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Abstract

With the increase of the resolution of modern radars and other detection equipments, one target may produce
more than one measurement. Such targets are referred to as extended targets. Recently, multiple extended target
tracking (METT) has drawn a considerable attention. However, one crucial problem is how to partition the
measurement sets accurately and rapidly. In this paper, an improved METT algorithm is proposed based on the
Gaussian mixture probability hypothesis density (GM-PHD) filter and an effective partition method using spectral
clustering technique. First, the density analysis technique is introduced to eliminate the disturbance of clutter, and
then the spectral clustering technique based on neighbor propagation is used to partition the measurements.
Finally, the GM-PHD filter is implemented to achieve the METT. Simulation results show that the proposed algorithm
has a better performance, especially a better real-time performance, than the conventional distance partition and
K-means++ methods.
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1 Introduction
In most target tracking cases, it is assumed that one tar-
get generates at most one measurement per time step
due to the low resolution sensor system, i.e., each target is
tracked as a single point source, and its extension is as-
sumed to be neglectable in comparison with sensor reso-
lution [1-3]. However, with the increase of the resolution
of modern radars and other detection equipments, the
echo signal of a target may be distributed in a different
range resolution cell, so the measurement is no longer
equivalent to a point, i.e., a single target may produce
multiple measurements. Such target is referred to as an
extended target in [4-7]. Recently, extended target track-
ing is a hot topic in the field of data fusion and has drawn
a considerable attention, especially the multiple extended-
target tracking (METT) [8-14].
In the conventional extended target tracking, the mea-

surements are modeled as a spatial distribution model
in [4], and two examples are used to prove the effective-
ness of the approach: a point target with more measure-
ment sources and an object with infinitely thin stick of
length l. Poisson process with a spatially dependent rate
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parameter is introduced in [5], assuming that each tar-
get produces measurements with Poisson-distributed
random number. It is considered that in this measure-
ment model, the target is sufficiently far away from the
sensor, and the measurements resemble a point cluster
rather than a geometric structure [9-11]. Random matrix
(RM) is proposed in [15], which has been used to track el-
liptical target extension [12-14,16,17]. Different methods
to estimate star-convex target extension and other gen-
eral shapes are the random hypersurface model (RHM)
and star-convex RHM by Baum and Hanebeck [6,7].
However, these methods can only effectively achieve the
single extended target tracking, and they cannot track
the multiple extended targets with unknown and vary-
ing number.
Recently, the random finite set (RFS) method [18,19]

for multi-target tracking has proven to be useful, which
allows estimation of multiple targets in the presence of
false measurements and detection uncertainty in a
Bayesian filter framework [20-22]. Especially, Mahler
has extended the probability hypothesis density (PHD)
filter to the METT [8] and derived a complete updated
formula, which can effectively achieve the METT.
Gaussian mixture (GM) technique is introduced to yield
a proximate solution in [9,10], and the proposed algorithm
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is referred to as extended target (ET)-GM-PHD filter.
Cardinality PHD (CPHD) filter and random matrix
technique are proposed to improve the performance of
METT in [11,13]. However, the problem of how to ef-
fectively partition the measurements of the extended
multi-targets remains unresolved in these methods. The
partition method based on distance is proposed in [10],
which needs suitable thresholds to generate enough par-
titions including the correct partition. So, the number
of partitions grows rapidly as the target number in-
creases, which implies that the distance partition con-
sumes a large computational time, making the tracking
algorithm intractable. The K-means++ method, the pre-
dicted partition method, and the ML method are pro-
posed in [12], but they also cannot effectively achieve
the measurement partition.
As to the difficulty of METT in measurement parti-

tion, a novel measurement partition algorithm is pro-
posed based on spectral clustering technique under the
ET-GM-PHD framework. First, the clutter can be effect-
ively eliminated from the measurement set by the dens-
ity analysis. Then, the spectral clustering technique is
used to achieve the measurement partition quickly. Fi-
nally, the ET-GM-PHD filter is implemented to obtain
the states of the extended targets. Simulation results
show that the proposed method has a better perform-
ance in measurement set partition than the conven-
tional methods.
The rest of the paper is organized as follows. Section 2

summarizes the measurement partition and the multiple
extended target PHD filter. Section 3 presents the pro-
posed measurement partition algorithm based on the
Gaussian kernel density analysis and the spectral clus-
tering and then implements the ET-GM-PHD filter. In
Section 4, two examples are presented with simulation
results to compare the performance of the proposed
method with those of the conventional methods. Finally,
the conclusions are given in Section 5.
2 Backgrounds
2.1 Measurement partition
In the METT, measurement partition is a matter of
prime importance due to many measurements originat-
ing from a single target. The aim is to keep the mea-
surements originating from a single target in the same
class. However, the number of target is varying with
time, and there is much clutter in the tracking scenario,
which makes the measurements hard to be partitioned
accurately.
Assume at time k, there are three measurements in

the measurement set Zk ¼ z 1ð Þ
k ; z 2ð Þ

k ; z 3ð Þ
k

n o
, then the par-

tition problem can be described as follows [10],
P1 : W 1
1 ¼ z 1ð Þ

k ; z 2ð Þ
k ; z 3ð Þ

k

n o
P2 : W 2

1 ¼ z 1ð Þ
k ; z 2ð Þ

k

n o
;W 2

2 ¼ z 3ð Þ
k

n o
P3 : W 3

1 ¼ z 1ð Þ
k ; z 3ð Þ

k

n o
;W 3

2 ¼ z 2ð Þ
k

n o
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k

n o
;W 4

2 ¼ z 1ð Þ
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n o
P5 : W 5

1 ¼ z 1ð Þ
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n o
;W 5

2 ¼ z 2ð Þ
k

n o
;W 5

3 ¼ z 3ð Þ
k

n o
where Pi denotes the ith partition, and Wi

j denotes the

jth subset in the ith partition, |Pi| denotes the subset

number in the ith partition, Wi
j

��� ��� denotes the measure-

ment number of the jth subset in the ith partition.

2.1.1 Distance partition theorem
Let d(⋅) be a distance measure between each pair of mea-
surements, and dl ≥ 0 be an arbitrary distance threshold.
Then, there is only one partition in which any pair of mea-

surements z ið Þ
k and z jð Þ

k satisfying d z ið Þ
k ; z jð Þ

k

� �
≤dl are in the

same cell [10,12].
It is noted that different distance thresholds may

produce different partitions; therefore, many different
thresholds are selected for producing enough partitions
including the correct one in the distance partition algo-
rithm, which makes this method time-consuming.

2.2 Multiple extended target PHD filter
The standard PHD filter for single measurement target
tracking has been described in [19]; however, it is not
suitable for METT. Recently, Mahler has derived a cor-
rect equation for extended target PHD filter based on
the Poisson multi-target measurement model [8]. The
predicted formula is the same as the standard PHD filter
[19]. The updated formula for the METT can be de-
scribed as [8]

Dkjk xð Þ ¼ LZk xð ÞDkjk−1 xð Þ ð2Þ
where Dk|k(x) denotes an intensity function of the state
x, and LZk xð Þ denotes the pseudo likelihood function. Zk

denotes the measurement set at time k. When Zk =∅,

LZk xð Þ≜1−pD xð Þ þ e−r xð ÞpD xð Þ ð3Þ
otherwise,

LZk xð Þ≜1− 1−e−r xð Þ
� �

pD xð Þ

þ e−r xð ÞpD xð Þ
X
P∠Zk

ωP

X
W∈P

r xð ÞWj j

dW

Y
z∈Z

ϕz xð Þ
λkck

ð4Þ

where P ∠ Zk denotes a partition subset P of the meas-
urement set Zk, W denotes a subset of a partition
P, and ∪W ∈ PW = Zk. ϕz(x) denotes the measurement
likelihood function of one measurement originating
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from an extended target x, r(x) is the measurement ex-
pectation, and pD(x) denotes the detection probability
of the sensor. Clutter has a Poisson distribution, and
its density can be described as κk(zk) = λkck(zk), λk de-
notes the mean number of clutter measurements, and
ck(zk) is the space distribution of the clutter.

ωP ¼
Y

W∈P
dWX

P′∠Zk

Y
W∈P′dW ′

ð5Þ

dW ¼ δ Wj j;1 þ Dkjk−1 e−rr Wj jpd
Y
z∈W

ϕz

λkck

" #
ð6Þ

where δi,j denotes the Kronecker delta function and
r = r(x).
The Gaussian mixture implement of the multiple ex-

tended target PHD filter is presented in [10] and referred
to as ET-GM-PHD filter.

3 The proposed algorithm
In order to solve the problem of the measurement parti-
tion, a novel method is proposed in this section. The
spectral clustering technique is introduced to partition
the measurements of the multiple extended targets;
then, the ET-GM-PHD framework is employed to esti-
mate the target states. However, the spectral clustering
method is sensitive to the clutter. To solve this problem,
the clutter measurements are eliminated from the meas-
urement sets by the Gaussian kernel density analysis
technique.

3.1 Gaussian kernel density
Assume x1, x2,…, xn ⊂ R

d are independent and identically
distributed (i.i.d) random variables, whose probability
distribution function is defined as f(x), then the kernel

density estimator f̂ xð Þ can be obtained by [23,24]:

f̂ xð Þ ¼ 1

nhd
Xn
i¼1

K
xi−x
h

� �
ð7Þ

where K(⋅) denotes the kernel function, and h denotes
the bandwidth (BW) parameter of the kernel. Moreover,
the kernel function must satisfy the following properties:

K(−u) = K(u), Sup|K(u)| <∞, and
Z þ∞

−∞
K uð Þdu ¼ 1. Gen-

erally, kernel functions include Gaussian function, Epa-
nechnikov function, and biweight function. In this paper,

assume that Zk ¼ zik
� �Nz;k

i¼1 denotes the measurement set
at time k and the Gaussian function is used as the kernel
function. Then, the Gaussian kernel density function of
the measurements can be described as
f zik
� � ¼ 1

Nz;kh
d=2 2πð Þd=2

XNz;k

j¼1

exp −
1
2h

z ik−z
j
k

� �
z ik−z

j
k

� �T	 


ð8Þ

where Nz,k denotes the number of measurements at time
k, and T denotes the transpose operator. zik denotes the
ith measurement of the measurement set Zk.
In order to decrease the computational cost, only the

neighbor measurements are considered for density com-
putation. Therefore, we define the measurement density
as

f z jk

� �
¼ 1

C

X
z i
k
∈near z j

kð Þ
exp −

d z jk ; z
i
k

� �2
2h

0
B@

1
CA ð9Þ

where z ik∈near z jk

� �
means that the z ik and z jk are neigh-

bors,and d z jk ; z
i
k

� �
denotes the Euclidean distance be-

tween z jk and z ik . C is the normalization constant. As can
be seen from Equation 9, the more focused the mea-
surements are, the bigger the measurement densities
will be.
Figure 1 shows the measurement density of the ex-

tended target and clutter measurements. As can be seen
that if a suitable density threshold is selected, the clutter
measurements can be removed effectively.

3.2 Density analysis and clutter elimination
In this section, the density threshold τ is selected by
density histogram, and used to remove the clutter from
the measurement sets. The density threshold can be ob-
tained as follows.
(1) Assume that fmax and fmin denote the maximum

measurement density and the minimum measurement
density, respectively. Divide [fmin fmax] into Nz equal
parts, where Nz denotes the number of the measure-
ments. The density interval can be described as
[fmin fmin + d), [fmin + d fmin + 2d),…, [fmax − d fmax],
where d = (fmax − fmin)/Nz.
(2) Calculate the measurement number of each density

interval, find out the first density interval which does
not include any measurement ranging from the max-
imum density to the minimum density, and then each
density value in this interval can be selected as the dens-
ity threshold τ. In this paper, the maximum density value
in this interval is selected.
Notice that there are more measurements in the area

of high density. On the contrary, small measurements
exist in area of low density, which may be clutters.
Therefore, a density interval without measurements may
exist, which is the interval to be obtained.
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Figure 1 Measurement density. (a) Measurements of the targets and clutter. (b) Measurement density of the targets and clutter.
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3.2.1 Clutter removal
If f zik
� �

> τ , then set zik as the measurement originating
from the target; otherwise, set zik as the clutter measure-
ment and remove it from the measurement set. Finally,
the new measurement set without clutter can be ob-
tained and described as Gk ¼ zik f zik

� �
> τg���

.

3.3 Spectral clustering based on neighbor propagation
In recent years, spectral clustering has become one of the
popular clustering approaches due to their high perform-
ance in data clustering and simplicity in implementation
[25]. Compared with traditional clustering techniques,
there is no need to suppose the data distribution as
spheral in spectral clustering method; thus, the nonspheral
distributed clusters can be recognized by using the ei-
genvectors of the normalized similarity matrix. As-
sume at time k, the measurement set without clutter is
Gk ¼ zik

� �n
i¼1 , the spectral clustering process based on

neighbor propagation is described as follows [25,26].

(1) Calculate the similarity matrix C of the new
measurement set Gk.
(a) Calculate each Euclidean distance between two

measurements, i.e.

bij ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
zik;x−z

j
k;x

� �2
þ zik;y−z

j
k;y

� �2r
, and construct

the distance matrix B = [bij]n × n, where

zik;x; z
i
k;y

� �
denotes the position of the ith

measurement,and n = |Gk| denotes the
measurement number in Gk. Then the
similarity matrix can be denoted as C = [cij]n ×
n, where cij ¼ exp −

b2ij
2σ2

� �
, σ is a scale

parameter to control how fast the similarity
attenuates with the distance between the ith
and jth measurements [26]. In this paper, we
set σ as an empirical parameter, and let σ = 1.5.
(b) The neighbor relation matrix is defined as T = [tij]
n× n, which is a symmetrical matrix. In the initial
stage, set each element value as zero, and if bij
< ε, let tij = 1 and tji = 1, where ε ¼ maxi¼1:n

minj¼1:n bij
� �� �

denotes the distance threshold.
(c) Calculate the mode matrix M according to the

rule of neighbor propagation and the neighbor
relation matrix T. The rule of neighbor

propagation can be described as, if gik ; g
j
k

� �
∈R

and gjk ; g
l
k

� �
∈R, then gik ; g

l
k

� �
∈R.
The mode Mi denotes the ith row of M, and
the measurement subset corresponding to the
mode Mi meets the neighbor relation. |M|
denotes the number of the modes.
(d) Update T and C. If tij = 1, tji = 1, and tik = 0, set
tik = 1, tki = 1, cik =min(cij, cjk), and cki = cik.
Update the similarity of each mode, let c(m, n)
= max(min(C(Mi,Mj))), where m and n denote
the measurements of Mi and Mj, respectively.

(2) Calculate the Laplacian matrix L, L =D− 1/2CD− 1/2,
where D is a diagonal matrix, and Dii ¼

Xn

j¼1
Cij,

Dij = 0, i ≠ j.
(3) Construct the matrix V. Let V = [v1, v2,…, vK],

where v1, v2,…, vK are the eigenvectors
corresponding to the K largest eigenvalues
1 = λ1 ≥ λ2,…, ≥ λK of the matrix L.

(4) Form the matrix Y from V by renormalizing each
row of V, and the element yij of Y is defined as

yij ¼ V ij

, XK
j¼1

V 2
ij

 !1=2

.

(5) Set each row of Y as a sample of the K - dimension
space, and use the K-means++ method to cluster
the samples. Then the samples are divided into K
classes, where K is an integer and K∈ (KL, KU). KL

and KU denote the minimum and the maximum
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class numbers, respectively. Set Class(K) as a clus-
ter result of Gk.

(6) Repeat the step (5) to obtain the measurement
partition Pk ¼ ∪

K∈ KL;KUð Þ
Class Kð Þ.

3.3.1 Remark 1
Assume that NG is the number of measurements in Gk

and β denotes the measurement rate conforming to the
Poisson distribution. Then, the mean and the variance of
the measurement rate are identical and equal to β.
Therefore, 2β measurements are produced at most from
an extended target, so we can set KL ¼ ⌈NG

2β⌉. Moreover, |
M| is bigger than the number of the targets, and is
smaller than the measurement number, so we can set
KU = |M|.

3.4 The ET-GM-PHD filter implementation
Implement the ET-GM-PHD filter according to the
measurement partition Pk, and extract the target states.
Refer to [10] for the detailed process.

4 Simulations
In order to demonstrate the performance of the proposed
algorithm, we implement the proposed measurement par-
tition method, the distance partition, and the K-means++
method under the framework of ET-GM-PHD filter [10].
The two examples are implemented on Dell computer
with Intel(R) Core(TM) CPU i5 3470, 3.2 GHz and 4GB
RAM (Dell Inc., Round Rock, TX, USA).
Two different metrics are used for evaluating the algo-

rithm performance. The first is the statistics of the target
number estimates, and the second is the optimal subpat-
tern assignment (OSPA) distance [27], which is recently
developed and defined as

�d
cð Þ
p X;Yð Þ ¼ 1

n
min
π∈
Q

n

Xm
i¼1

d cð Þ xi; yπ ið Þ
� �p

þ cp n−mð Þ
 ! !1=p

ð10Þ

where X = {x1,⋯, xm} and Y = {y1,⋯, yn} are arbitrary fi-
nite subsets, 1 ≤ p <∞, c > 0, m, n ∈No = {0, 1, 2,⋯}. If m

> n, then �d
cð Þ
p X;Yð Þ ¼ �d

cð Þ
p Y ;Xð Þ . In the simulation, the

parameters of OSPA distance are set as p = 2 and c = 60.
100 Monte Carlo runs are performed.

4.1 Example 1: crossing extended target tracking
Assume that Χk = [xk, yk, vx,k, vy,k]

T denotes the extended
target state at time k, where (xk, yk) denotes the target pos-

ition and (vx,k, vy,k) denotes the velocity. z
jð Þ
k ¼ x jð Þ

k ; y jð Þ
k

h i
is

the measurement of the jth sensor. Each extended target
follows a linear Gaussian dynamical model, and sensor
has a linear Gaussian measurement model, i.e.,
f k k−1 xk xk−1Þ¼N xk ;Fxk−1;Qk−1ð Þjðj

gk zk xkÞ ¼ N zk ;Hxk ;Rkð Þjð

where N(⋅;m, P) denotes a Gaussian density with mean

m and covariance P. F ¼ I2 ΔtI2
02 I2

� 

is the state transi-

tion matrix, and Qk−1 ¼ σ2v

Δt4

4
I2

Δt3

2
I2

Δt3

2
I2 Δt2I2

2
64

3
75 is the

process noise covariance, where I2 and 02 denote the
2 × 2 identity and zero matrices, respectively. σv = 2 is
the standard deviation of the process noise, and Δt = 1s
is the sample interval. Hk ¼ I2 02½ � denotes the meas-
urement matrix, Rk ¼ σ2

ε I2 is the covariance of the
measurement noise, and σε = 20 is the standard devi-
ation of the measurement noise. Let the probabilities of
target survival and detection be Ps = 0.99 and PD = 0.99,
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respectively. The clutter is modeled as a Poisson RFS
with the mean λ =10 over the observation space.
The birth intensity is described as

Db xð Þ ¼ 0:1N x;m 1ð Þ
b ; Pb

� �
þ 0:1N x;m 2ð Þ

b ; Pb

� �
þ 0:1N x;m 3ð Þ

b ; Pb

� �
þ 0:1N x;m 4ð Þ

b ; Pb

� �

where m 1ð Þ
b ¼ ‐800 ‐800 0 0½ �T , m 2ð Þ

b ¼ ‐800 ‐300 0 0½ �T ,
m 3ð Þ

b ¼ ‐492 230 0 0½ �T , m 4ð Þ
b ¼ ‐654 409 0 0½ �T , and Pb =

diag([100, 100.25, 25]).
Figure 2 shows the real tracks of the extended targets

with cluttered measurements in x- and y-coordinates.
Figure 3 shows the number estimate of the extended tar-
gets, and Figure 4 shows the OSPA distance. As can be
seen, the proposed method has an accuracy similar to
that of the distance partition method, but better than
the K-means++ method, which is mainly because the K-
means++ method is sensitive to the clutter and needs a
good initial cluster center.
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Figure 5 Partition number estimates.
Figure 5 shows the partition number of the three dif-
ferent methods, and Figure 6 shows the average run time
of the three methods. It is clear that the proposed
method has the smallest partition number and least
computational cost, followed by the distance partition
method, and the K-means++ method has the biggest
partition number and highest computational cost. The
reason is that the clutter measurements are removed
from the measurements by the density analysis tech-
nique, and the neighbor propagation technique is intro-
duced to initially partition the measurements. However,
for the K-means++ method, the way to set the k value is
a problem, so the target number traversal technique is
used. In this simulation, we also set K ∈ (KL, KU). Notice
that the partition number sharply decreases at time 50 s;
the reason is that the targets make a cross with each
other, and thus the measurements mix and cannot be
separated.
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Figure 7 True tracks and the real measurements.
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4.2 Example 2: close spaced extended targets tracking
Assume that two close spaced extended targets make a
parallel motion 100 m apart in this scenario, and the birth

intensity is described as Db xð Þ ¼ 0:1N x;m 1ð Þ
b ; Pb

� �
þ 0:1

N x;m 2ð Þ
b ; Pb

� �
, where, m 1ð Þ

b ¼ −800 −600 0 0½ �T , m 2ð Þ
b

¼ −700 −500 0 0½ �T , and Pb = diag([100, 100.25, 25]). The
other parameters are the same as those of example 1.
Figure 7 shows the real tracks of the extended targets

with cluttered measurements in x- and y-coordinates.
Figure 8 shows the number estimate of the extended tar-
gets, and Figure 9 shows the OSPA distance. Figure 10
shows the partition number of the three different
methods, and Figure 11 shows the average run time of
the three methods.
It is clear that the proposed method has the smal-

lest partition number and least computational cost al-
though its accuracy is similar to that of the distance
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Figure 9 OSPA distance statistic.
partition and obviously better than that of the K-
means++ method.
5 Conclusions
For the METT in clutter, this paper introduces the
spectral clustering technique to partition measure-
ments and track the multiple extended target states
using the ET-GM-PHD filter. First, we analyze the
measurement density and remove the clutter from the
measurements. Then, the spectral clustering method
based on the neighbor propagation technique replaces
the distance partition in the ET-GM-PHD algorithm.
The simulation results show that the proposed algo-
rithm has a better performance than the conventional
methods, especially that it decreases the computational
cost. Thus, the proposed algorithm has a good pro-
spect in the engineering practice.
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