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ABSTRACT

Multi-object tracking is the problem of tracking and estimation of an unknown and

time-varying number of objects and their individual states from a sequence of obser-

vations. The nature of the standard multi-object observation, which encompasses mea-

surement noise, missed detections, false detections and association uncertainty, makes

this problem quite challenging. The random finite set approach for multi-object filtering

founded by Mahler is an elegant formulation of the multi-object filtering problem in

which the collection of object states is represented as a finite set. In general, the multi-

object Bayes filter is intractable due to the inherent combinatorial nature of multi-target

densities and the multiple integrations on the infinite dimensional multi-object state

and observation spaces.

The recent establishment of the labeled random finite set framework for tracking

paved the path for a tractable analytic solution to the multi-object Bayes filter popularly

known as the generalized labeled multi-Bernoulli filter, which is also a tracker due to its use

of distinct labels in tagging the object states. In its standard form, the generalized la-

beled multi-Bernoulli filter is capable of estimating the trajectories of an unknown and

time-varying number of objects under the standard multi-object dynamic and obser-

vation models. As with most multi-object filters, the robustness of the tracking perfor-

mance of the generalized labeled multi-Bernoulli filter is heavily dependent in certain

knowledge and assumptions regarding the multi-object system. Knowledge regarding

object dynamics, detection and clutter profile are a few critical examples. The central

objective of this dissertation is to present new techniques constructed upon the labeled

random finite set framework, for robust tracking, where complete information regard-

ing the multi-object system is not available, thus broadening its applicability in the real

world.

The uncertainty of object dynamics, clutter and detection are three phenomena that

need to be contended with in robust multi-object tracking. The first contribution of this

thesis is a labeled RFS algorithm that operates in a jump Markov setting where the ob-

ject dynamics are time variant (maneuvering objects). The second contribution of this

vii



dissertation is a labeled RFS based algorithm that operates with no knowledge of the

clutter and detection profile. This can be useful since assigning significantly disparate

values for clutter and detection model parameters in situations where these parameters

are not known and time-varying, could lead to biased estimates. The third contribu-

tion is a labeled RFS algorithm that performs tracking on visual data without using

detections and thus could also be treated as an alternative technique to the second con-

tribution with regards to visual data. All algorithms produce trajectories in addition to

object state estimates.
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CHAPTER 1

INTRODUCTION

The significance of object tracking was well recognized and motivated primarily

by military defence applications in which precise detection and tracking of the

enemy on ground, air and water were crucial. The Wiener filter [1] developed at the

Massachusetts Institute of Technology and mounted on American anti-aircraft systems

during the era of world war II, is one of the earliest examples. It detailed a method for

reducing the amount of noise present in continuous time signals based on the mini-

mum mean square error. A similar method for discrete time signals was proposed by

Andrey Kolmogorov, contributing to the Russian war effort [2]. Both methods relied

on frequency domain techniques for modelling the systems under concern. Postwar,

scientists turned towards using time domain techniques for modelling such systems

which gave rise to the famous Kalman filter that aptly demonstrated its usefulness in

estimating the spacecraft trajectories during the first moon landing in 1969 [3]. Today

object tracking is instrumental in many other applications such as bio-medicine [4–6],

robotics [7, 8], autonomous vehicles [9, 10] and space science [11, 12] to name a few.

The Kalman filter is an exact solution to the Bayesian estimation problem under

linear dynamic and observation models and Gaussian noise assumptions. The Kalman

filter and its variations tackle the problem of estimating the true state from noisy ob-

servations, and is directly applicable to the single object tracking problem where the

tracked object is known to be present throughout the course and the received mea-

surements are affirmed to be produced by none other than the said object. Multi-object

tracking is more complicated than solving several single object tracking problems sup-

posing that information regarding the number of objects to be tracked and the origin of

each measurement cannot be discerned, which is often the case. Consider a maritime

surveillance system for example. Different marine objects enter (termed births in track-
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2 CHAPTER 1. INTRODUCTION

ing terminology) the surveilled region and exit (termed deaths) at different times and

there is no way of knowing exactly how many vessels are in the state space at a given

time. Especially in instances where the state space is densely populated by objects of

interest, it is too difficult to pinpoint which measurement should be attributed to which

object. This is known as the data association problem. This problem is further exacer-

bated by the sensors/detection algorithms being unable to obtain a measurement from

each object of interest (missed detections) and picking up incorrect measurements that

cannot be attributed to a valid object (false measurements/clutter).

A plethora of techniques that attempt to solve the multi-object tracking problem has

surfaced in the past few decades. The random finite set (RFS) approach to the multi-

object estimation problem, which came to light circa at the beginning of the millen-

nium, is a principled and mathematically consistent approach founded upon stochas-

tic geometry and point process theory [13, 14]. Until 2013 the main criticism regarding

RFS-based algorithms was that they were multi-object filters rather than trackers. i.e.,

these algorithms were able to produce state estimates for the objects in the system

but they were unable to maintain a correlation between the estimates at different time

steps innately without the aid of auxiliary heuristics/post-processing methods. The

recent discovery of labeled random finite set based multi-object conjugate priors [15]

laid these claims to rest.

The classical techniques and state-of-the-art RFS algorithms for the multi-object fil-

tering/tracking problem is deliberated in Chapter 2. Even though robust algorithms

for multi-object filtering using RFS have been researched extensively, robust RFS-based

multi-object trackers for diverse challenging scenarios and conditions remains a rela-

tively unexplored territory. The overall objective of this thesis is to further strengthen

the present day labeled RFS based multi-object trackers for such scenarios by investi-

gating robust techniques to increase relevancy in real-world applications.

1.1 Motivation and Scope

Present day multiple object tracking algorithms operate with the aid of a significant

amount of prior knowledge and assumptions regarding the multi-object system. This

mainly includes knowledge and assumptions regarding the behaviour of the objects

(dynamics and process noise), statistics of sensors (measurement noise, the rate of



MOTIVATION AND SCOPE 3

false positive/negative measurements) and regions of interest in state space regard-

ing object births/deaths and their respective probabilities. While some knowledge can

be readily obtained by observing the state/observation space (e.g. in a radar-based

tracking application an airport is a region of interest for object births/deaths), some

knowledge has to be extracted by analysing training data over long periods of time

(e.g. missed detection rate of a sensor). In the event of a change in the multi-object

system conditions from the training data conditions (eg: weather), some prior knowl-

edge withheld regarding the multi-object system would no longer be valid. Therefore

in application to different real-world problems, algorithms that presume to acquire

complete and accurate prior knowledge regarding the system fail to deliver a robust

performance.

This thesis aims to approach the problem of robust tracking in the absence of the

required prior knowledge and challenging background conditions from a labeled RFS

perspective [13, 14]. The earlier work on multi-object filtering based on unlabeled RFS

(discussed in Section 2.4) were unable to generate trajectories. The labeled RFS ap-

proach to multi-object tracking (discussed in Section 2.5) addresses this shortcoming

in the unlabeled RFS-based algorithms by maintaining unique labels for the estimated

objects. Even though research on robust unlabeled RFS algorithms that operate in the

absence of prior knowledge has been carried out by others, labeled RFS algorithms in

addressing this problem is sparse and this dissertation aims to bridge that gap. A few

specific cases in multi-object tracking that are focused upon in this dissertation, where

the robustness of a tracking algorithm is challenged are discussed in the following.

A typical expectation of generic multi-object tracking algorithms is that all objects

in the system follow a common dynamic model. This is not the case where maneu-

vering objects are concerned, here dynamics could change drastically when different

maneuvers are applied at different times. Therefore the motion of such an object can-

not be encapsulated by a single dynamic model, and a combination of motion models

that characterize different maneuvers may be needed. Maneuvering object tracking is

the subject of numerous works as it is more challenging than standard tracking due

to the uncertainty in object maneuvers on top of the uncertainties in noise, clutter,

data association and detection. The interacting multiple models (IMM) and variable-

structure IMM (VS-IMM) estimators [16–21] are two well known single-object filtering
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algorithms for maneuvering objects. The number of modes in the IMM is kept fixed,

whereas in the VS-IMM the number of modes is adaptively selected from a fixed set

of modes for improved estimation accuracy and computational efficiency. The jump

Markov system (JMS) or multiple models approach has proven to be an effective tool

for maneuvering object tracking. In this approach, the object is assumed to be switch-

ing between a set of system models in a Markovian fashion. One objective of this dis-

sertation is to address this problem of tracking objects with variable dynamics using a

JMS labeled RFS algorithm.

In multi-object filtering, aside from assumptions regarding the dynamics, the vari-

ous sensors and detection algorithms used invariably miss objects in the scene as well

as generate false measurements. The detection of individual objects is characterized

by the detection probability. False measurement generation is usually modeled as a

homogeneous Poisson process characterized by a clutter rate. Knowledge of parame-

ters such as clutter rate and detection probability is of critical importance in detection

based tracking methods and their values vary with each detection method. While these

parameters are assumed to be known in most multi-object tracking techniques, this is

generally not the case in practice [22, 23]. In application areas such as radar, exact

knowledge of these model parameters is given through the radar model. In some ap-

plications, these parameters are computed offline from training data trusting that the

training data resembles the actual system. In the real world, the time-varying nature of

these background parameters further aggravates this problem. For example, the clutter

rate and detection probability parameters which are subject to the weather and light-

ing conditions undeniably vary with time in outdoor scenarios. Consequently, there

is no guarantee that the parameters chosen from a particular training data set will be

valid throughout. Thus algorithms that adapt to an unknown and varying clutter and

detection profile remain an important topic in robust tracking. The second objective of

this dissertation is to devise a labeled RFS based algorithm that performs joint tracking

and estimation of unknown clutter and detection profile parameters.

Most multi-object tracking algorithms found in the literature are designed to oper-

ate on an observation set that consists of point measurements (detections). In practice,

the sensor typically provides a raw data image. For example, in a radar application the

antenna provides a raw image where each pixel corresponds to the received power in
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a particular spatial location. This raw data is subsequently processed into point mea-

surements by a detection algorithm. The popularity of such detection based tracking is

understandable due to the efficiency in terms of memory and computation it provides

by compressing raw data into a finite set of points [24]. However, for applications with

a low signal to noise ratio (SNR), preprocessing data to extract detections can result in

significant information loss [25]. In low SNR conditions, the threshold needs to be low

enough to allow a decent detection probability, which also means a large number of

false detections. In visual tracking, numerous techniques are employed to extract de-

tections from raw data such as background/foreground matching via kernel density

estimation [26], colour histograms [27], human shape models [28], multi-modal rep-

resentations [29] and lazy background subtraction [30]. Where visual tracking appli-

cations are concerned, measurements obtained using such techniques typically output

blobs/regions as opposed to point detections. Further, in some instances, the detection

algorithms in visual applications are prone to detecting a single large object as multiple

small blobs, to detecting multiple small objects as a single large blob and to miss de-

tecting overlapping objects (occlusion). Track-before-detect (TBD) techniques attempt

to avoid such issues encountered in detection based tracking and consequently avoid

difficulties with unknown clutter and detection profile. The third objective of this dis-

sertation is to produce a track-before-detect labeled RFS solution for visual data.

The structure of this dissertation, in summary, is as follows. Classical approaches

to multi-object filtering/tracking, fundamental theories of the unlabeled and labeled

RFS frameworks and algorithms constructed upon them are discussed in Chapter 2.

Chapter 3 presents a labeled RFS algorithm for tracking maneuvering objects using

jump Markov systems. Chapter 4 proposes a labeled RFS algorithm for tracking under

unknown clutter and detection profile. Chapter 5 presents a labeled RFS method for

visual tracking without using detections. Chapter 6 concludes the dissertation with an

analysis of the key findings and future directions.

1.2 Key Contributions

This thesis adopts the labeled RFS approach to the multi-object tracking problem. The

key premise of this work is that the labeled random finite set framework is capable of

producing tracking algorithms that deliver a robust performance under various chal-

lenging conditions that are encountered in the real world.
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Ì The first contribution is a labeled RFS algorithm for tracking maneuvering ob-

jects. A JMS setting is utilized to model the object dynamics. This algorithm

propagates the multi-object posterior as a generalized labeled multi-Bernoulli

[15] density taking into account the JMS dynamic model. In addition to esti-

mating the object states, the algorithm is capable of constructing trajectories and

discerning the dynamic model which best represents the behaviour of each object

at each time step. This contribution has appeared in the author’s conference pa-

pers [31, 32] and journal article [33]. In this dissertation, it appears in Chapter 3.

Ì The second contribution is a labeled RFS based algorithm that operates with no

knowledge of the clutter and detection profile. By modeling clutter as originat-

ing from a special class of non-interacting objects which are not of interest, a JMS

solution can be adapted to produce a tractable algorithm for tracking with un-

known and varying clutter rate. The proposed algorithm is further extended to

estimate the unknown detection probability by augmenting the object state vec-

tor with the detection probability. In addition to the object state estimates the

algorithm produces trajectories and estimates for the clutter and detection pro-

file parameters. This contribution has appeared in the author’s journal article

[33]. In this dissertation, it appears in Chapter 4.

Ì The third contribution is a labeled RFS algorithm that performs tracking on visual

data without using detections. The raw image is provided as a single observation

to the algorithm without extracting point measurements on objects of interest.

Utilizing a likelihood function for the raw measurement given the multi-object

state, the algorithm produces trajectories in addition to object state estimates.

This contribution has appeared in the author’s conference paper [34]. In this

dissertation, it appears in Chapter 5.



CHAPTER 2

BACKGROUND

This chapter provides a brief introduction to the techniques that are prevalently

used in present-day multiple object tracking and the theories upon which these

techniques are constructed.

2.1 Bayesian estimation and tracking

Estimation theory can be broadly construed as studies on the estimation of underlying

unknown parameters of a system utilizing empirical data of a stochastic nature. Object

tracking is primarily an estimation problem as it aims to sequentially estimate the state

of a dynamic system via a sequence of noisy measurements obtained from the system.

Object tracking with Bayesian inference can be roughly described as inferring the

posterior probability density for object states using priors on the object states and the

likelihood of the observation. All available information for the object state is obtainable

from the posterior1 probability density. The expected a posteriori (EAP) and the max-

imum a posteriori (MAP) are two popularly used estimators [16]. In situations where

observations regarding the system state are received consecutively, an algorithm that

recursively infers the posterior density with fresh observations is much preferred over

an algorithm that processes the entire batch of observations at the end of the day. Such

an iterative algorithm, also styled as a recursive algorithm, upon receiving fresh mea-

surements, updates and feeds the posterior density back into the filter to be used in

the next iteration. Customarily, in order to construct such a recursive algorithm, two

probabilistic models are needed: one describing the prior knowledge regarding the

kinematics/features of object states, referred to as the dynamic model, and a model de-

1 The term posterior density technically referes to p�xk,xk�1, ...x0Szk, zk�1, ...z1� and the term filtering
density is used for p�xk,Szk, zk�1, ...z1�. In this work we follow the standard nomenclature of using pos-
terior and filtering density interchangeably.

7
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scribing the noisy measurement generation referred to as the observation model need

to be drafted. Consider the single object tracking problem. Let xk > Rnx denote the

state of a single object at time k ( nx being the dimension of the state vector ) and let

x0�k denote all states of that object from beginning up to time k. Let zk > Rnz denote an

observation received regarding the said object at time k ( nz being the dimension of the

measurement ) and let z1�k denote all such measurements received from time 1 up to

k. In general, the dynamic model which describes the evolution of a single object state

xk�1 > Rnx at time k � 1 to xk > Rnx at time k can be expressed as,

xk � φk�1 �xk�1� � vk�1 , (2.1)

where φk�1 is a state transition function and vk�1 is the process noise.

In general, the model for an observation zk > Rnz for an object with state xk at time

k can be expressed as,

zk � hk �xk� �wk , (2.2)

where hk is a measurement generation function and wk is the measurement noise.

A recursive filtering algorithm typically comprises of two stages, namely predic-

tion and update. Let the state transition density that arises from the dynamic model

Eq. (2.1) be denoted by fkSk�1�� S� � and hence fkSk�1�x�Sx� the probability of an object

with state x transitioning to new state x�. Let the filtering density at time k � 1 be de-

noted by πk�1�� Sz1�k�1�. By way of the Chapman-Kolmogorov equation, the predicted

density πkSk�1�� Sz1�k�1� is,

πkSk�1�xkSz1�k�1� � S fkSk�1 �xkSxk�1� πk�1�xk�1Sz1�k�1� dxk�1. (2.3)

Let gk�� S� � be the measurement likelihood arising from the observation model Eq. (2.2)

and hence gk�zkSxk� the likelihood of receiving measurement zk for an object with state

xk. In the update stage, using the new observation with Bayes rule, the posterior den-

sity πk�� Sz1�k� for the object state at time k is,
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πk�xkSz1�k� �
gk�zkSxk�πkSk�1�xkSz1�k�1�
R gk�zkSx�πkSk�1�xSz1�k�1� dx

. (2.4)

The recursive single object Bayes filter is encapsulated by Eq. (2.3),Eq. (2.4). In this

general form, it has no analytic solution.

2.2 Analytic solutions for the single object Bayes filter

2.2.1 Kalman Filter

An analytic solution for the recursive single object Bayes filter for the special case of

linear state transition and observation functions with additive temporally uncorrelated

Gaussian noise, coined the Kalman Filter, was first introduced by Rudolf Kalman in

1960 [35]. For such a special case, the Kalman filter dictates that the posterior density

remains Gaussian at every time step [36]. In this special case, Eq. (2.1),Eq. (2.2) have

the special form,

xk � Fk�1 xk�1 � vk�1, (2.5)

zk �Hk xk �wk, (2.6)

where vk�1 � N �� ; 0, Qk�1�, is a sequence of uncorrelated noise, wk � N �� ; 0, Rk�,
is a sequence of uncorrelated noise, Fk�1is a nx�nx matrix, Hk is a nz �nx matrix, Qk�1

is a nx � nx matrix and Rk is a nz � nz matrix. This means,

fkSk�1�xkSxk�1� � N �xk; Fk�1xk�1, Qk�1� , (2.7)

gk�zkSxk� � N �zk; Hkxk, Rk� . (2.8)

Assuming that the posterior density πk�1�� Sz1�k�1� at time k � 1 is the Gaussian density

N �� ; mk�1, Pk�1�, substituting πk�1�� Sz1�k�1� and Eq. (2.7) in Eq. (2.3), the following

Kalman filter expression for predicted density πkSk�1�� Sz1�k�1� is obtained.

πkSk�1�xkSz1�k�1� � N �xk ; mkSk�1, PkSk�1�, (2.9)

mkSk�1 � Fk�1mk�1, (2.10)

PkSk�1 � Fk�1Pk�1F
T
k�1 �Qk�1. (2.11)
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Substituting πkSk�1�� Sz1�k�1� and Eq. (2.8) in Eq. (2.4) the following Kalman filter expres-

sion for posterior density πk�� Sz1�k� is obtained.

πk�xkSz1�k� � N �xk ; mk, Pk�, (2.12)

mk �mkSk�1 �Kk�zk �HkmkSk�1�, (2.13)

Pk � PkSk�1 �KkSkK
T
k , (2.14)

Kk � PkSk�1H
T
k S

�1
k , (2.15)

Sk �HkPkSk�1H
T
k �Rk. (2.16)

As both the prior and posterior densities in the Kalman filter are Gaussian, the

Kalman filter is a computationally tractable solution for the single object Bayes filter.

2.2.2 Extended Kalman Filter

The extended Kalman filter (EKF) [37, 38] has proved to be effective for scenarios with

Gaussian noise where the dynamic/observation models are mildly non-linear. The

first terms of the Taylor series expansions of the non-linear functions φk�1�� �, hk�� �,

denoted by F̂k�1, Ĥk as given below are used as linear approximations in computing

the covariances of the predicted and updated densities. In case only one of the models

is non-linear, it is sufficient to perform the EKF only at the corresponding stage and

perform the standard Kalman filter at the other stage.

F̂k�1 �
∂ φk�1�x�

∂ x
U
x�mk�1

(2.17)

Ĥk �
∂ hk�x�
∂ x

U
x�mkSk�1

(2.18)

The extended Kalman filter equations for computing the predicted and posterior

densities at time k given the posterior πk�1�� Sz1�k�1� at time k�1 as the Gaussian density

N �� ; mk�1, Pk�1�, is as follows.

πkSk�1�xkSz1�k�1� � N �xk ; mkSk�1, PkSk�1�, (2.19)

mkSk�1 � φk�1�mk�1,�, (2.20)

PkSk�1 � F̂k�1Pk�1F̂
T
k�1 �Qk�1, (2.21)
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πk�xkSz1�k� � N �xk ; mk, Pk�, (2.22)

mk �mkSk�1 �Kk �zk � hk�mkSk�1�� , (2.23)

Pk � PkSk�1 �KkSkK
T
k (2.24)

Kk � PkSk�1Ĥ
T
k S

�1
k , (2.25)

Sk � ĤkPkSk�1Ĥ
T
k �Rk. (2.26)

2.2.3 Unscented Kalman Filter

In contrast to the EKF which performs analytic linearization, the unscented Kalman

filter (UKF) [39–41] performs statistical linearization. Rather than propagating the

mean and covariance of the Gaussian posterior density forward, the UKF propagates a

set of N � 2 nx � 1 weighted sample points representing the density forward where nx

is the dimension of the state vector. Let us denote the set of weighted sample points at

time k � 1 by ��x�i�
k�1,w

�i��� i�1�N . The selection of these sample points is such that they

encompass the mean and the covariance of the density from which they are sampled.

Sample Point Value Weight

i � 1 x
�i�
k�1 �mk�1, w�i�

�
K

�nx�K�

i � 2, ... , nx � 1 x
�i�
k�1 �mk�1 � �A�i�1 , w�i�

�
K

2�nx�K�

i � nx � 2, ... , 2nx � 1 x
�i�
k�1 �mk�1 � �A�i�n�1 w�i�

�
K

2�nx�K�

Table 2.1: Computing sample points : A �

»�nx �K�Pk�1 , the subscripted square
brackets�A�i denotes the ith row of matrix A and K is a scaling parameter such that�nx �K� x 0.

The sample points are propagated forward through the non-linear transform for

the object dynamics to compute the predicted mean mkSk�1 and covariance PkSk�1:

mkSk�1 �

N

Q
i�1

w�i� φk�1 �x�i�
k�1� , (2.27)

PkSk�1 � Qk�1 �

N

Q
i�1

w�i� � φk�1 �x�i�
k�1� �mkSk�1� � φk�1 �x�i�

k�1� �mkSk�1�
T
. (2.28)
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The predicted measurement ẑkSk�1 is calculated using the propagated sample points:

ẑkSk�1 �

N

Q
i�1

w�i� hk � φk�1 �x�i�
k�1� � . (2.29)

The parameters of the posterior density of the UKF are calculated using the pre-

dicted measurement ẑkSk�1.

mk �mkSk�1 �Kk �zk � ẑkSk�1� , (2.30)

Pk � PkSk�1 �KkSkK
T
k , (2.31)

Kk � PxzS
�1
k , (2.32)

Sk � Pzz �Rk, (2.33)

Pxz �
N

Q
i�1

w�i� � φk�1 �x�i�
k�1� �mkSk�1� �hk � φk�1 �x�i�

k�1�� � ẑkSk�1�
T
, (2.34)

Pzz �
N

Q
i�1

w�i� � hk � φk�1 �x�i�
k�1�� � ẑkSk�1 � �hk � φk�1 �x�i�

k�1�� � ẑkSk�1 �
T
. (2.35)

The predicted/posterior density parameters obtained through the UKF are accu-

rate up to the second order of the Taylor series expansion [40] whereas the EKF is

accurate only up to the first-order. Further the UKF can be performed where the non-

linear functions are discontinuous.

2.2.4 Particle Filter

The variations of the Kalman filter described in the previous sections operate under

the assumption that the filtering density and the process/measurement noise models

are Gaussian. The particle filter or sequential Monte Carlo (SMC) was proposed as

a solution in situations where these assumptions do not hold. Even though the idea

behind SMC estimation was available from the 1950s [42–44] it did not gain promi-

nence in that era due to the fact that the available hardware struggled to cater to the

computational power demanded by these methods.

In the particle filter, a density is approximated by a large set of weighted samples
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(particles) denoted by, �� x�i�
k�1, w

�i�
k�1��i�1�N

. i.e., the filtering density at time k � 1,

πk�1 �xk�1Sz1�k�1� �
N

Q
i�1

w
�i�
k�1 δx�i�

k�1

�xk�1� , where
N

Q
i�1

w
�i�
k�1 � 1. (2.36)

In principle, upon receiving a new measurement, a new set of weighted particles

need to be drawn directly from the posterior density. Since that is infeasible in most

circumstances, samples are drawn from a density that closely resembles the posterior.

This is referred to as the importance or proposal density. A simple choice for the im-

portance density is the predicted density. This results in the sequential importance

sampling particle filter equation [45, 46].

πk �xkSz1�k� �
N

Q
i�1

w
�i�
k δ

x
�i�
k

�xk� , (2.37)

x
�i�
k � φk�1 �x�i�

k�1� , (2.38)

w
�i�
k � w

�i�
k�1 gk �zkSx�i�

k � . (2.39)

Propagating the filtering density forward in this manner leads to a problem known

as particle depletion, where after a number of iterations, save for a few ones nearly all

of the particles in the sample consist of negligible weights. To alleviate this problem a

procedure termed resampling [47] is carried out when a significant particle depletion is

noticed. The basic concept of resampling is the replacement of particles with negligible

weights by replication of particles with higher weights. This can be performed in a

number of different ways [48–50]. Another method called particle Markov chains

Monte Carlo that combines Markov chain Monte Carlo and sequential Monte Carlo

methods to design efficient high dimensional proposal distributions is discussed in

[51]. Since resampling is a process with a high computation cost, methods to tackle

this by way of using graphics processing units are discussed in [52, 53].

2.2.5 Nearest Neighbour

In single object scenarios where the sensor picks up false measurements or is subject

to missed detections along with true measurements, the above described filters are

not directly applicable. The nearest neighbour (NN) method [22–24, 54] is a simple
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tracking algorithm for such scenarios. The prediction step is performed similarly to

the Kalman filter. For the update step, the measurement that is closest to the predicted

measurement is used compute the Kalman update or none is performed if no near

measurement is available. Albeit being simple and efficient to implement, the NN filter

has proven to be vulnerable in scenarios with dense clutter or low detection (inability

to pick up the true measurement).

2.2.6 Probabilistic Data Association Filter

The prediction step of the probabilistic data association (PDA) [22, 55] filter is similar

to the NN. Nevertheless, in the update step, rather than using a single measurement,

several candidate measurements are selected using gating and the likelihood of each

measurement being generated by the predicted object state (association probability)

is calculated. Subsequently, the Kalman update is performed using an average of the

candidate measurements weighted by their association probabilities. In [56] a variation

of the PDA which allows the filtering density to be a Gaussian mixture rather than a

single Gaussian as in the standard PDA is discussed. The PDA filter is less prone to

the vulnerabilities of the NN [22–24, 54].

2.3 Classical approaches to multiple object tracking

The multiple object tracking problem is much more challenging than the single object

tracking problem for several reasons. The number of objects in the tracking scenario

is unknown, time-varying and could be zero. The mapping of the received measure-

ments to objects, known as the data association problem, is combinatorially expensive.

The received measurements could contain false measurements and be subject to mis-

detection for every object in the scenario. Various multi-object filtering algorithms that

stem from the single object algorithms mentioned in the preceding section have been

constructed in order to address this problem. These are discussed in the following

section.

2.3.1 Global nearest Neighbour

In scenarios where a known fixed number of multiple objects are present in the sys-

tem, the global nearest neighbour (GNN) [22–24, 54] performs the standard Kalman

prediction individually on each object, and the standard Kalman update individually
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on each object, using an object-measurement mapping that minimizes a certain cost, on

the condition that one measurement is mapped to one object at most. The cost function

could be a simple function such as the total summed distance or association probability.

Similar to NN the GNN too suffers in dense clutter environments and environments

with low detection.

2.3.2 Joint Probabilistic Data Association Filter

The joint probabilistic data association (JPDA) filter [22] is an extension of the PDA

filter. Similar to GNN it can only be applied in scenarios in which the multiple ob-

ject count in the system is fixed and known. The Kalman prediction is carried out

for each object individually, and the Kalman update for each object is performed sep-

arately, using an averaged measurement computed from selected neighbor measure-

ments weighted according to their association probabilities. Care has to be taken to

avoid conflicts when including the same measurement in different groups linked to

different objects. Due to this, the complexity of this data association increases expo-

nentially with the object count and measurement count. Sub-optimal strategies to re-

duce the complexity have been proposed in [57–59]. Further, in using JPDA on closely

spaced objects, tracks tend to come together (clump) [60]. A variation of the JPDA

named the joint integrated probabilistic data association filter (JIPDA) that accommo-

dates an unknown and time-varying number of objects was proposed in [61].

2.3.3 Multiple Hypothesis Tracking

The technique of multiple hypothesis tracking (MHT) [23, 54, 62] functions by propa-

gating multiple measurement-to-object associations, known as hypotheses. By prop-

agating several alternative data association hypotheses rather than only the best hy-

pothesis, it is able to defer difficult data association decisions with the expectation that

future data will resolve the uncertainty. As it is impractical to carry all possible hy-

potheses, only the ones with the highest weights calculated using the Kalman filter

are selected. Since a new set of hypotheses is generated with freshly received mea-

surements which could be assigned to an existing track, new track or clutter, the MHT

permits an unknown time-varying number of tracked objects.

The main limitation of the MHT is the exponentially growing number of hypothe-

ses with time. Gating of measurements along with heuristic pruning/merging of hy-
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potheses is a basic strategy to sidestep this problem. Stronger deterministic techniques

to select the best hypotheses are given in [23, 63, 64]. A combinatorially optimum tech-

nique that uses reversible jump Markov chain Monte Carlo to generate samples from

the posterior to find the hypotheses with highest posterior probabilities is discussed in

[65].

2.4 Multiple object tracking with random finite sets

A random variable is a measurable mapping from sample space to state space. An

RFS is a finite set-valued random variable. The number of elements is random and

the values of the elements themselves are also random. The key difference between an

RFS and a random vector is the following: the number of elements in a random vector

is fixed and known and the elements appear in a certain order, but the number of

elements in an RFS is random and there is no particular order in which these elements

appear. An RFS is characterized by a discrete probability distribution on the cardinality

of the set, and for a given cardinality a joint probability distribution on the elements.

The representation of multi-object states and the multi-object observations in set

form has given rise to the RFS approach to multi-object tracking. This approach es-

sentially focuses on jointly estimating both the number of objects in the state space

and their individual states. Even though Point process based filters for multi-object

tracking were introduced as early as the 1980s [66, 67] a systematic treatment for multi-

object tracking with RFS was first introduced by Mahler in 1994 [68]. Detailed treat-

ments are available in [13, 14, 69, 70].

The following sections briefly describe fundamental theories on RFS and brief de-

scriptions on popular RFS filters that have attracted considerable interest in the recent

years. Notation-wise, lower case letters e.g. x, z are used to denote single elements

and upper case letters e.g. X,Z are used to denote sets from here onwards.

2.4.1 Probability density of a Random Finite Set

The probability density is a common descriptor of an RFS. For an RFS X on space

X � Rnx , the space F �X� of all finite subsets of X does not inherit the usual Euclidean

notion of density from Rd. A mathematically consistent notion of a probability density

onF �X� is given in point process theory [71]. The notion of a density is tied to measure
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and integration. The conventional choice of reference measure in point process theory

is the dimensionless measure given by,

µ �T � � ª

Q
r�0

λr �X�1 �T � 9Xr�
r!

, (2.40)

for any subset T b F �X� where Xr is the rth cartesian product of X with the convention

X0
� �g� , λr is the rth product dimensionless Lebesgue measure on Xr and X is a

mapping of vectors to sets defined by X �x1,x2,..., xr� � �xi � i � 1,2, ...r�.

The integral of a function h � F �X� � R over a subset T b F �X� with respect to µ

is given as,

S
T

h �X�µ �dX� � ª

Q
r�0

1

r!
S 1T �X �x1, ..., xr�� h ��x1, ...xr�� λr �dx1...dxr� , (2.41)

where 1T �� � is the indicator function for T .

For a RFS X on X, the probability density π with respect to measure µ satisfies,

P �X > T � � S
T

π �Y � µ �dY � , (2.42)

for any subset T b F �X�. A probability density on Euclidean space has the physical

dimension of probability per unit hyper-volume. The probability density of the RFS

π is dimensionless since the reference measure is dimensionless. The probability den-

sity of the RFS can be equvivalently represented by the finite set statistics density and

integration given by [13, 72],

S h�X�δX �

ª

Q
i�0

1

i!
S
Xi
h ��x1, ..., xi�� dx1, ... , dxi , (2.43)

for a function h � F�X�� R.

The probability hypothesis density (PHD) or intensity of a RFS is a 1st order statis-

tical moment of a RFS. For RFS X on X, the PHD is a non-negative funcion v on X such



18 CHAPTER 2. BACKGROUND

that for each region S b X,

E � SX 9 SS � � S
S

v �x� dx. (2.44)

Hence integrating v over the entire space gives the expected number of elements in

X . The local maxima of function v give the points in X with the highest concentration

of elements.

2.4.2 Types of Random Finite Sets

Poisson RFS

An RFS X on X is said to be Poisson with intensity v�� � if the cardinality distribution

of that RFS is Poisson with mean N where N � R v�x� dx, and for any finite cardinal-

ity the elements of X are independent and identically distributed (i.i.d) according to

probability density v�� �~N . Therefore, the probability density of a Poisson RFS with

intensity v is given by [71],

π ��x1, ... xn�� � 1

eN

n

M
i�1

v �xi� . (2.45)

withL0
i�1 v �xi� � 1 by convention.

Independent and identically distributed cluster RFS

An i.i.d cluster RFS X on X is characterised by its cardinality distribution ρ �� � and

intensity or PHD v�� �. The cardinality distribution can be arbitrary on condition that

the mean of the cardinality distribution matches N � R v �x� dx. This means that an

i.i.d cluster point process encapsulates the randomness of a Poisson RFS without being

constrained to Poisson cardinality. The probability density of a i.i.d cluster RFS is given

by,

π ��x1, ... xn�� � n!ρ �n� n

M
i�1

v �xi�
N

. (2.46)

Bernoulli RFS

A Bernoulli RFS X on X has a probability 1� r of being an empty set and a probability

r of being singleton whose value is distributed according to a probability density p�� �
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defined on X.

π �X� �
¢̈̈̈̈
¨̈̈̈̈
¦̈̈̈
¨̈̈̈̈̈
¤

1 � r, X � g

r p�x�, X � �x�
0, SX S A 1

. (2.47)

Multi-Bernoulli RFS

A multi-Bernoulli RFS is a collection of a finite and fixed number of independent

Bernoulli RFSs. Therefore it is characterised by the parameter set ��r�i� , p�i��� � ��M
i�1

where M is the number of fixed Bernoulli RFSs and the pair �r�i�, p�i� �� �� denote the

existence probability and the spatial probability density of the ith Bernoulli RFS. The

probability density of such a multi-Bernoulli RFS is given by,

π �� x1, ..., xn �� � M

M
j�1

�1 � r�j�� Q
1Bi1x...xinBM

n

M
j�1

r�ij�p�ij� �xj�
1 � r�ij�

. (2.48)

2.4.3 Multi-object Dynamic model

Consider a multi-object system where new objects spontaneously appear in the state

space, some existing objects survive to the next time step with a new state, and some

objects cease to exist. In this system let Xk�1 denote the entire set of objects existing

at time k � 1. A object in this set with state xk�1 can either survive to the next time

step with probability PS,k �xk�1� and change to a new state under transition density

fkSk�1 �� Sxk�1� or terminate with probability 1 � PS,k �xk�1�. In such a system the ran-

dom finite set of the surviving objects could be modeled by,

Sk�Xk�1� � �
xk�1>Xk�1

Fk�xk�1�, (2.49)

where Fk�xk�1� is a Bernoulli RFS with params �PS,k �xk�1� , fkSk�1 �� Sxk�1� � for the

state transition of the object xk�1.

In this scheme, appearance of a set of newly born objects in the state space at a

particular time k, denoted by Λk can be modeled as either a Poisson RFS, an i.i.d cluster

RFS or a multi-Bernoulli RFS. Taking these newborn objects into account, the entire set
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of objects Xk at time k is given by,

Xk � Sk�Xk�1� 8Λk. (2.50)

Using this formulation, the multi-object transition density for the multi-object set Xk

at time k given the multi-object set Xk�1 at time k � 1 can be derived as,

fkSk�1�XkSXk�1� � Q
WbXk

πS �W SXk�1� πΛ �Xk �W � (2.51)

where πS �� SXk�1� is the transition density of the surviving object set Sk�Xk�1� and

πΛ �� � is the probability density of the spontaneously born object set Λk and Xk �W

denotes the set difference between Xk and W .

2.4.4 Multi-object Observation model

Consider a multi-object state Xk at a particular time, where certain objects are detected

and measurements are obtained while some objects go undetected. If an object in state

xk at time k is detected with the probability PD,k�xk� and generates a noisy measure-

ment zk with likelihood gk �zkSxk�, the random finite set Dk�� � of all measurements

generated at time k due to the true object set Xk is modeled by,

Dk�Xk� � �
xk>Xk

Gk�xk�, (2.52)

where Gk�xk� is a Benoulli RFS with params �PD,k �xk� , gk �� Sxk� � for the detection of

the object xk.

Apart from the true object related measurements, sensors generate incorrect mea-

surements (clutter). These clutter measurements are generally modeled as Poisson

processes. Let the clutter measurement RFS be denoted by Kk with intensity κk�� �.

Consequently the entire set of measurements Zk generated at time k is given by,

Zk�Xk� �Dk�Xk� 8Kk. (2.53)

Using this formulation, the probability density for the multi-object observation set Zk
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at time k given the multi-object set Xk at time k can be derived as,

gk�Zk SXk� � Q
WbZk

πD �W SXk� πK �Zk �W � (2.54)

where πD �� SXk� is the probability density of the detected observations Dk�Xk� and

πK �� � is the probability density of the false measurements Kk.

2.4.5 Multi-object Bayes filter

The multi-object Bayes filter is a generalization of the single object Bayes filter dis-

cussed in Section 2.1. Let πk�1�� SZ1�k�1� denote the posterior density for the multi-

object state at time k � 1 where Z1�k�1 denotes all measurements received by the filter

from time 1 up to time k. In the multi-object Bayes filter, this density πk�1�� SZ1�k�1�
at time k � 1, is predicted forward to obtain the the predicted density πkSk�1�� SZ1�k�1�
using the Chapman-Kolmogorov equation as follows.

πkSk�1�XkSZ1�k�1��S fkSk�1�XkSX�πk�1�X SZ1�k�1�δX. (2.55)

Here, fkSk�1��S�� denotes the multi-object transition density given in Eq. (2.51), which

is derived from the multi-object transition model that includes new object births, exist-

ing object survivals and deaths.

The predicted density for the multi-object state is updated with the measurement

set Zk received at time k using Bayes rule to obtain the new posterior density πk�� SZ1�k�
at time k.

πk�XkSZ1�k� � gk�ZkSXk�πkSk�1�XkSZ1�k�1�
R gk�ZkSX�πkSk�1�X SZ1�k�1�δX . (2.56)

Here gk��S�� denotes the multi-object likelihood function given in Eq. (2.54), which

is derived from the multi-object observation model that includes missed detections,

true measurements and false alarms. Note that the integral with respect to δX is the

set integral from finite set statistics [13].

Thus, equations Eq. (2.55) and Eq. (2.56) together establish the recursive multi-

object Bayes filter. In general, the numerical integrations and the combinatorial com-

plexities in the multi-object densities in these equations render this filter intractable
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[73]. The computational costs of implementations based on SMC methods discussed in

[74–77] are too expensive for scenarios with a high number of tracked objects. More so-

lutions to the multi-object Bayes filter by way of moment and density approximations

were proposed later on in [70, 78–81]. These are discussed in length in the following

subsections.

Probability Hypothesis Density filter

The PHD filter operates by recursively propagating the first moment of the multi-object

posterior density, (i.e., PHD/intensity) forward in time. Since the PHD is a function

defined on single object state space, the PHD filter circumvents the data association

complexity of the multi-object Bayes filter. The ground work for the PHD filter was

laid in [70] followed by an SMC implementation in [74] and a Gaussian mixture imple-

mentation in [78]. Convergence analyses for the PHD filter implementation in [74] are

given in [74, 82] and a convergence analysis for the implementation in [78] is given in

[83]. Estimates for individual object states can be extracted by selecting the points in

the single-object state space with the highest intensities.

Let vk�1�� � denote the posterior intensity at time k � 1, and vB,k the intensity of

Poisson distributed new object births. The predicted intensity vkSk�1�� � at time k is

computed using the following equation.

vkSk�1�xk� � vB,k�xk� � S PS,k�xk�1� fkSk�1�xkSxk�1� vk�1�xk�1� dxk�1 (2.57)

The updated intensity vk is computed using the following equation.

vk�xk� � �1 � PD,k�xk�� vkSk�1�xk� � Q
z>Zk

PD,k�xk� gk�zSxk� vkSk�1�xk�
κk�z� � R PD,k�x� gk�zSx� vkSk�1�x� dx (2.58)

The PHD filter has a complexity that is linear in the number of filtered objects and

measurements.

Cardinalized Probability Hypothesis Density filter

Similar to the PHD filter, the CPHD filter also propagates the intensity of the multi-

object density. The key difference is that while the PHD filter cardinality distribution
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is Poisson, the CPHD filter cardinality distribution is not constrained to be Poisson,

and could be arbitrary. Therefore, apart from the intensity, the cardinality distribution

also needs to be propagated. Even though this makes the CPHD filter computationally

more expensive than the PHD filter, that is offset by better accuracy in object state

estimations and lower variance in the cardinality distribution. The foundation for the

CPHD filter was laid in [79] and analytic implementations ware given in [80]. Different

implementations presented in [80] are based on the Kalman filter, EKF, UKF and the

particle filter.

Let ρk�1�� � denote the posterior cardinality distribution at time k�1,, ρB,k�� � denote

the cardinality distribution of the spontaneously newborn objects at time k, C lj �
l!

j!�l�j�!
stand for the Binomial coefficient and ej�� � denote the elementary symmetric function

of order j. The standard inner product is denoted by `� , � e. The rest of the symbols are

defined as in the PHD filter equations. The CPHD recursion is given below.

vkSk�1�xk� � vB,k�xk� � S PS,k�xk�1� fkSk�1�xkSxk�1� vk�1�xk�1� dxk�1, (2.59)

ρkSk�1�n� � n

Q
j�0

ρB,k�n � j�ΠkSk�1 �vk�1, ρk�1� �j�, (2.60)

where,

ΠkSk�1�v, ρ� �j� � ª

Q
l�j

C lj
aPS,k, vf j a1 � PS,k, vf l�j`1, ve l .

vk�xk� � �1 � PD,k�xk�� aΥ1
k �vkSk�1, Z� , ρkSk�1f

aΥ0
k �vkSk�1, Zk� , ρkSk�1fvkSk�1�xk� � (2.61)

Q
z>Zk

ψk,z�xk� aΥ1
k �vkSk�1, Zk � �z�� , ρkSk�1f
aΥ0

k �vkSk�1, Zk� , ρkSk�1f vkSk�1�xk� ,
ρk�n� � Υ0

k �vkSk�1, Zk� �n�ρkSk�1�n�
aΥ0

k �vkSk�1, Zk� , ρkSk�1f , (2.62)
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where,

Υu
k �v,Z� �

min�SZS,n�
Q
j�0

�SZ S � j�! ρK,k�SZ S � j� Pnj�u a1 � PD,k, vf n��j�u�`1, ve n ej�Ξk�v,Z��,
ψk,z�x� � `1, κke

κk�z� PD,k�x� gk�zSx� ,
Ξk�v,Z� � �av,ψk,zf � z > Z� ,
ρK,k�� � � cardinality distribution of clutter at time k,

ej�Z� � Q
SbZ, SSS�j

�
�Mζ>S ζ

�
� , with e0�Z� � 1 by convention.

The CPHD filter has a complexity that is linear in the number of filtered objects and

cubic in the number of measurements.

Cardinality balanced multi-Bernoulli filter

The cardinality balanced multi-Bernoulli (CBMeMBer) filter [81] operates by prop-

agating the parameters of a multi-Bernoulli RFS that approximates the posterior multi-

object RFS. A Gaussian mixture implementation for linear Gaussian models (with EKF,

UKF extensions for mildly non-linear Gaussian scenarios) as well as an SMC imple-

mentation to accommodate nonlinear models was proposed for the CBMeMBer recur-

sion in [81]. The SMC-PHD filters require particle clustering to extract state estimates

which is computationally expensive, while the CBMeMBer filter object state extraction

is more accurate and less expensive. Formulas for the CBMemBer recursion is given as

follows.

Let the posterior density at time k � 1 be represented as the multi-Bernoulli RFS

with parameter set πk�1 � ��r�i�k�1, p
�i�
k�1��Mk�1

i�1
. If the density of the new born objects is

distributed as the multi-Bernoulli RFS with parameter set πB,k � �r�i�B,k, p�i�B,k�MB,k

i�1
, the

predicted multi-Bernoulli density at time k is given by,

πkSk�1 � ��r�i�
P,kSk�1

, p
�i�
P,kSk�1

��Mk�1

i�1
8 ��r�i�B,k, p�i�B,k��MB,k

i�1
(2.63)
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where

r
�i�
P,kSk�1

� r
�i�
k�1 bp�i�k�1, PS,kg ,

p
�i�
P,kSk�1

�x� � bfkSk�1�xS� �, p�i�k�1PS,kg
bp�i�k�1, PS,kg .

Let ��r�i�
kSk�1

, p
�i�
kSk�1

��MkSk�1

i�1
represent the (re-indexed) predicted multi-Bernoulli pa-

rameter set in Eq. (2.63). The updated multi-Bernoulli density has parameter set,

πk � ��r�i�L,k, p�i�L,k��MkSk�1

i�1
8 ��r�U,k�z�, p�U,k�� ; z���z>Zk (2.64)

where

r
�i�
L,k � r

�i�
kSk�1

1 � bp�i�
kSk�1

, PD,kg
1 � r

�i�
kSk�1

bp�i�
kSk�1

, PD,kg ,
p
�i�
L,k�x� � p�i�kSk�1

�x� 1 � PD,k�x�
1 � bp�i�

kSk�1
, PD,kg ,

r�U,k�z� �
PMkSk�1

i�1

r
�i�

kSk�1
�1�r

�i�

kSk�1
�bp�i�

kSk�1
,ψk,zg

�1�r
�i�

kSk�1
bp�i�
kSk�1

,PD,kg�
2

κk�z� �PMkSk�1

i�1

r
�i�

kSk�1
bp�i�
kSk�1

,ψk,zg
1�r

�i�

kSk�1
bp�i�
kSk�1

,PD,kg

p�U,k�x; z� �
PMkSk�1

i�1

r
�i�

kSk�1

1�r
�i�

kSk�1

p
�i�
kSk�1

�x�ψk,z�x�
PMkSk�1

i�1

r
�i�

kSk�1

1�r
�i�

kSk�1

bp�i�
kSk�1

, ψk,zg
,

ψk,z�x� � gk�zSx� pD,k�x�.

Similar to the PHD filter the CBMeMBer filter has a complexity that is linear in the

number of hypothesized objects and received measurements. A convergence analysis

of the SMC-CBMeMBer implementation was given in [84].

2.5 Multi-object tracking with labeled random finite sets

Labeled random finite sets are RFSs where each element in the RFS is assigned a unique

label/tag. Due to the uniqueness of the labels, the cardinality of the label set of a
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labeled RFS is equal to the cardinality of the labeled RFS itself. The formal definition

is given below.

Definition 1. A labeled RFS with state space X and discrete label space L, is an RFS on

X �L, such that the labels within each realization are always distinct.

By convention, a labeled element is represented by bold lower case e.g. x � �x, `�
where x denotes the kinematic/feature object state and ` denotes the object label. A

labeled set is denoted by a bold uppercase. e.g. X � �x1,x2, ...xn�. Spaces are repre-

sented by blackboard bold. e.g. X, L, Z. The cardinality of a set is denoted by S� S. The

rest of the notation and operators related to labeled RFSs is now introduced.

Ì Distinct label indicator

∆�X� < δSX S�SL�X�S�. (2.65)

Ì Standard inner product

` f, g e < S f�x� g�x� dx. (2.66)

Ì Multi-object exponential

�h�X < M
x>X

h�x� . (2.67)

Ì Kronecker delta function

δY �X� <
¢̈̈̈̈
¦̈̈̈
¤̈

1, ifX � Y

0, otherwise
. (2.68)

Ì Inclusion function

1Y �X� <
¢̈̈̈̈
¦̈̈̈
¤̈

1, ifX b Y

0, otherwise
. (2.69)

Ì Label extractor

L � X �L� L is the projection L�X� � �L�x� � x > X� where L ��x, `�� � `.
(2.70)

Note that a realisationX of a labeled RFS always satisfies ∆�X� � 1 and SL�X�S � SXS.
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The density of a labeled RFS is not the same as its unlabeled counterpart. For a

labeled RFS distributed according to π, its unlabeled version π is distributed according

to,

π��x1, x2, ..., xn�� � Q
�`1,`2,...`n�>Ln

π���x1, `1�, �x2, `2�, ..., �xn, `n���. (2.71)

Due to the discrete label space L, the set integral for a function h � F�X � L� � R is

given as,

S h�X�δX �

ª

Q
i�0

1

i!
Q

�`1,...`i�>Li
S
Xi
h ���x1, `1�, ... , �xi, `i��� dx1,... dxi (2.72)

By treating the multi-object state as a labeled RFS, the multi-object Bayes filter is

able to output object IDs (trajectories) by extracting the label information from the

label augmented state. The rest of this section gives details on such labeled RFS based

multi-object tracking filters and the probability distribution families upon which they

are constructed.

2.5.1 Labeled random finite sets

Two versatile classes of labeled RFS, named the labeled multi-Bernoulli (LMB) RFS

[15] and the generalized labeled multi-Bernoulli (GLMB) RFS [15] are described in the

following.

Definition 2. A labeled multi-Bernoulli RFS is a labeled RFS on state space X and (dis-

crete) label space L parameterised by � r�`�, p�`��� ��
`>L is distributed according to,

π�X� � ∆�X�ω�L�X� �p�X (2.73)

where

ω�L� �M
i>L

� 1 � r�i��M̀
>L

1L�`� � r�`�

1 � r�`�
� ,

p�x, `� � p�`��x�,
r�`� � existence probability of the element associated with label `,

p�`��� � � probability density of the kinematic state associated with label `.
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Definition 3. A generalized labeled multi-Bernoulli RFS is a labeled RFS with state space

X and (discrete) label space L distributed according to,

π�X� � ∆�X�Q
c>C

ω�c��L�X�� �p�c��X (2.74)

where C is a discrete index set with ω�c��L� and p�c� satisfying

Q
LbL

Q
c>C

ω�c��L� � 1,

S
x>X

p�c��x, `� dx � 1.

A GLMB is a mixture of multi-object exponentials. Each mixture component con-

sists of a weight ω�c��L�X�� and a multi-object exponential �p�c��X . The weight

ω�c��L�X�� only depends on the labels of the multi-object state, and �p�c��X depends

on the entire multi-object state.

Note that the LMB RFS is a special case of the GLMB RFS comprising of a single

component.

It was also proven in [15] that if the posterior multi-object density at a particular

time is distributed as a GLMB density, under the standard multi-object dynamic model

which includes object survivals, death and new object births, the multi-object density

predicted in the next time step can also be represented as a GLMB (i.e., closure un-

der the Chapman Kolmogorov equation). Further, if the predicted GLMB density was

updated under the standard multi-object observation model that includes object de-

tections, missed detections and clutter, the updated density can also be written in the

form of a GLMB density. In other words, the GLMB distribution is said to be a conju-

gate prior under Bayes rule. Since the prior, predicted and updated densities can all be

written as GLMB densities this provides with a recursion mechanism to propagate the

multi-object density forward in time. Further, in [15], an alternative representation of

the GLMB distribution that facilitates implementation, referred to as the δ-GLMB dis-

tribution was introduced. It is also closed under the Chapman-Kolmogorov equation

and Bayes rule. Representing the multi-object state as a δ-GLMB allows for a tractable

solution for multi-object tracking that can be implemented via Gaussian mixture or

SMC with lower computational cost and memory requirements.



MULTI-OBJECT TRACKING WITH LABELED RANDOM FINITE SETS 29

Definition 4. A δ-generalized labeled multi-Bernoulli RFS with state space X, (discrete)

label space L, and discrete space Ξ is a special case of the generalized labeled multi-

Bernoulli with

C � F�L� �Ξ,

ω�c��L� � ω�I,ξ��L� � ω�I,ξ�δI�L�, where L > F�L�,
p�c� � p�I,ξ� � p�ξ�.

i.e., δ-generalized labeled multi-Bernoulli RFS is distributed according to,

π�X� � ∆�X� Q
�I,ξ�>F�L��Ξ

ω�I,ξ�δI�L�X�� �p�ξ��X . (2.75)

In multi-object tracking, the δ�GLMB density can be used to represent the multi-

object density which is viewed as a set of weighted components generated over the

space of F�L��Ξ. Each component is represented by a pair (label set, association map

history) denoted by �I, ξ� from space F�L� �Ξ. The association map history ξ is a col-

lection of object label-to-measurement mappings up to the current time which resulted

in the current set of labels I . Therefore the component �I, ξ� represents the hypothesis

that the label set I has the association map history ξ. The probability (also referred to

as the weight) of the component �I, ξ� is given by ω�I,ξ� and p�ξ��� , `� represents the

density for the kinematic state of each object in label set I . The ∆�� � operator ensures

that the probability of a multi-object state with repeated labels is zero. The δ-GLMB fil-

ter for multi-object tracking operates by recursively propagating prior, predicted and

posterior multi-object densities in δ-GLMB form forward in time.

GLMB representation of the multi-object state

Remark. For the remainder of this chapter, for succinctness of notations, we will sup-

press the time index k and use �
�
� to indicate the sets, functions, parameters and den-

sities relating to the next time step. e.g., PS used in place of PS,k and PS,� used in place

of PS,k�1.

As described in Section 2.4.3, an object existing in the current time step may survive

to the next time step with a certain probability and change state according to a particu-
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lar state transition function or may not survive. Note that the label remains unchanged

during the transition and only the kinematic state of the object changes. The surviving

set of objects S out ofX is distributed according to,

πS�SSX� � ∆�S�∆�X� 1L�X��L�S�� �Φ�S; � ��X (2.76)

where,

Φ�S;x, `� � Q
�x�,`��>S

δ`�`��PS�x, `� f��x�Sx, `� � �1 � 1L�S��`�� �1 � PS�x, `�� .

Let B� denote the entire label space for objects newly born in the next time step

and B� denote the set of the newborn objects. Let L denote the label space for objects

at the current time step (includes the labels of all objects born up to that time). i.e.,

L� � L 8 B�. A conventional scheme for labeling objects is to formulate the label as a

pair consisting of the birth time step and a unique index for objects born during that

time step ` � �k, i�. This scheme of labeling ensures that L 9 B� � g. For a labeled

multi-Bernoulli birth model with parameter set ��r�`�B,�, p�`�B,��� ���`>B�

, the distribution

ofB� can be given as the multi-Bernoulli RFS,

πB�B�� � ∆�B��ωB�L�B��� �pB,��� ��B� . (2.77)

ωB�L�B��� � M
i>B�

�1 � r
�i�
B,�� M

`>L�B��

1B�
�`� r�`�B,�

1 � r
�`�
B,�

,

pB,��x, `� � p�`�B,��x�.
Hence, using Eq. (2.76) and Eq. (2.77) for the complete set of objects in the next time

step denoted by X� � S >B� , the multi-object transition kernel f���S�� � F�X � L�� �

F�X �L�� �0,ª� is given by,

f��X�SX� � πS �X� 9 �X �L� SX� πB �X� 9 �X �B�� � (2.78)

Let Z denote the observation space. An object x > X is either detected with prob-

ability PD�x� and generates a measurement z with likelihood g�zSx� or misdetected
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with probability 1 � PD�x�. Then the set W ` Z of detections is distributed according

to,

πD�W SX� � �PD�x�, g�� Sx� � x > X� �W �. (2.79)

The set K > F �Z� of false measurements generally modeled as a Poisson RFS with

independent and identically distributed points is distributed according to,

πK�K� � e�`κ,1e �κ�K (2.80)

where κ�� � is the intensity function of the Poisson process.

Thus, the multi-object observation Z �W 8K is distributed according to the multi-

object likelihood,

g�Z SX� � Q
WbZ

πD�W SX� πK�Z �W �. (2.81)

2.5.2 Generalized labeled multi-Bernoulli filter

The GLMB filter is constructed using the conjugacy of the GLMB density under the

standard multi-object dynamic and observation models described in the previous sec-

tion. The explicit formulas for computing the predicted and updated GLMB densities

from the posterior density of the previous time step are given in the following.

GLMB filter with separate prediction and update

GLMB Prediction

If the posterior multi-object density at the current time is given by Eq. (2.75), under the

standard multi-object dynamic model the predicted multi-object density at the next

time step is a GLMB of the form,

π��X�� � ∆�X�� Q
�I�,ξ�>F�L���Ξ

ω
�I�,ξ�
�

δI��L�X��� �p�ξ��
�X�

(2.82)
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where,

ω
�I�,ξ�
�

� ωB�I� 9B�� ω�ξ�
S �I� 9L�,

ωB�B� � M
i>B�

�1 � r
�i�
B,�� M̀

>B

1B�
�`� r�`�B,�

1 � r
�`�
B,�

,

ω
�ξ�
S �L� � �P̄ �ξ�

S �L Q
IcL

�1 � P̄ �ξ�
S �I�L ω�I,ξ�,

p
�ξ�
�

�x�, `�� � 1L�`�� p�ξ�S �x�, `�� � 1B�
�`�� pB,��x�, `��,

p
�ξ�
S �x�, `�� � aPS�� , `�� f��x�S� , `��, p�ξ��� , `��f

P̄
�ξ�
S �`�� ,

P̄
�ξ�
S �`�� � bPS�� , `�� , p�ξ��� , `��g ,

pB,��x�, `�� � p�`��B,� �x��.

For implementation purposes, it is not feasible to generate hypotheses on the entire

space of mappings F�L� � Ξ. Therefore the predicted density is approximated by a

truncated version which consists of a selected number of hypotheses with the highest

weights. The k-shortest path algorithm is used in [15] to generate the best hypotheses

with highest weights for each parent hypothesis �I, ξ�. The K-shortest paths algorithm

is a popular algorithm to find the K number of paths with minimum costs between

two given nodes in a weighted graph [85]. In the GLMB filter implementation, best

hypotheses for newborn objects are generated first, followed by best hypotheses for

surviving objects. These two groups of hypotheses which were independently gener-

ated by solving two separate K-shortest path problems are then combined to create the

overall best predicted hypotheses.

The usage of K-shortest path algorithm in generating the best surviving hypotheses

from parent hypothesis �I, ξ� is illustrated in Figure 2.1 (reproduced from [86]). The

cost C�I,ξ��`j� of node `j is calculated as,

C�I,ξ��`j� � �ln
<@@@@>

P̄
�ξ�
S �`j�

1 � P̄
�ξ�
S �`j�

=AAAA? . (2.83)

The direction between two nodes is from the node with a lower cost to the one with a
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Figure 2.1: The directed graph with nodes `1, `2, ..., `SI S > I and corresponding costs
c�I,ξ��`1�, ..., c�I,ξ��`SI S� for solving the K shortest path problem for surviving objects
from parent hypothesis �I, ξ�. Start and end nodes are denoted by S, E respectively
[86].

higher or equal cost. The distance D�`j , `j�� from a node `j to `j� is defined as,

D�`j , `j�� �
¢̈̈̈̈
¦̈̈̈
¤̈
C�I,ξ��`j�� if j @ j�

ª, otherwise
. (2.84)

Consequently, a path from S to E through the set of nodes J > I has a total cost of,

Q̀
>J

C�I,ξ��`� � � Q̀
>J

ln

<@@@@>
P̄

�ξ�
S �`�

1 � P̄
�ξ�
S �`�

=AAAA? � �ln
�
� M̀

>J

<@@@@>
P̄

�ξ�
S �`�

1 � P̄
�ξ�
S �`�

=AAAA?
�
� . (2.85)

Thus solving the K-shortest path problem results in a K number of subsets of I in

the order of increasing total cost.

In order to solve the K-shortest path problem for newborn objects, a second weighted

graph is constructed in which the cost CB,��`j� of a node `j is calculated as,

CB,��`j� � �ln
<@@@@>

r
�`�
B,��`j�

1 � r
�`�
B,��`j�

=AAAA? where ` > B�. (2.86)
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GLMB Update

If the multi-object prior at the current time step is given by Eq. (2.75), upon receiv-

ing a set of measurements Z, under the standard multi-object observation model the

posterior density is δ-GLMB of the form,

πZ�X� � ∆�X� Q
�I,ξ�>F�L��Ξ

Q
θ>Θ

ω�I,ξ,θ��Z�δI�L�X�� �p�ξ,θ��� SZ��X (2.87)

where Θ is the space of mappings θ � L � �0,1, ...SZ S� , such that θ�i� � θ�i�� A 0

implies i � i� and

ω�I,ξ,θ��Z� � δθ�1�0�SZS��I�ω�I,ξ� �ψ̄�ξ,θ�
Z �I

P�I,ξ�>F�L��Ξ Pθ>Θ δθ�1��0�SZS���I�ω�I,ξ� �ψ̄�ξ,θ�
Z �I , (2.88)

p�ξ,θ��x, `SZ� � p�ξ��x, `�ψθ�`�Z �x, `�
ψ̄

�ξ,θ�
Z �`� ,

ψ̄
�ξ,θ�
Z �`� � bp�ξ��� , `�ψθ�`�Z �� , `�g ,
ψjZ�x, `� � δ0�j� �1 � PD�x, `�� � �1 � δ0�j�� �PD�x, `�� g�zj Sx, `�

κ �zj� .

As in the prediction step, in the update, it is not feasible to generate hypothe-

ses on the entire space of mappings F�L� � Ξ � Θ. Therefore the updated density is

approximated by a truncated version which consists of hypotheses with the highest

weights. In order to do this, for each parent hypothesis �I, ξ�, mappings are generated

on the smaller subset Θ�T �I,ξ��, which is the set of T �I,ξ� elements of Θ with the highest

weights. A different T �I,ξ� value could be chosen for each hypothesis �I, ξ� based on

some heuristic. A good method for determining T �I,ξ� as mentioned in [15] is to com-

pute T �I,ξ� proportional to ω�I,ξ,θ��Z�. Murty’s algorithm or Gibbs sampling has been

used in the literature [86, 87] to select the best T �I,ξ� mappings without exhaustively

iterating through the entire mappings space.

The Hungarian method [88] is a traditional method that has been in use to solve the

optimal assignment problem. Murty’s algorithm [89] is an extension of the hungarian

method to obtain the T best assignments. In order to utilize Murty’s algorithm in

tracking, a cost matrix with the costs of each object-to-measurement mapping needs
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to be provided to the algorithm. To generate T �I,ξ� best assignments out of parent

hypothesis �I, ξ� for measurement set Z, the cost matrix C�I,ξ�
Z with a row count equal

to SI S and a column count equal to SZ S is generated where Ci,j denotes the ith row

jth column element (see Eq. (2.89)). From Eq. (2.88) it can be seen that the weight of

the hypothesis ω�I,ξ,θ��Z� is propotional to ω�I,ξ� �ψ̄�ξ,θ�
Z �I . Therefore �ψ̄�ξ,θ�

Z �I can be

treated as the overall cost of assigning objects with label set I to measurement set Z

under mapping θ. The ithrow jth column cost matrix element Ci,j is populated with

the cost of assigning the ith object label `i to jth measurement zj . Any unassigned

object `i giving θ�`i� � 0 symbolizes a missed detection and θ�1�zj� � 0 indicates a

false measurement. i.e.,

C
�I,ξ�
Z �

<@@@@@@@@@@@@>

C1,1 C1,2 ... C1S,ZS

C2,1 C2,2 ... C2,SZS

...

CSI S,1 CSI S,2 ... CSI S,SZS

=AAAAAAAAAAAA?
, (2.89)

where

Ci,j � �ln
�
�
a p�ξ��� , `i�, �PD�� , `i��g�jS� , `i�f
a p�ξ��� , `i�, �1 � PD�� , `i�� κ�zj�f

�
� .

In addition to generating a predetermined number of best hypotheses in both the

prediction and update stages, a further truncation of the multi-object density is per-

formed after each stage due to the exponentially growing number of hypotheses in

the density. An intuitive strategy to carry out this is simply to eliminate hypotheses

with weights below a pre-determined threshold. It is established in [15] that retaining

the hypotheses with highest weights and discarding those with lowest weights using

previously described methods minimizes the L1 error between the GLMB density and

its truncated version. Extensive implementation details regarding the GLMB filter are

given in [86]. The complexity of the implementation depends on the complexity of the

Murty’s algorithm which is of quartic in the number of measurements.

GLMB filter with joint prediction and update

More efficient implementations for the GLMB filter by combining the prediction and

update into a single step are presented in [87, 90]. While the standard GLMB filter

described in Section 2.5.2 requires separate truncations in the prediction and update
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steps, the implementations with a joint prediction and update step require only one

truncation step in each iteration.

Separating the truncation of the prediction from the update results in a significant

portion of the predicted hypotheses generating updated hypotheses with insignificant

weights. Hence, expensive ranked assignment problems are solved on these hypothe-

ses that will later be discarded. The design proposed in [87] aims to mitigate this

wastage of computations and has a complexity that is linear in the number of mea-

surements and quadratic in the number of hypothesized objects.

If the GLMB posterior density at the current time is of the form Eq. (2.75), under

the joint prediction and update scheme, upon receiving measurement setZ� in the next

time step, the posterior density is given by,

πZ�
�X�� � ∆�X�� Q

I,ξ,I�,θ�

ω�I,ξ�ω�I,ξ,I�,θ��
Z�

δI� �L�X��� �p�ξ,θ��Z� �X�

(2.90)

where I > F�L�, ξ > Ξ, I� > F�L��, θ� > Θ�, and

ω
�I,ξ,I�,θ��
Z�

� 1Θ��I���θ�� �1 � P̄ �ξ�
S �I�I� �P̄ �ξ�

S �I9I� �1 � rB,��B��I� �rB,��B�9I� �ψ̄�ξ,θ��
Z�

�I� ,
P̄

�ξ�
S �`�� � b p�ξ��� , `��, PS�� , `�� g ,

ψ̄
�ξ,θ��
Z� �`�� � b p̄�ξ�

�
�� , `��, ψθ��`��Z� �� , `�� g ,

ψjZ��x�, `�� � δ0�j� �1 � PD,��x�, `����
�1 � δ0�j�� �PD,��x�, `��� g��zj Sx�, `��

κ� �zj� ,

p̄
�ξ�
�

�x�, `�� � 1L�`��a PS�� , `�� f��x�S� , `�� p�ξ��� , `��f
P̄

�ξ�
S �`�� �

1B�
�`��pB,��x�, `��,

p
�ξ,θ��
Z� �x�, `�� � p̄

�ξ�
�

�x�, `��ψθ��`��Z� �x�, `��
ψ̄

�ξ,θ��
Z� �`�� .

It can be seen that in equation Eq. (2.90) the summation on the right is an enu-

meration of all possible combinations of newborn, dead and surviving object labels

in association with the new measurements. To propagate the posterior, for each hy-

pothesis �I, ξ� in the posterior density, a set of pairs �I�, θ�� > F�L�� � Θ��I�� with
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significant weights ω�I,ξ,I�,θ��
Z� need to be generated without exhaustively searching the

space F�L���Θ��I��. In [90], this is achieved by solving ranked assignment problems

(Murty’s algorithm) and in [87] Gibbs sampling is used to generate hypotheses with

significant weights. Further, pruning of hypotheses with negligible weights at the end

of each iteration is required to keep the exponentially growing hypotheses count in the

density manageable.

Ranked assignment using Murty’s algorithm is a technique that can be employed

to obtain a finite number of best association mappings without exhaustively generat-

ing all possible mappings. It has a quartic complexity in the number of measurements.

In using Murty’s algorithm to extract the T ��I,ξ� hypotheses, the cost matrix C with a

row count equal to P � SI S � SB�S and a column count equal to SZ�S � 2P is constructed.

The extra 2P columns in the cost matrix correspond to misdetected objects and unsur-

viving/unborn objects and j > ��1 � SZ�S� is the measurement index. This is illustrated

in Figure 2.2 which has been reproduced from [87]. The ith row jth column element

ηi�j� of the cost matrix in Figure 2.2 is calculated as,

ηi�j� �

¢̈̈̈̈
¨̈̈̈̈̈
¨̈̈¦̈̈̈
¨̈̈̈̈̈
¨̈̈̈¤

1 � P̄
�ξ�
S �`i�, 1 B i B R, j @ 0,

P̄
�ξ�
S �`i�ψ̄�ξ,j�

Z� �`i�, 1 B i B R, j C 0,

1 � rB,��`i�, R � 1 B i B P, j @ 0,

rB,��`i�ψ̄�ξ,j�
Z� �`i�, R � 1 B i B P, j C 0.

(2.91)

where, Z� � �z1�M�, I � �`1�R�, and B� � �`R�1�P �. Note that j � 0 indicates that `i was

misdetected and j � �1 indicates that `i no longer exists.

Ranked assignment algorithms have a high computational cost in generating a se-

quence of positive 1-1 vectors ordered according to their weights, which is not nec-

essary for the GLMB approximation. Exploiting the Gibbs sampler allows this prob-

lem to be broken down into simple, low-dimensional problems to achieve greater ef-

ficiency. The Gibbs sampler first introduced by the Geman brothers [91] is a more

efficient special case of the Metropolis-Hasting MCMC algorithm. It is useful in gen-

erating a Markov chain where the state of the chain is correlated with adjacent ones
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[91, 92].

In using the Gibbs algorithm for the multi-object density approximation, we first

introduce a new notation γ > Γ which is a positive 1-1 P length vector such that γ �

�γ1, ..., γP � > ��1 �M �P where M � SZ�S. Hence γ can be viewed as a realization of a

random variable distributed according to a probability distribution π on ��1 �M� and

Γ is the set of positive 1-1 vectors in ��1 �M�P .

In applying the Gibbs sampler to the GLMB filter label-to-measurement mapping

generation, the relationship between a pair �I�, θ�� > F�L���Θ��I�� and γ is given by,

γi �

¢̈̈̈̈
¦̈̈̈
¤̈
θ��`i�, if `i > I�

�1, otherwise
. (2.92)

Due to the positive 1-1 property of θ�, for each i, i� > �1 � P�, i x i� Ô� γi x γi� A 0.

Therefore, if the positive 1-1 P tuple γ is given, information �I�, θ�� regarding the

associated label-to-measurement can be recovered by,

I� � �`i > I 8B� � γi C 0� , (2.93)

θ��`i� � γi. (2.94)

The usage of the Gibbs sampler in δ-GLMB filter implementation is described below.

For each parent hypothesis �I, ξ� the number of child hypotheses to be generated T �I,ξ�

is determined. A reasonable method is to allocate T �I,ξ� proportionate to the parent hy-

pothesis weight. The task of the Gibbs sampler is to output �γ�t��
t�1�T �I,ξ� with signifi-

cant weights when supplied with the initial tuple γ�1� and matrix η � �ηi�j�� illustrated

in Figure 2.2. The density π in the Gibbs sampler transition kernel where the γ tuples

are sampled is given by,

π�γ�� 1Γ�γ� P

M
i�1

ηi�γi� (2.95)

Recall that ηi�j� given in Eq. (2.91) holds the cost of assigning label i to measurement

j.

Inside the GLMB filter Gibbs sampler, the generation of γ tuples is performed as
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follows. Element n of the tth tuple γ�t� is sampled from the proposal distribution con-

ditioned on the 1 � n�1 elements sampled so far for that sample (i.e., γ�t�
1�n�1) and n�1 � P

elements (i.e., γ�t�1�
n�1�P ) from previous sample number t � 1.

γ�t�
n � πn �� S γ�t�

1�n�1, γ
�t�1�
n�1�P � (2.96)


 π�γ�Sγ� � P

M
i�1

πn �γ�n S γ�1�n�1, γn�1�P � . (2.97)

Let n̄ � �1 � P� � �n� and γn̄ � �γ1�n�1, γn�1�P �. In [87] it states that,

πn�γnSγn̄�� ηn�γn� M
i>n̄

� 1 � 1�1�M��γn�δγn �γi� � . (2.98)

giving,

πn� jSγn̄��
¢̈̈̈̈
¦̈̈̈
¤̈
ηn�j� , j > ��1,0�
ηn�j� � 1 � 1�γ1�n�1,γn�1�P ��j� � , j > �1 �M� . (2.99)

This result (used in algorithm 1a) allows for easy computation of the conditionals

πn �� S � �.

The pseudocode for the Gibbs sampler (re-produced from [87]) is given in algo-

rithm 2.1 and algorithm 2.1a.

Algorithm 2.1: Gibbs

Input :γ�1�, T, η � � ηi�j� �
Output :γ�1�, ..., γ�T �

1 P � size�η,1�;
2 M � size�η,2� � 2;
3 for t � 2 � T do
4 for n � 1 � P do
5 γ

�t�
n � πn�� Sγ�t�

1�n�1, γ
�t�1�
n�1�P �;

6 end
7 γ�t�

� �γ�t�
1 , ..., γ

�t�
P � ;

8 end

Both the Murty’s based and Gibbs sampler based implementations are highly par-

allelizable. However, the Gibbs sampler based solution is more attractive since it has a

complexity that is linear in the number of measurements and quadratic in the number

of hypothesized objects while the Murty’s based implementation has a complexity that
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Algorithm 2.1a: γ
�t�
n � πn �� S γ�t�

1�n�1, γ
�t�1�
n�1�P �

1 C � ��1 �M�;
2 ηn � �ηn��1�, ..., ηn�M��;
3 for j � 1 �M do

4 ηn�j� � ηn�j� �1 � 1�γ�t�
1�n�1,γ

�t�1�
n�1�P ��j�� ;

5 end
6 γ�t�

n � Categorical�c, ηn�

is quartic in the number of measurements.

An efficient approximation to the GLMB filter named the labeled multi-Bernoulli

(LMB) filter is presented in [93]. The LMB filter seeks to approximate the true poste-

rior density such that the first moment of the approximated version matches the first

moment of the true posterior. Compared to the CBMeMBer filter which exhibits a

cardinality bias, the LMB approximation is more accurate with no bias and also pro-

duces labels for the object estimates. It operates via propagating an LMB RFS. Even

though the LMB family is closed under prediction, it is not closed under the update

operation. Therefore, in order to facilitate a recursion, the filter carries out a three-step

LMB-to-GLMB-to-LMB conversion. Initially, clusters containing closely spaced objects

and their associated measurements are formed using standard gating. Next, the LMB

density corresponding to each cluster is expanded to GLMB form. Secondly, the stan-

dard GLMB update is performed on the GLMB density of each cluster. Finally, the

updated GLMB density is converted back to LMB form. Note that since the three-step

update for each cluster can be carried out independently, this allows for parallel exe-

cution. Further details regarding the LMB recursion and the LMB-to-GLMB-to-LMB

conversion can be found in [93].





CHAPTER 3

TRACKING MANEUVERING
OBJECTS USING JUMP MARKOV

SYSTEMS

In this chapter, a novel labeled RFS algorithm that uses jump Markov systems to

address the specific problem of tracking maneuvering objects is presented. The δ-

GLMB filter from the RFS paradigm [13, 69] is adopted as the base for the proposed

algorithm since it outputs tracks, is proveably Bayes optimal [14] and admits efficient

implementation [87]. Further, the GLMB is a versatile model that offers good trade-offs

between tractability and fidelity [94]. The proposed algorithm is verified via numerical

examples. The results of this chapter have appeared in the author’s conference papers

[31, 32] and journal article [33].

3.1 Introduction

The Bayes optimal approach to the multi-object tracking problem is the Bayes multi-

object filter that recursively propagates the multi-object posterior density forward in

time incorporating both the uncertainty in the number of objects as well as their states.

As described in Chapter 2, under the standard multi-object system model which takes

into account object births, deaths, survivals, object detections, missed detections and

clutter, the multi-object posterior densities at each time could be represented as GLMB

densities. Hence the GLMB filter is an analytic solution to the multi-object Bayes filter.

Jump Markov systems (JMS) are prevalently used in a variety of areas spanning

from control systems, communication networks to economics and is applicable to track-

ing. The JMS approach for tracking, also termed the multiple models approach has

proven to be an effective tool for single maneuvering object tracking. In this approach,

43
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the object can switch between a set of models. A JMS provides a mechanism to model

such a behavior in the system in a Markovian fashion.

A JMS consists of a parameterized state space model, whose parameters evolve

with time according to a finite state Markov chain. An example of a maneuvering

object scenario which can be successfully represented using a JMS model is the dy-

namics of an aircraft, which can fly with a nearly constant velocity motion, acceler-

ated/decelerated motion, and coordinated turn. In a JMS formulation for such a sys-

tem an object that is moving according to a certain motion model at any time step is

assumed to follow the same motion model with a certain probability or switch to a

different motion model ( out of a pre-selected set of motion models) with a certain

probability in the next time step.

A Markovian transition probability matrix describes the probabilities with which

a particular object changes/retains the motion model in the next time step given the

motion model at the current time step. Let ϑ�m�Sm� denote the probability of switching

to motion model m� from m as given by this Markovian transition matrix. In the

Markovian transition matrix, the sum of the conditional probabilities of all possible

motion models in the next time step given the current model adds up to 1, i.e.,

Q
m>M

ϑ�m�Sm� � 1. (3.1)

where M is the discrete set of motion models in the system.

A PHD filter based on JMS for maneuvering target tracking was derived in [95, 96]

with a Gaussian mixture implementation and particle implementation. More work

on PHD and CPHD filters proposed for JMS can be found in [97, 98]. A discussion on

these works can be found in [99]. Recently, multi-Bernoulli and labeled multi-Bernoulli

filters were also derived for JMS in [100–102]. These filters, however, are only approxi-

mate solutions to the Bayes multi-object filter for maneuvering objects, and at present

there is no exact solution in the literature. This work aims to address that shortfall. In

Section 3.2, we extend the standard GLMB filter with separate prediction and update

(detailed in Section 2.5.2) to operate in a JMS setting by deriving the equations for the

predicted GLMB density under a multiple motion model transition that can be imple-
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mented via Gaussian mixture or sequential Monte Carlo methods. In Section 3.3 of

this chapter, we extend the GLMB filter with the joint prediction and update (detailed

in Section 2.5.2) to operate in a JMS setting. In addition to being an analytic solution,

the proposed solutions output object trajectories, whereas the PHD and CBMemM-

Ber filters do not. Implementation issues are discussed in Section 3.4. The proposed

algorithms are verified via two numerical examples and comparison on tracking per-

formance and computational efficiency are presented in Section 3.5.

Remark. The notations previously defined in Chapter 2 will apply throughout this

chapter, and the convention of suppressing the time index k is will also be continued.

3.2 GLMB filter with separate prediction and update for a JMS

The Bayes multi-object prediction is given by equation Eq. (3.2) which propagates the

multi-target density π�� SZ� at the current time step to density π��� SZ�� at the next time

step.

π��X�SZ��S f��X�SX�π�XSZ�δX. (3.2)

In the JMS model discussed in this chapter, the posterior is predicted forward un-

der the different modes (motion models) according to the mode switching probabili-

ties. Since we are interested in inferring the mode for each object at each time step in

addition to the kinematics, the mode is included in the object state and a modification

is made to the notation to accommodate that. Let the mode augmented unlabeled ob-

ject state be denoted by x � �ζ,m� > X �M where ζ denotes the object kinematics and

m denotes the mode. Therefore the model augmented labeled object state be denoted

by x ��x, `� � �ζ,m, `� where ` denotes the label.

By augmenting the object state with the mode, the mode augmented state space

model can be expressed with the following transition density and measurement likeli-

hood functions.

f��ζ�,m�Sζ,m, `� < f �m�
�

�ζ�Sζ, `�ϑ�m�Sm� (3.3)

g��zSζ,m, `� < g�m�
�

�zSζ, `� (3.4)

where f �m�
�

�� S� , � � is the kinematic state transition density under modem and g�m�
�

�� S� , � �
is the measurement likelihood function under mode m.
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Additionally, to emphasize the dependence on the mode, the probability of sur-

vival, probability of birth and probability of detection parameters are denoted as,

p
�m��
B,� �ζ�, `�� < pB,��ζ�,m�, `��, (3.5)

P
�m�
S �ζ, `� < PS�ζ,m, `�, (3.6)

P
�m�
D �ζ, `� < PD�ζ,m, `�. (3.7)

As described in Section 2.5.1, in a multi-object system with state space X and dis-

crete label space L, the multi-target filtering density at the current time can be repre-

sented as a δ-GLMB of the form:

π�X� � ∆�X� Q
�I,ξ�>F�L��Ξ

ω�I,ξ�δI�L�X�� �p�ξ��X , (3.8)

where each hypothesis in the multi-object density is represented by a pair ( label

set, association map history) �I, ξ� from space F�L� � Ξ. The weight of the hypothesis

represented by �I, ξ� is given by ω�I,ξ� and the kinematic state density of its tracks is

represented by p�ξ��� �.

It is assumed that object births follow a labeled multi-Bernoulli birth model param-

eterised by ��r�`�B,�, p�`�B,��� ���`>B�

.

Proposition 5. In a multi-object system where each object is moving according to a JMS, if

the posterior at the current time is a δ-GLMB of the form Eq. (3.8), then the predicted density

at the follwing time is a δ-GLMB of the form,

π��X��� ∆�X�� Q
�I�,ξ�>F �L���Ξ

ω�
�I�,ξ�δI��L�X����p��ξ��X�

, (3.9)

where,

ω
�I�,ξ�
�

� ω
�I,ξ�
S �I� 9L� ωB�I� 9B��,

ω
�I,ξ�
S �L� � �P̄ �ξ�

s �L Q
IcL

1I�L��1 � P̄ �ξ�
S �I�Lω�I,ξ�,
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ωB�B� � M
i>B�

�1 � r�i�B,�� M̀
>B

1B��`� r�`�B,�
1 � r

�`�
B,�

,

p
�ξ�
�

�ζ�,m�, `�� � 1L�`��p�ξ�S �ζ�,m�, `�� � 1B�
�`��pB,��ζ�,m�, `��,

p
�ξ�
S �ζ�,m�, `�� �

P
m>M

b P �m�
S �� , `�� f �m�

�
�ζ�S� , `�� � ϑ�m�Sm�, p�ξ��� ,m, `��g

P̄
�ξ�
S �`� ,

P̄
�ξ�
S �`�� � Q

m�>M
P̄

�ξ�
S �`�,m��,

P̄
�ξ�
S �`�,m�� � Q

m>M
b P �m�

S �� , `� � ϑ�m�Sm�, p�ξ��� ,m, `�g ,
pB,��ζ�,m�, `�� � p�`��B,� �ζ�,m��.

Proposition 6. In a multi-object system where each object is moving according to a JMS, if

the predicted density is a δ-GLMB of the form Eq. (3.9), then upon receiving measurement set

Z� the posterior density is a δ-GLMB of the form,

πZ�
�X�� � ∆�X�� Q

�I�,ξ�>F�L���Ξ

Q
θ�>Θ�

ω�I�,ξ,θ���Z��δI��L�X��� �p�ξ,θ���� SZ���X�

,

(3.10)

where,

Θ� is the space of mappings θ� � L�� �0 � SZ�S� such that , θ��i� � θ��i�� A 0 implies, i � i�,

ω�I�,ξ,θ���Z�� � δθ�1
�

�0�SZ�S��I��ω�I�,ξ�
�

�ψ̄�ξ,θ��
Z�

�I�
P

�I�,ξ�>F�L���Ξ
P

θ�>Θ�

δθ�1
�

�0�SZ�S��I��ω�I�,ξ� �ψ̄�ξ,θ��
Z�

�I� ,

p�ξ,θ���ζ�,m�, `�SZ�� � p
�ξ�
�

�ζ�,m�, `��ψθ��`��Z�

�ζ�,m�, `��
ψ̄

�ξ,θ��
Z�

�`�� ,

ψ̄
�ξ,θ��
Z�

�`�� � Q
m�>M

ψ̄
�ξ,θ��
Z�

�m�, `��,
ψ̄

�ξ,θ��
Z�

�m�, `�� � b p�ξ�
�

�� ,m�, `��ψθ��`��Z�

�� ,m�, `��g ,
ψjZ�

�ζ�,m�, `�� � δ0�j� �1 � P �m��
D,� �ζ�, `�����1 � δ0�j�� �P

�m��
D,� �ζ�, `��� g�m��

�
�zj Sζ�, `��

κ� �zj� ,

κ�� � � intensity function for Poisson clutter.
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Extracting State Estimates

The multi-object state extraction is performed akin to the single model system, by first

determining the MAP cardinality estimate from the cardinality distribution and ex-

tracting the hypothesis of the highest weight with the MAP cardinality. The mean of

the posterior density for each label in the selected hypothesis is computed to extract the

kinematics. To estimate the mode for each label, the mode that maximizes the marginal

probability of that mode over the entire density for that label is selected. i.e., for label

` of hypothesis �I, ξ�, the estimated motion model m̂ is selected as,

m̂ � argmax
m

S p�ξ��ζ,m, `�dζ . (3.11)

Anlytic Solution

Consider the special case where the object birth model, dynamic models and observa-

tion models in the JMS are all linear with Gaussian noise. i.e.,

p
�`��

B,��ζ�,m�� � N �ζ�; b
�`��
�

, Q
�`��
b,� � � ϑ�`��

b �m��, (3.12)

f
�m�
�

�ζ�Sζ, `�� � N �ζ�; F �m�ζ, Q�m�
f � , (3.13)

g
�m��
�

�zSζ�,m�, `�� � N �z; H�m��ζ, Q�m��
h � , (3.14)

where,

b
�`��
�

� mean of the Gaussian birth density of birth component `�,

Q
�`��
b,� � covariance of the Gaussian birth density of birth component `�,

ϑ
�`��
b �m�� � probability of an object birth from component `� having initial mode m�,

F �m�
� state transition matrix for mode m,

Q
�m�
f � process noise covariance matrix for mode m,

H�m��
� observation matrix for mode m�,

Q
�m��
h � measurement noise covariance matrix for mode m�.

Note: Pm>M ϑ
�`�
b �m�= 1.
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Using the following identities,

S N �ζ; ζ̄,P�N �ζ�;F �m�ζ,Q�m��
f �dζ � N �ζ�; F �m�ζ̄, F �m�P �F �m��T �Q�m�

f � ,
(3.15)

N �ζ; ζ̄,P� N �z;H�m��ζ,Q�m��
h � � q�z�N �ζ; ζ̄ �K�z �H�m��ζ̄�, �I �KH�m���P� ,

(3.16)

q�z� � N �z; H�m��ζ̄, H�m��P �H�m���T �Q�m��
h � ,

(3.17)

K � P �H�m���T �H�m��P �H�m���T �Q�m��
h ��1

,

(3.18)

in Eq. (3.9),Eq. (3.10) we obtain the analytic solution.

3.3 GLMB filter with joint prediction and update for a JMS

The recursion described in the previous section is implemented via separate trunca-

tions of the multi-object density during both the prediction and update stages. This

is carried out by eliminating hypotheses with insignificant weights and allowing ex-

isting hypotheses to generate child hypotheses in the next stage proportionate to their

weights. In the prediction step, the generation of best predicted hypotheses is carried

out using two independent K-shortest path algorithms. In the update step, generation

of best predicted hypotheses is performed by solving a ranked assignment problem for

each predicted GLMB hypothesis. As a result of the disjoint nature of these truncations,

a significant number of the parent hypotheses with high weights that are allocated a

large quota for generating child hypotheses, generate a significant number of child hy-

potheses with insignificant weights. Hence considerable computational resources are

wasted in solving ranked assignment problems which have cubic complexity in the

number of measurements. In [87] a more efficient design which consists of a combined

prediction and update step and resultantly a single density truncation is presented.

Further details and explicit formulas regarding this implementation was given in Sec-

tion 2.5.2.

Substituting the JMS state equations Eq. (3.3),Eq. (3.4) and the parameters given
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in Eq. (3.5),Eq. (3.6),Eq. (3.7) in the GLMB filter equation for the joint prediction and

update given by Eq. (2.90) produces the JMS-GLMB recursion with a joint prediction

and update step given in proposition 7.

Proposition 7. If the filtering density at current time is a δ-GLMB density of the form Eq. (3.8)

, then the filtering density at next time is a δ-GLMB given by,

πZ��X�� �∆�X��Q
I,ξ,I�,θ�

ω�I,ξ�ω�I,ξ,I�,θ��
Z�

δI��L�X����p�ξ,θ��Z�
�X�

(3.19)

where

I > F�L�, ξ > Ξ, I� > F�L��, θ� > Θ��I��,
ω

�I,ξ,I�,θ��
Z�

� 1Θ��I���θ�� �1 � P̄ �ξ�
S �I�I��P̄ �ξ�

S �I9I� �1 � rB�B�I� �rB�B9I��ψ̄�ξ,θ��
Z�

�I� ,

P̄
�ξ�
S �`�� � Q

m�>M
P̄

�ξ�
S �`�,m��,

P̄
�ξ�
S �`�,m�� � Q

m>M
bP �m�
S ��, `� ϑ�m�Sm�, p�ξ���,m, `�g ,

ψ̄
�ξ,θ��
Z�

�`�� � Q
m�>M

ψ̄
�ξ,θ��
Z�

�m�, `��,
ψ̄

�ξ,θ��
Z�

�m�, `�� � bp̄�ξ�
�

��,m�, `��, ψθ��`��Z�
��,m�, `��g ,

p̄
�ξ�
�
�ζ�,m�, `�� � 1B�

�`��pB�ζ�,m�, `�� � 1L�`� p�ξ�S �ζ�,m�, `�� ,,

p
�ξ�
S �ζ�,m�, `�� �

P
m>M

bP �m�
S ��, `� f �m�

�
�ζ�S�, `� ϑ�m�Sm�, p�ξ���,m, `�g
P̄

�ξ�
S �`�� ,

p
�ξ,θ��
Z�

�ζ�,m�, `�� � p̄
�ξ�
�
�ζ�,m�, `��ψθ��`��Z�

�ζ�,m�, `��
ψ̄

�ξ,θ��
Z�

�m�, `�� ,

ψjZ�

�ζ�,m�, `�� � δ0�j� �1 � P �m��
D,� �ζ�, `��� � �1 � δ0�j�� P

�m��
D,� �ζ�, `�� � g�m��

�
�zj Sζ�, `��

κ� �zj� .

Analytic solution

Consider the special case where the object birth model, dynamic models and observa-

tion model are all linear with Gaussian noise for which Eq. (3.12),Eq. (3.13),Eq. (3.14)

apply. For such a system if the posterior density at the current time is of the form
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Eq. (3.8) then the filtering density at the next time step is the δ-GLMB of the form,

πZ��X�� �∆�X��Q
I,ξ,I�,θ�

ω�I,ξ�ω�I,ξ,I�,θ��
Z�

δI��L�X����p�ξ,θ��Z�
�X�

(3.20)

where

I > F�L�, ξ > Ξ, I� > F�L��, θ� > Θ��I��,
ω

�I,ξ,I�,θ��
Z�

� �1 � P̄ �ξ�
S �I�I��P̄ �ξ�

S �I9I� �1 � rB,��B��I� �rB,��B�9I� �ψ̄�ξ,θ��
Z�

�I� ,
P̄

�ξ�
S �`�� � Q

m�>M
P̄

�ξ�
S �`�,m��,

P̄
�ξ�
S �`�,m�� � Q

m>M
b p�ξ���,m�, `�� � ϑ�m�Sm�, P �m�

S ��, `��g ,
ψ̄

�ξ,θ��
Z�

�`�� � Q
m�>M

ψ̄
�ξ,θ��
Z�

�m�, `��,
ψ̄

�ξ,θ��
Z�

�m�, `�� � bp̄�ξ�
�

��,m�, `��, ψθ��`��Z�
��,m�, `��g ,

p̄
�ξ�
�
�ζ�,m�, `�� � 1B�

�`��pB�ζ�,m�, `�� �

1L�`�p�ξ�S �ζ�,m�, `�� ,
p
�ξ�
S �ζ�,m�, `�� �

P
m>M

bP �m�
S ��, `� f �m�

�
�ζ�S�, `� ϑ�m�Sm�, p�ξ���,m, `�g
P̄

�ξ�
S �`�� ,

p
�ξ,θ��
Z�

�ζ�,m�, `�� � p̄
�ξ�
�
�ζ�,m�, `��ψθ��`��Z�

�ζ�,m�, `��
ψ̄

�ξ,θ��
Z�

�m�, `�� ,

ψjZ�

�ζ�,m�, `�� � δ0�j� �1 � P �m��
D,� �ζ�, `��� � �1 � δ0�j�� P

�m��
D,� �ζ�, `�� � g�m��

�
�zj Sζ�, `��

κ� �zj� ,

f �m�
�

�ζ�Sζ, `� � N �ζ�; F �m�ζ, Q�m�
f � ,

F �m�
� state transtion matrix for mode m,

Q
�m�
f � process noise covariance matrix for mode m,

p
�`��
B,� �ζ�,m�� � N �ζ�; b�`��, Q�`��

b � � ϑ�`��
b �m��,

b�`�� � mean of the Gaussian birth density of birth component `�,

Q
�`��
b � covariance of the Gaussian birth density of birth component `

�
,

ϑ
�`��
b �m�� � probability of an object birth from component `� having initial mode m�,
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g
�m��
�

�zSζ�,m�, `�� � N �z; H�m��ζ�, Q�m��
g � ,

κ�� � � intensity function for Poisson clutter,

H�m��
� observation matrix for mode m�,

Q�m��
g � measurement noise covariance for mode m�.

3.4 Implementation Issues

When the analytic solutions for the above described filters are considered, it is evident

that the posterior density for each track is a Gaussian mixture, with each mixture com-

ponent relating to one of the available modes in the system. For a particular track,

at each new time step, the posterior is predicted forward taking modes in the system

into consideration with adjusted weights, thereby generating a new Gaussian mixture

with more components. As a result, the number of mixture components escalates ex-

ponentially. Hence extensive pruning and merging of mixture components must be

carried out for each track density in each GLMB hypothesis after the update step to

keep the computation manageable. Pruning is carried out by dropping the Gaussian

mixture components with weights below a pre-determined threshold. Gaussian mix-

ture components that are quite close to each other are merged into a single Gaussian.

The pseudo code of the merging procedure used in this work is given in Algorithm 3.1.

Additionally, hypothesis pruning is carried out at the end of each time step by drop-

ping hypotheses below a certain threshold and retaining a (pre-determined) maximum

number of hypotheses with the highest weights.

For mildly non-linear motion models and measurement models, the UKF can be

utilized for predicting and updating each Gaussian component in the mixture forward.

Alternatively, instead of a making use of a Gaussian mixture to represent the posterior

density of each track in a hypothesis, a particle-based representation can be employed.

In such case, the density is represented using a large set of particles which are propa-

gated forward under the different modes with adjusted weights for each particle. As

in the case of the Gaussian mixture, the number of particles in the density increase by a

fold of the number of motion models considered during each prediction forward. Thus

resampling needs to be carried out to discard particles with negligible weights to keep

the total count of particles manageable.
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Algorithm 3.1: Merging procedure for Gaussian mixture components

Input : �ω�i�,m�i�, P �i��J
i�1

,
Input : Tmerge, Jmax.

Output : �ω̃�i�, m̃�i�, P̃ �i��J
i�1

1 S � �1, ..., J� ;
2 for n � 1 � J do
4 j � argmax

i > S

ω�i�;

5 S�
� �i > S S �m�i�

�m�j��T �m�i�
�m�j��

�P �i�� @ Tmerge¡;

6 ω̃�n�
� Pi>S� ω�i�;

7 m̃�n�
�

1
ω̃�n� Pi>S� ω�i�m�i�;

8 P̃ �n�
�

1
ω̃�n� Pi>S� ω�i� � P �i�

� �m̃�n�
�m�i��T �m̃�n�

�m�i���;
9 S � S � S�;
10 end
5 if n A Jmax then
11 replace �ω̃�n�, m̃�n�, P̃ �n��

i�1�n
by the Jmax Gaussians with largest weights ;

12 end

3.5 Simulation Studies

In this section, using two simulated scenarios we demonstrate the performance of the

proposed JMS-GLMB filter with joint prediction and update (for both cases of Murty’s

algorithm and Gibbs sampling) in comparison to the JMS-GLMB filter with separate

prediction and update. The second scenario is simulated to be more challenging than

the first scenario with a higher number of objects and a higher intensity of clutter.

Example 1

The first scenario consists of 3 objects and Poisson clutter with an average of 60 per

scan. The true tracks of the three objects present in this scenario are presented in Fig-

ure 3.1.

The object state vector consists of Cartesian x, y coordinates and the velocities in

those directions. The sampling interval T � 5s. Therefore the gap between consecutive

time steps in the filter is taken to be 5s. The dynamics of the objects are modelled using

three types of motion models; constant velocity, right turn (coordinated turn with a 3X

angle), and left turn (coordinated turn with a �3X angle).
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Figure 3.1: True trajectories of the tracked objects in scenario 1
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The state transition matrix for the first mode is given by,

F �1�
�

<@@@@@@@@@@@@>

1 0 T 0

0 1 0 T

0 0 1 0

0 0 0 1

=AAAAAAAAAAAA?
,

and the state transition matrices for the second and third modes can be obtained by

substituting ω � 0.05 and ω � �0.05, respectively, in

F �2,3�
�

<@@@@@@@@@@@@>

1 sin�Tω�~ω 0 �cos�Tω� � 1�~ω
0 cos�Tω� 0 �sin�Tω�
0 �1 � cos�Tω��~ω 1 sin�Tω�~ω
0 sin�Tω� 0 cos�Tω�

=AAAAAAAAAAAA?
The objects are assumed to transition between these different modes according

to the mode switching probability matrix A where the probability of switching from

mode m to m� denoted by ϑ�m�Sm� � �Am,m�
�.

A �

<@@@@@@@@>

0.8 0.1 0.1

0.2 0.8 0

0.2 0 0.8

=AAAAAAAA?
The process noise is distributed zero-mean Gaussian with covariance

Qf � σ
2
f

<@@@@@@@@@@@@>

T 4~4 T 3~2 0 0

T 3~2 T 2 0 0

0 0 T 4~4 T 3~2
0 0 T 3~2 T 2

=AAAAAAAAAAAA?
,

where σf � 5 for mode 1 and σf � 20 for modes 2 and 3. The probability of survival

is set at 0.97. The objects are observed in a ��60,60� � ��60,60�km2 region and are as-

sumed to be born from a labeled multi-Bernoulli distribution with three components

each with 0.05 birth probability and birth densitiesN �m1, PL�, N �m2, PL�, N �m3, PL�
where m2 � ��50000,0,40000,0�, m3 � ��10000,0,0,0� andPL � diag��300,30,300,30��.
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A sensor located at �0,0� extracts the target x and y coordinates. The probability of de-

tection is set at PD � 0.99. Measurement noise is assumed to be distributed zero-mean

Gaussian with covariance σ2
hI2 where σh � 40m and I2 is the identity matrix of dimen-

sion 2.

The Optimal Subpattern Assignment Metric (OSPA)[103] values calculated for 100

Monte Carlo (MC) runs for scenario 1 using the three different implementations are

illustrated in Figure 3.2. The OSPA metric is capable of computing the multi-object

miss-distance between a set of true object states and a set of estimated object states

in a mathematically consistent and physically meaningful manner and accommodates

cardinality differences eliminating weaknesses found in other methods [104–106].
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Figure 3.2: OSPA error (parameters c � 500, p � 2) reported for different implementa-
tions from 100 MC runs for scenario 1.

Even though popularly used for providing a good indication of multi-object fil-

tering performance, the OSPA metric does not the account for errors between the es-

timated and true sets of tracks. Therefore it does not penalize track switching and

fragmentation in a consistent manner. A new metric based on the existing OSPA met-

ric named OSPA(2) or OSPA-on-OSPA was recently proposed in [107] for evaluating
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tracking performance. This is achieved by defining a base distance between two tracks

as a weighted time-averaged OSPA distance between the object states of each track and

substituting this base distance into the original OSPA calculation. The OSPA(2) error

calculated for 100 MC runs is displayed in Figure 3.3.
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Figure 3.3: OSPA(2) error (parameters c � 500, p � 2) reported for different implemen-
tations from 100 MC runs for scenario 1.

State estimates obtained for a single run by the single stage implementation using

Gibbs is shown in Figure 3.4. Since the state estimates are colour coded by the object

labels implicit trajectory formation by the filter can be observed.

Object state estimates for the same single run displayed in Figure 3.4 albeit colour

coded by the estimated mode is shown in Figure 3.5. Observe how the mode change

has been identified when the objects undergo the different maneuvers constant veloc-

ity, right turn and left turn.



58 CHAPTER 3. TRACKING MANEUVERING OBJECTS USING JMS

10
20

30
40

50
60

70
80

90
10

0
−

6

−
4

−
20246

x 
10

4

T
im

e 
S

te
p

x−coordinate (m)

 

 

10
20

30
40

50
60

70
80

90
10

0
−

6

−
4

−
20246

x 
10

4

T
im

e 
S

te
p

y−coordinate (m)

(0
3,

2)
(0

2,
1)

(0
4,

2)
(1

0,
2)

(1
2,

3)
(9

5,
2)

G
ro

un
d 

T
ru

th
C

lu
tte

r

Figure 3.4: Object trajectories from a single joint/Gibbs run for scenario 1. State esti-
mates are color coded by object labels.
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Figure 3.5: Object state estimates (color coded by estimated mode) generated by the
Joint/Gibbs implementation for a single run of scenario 1.

Example 2

The second scenario consists of 8 objects observed in a ��80,80� � ��80,80�km2 region

and Poisson clutter with an average of 120 per scan. The true tracks of the eight objects

present in the scenario are shown in Figure 3.6. It is modeled identically to scenario 1

in terms of state dynamics, birth model and measurement model.

The OSPA [103] values calculated for 100 MC runs for scenario 2 using the three

different implementations are illustrated in Figure 3.7 and the OSPA(2) statistics for

the same 100 MC runs are illustrated in Figure 3.8.

The x, y coordinate estimates obtained for a single run by the single stage (joint

prediction and update) implementation using Gibbs for this scenario is shown in Fig-

ure 3.9.

Object state estimates for the same single run displayed in Figure 3.9 colour coded

by the estimated mode is shown in Figure 3.10.
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Figure 3.6: True trajectories of the tracked objects in scenario 2
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Figure 3.7: OSPA error (parameters c � 500, p � 2) reported for different implementa-
tions from 100 MC runs for scenario 2.
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Figure 3.8: OSPA(2) error (parameters c � 500, p � 2) reported for different implemen-
tations from 100 MC runs for scenario 2.
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Figure 3.9: Object trajectories from a single joint/Gibbs run for scenario 2. State esti-
mates are color coded by object labels.
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Figure 3.10: Object state estimates generated by the joint/Gibbs implementation for a
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CHAPTER 4

TRACKING WITH UNKNOWN
CLUTTER AND DETECTION

PROFILE

In this chapter, we first present how the GLMB filter for JMS proposed in Chapter 3

is applied for joint tracking and classification of multiple objects. Further, we ex-

tend that multi-object tracker/classifier to one that can adaptively learn clutter rate and

detection profile while tracking, provided that the detection profile and clutter back-

ground do not change too rapidly compared to the measurement-update rate. This

is a reasonable assumption particularly in applications such as visual tracking where

the data rate is around 30 frames per second, and the background parameters vary

slowly within this period. An efficient implementation with a complexity that is linear

in the number of measurements and quadratic in the number of hypothesized tracks

is presented with experiments confirming markedly improved performance over ex-

isting multi-object filters for unknown background. The results of this chapter have

appeared in the author’s journal article [33].

4.1 Introduction

In a multi-object scenario, the number of objects and their individual states evolve in

time, compounded by false detections, misdetections and measurement origin uncer-

tainty. For example, in the KITTI-17 sequence from KITTI video datasets [108], see

Figure 4.1, the number of objects varies with time due to objects coming in and out of

the scene, and the detector used to convert each image into point measurements (e.g.

background subtraction, foreground modeling [26]), invariably misses objects in the

scene as well as generates false measurements or clutter.

65
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Knowledge of parameters for uncertainty sources such as clutter and detection pro-

file is of critical importance in Bayesian multi-object filtering, arguably, more so than

the measurement noise model. The detection profile is characterized by the probability

that an object with a particular state generates an observation. Clutter, often modeled

as a Poisson point process characterized by the clutter rate, are false measurements not

originated from any object. While these parameters are assumed to be known in most

multi-object tracking techniques, this is generally not the case in practice [13, 14, 22, 23].

Significant mismatches in clutter and detection model parameters inevitably result in

erroneous estimates. For the video tracking example in Figure 4.1 the clutter rate and

detection profile are not known and have to be guessed before a multi-object tracker

can be applied. The tracking performance of the Bayes optimal multi-object tracking

filter [15, 86], for the ‘guessed’ clutter rate and ‘true’ clutter rate (that varies with time

as shown in Figure 4.2), demonstrates significant performance degradation.

Except for a few applications such as radar, and where filtering is directly per-

formed on pre-detection data [110–112] the required clutter rate and detection profile

of the sensor are not available. Usually, these parameters are either estimated from

training data or manually tuned. However, a major problem in many applications is

the time-varying nature of the misdetection and clutter processes, see Figure 4.2 for

example. Consequently, there is no guarantee that the model parameters chosen from

training data will be sufficient for the multi-object filter at subsequent frames. Thus,

current multi-object tracking algorithms are far from being a ’plug-and-play’ technol-

ogy, since their application still requires cumbersome and error-prone user configura-

tion.

We remark that robust Bayesian approaches to problems with model mismatch in

the literature such as [113–118] are classical approaches that are too computationally in-

tensive for an online multi-object tracker. A Sequential Monte Carlo technique for cali-

bration of time-invariant multi-object model parameters was proposed in [119]. While

this approach is quite general, it is not directly applicable to time-varying clutter rate

and detection profile, and is also too computationally intensive for an online tracker.

A PHD filter that performs joint clutter background estimation and filtering is

given in [120]. It uses nonhomogeneous Poisson point process to model the spatial
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Figure 4.1: Frames 16, 48 of the image sequence from [108] and object detections ob-
tained using the detector in [109]. The number of objects varies with time due to ob-
jects coming in and out of the scene. Object estimates (marked by blue boxes) using
the standard GLMB filter for guessed clutter rate of 60 (top 2 frames) and ‘true’ clutter
rate (bottom 2 frames). Tracking using ‘true’ clutter rate accurately estimated several
objects that were missed in the frames on the top.
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Figure 4.2: ‘True’ clutter rate for the first 60 frames of the dataset [108]. Note that it
is not possible to know the true clutter rate for real video data. For illustration, we
assume that the clutter rate varies slowly and use the average clutter count over a
moving 10-frame window as the ‘true’ clutter rate.

distribution of clutter points and the PHD filter output is fedback into the clutter es-

timation algorithm for improved performance. The foundation for a CPHD filter in

unknown detection probability is described in [121] and for a CPHD filter in unknown

clutter rate is described in [122]. An analytic implementation for a CPHD filter built

upon [121],[122] is presented in [123]. A multi-Bernoulli filter that operates amidst

unknown clutter rate and detection probability is presented in [124]. A Kronecker

Delta Mixture and Poisson filter for estimating clutter rate and detection probability is

given in [125]. An inverse gamma Gaussian mixture model CPHD solution for filtering

amidst unknown detection probability, which makes use of the inverse gamma com-

ponent to propagate features such as signal amplitude and SNR to is given in [126].

Application of [124] to track cell microscopy data with unknown background param-

eters is presented in [127]. Nonetheless, none of these filters produces tracks. Further,

the CPHD, PHD and multi-Bernoulli filters require more drastic approximations than

the GLMB filter. The track-before-detect approach, ( eg. the multi-Bernoulli filters in

[110–112] does not require knowledge of clutter rate and detection probability. How-

ever, they are still expensive relative to detection based algorithms.

This chapter presents an online multi-object tracker that learns the clutter and de-

tection model parameters while tracking built upon the δ-GLMB filter from the RFS

paradigm because it outputs tracks, is provably Bayes optimal [14] and admits effi-

cient implementation [87]. Further, the GLMB is a versatile model that offers good

trade-offs between tractability and fidelity, see [94] and the references therein.
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4.2 Multi-Class GLMB

4.2.1 Standard multi-object likelihood with zero clutter

For a given multi-object state X, each �x, `� > X is either detected with probability

PD�x, `� and generates a detection z > Z with likelihood g�zSx, `� or missed with prob-

ability 1�PD�x, `�. The multi-object observation is the superposition of the observations

from detected objects and Poisson clutter with (positive) intensity κ. Assuming that,

conditional on X, detections are independent of each other and clutter, the multi-object

likelihood function is given by [15, 86],

g�Z SX�� Q
θ>Θ

1Θ�L�X���θ� M
�x,`�>X

ψ
�θ�`��
Z �x, `� (4.1)

where: Θ is the set of positive 1-1 maps θ � L� �0:SZ S�, i.e. maps such that no two distinct

arguments are mapped to the same positive value, Θ�I� is the set of positive 1-1 maps with

domain I ; and

ψ
�j�
�z1�M��x, `� �

¢̈̈̈
¦̈̈̈
¤
PD�x,`�g�zj Sx,`�

κ�zj� , if j � 1:M

1 � PD�x, `�, if j � 0
. (4.2)

The map θ specifies which objects generated which detections, i.e. object ` gener-

ates detection zθ�`� > Z, with undetected objects assigned to 0. The positive 1-1 property

means that θ is 1-1 on �` � θ�`� A 0�, the set of labels that are assigned positive values,

and ensures that any detection in Z is assigned to at most one object.

For the special case with zero-clutter, i.e. κ is identically zero, the multi-object

likelihood function still takes the same form, but with PD�x, `�g�zj Sx, `�~κ�zj� replaced

by PD�x, `�g�zj Sx, `�, see [13, 14]. To cover both positive and identically-zero clutter

intensities we write

ψ
�j�
�z1�M��x, `� �

¢̈̈̈
¦̈̈̈
¤
PD�x,`�g�zj Sx,`�
κ�zj��δ0�κ�zj�� , if j � 1:M

1 � PD�x, `�, if j � 0
. (4.3)
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4.2.2 Multi class GLMB with zero clutter

The efficient JMS-GLMB recursion from Section 3.3 can be applied to the joint multi-

object tracking and classification problem by using the mode (motion model) as the

class label (not to be confused with the object label). What distinguishes this problem

from generic JMS-GLMB filtering is that the modes do not interact with each other in

the following sense:

1. All possible states of a new object with the same object label share a common

mode (class label);

2. An object cannot switch between different modes from one time step to the next.

Let us introduce some new notation related to class labels first. Recall that X denotes

the space for object kinematic state, M denotes the space of modes and B denote the

entire label space for new born objects at the current time. Let B�m� denote the set of

labels of all elements in the space X �M � B with mode m. Then condition 1 implies

that the label sets B�m� and B�m�� for different modes m and m� are disjoint (otherwise

there exist a label ` in both B�m� and B�m��, which means there are states in X �M � B

with different modes m and m� but share a common label `). Furthermore, the sets

B�m�, m > M cover B, i.e.B � &
m>M

B�m�, and thus form a partition of the space B. A new

object is classified as class m (and has mode m) if and only if its label falls into B. Thus

for an LMB birth model, condition 1 means

rB,��`�� � Q
m�>M

r
�m��
B,� 1B�m��

�

�`��, (4.4)

p
�m��
B,� �ζ�, `�� � p�m��

B,� �ζ��1B�m��
�

�`��. (4.5)

Note that r�m��
B,� and p�m��

B,� �ζ�� are respectively the existence probability and probability

density of the kinematics ζ� of a new object given mode m�, while 1B�m��
�

�`�� is the

probability of mode m� given label `�.

Condition 2 means that the mode transition probability

ϑ�m�Sm� � δm�m��, (4.6)

which implies that each object belongs to exactly one of the classes in M for its entire
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life. Consequently, the non-interacting mode condition means that at time k, the label

space for all class m objects is L�m�
� &
t�0�k

B�m�
t , and the set of all possible labels is given

by the disjoint union L � &
m>M

L�m�.

For a multi-object JMS system with non-interacting modes, the JMS-GLMB recur-

sion reduces to a form where the weights and multi-object exponentials can be sepa-

rated according to classes. We call this form the multi-class GLMB.

Proposition 8. Let X�m� denote the subset of X with mode m , and hence X � &
m>M

X�m�.

Suppose that the hybrid multi-object density at the current time is a GLMB of the form

π�X� �Q
ξ,I

1Θ�I��ξ Ù Θ� M
m>M

π�I�m�, ξ�m�� �X�m�� (4.7)

where ξ > Ξ, I b L, ξ Ù Θ denotes the projection ξ into the space Θ�i.e., if ξ � �θ1; θk� then ξ Ù

Θk � θk�,
I�m�

< I 9L�m�, ξ�m�
� ξSL�m�

0 �...�L�m�
k

� i.e.the map ξ restricted to L�m�
0 � ... �L�m�

k �, and

(4.8)

π�I�m�, ξ�m���X�m�� < ∆ �X�m��ω�I�m�,ξ�m��δI�m� �L �X�m��� �p�ξ�m���X�m�

(4.9)

Then the hybrid multi-object filtering density at the next time step is the GLMB

πZ�
�X��� Q

ξ, I, θ�, I�

1Θ��I���θ�� M
m>M

π
�m, I�m�, ξ�m�, I

�m�
�

, θ
�m�
�

�
Z�

�X�m�
�

� (4.10)

where I� >F�L��, θ� >Θ�, I�m�
�

� I�9L
�m�
�

, θ�m�
�

� θ�SL�m�
�

.

π
�m, I,ξ,I�, θ��
Z�

�Y�� � ∆�Y��ω�m, I, ξ, I�, θ��
Z�

ω�I,ξ�δI��L�Y��� �p�ξ,θ��Z�
�Y�

(4.11)

ω
�m, I, ξ, I�, θ��
Z�

� �ψ̄�ξ,θ��
Z�

�m, ���I��1 � rB,�� B�m�
�

�I� �rB ,�� B�m�
�

9I�
�

�1 � P̄ �ξ�
S �m, ���I�I��P̄ �ξ�

S �m, ���I9I� , (4.12)

P̄
�ξ�
S �m,`� � bp�ξ���,m, `�, P �m�

S ��, `�g ,
ψ̄

�ξ,θ��
Z�

�m,`� � bp̄�ξ�
�

��,m, `�, ψ�θ��`��
Z�

��,m, `�g , (4.13)
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p̄
�ξ�
�

�ζ,m, `� � 1L�m��`�bP
�m�
S ��, `�f �m�

�
�ζ S�, `��, p�ξ���,m, `�g

P̄
�ξ�
S �m,`�

� 1B�m�
�

�`�p�m�
B �ζ, `� (4.14)

p
�ξ,θ��
Z�

�ζ,m, `� � p̄
�ξ�
�

�ζ,m, `� ψ�θ��`��
Z�

(ζ,m,`)

ψ̄
�ξ,θ��
Z�

�m,`� (4.15)

ψ
�j�
�z1�SZ� S��ζ,m, `� �

¢̈̈̈̈
¦̈̈̈
¤̈
P

�m�
D,� �ζ,`�g�m�

�
�zjSζ,`�

κ��zj��δ0�κ��zj�� , if j > �1, ..., SZ�S �
1 � P

�m�
D,� �ζ, `�, if j � 0.

Proof: Note that the L�m�
0 � ... � L�m�

k ,m > M form a partition of L0 � ... � Lk , and

since each ξ�m� was defined as a restrictions of ξ over L�m�
0 � ... � L�m�

k , ξ is completely

characterized by the ξ�m�,m >M.

Recall from Eq. (2.75) the definition of a δ-GLMB RFS with state space X, discrete

space Ξ and discrete label space L as,

π�X� � ∆�X� Q
�I,ξ�>F�L��Ξ

ω�I,ξ�δI�L�X�� �p�ξ��X . (4.16)

By defining

ω�I,ξ�
� 1Θ�I��ξ Ù Θ� M

m>M
ω�I�m�, ξ�m�� (4.17)

p�ξ��ζ,m, `� � �p�ξ�m���ζ,m, `��1L�m��`�
. (4.18)

It can be seen that Eq. (4.7) is a GLMB of the form Eq. (4.16)since

δI�L�X�� �M
m>

δI�m��L�X�m���, (4.19)

�p�ξ��X � �p�ξ�� &m>M
X�m�

� M
m>M

�p�ξ�m���X�m�

(4.20)

Proposition 7 from Chapter 3, gives the hybrid multi-object filtering density at time

k � 1. Substituting Eq. (4.21), Eq. (4.22), Eq. (4.23), Eq. (4.4) into Proposition 7 from

Chapter 3 and decomposing
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X� � '
m>M

X
�m�
�

(4.21)

ω
�I,ξ,I�,θ��
Z�

� 1Θ��I���θ�� M
m>M

ω
�m, I�m�, ξ�m�, I

�m�
�

, θ
�m�
�

�
Z�

(4.22)

p
�ξ,θ��
Z�

� �p�ξ�m�, θ
�m�
�

�
Z�

�1
L�m�
�

�`�
(4.23)

and rearranging yields Eq. (4.10). Note that Eq. (4.6) ensures m� �m.

Given a GLMB filtering density of the multi-class form Eq. (4.7), the GLMB filtering

density for class c >M, can be obtained by marginalizing the other classes according to

the following proposition.

Proposition 9. For the multi-class GLMB Eq. (4.7), the marginal GLMB for class c is given

by

π �X�c�� � ∆�X�c��Q
ξ,I

ω�I, ξ�δI�c��L�X�c��� �p�ξ�c���X�c�

. (4.24)

Proof: Note that

S π�I�m�, ξ�m���X�m��δX�m�
�S ∆�X�m��ω�I�m�, ξ�m��δI�m��L�X�m��� �p�ξ��X�m�

δX�m�,

� ω�I�m�, ξ�m��.

Since, the X�m�, m >M are disjoint

π�X�c�� � S π � '
m>M

X�m�� δ �� '
m>M��c�

X�m��� ,
� S Q

ξ,I

1Θ�I��ξÙΘ� � M
m>M

π�I�m�, ξ�m�� �X�m�� δ �� '
m>M��c�

X�m��� ,
�Q
ξ,I

1Θ�I��ξÙΘ�π�I�c�,ξ�c�� �X�c�� � M
m>M��c�

S π�I�m�, ξ�m���X�m��δX�m�,

�Q
ξ,I

1Θ�I��ξÙΘ�π�I�c�,ξ�c�� �X�c�� � M
m>M��c�

ω�I�m�, ξ�m��,

� ∆ �X�c��Q
I,ξ

ω�I, ξ�δI�c� �L �X�c��� �p�ξ�c���X�c�

.
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4.3 GLMB Filtering with Unknown Background

Clutter or false detections are generally understood as detections that do not corre-

spond to any object [13, 14, 22, 23]. Since the number of false detections and their

values are random, clutter is usually modeled by RFSs in the literature [13, 14, 70].

The simplest and the most commonly used clutter model is the Poisson RFS [70], in

most cases, with a uniform intensity over the surveillance region. Alternatively, clutter

can be treated as detections originating from clutter generators-objects that are not of

interest to the tracker [121–124].

In [123] a CPHD recursion was derived to propagate separate intensity functions

for clutter generators and objects of interest, and their collective cardinality distribu-

tion of the hybrid multi-object state. Similarly, in [124] analogous multi-Bernoulli re-

cursions were derived to propagate the disjoint union of objects of interest and clut-

ter generators. In this work, we show that the multi-class GLMB filter is an effective

multi-object object tracker that can operate under unknown background by learning

the clutter and detection model on-the-fly. In particular, a GLMB clutter model is pro-

posed in Section 4.3.1 by treating clutter as a special class of objects with completely

uncertain dynamics, along with a dedicated GLMB recursion for propagating the joint

filtering density of clutter generators and objects of interest. Implementation details

are given in Section 4.3.2. Extension of the proposed algorithm to accommodate un-

known detection profile is described in Section 4.3.3.

4.3.1 GLMB Joint Object-Clutter Model

We propose to model the finite set of clutter generators and objects of interest as two non-

interacting classes of objects, and propagate this so-called hybrid multi-object filtering

density forward in time via the multi-class GLMB recursion. The GLMB posterior

density of the hybrid multi-object state captures all relevant statistical information on

the objects of interest as well as the clutter generators. What distinguishes the objects of

interest from clutter generators is that the former have relatively predictable dynamics

whereas the latter have essentially no dynamics.

In the hybrid multi-object model, the Poisson clutter intensity κ is identically 0

and each detection is generated from either a clutter generator or an object of interest,

which constitute, respectively, the two modes (or classes) 0 and 1 of the mode space
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M � �0,1�. Since the classes are non-interacting, there is no switching between objects

of interest and clutter generators. Moreover, the label space for newborn clutter gener-

ators B�0� and the label space for newborn objects of interest B�1� are disjoint and the

LMB birth parameters are given by

rB,��`�� � r�0�B,�1B�0�
�

�`�� � r�1�B,�1B�1�
�

�`��,
p
�m��
B,� �ζ�, `�� � p�m��

B,� �ζ��1B�m��
�

�`��.

Since clutter has no dynamics, each clutter generator has a transition density indepen-

dent of the previous state and a uniform measurement likelihood in the observation

region with volume V .

f
�0�
�

�ζ�Sζ, `� � s�ζ��,
g�0��zSζ, `� � u�z�V �1.

Note that the labels of clutter generators can effectively be ignored since it is implicit

that their labels are distinct but are otherwise uninformative. Further, for Gaussian

implementations, it is assumed that the survival and detection probabilities for clutter

generators are state independent.

P
�0�
S �ζ, `� � P �0�

S ,

P
�0�
D,��ζ, `� � P �0�

D,�.

Applying the multi-class GLMB recursion to this model, it can be easily seen that all

clutter generators are functionally identical (from birth through prediction and up-

date).

p
�0�
B �ζ, `� � p̄�ξ�0��

�
�ζ,0, `� � p�ξ�0�,θ�0��

�
Z�

�ζ,0, `� � s�ζ� (4.25)

and that the weight update for clutter generators reduces to

ω
�0, I�0�, ξ�0�, I

�0�
�
, θ

�0�
�

�
Z�

� �1 � P �0�
S �UI�0��I�0��

U �P �0�
S �UI�0�9I�0��

U �1 � r�0�B,��UB
�0�
�

�I
�0�
�

U �r�0�B,��UB
�0�
�

9I
�0�
�

U
�

�1 � P �0�
D,��U�`>I

�0�
�

�θ
�0�
�

�`��0�U �P �0�
D,�V

�1�U�`>I�0��
�θ

�0�
�

�`�A0�U
. (4.26)

Thus the propagation of clutter generators within each GLMB component reduces to
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the propagation of their weights

ω
�0, I

�0�
�
, ξ�0�, θ

�0�
�

�
Z�

�QI�0�
ω�I�0�,ξ�0��ω

�0, I�0�, ξ�0�, I
�0�
�
, θ

�0�
�

�
Z . (4.27)

4.3.2 Implementation

The key challenge in the implementation of the multi-class GLMB filter is the propa-

gation of the GLMB components, which involves, for each parent GLMB component

�I, ξ�, searching the space F�L�� � Θ� to find a set of �I�, θ�� such that the children

components �I, ξ, I�, θ�� have significant weights ω�I, ξ, I�, θ��
Z�

. In [87], the set of �I�, θ�� is

generated from a Gibbs sampler, with stationary distribution constructed so that only

valid children components have positive probabilities, and those with high weights

are more likely to be sampled than those with low weights. A direct application of

this approach to generate new children would, however, would be expensive, for the

following reasons.

Let P � SI S, P �0�
� SI�0�S, P �1�

� SI�1�S and M � SZ�S. According to [87] the complexity

of the joint prediction and update via Gibbs sampling with T iterations is O�TP 2M�.

Since the present formulation treats clutter as objects, the total number of hypothe-

sized objects P C P �0�
C M , and hence the complexity is at least O�TM3�, which is

cubic in the number of measurements and results in a relatively inefficient implemen-

tation. This occurs because the majority of the computational effort is spent on clutter

generators even though they are not of interest. This problem is exacerbated as the

clutter rate increases.

In the following we propose a more efficient implementation by focusing on the

filtering density of the objects of interest instead of the hybrid multi-object filtering

density. Observe that given any �I�1�
�
, θ

�1�
�

� > F�L�1�
�

��Θ
�1�
�

, and �I�0�
�
, θ

�0�
�

� > F�L�0�
�

��
Θ

�0�
�

, where Θ
�m�
�

denotes the space of positive 1-1 maps from L�m�
�

to �0,1, ...,M�, we

can uniquely define

�I�, θ�� < �I�1�
�

> I
�0�
�
, 1L�1�

�

�� �θ �1��� � � 1L�0�
�

�� �θ�0�
�

�� �� (4.28)
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Further, the weight of the resulting component �I, ξ, I�, θ�� is

ω
�I, ξ, I�, θ��
Z�

� 1Θ�I���θ�� ω
� 0, I�0�, ξ�0�, I

�0�
�

, θ
�0�
�

�
Z�

ω
� 1, I�1�, ξ�1�, I

�1�
�

, θ
�1�
�

�
Z�

(4.29)

see Proposition 9, Eq. (4.22). Note that if θ� is not a valid association map then

1Θ�I���θ�� � 0, and hence the weight is zero.

For each parent GLMB component �I, ξ�, rather than searching for �I�, θ�� with

significant ω�I,ξ,I�,θ��
Z�

in the space F�L�� �Θ�, we:

1. seek �I�1�
�
, θ

�1�
�

� with significant ω�1,I�1�,ξ�1�,I�1�
�

,θ
�1�
�

�
Z�

from the smaller spaceF�L�1�
�

��
Θ

�1�
�

;

2. for each such �I�1�
�
, θ

�1�
�

� find the �I�0�
�
, θ

�0�
�

� with the best ω�0,I�0�,ξ�0�,I�0�
�

,θ
�0�
�

�
Z�

, sub-

ject to the constraint,

1L�1�
�

�� � θ�1�
�

�� � � 1L�0�
�

��� θ
�0�
�

�� � > Θ �I�1�
�

> I
�0�
�

� ; (4.30)

3. construct �I�, θ�� from �I�1�
�
, θ

�1�
�

� and �I�0�
�
, θ

�0�
�

� via Eq. (4.28) and compute the

corresponding weight via Eq. (4.29).

Due to the constraint Eq. (4.30), 1Θ�I���θ�� � 1, and hence, it follows from Eq. (4.29) that

the resulting GLMB component�I, ξ, I�, θ�� also has significant weight. The goal here is

to generate a set of mappings with significant weights, but not necessarily in the order

of the weight, since the latter is highly computationally intensive.

The advantage of this strategy is two fold:

Ì searching over a much smaller space F�L�1�
�

��Θ
�1�
�

results in a linear complexity

in the measurements O�T �P �1��2M� since typically P �1�
@@M ;

Ì finding �I�0�
�
, θ

�0�
�

� with the best weight subject to the constraint θ� > Θ�I�� is

straight forward and requires minimal computation.

Propagating Objects of Interest

One way to generate significant �I�1�
�
, θ

�1�
�

� is to design a Gibbs sampler with station-

ary distribution ω
�1, I�1�, ξ�1�, I

�1�
�
, θ

�1�
�

� However, this approach requires computing the

hybrid multi-object density, which we try to avoid in the first place.
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A much more efficient alternative is to treat the multi-Bernoulli clutter as Poisson

with matching intensity, and apply the standard GLMB filter given in Section 2.5.2 (i.e.,

the JMS-GLMB filter with a single-mode), where the Gibbs sampler [89] (or Murty’s

algorithm [92]) can be used to obtain significant �I�1�
�
, θ

�1�
�

� [87]. Since there areSI�0�S
clutter generators from the previous time with survival probability P

�0�
S , and SB�0�

�
S

clutter birth with probability r�0�B,�, the predicted clutter intensity is given by

κ̂� � �P �0�
S SI�0�S � r

�0�
B,�SB�0�

�
S� P

�0�
D,�V

�1. (4.31)

Note that a Poisson RFS has larger variance on the number of clutter points than a

multi-Bernoulli with matching intensity. Hence, in treating clutter as a Poisson RFS,

we are effectively tempering with the clutter model to induce the Gibbs sampler (or

Murty’s algorithm) to generate more diverse components [87].

Following [87], let us enumerate Z� � �z1�M�, I�1� � �`1�R�, and B�1�
�

� �`R�1�P �. The

�I�1�
�

, θ
�1�
�

� > F�L�1�
�

��Θ�I�1�
�

� at time k � 1 with significant weights are determined by

solving a ranked assignment problem with cost matrix �η�ξ�1��i �j��, i � 1 � P , j � �1 �M ,

computed as,

η
�ξ�1��
i �j� �

¢̈̈̈̈
¨̈̈̈̈̈
¨̈̈¦̈̈̈
¨̈̈̈̈̈
¨̈̈̈¤

1 � P̄
�ξ�1��
S �1, `i� `i > I

�1�, j @ 0

P̄
�ξ�1��
S �1, `i�ψ̄�ξ�1�,θ�1�

�
�

Z�

�1, `i� `i > I
�1�, j C 0

1 � rB,��`i� `i > B
�1�
�
, j @ 0

rB,��`i�ψ̄�ξ�1�,θ�1�
�

�
Z�

�1, `i� `i > B
�1�
�
, j C 0

(4.32)

where,

ψ̄
�ξ�1�,θ�1�

�
�

Z�

�1, `� � cp̄�ξ�1��
�

��,1, `�, ψ�θ�1�
�

�`��
Z�

��,1, `�h

ψ
�j�
Z�

�ζ,1, `� �
¢̈̈̈̈
¦̈̈̈
¤̈
P

�1�
D,��ζ,`�g

�1�
�

�zj Sζ,`�
κ̂�

, if j > �1, ...,M�
1 � P

�1�
D,��ζ, `�, if j � 0

Such a ranked assignment problem can be solved by Murty’s algorithm or the Gibbs

sampler.
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Propagating Clutter Generators

Given �I�1�
�

, θ
�1�
�

� pertaining to the objects of interest, we proceed to determine �I�0�
�

, θ
�0�
�

�
pertaining to clutter generators, which maximizesw�0,I�0�,ξ�0�,I�0�

�
,θ

�0�
�

�
Z�

where I�0�
�

bI�0�8

B�0�
�

and θ�0�
�

� I
�0�
�
� �0 �M� subject to constraint Eq. (4.30).

Denote by Z�1�
�

b Z� the set of measurements assigned to I�1�
�

by θ�1�
�

and the re-

maining set of measurements Z�� Z
�1�
�

, due to clutter generators, by Z�0�
�

. Recall that

clutter generators are functionally identical except in label and that their propagation

reduces to calculating their corresponding weights Eq. (4.26). Let N �0�
S � SI�0� 9 I�0�

�
S

and N �0�
B,� � SB�0�

�
9 I

�0�
�

S denote the counts of surviving and new born clutter generators

respectively. Then SI�0� � I�0�
�

S � SI�0�S �N �0�
S and SB�0�

�
� I

�0�
�

S � SB�0�
�

S �N �0�
B,�. Observe

that the count SZ�0�
�

S of clutter must equal the number of detections of clutter genera-

tors according to �I�0�
�

, θ
�0�
�

�, i.e. SZ�0�
�

S � S�` > I�0�
�

� θ
�0�
�

�`� A 0�S and hence the count of

misdetections of clutter generators according to �I�0�
�

, θ
�0�
�

� is N �0�
S �N

�0�
B,�� SZ�0�

�
S � S�` >

I
�0�
�

� θ
�0�
�

�`� � 0�S. Consequently the weight Eq. (4.26) can be rewritten as

w
�0,I�0�,ξ�0�,I�0�

�
,θ

�0�
�

�
Z�

� �1 � P �0�
S �SI�0�S�N�0�

S �P �0�
S �N�0�

S �1 � r�0�B,��SB
�0�
�

S�N�0�
B,�

�

�r�0�B,��N
�0�
B,� �1 � P �0�

D,��N
�0�
S �N

�0�
B,��SZ

�0�
�

S �P �0�
D,�V

�1�SZ�0�
�

S

�

<@@@@>
P

�0�
S �1 � P �0�

D,��
1 � P

�0�
S

=AAAA?
N

�0�
S <@@@@>

r
�0�
B,��1 � P �0�

D,��
1 � r

�0�
B,�

=AAAA?
N

�0�
B,�

.

Thus seeking the best �I�0�
�

, θ
�0�
�

� subject to constraint Eq. (4.30) reduces to seeking

the best �N �0�
S ,N

�0�
B,�� subject to the constraints 0 B N

�0�
S B SI�0�S, 0 B N

�0�
B,� B SB�0�

�
S and

N
�0�
S �N

�0�
B,� C SZ�0�

�
S.

Linear Gaussian Update Parameters

Let N ��; ζ̄, P � denote a Gaussian density with mean ζ̄ and covariance P . Then for a

linear Gaussian multi-object model of the objects of interest,

P
�1�
S �ζ, `� � P �1�

S ,

P
�1�
D �ζ, `� � P �1�

D ,
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f
�1�
�

�ζ�Sζ, `� � N �ζ�;Fζ,Q�,
g�1��zSζ, `� � N �z;Hζ,R�,
p
�1�
B,��ζ�� � N �ζ�; ζ̄

�1�
�
, P

�1�
�

�,

where F is the transition matrix, Qf is the process noise covariance, H is the obser-

vation matrix, Qh is the observation noise covariance, ζ̄�1�
�

and P
�1�
�

are the mean and

covariance of the kinematic state of a new object of interest. If each current density of

an object of interest is a Gaussian of the form

p�ξ
�1���ζ,1, `� � N �ζ; ζ̄�ξ

�1���`�, P �ξ�1���`�� (4.33)

then the terms Eq. (4.13),Eq. (4.14),Eq. (4.15) can be computed analytically using

the following identities:

S N �ζ; ζ̄, P �N �ζ�; Fζ, Qf�dζ � N �ζ�; F ζ̄,FPF T �Qf�, (4.34)

N �ζ; ζ̄, P �N �z; Hζ, Qh� � q�z�N �ζ; ζ̄ �K�z �Hζ̄�, �I �KH� P �,
q�z� � N �z;Hζ̄,HPHT

�Qh�,
K � PHT �HPHT

�Qh��1
.

Pseudo-code

For the GLMB joint object-clutter model, propagation of a multi-class GLMB of the

form Eq. (4.7) reduces to propagation of Eq. (4.9) for each mode m > �0,1�. The density

in Eq. (4.7) is thus completely described by the parameters,

�w�I�m�,ξ�m��, p�ξ
�m��� for �I�m�, ξ�m�� > F�L�m�� �Θ�m� and m > �0,1�,

which can be enumerated as �I�m,h�, ξ�m,h�,w�m,h�, p�m,h�� where w�m,h�
< w�I�m,h�,ξ�m,h��

and p�m,h� < p�ξ
�m,h�� for h > �1, ...,H� and m > �0,1�. Consequently the multi-class

GLMB of the form Eq. (4.7) can be written as a sum over h > �1, ...,H�, thus obviating

the need to store the history vector ξ�m,h� of association maps θ�m,h�. Implementing the

filter for the GLMB joint object-clutter model reduces to propagation of the parameter

set �I�m,h�,w�m,h�, p�m,h�� forward in time for each mode m > �0,1�.
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For m � 1 (objects of interest), the propagation of the parameter set is given by the

procedure in section Section 4.3.2, which adapts the Gibbs sampler solution in [87].

Accordingly, we continue the convention of indexing by h for the cost η
�1,h�
i �j� <

η
�ξ�1,h��
i �j� and similarly for the parameters in the expression for the cost in Eq. (4.32).

Following the approach in [87], for any valid pairs �I�1�, θ�1��, it is necessary to intro-

duce an auxiliary variable γ � �γi�SI�1�Si�1 which is positive 1-1 given by,

γi �

¢̈̈̈̈
¦̈̈̈
¤̈
θ�1��`i�, if `i > I�1�

�1 otherwise.
(4.35)

For m � 0 (clutter generators), the propagation of the parameter set is given by the

by the procedure in section Section 4.3.2, for which the values can be pre-computed

offline. Recall that clutter generators are by assumption identical except in label. The

propagation of their parameter set further reduces to the weightsw�0,h� and the countsN �0,h�
<

SI�0,h�S of clutter generators. Thus minimal storage is required for propagating their pa-

rameters.

As shown by Eq. (4.17) the weight ω�h� of any valid component �I�h�, ξ�h�� is simply

the product ω�h�
� w�0,h�w�1,h�, thus for the GLMB joint object-clutter model, the filter

implementation propagates the parameter set,

�ω�h�, I�1,h�,N �0,h�, p�1,h��H
h�1

forward in time to obtain the next parameter set ,

�ω�h��
�

, I
�1,h��
�

,N
�0,h��
�

, p
�1,h��
�

�H�

h��1

as detailed in the following pseudo-code.1

1 The pseudo-code is presented in the style of [28]. The notation { } is used for a MATLAB cell array
of possibly non-unique elements. The “Unique” function is similar to the MATLAB call which outputs
non repeated elements of the input, as well as the indices Uh,u,v matching each of the outputs to all
occurrences in the input. Algorithm 2 for Gibbs sampling is reproduced from [? ].



82 CHAPTER 4. TRACKING WITH UNKNOWN CLUTTER AND DETECTION PROFILE

Algorithm 4.1: Propagation of hypotheses with objects of interest and clutter generators

Input :
{
ω(h), I(1,h), N (0,h), p(1,h)

}H

h=1
, H0,max

+ , H1,max
+ ,

Input :
{(

r
(1)
B,+(ℓi), p

(1)
B,+(·, ℓi)

)}|B(1)
+ |

i=1
,

Input : P (1)
S , f

(1)
+ (· |· ), P (1)

D+
, g

(1)
+ (· |· ), Z+

Output:
{
ω
(h+)
+ , I

(1,h+)
+ , N

(0,h+)
+ , p

(1,h+)
+

}

1 sample counts [T (m,h)
+ ]Hh=1 from a multinomial distribution with parameters Hm,max

+ trials and weights
[ω(h)]Hh=1 for m = 0, 1;

2 for h← 1 to H do
3 initialize γ(1,h,1) (with any positive 1-1 vector);

4 η(1,h) :=
[
η
(1,h)
i (j)

](∣∣∣I(1,h)∪B(1)
+

∣∣∣, |Z+|
)

(i,j)=(1,−1)
;

5
{
γ(1,h,u)

}T
(1,h)
+

u=1
:= Unique

(
Gibbs

(
γ(1,h,1), T

(1,h)
+ , η(1,h)

))
;

6 for u← 1 to T
(1,h)
+ do

7 I
(1,h,u)
+ := {ℓi ∈ I(1,h) ∪ B(1)

+ : γ
(1,h,u)
i ≥ 0};

8 w
(1,h,u)
+ :=

∏
∣∣∣I(1,h)∪B(1)

+

∣∣∣
i=1 η

(1,h)
i

(
γ
(1,h,u)
i

)
;

9 p̄
(1,h,u)
+ (·, ℓi) := 1L(1)(ℓi)

〈
P

(1)
S (·,ℓi)f (1)

+ (ζ|·,ℓi)), p(1,h)(·,ℓi)
〉

〈
p(1,h)(·,ℓi),P (1)

S (·,ℓi)
〉 + 1B(1)

+

(ℓi)p
(1)
B (·, ℓi), for each ℓi ∈

I
(1,h,u)
+ ;

10 p
(1,h,u)
+ (·, ℓi) :∝ p̄

(1,h,u)
+ (·, ℓi)P (1)

D+
(·, ℓi)g(1)+ (z

γ
(1,h,u)
i

|·, ℓi), for each ℓi ∈ I
(1,h,u)
+ with γ

(1,h,u)
i >

0;
11 p

(1,h,u)
+ (·, ℓi) :∝ p̄

(1,h,u)
+ (·, ℓi)(1− P

(1)
D+

(·, ℓi)), for each ℓi ∈ I
(1,h,u)
+ with γ

(1,h,u)
i = 0;

12 |Z(0)
+ | := |Z+| − |{ℓi : γ(1,h,u)i > 0}|;

13
{
N

(0,h,v)
+ , w

(0,h,v)
+

}
T

(0,h)
+

v=1 :=SolveClutter(|Z(0)
+ |, N (0,h), T

(0,h)
+ , Z+);

14 for v ← 1 to T
(0,h)
+ do

15 w
(h,u,v)
+ := ω(h) w

(1,h,u)
+ w

(0,h,v)
+ ;

16 create solutions S :=
{(

w
(h,u,v)
+ , I

(1,h,u)
+ , N

(0,h,v)
+ , p

(1,h,u)
+

)}(H,T
(1,h)
+ ,T

(0,h)
+ )

(h,u,v)=(1,1,1)
;

17

({(
w

(h+)
+ , I

(1,h+)
+ , N

(0,h+)
+ , p

(1,h+)
+

)}H+

h+=1
,∼, [Uh,u,v]

)
:= Unique(S);

18 ω
(h+)
+ =

∑
h,u,v:Uh,u,v=h+

w
(h,u,v)
+ for all h+;

19 normalize weights
{
ω
(h+)
+

}H+

h+=1
;
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Algorithm 4.2: Gibbs Sampler

Input : γ(1), T, η = [ ηi(j) ]
Output: γ(1), ..., γ(T )

1 P = size(η, 1);
2 M = size(η, 2)− 2;
3 for t = 2 : T do
4 for n = 1 : P do
5 γ

(t)
n ∼ πn(· |γ(t)1:n−1, γ

(t−1)
n+1:P );

6 γ(t) =
[
γ
(t)
1 , ..., γ

(t)
P

]
;

Algorithm 4.3: SolveClutter

Input : |Z(0)
+ |, N (0), T, |Z+|

Input : r(0)B,+,B
(0)
+ , P

(0)
S , P

(0)
D+

, V

Output:
(
N

(0,t)
+ , w

(0,t)
+

)
T
t=1

1 find pairs
{
(n

(t)
S , n

(t)
B )
}T

t=1
giving T -highest costs w(nS , nB) subject to

0 ≤ nS ≤ N (0), 0 ≤ nB ≤ |B(0)
+ |, nS + nB ≥ |Z(0)

+ | where,

w(nS , nB) =
[
1− P

(0)
S

](N(0)−nS)
[
P

(0)
S

]nS ×
[
1− r

(0)
B,+

]∣∣∣B(0)
+

∣∣∣−nB
[
r
(0)
B,+

]nB ×
[
1− P

(0)
D+

](nB+nS−|Z(0)
+ |) [

P
(0)
D+

V −1
]|Z(0)

+ |
;

2 N
(0,t)
+ := n

(t)
S + n

(t)
B for all t;

3 w
(0,t)
+ := w(n

(t)
S , n

(t)
B ) for all t;

4.3.3 Extension to Unknown Detection Probability

Following the approach in [87], to jointly estimate an unknown detection probability,

we augment a variable a > �0,1� to the state, i.e. x � �ζ,m, a, `�, so that

P
�m�
D �ζ, a, `� � a. (4.36)

Additionally, in this model

g�m��zSζ, a, `� � g�m��zSζ, `�,
P

�m�
S �ζ, a, `� � P �m�

S ,

p
�1�
B,��ζ�, a�� � p�1�B,��ζ��p�1�B,��a��,

and the transition density is given by

f
�m�
�

�ζ�, a�Sζ, a, `� � f �m�
�

�ζ�, Sζ, `�f �∆�
�

�a�Sa�. (4.37)
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The Beta distribution is a natural choice for modeling quantities that vary between

�0,1�. Following [87] the unknown detection probability is modeled as a Beta distri-

bution β��, s, t� where s and t are positive shape parameters. Consequently, the state

density of an object of interest is modeled by a Beta-Gaussian density:

p�ξ
�1���ζ,1, a, `� � β�a; s�ξ

�1���`�, t�ξ�1���`��N �ζ;m�ξ�1���`�, P �ξ�1���`�� (4.38)

Analytic computation of the terms ??,Eq. (4.14) and Eq. (4.15) can be performed

separately for the Gaussian part (which has been given in the previous subsection)

and the Beta part using [87]:

β�a�; s�, t�� � S β�a; s, t�f �∆�
�

�a�Sa� da (4.39)

where,

s� �
�
�
µβ�1 � µβ�

σ2
β,�

� 1
�
�µβ,

t� �
�
�
µβ�1 � µβ�

σ2
β,�

� 1
�
��1 � µβ� ,

σ2
β,� � Cβσ

2
β, Cβ C 1.

�1 � a�β�a; s, t� � B�s, t � 1�
B�s, t� β�a; s, t � 1�,

aβ�a; s, t� � B�s � 1, t�
B�s, t� β�a; s � 1, t�,

B�s, t� � S 1

0
as�1�1 � a�t�1da.

Note that β��; s�, t�� has the same mean µβ as β��; s, t� but a larger variance than

the original σ2
β due to the scaling by the factor Cβ .
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4.3.4 Numerical Studies

Simulations

The following simulation scenario is used to test the proposed robust multi-object filter.

The object state vector �x, y, ẋ, ẏ�T consists of Cartesian coordinates and the velocities.

Objects of interest move according to a constant velocity model, with zero-mean Gaus-

sian process noise of covariance Qf where vf � 5ms�1 and T � 1s.

Qf � v2
f

<@@@@@@@@@@@@>

T 4~4 T 3~2 0 0

T 3~2 T 2 0 0

0 0 T 4~4 T 3~2
0 0 T 3~2 T 2

=AAAAAAAAAAAA?
The probability of survival for an object of interest is set at 0.99. Objects of interest

are born from a labeled multi-Bernoulli distribution with four components of 0.03 birth

probability, and birth densities

N �� ; �0,0,0,0, � Pγ�T ,N �� ; �400,�600,0,0� Pγ�T ,
N �� ; ��200,800,0,0� Pγ�T ,N �� ; ��800,�200,0,0� Pγ�T ,
where Pγ � diag ��50,50,50,50�� .

Objects of interest enter and leave the ��1000,1000�m � ��1000,1000�m observation

region at different times reaching a maximum of ten targets. The measurements are the

object positions obtained through a sensor located at coordinate �0,0�. Measurement

noise is assumed to be distributed Gaussian with zero mean and covariance Qh where

vh � 3ms�1.

Qh � v
2
h

<@@@@@>
1 0

0 1

=AAAAA?
The detection model parameters for all newborn objects of interest are set at s � 9

and t � 1 resulting in a mean of 0.9 for the detection probability.

At the initial time step, clutter generators are born from a (labeled) multi-Bernoulli

distribution with 120 components, each with 0.5 birth probability and uniform birth
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density. At subsequent time steps clutter generators are born from a (labeled) multi-

Bernoulli distribution with 30 components, each with 0.5 birth probability and uniform

birth density. The probability of survival and probability of detection of the clutter

generators are both set at 0.9.

Four scenarios corresponding to different pairings of average (unknown) clutter

rate and detection probability (see Table 1) are studied.

Scenario ID Clutter Rate Detection Probability
1 10 0.97
2 10 0.85
3 70 0.97
4 varying between 25-35 0.95

Table 4.1: Simulation Parameters unknown to the filter

The Figure 4.3a shows the optimal subpattern assignment metric (OSPA) [103] er-

rors obtained from 100 Monte Carlo runs (OSPA parameters c = 300m, p = 1) for the

proposed GLMB filter in comparison with λ-CPHD [123] filter for scenario 1. Monte

Carlo average results for the cardinality of objects of interest count are given in Fig-

ure 4.3b. The Figure 4.3b shows the OSPA(2) [103] errors obtained from 100 Monte

Carlo runs (OSPA parameters c = 300m, p = 1) for the proposed GLMB filter. Note

that this metric cannot be calculated for the λ-CPHD as it does not have the concept

of tracks. Cardinality statistics for both filters against true cardinality are given in Fig-

ure 4.3c. Estimated clutter rates and detection probabilities by the two filters are shown

in Figure 4.3d, while estimated tracks for objects of interest taken from a single run is

shown in Figure 4.3e. It can be seen that for the given parameters, the GLMB filter

performs far better than the λ-CPHD in terms of clutter rate, detection probability and

state estimation for objects of interest.
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CPHD GLMB

(a) Average OSPA error (parameters c =300m, p=1) over 100 Monte Carlo runs. The bumps in the car-
dinality error for GLMB appear close to time steps where a new birth or a death of an object of interest
occurs.
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GLMB

(b) Average OSPA(2) error (parameters c =300m, p=1) over 100 Monte Carlo runs.
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(c) Cardinality estimations for objects of interest.
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(d) Estimated clutter and detection parameters.
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(e) Estimated tracks obtained from a single run.

Figure 4.3: Tracking results for scenario 1.
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We further investigate the performance of the proposed algorithm by varying the

background parameters in scenarios 2 and 3. The average detection probability in sce-

nario 2 is lower than that of scenario 1, while the average clutter rate in scenario 3 is

higher than that of scenario 1. Note from Figure 4.3 that the λ-CPHD filter begins to

fail in scenario 1. For scenarios 2 and 3, the λ-CPHD completely breaks down. This

is due to the low SNR in scenarios 2 and 3 which is too challenging for the λ-CPHD

approximation that usually requires a high SNR [123]. On the other hand, the pro-

posed GLMB filter is capable of accurately tracking the objects of interest, as well as

estimating the unknown clutter and detection parameters. The OSPA errors and cardi-

nality estimation results for objects of interest over 100 Monte Carlo runs, along with

estimates of the clutter rate and detection probabilities, for the robust GLMB filter are

given in Figure 4.4 and Figure 4.5. Scenario 4 introduces a time-varying clutter rate for

which the results are shown in Figure 4.6.

It is clear that the proposed filter outperforms the λ-CPHD and is faster to converge

to the true clutter rate. The λ-CPHD has a complexity that is linear in the number of

measurements and linear in the number of targets while the proposed GLMB tracker

has a complexity that is linear in the number of measurements and quadratic in the

number of hypothesised tracks. While the drastic approximation in the λ-CPHD re-

sults in a cheaper complexity, it also degrades tracking performance.
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GLMB

(a) Average OSPA error (parameters c =300m, p=1) over 100 Monte Carlo runs.
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(b) Average OSPA(2) error (parameters c =300m, p=1) over 100 Monte Carlo runs.
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(c) Cardinality estimations for objects of interest.
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(d) Estimated clutter and detection parameters.

Figure 4.4: Tracking results for scenario 2.
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GLMB

(a) Average OSPA error (parameters c =300m, p=1) over 100 Monte Carlo runs. The bumps in the cardinality
error for GLMB appear close to time steps where a new birth or a death of an object of interest occurs.
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(b) Average OSPA(2) error (parameters c =300m, p=1) over 100 Monte Carlo runs.
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(c) Cardinality estimations for objects of interest.

0 20 40 60 80 100
60

65

70

75

C
lu

tte
r 

R
at

e

Time Step

 

 
True GLMB mean GLMB std. dev

0 20 40 60 80 100
0.9

0.92

0.94

0.96

0.98

D
et

ec
tio

n 
P

ro
ba

bi
lit

y

Time Step

(d) Estimated clutter and detection parameters.

Figure 4.5: Tracking results for scenario 3.
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CPHD GLMB

(a) Average OSPA error (parameters c =300m, p=1) over 100 Monte Carlo runs.
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(b) Average OSPA(2) error (parameters c =300m, p=1) over 100 Monte Carlo runs.
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(c) Cardinality estimations for objects of interest.
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(d) Estimated clutter and detection parameters.

Figure 4.6: Tracking results for scenario 4.
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Video Data

The proposed filter for jointly unknown clutter rate and detection probability is tested

on two image sequences: S2.L1 from PETS2009 datasets [128] and KITTI-17 from KITTI

datasets [108]. The detections are obtained using the detection algorithm in [109].

Dataset 1:

The state vector consists of the target x, y positions and the velocities in each di-

rection. The process noise is assumed to be distributed from a zero-mean Gaussian

with covariance Qf where vf � 2 pixels. Actual targets are assumed to be born from

a labeled multi-Bernoulli distribution with seven components of 0.03 birth probability,

and Gaussian birth densities,

N �� , �260; 260; 0; 0�T , Pγ�,N �� , �740; 370; 0; 0�T , Pγ�,
N �� , �10; 200; 0; 0�T , Pγ�,N �� , �280; 80; 0; 0�T , Pγ�,
N �� , �750; 130; 0; 0�T , Pγ�,N �� , �650; 270; 0; 0�T , Pγ�,
N �� , �500; 200; 0; 0�T , Pγ�,
where Pγ � diag��10; 10; 3; 3��.

The observation space is a 756�560 pixel image frame. Actual target measurements

contain the x, y positions with measurement noise assumed to be distributed zero-

mean Gaussian with covariance Qh with vr � 3 pixels. Clutter targets are born from a

multi-Bernoulli distribution with 30 birth components in the first most time step and

12 components in subsequent time steps each with 0.5 birth probability and uniform

birth density. The probability of survival and detection for clutter targets are both set

at 0.9.

The Figure 4.7 shows tracking results at frames 20, 40 and 100 respectively. True

and estimated clutter cardinality statistics are given in Figure 4.8. From these figures, it

can be observed that the filter successfully outputs object tracks and that the estimated

clutter rate nearly overlays the true clutter rate.
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Figure 4.7: Tracking results for frames 20, 40, 100 in dataset 1.
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Figure 4.8: Clutter statistics for dataset 1.

Dataset 2: The detection results from this dataset (KITTI17) comprises of a higher

number of false measurements than the PETS2009 S2.L1 dataset. The state vector con-

sists of the target x, y positions and the velocities in each direction. The process noise

is assumed to be distributed from a zero-mean Gaussian with covariance Qf where

vf � 2 pixels. Actual targets are assumed to be born from a labeled multi-Bernoulli

distribution with three components of 0.05 birth probability, and birth densities

N �� , �550; 200; 0; 0�T , Pγ�,
N �� , �1200; 250; 0; 0�T , Pγ�,
N �� , �500; 250; 0; 0�T , Pγ�,
where Pγ � diag��10; 10; 1; 1��.

State transition function for actual targets is based on constant velocity model with

a 0.99 probability of survival. Process noise is assumed to be distributed from a zero-

mean Gaussian with covariance Qf with vf � 2 pixels per frame. The observation

space is a 1220 � 350 pixel image frame. Actual target measurements contain the x, y

positions with measurement noise assumed to be distributed zero-mean Gaussian with

covariance Qr with vr � 3 pixels.
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Clutter targets are born from 60 identical and uniformly distributed birth regions

in the first most time step and 20 birth regions in the subsequent time steps each with

a birth probability of 0.5. The probability of survival and detection for clutter targets

are both set at 0.9.

The top frames of Figure 4.9a,Figure 4.9b,Figure 4.9a shows tracking results for

frames 15, 35 and 50 obtained from the standard GLMB filter for the guessed clutter

rate of 60. The bottom frames of Figure 4.9a,Figure 4.9b,Figure 4.9a shows tracking

results for the same frames using the proposed filter. When comparing each frame

pair it can be noted that some objects that were missed by the standard algorithm

with the guessed clutter rate has been picked up by the proposed algorithm. Com-

parison between true clutter cardinality and estimated clutter cardinality as given in

Figure 4.10 demonstrates that the estimated clutter rate is within close range of the true

clutter rate. Feeding this estimated clutter rate back to the standard GLMB algorithm

[86] could help achieve a performance similar to that of the standard algorithm with

known clutter rate.
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cl rate:60

Frame 15

Frame 15

Unknown cl rate

(a) Tracking results for frame 15 with guessed clutter rate 60 (top) and the proposed filter (bottom)

cl rate:60

Frame 35

Frame 35

Unknown cl rate

(b) Tracking results for frame 35 with guessed clutter rate 60 (top) and the proposed filter (bottom)
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Unknown cl rate

(c) Tracking results for frame 50 with guessed clutter rate 60 (top) and the proposed filter (bottom)

Figure 4.9: Tracking results for dataset 2.
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Figure 4.10: Clutter statistics for dataset 2.



CHAPTER 5

TRACKING WITH NO
DETECTIONS

In this chapter, an alternative approach to address the problem of tracking with un-

known clutter and detection profile, in visual tracking, in way of a GLMB filter that

operates on raw video data without using detections (track-before-detect) is presented.

An image sequence from the CAVIAR11 benchmark dataset is used to validate the util-

ity of this method. The results of this chapter have appeared in the author’s conference

paper [34].

5.1 Introduction

In multi-object tracking, the raw data received by the sensor is often preprocessed into

point measurements referred to as detections before being fed into the filtering algo-

rithm. Even though preprocessing the image data and condensing it into point mea-

surements is efficient in terms of bandwidth, memory and computational cost, signif-

icant information loss can occur under low SNR conditions. For example, in tracking

via detection with radar, the most straightforward method to obtain measurements is

to apply a threshold to the data and to treat those cells that exceed the threshold as

point measurements. In low SNR conditions, the threshold needs to be low enough to

allow a decent detection probability, which also means a large number of false detec-

tions. In instances where the required clutter rate and detection profile of the system

are not available, these parameters need to be either estimated from training data or

manually tuned. In Chapter 4 it was shown that it’s possible to successfully learn the

parameters in the absence of the clutter rate and detection profile information.

The notion of track-before-detect was born out of the need to prevent the informa-

1 http://homepages.inf.ed.ac.uk/rbf/CAVIARDATA1/
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tion loss that occurs when data is pre-processed to obtain point measurements under

low SNR. In the TBD method, the entire raw data set is treated as a single measurement

and each object in the multi-object state is considered to have influenced the value of

that raw measurement. Consequently, the issues of clutter and missed detections do

not arise, since there is no one-to-one pairing of an object to measurement. Since there

are no explicit data association problems to be solved, the computational burden due

to the exponential explosion caused by data association in presence of a high number

of objects and measurements is relaxed.

The TBD technique was first used in 2001 on by [16, 18–20, 22, 25, 56] and later

in [129] all based on particle filters. An MHT implementation with a TBD approach

named the histogram probabilistic multi-hypothesis tracker (H-PMHT) filter was in-

troduced in [130]. A performance comparison of the classical algorithms using TBD

methods in a radar-like simulation is found in [131]. A CBMeMBER filter based TBD

algorithm is given in [132] which was subsequently applied to tracking ground targets

constrained to move on a road network using raw image observations in [133]. The

same was successfully applied to visual tracking in [110] for tracking sports players

and in [111] on a surveillance dataset. A TBD particle filter applied to acoustic source

tracking is presented in [134], and a TBD technique for sensor networks are presented

in [135][136]. Various other TBD strategies for radar, infrared and optical sensors are

presented in [137, 138]. From a RFS perspective, a TBD Bernoulli filter application on

multiple input multiple output enhanced linear short sar (MELISSA) radar image data

is mentioned in [139]. A TBD δ-GLMB filter for radar signals is presented in [140].

The main difficulty in the TBD problem is the formulation of the likelihood func-

tion due to its highly non-linear nature. The likelihood function expresses the proba-

bility density of the single common (raw) measurement given a multi-object state. In

order to enable online filtering, the pre-detection likelihood function (for the raw im-

age observation) should be constructed such that the multi-object distribution under

consideration remains conjugate.

Object tracking in computer vision is used in a wide range of diverse application ar-

eas such as visual surveillance, medical imaging, augmented reality and traffic control.

The omnipresence of surveillance cameras from security sensitive areas such as air-
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ports, banks and government agencies to more ordinary venues such as shops, parking

lots and private homes has resulted in the emergence of monitoring via analog closed-

circuit televisions, digital video recorders and IP network camera systems [141, 142].

The cumbersome and monotonous task of visually monitoring a massive collection of

archived or live video footage by human operators is impractical and intelligent sys-

tems are needed. Research on visual surveillance using RFS-based multi-object filter-

ing algorithms includes [143–146] that perform filtering on detection based data and

[110, 111, 133, 147] that directly process the pre-detection data . None of the afore-

mentioned TBD multi-object filters are trackers for the reason that they are unable to

identify the object trajectories (note that the RFS-based filters used in [110] cannot esti-

mate tracks and a separate track management algorithm was required to post-process

the filter output to produce tracks). To date, there is no RFS tracker that works directly

on pre-detection raw visual data. Such a tracking algorithm based on the δ-GLMB

filter [15, 86] that directly performs visual multi-object tracking without detecting the

individual objects first is presented in the following.

5.2 Enhancing the Raw Measurement Via Background Subtraction

Background subtraction or foreground detection is the extraction of an image’s fore-

ground from the original image. In image processing, foreground is recognized as the

regions of interest in the image, which in the scope of visual surveillance is the set of

objects to be detected. The remaining regions are treated as the background. A moving

object would create dissimilar regions in consecutive frames. When the regions of in-

terest are moving objects, the dissimilar regions in the compared frames would belong

to the foreground and the rest would belong to the background.

A colour image observation comprises of an array of pixel values. Each pixel value

is a 3-dimensional vector which carries the intensity values for the three colour bands

red, green and blue. The background model at each pixel location is based on the

pixel’s recent history. It could be based on the simple average of the recent n frames or

a weighted average with more recent frames having higher weights. In this work, the

RGB colour values of each pixel are first converted to chromaticity (RGI) space as it is

more resilient to ambience light changes and shadows. Thus each pixel value would

be a 3-dimensional vector carrying RGI values. RGB to RGI conversion is simply done

by normalizing the RGB values to add up to 1 and recording the normalized R value,
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G value and the normalizing constant divided by 256 (assuming 8-bit colour coding)

as the I value. For the ith pixel of the kth frame this operation is given by the following

equations.

rk�i� � Rk�i�
Rk�i� �Gk�i� �Bk�i� (5.1)

gk�i� � Gk�i�
Rk�i� �Gk�i� �Bk�i� (5.2)

Ik�i� � Rk�i� �Gk�i� �Bk�i�
256

(5.3)

where Rk�i� is the value of the colour band red of the ith pixel in kth frame and

Bk�i�, Gk�i� are defined likewise for colour bands blue and green. The background

model for each frame will be built using a window of the N0 previous image frames

collected in K0 frame intervals (every Kth
0 frame). The smaller the interval K0 is, the

more sensitive the background model would be to frame differences. If the frames are

produced at a rate of 25 per second and if K0 is chosen to be 125 (the values used in

this experiment), we would not detect any movement that occurred during a period

smaller than 5 seconds. Selecting a too small value N0 will result in the background

model being affected by the foreground pixel values (outliers). After the firstN0 frames

are collected, each new addition at K0 intervals will result in the removal of the frame

at the bottom.

Let d�c, i, k� denote the value of the colour channel c in RGI space of the ith pixel of

frame k

d�c, i, k� �
¢̈̈̈̈
¨̈̈̈̈
¦̈̈̈
¨̈̈̈̈̈
¤

rk�i�, c � r,

gk�i�, c � g,

Ik�i�, c � I,

(5.4)

and ks denote the frame number of the sth image frame in theN0 image frame stack

which was collected in K0 intervals where k is the frame currently being processed.

ks �K0 �
 k
K0

� � �s � 1�� (5.5)
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The background model can be interpreted as the probability of each pixel in the cur-

rent frame belonging to the background given the recent N0 frames. The Kernel den-

sity estimation (KDE) [148] method has been used in this work to build the probability

density of the background model. For each colour channel of the ith pixel of a frame

under consideration, a histogram is built out of the corresponding ith pixel values from

the currentN0 frame window. Next, the histogram is smoothed with a Gaussian ker-

nel. The kernel bandwidth is a free parameter which strongly influences the result of

the smoothing. Moving objects change the variation of pixel intensities and therefore

different pixels would have differently shaped histograms. Therefore the bandwidth

of the Gaussian kernel is separately calculated for each histogram (per pixel per colour

channel) since it is not justifiable to use the same bandwidth to smooth differently

shaped histograms. In this experiment, the median absolute deviation over the N0 pixel

samples as computed by Eq. (5.6) is used as the kernel bandwidth.

For colour channel c of the ith pixel of frame k the kernel bandwidth σ�c, i, k� is

calculated by (ks denotes the median frame of the N0 frame stack),

σ�c, i, k� �median
s

S d�c, i, k� � d�c, i, ks� S (5.6)

Therefore the likelihood of ith pixel of frame k belonging to the background ( i.e.,

the probability distribution of the background model) is,

pbg�i, k� � 1

N0

N0�1

Q
s�0

M
c>�r,g,I�

N � d�c, i, k�; d�c, i, ks�, σ�c, i, k�2� (5.7)

Equivalently Eq. (5.7) can be written as,

y�i, k� � 1

N0

N0�1

Q
s�0

exp

<@@@@>� Q
c>�r,g,I�

�d�c, i, k� � d�c, i, ks��2
2σ�c, i, k�2

=AAAA? (5.8)

The 3-dimensional pixel array is now reduced to a 1- dimensional pixel array and

it’s values pbg�i, k� lie in the interval �0,1�. This essentially represents a grayscale im-

age. This image may be affected by minute background noise such as the salt and pep-

per noise, which can be reduced by morphological erosion and dilation on the pbg�� , � �
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values using a small structural element. Finally, the output image is processed by a low

pass filter (0.5 selected as the threshold in this experiment). This sets lighter shades to

all white and gives more prominence to the variations in darker shades.

pbg�i, k� � �min y�i, k�, threshold�

Figure 5.1: Stages of enhancing the raw measurement

5.3 The Multi-object likelihood function

Following [111], the following measurement model is adapted. An object appearing in

state x in the final background subtracted image, illuminates a set of pixels denoted by

T �x�. It is clear that the intensity of the illumination is higher for pixels nearer to the

object and less for pixels further away. Let us denote this intensity function by gF �x�.

Any pixel that is not illuminated by the object would have its intensity distributed

according to a different distribution which we denote by gB�x�. Therefore probability
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density of the intensity of a particular pixel i is given by,

p �y�i, k� S x� �
¢̈̈̈̈
¦̈̈̈
¤̈
gF �x� if i > T �x�
gB�x� otherwise

(5.9)

We consider only non-overlapping objects considering scenarios similar to the case

study that has been used, where a camera propped up from an elevation is monitoring

the objects moving beneath. This assumption results in a likelihood function that leads

to a numerically tractable algorithm.

Following [111] the densities of gF �x� and gB�x� are of the form:

gF �ȳF � � ζF exp��ȳF
δF

�, (5.10)

gB�ȳB� � ζB exp� ȳB
δB

�, (5.11)

where ζF,ζB are normalizing constants and δF and δB determine the spread rates of

the foreground and background intensities. In this experiment δB is chosen to be sev-

eral times smaller than δF under the assumption that the background intensity would

generally be unaffected by an object and will remain constant unless quite close to

the object whereas the foreground intensity caused by an object would have a much

varying and spreading intensity function. Let ȳB�X� denote the average of pixel inten-

sities of the image constructed by replacing all regions illuminated by the objects (i.e.,

Px>X T �x�) with background pixel value 1. The resulting image could be considered

as entirely background. Let m be the total number of pixels. Then we have,

ȳB�X� � 1

m

�
�
m

Q
i�0

y�i, k� � Q
x>X

Q
i>T �x�

�1 � y�i, k���� . (5.12)

Ideally the probability that this image is background should be 1. Substituting

ȳB�X� in Eq. (5.11) gives,
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gB�ȳB�X�� � ζB exp �Pmi�0 y�i, k� �Px>X Pi>T �x� �1 � y�i, k���
mδB

� ζB exp
�Pmi�0 y�i, k��

mδB
M
x>X

exp �S T �x� �Pi>T �x��1 � y�i, k��S
mδB

�
� ζB exp

�Pmi�0 y�i, k��
mδB

M
x>X

exp �S T �x� � �1 � ȳ�x��S
mδB

� (5.13)

where ST �x�S denotes the number of pixels in the object region specified by the state

x. If the above background likelihood value turns out to be very small, it is probably

due to some object(s) not being included in the set X. Such missing objects contribute

to the sum of pixel values and thereby reduce the value of the average ȳB�X�.

By Eq. (5.10) the likelihood of a certain object x illuminating the set of pixels T �x�
is given by,

gF �ȳ�x�� � ζF exp ��ȳ�x��
δF

(5.14)

The likelihood of the background subtracted image measurement given the ob-

ject set X is the product of the foreground and background terms formulated as in

Eq. (5.13) and Eq. (5.14).

g�ySX� � gB�ȳB�X��M
x>X

gF �ȳ�x��. (5.15)

� ζB exp
�Pmi�0 y�i, k��

mδB´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
independent of X

M
x>X

exp �S T �x� � �1 � ȳ�x��S
mδB

� ζF exp ��ȳ�x��
δF´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

dependent on x

(5.16)

Note that this likelihood function is separable.

5.4 Track-before-detect GLMB filter

A GLMB filter which remains a conjugate prior under a separable likelihood function

is proposed in [140] for TBD applications with emphasis on radar images. Since the

likelihood function discussed in the previous section is separable, this GLMB filter can

be directly applied. The prediction step is the same as the standard GLMB prediction.

Since the observation consists of a single raw measurement, false measurements or

missed detections does not come into play in the update. The update step is as follows.
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Let the prior GLMB density be given by,

π�X� � ∆�X� Q
�I,ξ�>F�L��Ξ

ω�I,ξ�δI�L�X�� �p�ξ��X . (5.17)

The posterior density under a separable likelihood with only a single observation

z is given by the following equation.

π�XSz� � ∆�X� Q
�I,ξ�>F�L��Ξ

ω�I,ξ�
z δI�L�X�� �p�ξ���Sz��X (5.18)

where,

ω�I,ξ�
z � ω�I,ξ��ψ̄z�I ,

p�ξ��x, `Sz� � p�ξ��x, `�ψz�x, `�
ψ̄z�`� ,

ψ̄z�`� � b p�ξ���, `�, ψz��, `� g ,
ψz�x, `� � exp �S T �x, `� � �1 � ȳ�x, `��S

mδB
� ζF exp ��ȳ�x, `��

δF
.

Note that term ψz�x, `� is the term gF �ȳ�x�� that is dependent of x in Eq. (5.16).

For state estimation at each time step, the maximum a posteriori cardinality es-

timate is computed and the hypothesis with the highest weight component of that

cardinality is extracted as the multi-object state.

Note that the growth in the number of hypotheses occurs only during the predic-

tion phase. This is due to the reason, that we have only a single measurement which

contains contributions from all the objects in the scenario.

5.4.1 Implementation Issues

A tricky issue in this model is getting multiple estimates for the same object when it is

near birth locations. In a particular hypothesis if there happened to be a surviving ob-

ject that is promoted by the foreground image with a likelihood value over 1 and there

is also a newborn object nearby which is similarly promoted by the same foreground

image (since there is no data association), that hypothesis will gain a higher weight
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than the hypotheses with just one of those objects and surely be selected as the best hy-

pothesis. Now there are two estimates for the same object and this number of estimates

will continue to multiply until the object gets sufficiently far from the birth Gaussian.

Likewise, when the object is exiting through a doorway the new births at that doorway

will get promoted by the likelihood of the approaching object and increase the number

of estimates for that single object.

A simple solution for this is to merge the estimates that overlap in a hypothesis.

Merging changes the cardinality of a hypothesis and care should be taken not to de-

stroy the cardinality distribution as a result. Further, merging combined with recalcu-

lating cardinality distribution is computationally expensive. Thus a simpler scheme is

employed to circumvent this issue. We mark a Gaussian space around each surviving

object which is essentially its immediate neighbourhood. See Figure 5.2. For each new

birth in a particular hypothesis, the probability of the newborn being in the neighbour-

hood of each surviving object divided by a normalized constant is calculated. (The

constant is selected such that it returns a value of 0.5 if the new birth lies at the center

of the Gaussian neighbourhood). The closest surviving object gives the highest prob-

ability and this probability is deducted from the probability of that hypothesis as a

penalty. (If the object neighbourhood did not overlap with any new birth the penalty

would be zero). In this method we are adapting the birth model not by imposing re-

strictions on the birth regions, but by penalizing a hypothesis by reducing it’s weight

if it contains a new birth that is too close to a survival in that set.

5.4.2 Experiment results

An image sequence showing people entering and exiting a lobby area through several

doors has been used as the test dataset. The state vector consists of the x position,

y position, width and height of the object. All objects are assumed to be moving ac-

cording to the random walk model. The probability of survival is a state independent

value of 0.98. Objects are assumed to be born at birth locations which are the five en-

tryways to the lobby. The probability of an object being born is set to 0.005 for each

location which is Gaussian distributed with small variances in x and y directions mea-

sured in pixels. For doorways nearer to the camera a much larger variance is set (e.g.,

diag�100,25�) and for doorways at the far end of the picture smaller variances are set

(e.g., diag�25,9�). The rationale behind this is that doorways far from the camera ap-
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Figure 5.2: Gaussian birth locations (in yellow and orange) and an object moving with
his Gaussian neighbourhood (in blue). Hypotheses containing new births in the blue
region are penalized.

pear smaller in the video ( perspective effect ) and take a fewer number of pixels to

cover. The variance in x direction is higher as it should cover the width of the en-

trance. The number of particles for each object in a hypothesis is set to 1000. Resam-

pling is carried out after each update step. The Figure 5.4 shows several frames from

the test data set where two objects are tracked successfully along with their trajecto-

ries and labels. Approximate midpoint of objects were manually recorded as ground

truth and the OSPA [103] results are given in Figure 5.5. At the beginning of the se-

quence (upto frame 230) there are no objects recorded on the frames and the tracking

algorithms accordingly does not indicate any false positives. The same applies to the

frames post frames 473 where there are no actual objects recorded. There is a delay in

confirming the track for the firstly appearing object since the information provided by

the enhanced measurements during that period is insufficient to do so. Eg., See frame

191 of Figure 5.3.
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Figure 5.3: Background subtracted image frames
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Figure 5.4: Tracking results for frames 230,245,260,300,350,400. : Tracked objects are
marked by blue rectangles with tracks in different colours and labels in yellow tags.
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Figure 5.5: OSPA (parameters c = 100, p = 1) results for frames 100 to 600. Filtering
starts after the initial 100 frames which are used to build the background model.
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Figure 5.6: OSPA(2) (parameters c = 100, p = 1) results for frames 100 to 600.



CHAPTER 6

CONCLUSIONS AND FUTURE
WORK

6.1 Conclusions

Multiple object tracking can be broadly defined as jointly estimating the time-varying

number of objects and their states from a sequence of incomplete noisy observation

sets which could also include false and dropped measurements. The RFS framework

envisaged by Mahler is a Bayes optimal systematic approach to solving this problem.

Earlier tractable solutions found in the literature for the multi-object Bayes filter from

the RFS framework operated via approximation of moment or multi-object density pa-

rameters. The first tractable analytic solution for the multi-object Bayes filter is the

GLMB filter which has proven to be superior to contemporary algorithms in terms of

filtering accuracy and track generation. The standard GLMB filter jointly estimates the

number of objects and their states using prior knowledge regarding the multi-object

state space. Knowledge regarding the dynamic/measurement models, clutter and de-

tection profile of the multi-object system which is assumed to be integral to such prior

knowledge in the generic algorithms is not always readily available in practice. In-

correct estimations and ambiguities regarding such knowledge affect the robustness of

the multi-object filtering/tracking algorithms and lead to erroneous estimations.

In this dissertation, a few techniques to overcome such hindrances that affect the

robustness of filtering algorithms are presented. Specifically, in Chapter 3, the case of

tracking objects where the object dynamic cannot be fairly represented using a single

dynamic model is investigated. Such an investigation would assist in tracking ob-

jects that are manueuvered by an operator/control system to change their dynamic

behaviour. In this chapter, three different GLMB implementations for tracking objects
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with varying dynamic models are presented. In these designs, multi-object dynamic

model is represented as a JMS. The first algorithm operates in two stages at each iter-

ation; prediction and update. It uses the K-shortest path algorithm in the prediction

stage and uses the Murty’s algorithm in the update stage to generate the hypotheses

with the highest weights. The second algorithm uses a single (joint) prediction and up-

date stage at each iteration and uses the Murty’s algorithm to generate the hypotheses

with the highest weights. The third algorithm also features a single (joint) prediction

and update stage at each iteration but uses Gibbs sampler to generate the hypotheses

with significant weights.

Two simulation scenarios are used to evaluate the filtering accuracy of the proposed

algorithms. The second scenario consists of a higher number of objects and a higher

clutter intensity than the first scenario. In both simulation scenarios, the single stage

algorithms confirm to be significantly more accurate in terms of the OSPA and the

OSPA(2) errors than the two-stage (separate prediction and update) algorithm. When

the single stage implementations are compared, it can be concluded that while equal in

terms of tracking accuracy, the Gibbs based implementation is much efficient than the

Murty’s based implementations. Recall that the Murty’s based two-stage algorithm of

the standard GLMB filter is quartic in the number of measurements, the single stage

implementation of the Murty’s based standard filter is quartic in the number of mea-

surements and the single stage algorithm of the Gibbs based standard filter is linear in

the number of measurements.

In Chapter 4 the GLMB filter for JMS from the previous chapter is further extended

to a non-interacting multi-class GLMB where an object does not to change the mo-

tion model initially established. Next, the multi-class GLMB is reduced to a two-class

GLMB to represent actual objects of interest and objects that are of no interest which

generate clutter measurements, and applied to tracking with unknown clutter rate and

detection probability. Dynamic and observation generation models for the two classes

of objects are developed and a GLMB recursion for propagating the two-class joint fil-

tering density is derived. Details regarding an efficient implementation are given along

with the pseudocode of the algorithm. Four simulation scenarios with a time-varying

count of the objects of interest (reaching a maximum of ten) and different values for the

unknown clutter rate and detection probability parameters are employed to showcase
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the range of performance of the filter. Inspection of the OSPA and OSPA(2) results,

as well as the cardinality estimates and estimates of the unknown background param-

eters, provide confirmation that the proposed filter has good tracking performance,

surpasses the λ-CPHD filter and is the better filter for this problem of tracking with

unknown background parameters. Experiments with benchmark visual datasets fur-

ther confirm the findings from simulation studies.

In Chapter 5 an alternative strategy for tracking in the presence of unknown back-

ground for visual data is presented. The proposed algorithm is a track-before-detect

GLMB filter which eliminates the requirement to extract detections (hence no issue of

missing detections and false detections). The measurement likelihood function is con-

structed to accommodate the raw visual data in its entirety as a single observation and

to derive the updated GLMB density. Inspection of the OSPA and OSPA(2) results, as

well as the tracking results from a visual dataset, confirm the suitability of the method.

6.2 Future directions

It is of interest to investigate how the work presented in this dissertation could be fur-

ther extended in terms of theoretical developments, implementation and applications

in the directions detailed in the following.

Ì Advances in sensor technology have resulted in cheap, small sized nodes that are

easily deployable in a large-scale environment. Consequently, multi-object track-

ing through centralized and distributed sensor networks has become a trending

topic and is highly motivated by its applicability in areas such as military surveil-

lance, habitat monitoring, illegal hunting tracking and simultaneous localization

and mapping. Further, in visual surveillance, occlusion remains a highly chal-

lenging topic to date. Multiple cameras observing the scenario from different

vantage points provides vital information in such situations and is a good ex-

ample of the benefit of using sensor networks in visual tracking. Work relating

to RFS in sensor networks are discussed in [146, 149–156]. Research into de-

ploying the proposed δ-GLMB filter algorithms in sensor networks with central-

ized/decentralized data fusion is an interesting future direction.

Ì The ability to localize and track multiple moving speakers from audio and visual

data has many useful applications a few being boardroom video conferences,
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traffic navigation for the vision impaired and environment navigation for robots.

Work relating to speaker tracking using RFS are discussed in [157, 158]. The pos-

sibility of applying the proposed GLMB filter algorithms for JMS and unknown

background parameters to visual data and audio data could be investigated. Au-

dio/visual source localization using a track-before-detect GLMB filter is also an

interesting research direction.

Ì In some applications, the tracked objects give rise to more than one point mea-

surement, particularly when the objects are large compared to the size of the

sensor resolution cell. These secondary measurements are different from clut-

ter measurements which are obtained independently of the objects of interest.

This can occur due to the detection of an extended object using high-resolution

sensors. The opposite of this is the merged measurement problem, where mul-

tiple small objects result in a single measurement. Work relating to extended

object tracking using RFS has been carried out by [159–162] and work relating to

merged object tracking using RFS has been carried out by [163–165]. It is of in-

terest to investigate the applicability of the GLMB filter for unknown clutter and

detection profile in scenarios with such merged/extended objects.

Ì In filtering the current state is estimated using the measurements received up

to the current time. In smoothing, the decision is delayed and uses a batch of

measurements some of which may have been obtained at later times than the

current time. This yields in more accurate estimates than filtering due to the

reason that more information regarding the system is available. Several RFS

based smoothing algorithms in different directions such as forward-backward

smoothing [166, 167], batch smoothing [168] and smoothing-while-filtering [169]

are found in the literature. Applying the techniques presented in this disserta-

tion (which are for filtering) in smoothing algorithms could result in a significant

theoretical development and more importantly improve performance.
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