539 research outputs found

    Perception architecture exploration for automotive cyber-physical systems

    Get PDF
    2022 Spring.Includes bibliographical references.In emerging autonomous and semi-autonomous vehicles, accurate environmental perception by automotive cyber physical platforms are critical for achieving safety and driving performance goals. An efficient perception solution capable of high fidelity environment modeling can improve Advanced Driver Assistance System (ADAS) performance and reduce the number of lives lost to traffic accidents as a result of human driving errors. Enabling robust perception for vehicles with ADAS requires solving multiple complex problems related to the selection and placement of sensors, object detection, and sensor fusion. Current methods address these problems in isolation, which leads to inefficient solutions. For instance, there is an inherent accuracy versus latency trade-off between one stage and two stage object detectors which makes selecting an enhanced object detector from a diverse range of choices difficult. Further, even if a perception architecture was equipped with an ideal object detector performing high accuracy and low latency inference, the relative position and orientation of selected sensors (e.g., cameras, radars, lidars) determine whether static or dynamic targets are inside the field of view of each sensor or in the combined field of view of the sensor configuration. If the combined field of view is too small or contains redundant overlap between individual sensors, important events and obstacles can go undetected. Conversely, if the combined field of view is too large, the number of false positive detections will be high in real time and appropriate sensor fusion algorithms are required for filtering. Sensor fusion algorithms also enable tracking of non-ego vehicles in situations where traffic is highly dynamic or there are many obstacles on the road. Position and velocity estimation using sensor fusion algorithms have a lower margin for error when trajectories of other vehicles in traffic are in the vicinity of the ego vehicle, as incorrect measurement can cause accidents. Due to the various complex inter-dependencies between design decisions, constraints and optimization goals a framework capable of synthesizing perception solutions for automotive cyber physical platforms is not trivial. We present a novel perception architecture exploration framework for automotive cyber- physical platforms capable of global co-optimization of deep learning and sensing infrastructure. The framework is capable of exploring the synthesis of heterogeneous sensor configurations towards achieving vehicle autonomy goals. As our first contribution, we propose a novel optimization framework called VESPA that explores the design space of sensor placement locations and orientations to find the optimal sensor configuration for a vehicle. We demonstrate how our framework can obtain optimal sensor configurations for heterogeneous sensors deployed across two contemporary real vehicles. We then utilize VESPA to create a comprehensive perception architecture synthesis framework called PASTA. This framework enables robust perception for vehicles with ADAS requiring solutions to multiple complex problems related not only to the selection and placement of sensors but also object detection, and sensor fusion as well. Experimental results with the Audi-TT and BMW Minicooper vehicles show how PASTA can intelligently traverse the perception design space to find robust, vehicle-specific solutions

    A Hand-Based Biometric Verification System Using Ant Colony Optimization

    Get PDF
    This paper presents a novel personal authentication system using hand-based biometrics, which utilizes internal (beneath the skin) structure of veins on the dorsal part of the hand and the outer shape of the hand. The hand-vein and the hand-shape images can be simultaneously acquired by using infrared thermal and digital camera respectively. A claimed identity is authenticated by integrating these two traits based on the score-level fusion in which four fusion rules are used for the integration. Before their fusion, each modality is evaluated individually in terms of error rates and weights are assigned according to their performance. In order to achieve an adaptive security in the proposed bimodal system, an optimal selection of fusion parameters is required. Hence, Ant Colony Optimization (ACO) is employed in the bimodal system to select the weights and also one out of the four fusion rules optimally for the adaptive fusion of the two modalities to meet the user defined security levels. The databases of hand-veins and the hand-shapes consisting of 150 users are acquired using the peg-free imaging setup. The experimental results show genuine acceptance rate (GAR) of 98% at false acceptance rate (FAR) of 0.001% and the system has the potential for any online personal authentication based application.

    Prediction model of alcohol intoxication from facial temperature dynamics based on K-means clustering driven by evolutionary computing

    Get PDF
    Alcohol intoxication is a significant phenomenon, affecting many social areas, including work procedures or car driving. Alcohol causes certain side effects including changing the facial thermal distribution, which may enable the contactless identification and classification of alcohol-intoxicated people. We adopted a multiregional segmentation procedure to identify and classify symmetrical facial features, which reliably reflects the facial-temperature variations while subjects are drinking alcohol. Such a model can objectively track alcohol intoxication in the form of a facial temperature map. In our paper, we propose the segmentation model based on the clustering algorithm, which is driven by the modified version of the Artificial Bee Colony (ABC) evolutionary optimization with the goal of facial temperature features extraction from the IR (infrared radiation) images. This model allows for a definition of symmetric clusters, identifying facial temperature structures corresponding with intoxication. The ABC algorithm serves as an optimization process for an optimal cluster's distribution to the clustering method the best approximate individual areas linked with gradual alcohol intoxication. In our analysis, we analyzed a set of twenty volunteers, who had IR images taken to reflect the process of alcohol intoxication. The proposed method was represented by multiregional segmentation, allowing for classification of the individual spatial temperature areas into segmentation classes. The proposed method, besides single IR image modelling, allows for dynamical tracking of the alcohol-temperature features within a process of intoxication, from the sober state up to the maximum observed intoxication level.Web of Science118art. no. 99

    Reports on industrial information technology. Vol. 12

    Get PDF
    The 12th volume of Reports on Industrial Information Technology presents some selected results of research achieved at the Institute of Industrial Information Technology during the last two years.These results have contributed to many cooperative projects with partners from academia and industry and cover current research interests including signal and image processing, pattern recognition, distributed systems, powerline communications, automotive applications, and robotics

    Improving images in turbid water through enhanced color correction and particle swarm-intelligence fusion (CCPF)

    Get PDF
    When light travels through a water medium, selective attenuation and scattering have a profound impact on the underwater image. These limitations reduce image quality and impede the ability to perform visual tasks. The suggested integrated color correction with intelligence fusion of particle swarm technique (CCPF) is designed with four phases. The first phase presents a novel way to make improvement on underwater color cast. Limit the improvement to only red color channel. In the second phase, an image is then neutralized from the original image by brightness reconstruction technique resulting in enhancing the image contrast. Next, the mean adjustment based on particle swarm intelligence is implemented to improve the image detail. With the swarm intelligence method, the mean values of inferior color channels are shifted to be close to the mean value of a good color channel. Lastly, a fusion between the brightness reconstructed histogram and modified mean particle swarm intelligence histogram is applied to balance the image color. Analysis of underwater images taken in different depths shows that the proposed CCPF method improves the quality of the output image in terms of neutralizing effectiveness and details accuracy, consequently, significantly outperforming the other state-of-the-art methods. The proposed CCPF approach produces highest average entropy value of 7.823 and average UIQM value of 6.287

    A Comprehensive Survey on Particle Swarm Optimization Algorithm and Its Applications

    Get PDF
    Particle swarm optimization (PSO) is a heuristic global optimization method, proposed originally by Kennedy and Eberhart in 1995. It is now one of the most commonly used optimization techniques. This survey presented a comprehensive investigation of PSO. On one hand, we provided advances with PSO, including its modifications (including quantum-behaved PSO, bare-bones PSO, chaotic PSO, and fuzzy PSO), population topology (as fully connected, von Neumann, ring, star, random, etc.), hybridization (with genetic algorithm, simulated annealing, Tabu search, artificial immune system, ant colony algorithm, artificial bee colony, differential evolution, harmonic search, and biogeography-based optimization), extensions (to multiobjective, constrained, discrete, and binary optimization), theoretical analysis (parameter selection and tuning, and convergence analysis), and parallel implementation (in multicore, multiprocessor, GPU, and cloud computing forms). On the other hand, we offered a survey on applications of PSO to the following eight fields: electrical and electronic engineering, automation control systems, communication theory, operations research, mechanical engineering, fuel and energy, medicine, chemistry, and biology. It is hoped that this survey would be beneficial for the researchers studying PSO algorithms

    Localization, Mapping and SLAM in Marine and Underwater Environments

    Get PDF
    The use of robots in marine and underwater applications is growing rapidly. These applications share the common requirement of modeling the environment and estimating the robots’ pose. Although there are several mapping, SLAM, target detection and localization methods, marine and underwater environments have several challenging characteristics, such as poor visibility, water currents, communication issues, sonar inaccuracies or unstructured environments, that have to be considered. The purpose of this Special Issue is to present the current research trends in the topics of underwater localization, mapping, SLAM, and target detection and localization. To this end, we have collected seven articles from leading researchers in the field, and present the different approaches and methods currently being investigated to improve the performance of underwater robots

    Artificial Satisfaction - The Brother of Artificial Intelligence

    Get PDF
    John McCarthy (September 4, 1927 2013; October 24, 2011) was an American computer scientist and cognitive scientist. The term 201C;Artificial Intelligence201D; was coined by him (Wikipedia, 2020). Satish Gajawada (March 12, 1988 2013; Present) is an Indian Independent Inventor and Scientist. He coined the term 201C;Artificial Satisfaction201D; in this article (Gajawada, S., and Hassan Mustafa, 2019a). A new field titled 201C;Artificial Satisfaction201D; is introduced in this article. 201C;Artificial Satisfaction201D; will be referred to as 201C;The Brother of Artificial Intelligence201D; after the publication of this article. A new algorithm titled 201C;Artificial Satisfaction Algorithm (ASA)201D; is designed and implemented in this work. For the sake of simplicity, Particle Swarm Optimization (PSO) Algorithm is modified with Artificial Satisfaction Concepts to create the 201C;Artificial Satisfaction Algorithm (ASA).201D; PSO and ASA algorithms are applied on five benchmark functions. A comparision is made between the results obtained. The focus of this paper is more on defining and introducing 201C;Artificial Satisfaction Field201D; to the rest of the world rather than on implementing complex algorithms from scratch

    Symmetry-Adapted Machine Learning for Information Security

    Get PDF
    Symmetry-adapted machine learning has shown encouraging ability to mitigate the security risks in information and communication technology (ICT) systems. It is a subset of artificial intelligence (AI) that relies on the principles of processing future events by learning past events or historical data. The autonomous nature of symmetry-adapted machine learning supports effective data processing and analysis for security detection in ICT systems without the interference of human authorities. Many industries are developing machine-learning-adapted solutions to support security for smart hardware, distributed computing, and the cloud. In our Special Issue book, we focus on the deployment of symmetry-adapted machine learning for information security in various application areas. This security approach can support effective methods to handle the dynamic nature of security attacks by extraction and analysis of data to identify hidden patterns of data. The main topics of this Issue include malware classification, an intrusion detection system, image watermarking, color image watermarking, battlefield target aggregation behavior recognition model, IP camera, Internet of Things (IoT) security, service function chain, indoor positioning system, and crypto-analysis

    Signals and Images in Sea Technologies

    Get PDF
    Life below water is the 14th Sustainable Development Goal (SDG) envisaged by the United Nations and is aimed at conserving and sustainably using the oceans, seas, and marine resources for sustainable development. It is not difficult to argue that signals and image technologies may play an essential role in achieving the foreseen targets linked to SDG 14. Besides increasing the general knowledge of ocean health by means of data analysis, methodologies based on signal and image processing can be helpful in environmental monitoring, in protecting and restoring ecosystems, in finding new sensor technologies for green routing and eco-friendly ships, in providing tools for implementing best practices for sustainable fishing, as well as in defining frameworks and intelligent systems for enforcing sea law and making the sea a safer and more secure place. Imaging is also a key element for the exploration of the underwater world for various scopes, ranging from the predictive maintenance of sub-sea pipelines and other infrastructure projects, to the discovery, documentation, and protection of sunken cultural heritage. The scope of this Special Issue encompasses investigations into techniques and ICT approaches and, in particular, the study and application of signal- and image-based methods and, in turn, exploration of the advantages of their application in the previously mentioned areas
    • …
    corecore