],

In addition, the predicted state has a RFS representation given by Xk =
⋃

x∈Υk
Exk ,

the predicted joint p.g.fl. has the form Gk|k−1[h̄, h] = GΥ,k|k−1

[
h̄ GE,k|k−1[h | ·]

]
which, along with the expression for GZ,k[g |Xk] above, results in the following
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expression for the trivariate p.g.fl.

F [g, h̄, h] = GK,k[g]GΥ,k|k−1

[
h̄ GΘ,1,k[g | ·,Ξk]GE,k|k−1[h | · ]

]
.

The assumption on the RFS Θ1,k described in Section 3.2.3 gives

GΥ,k|k−1

[
h̄ GΘ,1,k[g | ·,Ξk]GE,k|k−1[h | · ]

]
= GΥ,k|k−1

[
h̄ (1− pD,1)GE,k|k−1[h | · ] + h̄ pD,1GZ,x,k[g | ·,Ξk]GE,k|k−1[h | · ]

]
,

where GZ,x,k[g | ·,Ξk] =
∏

ξ∈Ξk
GΘ,2,k[g | ξ, · ], so that

F [g, h̄, h] = GK,k[g]× (B.23)

GΥ,k|k−1

[
h̄ (1− pD,1)GE,k|k−1[h | · ] + h̄ pD,1GE,k|k−1[h GΘ,2,k[g | : , · ]| · ]

]
.

The mth-order functional derivative of this in the directions δz1 , . . . , δzm is then

δmF [g, h̄, h ; δz1 , . . . , δzm ] =∑
W⊆Zk

δm−|W |GK,k

[
g ; δz1 , . . . , δzm−|W |

]
(B.24)

× δ|W |GΥ,k|k−1

[
h̄ (1− pD,1)GE,k|k−1[h | · ] +

h̄ pD,1GE,k|k−1[h GΘ,2,k[g | : , · ]| · ] ; δw1 , . . . , δw|W |
]
,

which follows from the general product rule for functional derivatives [69, Section

11.6, page 389].

The Poisson assumption on the RFS representation of the predicted state, as

described in Section 3.2.3, implies that the predicted joint p.g.fl. in equation (B.23)

has the following form

GΥ,k|k−1

[
h̄ (1− pD,1)GE,k|k−1[h | · ] + h̄ pD,1GE,k|k−1[h GΘ,2,k[g | : , · ]| · ]

]
= exp

(
vΥ,k|k−1

[
h̄ (1− pD,1)GE,k|k−1[h | · ] + h̄ pD,1GE,k|k−1[h GΘ,2,k[g | : , · ]| · ]− 1

])
,

where GE,k|k−1[h | · ] = exp
(
vE,k|k−1[h− 1 | · ]

)
. Consequently, it can be shown by

induction that

δ|W |GΥ,k|k−1

[
h̄ (1− pD,1)GE,k|k−1[h | · ]

+ h̄ pD,1GE,k|k−1[h GΘ,k[g | : , · ]| · ] ; δw1 , . . . , δw|W |
]

= exp
(
vΥ,k|k−1

[
h̄ (1− pD,1)GE,k|k−1[h | · ] + h̄ pD,1GE,k|k−1[h GΘ,2,k[g | : , · ]| · ]− 1

])
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×
∑
π∈ΠW

∏
ϕ∈π

vΥ,k|k−1

[
h̄ pD,1 δ

|ϕ|GE,k|k−1

[
h GΘ,2,k[g | : , · ] ; δz1 , . . . , δz|ϕ|

∣∣∣ · ]] .
Furthermore, the assumption on the RFS Θ2,k described in Section 3.2.3 implies

that its p.g.fl. has the following form

GΘ,2,k[g | : , · ] = 1− pD,2( : ) + pD,2( : ) lz′ [g | : , · ],

denoting lz′ [g | : , · ] =
∫
g(z′) lz′( : , · ) dz′, where lz′( : , · ) = gk(z

′ | : , · ), so that

δ|ϕ|GE,k|k−1

[
h (1− pD,2 + pD,2 lz[g | : , · ]) ; δz1 , . . . , δz|ϕ|

∣∣∣ · ]
= exp

(
vE,k|k−1[h (1− pD,2 + pD,2 lz[g | : , · ])− 1| · ]

)∏
z∈ϕ

vE,k|k−1[h pD,2 lz | ·].

It follows, given the additional assumption on the clutter RFS Kk as described

in Section 3.2.3 and noting that

pκ(Zk \W ) = δm−|W |GK,k

[
0 ; δz1 , . . . , δzm−|W |

]
, (B.25)

that the updated joint p.g.fl. given by equation (B.21) has the form

Gk[h̄, h] =
exp

(
vΥ,k|k−1

[
h̄ (1− pD,1)GE,k|k−1[h | · ] + h̄ pD,1GE,k|k−1[h(1− pD,2) | · ]

])
exp

(
vΥ,k|k−1

[
1− pD,1 + pD,1 exp

(
−vE,k|k−1[pD,2 | · ]

)])

×

∑
W⊆Zk

 ∑
πκ∈ΠZk\W

∏
ϕκ∈πκ

Λ(ϕκ)

( ∑
π∈ΠW

∏
ϕ∈π

vΥ,k|k−1

[
h̄ pD,1 ∆ϕ[h | · ]

])

∑
W ′⊆Zk

 ∑
π′κ∈ΠZk\W ′

∏
ϕ′κ∈π′κ

Λ(ϕ′κ)

 ∑
π′∈Π′W

∏
ϕ′∈π′

vΥ,k|k−1[pD,1 Lϕ′ ]

 ,

where Lϕ = Lϕ( · ) is the pseudo multiple measurement likelihood given by equation

(3.24) and, for brevity, the following notation is introduced

∆ϕ[h | · ] = exp
(
vE,k|k−1[h(1− pD,2)− 1 | · ]

)∏
z∈ϕ

vE,k|k−1[h pD,2 lz | · ].

The summations over all subsets W ⊆ Zk and all partitions ΠW , ΠZk\W in the

numerator of the expression for Gk[h̄, h] above can be re-written as a sum over all

partitions ΠZk , and likewise for the denominator, to give the result in equation

(B.22).

The result for the updated intensity follows from the relation given in equation
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(B.9). That is, taking the functional derivative of the expression for Gk[h̄, h] given

in equation (B.22) in the direction δx,ξ then evaluating at h̄ = 1 and h = 1, as

follows. First consider each of the exponential terms in (B.22), the functional

derivatives of which, in the direction δx,ξ, are found to be, respectively,

exp
(
vΥ,k|k−1

[
h̄ (1− pD,1) exp

(
vE,k|k−1[h− 1 | · ]

)])
× (1− pD,1(x)) exp

(
vE,k|k−1[h− 1 |x ]

)
vΥ,k|k−1(x) vE,k|k−1(ξ |x),

and

exp
(
vΥ,k|k−1

[
h̄ pD,1 exp

(
vE,k|k−1[h (1− pD,2)− 1 | · ]

)])
×

pD,1(x) exp
(
vE,k|k−1[h (1− pD,2)− 1 |x ]

)
(1− pD,2(ξ)) vΥ,k|k−1(x) vE,k|k−1(ξ |x).

The functional derivative of the product term in equation (B.22), in the direction

δx,ξ, is then

∏
ϕ∈π

(
Λ(ϕ) + vΥ,k|k−1

[
h̄ pD,1 ∆ϕ[h | · ]

])∑
ϕ∈π

δvΥ,k|k−1

[
h̄ pD,1 ∆ϕ[h | · ] ; δx,ξ

]
Λ(ϕ) + vΥ,k|k−1

[
h̄ pD,1 ∆ϕ[h | · ]

] ,
(B.26)

where the functional derivative of vΥ,k|k−1

[
h̄ pD,1 ∆ϕ[h | · ]

]
in the direction δx,ξ is

found by applying the chain rule (Lemma B.1). That is

δvΥ,k|k−1

[
h̄ pD,1 ∆ϕ[h | · ] ; δx,ξ

]
= δvΥ,k|k−1

[
h̄ pD,1 ∆ϕ[h | · ] ; δ∆ϕ[h ; δξ | · ] δx

]
,

and the functional derivative of ∆ϕ[h | · ] in the direction δξ is given by

δ∆ϕ[h ; δξ | · ] = ∆ϕ[h | · ] δvE,k|k−1[h (1− pD,2)− 1 ; δξ | · ]

+ ∆ϕ[h | · ]
∑
z∈ϕ

δvE,k|k−1[h pD,2 lz ; δξ | · ]
vE,k|k−1[h pD,2 lz | · ]

.
(B.27)

Introducing the following notation

δGk[h ; δξ | · ]ϕ = δvE,k|k−1[h (1− pD,2)− 1 ; δξ | · ] +
∑
z∈ϕ

δvE,k|k−1[h pD,2 lz ; δξ | · ]
vE,k|k−1[h pD,2 lz | · ]

,

then δ∆ϕ[h ; δξ | · ] = ∆ϕ[h | · ] δGk[h ; δξ | · ]ϕ, and so

δvΥ,k|k−1

[
h̄ pD,1 ∆ϕ[h | · ] ; δx,ξ

]
= pD,1(x) ∆ϕ[h |x] vΥ,k|k−1(x) δGk[h ; δξ |x]ϕ.
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The functional derivative of Gk[h̄, h] in the direction of δx,ξ is therefore

δGk[h̄, h ; δx,ξ] = vk|k−1(x, ξ)Gk[h̄, h]
{

(1− pD,1(x)) exp
(
vE,k|k−1[h− 1 |x]

)
+ pD,1(x) exp

(
vE,k|k−1[h (1− pD,2)− 1 |x]

)
(1− pD,2(ξ))

}
+

exp
(
vΥ,k|k−1

[
h̄ (1− pD,1) exp

(
vE,k|k−1[h− 1 | · ]

)])
exp

(
vΥ,k|k−1[1− pD,1]

)
×

exp
(
vΥ,k|k−1

[
h̄ pD,1 exp

(
vE,k|k−1[h(1− pD,2)− 1 | · ]

)])
exp

(
vΥ,k|k−1

[
pD,1 exp

(
−vE,k|k−1[pD,2 | · ]

)])
×
∑
π∈ΠZk

Ωπ(h̄, h)
∑
ϕ∈π

pD,1(x) ∆ϕ[h |x] vΥ,k|k−1(x) δGk[h ; δξ |x]ϕ

Λ(ϕ) + vΥ,k|k−1

[
h̄ pD,1 ∆ϕ[h | ·]

] ,

where, for further brevity,

Ωπ(h̄, h) =

∏
ϕ∈π

(
Λ(ϕ) + vΥ,k|k−1

[
h̄, pD,1 ∆ϕ[h | · ]

] )
∑

π′∈ΠZk

∏
ϕ′∈π′

(
Λ(ϕ′) + vΥ,k|k−1[pD,1 Lϕ′ ]

) . (B.28)

The result given in equation (3.21) follows by setting h̄ = 1 and h = 1 in the above

expression for δGk[h̄, h ; δx,ξ], noting that Lϕ( · ) = ∆ϕ[1 | · ], $π = Ωπ(1, 1) and

δGk[1 ; δξ |x]ϕ = vk(ξ |x)ϕ is the conditional updated intensity given by equation

(3.22).

B.4 Derivation of the Single Group PHD Filter Recursion

This section summarises the derivation of the single group PHD filter recursion

presented in Section 3.2.4. First note that, since a single group target is a special

case of the multiple group target system as described in Section 3.2.4, the joint

p.g.fl. of the corresponding RFS representation has the following form

GX̃ [h̄, h] = GΥ

[
h̄, GE [h | · ]

]
= pΥ

[
h̄ GE [h | · ]

]
=

∫
h̄(x)GE [h |x] pΥ(x) dx, (B.29)

where GE [h | · ] is the p.g.fl. of the subsidiary RFS E given by equation (B.3). This

p.g.fl. formulation will be exploited in the derivation of the filtering equations for

the single group PHD filter recursion as shown in Sections B.4.1 and B.4.2.

B.4.1 Single group PHD prediction

Given a RFS representation such that the underlying RFS Υ strictly contains

a single group state and the re-specification of the dynamic model described in
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Section 3.2.4, the predicted joint p.g.fl. for the single group target system is

Gk|k−1[h̄, h] = pΥ,k−1

[
GΦ,k|k−1

[
h̄ GE,k|k−1[h | ·, : ]

∣∣ : ]]
=

∫
GΦ,k|k−1

[
h̄ GE,k|k−1[h | ·, : ]

∣∣ : ] pk−1(xk−1) dxk−1,

where GE,k|k−1[h | ·, : ] = GΓ,ξ,k[h | · ]GE,k−1

[
GΨ,k|k−1[h | ··, : ]

∣∣ : ], which is the same

expression given in Section B.3.1 for the predicted p.g.fl. of the subsidiary RFS Ek.
The result for the predicted intensity follows from the relation given in equation

(B.9). That is, given the expression above for Gk|k−1, its functional derivative in

the direction δx,ξ is given by

δGk|k−1[h̄, h ; δx,ξ] = δpΥ,k−1

[
GΦ,k|k−1

[
h̄ GE,k|k−1[h | ·, : ]

∣∣ : ] ; δx,ξ
]

= pΥ,k−1

[
δGΦ,k|k−1

[
h̄ GE,k|k−1[h | ·, : ] ; δx,ξ

∣∣ : ]] . (B.30)

Give the assumption on the RFS Φk|k−1 described in Section 3.2.4, the functional

derivative of GΦ,k|k−1 in the direction δx,ξ is

δGΦ,k|k−1

[
h̄ GE,k|−1[h | ·, : ] ; δGE,k|k−1[h ; δξ | ·, : ] δx

∣∣ : ]
= fk|k−1(x | : ) δGE,k|k−1[h ; δξ |x, : ].

Hence the result for the predicted intensity given in equation (3.26) immediately

follows by substitution into equation (B.30) and evaluating at h = 1, noting that

δGE,k|k−1[1 ; δξ |x, : ] results in the same expression as given in equation (B.19).

B.4.2 Single group PHD update

The derivation of this result follows that of the multi-group PHD update given in

Section B.3.2. While the group cardinality is fixed at |Xk| = 1, the updated joint

p.g.fl. can still be written in the form given in equation (B.21). However, given

the RFS representation of the predicted single group state and the re-specification

of the measurement model described in Section 3.2.4, the trivariate p.g.fl. is now

given by

F [g, h̄, h] = GK,k[g] pΥ,k|k−1

[
h̄ GΘ,1,k[g | · ,Ξk] GE,k|k−1[h | · ]

∣∣ · ]
= GK,k[g] pΥ,k|k−1

[
h̄ GE,k|k−1[h GΘ,2,k[g | : , · ]| · ]

]
= pΥ,k|k−1

[
h̄ GK,k[g]GE,k|k−1[h GΘ,2,k[g | : , · ]| · ]

]
.
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Themth-order functional derivative of this trivariate p.g.fl. in the directions δz1 , . . . , δzm

is therefore

δmF [g, h̄, h ; δz1 , . . . ,δzm ]

= δmpΥ,k|k−1

[
h̄ GK,k[g]GE,k|k−1[h GΘ,2,k[g | : , · ]| · ] ; δz1 , . . . , δzm

]
= pΥ,k|k−1

[
h̄
∑

W⊆Zk
δm−|W |GK,k

[
g ; δz1 , . . . , δzm−|W |

]
× δ|W |GE,k|k−1

[
hGΘ,2,k[g | : , · ] ; δw1 , . . . , δw|W |

∣∣ · ]] ,
given the measurement set Zk = {z1, . . . , zm}.

The Poisson assumption on the RFS Ek in the RFS representation of the pre-

dicted single group state and the assumption on the RFS Θ2,k described in Section

3.2.4 gives

δ|W |GE,k|k−1

[
hGΘ,2,k[g | : , · ] ; δw1 , . . . , δw|W |

∣∣ · ] (B.31)

= exp
(
vE,k|k−1[h (1− pD + pD lz[g | : , · ])− 1| · ]

) ∏
w∈W

vE,k|k−1[h pD lw | · ],

denoting lz[g | : , · ] =
∫
g(z) lz(: , · ) dz, where lz(: , · ) = gk(z | : , · ). It follows,

given the final assumption on the clutter RFS Kk as described in Section 3.2.4 and

denoting Z = Zk, that the updated joint p.g.fl. given by equation (B.21) has the

form

Gk[h̄, h] =

pΥ,k|k−1

h̄ exp
(
vE,k|k−1[h(1− pD)− 1 | · ]

)∑
W⊆Z

 ∏
z̄∈Z\W

κ(z̄)

∏
w∈W

vE,k|k−1[h pD lw | · ]


pΥ,k|k−1

exp
(
−vE,k|k−1[pD | · ]

) ∑
W ′⊆Z

 ∏
z̄′∈Z\W ′

κ(z̄′)

 ∏
w′∈W ′

vE,k|k−1[pD lw′ | · ]

 .

This is equivalent to the following formulation

Gk[h̄, h] = pΥ,k|k−1

[
h̄∆Z [h | · ]

]/
pΥ,k|k−1[LZ ], (B.32)

where, for brevity, the following notation is introduced

∆Z [h | · ] = exp
(
vE,k|k−1[h(1− pD)− 1 | · ]

)∏
z∈Z

(
κ(z) + vE,k|k−1[h pD lz | · ]

)
,

and noting that LZ( · ) = ∆Z [1 | · ] is the pseudo multiple measurement likelihood
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given by equation (3.28).

The result for the updated intensity follows from the relation given in equation

(B.9). That is, taking the functional derivative of the updated joint p.g.fl. Gk[h]

in the direction δx,ξ, then evaluating at h̄ = 1 and h = 1 as follows. Given the

expression for Gk[h̄, h] in equation (B.32),

δGk[h̄, h ; δx,ξ] = δpΥ,k|k−1

[
h̄∆Z [h | · ] ; δx,ξ

] /
pΥ,k|k−1[LZ ]

= δpΥ,k|k−1

[
h̄∆Z [h | · ] ; δ∆Z [h ; δξ | · ] δx

] /
pΥ,k|k−1[LZ ],

(B.33)

where the functional derivative of ∆Z [h | · ] in the direction δξ has a similar expres-

sion as given in equation (B.27). That is, δ∆Z [h ; δξ | · ] = ∆Z [h | · ] δGk[h ; δξ | · ]
where

δGk[h ; δξ | · ] = δvE,k|k−1[h(1− pD)− 1 ; δξ | ·] +
∑
z∈Z

δvE,k|k−1[h pD lz ; δξ | · ]
κ(z) + vE,k|k−1[h pD lz | · ]

(B.34)

Hence, the result given in equation (3.27), immediately follows by substituting

the expression for δ∆Z [h ; δξ | · ] into equation (B.33), completing the functional

differentiation in the direction δx and setting h = 1, again noting that LZ( · ) =

∆Z [1 | · ], and that δGk[1 ; δξ | · ] = vk(ξ | · ) is the updated conditional intensity

given by equation (3.29).

B.5 Derivation of the PHD Filter Recursion for the Single Cluster

Existence Model

This section summarises the derivation of the filtering equations for the single

cluster existence model presented in Section 3.2.5. The description of the single

cluster existence model given in Section 3.2.5 results in the following joint p.g.fl. of

the corresponding RFS representation

GX [h̄, h] = GΥ

[
h̄ GE [h | · ]

]
= 1− ρ+ ρ pΥ

[
h̄ GE [h | · ]

]
= 1− ρ+ ρ

∫
h̄(x)GE [h |x] pΥ(x) dx.

(B.35)

since the underlying RFS Υ can be modelled with a Bernoulli RFS. The p.g.fl. of the

subsidiary RFS E is given by equation (B.3), if the group exists, and the probability

of existence is denoted by ρ. The joint p.g.fl. formulation given by equation (B.35)

plays an important role in the derivation of the prediction and update equations
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for the single cluster existence model as shown in Sections B.5.1 and B.5.2.

B.5.1 Single cluster existence prediction

Given the RFS representation and the re-specification of the dynamic model de-

scribed in Section 3.2.5, the predicted joint p.g.fl. for the single cluster existence

model is

Gk|k−1[h̄, h] = (1− ρk−1)GΓ,k[h̄, h] +

ρk−1

∫
GΦ,k|k−1

[
h̄ GE,k|k−1[h | ·, : ]

∣∣xk−1

]
pΥ,k−1(xk−1) dxk−1,

where GE,k|k−1[h | ·, : ] has the same formulation as given in Section B.3.1. That is,

the predicted joint p.g.fl. is written as

Gk|k−1[h̄, h] = (1− ρk−1)GΓ,k[h̄, h] +

ρk−1 pΥ,k−1

[
GΦ,k|k−1

[
h̄ GE,k|k−1[h | ·, : ]

∣∣ : ]] , (B.36)

and its functional derivative in the direction δx,ξ is given by

δGk|k−1[h̄, h ; δx,ξ] = (1− ρk−1) δGΓ,k[h̄, h ; δx,ξ] +

ρk−1 pΥ,k−1

[
δGΦ,k|k−1

[
h̄, GE,k|k−1[h | ·, : ] ; δx,ξ

∣∣ : ]] . (B.37)

Given the assumption on the RFS Γk described in Section 3.2.5, the joint

p.g.fl. GΓ,k[h̄, h] is then

GΓ,k[h̄, h] = 1− pB + pB

∫
h̄(xk)GΓ,ξ,k[h |xk] pγ,k(xk) dxk, (B.38)

and its functional derivative in the direction δx,ξ is

δGΓ,k[h̄, h ; δx,ξ] = pB δpγ,k
[
h̄ GΓ,ξ,k[h | ·] ; δx,ξ

]
= pB δpγ,k

[
h̄ GΓ,ξ,k[h | · ] ; δGΓ,ξ,k[h ; δξ | · ] δx

]
.

Evaluating at h̄ = 1 and h = 1 gives δGΓ,k[1, 1 ; δx,ξ] = γk(x, ξ) = pB pγ,k(x) γξ,k(ξ |x).

Furthermore, it follows from the assumption on the RFS Φk|k−1 described in Section

3.2.5, that the functional derivative of GΦ,k|k−1

[
h̄ GE,k|k−1[h | ·, : ]

∣∣ : ] in the direction

δx,ξ has the same expression as given in equation (B.18). The result for the pre-

dicted intensity given in equation (3.32) therefore follows by substitution, setting

h̄ = 1 and h = 1 in equation (B.37) and further noting that δGE,k|k−1[1 ; δx,ξ | ·, : ]
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results in the same expression as given in (B.19).

The predicted probability of existence, denoted by ρk|k−1, can be found by

evaluating the predicted joint p.g.fl. Gk|k−1 at h̄ = 0 and h = 0, since Gk|k−1[0, 0] =

Pr(Xk = ∅) = 1− ρk|k−1. That is, from equation (B.36),

Gk|k−1[0, 0] = (1− ρk−1)GΓ,k[0, 0] + ρk−1 pΥ,k−1

[
GΦ,k|k−1[0 | · ]

]
,

where setting h̄ = 0 anf h = 0 in equations (B.38) and (B.17) gives GΓ,k[0, 0] =

1−pB and GΦ,k|k−1[0 | · ] = 1−pS,1( · ). The predicted probability of existence given

in equation (3.33), follows immediately as a result of ρk|k−1 = 1−Gk|k−1[0, 0].

B.5.2 Single cluster existence update

The derivation of the results for the single cluster existence update, follows those

given in Sections B.3.2 and B.4.2 for the multi-group and single group PHD updates

respectively. As such, the updated joint p.g.fl. can still be written in the form given

in equation (B.21). However, given the RFS representation of the predicted state

and the re-specification of the measurement model described in Section 3.2.5, the

trivariate p.g.fl. is now given by

F [g, h̄, h] = (1− ρk|k−1)GK,k[g]

+ ρk|k−1 pΥ,k|k−1

[
h̄ GK,k[g]GΘ,1,k[g | · ; Ξk] GE,k|k−1[h | · ]

∣∣ · ] .
It follows, from the assumption on the RFS Θ1,k described in Section 3.2.5, that

GΘ,1,k[g | · ; Ξk] = 1− pD,1( · ) + pD,1( · )
∏

ξ∈Ξk
GΘ,2,k[g | ξ, · ],

and so the trivariate p.g.fl. becomes

F [g, h̄, h] = (1− ρk|k−1)GK,k[g] +

ρk|k−1 pΥ,k|k−1

[
h̄ GK,k[g]

(
(1− pD,1)GE,k|k−1[h | · ]

+pD,1 GE,k|k−1[h GΘ,2,k[g | : , · ]| · ]
)]
.

The mth-order functional derivative this in the directions δz1 , . . . , δzm is then

δmF [g, h̄, h ; δz1 , . . . , δzm ] =
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(1− ρk|k−1) δmGK,k[g ; δz1 , . . ., δzm ]

+ ρk|k−1 δ
mpΥ,k|k−1

[
h̄ GK,k[g]

(
(1− pD,1)GE,k|k−1[h | · ]

+ pD,1GE,k|k−1[h GΘ,2,k[g | : , · ]| · ]
)
; δz1 , . . . , δzm

]
,

given the measurement set Zk = {z1, . . . , zm}. The second of the two mth-order

functional derivative in the expression above can be written as

pΥ,k|k−1

[
δmGK,k[g ;δz1 , . . . , δzm ] h̄ (1− pD,1)GE,k|k−1[h | · ] +∑

W⊆Zk
h̄ pD,1 δ

m−|W |GK,k

[
g ; δz1 , . . . , δzm−|W |

]
× δ|W |GE,k|k−1

[
hGΘ,2,k[g | : , · ] ; δw1 , . . . , δw|W | | ·

]]
,

where δ|W |GE,k|k−1

[
hGΘ,2,k[g | : , · ] ; δw1 , . . . , δw|W | | ·

]
has the same expression as

given in equation (B.31) (except with pD,2 replacing pD), as a result of the Poisson

assumption on the RFS Ek in the RFS representation of the predicted state and

the assumption on the RFS Θ2,k described in Section 3.2.5.

It follows, given the final assumption on the clutter RFS Kk as described in

Section 3.2.5, that the updated joint p.g.fl. given by equation (B.21) has the form

Gk[h̄, h] =

1− ρk|k−1 + ρk|k−1 pΥ,k|k−1

[
h̄
(

(1− pD,1)GE,k|k−1[h | · ] + pD,1 ∆Zk [h | · ]
/∏

z∈Zk
κ(z)

)]
1− ρk|k−1 + ρk|k−1 pΥ,k|k−1

[
(1− pD,1) + pD,1 LZk

/∏
z∈Zk

κ(z)
] ,

(B.39)

where ∆Zk [h | · ] is the same notation as introduced in Section B.4.2 (except with

pD,2 replacing pD) such that LZk( · ) = ∆Zk [1 | · ] is the pseudo multiple measurement

likelihood given by equation (3.28). The functional derivative of Gk[h̄, h] in the

direction δx,ξ, given the expression above, is therefore

δGk[h̄, h ; δx,ξ] =

ρk|k−1 δpΥ,k|k−1

[
h̄
(

(1− pD,1)GE,k|k−1[h | · ] + pD,1 ∆Zk [h | · ]
/∏

z∈Zk
κ(z)

)
; δx,ξ

]
1− ρk|k−1 + ρk|k−1 pΥ,k|k−1

[
1− pD,1 + pD,1 LZk

/∏
z∈Zk

κ(z)
] ,

where
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δpΥ,k|k−1

[
h̄
(

(1− pD,1)GE,k|k−1[h | · ] + pD,1 ∆Zk [h | · ]
/∏

z∈Zk
κ(z)

)
; δx,ξ

]
= δpΥ,k|k−1

[
h̄ (1− pD,1)GE,k|k−1[h | · ] ; δGE,k|k−1[h ; δξ | · ] δx

]
+ δpΥ,k|k−1

[
h̄ pD,1 ∆Zk [h | · ]

/∏
z∈Zk

κ(z) ; δ∆Zk [h ; δξ | · ] δx
]
.

Note that δ∆Zk [h ; δξ | · ] = ∆Zk [h | · ] δGk[h ; δξ | · ], where δGk[h ; δξ | · ] has the same

expression as given in equation (B.34). The result for the updated intensity given

in equation (3.35) immediately follows by substitution into the expression for

δGk[h̄, h ; δx,ξ], completing the functional differentiation in the direction δx and

setting h = 1, also noting that δGE,k|k−1[1 ; δξ | · ] = vk|k−1(ξ | · ),

L̃Zk( · ) = LZk( · )
/∏

z∈Zk
κ(z) ,

and δGk[1 ; δξ | · ] = vk(ξ | · ) is the conditional updated intensity given in equation

(3.29).

Finally, the updated probability of existence given in equation (3.37) simply

follows as a result of ρk = 1−Gk[0], setting h̄ = 0 and h = 0 in equation (B.39).

B.6 Derivation of the PHD Filter Recursion for Extended Targets

This section summarises the derivation of the PHD filter recursion for extended

targets, i.e. the marginal group target PHD recursion, presented in Section 3.2.6.

Sketch proofs are given in Sections B.6.1 and B.6.2 respectively for the results of

the prediction and update equations.

B.6.1 PHD prediction for extended targets

The derivation of this results follows that of the multi-group PHD prediction in

Section B.3.1, although now the relation given in equation (B.12) is utilised instead.

That is, taking the functional derivative of the predicted joint p.g.fl. Gk|k−1[h̄, h] in

the direction δx, then evaluating at h̄ = 1 and h = 1. The predicted joint p.g.fl. has

the same form as given by equation (B.14), although since there is no interest in the

evolution of the subsidiary RFSs Ek−1 it is not necessary to specify a formulation

for the p.g.fl. GE,k|k−1. Hence

δGk|k−1[h̄, h ; δx] = δGΓ,k[h̄, h ; δx]GΥ,k−1

[
GΦ,k|k−1

[
h̄ GE,k|k−1[h | ·, : ]

∣∣ : ]]
+GΓ,k[h̄, h] δGΥ,k−1

[
GΦ,k|k−1

[
h̄ GE,k|k−1[h | ·, : ]

∣∣ : ] ; δx
]
.
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The chain rule (Lemma B.1) can again be applied to the functional derivative of

GΥ,k−1

[
GΦ,k|k−1

[
GE,k|k−1[h | ·, : ]

∣∣ : ]] in the direction δx as follows

δGΥ,k−1

[
GΦ,k|k−1

[
h̄ GE,k|k−1[h | ·, : ]

∣∣ : ] ; δx
]

= δGΥ,k−1

[
GΦ,k|k−1

[
h̄ GE,k|k−1[h | ·, : ]

∣∣ : ] ; δGΦ,k|k−1

[
h̄ GE,k|k−1[h | ·, : ] ; δx

∣∣ : ]] ,
which can be written in a similar form as the expression given in equation (B.16).

The assumption on the RFS Φk|k−1 described in Section 3.2.6 implies that the

p.g.fl. GΦ,k|k−1

[
GE,k|k−1[h | ·, : ]

∣∣ : ] has the same form as given in equation (B.17)

(except with pS replacing pS,1) so that

δGΦ,k|k−1

[
h̄ GE,k|k−1[h | ·, : ] ; δx

∣∣ : ] = pS( : ) fk|k−1(x | : )GE,k|k−1[h |x, : ].

It subsequently follows from Campbell’s theorem (Section A.2) that

δGΥ,k−1

[
1 ; δGΦ,k|k−1

[
GE,k|k−1[1 | ·, : ] ; δx

∣∣ : ]]
=

∫
pS(x) fk|k−1(x |xk−1) vk−1(xk−1) dxk−1,

since GE,k|k−1[1 | ·, : ] = 1. The result for the predicted intensity given in equation

(3.38) therefore follows by further noting that δGΓ,k[1, 1 ; δx] = γk(x).

B.6.2 PHD update for extended targets

The derivation of this result follows that of the multi-group PHD update in Section

B.3.2, although, like in the previous subsection, the relation given in equation

(B.12) is now utilised instead. That is, taking the functional derivative of the

updated joint p.g.fl. Gk[h̄, h] in the direction δx, then evaluating at h̄ = 1 and

h = 1. Given the assumption regarding the measurement model described in

Section 3.2.6, the updated joint p.g.fl. has the same form as the expression given

in equation (B.22) (except with µ replacing vE,k|k−1).

First consider each of the exponential terms in (B.22), the functional derivatives

of which, in the direction δx, are respectively found to be

exp
(
vΥ,k|k−1

[
h̄ (1− pD,1) exp (µ[h− 1 | · ])

])
× (1− pD,1(x)) exp (µ[h− 1 | · ]) vΥ,k|k−1(x),

and
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exp
(
vΥ,k|k−1

[
h̄ pD,1 exp (µ[h(1− pD,2)− 1 | · ])

])
× pD,1(x) exp (µ[h(1− pD,2)− 1 |x ]) vΥ,k|k−1(x).

The functional derivative of the product terms in equation (B.22), in the direc-

tion δx, has a similar form as the expression given in equation (B.26) where the

numerator in the summation over subsets ϕ ∈ π is now

δvΥ,k|k−1[h̄ pD,1 ∆ϕ[h | · ] ; δx] = pD,1(x) ∆ϕ[h |x] vΥ,k|k−1(x).

The functional derivative of Gk[h̄, h] in the direction δx is therefore

δGk[h̄, h ; δx] = vk|k−1(x)Gk[h̄, h]
{

1− pD,1(x) + pD,1(x) exp (µ[h(1− pD,2)− 1 |x ])
}

+
exp

(
vk|k−1

[
h̄ (1− pD,1) exp (µ[h− 1 | · ])

])
exp

(
vk|k−1[1− pD,1]

)
×

exp
(
vk|k−1

[
h̄ pD,1 exp (µ[h(1− pD,2)− 1 | · ])

])
exp

(
vk|k−1[pD,1 exp (−µ[pD,2 | · ])]

)
×
∑
π∈ΠZk

Ωπ(h̄, h)
∑
ϕ∈π

pD,1(x) ∆ϕ[h |x] vk|k−1(x)

Λ(ϕ) + vk|k−1

[
h̄ pD,1 ∆ϕ[h | · ]

] ,
where Ωπ(h̄, h) has the same form as the expression given in equation (B.28) and

denoting vk|k−1(x) = vΥ,k|k−1(x). The result for the updated intensity given in

equation (3.39) follows by setting h̄ = 1 and h = 1 in the above expression for

δGk[h̄, h ; δx], noting that Lϕ( · ) = ∆ϕ[1 | · ] and $π = Ωπ(1, 1).

142



Appendix C

Selected Identities of Multivariate Gaussian Distributions

This chapter summarises some fundamental identities of multivariate Gaussian

(normal) distributions. Details are given on joint, marginal and conditional mul-

tivariate Gaussian distributions in Section C.1, while Section C.2 presents two

fundamental identities for the Gaussian products.

The density of a multivariate Gaussian, denoted as N (X ;µ,Σ) with mean µ

and covariance Σ, is given by

p(X) = N (X ;µ,Σ) ∝ exp

(
−1

2
(X− µ)TΣ−1(X− µ)

)
(C.1)

for n× 1 vectors X, µ and n× n matrix Σ.

C.1 Conditional Multivariate Gaussian Distributions

This section includes details on formulating conditional multivariate Gaussian dis-

tributions, firstly from joint multivariate Gaussian distributions in Section C.1.1

and then finally using linear regression in Section C.1.2.

C.1.1 Deriving a conditional Gaussian from a joint Gaussian

Suppose X denotes the state variable consisting of two components
[
ξ x

]T
and is

distributed according to a multivariate Gaussian with mean µ =
[
mξ mx

]T
and

covariance matrix Σ given by a block matrix of the following form

Σ =

[
P11 P12

PT
12 P22

]
, (C.2)

for q×1 vectors ξ, mξ, q×q matrix P11, (n−q)×1 vectors x, mx, (n−q)× (n−q)
matrix P22 and q× (n− q) matrix P12. The density can then be written as a joint
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multivariate Gaussian denoted as p(ξ,x) = p(X) and given by

p(ξ,x) ∝ exp

−1

2

[
ξ −mξ

x−mx

]T [
P11 P12

PT
12 P22

]−1 [
ξ −mξ

x−mx

] , (C.3)

which follows directly from equation (C.1). The marginal distributions can be

easily found to be

p(ξ) =

∫
p(ξ,x)dx = N (ξ ; mξ,P11), (C.4)

p(x) =

∫
p(ξ,x)dξ = N (x ; mx,P22). (C.5)

Now a conditional probability function is defined by p(ξ |x) = p(ξ,x)/ p(x)

and this result is used, along with a decomposition result for the covariance matrix

Σ, to recover the conditional distribution p(ξ |x), given in the following Theorem,

from the joint Gaussian in (C.3).

Theorem C.1. Given a joint multivariate Gaussian p(ξ,x) defined in equation

(C.3) and marginal distribution p(x) defined in equation (C.5), the conditional

multivariate Gaussian is

p(ξ |x) = N
(
ξ ; mξ|x,PSchur

)
∝ exp

(
−1

2

(
ξ −mξ|x

)T
P−1

Schur

(
ξ −mξ|x

))
, (C.6)

where mξ|x = mξ −P12P
−1
22 (x−mx) and PSchur = P11 −P12P

−1
22 PT

12.

Proof. To realise this, arising as the result of performing block Gaussian elimination

on Σ, the Schur complement [139] of P22, given by P11 − P12P
−1
22 PT

12, is utilised.

That is multiplying Σ from the right with the block lower triangular matrix

L =

[
I 0

−P−1
22 PT

12 I

]
, (C.7)

gives the following

ΣL =

[
P11 P12

PT
12 P22

][
I 0

−P−1
22 PT

12 I

]
=

[
P11 −P12P

−1
22 PT

12 P12

0 P22

]
(C.8)

=

[
I P12P

−1
22

0 I

][
P11 −P12P

−1
22 PT

12 0

0 P22

]
.
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Therefore

Σ =

[
P11 P12

PT
12 P22

]
=

[
I P12P

−1
22

0 I

][
P11 −P12P

−1
22 PT

12 0

0 P22

][
I 0

P−1
22 PT

12 I

]
, (C.9)

and the inverse of this is

Σ−1 =

[
P11 P12

PT
12 P22

]−1

=

[
I 0

−P−1
22 PT

12 I

][(
P11 −P12P

−1
22 PT

12

)−1
0

0 P−1
22

][
I −P12P

−1
22

0 I

]
.

(C.10)

Substituting this into (C.3) gives

p(ξ,x) ∝ exp

−1

2

[
ξ −mξ −P12P

−1
22 (x−mx)

x−mx

]T
(C.11)

×

[(
P11 −P12P

−1
22 PT

12

)−1
0

0 P−1
22

][
ξ −mξ −P12P

−1
22 (x−mx)

x−mx

] .

Denoting mξ|x = mξ − P12P
−1
22 (x − mx) and PSchur = P11 − P12P

−1
22 PT

12, then

multiplying out these matrices within the exponential in the formulation above

gives

p(ξ,x) ∝

exp

(
−1

2

(
ξ −mξ|x

)T
P−1

Schur

(
ξ −mξ|x

))
exp

(
−1

2
(x−mx)TP−1

22 (x−mx)

)
.

(C.12)

The desired result follows immediately, by applying the result given by p(ξ |x) =

p(ξ,x)/ p(x) to the formulation above.

The conditional mean in (C.6) mξ + P12P
−1
22 (x − mx) is interpreted as the

linear regression equation where P12P
−1
22 is the regression coefficient. In fact, there

is an alternative way of formulating the conditional Gaussian in (C.6) via linear

regression, as described in the next section.

C.1.2 Formulating a conditional Gaussian using linear regression

Consider two variable states x and ξ, where x is distributed according to a multi-

variate Gaussian of the form N (x ; mx,Px) and ξ is dependent on x. The depen-
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dency of ξ on x can be represented by the following linear regression equation

ξ = a + Bx, (C.13)

where B is the regression coefficient and a is the intercept. The conditional dis-

tribution of ξ given x can also be represented as a multivariate Gaussian of the

form

p(ξ |x) = N (ξ ; a + Bx,Pξ|x). (C.14)

First note that E(ξ |x) = a + Bx. Consequently,

E (E(ξ |x)) = E (a + Bx) = a + BE(x). (C.15)

Trivially E (E(ξ |x)) = E(ξ), and so, given E(x) = mx and denoting E(ξ) = mξ, the

expression in equation (C.15) becomes mξ = a + Bmx, from which an expression

for a can be determined. By substitution of this expression for a into (C.14), the

conditional multivariate Gaussian is re-written as

p(ξ |x) = N (ξ ; mξ −Bmx + Bx,Pξ|x) = N (ξ ; mξ + B(x−mx),Pξ|x). (C.16)

It remains to determine the formulae for B and Pξ|x. This is achieved by forming

the joint density p(ξ,x) = p(x)p(ξ |x) as follows

p(ξ,x) = N (x ; mx,Px)×N (ξ ; mξ + B(x−mx),Pξ|x)

∝ exp

(
−1

2
(x−mx)TRx(x−mx)

)
(C.17)

× exp

(
−1

2
(ξ −mξ −B(x−mx))TRξ|x(ξ −mξ −B(x−mx))

)
,

where Rx = P−1
x and Rξ|x = P−1

ξ|x. The density p(ξ,x) can be written in the joint

multivariate Gaussian format given in (C.3) as follows

p(ξ |x) ∝ exp

−1

2

[
ξ −mξ −B(x−mx)

x−mx

]T[
Rξ|x 0

0 Rx

][
ξ −mξ −B(x−mx)

x−mx

]
= exp

−1

2

[
ξ −mξ

x−mx

]T [
I 0

−BT I

][
Rξ|x 0

0 Rx

][
I −B

0 I

][
ξ −mξ

x−mx

] ,

(C.18)
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where the block matrix Σ given in (C.2) equates to([
I 0

−BT I

][
Rξ|x 0

0 Rx

][
I −B

0 I

])−1

=

[
I B

0 I

][
R−1

ξ|x 0

0 R−1
x

][
I 0

BT I

]
.

(C.19)

That is, since R−1
x = Px & R−1

ξ|x = Pξ|x,[
P11 P12

PT
12 P22

]
=

[
Pξ|x + BPxB

T BPx

PxB
T Px

]
. (C.20)

Finally, this gives Px = P22, B = P12P
−1
22 and Pξ|x = P11 −P12P

−1
22 PT

12, so that

p(ξ |x) = N
(
ξ ; mξ + P12P

−1
22 (x−mx),P11 −P12P

−1
22 PT

12

)
, (C.21)

as desired.

C.2 Multivariate Gaussian product identities

The following standard results for Gaussian functions1, found in [90], are essential

for establishing the Gaussian mixture formulations of the multi-group PHD filter

recursion in Chapter 4 (Section 4.1).

Lemma C.1. Given matrices F, Q and P and vectors m and d of appropriate

dimensions, where Q and P are positive definite,∫
N (X ; FX′ + d,Q)N (X′ ; m,P) dX′ = N (X ; Fm + d,FPFT + Q). (C.22)

Lemma C.2. Given matrices H, R and P and vector m of appropriate dimen-

sions, where R and P are positive definite,

N (z ; HX,R)N (X ; m,P) = q(z)N (X ; m̃, P̃), (C.23)

where q(z) = N (z ; Hm,HPHT + R) and

m̃ = m + K(z−Hm),

P̃ = (I−KH)P,

K = PHT (HPHT + R)−1.

(C.24)

1For a list of useful multivariate Gaussian identities, refer to [140] by Roweis
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C.2.1 Formulating the multi-group GM-PHD prediction

To establish the Gaussian mixture (GM) formulation given in Proposition 4.1, first

substitute the conditional predicted intensity given by equation (3.18) into equation

(3.17) and rewrite as

vk|k−1(xk, ξk) = γk(xk, ξk) + pS,1

∫
fk|k−1(xk |xk−1) vk−1(xk−1) γk(ξk |xk) dxk−1

+ pS,1 pS,2

∫
fk|k−1(xk, ξk |xk−1, ξk−1) vk−1(xk−1, ξk−1) dxk−1 dξk−1,

(C.25)

noting that the probabilities of survival are constant (see Section 4.1.2). Then

substituting the GM formulations given in (4.1), (4.3), (4.10) and (4.11), as well

as the linear Gaussian models for the joint and single-group Markov transition

densities given in (4.6) and (4.8) respectively, into equation (C.25) gives the desired

result after applying the standard results for Gaussian functions given in Lemma

C.1 and C.2 where appropriate.

The resulting GM formulation given in equation (4.16) satisfies the following

factorisation vk|k−1(xk, ξk) = vk|k−1(xk)× vk|k−1(ξk |xk) so that

vk|k−1(xk) =

Jk|k−1∑
ı̄=1

ν
(ı̄)
k|k−1 N

(
xk ; m

(ı̄)
x,k|k−1,P

(ı̄)
22,k|k−1

)
, (C.26)

vk|k−1(ξk |xk) =

J
(ı̄)
k|k−1∑
̄=1

ω
(̄)
k|k−1 N

(
ξk ;µ

(ı̄,̄)
ξ|x,k|k−1,Σ

(ı̄,̄)
ξ|x,k|k−1

)
, (C.27)

where the Gaussian components in (C.27) are conditional Gaussian realisations

from the joint Gaussian components in (4.16), with means and covariances given

by

µ
(ı̄,̄)
ξ|x,k|k−1 = m

(̄|̄ı)
ξ,k|k−1 + P

(̄|̄ı)
12,k|k−1

(
P

(ı̄)
22,k|k−1

)−1 (
xk −m

(ı̄)
x,k|k−1

)
,

Σ
(ı̄,̄)
ξ|x,k|k−1 = P

(̄|̄ı)
11,k|k−1 −P

(̄|̄ı)
12,k|k−1

(
P

(ı̄)
22,k|k−1

)−1 (
P

(̄|̄ı)
12,k|k−1

)T
.

(C.28)

C.2.2 Formulating the multi-group GM-PHD update

To establish the GM formulation given in Proposition 4.2, first note that the as-

sumption regarding the state independent probability of individual target detection

(see Section 4.1.4) implies that the exponential term in equation (3.21) and the

pseudo multiple measurement likelihood can be written as exp
(
−vk|k−1[pD,2 | · ]

)
=
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e−pD,2 α where

α =

J
(i)
k|k−1∑
j=1

ω
(j)
k|k−1, (C.29)

denotes the expected number of individual targets for each group. Then the up-

dated intensity given by equation (3.21) can be re-written as

vk(xk, ξk) =
(
1− pD,1 + pD,1 e−pD,2 α (1− pD,2)

)
vk|k−1(xk, ξk)

+
∑
π∈ΠZ

$π

∑
ϕ∈π

pD,1 Lϕ(xk) vk|k−1(xk) vk(ξk |xk)
Λ(ϕ) + pD,1

∫
Lϕ(xk) vk|k−1(xk) dxk

,
(C.30)

and the conditional updated intensity given by equation (3.22) can be re-written

as

vk(ξk |xk) =

(
1− pD,2 +

∑
z∈ϕ

pD,2 gk(z | ξk,xk)
pD,2

∫
gk(z | ξk |xk) vk|k−1(ξk |xk) dξk

)
vk|k−1(ξk |xk),

(C.31)

noting that the probabilities of detection are constant

Furthermore, the pseudo multiple measurement likelihood, denoted by Lϕ(xk)

in equation (C.30) and given by equation (3.24), can be re-written as

Lϕ(xk) = e−pD,2 α
∏
z∈ϕ

pD,2

∫
gk(z | ξk,xk) vk|k−1(ξk |xk) dξk. (C.32)

Substituting the GM formulation for vk|k−1(ξk |xk) given by equation (C.27) and

the linear Gaussian model for the single measurement likelihood given by equation

(4.15) into the above expression for Lϕ, then applying the standard result for

Gaussian functions given in Lemma C.1 gives

Lϕ(xk) = e−pD,2 α
∏
z∈ϕ

(
pD,2 N (z ; Ĥxk,R2)

J
(i)
k|k−1∑
j=1

ω
(j)
k|k−1 N

(
z ; Hµ

(i,j)
ξ|x,k|k−1, R̃

(i,j)
k

))
,

(C.33)

where, for brevity, R̃
(i,j)
k = HΣ

(i,j)
ξ|x,k|k−1H

T + R1, with µ
(i,j)
ξ|x,k|k−1 and Σ

(i,j)
ξ|x,k|k−1 as

given by the expressions in (C.28). The product of Gaussian mixtures in equation

(C.33) can be expanded and re-written as a sum of Gaussian products for j` =

1, . . . , J
(i)
k|k−1 and ` = 1, . . . , |ϕ| so that the pseudo multiple measurement likelihood
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becomes

Lϕ(xk) = e−pD,2 α
∑
j1:|ϕ|

 |ϕ|∏
`=1

pD,2 ω
(j`)
k|k−1 N (z` ; Ĥxk,R2)N

(
z` ; Hµ

(i,j`)
ξ|x,k|k−1, R̃

(i,j`)
k

),
(C.34)

where j1:|ϕ| = (j1, . . . , j|ϕ|) denotes the permutations of indices j` = 1, . . . , J
(i)
k|k−1 for

` = 1, . . . , |ϕ|. Then substituting the above expression for Lϕ(xk), along with the

GM formulation for vk|k−1(xk) given in equation (C.26), into equation (C.30) and

iteratively applying the standard result for Gaussian functions in Lemma C.2 gives

the desired results for the updated weights, means and covariances of the Gaussian

components in equation (4.24) relating to detected group states as given by the set

of equations 4.26–4.32.

To establish the results for the updated weights, means and covariances of the

Gaussian components in equation (4.24) relating to individual targets, first sub-

stitute the GM formulation for vk|k−1(ξk |xk) given in equation (C.27), along with

the linear Gaussian model for gk(z | ξk,xk) given in equation (4.15), into equation

(C.31) and apply the standard result for Gaussian functions in Lemma C.2, result-

ing in the expressions for the means and covariances given in (4.37). Some algebraic

manipulation is necessary when substituting the resulting Gaussian mixture into

equation (C.30) so that the updated intensity can be formulated as the Gaussian

mixture given in equation (4.24), with updated means and covariances relating to

detected individual targets given in (4.35). Likewise with the updated means and

covariances relating to missed detected individual targets given in (4.33). Finally,

the updated weights of the Gaussian components relating to detected individual

targets given in equation (4.38) are determined directly from the multiple measure-

ment likelihood L
(i)
j1:|ϕ|

, which is computed as given by the expression in equation

(4.32). Similarly for the partition weights $π given by the expression in equation

(4.39).
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Appendix D

The Single Group GM-PHD Filter Algorithm

This chapter presents full details on the closed-form solution to the single group

PHD filter recursion. In particular, pseudo codes are presented in Section D.1 for

the single group GM-PHD prediction and update step, which provide closed-form

expressions for computing the weights, means and covariances in the respective

Gaussian mixture formulations, summarised in Section 4.3.1.

D.1 Pseudo Codes for the Single Group GM-PHD Recursion

The algorithm for the computation of the weights, means and covariances in the

GM formulation of the single group PHD prediction is shown in Table D.1. The

given mx,k−1, P22,k−1 and
{
ω

(i)
k−1,m

(i)
ξ,k−1,P

(i)
11,k−1,P

(i)
12,k−1

}Jk−1

i=1
,

prediction
mx,k|k−1 := F22mx,k−1,
P22,k|k−1 := F22P22,k−1F

T
22 + Q22, (for the single group target)

ı̄ := 0,
for i = 1, . . . , Jγ,k (i.e. for individual target births)

ı̄ := ı̄+ 1,

ω
(ı̄)
k|k−1 := ω

(i)
γ,k, m

(ı̄)
ξ,k|k−1 := m

(i)
γ,ξ,k,

P
(ı̄)
11,k|k−1 := P

(i)
γ,11,k, P

(ı̄)
12,k|k−1 := P

(i)
γ,12,k.

end
for i = 1, . . . , Jk|k−1 (i.e. for existing individual targets)

ı̄ := ı̄+ 1,

ω
(ı̄)
k|k−1 := pS ω

(i)
k−1, m

(ı̄)
ξ,k|k−1 := F11m

(i)
ξ,k−1 + F12m

(i)
x,k−1,

P
(ı̄)
11,k|k−1 := F11P

(i)
11,k−1F

T
11 +

(
F11P

(i)
12,k−1F

T
12

)T
+ F11P

(i)
12,k−1F

T
12

+ F12P22,k−1F
T
12 + Q11,

P
(ı̄)
12,k|k−1 := F11P

(i)
12,k−1F

T
22 + F12P22,k−1F

T
22 + Q12,

end
Jk|k−1 := ı̄.

output mx,k|k−1, P22,k|k−1 and
{
ω

(i)
k|k−1,m

(i)
ξ,k|k−1,P

(i)
11,k|k−1,P

(i)
12,k|k−1

}Jk|k−1

i=1
.

Table D.1: Pseudo-code for the single group GM-PHD prediction
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key steps of the single group GM-PHD update are then shown in Tables D.2–D.5.

The closed-form expressions for the predicted weights, means and covariances in

Table D.1 follow directly from the multi-group GM-PHD prediction given in Propo-

sition 4.1 (Section 4.1.5). Likewise, the closed-form expressions for the updated

means and covariances in Tables D.2 and D.3 follow directly from the multi-group

GM-PHD update given in Proposition 4.2 (Section 4.1.6).

However, the same can not be said for the updated weights due to the differ-

ence in multiple measurement likelihoods present in the update equations for the

respective PHD filters. The multiple measurement likelihood LZk(xk) contributing

to the update of the single group state in equation (3.27) can be written as

LZk(xk) = e−pD α

(∏
z∈Zk

κ(z)

) ∑
W⊆Zk

(∏
z∈W

pD
κ(z)

∫
gk(z | ξk, zk) vk|k−1(ξk |xk)dξk

)
,

(D.1)

which follows as a result of the expression given in equation (3.43) and the assump-

tion regarding the state independent probability of individual target detection in

Section 4.1.4, now denoted by pD = pD,2. The clutter intensity is denoted by κ(z)

and α =
∑Jk|k−1

i=1 ω
(i)
k|k−1 denotes the expected number of individual targets.

It follows that, given the GM formulation of the predicted intensity which satis-

fies the factorisation vk|k−1(xk, ξk) = pk|k−1(xk)×vk|k−1(ξk |xk), where pk|k−1(xk) =

N
(
xk ; mx,k|k−1,P22,k|k−1

)
and

vk|k−1(ξk |xk) =

Jk|k−1∑
i=1

ω
(i)
k|k−1N

(
ξk ;µ

(i)
ξ|x,k|k−1,Σ

(i)
ξ|x,k|k−1

)
, (D.2)

with means µ
(i)
ξ|x,k|k−1 = m

(i)
ξ,k|k−1 + P

(i)
12,k|k−1P

−1
22,k|k−1

(
xk −mx,k|k−1

)
and covari-

ances given by

Σ
(i)
ξ|x,k|k−1 = P

(i)
11,k|k−1 −P

(i)
12,k|k−1P

−1
22,k|k−1

(
P

(i)
12,k|k−1

)T
, (D.3)

the multiple measurement likelihood given in equation (D.1) becomes

LZk(xk) = e−pD α

(∏
z∈Zk

κ(z)

) ∑
W⊆Zk

∏
z∈W

pD
κ(z)

N
(
z ; Ĥxk,R2

)
×

Jk|k−1∑
i=1

ω
(i)
k|k−1N

(
z ; Hµ

(i)
ξ|x,k|k−1,HΣ

(i)
ξ|x,k|k−1H

T + R1

) .

(D.4)
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given mx,k|k−1, P22,k|k−1,
{
ω

(i)
k|k−1,m

(i)
ξ,k|k−1,P

(i)
11,k|k−1,P

(i)
12,k|k−1

}Jk|k−1

i=1
,

measurement set Zk and constant probability of detection pD.
step 1. (Construction of GM-PHD update components)

for i = 1, . . . , Jk|k−1

R̃
(i)
k := HΣ

(i)
ξ|x,k|k−1H

T + R1, A
(i)
k := HP

(i)
12,k|k−1P

−1
22,k|k−1,

where Σ
(i)
ξ|x,k|k−1 is given by the expression in equation (D.3).

end
step 2. (Update for missed detections)

n := 0, ı̄ := 0.
for each subset W ⊆ Zk (Update of the parent process)

for each permutation i1:|W | = (i1, . . . , i|W |)
(where i` = 1, . . . , Jk|k−1 for ` = 1, . . . , |W |)
n := n+ 1,

η
(i1)
k := mx,k|k−1, P(i1)

k := P22,k|k−1.
for ` = 1, . . . , |W |

b
(i1:`)
1 := Hm

(i`)
ξ,k|k−1 + A

(i`)
k

(
η

(i1:`)
k −mx,k|k−1

)
,

S
(i1:`)
1 := A

(i`)
k P(i1:`)

k

(
A

(i`)
k

)T
+ R̃

(i`)
k ,

(where η
(i1:`)
k = η

(i1)
k and P(i1:`)

k = P(i1)
k for ` = 1)

K̃
(i1:`)
x,k := P(i1:`)

k

(
A

(i`)
k

)T (
S

(i1:`)
1

)−1

,

m̃
(i1:`)
x,k := η

(i1:`)
k + K̃

(i1:`)
x,k

(
z` − b

(i1:`)
1

)
,

P̃
(i1:`)
22,k :=

(
I− K̃

(i1:`)
x,k A

(i`)
k

)
P(i1:`)
k ,

S
(i1:`)
2 := ĤP̃

(i1:`)
22,k ĤT + R2, K

(i1:`)
x,k := P̃

(i1:`)
22,k ĤT

(
S

(i1:`)
2

)−1

,

η
(i1:`)
k := m̃

(i1:`)
x,k + K

(i1:`)
x,k

(
z` − Ĥm̃

(i1:`)
x,k

)
,

P(i1:`)
k :=

(
I−K

(i1:`)
x,k Ĥ

)
P̃

(i1:`)
22,k ,

L
(n)
i`

:= pD ω
(i`)
k|k−1N

(
z` ; b

(i1:`)
1 ,S

(i1:`)
1

)
N
(
z` ; Ĥm̃

(i1:`)
x,k ,S

(i1:`)
2

)
.

end

m
(n)
x,k := η

(i1:|W |)

k , P
(n)
22,k := P(i1:|W |)

k , ν̃
(n)
k :=

∏|W |

`=1

(
L

(n)
i`

/
κ(z`)

)
.

end
end
for j = 1, . . . , n

ν
(j)
k := ν̃

(j)
k

/∑n

j′=1
ν̃

(j′)
k .

end
for i = 1, . . . , Jk|k−1 (Update of the daughter process)

ı̄ := ı̄+ 1, ω
(ı̄)
k := (1− pD)ω

(i)
k|k−1,

m̃
(ı̄)
ξ,k := m

(i)
ξ,k|k−1, P̃

(ı̄)
11,k := P

(i)
11,k|k−1, P̃

(ı̄)
12,k := P

(i)
12,k|k−1.

end
Jk := ı̄.

output
{
ω

(i)
k , m̃

(i)
ξ,k, P̃

(i)
11,k, P̃

(i)
12,k

}Jk
i=1

,
{
ν

(j)
k ,m

(j)
x,k,P

(j)
22,k

}n
j=1

and
{

R̃
(i)
k ,A

(i)
k

}Jk|k−1

i=1
.

Table D.2: Pseudo-code for steps 1 & 2 of the single group GM-PHD update
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given mx,k|k−1, P22,k|k−1,
{
ω

(i)
k|k−1,m

(i)
ξ,k|k−1,P

(i)
11,k|k−1,P

(i)
12,k|k−1

}Jk|k−1

i=1
, Zk, pD,{

ω
(i)
k , m̃

(i)
ξ,k, P̃

(i)
11,k, P̃

(i)
12,k

}Jk
i=1

,
{
ν

(j)
k ,m

(j)
x,k,P

(j)
22,k

}n
j=1

and
{

R̃
(i)
k ,A

(i)
k ,Σ

(i)
ξ|x,k|k−1

}Jk|k−1

i=1
.

step 3. (Update for detections)
ı̄ := Jk, n̄ := n, Ī := ∅, J̄ := ∅.
for each z ∈ Zk
Ī := {Ī , ı̄+ 1}.
for i = 1, . . . , Jk|k−1

ı̄ := ı̄+ 1, J̄ := {J̄ , n̄+ 1},

S
(i)
1 := A

(i)
k P22,k|k−1

(
A

(i)
k

)T
+ R̃

(i)
k , K̃

(i)
x,k := P22,k|k−1

(
A

(i)
k

)T (
S

(i)
1

)−1

,

m̃
(i)
x,k := mx,k|k−1 + K̃

(i)
x,k

(
z−Hm

(i)
ξ,k|k−1

)
, P̃

(i)
22,k :=

(
I− K̃

(i)
x,kA

(i)
k

)
P22,k|k−1,

S
(i)
2 := ĤP̃

(i)
22,kĤ

T + R2, K
(i)
x,k := P̃

(i)
22,kĤ

T
(
S

(i)
2

)−1

,

η
(i)
k := m̃

(i)
x,k + K

(i)
x,k

(
z− Ĥm̃

(i)
x,k

)
, P(i)

k :=
(
I−K

(i)
x,kĤ

)
P̃

(i)
22,k,

ω̃
(ı̄)
k := pD ω

(i)
k|k−1N

(
z ; Hm

(i)
ξ,k,S

(i)
1

)
N
(
z ; Ĥm̃

(i)
x,k,S

(i)
2

)/
κ(z),

m̃
(ı̄)
ξ,k := m

(i)
ξ,k|k−1 + K

(i)
ξ,k

(
z−Hm

(i)
ξ,k|k−1

)
,

P̃
(ı̄)
11,k :=

(
I−K

(i)
ξ,kH

)(
P

(i)
11,k|k−1 −P

(i)
12,k|k−1P

−1
22,k|k−1

(
K

(i)
ξ,kHP

(i)
12,k|k−1

)T)
,

K
(i)
ξ,k = Σ

(i)
ξ|x,k|k−1H

T
(
R̃

(i)
k

)−1

,
(
P̃

(ı̄)
12,k =

(
I−K

(i)
ξ,kH

)
P

(i)
12,k|k−1

)
.

for each subset V ⊆ Zk \ {z}
for each permutation i1:|V | = (i1, . . . , i|V |)
n̄ := n̄+ 1,
for ` = 1, . . . , |V |

b
(i,i1:`)
1 := Hm

(i`)
ξ,k|k−1 + A

(i`)
k

(
η

(i,i1:`−1)
k −mx,k|k−1

)
,

S
(i,i1:`)
1 := A

(i`)
k P(i,i1:`−1)

k

(
A

(i`)
k

)T
+ R̃

(i`)
k ,

m̃
(i,i1:`)
x,k := η

(i,i1:`−1)
k + P(i,i1:`−1)

k

(
A

(i`)
k

)T(
S

(i,i1:`)
1

)−1(
z` − b

(i,i1:`)
1

)
,

P̃
(i,i1:`)
22,k :=

(
I−P(i,i1:`−1)

k

(
A

(i`)
k

)T(
S

(i,i1:`)
1

)−1

A
(i`)
k

)
P(i,i1:`−1)
k ,

S
(i,i1:`)
2 := ĤP̃

(i,i1:`)
22,k ĤT + R2, K

(i,i1:`)
x,k := P̃

(i,i1:`)
22,k ĤT

(
S

(i,i1:`)
2

)−1

,

η
(i,i1:`)
k := m̃

(i,i1:`)
x,k + K

(i,i1:`)
x,k

(
z` − Ĥm̃

(i,i1:`)
x,k

)
,

P(i,i1:`)
22,k :=

(
I−K

(i,i1:`)
x,k Ĥ

)
P̃

(i,i1:`)
22,k ,

L
(n̄)
i`

:=
pD
κ(z`)

ω
(i`)
k|k−1N

(
z` ; b

(i,i1:`)
1 ,S

(i,i1:`)
1

)
N
(
z` ; Ĥm̃

(i,i1:`)
x,k ,S

(i,i1:`)
2

)
.

end

m
(n̄)
x,k := η

(i,i1:|V |)

k , P
(n̄)
22,k := P(i,i1:|V |)

k , ν̃
(n̄)
k := ω̃

(ı̄)
k

∏|V |

`=1
L

(n̄)
i`

,

end
end

end
end
Jk := ı̄, J̄ := {J̄ , n̄+ 1}.

output
{

m̃
(i)
ξ,k, P̃

(i)
11,k, P̃

(i)
12,k

}Jk
i=1

,
{

m
(j)
x,k,P

(j)
22,k

}n̄
j=1

,{
ω

(i)
k

}Ī1−1

i=1
,
{
ω̃

(i)
k

}Jk
i=Ī1

,
{
ν

(j)
k

}J̄1−1

j=1
,
{
ν̃

(j)
k

}n̄
j=J̄1

, with Ī and J̄ .

Table D.3: Pseudo-code for step 3 of the single group GM-PHD update
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given
{
ω

(i)
k

}Ī1−1

i=1
,
{
ν

(j)
k

}J̄1−1

j=1
,
{
ω̃

(i)
k

}Jk
i=Ī1

,
{
ν̃

(j)
k

}n̄
j=J̄1

, with Ī and J̄ .

step 4. (Normalisation of the weights for detections)
for j = 1, . . . , |Ī|

if j = |Ī|
for i = Īj , . . . , Jk (where Īj denotes the jthentry of the set Ī)

ω
(i)
k := ω̃

(i)
k

/∑Jk

i′=Īj
ω̃

(i′)
k .

end
else

for i = Īj , . . . , Īj+1 − 1

ω
(i)
k := ω̃

(i)
k

/∑Īj+1−1

i′=Īj
ω̃

(i′)
k .

end
end

end
for i = 1, . . . , |J̄ | − 1

for j = J̄i, . . . , J̄i+1 − 1 (where J̄i denotes the ithentry of the set J̄)

ν
(j)
k := ν̃

(j)
k

/∑J̄i+1−1

j′=J̄i
ν̃

(j′)
k .

end
end

output
{
ω

(i)
k

}Jk
i=1

and
{
ν

(j)
k

}n̄
j=1

.

Table D.4: Pseudo-code for step 4 of the single group GM-PHD update

given mx,k|k−1, P22,k|k−1,
{
ν

(j)
k ,m

(j)
x,k,P

(i)
22,k

}n̄
j=1

,
{
ω

(i)
k , m̃

(i)
ξ,k, P̃

(i)
11,k, P̃

(i)
12,k

}Jk
i=1

,

and truncation threshold τ1.
set

Ix,k :=
{
j = 1, . . . , n̄

∣∣∣ ν(j)
k > τ1

}
,

ν̃k :=
∑
j∈Ix,k

ν
(j)
k , mx,k :=

1

ν̃k

∑
j∈Ix,k

ν
(j)
k m

(j)
x,k, P22,k :=

1

ν̃k

∑
j∈Ix,k

ν
(j)
k P

(j)
22,k.

for i = 1, . . . , Jk
m

(i)
ξ,k := m̃

(i)
ξ,k + P

(i)
12,kP

−1
22,k

(
mx,k −mx,k|k−1

)
,

P
(i)
11,k := P̃

(i)
11,k −P

(i)
12,kP

−1
22,k

(
P̃

(i)
12,k −P

(i)
12,k

)T
, P

(i)
12,k := P̃

(i)
12,kP

−1
22,k|k−1P22,k.

end

output mx,k, P22,k,
{
ω

(i)
k ,m

(i)
ξ,k,P

(i)
11,k,P

(i)
12,k

}Jk
i=1

.

Table D.5: Merging the Gaussian components relating to the single group target
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The updated weights, as evaluated in Tables D.2 and D.4 are therefore represen-

tative of the expression for the multiple measurement likelihood LZk(xk) given in

equation (D.4).

Finally, in order for the GM formulation to present a closed-form solution to

the single group PHD recursion, it is necessary to merge the Gaussian components

relating to the updated group state. The details of this procedure are given in Table

D.5. The simulation results presented in Section 4.3.3 are obtained by applying

the single group GM-PHD filter to the scenario described in Section 4.3.2 with the

parameter τ1 = 10−4.

D.2 Validating Measurements

Various mixture reduction techniques, similar to those identified in Section 4.2,

can also be applied to reduce the computation at each iteration of the single group

GM-PHD recursion. In particular, although partitioning the measurement set is

not necessary, as it is for the multi-group PHD update, the update equation given

by equation (3.27) does involve summing over all possible subsets W ⊆ Zk, as a

consequence of expression for the multiple measurement likelihood given in equation

(D.1). The computational challenge this present was discussed in Section 3.3.2 and

in terms of the GM formulation of the single group PHD update it means having to

compute a large number of Gaussian components. This implementation issue can

be addressed by performing a validation/gating technique, similar to that shown

in Section 4.2.1, as follows.

For the initial time-step k = 1, the gating procedure shown in Table D.6 replaces

the measurement set Zk with a single subset W and removes the sum
∑

W⊆Zk in

equation (D.1), as well as replacing the sum over all measurements in Zk in equation

(3.29) with
∑

z∈W . For subsequent time-steps k > 1, the gating procedure shown in

Table D.7 reduces the number of possible subsets of Zk to ng, giving {Wj}ngj=1, and

replaces the sum
∑

W⊆Zk in equation (D.1) with
∑ng

j=1, as well as replacing the sum

over all measurements in Zk in equation (3.29) with
∑

z∈W∪ where W∪ =
⋃ng
j=1Wj.

given a source point where the group target is expected to originate from msource,
noise covariance matrix RG ∝ R2, measurement set Zk, and gating threshold T2.

set W =
{

z ∈ Zk
∣∣∣(z−msource)

T R−1
G (z−msource) ≤ T2

}
.

output W .

Table D.6: Initial gating procedure for determining a validated subset of measure-
ments at time k = 1
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given mx,k|k−1, P22,k|k−1, Jk−1, the minimum allowable number of Gaussian
components relating to individual targets Jmin, measurement set Zk,
noise covariance matrix RG ∝ R2 and gating threshold T2

procedure

If Jk−1 > Jmin, then set the number of gates as N = bJk−1 /Jmin e,
otherwise set N = 1.
ng := 0, Σ := ĤP22,k|k−1Ĥ

T + RG.
for i = 1, . . . , N

Sample m̃ ∼ N (xk ; mx,k|k−1,P22,k|k−1),

V :=

{
z ∈ Zk

∣∣∣∣(z− Ĥ m̃
)T

Σ−1
(
z− Ĥ m̃

)
≤ T2

}
.

if i = 1
ng := ng + 1, Wng := V .

else
if V is not a duplicate of any of the subsets Wj determined so far,
for j = 1, . . . , ng, then set ng = ng + 1 and Wng = V .

end

output {Wj}
ng
j=1.

Table D.7: Gating procedure for determining validated subsets of measurements
for subsequent time-steps k > 1

The consequence of performing either procedure is the significant reduction in the

number of Gaussian components for the GM formulation of the update equation.

D.3 Initialisation

For the simulated example described in Section 4.3.2, the single group GM-PHD

filter is initialised with the intensity v1(x, ξ) given by equation (4.64), which is

driven by the measurements received at time k = 1, a concept that was proposed

in [76] and later developed as a technique for the PHD filter in [31, 32]. Specifically,

the initial intensity is driven by the measurements from the validated subset W ,

determined as shown in Table D.6 given the source point msource = [0 450]T , so that

the means of the components relating to the individual targets are sampled from

the measurements z ∈ W and the mean relating to the group state is found from

the averaged sum of the samples. That is, m
(i)
ξ =

[
m

(i)
ξ,1 m

(i)
ξ,2

]T ∼ N (ξ ; zi,R1) for

i = 1, . . . , |W |, and

mx =

[
1

|W |

|W |∑
i=1

m
(i)
ξ,1 0

1

|W |

|W |∑
i=1

m
(i)
ξ,2 0

]T
, (D.5)
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The weights and covariances of the components relating to individual targets are

then set to be ω(i) = 0.1 and P
(i)
11 = R1 + P

(i)
12P−1

22

(
P

(i)
12

)T
for i = 1, . . . , |W |, where

the covariance relating to the group state and the cross diagonal covariances are

given by P22 = diag([5σ2
2, 2, 5σ

2
2, 2]) and P

(i)
12 = ĤP22 respectively. The values of

R1 and σ2 are as given in Section 4.3.2.

At subsequent time-steps k > 1, the individual target births in the group are

given by the intensity γξ,k(ξk |xk) in equation (4.65) which is driven by measure-

ments from the validated subsets {Wj}ngj=1, determined as shown in Table D.7.

That is, the means of the birth components are sampled from the measurements

z ∈ W∪, i.e. m
(i)
γ,ξ,k ∼ N (ξk ; zi,R1) for i = 1, . . . , Jγ,k so that Jγ,k = |W∪|.

The associated weights and covariances are set to be ω
(i)
γ,k = 0.1 and P

(i)
γ,11,k =

R1 +P
(i)
γ,12,kP

−1
22,k|k−1

(
P

(i)
γ,12,k

)T
, where the cross diagonal covariances P

(i)
γ,12,k are set

the same way as for P
(i)
12 at the initial time-step.

D.4 Derivation of the Process Noise Covariance Matrices

The evolution of the single group target scenario follows the linear Gaussian model

given in equation (4.6) (Section 4.1.2), with the noise covariance defined by the

block matrix Qk given in (4.7), consisting of the covariance matrices Q11, Q12 and

Q22. This section provides details on the derivation of the expressions for Q11

and Q12 given in (4.62), and the expression for Q22 given in (4.60) and (4.61), as

proposed in Section 4.3.2.

Firstly, the expression for the noise covariance matrix Q22, follows immediately

from the constant linear velocity kinematic model described in [64]. Consider

the group state vector xk =
[
xk,x ẋk,x xk,y ẋk,y

]T
, where ẋk,x, ẋk,y denote the

velocities in the x and y directions. Given a sampling interval t, the discrete-time

state equation is given by

xk = F22xk−1 + vx,k−1 + vy,k−1, (D.6)

where F22 is as defined in (4.60) and (4.61). The discrete-time process noise relating

to the change in which the velocity undergoes in the x direction, which is modelled

by the white noise ṽx, is given by

vx,k−1 =

[
I2

02

]∫ t

0

[
1 t− τ
0 1

][
0

1

]
ṽx dτ =

[
I2

02

]∫ t

0

[
t− τ

1

]
ṽx dτ. (D.7)

Similarly, the discrete-time process noise relating to the change the velocity under-
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goes in the y direction is given by

vy,k−1 =

[
02

I2

]∫ t

0

[
t− τ

1

]
ṽy dτ, (D.8)

where ṽy denotes white noise modelling this change. Suppose that E(ṽ2
x) = E(ṽ2

y) =

σ2
x (E(ṽxṽy) = 0), then the process noise covariance Q22 is given by

Q22 = E(vx,k−1v
T
x,k−1) + E(vy,k−1v

T
y,k−1), (D.9)

where

E(vx,k−1v
T
x,k−1) = σ2

x

[
I2

02

](∫ t

0

[
t− τ

1

] [
t− τ 1

]
dτ

)[
I2 02

]
= σ2

x

[
I2

02

][
t3/ 3 t2/ 2

t2/ 2 t

] [
I2 02

]
= σ2

x

[
Qk 02

02 02

]
,

(D.10)

and similarly

E(vy,k−1v
T
y,k−1) = σ2

x

[
02 02

02 Qk

]
. (D.11)

Hence the expression for Q22 given in (4.60) follows immediately with Qk given by

the expression in (4.61).

Now consider an individual target state vector ξk =
[
ξk,x ξk,y

]T
. Given the

description of the single group target scenario in Section 4.3.2 and sampling interval

t, the discrete-time state equation for individual targets is given by

ξk = ξk−1 + F12xk−1 + v̄x,k−1 + v̄y,k−1, (D.12)

where F12 = Ĥ (F22 − I4), for projection matrix Ĥ given by equation (4.63). The

discrete-time process noise relating to the change in which the velocity of the group

state undergoes in the x direction is given by

v̄x,k−1 =

[
1

0

]∫ t

0

[
1 0

]([1 t− τ
0 1

]
− I2

)[
0

1

]
ṽx dτ =

[
1

0

]∫ t

0

(t− τ) ṽx dτ.

(D.13)

Similarly, the discrete-time process noise relating to the change in which the velocity
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of the group state undergoes in the y direction is given by

v̄y,k−1 =

[
0

1

]∫ t

0

(t− τ) ṽy dτ. (D.14)

The inclusion of the process noise vectors v̄x,k−1 and v̄y,k−1 in the state equation

(D.12) can be account for by the conditionality of the individual target states on

the group state. It follows that the process noise covariance Q11 is given by

Q11 = E(v̄x,k−1v̄
T
x,k−1) + E(v̄y,k−1v̄

T
y,k−1), (D.15)

where

E(v̄x,k−1v̄
T
x,k−1) = σ2

x

[
1

0

](∫ t

0

(t− τ)2 dτ

)[
1 0

]
= σ2

x

[
t3/ 3 0

0 0

]
, (D.16)

and similarly

E(v̄y,k−1v̄
T
y,k−1) = σ2

x

[
0 0

0 t3/ 3

]
. (D.17)

Hence the expression for Q11 given in (4.62) follows by substituting the expres-

sions for E(v̄x,k−1v̄
T
x,k−1) and E(v̄y,k−1v̄

T
y,k−1) in (D.16) and (D.17) respectively into

equation (D.15). Finally, the process noise covariance Q12 can be written as

Q12 = E(v̄x,k−1v
T
x,k−1) + E(v̄y,k−1v

T
y,k−1), (D.18)

where

E(v̄x,k−1v
T
x,k−1) = σ2

x

[
1

0

](∫ t

0

(t− τ)
[
t− τ 1

]
dτ

)[
I2 02

]
(D.19)

= σ2
x

[
1

0

] [
t3/ 3 t2/ 2

] [
I2 02

]
= σ2

x

[[
t3/ 3 t2/ 2

]
02×1

02×1 02×1

]
,

and similarly

E(v̄y,k−1v
T
y,k−1) = σ2

x

[
02×1 02×1

02×1

[
t3/ 3 t2/ 2

]]. (D.20)

The expression for Q12 given in (4.62) therefore follows again by substitution.
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Appendix E

The Benchmark GM-PHD Filter for Extended Targets

This chapter summarises the benchmark filter used in the performance analysis

of the GM-PHD filter for extended targets proposed in Section 5.1, the results of

which, for the scenario described in Section 5.2.1, are given in Section 5.2.2. It is

based on a Gaussian mixture formulation of a PHD filter similar to that introduced

in Section 2.4.4 for non-standard targets.

Section E.1 introduces the alternative PHD filter for non-standard targets and

Section E.2 summarises its closed-form solution, paying particular attention to the

GM formulation of the update equation. It is then discussed in Section E.3 how

this benchmark filter relates to the proposed GM-PHD filter for extended targets

from Section 5.1.

E.1 An Alternative PHD Filter for Non-Standard Targets

The PHD filter for non-standard targets [100] introduced in Section 2.4.4 handles

targets that potentially produce more than one measurement per time-step, oth-

erwise referred to as extended targets. The recursion only differs from that of the

multi-target PHD filter [1] in the update equation. One of the assumptions the

update equation in (2.36) was based on, concerns the clutter RFS Kk present in

the measurement model, that it is Poisson with intensity κk(·).
Instead consider the hierarchical RFS representation of the clutter RFS Kk

whose probability density is given by equation (3.19) and (3.20), so that the RFS

Zk describes a collection of measurement clusters, which are either target generated

or false alarms. Based on this alternative assumption concerning the clutter RFS,

along with the remaining assumption listed in Section 2.4.4, the update equation

161



is now

vk(xk) = vk|k−1(xk)

{
1− pD(xk) + pD(xk) e−α(xk)

+
∑
π∈ΠZk

$π

∑
ϕ∈π

pD(xk) e−α(xk)
(∏

z∈ϕ α(xk) l(z |xk)
)

Λ(ϕ) + vk|k−1

[
pD e−α

(∏
z∈ϕ α lz

)] } , (E.1)

where the partition weights are now given by

$π =

∏
ϕ∈π

(
Λ(ϕ) + vk|k−1

[
pD e−α

(∏
z∈ϕα lz

)])
∑

π′∈ΠZk

∏
ϕ′∈π′

(
Λ(ϕ′) + vk|k−1

[
pD e−α

(∏
z∈ϕ′α lz

)]) , (E.2)

and Λ(ϕ) denotes the clutter term given in equation (3.20).

E.1.1 Derivation of the update equation

The derivation of the result for the update equation given in equation (E.1) mostly

follows that of the PHD update for non-standard targets [100]. It is recovered

from the functional derivative of the updated p.g.fl., corresponding to the updated

posterior in the multi-target Bayesian filter, according to the relation given by

equation (A.16). The updated p.g.fl. Gk can be written in the form given by

equation (B.21) which follows as a result of introducing a bivariate p.g.fl. defined

as

F [g, h] =

∫ ( ∏
x∈Xk

h(x)

)
GZ,k[g |Xk] pk|k−1(Xk) dXk, (E.3)

where GZ,k[g |Xk] is the p.g.fl. of the RFS Zk. The measurement model is defined

such that Zk is given by the union target generated measurements and clutter in

equation (2.27), resulting in the following p.g.fl.

GZ,k[g |Xk] = GK,k[g]
∏
x∈Xk

GΘ,k[g |x], (E.4)

The bivariate p.g.fl. is then written as F [g, h] = GK,k[g]Gk|k−1[hGΘ,k[g | · ]], and

given the measurement set Zk = {z1, . . . , zm}, its mth-order functional derivative
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in the directions δz1 , . . . , δzm is

δmF [g, h ; δz1 , . . . , δzm ] =∑
W⊆Zk

δm−|W |GK,k

[
g ; δz1 , . . . , δzm−|W |

]
δ|W |Gk|k−1

[
hGΘ,k[g | · ] ; δw1 , . . . , δw|W |

]
,

which follows from the general product rule for functional derivatives [69, Section

11.6, page 389].

The assumption on the RFS Θk described in Section 2.4.4 implies that its

p.g.fl. has the following form

GΘ,k[g | · ] = 1− pD( · ) + pD( · ) exp

(
α( · )

∫
g(z) l(z | · ) dz− α( · )

)
, (E.5)

so that Gk|k−1[hGΘ,k[g | · ]] = Gk|k−1

[
h
(
1− pD + pD eα l[g | · ]−α

)]
, denoting l[g | · ] =∫

g(z) l(z | · ) dz. Then, given the Poisson assumption on the predicted multi-target

RFS Xk, it can be shown by induction that

δ|W |Gk|k−1

[
h
(
1− pD + pD eα l[g | · ]−α

)
; δw1 , . . . , δw|W |

]
=

exp
(
vk|k−1

[
h
(
1− pD + pD eα l[g | · ]−α

)
− 1
]) ∑

π∈ΠW

∏
ϕ∈π

vk|k−1

[
h pD eα l[g | · ]−α

∏
z∈ϕ

α lz

]
,

denoting lz = l(z | · ). It follows, given the alternative assumption on the clutter

RFS Kk and noting that pκ(Zk \W ) can be recovered as shown in equation (B.25),

that the updated p.g.fl. given by equation (B.21) has the form

Gk[h] =
exp

(
vk|k−1[h (1− pD + pD e−α)]

)
exp

(
vk|k−1[1− pD + pD e−α]

)
×

∑
π∈ΠZ

∏
ϕ∈π

(
Λ(ϕ) + vk|k−1

[
h pD e−α

(∏
z∈ϕα lz

)])
∑
π′∈ΠZ

∏
ϕ′∈π′

(
Λ(ϕ′) + vk|k−1

[
pD e−α

(∏
z∈ϕ′α lz

)]) , (E.6)

denoting Z = Zk. The result for the update equation given in equation (E.1)

follows by taking the functional derivative of the expression in equation (E.6) for

Gk in the direction δx and evaluating at h = 1.
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E.2 A Summary of the GM Formulation

The Gaussian mixture formulation for this benchmark filter is the same as shown in

the illustrative diagram in Section 5.1.1. In fact, the weights, means and covariances

of the Gaussian components constituting the predicted intensity mixture have the

same closed-form expression as detailed in Table 5.1 (Section 5.1.2). However, the

closed-form expression for the updated weights, means and covariances differ from

those detailed in Table 5.2 and 5.3, due to the alternative update equation (E.1),

as follows.

Suppose that the function denoted by l(z |xk) in equation (E.1) defines the

likelihood that the measurement z is generated by the target xk and that it is

modelled with the linear Gaussian function N (z ; Hxk,R), with projection ma-

trix H and noise covariance matrix R. In addition, suppose that the probability

of detection pD(xk) and the expected number of measurements generated by the

target xk, denoted by α(xk), are state independent, i.e. they are arbitrary con-

stants denoted by pD and α respectively. Then, given the GM formulation of the

predicted intensity vk|k−1(xk), the updated intensity vk(xk) is also a Gaussian mix-

ture, where the closed-form expressions for the weights, means and covariances of

the constituent Gaussian components are detailed in Table E.1.

This GM formulation provides the following expected number of targets

Nk = (1− pD + pD e−α)Nk|k−1 +
∑
π∈ΠZk

$π

∑
ϕ∈π

Jk|k−1∑
i=1

ω̃
(i)
ϕ,k, (E.7)

associated with the updated intensity vk, where Nk|k−1 is the expected number of

target associated with the predicted intensity given by equation (5.4) and

ω̃
(i)
ϕ,k =

pD ω
(i)
k|k−1 e−α

∏m

`=1
L

(i)
`

Λ(ϕ) + pD e−α
∑Jk|k−1

i′=1
ω

(i′)
k|k−1

∏m

`=1
L

(i′)
`

. (E.8)

From equation (E.7) it can be deduced that this GM formulation of the benchmark

filter for extended targets requires, at any time-step k,

Jk = Jk|k−1 +
∏

π∈ΠZk

∏
ϕ∈π

Jk|k−1 × |ϕ|, (E.9)

Gaussian components in vk, where Jk|k−1 denotes the number of components in

vk|k−1.
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given
{
ω

(i)
k|k−1,m

(i)
k|k−1,P

(i)
k|k−1

}Jk|k−1

i=1
, measurement set Zk,

and the set of all possible partitions ΠZk ,
step 1. (Update for missed detections)

ı̄ := 0,
for i = 1, . . . , Jk|k−1

ı̄ := ı̄+ 1,

ω
(ı̄)
k := (1− pD + pD e−α)ω

(i)
k|k−1, m

(ı̄)
k := m

(i)
k|k−1, P

(ı̄)
k := P

(i)
k|k−1.

end
step 2. (Update for detections)

for each partition π ∈ ΠZk

for iπ = 1, . . . , |π| (i.e. for each subset ϕiπ ∈ π)
m := |ϕiπ |, n := ı̄.
for i = 1, . . . , Jk|k−1

ı̄ := ı̄+ 1,
for ` = 1, . . . ,m

b
(i)
1:` := Hη

(i)
1:`, S

(j1:`,i)
1 := HP(i)

1:`H
T + R,

K
(i)
1:` := P(i)

1:`H
T
(
S

(i)
1:`

)−1
,

m̃
(i)
1:` := η

(i)
1:` + K

(i)
1:`

(
z` − b

(i)
1:`

)
,

P̃
(i)
1:` :=

(
I−K

(i)
1:`H

)
P(i)

1:`,

(where η
(i)
1:` = m

(i)
k|k−1 and P(i)

1:` = P
(i)
k|k−1 for ` = 1)

η
(i)
1:` := m̃

(i)
1:`, P(i)

1:` := P̃
(i)
1:`,

L
(i)
` := αN

(
z` ; b

(i)
1:`,S

(i)
1:`

)
.

end
m

(ı̄)
k := η

(i)
1:m, P

(ı̄)
k := P(i)

1:m,

ω̃
(ı̄)
k := pD ω

(i)
k|k−1 e−α

∏m

`=1
L

(i)
` .

end
ω

(iπ)
ϕ := Λ(ϕiπ) +

∑ı̄

j=n
ω̃

(j)
k .

for j = n, . . . , ı̄

ω
(j)
k := ω̃

(j)
k

/
ω

(iπ)
ϕ .

end
end

$̃π :=
∏|π|

iπ=1
ω(iπ)
ϕ .

end
for each π ∈ ΠZk

$π := $̃π

/∑
π∈ΠZk

$̃π .

end
Jk := ı̄.

output
{
ω

(i)
k ,m

(i)
k ,P

(i)
k

}Jk
i=1

.

Table E.1: Pseudo-code for update step of the benchmark GM-PHD filter for
extended targets
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When comparing the expressions for Jk in equations (E.9) and (5.7) for the

two filters, it can be seen that the complexity of the proposed GM-PHD filter for

extended targets in Section 2.4.4 is marginally greater than that of the benchmark

filter summarised here. However, the partitioning of the measurement set is still an

integral part of the benchmark filter such that the number of partitions, accounting

for the product
∏

π∈ΠZk
in equation (E.9), significantly contributes to the increase in

the number of Gaussian components at each iteration. The partitioning problem

is once again address by performing the gating procedure detailed in Table 4.3

(Section 4.2.1), while closely spaced Gaussian components are merged and the

extended target states are extracted according to the additional mixture reduction

procedures given in Tables 5.4 and 5.5 (Section 5.1.3) respectively.

E.3 How the Two Filters Relate

The GM formulation in which the weights, means and covariances have the closed-

form expression given in Table E.1 can also be obtained for the update equation

in the PHD filter for extended targets presented in Section 3.2.6, under a different

linear Gaussian model to that given in Section 4.1.4 for the single measurement

likelihood. Rather than the factorisation given in equation (4.15), consider the

following linear Gaussian likelihood.

Suppose that the measurement z originates from the feature point ξk so that

the measurement equation is given by

z = Hξk + vz, (E.10)

where ξk is a linear transformation of the target state xk given by

ξk = Ĥxk + vξ. (E.11)

Further suppose vz and vξ are zero mean (white) Gaussian noise with respective

covariances R1 and R2, so that

E[z] = E[Hξk + vz] = HE[ξk] = HĤxk,

Cov[z] = Cov[Hξk + vz] = HCov[ξk]H
T + R1 = HR2H

T + R1.
(E.12)

It follows that the single measurement likelihood is then given by

gk(z | ξk,xk) = N (z ; HĤxk,HR2H
T + R1). (E.13)
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Then, given the GM formulation of the predicted intensity vk|k−1(xk) (Section

5.1.2), the updated intensity vk(xk) is also a Gaussian mixture and is effectively the

same formulation as given in Section E.2 with the closed-form expressions for the

updated weights, means and covariances as detailed in Table E.1. Note that the

expected number of measurements per target is equivalent to the expected number

of feature points and they’re both denoted by α in respective filters.

167



References

[1] R. P. S. Mahler, “Multi-target Bayes filtering via first-order multi-target

moments,” IEEE Trans. on AES, vol. 39, no. 4, pp. 1152–1178, 2003.

[2] D. E. Clark and J. Bell, “Bayesian multiple target tracking in forward scan

sonar images using the PHD filter,” Radar, Sonar and Navigation, IEE Pro-

ceedings, vol. 152, pp. 327–334, 2005.

[3] D. E. Clark, B. N. Vo, and J. Bell, “The GM-PHD filter multitarget tracking

in sonar images,” in Proc. SPIE, vol. 6235, 2006.

[4] D. E. Clark, J. Bell, Y. de Saint-Pern, and Y. Pettilot, “PHD filter multi-

target tracking in 3D-sonar,” in Proc. of IEEE OCEANS05-Europe, pp. 265–

270, 2005.

[5] D. E. Clark, A. T. Cemgil, P. Peeling, and S. Godsill, “Multi-object track-

ing of sinusoidal components in audio with the Gaussian mixture probability

hypothesis density filter,” in IEEE Workshop on Applications of Signal Pro-

cessing to Audio and Acoustics, pp. 339–342, October 2007.

[6] T. Zajic, B. Ravichandran, R. P. S. Mahler, R. Mehra, and M. Noviskey,

“Joint target and identification with robustness against unmodeled targets,”

in Proc. SPIE, vol. 5096, pp. 279–290, 2003.

[7] M. Tobias and A. D. Lanterman, “Probability hypothesis density-based mul-

titarget tracker using multiple bistatic range and velocity measurements,” in

Proc. of 36th Southeast Symposium on System Theory, (Atlanta, GA, USA),

pp. 205–209, March 2004.

[8] M. Tobias and A. D. Lanterman, “Multitarget tracking using multiple bistatic

range measurements with probability hypothesis densities,” in Proc. SPIE,

vol. 5429, 2004.

[9] M. Tobias and A. D. Lanterman, “Probability hypothesis density-based mul-

titarget tracking with bistatic range and Doppler observations,” Radar, Sonar

and Navigation, IEE Proceedings, vol. 152, no. 3, pp. 195–205, 2005.

168
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[137] D. E. Clark and J. Houssineau, “Faà di Bruno’s formula for Gâteaux differ-

entials and interacting stochastic population processes.” arXiv: 1202.0264,

2012.

[138] R. P. S. Mahler, B.-T. Vo, and B.-N. Vo, “CPHD filtering with unknown

cluter rate and detection profile,” IEEE Trans. on Signal Processing, vol. 59,

no. 8, pp. 3497–3513.

[139] F. Zhang, The Schur complement and its applications. Springer, 2005.

[140] S. Roweis, “Gaussian identities,” tech. rep., NYU Computer Science Depart.,

July 1999.

180


