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ABSTRACT 
 
 
 

PERCEPTION ARCHITECTURE EXPLORATION FOR  

AUTOMOTIVE CYBER-PHYSICAL SYSTEMS

 
 
 

In emerging autonomous and semi-autonomous vehicles, accurate environmental perception by 

automotive cyber physical platforms are critical for achieving safety and driving performance 

goals. An efficient perception solution capable of high fidelity environment modeling can improve 

Advanced Driver Assistance System (ADAS) performance and reduce the number of lives lost to 

traffic accidents as a result of human driving errors. Enabling robust perception for vehicles with 

ADAS requires solving multiple complex problems related to the selection and placement of 

sensors, object detection, and sensor fusion. Current methods address these problems in isolation, 

which leads to inefficient solutions. For instance, there is an inherent accuracy versus latency trade-

off between one stage and two stage object detectors which makes selecting an enhanced object 

detector from a diverse range of choices difficult. Further, even if a perception architecture was 

equipped with an ideal object detector performing high accuracy and low latency inference, the 

relative position and orientation of selected sensors (e.g., cameras, radars, lidars) determine 

whether static or dynamic targets are inside the field of view of each sensor or in the combined 

field of view of the sensor configuration. If the combined field of view is too small or contains 

redundant overlap between individual sensors, important events and obstacles can go undetected. 

Conversely, if the combined field of view is too large, the number of false positive detections will 

be high in real time and appropriate sensor fusion algorithms are required for filtering. Sensor 

fusion algorithms also enable tracking of non-ego vehicles in situations where traffic is highly 
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dynamic or there are many obstacles on the road. Position and velocity estimation using sensor 

fusion algorithms have a lower margin for error when trajectories of other vehicles in traffic are in 

the vicinity of the ego vehicle, as incorrect measurement can cause accidents. Due to the various 

complex inter-dependencies between design decisions, constraints and optimization goals a 

framework capable of synthesizing perception solutions for automotive cyber physical platforms 

is not trivial. 

We present a novel perception architecture exploration framework for automotive cyber-

physical platforms capable of global co-optimization of deep learning and sensing infrastructure. 

The framework is capable of exploring the synthesis of heterogeneous sensor configurations 

towards achieving vehicle autonomy goals. As our first contribution, we propose a novel 

optimization framework called VESPA that explores the design space of sensor placement 

locations and orientations to find the optimal sensor configuration for a vehicle. We demonstrate 

how our framework can obtain optimal sensor configurations for heterogeneous sensors deployed 

across two contemporary real vehicles. We then utilize VESPA to create a comprehensive 

perception architecture synthesis framework called PASTA. This framework enables robust 

perception for vehicles with ADAS requiring solutions to multiple complex problems related not 

only to the selection and placement of sensors but also object detection, and sensor fusion as well. 

Experimental results with the Audi-TT and BMW Minicooper vehicles show how PASTA can 

intelligently traverse the perception design space to find robust, vehicle-specific solutions. 
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1. INTRODUCTION 

 
This chapter outlines the challenges faced in state-of-the-art perception architecture design 

for automotive cyber physical platforms. The fundamental challenges observed at different levels 

of abstraction pertaining to raw sensor data, sensor placement, obstacle detection and sensor fusion 

are requisites for reliable perception architecture design and high fidelity environment modelling 

enabling safe navigation. This chapter also presents a general overview of the contributions of this 

dissertation. 

 
1.1 MOTIVATION FOR PERCEPTION ARCHITECTURE DESIGN 

The continuous evolution of technology in the domain of autonomous driving has led to the 

creation of Advanced Driver Assistance Systems (ADAS) equipped with automation capabilities 

which have increasingly reduced the requirement for driver control or intervention for mobility. 

By eliminating the need for human driver intervention through automation, ADAS are becoming 

a critical component in modern vehicles, to help save lives, improve fuel efficiency and enhance 

driving comfort.   

The United States Department of Transportation (USDOT) projected that the increased use 

of driverless vehicles will cause the number of traffic deaths to reduce by about 90%. It was 

reported that in 2020, an estimated 38,680 people died in motor vehicle traffic crashes in the United 

States, representing an estimated increase of about 7.2 percent as compared to 2019 [1]. According 

to the report, in 2020 a 90% reduction could have saved 34,812 lives in a single year. However, in 

the first 6 months of 2021, an estimated 20,160 people died in motor vehicle crashes showing an 

18.4% increase compared 2020, which is the largest number of projected fatalities in that time 

period since 2006 [2]. This threat to human lives warrants the need for safer mobility solutions.   



2 
 

With the benefit of highly coordinated traffic flow resulting from use of ADAS, the reduced 

number of accidents could reduce road congestion, since traffic accidents contribute to 25% of 

road congestions [3]. This reduction in congestion will have a direct effect on reducing vehicle 

related CO2 emission by 60% [4]. Autonomous vehicle technology can improve fuel economy by 

at least 4% through smoother acceleration and deceleration as compared to human controlled 

actuation. Improvements like reducing headway distance between vehicles can increase road 

capacity and show a maximum improvement of fuel economy up to 10% [5]. Further, according 

to a report by Klynveld Peat Marwick Goerdeler (KPMG) a fully driverless mobility solution for 

all vehicle models can potentially reduce travel time by up to 40%, allowing a recovery of a total 

of 80 billion hours lost to commute and reduce congestion and fuel consumption by up to 40% [6]. 

Finally, Autonomous Vehicles (AVs) can provide an economically feasible solution to the last 

mile problem in a journey where consumers struggle to find connectivity between the last public 

transport drop-off point and their destination [7].  

 

 
 

Figure 1: Overview of main ADAS modules 
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As shown in figure 1 above, ADAS systems are typically composed of a 4-stage pipeline 

involving sequential execution of functions related to perception, decision, control and actuation. 

An incorrect understanding of the environment by the perception system can make the entire 

system prone to erroneous decision making, which can result in accidents due to imprecise real-

time control and actuation. This motivates the need for a reliable perception architecture that can 

mitigate errors at the source of the pipeline and improve safety in emerging semi-autonomous 

vehicles. The research presented in this thesis focuses solely on design exploration analysis of 

perception architectures for ADAS. 

 
1.2 RELIABILITY CHALLENGES IN PERCEPTION ARCHITECTURE DESIGN 

The capabilities of a perception architecture for a vehicle depend on the Society of 

Automotive Engineers (SAE) autonomy level (defined by the SAE-J3016 standard) supported by 

the vehicle. As developments in the automotive industry progress towards full autonomy, the role 

of embedded vision in ADAS has become critical. Currently, Original Equipment Manufacturers 

(OEMs) often serve as sensor vendors to automotive companies and sell products which are more 

suited for partial or conditional automation [8]. This poses a challenge to ADAS engineers by 

increasing the requirement of design of more complex and optimized vision solutions in the 

software layer. 

In general, an optimal vehicle perception architecture should consist of carefully defined 

location and orientation of each sensor selected from a heterogeneous suite of sensors (e.g., 

cameras, radars) to maximize environmental coverage in the combined field of view obtained from 

the sensors. In addition to ensuring accurate sensing via appropriate sensor placement, a high 

object detection rate and low false positive detection rate needs to be maintained using efficient 

deep learning-based object detection and sensor fusion techniques [9]. State-of-the-art deep 
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learning based object detection models are built with different network architectures, uncertainty 

modeling approaches and test datasets over a wide range of evaluation metrics. For real time 

perception, object detectors are resource-constrained by latency requirements, onboard memory 

capacity and computational complexity [10]. Optimizations performed to meet any one of these 

constraints often results in a trade-off with the performance of others. As a result, comparison and 

selection from among the best set of deep learning based object detectors for perception 

applications remains a challenge. In real-world driving scenarios, the position of obstacles and 

traffic are highly dynamic, so after detection of an object, tracking is necessary to predict its new 

position. Due to noise from various sources there is an inherent uncertainty associated with the 

measured position and velocity [11]. This uncertainty is minimized by using sensor fusion 

algorithms. An important challenge with sensor fusion algorithms is that the complexity of tracking 

objects increases as the objects get closer, due to a much lower margin for error (uncertainty) in 

the vicinity of the vehicle. Some of the largest remaining technical challenges for autonomous 

vehicle development are related to testing conditions and the ability of the prototype to adapt to 

new scenarios [12]. Autonomous vehicle testing is still limited to relatively small well-mapped 

environments because generalization for new scenarios remains a challenge. In order to generate 

a diverse set of controlled test conditions, developers would need to gather more data by 

conducting drive cycles in new environment. In the following sub-sections, we briefly discuss the 

significant design constraints and factors that limit the reliable performance of perception 

architecture design. 

 
1.2.1 SENSOR PLACEMENT IN ENVIRONMENT PERCEPTION FOR ADAS 

An important challenge facing emerging vehicles is to determine a sensor configuration that 

can be responsible for environment perception as per the SAE autonomy level supported by the 
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vehicle. An optimal sensor configuration should consist of carefully selected location and 

orientation of each sensor in a heterogeneous suite of sensors, to maximize coverage from the 

combined field of view obtained from the sensors, and also maintain a high object detection rate. 

 

1.2.1.1 TRADE-OFFS BETWEEN ADAS SENSOR MODALITIES  

Table 1 depicts the trade-offs between different ADAS sensor modalities.  

 
Table 1: Trade-offs between different ADAS sensor modalities 

 

 
 

 

The best-recognized ADAS sensor is the radar that has been widely adopted for position and 

velocity measurement. Radar is an acronym for "radio detection and ranging". It is a well-

established sensor modality that detects objects using echolocation. Measurement using 

echolocation involves quantifying the time it takes for transmitted radio waves to reflect from a 

target objects. Radar was first developed by several nations for military use in the Second World 

War, but today it has many applications in ADAS. Since radar has been widely used in automotive 

systems, prototypes are well developed and relatively affordable making it attractive for car 

manufacturers to include in their sensor configurations [13]. For ADAS applications, radar can be 
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divided into three categories: short-range radar (SRR), mid-range radar (MRR) and long-range 

radar (LRR). SRR systems traditionally used electromagnetic waves in the microwave spectrum 

of 24 GHz but recently there has been an industry shift towards 77 GHz due to the limited 

bandwidth and changing regulatory requirements. SRRs have a useful range of around 10 meters 

to 30 meters allowing them to support autonomous features such as park assist and lane keep assist. 

In ADAS, MRR and LRR are targeted for high resolution measurement using a 77 GHz frequency 

enabling greater accuracy for velocity and distance measurements. MRR systems operate between 

30 meters and 80 meters, while LRR systems have a range extending up to 200 meters. LRRs are 

suitable for adaptive cruise control and forward collision warning. One of LRR’s disadvantages is 

that it’s angular resolution decreases with range so some features such as adaptive cruise control 

need to combine inputs from both SRR and LRR sensors having better angular resolution [13]. 

Radars are widely used in ADAS due to their ability to function effectively in poor weather, such 

as rain, snow and fog, and at night. However, it also has a limited field of view in automotive 

applications requiring more number of radars per sensor configuration design.  

Ultrasonic sensors use echolocation from sound waves to calculate the separation distance 

between objects.  Ultrasonic sensors have a relatively short effective operating range of around 2 

meters. They are typically used in features where low driving speeds are common. Ultrasonic 

sensors are cost-effective and relatively robust since they are unaffected by challenging light 

conditions [15]. Given the limited range of established ultrasonic sensors, some manufacturers 

prefer using short range radars (SRR).  

Lidar, a contraction of ‘laser’ and ‘radar’ is an acronym for ‘light detection and ranging’. It 

works on the same principle as radar but uses lasers to generate a high-resolution 3D image of the 

surrounding environment instead of electromagnetic waves in radars. Lidar was first developed in 
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the 1960s for meteorological, surveying, and mapping use cases, but has more recently been 

adopted for ADAS and autonomous vehicle development applications [16]. With the exception of 

Tesla, it is a widely used sensor in ADAS perception development. There are two basic types of 

lidars [17]. The first type uses a laser which emits pulses onto a rotating mirror which diverges the 

laser beam in desired directions, allowing a detection range of 300 meters or more. These are well 

suited for 360 degree field of view if roof-mounted. This lidar type is also compact and uses 

microelectromechanical systems (MEMS) technology-based rotation of mirrors to enable laser 

beam divergence [17]. The second type is solid-state lidars which uses an optical phased array to 

propagate the beams in desired multiple directions. Lidars work well in rain, snow and poor 

lighting conditions although it's functioning can be quite unpredictable in fog conditions [17]. 

Camera-based solutions have gained traction as the ADAS developer’s sensor technology of 

choice. Cameras are also extremely cost-effective, which makes them attractive to vehicle 

manufacturers. Cameras used in ADAS are both monocular and stereo [18]. Forward-facing 

monocular camera systems are used in medium to long-range functions such as lane-keeping 

assistance and traffic sign detection. Rear-facing cameras serve primarily as a reversing aid for the 

driver, where a 2D mirror-image view of the area behind the car is displayed on a dashboard-

mounted screen [19]. Forward-facing stereo cameras are more commonly used in pairs. A pair of 

these cameras can be used to model a 3D image that provides the information necessary to calculate 

complex depth information of targets. While mono and stereo cameras are highly sensitive to 

visibility conditions, thermal imaging cameras have a range of up to 300 meters and are unaffected 

by fog, dust or extreme lighting conditions [20]. 
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1.2.1.2 STATE-OF-THE-ART SENSOR DEPLOYMENTS FOR ADAS IN VEHICLES  

Table 2 below shows the sensor deployment in leading vehicle manufacturers and OEMs 

along with their targeted level of autonomy. Ford has tested self-driving cars in adverse weather 

conditions such as snowy weather and poor lighting conditions. With their target of achieving 

Level 4 Autonomy, they design autonomous vehicles within pre-mapped, “geofenced” areas. 

Geofencing allows ADAS to attain higher degree of autonomy by using pre-mapped and highly 

detailed information from selected routes. While they consider wide range of testing conditions in 

development, a level 4 autonomy model is currently not available for sale in the market in 2021 

[21].  

 

Table 2: Leading OEM sensor deployment for autonomy goals 

 

OEM Sensor selection Sensor vendors Target level of 

autonomy 

Test fleet 

Ford Lidar, GPS Argo, Velodyne Level 4 Fusion Hybrid 
Renault-Nissan Radar, Lidar Transdev Level 3 Commercial cars 
VW Audi group Lidar, Camera Delphi, Aurora Level 4 Commercial cars 

BMW Lidar, Camera, 
GPS 

Baidu, Intel Level 5 Commercial cars 

Waymo Lidar, Radar, 
Camera 

Velodyne, Fiat-
Chrsyler 

Level 5 Pacifica minivan 

Tesla Camera, Radar Apple, 
Mobileye, 
NVIDIA 

Level 5 Commercial cars 

Hyundai Lidar, Camera KIA, Aurora Level 3 Commercial cars 
 

 

Nissan deployed its first Level 2 ADAS called ProPilot on the Serena van model which 

was made available to the Japanese market in 2016. This initial version of ProPilot offered lane 

keeping and cruise control abilities only for single lane driving in Japan. With addition of the Intel 

Mobileye camera to their sensor configuration, the newer version of ProPilot built in 2017 has the 
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ability to change lanes automatically in urban areas. Currently, after collaboration with Renault 

they are targeting more advanced features in level 3 autonomy [22].  

The first self-driving prototype built by Volkswagen-Audi group was the V-charge golf 

cart in 2015 which used sensors and 3D mapping for localization and navigation within parking 

spaces in a garage. In 2016, they shifted their development focus to ADAS for mobility services 

like fleet based on demand transportation. They successfully integrated level 2 autonomy features 

for the Audi A6, A7 and A8 models. These models were made available to the market in 2020 

with a future target of level 3 autonomy by 2025 for all their vehicle models [23].  

In 2016, BMW begun their alliance with Intel acquired Mobileye to change its strategy for 

achieving autonomy. The sensor configuration used involves usage of 2 laser scanners surfaced 

engineered for the front and rear bumpers respectively. The front camera used is placed at the top 

of the windshield, while there are separate cameras assigned for rear window road marking 

detection and road sign detection respectively. Each side mirror with 180 degree FOV uses laser 

scanners that monitor the left and right spaces around the ego vehicle. Four ultrasonic sensors 

above the wheel monitors are used for perception while using the park assist feature [24].  

Waymo (a subsidiary of Alphabet Inc., originally started as a project by Google in 2009) 

combines 3 different types of lidar sensors, 5 radar sensors, and 8 cameras [25]. Tesla’s vehicles 

avoid lidars due to their high costs and instead their Autopilot uses 8 surround cameras, 12 

ultrasonic sensors (primarily for short-range self-parking support) and 1 forward-facing radar. 

Each of the cameras has a maximum visibility range of up to 250 meters, so this configuration 

ensures a 360-degree coverage up to 250 meters around the vehicle [26]. Waymo has stopped using 

off-the-shelf lidar sensor hardware and begun custom design and manufacture all types of sensors. 

Waymo's presence in the market will be of an OEM to the auto industry. Waymo intends to market 
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its automated driving stack and provide mobility services to consumers, while Tesla targets to sell 

vehicle equipped with level 4 autonomy by 2022 [25].  

The latest edition of Hyundai's ADAS development module is largely based on the newly 

launched Ioniq battery EV and is configured with a unique sensor array composed of three front 

lidar sensors, both short and long-range radars, and a variety of cameras for vision. Effective 

pedestrian detection, lane tracking, and reading traffic signals is made possible from effective 

fusion of sensor data and HD maps. The lane keeping system in the 2016 Hyundai Elantra compact 

is remarkably capable of efficiently detecting lane markings at speeds above 35 mph and applying 

autonomous steering control to center the car within lane lines [27].  

 
 

1.2.2 OBJECT DETECTION IN ENVIRONMENT PERCEPTION FOR ADAS 

Object detection provides a semantic understanding of the environment from acquired raw 

camera data. In order to develop a reliable autonomous vehicle capable of perceiving the 

surrounding environment, selecting an accurate object detector is essential. The diverse driving 

scenarios impose different object detection challenges due to weather conditions, lighting 

conditions, extreme elevations or road geometries. In autonomous driving, objects can be classified 

into static and dynamic objects. Static objects include traffic lights and signs while dynamic objects 

include pedestrians, cyclists, and different non ego vehicles. Detection of static objects is 

considered a straightforward task because of their definite shape and easily predicted location, 

however dynamic object detection is more difficult and allows for a lower margin for detection 

error on account of their unpredictable velocities or vicinity to the ego vehicle.  

Due to the diversity of object classes, lighting, and background conditions, manual feature 

extraction is not a robust approach. Therefore, deep learning based object detectors play a 
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significant role in object detection tasks as they can learn and extract more complex features and 

eliminate the need for manually designing features through training of deep neural networks 

(DNN). There are 2 primary goals associated with deep learning based object detectors for a given 

image. Initially, the spatial information (relative position of the object in the image) of the target 

is calculated, which is referred to as localization, followed by identifying which category that 

object instance belongs to, which is referred to as classification [28]. The most widely used metric 

to evaluate the detection accuracy of object detectors is the Average Precision (AP). Further, the 

Intersection-over-Union (IoU) metric evaluates localization performance since it is a measure of 

how much the bounding box of the detector’s prediction and the ground truth overlaps [28]. A 

predicted object is considered true positive if the evaluated IoU is above a specific threshold value 

while it is considered false positive if it is below the value. 

The pipeline of traditional object detection models can be mainly divided into informative 

region selection, feature extraction, and classification. Depending on which subset of these steps 

are used to process an input image frame, object detectors can be classified as one stage and two 

stage detectors [29].  

 

 
 

(a)                                                         (b) 

 

Figure 2: (a): One stage detector architecture; (b): Two stage detector architectures 
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One-stage detectors, as shown in figure 2(a) are usually composed of a single feed-forward 

fully convolutional network (CNN) that directly places the anchor/bounding boxes and perform 

object classification. The backbone CNN is a feedforward neural network designed for feature 

extraction. Features extracted by the backbone CNN from different spatial regions of the image 

where objects may be present, are pooled together to identify their class and determine their 

position using these bounding boxes [29]. The bounding box is described using 4 parameters: (x, 

y, w, h) where (x, y) denotes the position of the geometric center of the constructed box while w 

and h describe the width and height respectively. 

Two-stage detectors shown in figure 2(b) divide the detection process into the region 

proposal and the classification stage. These models first propose several object candidates, known 

as Regions of Interest (RoI), using reference boxes (anchors) followed by the second step where 

the proposals are classified and their localization is refined [29].  

The number, position and dimensions of the selected regions in an image have a direct 

effect on the efficiency of localization. Exhaustively generating regions for the entire image is 

computationally expensive and may increase inference latencies, while insufficient number of 

region proposal can cause the object detector to miss objects. State-of-the-art object detectors often 

perform feature extraction and classification using Convolutional Neural Networks (CNN). 

However, CNNs alone cannot detect the number of category instances within an image to make 

accurate detections in real time scenarios where the number of target objects like vehicles in traffic 

and obstacles are highly dynamic, warranting the need for deep learning based object detectors 

that combine CNNs with other components for object localization and detection.  
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1.2.3 SENSOR FUSION FOR TARGET TRACKING IN ADAS 

Perception architectures that use multiple sensors in their heterogeneous sensor set often 

introduce error due to imprecise measurement. Conversely, errors can also arise when only a single 

sensor is used due to measurement uncertainties from insufficient spatial (occlusion) or temporal 

(delayed sensor response time) coverage of the environment. This motivates the need for 

frameworks that can process data from multiple sensors with minimum error.   

Multi Sensor Data Fusion (MSDF) frameworks can be classified into three primary 

approaches depending on how sensory data is combined from various sensing modalities: high-

level fusion (HLF), low-level fusion (LLF) and mid-level fusion (MLF) [30]. In the HLF approach, 

each sensor first carries out object detection independently and fusion is subsequently performed 

on the cluster of detections made. High level fusion is often adopted due to a relatively lower 

computational complexity than the LLF and MLF approach [30]. However, HLF is susceptible to 

generating inadequate information, since classifications with a lower confidence value are 

discarded if there are several overlapping obstacles. Conversely, with the LLF approach, raw data 

from each sensor is fused at the lowest level of abstraction, so there is no loss of information which 

can result in higher accuracy for object detection. MLF is an abstraction level between LLF and 

HLF and is commonly referred to as feature level fusion. It fuses important multi-target features 

extracted from the corresponding raw sensor data such as positional data from radar and color 

information from RGB frames collected by the camera [31]. 
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Figure 3: Working of Kalman filter family 

 
Sensor fusion can also be classified according to the algorithm used for state 

estimation/tracking. The Kalman filter proposed by Rudolf E. Kalman in 1960 is the most widely 

used state estimation algorithm in autonomous driving and robotics applications for tracking 

targets [32]. The Kalman filter family are a set of recursive mathematical equations that provide 

an efficient computational solution of the least-squares method for estimation. They support 

estimations of past, present and future states, even when the precise nature of the modeled system 

is unknown [32].  

The figure 3 above shows the general working of filters in the Kalman family and explains 

the important parameters and computations involved in the new state prediction and update steps. 

The parameters critical to functioning of the Kalman filter listed in the above figure 3 are:  the 

state covariance matrix (P) which is a measure of the error in estimation, the measurement 

covariance matrix (R) which is a measure of error in measurement, the process noise covariance 

matrix (Q) inherent to the model of the system and the KG (Kalman gain) which is a weight factor 

that compares which error to trust more between: error in the estimate versus error in 
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measurement. Due to the fast convergence property of Kalman filters, the initial state (X0, P0) can 

be selected at random and does not affect the final estimate. A, B and u used in the prediction step 

consists of velocity and accelerations constants, which are derived from Newton’s equation of 

motion. These are used to compute the new state (Xkp) as well as the new error in estimation (Pkp) 

of the state covariance matrix. Next, in the update step the Kalman gain KG is computed as the 

fraction of error in estimate over the total error (total error = sum of error in measurement and 

error in estimate). The value of KG lies in the range 0 to 1 and is the deciding factor for which of 

the errors to trust more in computation of updated state Xk. If the computed value of KG is close to 

0 then the estimates are stable and measurements are inaccurate, where as if KG is closer to 1 then 

the measurements are accurate and the estimations are unstable. Since, the term [Y – H*Xkp] 

represents the deviation of prediction at a previous time step from the new sensor reading at the 

current time step, KG determines what fraction of this difference is added as a correctional factor 

to update Xkp to Xk in the update step.  

The Kalman filter has the ability to obtain optimal statistical estimations when the system 

state is described as a linear model and the error can be modeled as Gaussian noise [32]. If the 

system state is represented as a nonlinear dynamic model as opposed to a linear model, a modified 

version of the Kalman filter known as the Extended Kalman Filter (EKF) can be used, which 

provides an optimal approach for implementing nonlinear recursive filters. However, the EKF has 

disadvantages due to the computation of the Jacobian (matrix describing the state of the system) 

being computationally expensive [33]. Further, any attempts to reduce the cost through techniques 

like linearization make the performance unstable. The Unscented Kalman filter (UKF) has gained 

popularity, due to its ability to be implemented in parallel, as well as the absence of linearization 

step and associated errors of the EKF. In contrast to the linearization strategy used by the EKF, 
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the UKF uses a sampling strategy to establish the minimum set of points around the mean referred 

to as sigma points. These points are propagated through nonlinear functions and the covariance of 

the estimations can be regained [33].  

 

1.2.3.1 SENSOR FUSION CLASSIFICATION  

Depending on the relative position and orientation of the fixed sensor configuration in a 

perception architecture, sensor fusion can be classified into complementary fusion, redundant 

fusion and cooperative fusion [34]. As shown below in figure 4, the ego vehicle depicted in blue 

refers to the vehicle on which perception is enabled by placement of sensors in different 

configurations. Complementary fusion involves positioning of sensors such that there is no overlap 

in their field of view resulting in a maximization of coverage of the environment. 

 

 
 

Figure 4:  Whyte’s classification  

 

 

Redundant fusion, also referred to as competitive fusion, position sensors such that they 

focus on the same field of view ensuring higher reliability and detection accuracy. Cooperative 

fusion involves sharing a common field of view between 2 sensor modalities such that a new 
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representation of the environment can be created to perform detection or depth estimation more 

efficiently [34].  

 
1.3 CHALLENGES IN SAE LEVELS OF AUTONOMY FOR ADAS 

1.3.1 SAE LEVELS OF AUTONOMY 

The degree to which ADAS can effectively reduce human intervention during driving is 

classified by Society of Automotive Engineers (SAE) according to the J3016 standard, into six 

levels of autonomy as shown in figure 5 below [35].  

 
 

Figure 5: SAE levels of autonomy  

 

Level 0 characterizes vehicles that have no assistive features. Level 1 autonomy 

encompasses vehicles that have the ability to share control between the driver and the vehicle. 

Adaptive cruise control and park assist are examples of features that can assist the driver in this 

level [35]. Level 2 autonomy vehicles have the capability to perform all acceleration, steering and 

braking tasks that require longitudinal and lateral control. Examples of features supported in this 

level include forward collision warning and blind spot warning, in addition to features from level 

1. Level 3 autonomy vehicles can assess the risk of a situation and additionally perform path 

planning. At Level 4 autonomy, no driver intervention is required in most cases, unless requested, 
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in contrast to level 3. Level 5 autonomy requires no human intervention or safety driver in the 

vehicle, unlike in level 4 [35].  

 

1.3.2 CHALLENGES IN LEVEL 2 AUTONOMY FEATURES 

As our research focuses on supporting level 2 perception autonomy, here we discuss the 

requirements at this level. A perception architecture designed to support Level 2 autonomy in a 

vehicle should support all four of the critical features discussed in the following sections. 

 
1.3.2.1 ADAPTIVE CRUISE CONTROL (ACC) 

In 1992, Mitsubishi was the first to offer a distance detection system called Debonair which 

used a lidar for "distance warning" without influencing any control functions [36]. Later in 2000, 

Toyota introduced their adaptive cruise control (ACC) system to the US market which used a LS 

430 Dynamic Laser Cruise Control system and did not require any input from the driver once the 

feature was engaged [37]. ACC causes the ego vehicle to follow a lead vehicle at a specified 

distance without exceeding the speed limit specified by the operator upon activation of the feature 

[38]. If the lead vehicle slows down, then it is the responsibility of ACC to slow down the ego 

vehicle to maintain the specified distance. Although implementations differ, all ACC systems take 

over longitudinal control from the driver. The challenge in ACC is to maintain an accurate track 

of the lead vehicle with a forward facing sensor and using longitudinal control to maintain the 

specified distance while maintaining driver comfort (e.g., avoiding sudden velocity changes). 

 
1.3.2.2 LANE KEEP ASSIST (LKA) 

State-of-the-art lane keep assist (LKA) feature variants are an evolution of lane departure 

warning systems. Data from a forward facing camera is often processed using Canny edge 
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detection or Hough transform to identify lane line information in front of the ego vehicle [39]. 

Using this information LKA can determine whether the ego vehicle is drifting towards any of the 

lane boundaries and respond by sending steering torque commands to the control system until it 

has no trajectory to cross. However, LKA systems have been known to over-compensate, creating 

a “ping-pong” effect where the vehicle oscillates back and forth between the lane lines [40]. The 

main challenges in LKA are to reduce this ping-pong effect and the accurate detection of lane lines 

on obscured (e.g., dirt covered) roads. 

 
1.3.2.3 FORWARD COLLISION WARNING (FCW) 

Forward collision warning (FCW) uses information gathered via various forward facing 

sensors for real time prediction of collisions with a lead vehicle. The driver is notified to apply 

brakes through an audio visual warning when the ego-vehicle is dangerously close to the lead 

vehicle. As this is a safety-critical system, it is important that FCW avoids false positives as well 

as false negatives to improve driver comfort, safety, and reduce rear end accidents [41]. For this 

to be achieved, it is a necessary prerequisite that the sensors used by the FCW system be placed 

where they have an accurate view of the vehicle in front of them. The United States National 

Transportation Safety Board has recommended that FCW be included in all new vehicles [42]. 

 
1.3.2.4 BLINDSPOT WARNING (BW) 

Blind spot warning (BW) uses sensors mounted on the lateral sides of the ego vehicle to 

determine whether there is a vehicle towards the rear on either side of the ego vehicle in a location 

the driver cannot see with their side mirrors [43]. This area is commonly referred to as the “blind 

spot”, requiring the driver to turn their head and verify whether there are oncoming vehicle during 

a lane change. With BW, the driver can maintain their concentration on the road ahead and perform 
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lane changes without having to look behind. As BW requires information about a specific area 

near the rear of the vehicle, it is a challenge to find an optimal sensor placement that maximizes 

the view of the blind spot. If the sensor is too far forward, it will miss the blind spots entirely, 

causing a vehicle accident when the driver makes a lane change. If the sensor is too far back, it 

will end up capturing information for areas around the ego vehicle that are not in the blind spot, 

decreasing the sensor’s effectiveness at viewing the presence of vehicles surrounding the blind 

spot. 

 
1.4 DISSERTATION OVERVIEW 

In summary, there is a crucial need for a holistic framework in perception architecture 

synthesis for ADAS. Such a framework is not trivial to conceptualize, because of the complex 

inter-dependencies between design decisions, constraints, and optimization goals. For example, to 

enhance obstacle detection for a given feature there is an inherent trade-off between accuracy and 

latency for one stage and two stage deep learning based detectors. Further, even if a perception 

architecture is equipped with an ideal object detector having high accuracy and low latency, 

performance is significantly affected by the position and orientation of the sensor determining the 

combined field of view. If the combined field of view is too small or contains redundant overlap 

between individual sensors, important events and obstacles can go undetected while if the field of 

view is too large, the number of false positive detections will be high and appropriate sensor fusion 

algorithms are needed for target tracking to reduce the number of false positive detections.  

To address the above-mentioned problems, the main contribution of this dissertation is the 

design of a novel exploration framework for perception architecture exploration in automotive 

cyber-physical platforms. This framework aims to enhance the performance of perception in 
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ADAS, while meeting a diverse set of real time driving constraints (e.g. reliability, latency, 

fidelity, weather resiliency, and adaptability to road geometries).  

 

 

 

Figure 6: Overview of perception architecture exploration framework for automotive 

cyber-physical platforms 

 

Figure 6 shows a high level overview of the proposed framework, with our main 

contributions describing various facets of this framework explained in detail in chapters 2 and 3. 

This framework performs intelligent algorithmic exploration in the design space of perception 

architecture to synthesize reliable perception architectures that are capable of high fidelity 

environment modeling and information extraction.  The framework is sensitive to the selected 

input vehicle model. The design space of possible perception architecture solutions are the total 

number of ways in which the following inputs can be selected for a given vehicle model: sensor 

modality selection, sensor placement, object detectors, and sensor fusion algorithm. This design 
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space is vast due to combinatorial explosion and cannot be explored exhaustively in a practical 

period of time to yield solutions, warranting the need for intelligent exploration. The use of 

artificial intelligence based search algorithms and evolutionary algorithms enables efficient 

exploration in our framework while satisfying design constraints ensuring latency, reliability, 

fidelity and weather resiliency. The rest of this dissertation is organized as follows: 

In chapter 2, we address the synthesis of heterogeneous sensor configurations towards 

achieving vehicle autonomy goals. We propose a novel optimization framework called VESPA 

that explores the design space of sensor placement locations and orientations to find the optimal 

sensor configuration for a vehicle. We demonstrate how our framework can obtain optimal sensor 

configurations for heterogeneous sensors deployed across two contemporary real vehicles. 

In chapter 3, we address the multiple complex problems related to the selection and 

placement of sensors, design of object detector, and sensor fusion. Current methods address these 

problems in isolation, which leads to inefficient solutions. We present PASTA, a novel framework 

for global co-optimization of deep learning and sensing for ADAS-based vehicle perception. 

Experimental results with the Audi-TT and BMW Minicooper vehicles show how PASTA can 

intelligently traverse the perception design space to find robust, vehicle-specific solutions.  

Chapter 4 concludes this dissertation. We summarize our comprehensive body of research 

in this chapter and also make recommendations for future work. 
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2. VESPA: A FRAMEWORK FOR OPTIMIZING HETEROGENEOUS SENSOR 

PLACEMENT AND ORIENTATION FOR AUTONOMOUS VEHICLES 

 
In emerging autonomous vehicles, perception of the environment around the vehicle 

depends not only on the quality and choice of sensor type, but more importantly also on the 

instrumented location and orientation of each of the sensors. This chapter explores the synthesis 

of heterogeneous sensor configurations towards achieving vehicle autonomy goals. We propose a 

novel optimization framework called VESPA that explores the design space of sensor placement 

locations and orientations to find the optimal sensor configuration for a vehicle. We demonstrate 

how our framework can obtain optimal sensor configurations for heterogeneous sensors deployed 

across two contemporary real vehicles. 

 
2.1 MOTIVATION AND CONTRIBUTION 

The increasing maturity of Advanced Driver Assistance Systems (ADAS) is enabling the 

introduction of vehicles with greater levels of autonomy. The degree to which ADAS can 

effectively reduce human intervention during driving is classified by SAE according to the J3016 

standard [44], into five levels of autonomy.  

Level 0 characterizes vehicles that have no assistive features. Level 1 autonomy 

encompasses vehicles that have the ability to share control between the driver and the vehicle. 

Adaptive cruise control and park assist are examples of features that can assist the driver in this 

level. Level 2 autonomy vehicles have the capability to perform all acceleration, steering, and 

braking tasks that require longitudinal and lateral control. Examples of features supported in this 

level include forward collision warning and blind spot warning, in addition to features from level 

1. Level 3 autonomy vehicles can assess the risk of a situation and additionally perform path 
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planning. At Level 4 autonomy, no driver intervention is required in most cases, unless requested, 

in contrast to level 3. Level 5 autonomy requires no human intervention or safety driver in the 

vehicle, unlike in level 4. Most vehicles today are beginning to support level 2 autonomy.  

The higher autonomy levels require support for increasingly sophisticated ADAS features 

such as Lane Keep Assist (LKA) and Forward Collision Warning (FCW), which in turn defines 

requirements for sensing capabilities and perception performance of the vehicle. Table 3 

summarizes the trade-offs between popular sensors used to support ADAS features and their 

relative performance. Using a camera as a vision sensor is a widely used approach to perform 

classification and detection of objects on the road. However, cameras have high susceptibility to 

noise and are not reliable in extreme weather or lighting conditions [45]. A radar sensor is also 

capable of object detection and is particularly suited for accurate velocity detection of neighboring 

vehicles even under harsh weather and poor visibility conditions. Long-range radars (typically at 

77GHz) used to support ADAS features such as adaptive cruise control (ACC) and automatic 

emergency braking (AEB) have a shorter azimuth than mid or short-range radars (typically at 

24GHz), to prioritize monitoring vehicle velocity and approaching distance. However, long range 

radars can also detect more number of objects than short or mid-range radars. A drawback of the 

radar is their high false positive rate when detecting objects, and an upper bound on the number of 

objects that can be detected at the same time, e.g., the Bosch midrange radar with a maximum 

range of 160 meters can only detect up to 32 objects simultaneously [46]. A LiDAR sensor uses 

invisible laser light to measure the distance to objects in a similar way to radars. It can create an 

incredibly detailed 3D view (point cloud) of the environment around the vehicle. However, LiDAR 

data processing is computationally very expensive and relies on moving parts which can make it 

more vulnerable to damage. Ultrasonic sensors listed in table 3 use the principle of ‘time of flight’ 
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to measure distance from targets by computing the travel time of the ultrasonic echo from a 

neighboring vehicle or obstacle [47]. Usage of ultrasonic sensors for ADAS feature 

implementation are not uncommon, however they require accurate modelling for their use case, 

since their performance is highly dependent on the physical properties (shape, surface material) of 

the target being tracked [48]. 

 
Table 3: ADAS sensor trade-offs 

Characteristics Camera LiDAR Radar 

Perception Reliability Medium         High      Medium 
Spatial Resolution       High         High       Low 

Noise Susceptibility       High         Low       Low 
Velocity Detection       Low         Low       High 
Weather Durability       Low         Low       High 

 
 

Most level 2 and higher autonomy vehicles today rely on a combination of sensors, to 

overcome their individual drawbacks (see Table 3). For example, Waymo (a subsidiary of 

Alphabet Inc., originally started as a project by Google in 2009) combines 3 different types of 

LiDAR sensors, 5 radar sensors, and 8 cameras. Tesla’s vehicles avoid LiDARs due to their high 

costs and instead their Autopilot uses 8 surround cameras, 12 ultrasonic sensors (primarily for 

short-range self-parking support), and 1 forward-facing radar. Each of the cameras has a maximum 

visibility range of up to 250 meters, so this configuration ensures a 360-degree coverage up to 250 

meters around the vehicle.  

An important challenge facing emerging vehicles is to determine a sensor configuration that 

can be responsible for environment perception as per the SAE autonomy level supported by the 

vehicle. An optimal sensor configuration should consist of carefully selected location and 

orientation of each sensor in a heterogeneous suite of sensors, to maximize coverage from the 
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combined field of view obtained from the sensors, and also maintain a high object detection rate. 

Today there are no generalized rules for the synthesis of sensor configurations, as the location and 

orientation of sensors depends heavily on the target features and use cases to be supported in the 

vehicle.  

In this chapter, we propose a novel framework called VESPA (VEhicle Sensor Placement 

and orientation for Autonomy), to optimize heterogeneous sensor synthesis. More precisely, for a 

given set of heterogeneous sensors and ADAS features to be supported, VESPA performs 

intelligent algorithmic design space exploration to determine the optimal placement and 

orientation for each sensor on the vehicle, to support the required ADAS features for SAE level 2 

autonomy systems. The VESPA framework can be easily utilized to generate optimal sensor 

configurations across different vehicle types. Our experimental results indicate that the proposed 

framework is able to optimize perception performance across multiple ADAS features for the 2019 

Chevrolet Blazer and 2016 Chevrolet Camaro vehicles. 

 
2.2 RELATED WORK  

State-of-the-art SAE level 2 autonomy systems require the selection and placement of 

sensors based on the assistive target features required to be supported, e.g., forward collision 

warning (FCW) and lane keep assist (LKA). While several prior works evaluate the performance 

of a specific sensor configuration and its deployment, very few works have explored the problem 

of generating optimal sensor configurations for vehicles.  

An optimal sensor placement approach was proposed in [49] for a blind spot detection and 

warning system. The work recognizes the inability of the camera to perform in non-ideal lighting 

conditions and selects an ultrasonic sensor to measure distance of vehicles trailing in the vehicle’s 

blind spot. The time response of the system with the position of the sensor above the rear tire is 
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analyzed for two scenarios: when the vehicle is at rest and when it is moving at a constant velocity. 

The sensor selection identifies price as a constraint and optimizes the price of the total sensor setup 

through usage of an ultrasonic sensor instead of a more expensive camera sensor. The work in [50] 

focuses on generating a LiDAR configuration from a set of LiDARs with the goal of reducing 

occurrences of dead zones and improving point cloud resolution. A LiDAR occupancy grid is 

constructed for a homogenous set of LiDARs and the configuration is generated using a genetic 

algorithm. An approach for optimal positioning and calibration of a three LiDAR system is 

proposed in [51] that uses a neural network to qualify the effectiveness of different sensor location 

and orientations. Unlike these prior works that focus on generating configurations for a 

homogenous set of sensors, our work in this chapter presents a novel sensor placement and 

orientation optimization framework for a heterogeneous set of sensors. Moreover, our framework 

is also shown to be capable of easily adapting to different vehicle types. 

 
2.3. BACKGROUND 

We target four ADAS features in this chapter that need to be supported by a deployed sensor 

configuration on a vehicle (henceforth referred to as an ego vehicle). A sensor configuration 

consists of the location and orientation of each sensor within a heterogeneous set of sensors. Our 

VESPA framework optimizes the sensor configuration to support four features: adaptive cruise 

control (ACC), lane keep assist (LKA) forward collision warning (FCW), and blind spot warning 

(BW). Each of the features discussed above, require varying degrees of sensing and control along 

longitudinal (i.e., within the same lane as the ego vehicle) and lateral (i.e., along neighboring lanes) 

regions. 
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2.3.1 ADAS FEATURES FOR LEVEL 2 AUTONOMY  

SAE J3016 defines ACC and LKA individually as level 1 features, as they only perform the 

dynamic driving task in either the latitudinal or longitudinal direction of the vehicle. FCW and 

BW are defined in SAE J3016 as level 0 active safety systems, as they only enhance the 

performance of the driver without performing any portion of the dynamic driving task. However, 

when all four features are combined, the system can be described as a level 2 autonomy system. 

Many new vehicles being released today support level 2 autonomy. For instance, Volvo announced 

that its upcoming Level 2+ vehicles will use surround sensors for 360-degree perception, as well 

as deep neural networks running in parallel for robust object detection [52]. It is not only relevant, 

but also important to optimize sensor placement for ADAS systems as more and more vehicles 

with these features become available. Figure 7 shows an overview of the four features we focus 

on for level 2 autonomy, which are discussed next. 

 

 
 

Figure 7: Visualization of common scenarios in ACC, FCW, LKA, and BW 

 

Adaptive cruise control (ACC) was first introduced in the Mercedes-Benz S-Class sedan in 

1999, with the goal of increased driver comfort. ACC causes the ego vehicle to follow a lead 
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vehicle at a specified distance (figure 7) without exceeding the speed limit specified by the operator 

upon activation of the feature [53]. If the lead vehicle slows down, then it is the responsibility of 

ACC to slow down the ego vehicle to maintain the specified distance. Although implementations 

differ, all ACC systems take over longitudinal control from the driver (figure 7). The challenge in 

ACC is to maintain an accurate track of the lead vehicle with a forward facing sensor and using 

longitudinal control to maintain the specified distance while maintaining driver comfort (e.g., 

avoiding sudden velocity changes).  

Lane keep assist (LKA) is an evolution of lane departure warning systems. It involves a 

forward-facing sensor (often a camera) to identify where the lane lines exist in front of the ego 

vehicle. Once the lane lines have been detected (e.g., using Canny edge detection and Hough 

transforms on forward-facing images), LKA can then determine if the ego vehicle lies between 

those lines (figure 7). If the ego vehicle appears to be drifting toward a position where it will cross 

lane line boundaries, LKA engages steering torque to steer the vehicle in the opposite direction of 

the lane line until it no longer has the trajectory to cross that lane. LKA systems have been known 

to over-compensate, creating a “ping-pong” effect where the vehicle oscillates back and forth 

between the lane lines [54]. The main challenges in LKA are to reduce this ping-pong effect and 

the accurate detection of lane lines on obscured (e.g., dirt covered) roads.  

Forward collision warning (FCW) uses information gathered via various forward facing 

sensors to determine whether the ego vehicle is going to collide with an object in front of it (figure 

7). As objects approach the boundary where the vehicle can no longer come to a stop, an audio-

visual warning notifies drivers instructing them to apply the brakes. As this is a safety-critical 

system, it is important that FCW avoids false positives as well as false negatives to improve driver 

comfort, safety, and reduce rear end accidents [55]. For this to be achieved, it is a necessary 
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prerequisite that the sensors used by the FCW system be placed where they have an accurate view 

of the vehicle in front of them. The United States National Transportation Safety Board has 

recommended that FCW be included in all new vehicles [56].  

Lastly, blind spot warning (BW) uses sensors mounted on the sides of the ego vehicle to 

determine whether there is a vehicle towards the rear on either side of the ego vehicle in a location 

the driver cannot see with their side mirrors [57] (figure 7). This area is typically referred to as the 

“blind spot” and must be verified as clear of any vehicles before the driver can attempt to make a 

lane change. Without BW, the driver must turn their head to make that verification on their own. 

With BW, the driver can maintain their concentration on the road ahead. As BW requires 

information about a specific area near the rear of the vehicle, it is a challenge to find an optimal 

sensor placement that maximizes the view of the blind spot. If the sensor is too far forward, it will 

miss the blind spots entirely, causing a vehicle accident when the driver makes a lane change. If 

the sensor is too far back, it will end up capturing information for areas around the ego vehicle that 

are not in the blind spot, decreasing the sensor’s effectiveness at viewing the presence of vehicles 

surrounding the blind spot.  

 
2.3.2 FEATURE PERFORMANCE METRICS 

In equations (1)-(8), the ground truth refers to the actual position of the non-ego vehicles 

(traffic in the environment of the ego vehicle). 

 

Longitudinal	Position	Error	(m1) =
∑(#$#%&'()*+&(+,)

.(/01&	'3	)')	1%'	41,5671
                      (1) 

Lateral	Position	Error	(m2) =
∑(8$8%&'()*+&(+,)

.(/01&	'3	)')	1%'	41,5671
                                  (2)  

Object	Occlusion	Rate	(m3) =
9:;<=>	?@	A?A	=B?	C=DEFG=	:AH=I=FI=H

J'+K7	)(/01&	'3	LKMM5)%	)')	1%'	41,5671M
                                         (3) 
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Velocity	Uncertainty	(m4) =
9:;<=>	?@	EACNGEH	H=I=FI=H	A?A	=B?	C=DEFG=	C=G?FEIE=O

J'+K7	)(/01&	'3	)')	1%'	417'65+51M
                             (4)  

Rate	of	late	detection	(m5) =
9:;<=>	?@		GNI=	A?A	=B?	C=DEFG=	H=I=FIE?A

J'+K7	)(/01&	'3	)')	1%'	41,5671M
                                            (5) 

False	positive	lane	detecion	rate	(m6) =
9:;<=>	?@	@NGO=	P?OEIEC=	GNA=	H=I=FIE?AO

J'+K7	)(/01&	'3	7K)1	*1+16+5')M
                    (6)  

False	negative	lane	detecion	rate	(m7) =
9:;<=>	?@	@NGO=	A=BNIEC=	GNA=	H=I=FIE?AO

J'+K7	)(/01&	'3	7K)1	*1+16+5')M
                          (7) 

False	positive	object	detecion	rate	(m8) = 	
!"#$%&	()	)*+,%	-(,./.0%	1(1	%2(	0%3.4+%	5%/%4/.(1,

6(/*+	1"#$%&	()	1(1	%2(	0%3.4+%	5%/%4/.(1,
                     (8) 

 
The longitudinal position error (m1) and lateral position error (m2) are computed as the 

deviation of the positional data detected by the sensor configuration from the ground truth of non-

ego vehicle positions along the y and x axes respectively. The lateral position error is relevant for 

LKA, while longitudinal position error is most relevant for ACC and FCW. The object occlusion 

rate (m3) measures the percentage of passing non-ego vehicles that go undetected in the vicinity 

of the ego vehicle. The minimization of this metric optimizes BW capabilities of a sensor 

configuration. The velocity uncertainty (m4) is the fraction of times that the velocity of a non-ego 

vehicle is measured incorrectly, which matters for ACC and FCW. The rate of late detection metric 

(m5) is computed as a fraction of the number of ‘late’ non ego vehicle detections made by the total 

number of non-ego vehicles, which matters for BW. A detection is classified as late if it is made 

after the non-ego vehicle crosses the minimum safe longitudinal or lateral distance defined by Intel 

RSS (Responsibility Sensitive Safety) models on NHTSA for pre-crash scenarios [58]. When a 

lane marker is detected but there exists no ground truth lane in simulation it is classified as a false 

positive lane detection, conversely, if a ground truth lane exists in simulation but is not detected, 

it is classified as a false negative lane detection [59]. Metrics 6 and 7 (m6 and m7) characterize the 

perception system’s ability to make a correct case for lane keep assist by taking into account the 
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false positive and false negative lane detection rate. False positive object detection rate (m8) 

measures the fraction of total vehicle detections which were classified as non-ego vehicle 

detections but did not actually exist in ground truth in the test cases.  

 
2.4 VESPA FRAMEWORK  

The following section describes the proposed VESPA framework in detail. 

 
2.4.1 OVERVIEW 

Figure 8 shows an overview of our proposed VESPA framework. The physical dimensions 

of the vehicle model and the number and type of sensors to be considered are inputs to the 

framework. A design space exploration algorithm is used to generate a sensor configuration which 

is subsequently evaluated based on a cumulative score from the performance metrics presented in 

the previous section. We evaluate three design space exploration algorithms: simulated annealing 

with greedy randomized adaptive search (SA+GRASP), genetic algorithm (GA), and particle 

swarm optimization (PSO). The process of sensor configuration generation and evaluation 

continues until an algorithm-specific stopping criteria is met, at which point the best configuration 

is output. The following subsections describe our framework in more detail.  
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Figure 8: Overview of VESPA framework 

 

2.4.2 INPUTS 

Each of the design space exploration algorithms generates sensor configurations that 

consider feature to field of view (FOV) zone correlations around the ego vehicle. Figure 9(a) shows 

the FOV zones around the ego-vehicle. These zones of interest are defined as the most important 

perception areas in the environment for a particular feature. Figure 9(b) shows the regions on the 

vehicle on which sensors can be mounted (in blue). Regions F and G (in yellow) are exempt from 

sensor placement due to the mechanical instability of placing sensors on the door of a vehicle.  

The correlation between features, zones, regions, and performance metrics shown in Figure 

9 is summarized in Table 4. For example, in figure 9(a), for ACC, the zones of interests are 6, and 

7, and the corresponding regions for possible sensor placement are A and C. For exploration of 

possible locations within a region, a fixed step size of 5cm in two dimensions across the surface 

of the vehicle is considered, which generates a 2D grid of possible positions in each zone shown 

in figure 9(b), (c). The orientation exploration of each sensor involves rotation at a fixed step size 
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of 1 degree between an upper and lower bounding limit for roll, pitch and yaw respectively, at 

each of these possible positions within the 2D grid.  

 

 

(a)                                   (b)                                                 (c) 

 

Figure 9: (a) Field of view (FOV) zones; (b) sensor placement regions; (c) design space 

breakdown 

 

The orientation exploration limits were chosen with caution to the caveat that long range 

radars with extreme orientations increase the number of recorded false positives. The combined 

position and orientation exploration generates an intractably large design space as discussed 

next. 

 
Table 4: Feature, region, zone and performance metric relationship 

 

Feature Region Zone Associated Metrics 

BW B.H.I 1, 2,3,10 (m3, m5, m8) 
LKA E, I 3,4,5 (m2, m3, m6, m7) 

D, H 8, 9, 10 

ACC, FCW A, B,C 6, 7, 11 (m1, m4, m8) 
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2.4.3 DESIGN SPACE EXPLORATION 

All of the metrics (m1 – m8) defined in 2.3.2 represent good performance at lower values. 

We create a cost function that combines these metrics and frame our sensor placement and 

optimization problem as a minimization problem. The most important metrics are identified and 

grouped for each feature, as shown in Table 4, and are used to model the cost function as a weighted 

sum of these five metrics, where the weights are chosen on the basis of their total cardinality across 

all feature. By searching through the design space of sensor configurations for a minimum cost 

function value, a sensor configuration can thus be generated where the metrics are cumulatively 

minimized.  

The design space considered in this chapter uses 4 radars and 4 cameras that can be placed 

in any zone. With a fixed step size of 5cm in each dimensions and 1 degree rotation in orientation, 

the number of ways 8 sensors can be placed in all unique locations and orientations is 2.56e+23C8 for 

the 2019 Blazer and 6.4e+22C8 for the 2016 Camaro. As this design space is so large that it cannot 

be exhaustively traversed in a practical amount of time, we explore the use of intelligent design 

space search algorithms that support hill climbing to escape local minima. The three algorithms 

implemented as part of VESPA are discussed next. 

 
2.4.3.1 SA + GREEDY RANDOM ADAPTIVE SEARCH PROCEDURE (SA + GRASP) 

Simulated annealing (SA) is a search algorithm that is useful in finding the global optima 

when the design space has multiple local optima [60]. The process is analogous to the way metals 

cool and anneal [61]. Typically, SA picks the best solution at each iteration, but can also pick the 

worst solution based on a temperature-dependent probability, which can allow it to climb out of 

local minima to arrive at global minima [62]. But SA suffers from the drawback of behaving like 

a greedy algorithm at lower temperatures as it tends to accepts only those solution configurations 
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very close in cost function value to the previous solution, so it can get stuck in local minima in 

more complex design spaces [63]. The GRASP (Greedy Randomized Adaptive Search Procedure) 

algorithm is another search algorithm that is used in many exploration problems [64], but it does 

not always generate optimal solutions during the greedy construction phase and can get stuck in 

local optima easily. The SA+GRASP algorithm eliminates the inherent drawbacks of each 

algorithm. Specifically, the greedy randomized construction phase of the algorithm is used to 

create disturbances in the existing list of best sensor configurations in our problem, to generate 

better solutions. A new solution is generated in each iteration by selecting the better solution 

between the greedy solution from the greedy randomized construction phase and the configuration 

found from the local search. We decreased the SA temperature variable from Tmax=10,000 to 

Tmin=0 at the rate of 4 degrees per iteration. The search repeats by decreasing SA temperature till 

an optimal solution is found or a stopping criterion is achieved. 

  
2.4.3.2 GENETIC ALGORITHM (GA) 

The GA is an evolutionary algorithm that can solve optimization problems by mimicking 

the process of natural selection [65]. It repeatedly selects a population of candidate solutions and 

then improves the solutions by modifying them. GA has the ability to optimize problems where 

the design space is discontinuous and also if the cost function is non differentiable [66]. The GA 

is adapted for our design space such that a chromosome is defined by the combined location and 

orientation of each sensor’s configuration (consisting of six parameters: x, y, z, roll, pitch, and 

yaw). For a given set of N sensors, the number of parameters stored in each chromosomes is thus 

‘6N’. Next, in the selection stage, the cost function values are computed for 100 configurations at 

a time, and a roulette wheel selection method is used to select which set of chromosomes will be 

involved in the crossover step based on their cost function probability value, computed as a fraction 
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of the cumulative cost function sum of all chromosomes considered in the selection. In the 

crossover stage, the crossover parameter is set to 0.5, which allows 50 out of the 100 chromosomes 

to produce offspring. The mutation parameter is set to 0.2 such that in the mutation stage, the 

mutation rate is set to 10, which is the number of new genes allowed for mutation in each iteration.  

 
2.4.3.3 PARTICLE SWARM OPTIMIZATION (PSO) 

PSO considers a group of particles where each particle has a position and velocity and is a 

solution to the optimization problem [67]. In our problem each sensor configuration in the design 

space is represented as a particle having a defined position and velocity. With a random start, the 

cost function in (5) evaluates the quality of the solution of a particle. The particle’s velocity and 

position values are updated recursively using a linear update [67]. Each particle stores a trace of 

its best position within the group and globally as well. The history of the cost function values for 

this trace can explain the effectiveness of changing the position of a particular sensor from the set 

of heterogeneous sensors [68]. Unlike GA, PSO does not have any evolution operators like 

crossovers or mutation [69]. PSO also does not require any binary encoding of solution 

configurations like in GA [70]. The total number of particles considered were 50, and the 

importance of personal best and importance of neighborhood best parameters were both 

empirically selected to be 2. 

 
2.5 EXPERIMENTS  

The following section describes the experimental setup and results involving the VESPA 

framework. 
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2.5.1 EXPERIMENTAL SETUP 

To evaluate our VESPA framework, we consider a scenario with a maximum of 8 sensors: 

4 radars and 4 camera vision sensors. Many recent contributions such as the work presented in 

[71] and [72] combine radar and camera modalities for ADAS applications. We did not include 

LiDARs in this heterogeneous set of sensors due to their relatively poor performance in adverse 

weather conditions as shown in Table 3. For the given set of test cases, it was observed that if less 

than 4 sensors were used, the ability of the perception system to make an accurate prediction was 

relatively poor. Conversely, on increasing the number of radars and cameras to more than 4 each, 

there was minimal improvement in cost function score. Hence to keep implementation cost low 

while still achieving good accuracy, we decided to use these 8 sensors. Please note that these 

modalities and number of sensors have been used to show a proof of concept for our VESPA 

framework, which can be extended to scenarios with different modalities and numbers of sensors. 

We considered two vehicles for evaluation: a 2019 Chevrolet Blazer and a 2016 Chevrolet Camaro. 

Figure 10 shows the dimensions for the vehicles. Figure 11 shows images of the sensor placements 

on both car models in our workspace.  

Each configuration generated by the SA+GRASP, GA, and PSO algorithms was optimized 

on 40 test cases designed (10 test cases each for evaluating performance with ACC, FCW, LKA, 

and BW) using the Automated Driving Toolbox in Matlab. Half (20) of these test cases for each 

feature are used during the optimization phase and the remaining (20) test cases are used during 

the evaluation phase. 
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Figure 10: 2019 Chevrolet Blazer (Left) and 2016 Chevrolet Camaro (Right) 

 

Finally, the optimized configurations were evaluated on a different set of evaluation test 

cases. Each of the test cases was characterized by unique road geometry, variations in road 

elevation, curvature, banking, and different traffic densities. In some test cases, the number of 

lanes were varied to make the framework optimize the sensor configuration for challenging and 

realistic driving scenarios. 

 

 

 

Figure 11: Sensors mounted in workspace on both car models 

 

A Kalman filter sensor fusion algorithm was used to combine readings from sensors in a 

sensor configuration being evaluated, to make predictions. The longitudinal and lateral ground 

truth were defined for non-ego vehicles and the position error was calculated from the fused sensor 

measurements. The deviation of sensor measurements from ground-truth was used to calculate the 
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values of metrics m1–m8, and hence the cost function over all test cases. Lastly, we set the stopping 

criterion for all three algorithms as the case when the cost function does not show a greater than 

5% change over 200 iterations. 

 
2.5.2 EXPERIMENTAL RESULTS 

In our first experiment we were interested in evaluating the efficacy of different 

optimization algorithms (SA+GRASP, GA, and PSO) in finding optimal sensor configurations as 

well as exploring the consistency of the quality of solution returned by each. The cost function 

values for the best solution found by each algorithm for the 2016 Camaro and 2019 Blazer are 

shown in Figure 12. As shown in Figure 12, GA returned the solution configuration with the lowest 

cost function score of 0.7648 for the Camaro and 0.9252 for the Blazer. GA was able to better 

traverse the complex design space for our problem to arrive at the global minima compared to the 

SA+GRASP and PSO algorithms. 

 

 

Figure 12: Cost function values for the best solution found by the SA+GRASP, GA, and PSO 

algorithms on the Camaro and Blazer vehicles 
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Next, we compared the solution generated by VESPA (utilizing the GA algorithm which 

gives the best results) with a baseline sensor configuration selected manually, based on best 

practices by a vehicle design expert in our team. This baseline configuration involved coupling a 

radar and camera in zones A, B, E and H each such that every mutually perpendicular direction in 

the 2D plane of the ego vehicle was covered using a radar and camera combined. All 8 sensors 

were fixed in the orientation angle, which matched the orientation of surface normal vector of the 

respective zone in which they were placed. The selected baseline configuration maximizes 

coverage by considering feature to zone correlation. This is ensured by placing at least one sensor 

in each region such that all zones dedicated to each of the 4 selected features is covered in the field 

of view of that particular sensor.  

 

Table 5: VESPA generated solution vs baseline configuration 

 
 VESPA 

Camaro 

Baseline 

Camaro 

VESPA 

Blazer 

Baseline 

Blazer 

Cost Function 0.9971 2.1367 1.2841 2.4630 

Longitudinal position error 0.0523 0.1427 0.0845 0.2419 

Lateral position error 0.1810 0.2566 0.0958 0.2204 

Object occlusion rate 0.1331 0.2351 0.2062 0.3158 

Velocity uncertainty 0.0823 0.1851 0.0474 0.2056 

Rate of late detection 0.1158 0.2123 0.1578 0.2315 

False positive lane detection rate 0.0142 0.1335 0.0221 0.1571 

False negative lane detection rate 0.0214 0.0236 0.0393 0.0412 

False positive object detection rate 0.0431 0.1283 0.0976 0.0954 

 
Table 5 shows the results of the comparison between the VESPA generated solution and the 

baseline configuration for the 2016 Camaro and 2019 Blazer. The final cost function score was 

higher for the baseline approach, showing that VESPA generated a significantly better (lower cost) 

solution for both vehicles. 
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Table 6: Solution from VESPA for Camaro and Blazer (in meters, degrees) 

 
 Radar 1 Radar 2 Radar 3 Radar 4 

 VESPA 

Camaro 

VESPA 

Blazer 

VESPA 

Camaro 

VESPA 

Blazer 

VESPA 

Camaro 

VESPA 

Blazer 

VESPA 

Camaro 

VESPA 

Blazer 

     X 3.7 3.7 3.7 3.65 0 2.8 3.7 2.91 

     Y -0.18 -0.4 0.45 -0.9 0.9 0.9 -0.9 0.9 

     Z 0.15 0.2 0.20 0.2 0.2 0.25 0.2 0.2 

   Roll 0 0 0 0 0 0 0 0 

   Pitch 0 0 0 0 0 0 0 0 

   Yaw 15 -20 -15 -40 50 45   -130    -130 

 Camera 1 Camera 2 Camera 3 Camera 4 

 VESPA 
Camaro 

VESPA 
Blazer 

VESPA 
Camaro 

VESPA 
Blazer 

VESPA 
Camaro 

VESPA 
Blazer 

VESPA 
Camaro 

VESPA 
Blazer 

     X 3.7 3.7 2.8 2.8 2.8 0 X -1 

     Y 0 0 -0.9 -0.9 0.9 0.9 X 0.9 

     Z 1.1 1.1 1.1 1.15 1.1 1.25 X 1.1 

   Roll 0 0 0 0 1 0 X 0 

   Pitch 0 0 0 0 1 1 X 1 

   Yaw 0 0 -90 -100 120 60 X 170 

 
Table 6 summarizes the specific locations and orientations of the eight sensors on the two 

vehicles, generated by VESPA. The location and orientation information of each sensor in Table 

6 is measured with respect to a global co-ordinate frame for the car model, whose origin is at the 

geometric center of the vehicle. An interesting observation from the table is that the sensors in the 

Blazer’s configuration favor higher Z values than the Camaro, since the Blazer is 0.3m taller than 

the Camaro.  

Figure 13 visualizes sensor coverage in a bird’s eye plot between the best configuration 

generated by VESPA in figure 13(a) and the baseline configuration in figure 13(b) for the Camaro 

(results for Blazer are omitted for brevity). The baseline configuration was optimized with a 

conventional approach towards improving sensor coverage, with a secondary focus on sensor 

reliability.  
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(a)                                                     (b)  

Figure 13: Coverage for (a): VESPA Camaro solution (b) Baseline Camaro 

 

 

In contrast, the solution generated by VESPA took into account the unique strengths and 

weaknesses of each sensor to obtain a configuration having significantly better performance for 

the features supported, despite having lower overlap between field of view of different sensors 

than the baseline solution (figure 13) and also uses lesser number of sensors. The superiority of 

the VESPA solution configuration, despite using lesser number of sensors, can be accounted for 

by the optimized placement of camera 1, radar 2 and radar 3 in zones A and C maximizing 

performance of ACC and FCW. Further, in physical testing it was observed that using a radar 

coupled with camera in zone B for LKA reduces the number of false positives during detections. 

In figure 13(a), radars 3, 4 and cameras 2, 3 placed in zones D and E respectively were sufficient 

for improving performance of ACC and FCW by reducing the number of false positive object 

detections. The combined optimization of orientation and location with VESPA resulted in a 

sensor configuration that maximized performance for each feature. 
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Figure 14: Performance on real drive cycle in Colorado for best solution generated by 

VESPA and the baseline configuration for the 2019 Blazer 

 
Our last experiment involved testing the best sensor configuration from our VESPA 

framework and the baseline configuration for the 2019 Blazer on data from a real world drive cycle 

over one hour in Colorado. We focus only on assessing performance for the ACC and FCW 

features. Figure 14 shows an image from the real drive cycle with data collected by the vehicle 

from the radar and camera sensors on it. The figure also shows a plot of the object occlusion rate 

(OOR). The OOR for the baseline configuration was 19.64% (it did not detect 11 out of 56 non 

ego vehicles), while the VESPA generated best solution had an OOR of 7.14% (it failed to detect 

only 4 out of 56 non ego vehicles). The results show the effectiveness of our proposed VESPA 

framework in generating higher quality sensor configurations. 

 
2.6 CONCLUSIONS  

In this chapter, we propose an automated framework called VESPA that is capable of 

generating sensor placement and orientation in modern semi-autonomous vehicles. VESPA has 

the ability to optimize locations and orientations for a set of heterogeneous sensors on a given 

target vehicle. The framework can be tuned to improve perception on a desired collection of test 

cases. VESPA is also scalable across different vehicle models as shown in our analysis on the 
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Chevrolet Camaro and Blazer vehicles. Further, despite the sensor locations in the baseline 

configuration of figure 13(b) being the most intuitive, the best configuration is the one generated 

by VESPA, showing that even people skilled in the art of sensor placement may find it challenging 

to synthesize a significantly better placement than that generated by VESPA. We also validated 

VESPA with real drive cycle data to show its effectiveness for real-world scenarios. 
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3. PASTA: PERCEPTION ARCHITECTURE SEARCH TECHNIQUE FOR  

ADVANCED DRIVER ASSISTANCE SYSTEMS 

 
In emerging semi-autonomous vehicles, accurate environmental perception with advanced 

driver assistance systems (ADAS) is critical to achieving safety and performance goals. Enabling 

robust perception for vehicles with ADAS requires solving multiple complex problems related to 

the selection and placement of sensors, object detection, and sensor fusion. Current methods 

address these problems in isolation, which leads to inefficient solutions. We present PASTA, a 

novel framework for global co-optimization of deep learning and sensing for ADAS-based vehicle 

perception. Experimental results with the Audi-TT and BMW-Minicooper vehicles show how 

PASTA can intelligently traverse the perception design space to find robust, vehicle-specific 

solutions. 

 
3.1 MOTIVATION AND CONTRIBUTION 

In 2020, it was reported that an estimated 38,680 people died in motor vehicle traffic 

crashes in the United States, representing an estimated increase of about 7.2 percent as compared 

to 2019 [73]. By eliminating the possibility of human driving errors through automation, advanced 

driver assistance systems (ADAS) are becoming a critical component in modern vehicles, to help 

save lives, improve fuel efficiency, and enhance driving comfort. ADAS systems typically involve 

a 4-stage pipeline involving sequential execution of functions related to perception, decision, 

control, and actuation. An incorrect understanding of the environment by the perception system 

can make the entire system prone to erroneous decision making, which can result in accidents due 

to imprecise real-time control and actuation. This motivates the need for a reliable perception 

architecture that can mitigate errors at the source of the pipeline and improve safety in emerging 
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semi-autonomous vehicles. The capabilities of a perception architecture for a vehicle depend on 

the SAE autonomy level (defined by the SAE-J3016 standard) supported by the vehicle. In general, 

an optimal vehicle perception architecture should consist of carefully defined location and 

orientation of each sensor selected from a heterogeneous suite of sensors (e.g., cameras, radars) to 

maximize environmental coverage in the combined field of view obtained from the sensors. In 

addition to ensuring accurate sensing via appropriate sensor placement, a high object detection rate 

and low false positive detection rate needs to be maintained using efficient deep learning-based 

object detection and sensor fusion techniques. State-of-the-art deep learning based object detection 

models are built with different network architectures, uncertainty modeling approaches, and test 

datasets over a wide range of evaluation metrics [74]. For real-time perception, object detectors 

are resource-constrained by latency requirements, onboard memory capacity, and computational 

complexity. Optimizations performed to meet any one of these constraints often results in a trade-

off with the performance of others [75]. As a result, comparison and selection from among the best 

set of deep learning based object detectors for perception applications remains a challenge.  In 

real-world driving scenarios, the position of obstacles and traffic are highly dynamic, so after 

detection of an object, tracking is necessary to predict its new position. Due to noise from various 

sources there is an inherent uncertainty associated with the measured position and velocity. This 

uncertainty is minimized by using sensor fusion algorithms [76]. An important challenge with 

sensor fusion algorithms is that the complexity of tracking objects increases as the objects get 

closer, due to a much lower margin for error (uncertainty) in the vicinity of the vehicle.  As 

summarized in figure 15, the design space of a vehicular perception architecture involves 

determining appropriate sensor selection and placement, object detection algorithms, and sensor 

fusion techniques. The possible configurations for each of these decisions is non-trivial and can 
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easily lead to a combinatorial explosion of the design space, making exhaustive exploration 

impractical. Conversely, an optimization of each of these decisions individually before composing 

a final solution can lead to solutions that are sub-optimal and perform poorly in real environments. 

Today there are no generalized rules for the synthesis of perception architectures for vehicle 

ADAS, because perception architecture design depends heavily on the target features and use cases 

to be supported in the vehicle, which makes the already massive design space involved with the 

problem even larger and harder to traverse.  

 

 

Figure 15: Breakdown of perception architecture design space 

 

In this chapter, we propose a novel framework called PASTA (Perception Architecture 

Search Technique for ADAS) to perform perception architecture synthesis for emerging semi-

autonomous vehicles. To the best of our knowledge, this is the first work to comprehensively 

explore and synthesize the sensing, fusion, and object detection perception subsystems jointly. Our 

experimental results indicate that the proposed framework is able to optimize perception 

performance across multiple ADAS metrics, for different vehicle types.  

The main contributions in this chapter include:  

• A global co-optimization framework capable of synthesizing robust vehicle-specific 

perception architecture solutions that include heterogeneous sensor placement, deep learning 

based object detector design, and sensor fusion algorithm selection; 
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• An exploration of various design space search algorithms tuned for the vehicle perception 

architecture search problem; 

• A fast and efficient method for co-exploration of the deep learning object detector 

hyperparameters, through adaptive and iterative environment- and vehicle-specific transfer 

learning; 

• A comparative analysis of the framework efficiency across different vehicle models (Audi TT, 

BMW Minicooper). 

 

3.2 RELATED WORK 

State-of-the-art semi-autonomous vehicles require robust perception of their environment, 

for which the choice of sensor placement, object detection algorithms, and sensor fusion 

techniques are the most important decisions. These decisions are carefully curated to support 

ADAS features (e.g., blindspot warning, lane keep assist) that characterize the autonomy level to 

be supported by a vehicle under design. Many prior works have explored vehicle perception system 

design with different combinations of sensor types to overcome limitations that plague individual 

sensor types. The work in [77] used a single camera-radar pair for perception of headway distance 

using a Continental radar mounted on the geometric center of the front bumper and a Nextbase 

512G monocular camera behind the windscreen. Vehicle detection was performed on the collected 

camera frames, by sorting potential candidates in a fixed trapezoidal region of interest in the 

horizontal plane. In [78] a camera-radar fusion based perception architecture was proposed for 

target acquisition with the well-known SSD (Single Shot Detection) object detector on consecutive 

camera frames. This allowed their perception system to differentiate vehicles from pedestrians in 

real time. The detection accuracy was optimized with the use of a Kalman filter and Bayesian 

estimation, which reduced computational complexity compared to [77].
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In [78] a single neural network was used for fusion of all camera and radar detections. The 

proposed neural fusion model (CRF-Net) used an optimized training strategy similar to the 

‘Dropout’ technique, where all input neurons for the camera data are simultaneously deactivated 

in random training steps, forcing the network to rely more on the radar data. The training focus 

towards radar overcame the bias introduced by starting with pre-trained weights from the feature 

extractor that was trained from the camera data. The work in [79] optimized merging camera 

detection with LiDAR processing. An efficient clustering technique inspired by the DBSCAN 

algorithm allowed for a better exploitation of features from the raw LiDAR point cloud. A fusion 

scheme was then used to sequentially merge the 2D detections made by a YOLOv3 object detector 

using cylindrical projection with the detections made from clustered LiDAR point cloud data. In 

[80], an approach to fuse LiDAR and stereo camera data was proposed, with a post-processing 

method for accurate depth estimation based on a patch-wise depth correction approach. In contrast 

to the cylindrical projection of 2D detections in [79], the work in [80] uses a projection of 3D 

LiDAR points into the camera image frame instead, which upsamples the projection image, 

creating a more dense depth map. 

All of the prior works discussed above optimize vehicle perception performance for rigid 

combinations of sensors and object detectors, without any design space exploration. Only a few 

prior works have (partially) explored the design space of sensors and object detectors for vehicle 

perception. An approach for optimal positioning and calibration of a three LiDAR system was 

proposed in [81]. The approach used a neural network to learn and qualify the effectiveness of 

different LiDAR location and orientations. The work in [82] proposed a sensor selection and 

exploration approach based on factor graphs during multi-sensor fusion. The work in [83] 

heuristically explored a subset of backbone networks in the Faster R-CNN object detector for 
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perception systems in vehicles. The work in [84] presented a framework that used a genetic 

algorithm to optimize sensor orientations and placements in vehicles.  

Unlike prior works that fine-tune specific perception architectures, e.g., [78]-[82], or 

explore the sensing and object detector configurations separately, e.g. [83]-[84], this chapter 

proposes a holistic framework that jointly co-optimizes heterogeneous sensor placement, object 

detection algorithms, and sensor fusion techniques. To the best of our knowledge, this is the first 

effort that performs co-optimization across such a comprehensive decision space to optimize 

ADAS perception, with the ability to be tuned and deployed across multiple vehicle types. 

 
3.3 BACKGROUND 

In this chapter, our exploration of perception architectures on a vehicle, henceforth referred 

to as an ego vehicle, targets four ADAS features that have varying degrees of longitudinal (i.e., in 

the same lane as the ego vehicle) and lateral (i.e., in neighboring lanes to the ego vehicle lane) 

sensing requirements. 

 
3.3.1 ADAS LEVEL 2 AUTONOMY FEATURES  

The SAE-J3016 standard [44] defines adaptive cruise control (ACC) and lane keep assist 

(LKA) individually as level 1 features, as they only perform the dynamic driving task in either the 

latitudinal or longitudinal direction of the vehicle. Forward collision warning (FCW) and blindspot 

warning (BW) are defined in SAE-J3016 as level 0 active safety systems, as they only enhance the 

performance of the driver without performing any portion of the dynamic driving task. However, 

when all four features are combined, the system can be described as a level 2 autonomy system. 

Figure 16 shows an overview of the four features we focus on for level 2 autonomy, which are 

discussed next.  
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Although implementations differ, all ACC (adaptive cruise control) systems take over 

longitudinal control from the driver (figure 16). The challenge in ACC is to maintain an accurate 

track of the lead vehicle (immediately ahead of the ego vehicle in the same lane) with a forward 

facing sensor and using longitudinal control to maintain the specified distance while maintaining 

driver comfort (e.g., avoiding sudden velocity changes). 

  

 
 

Figure 16:  Visualization of common scenarios in ACC, FCW, LKA, and BW 

 
LKA (lane keep assist) systems determine whether the ego vehicle is drifting towards any 

lane boundaries and are an evolution of lane departure warning systems. LKA systems have been 

known to over-compensate, creating a “ping-pong” effect where the vehicle oscillates back and 

forth between the lane lines [85]. The main challenges in LKA are to reduce this ping-pong effect 

and the accurate detection of lane lines on obscured (e.g., snow covered) roads. FCW (forward 

collision warning) systems are used for real-time prediction of collisions with a lead vehicle. It is 

important that this system avoids false positives as well as false negatives to improve driver 

comfort, safety, and reduce rear end accidents [86]. Lastly, BW (blindspot warning) systems use 
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lateral sensor data to determine whether there is a vehicle towards the rear on either side of the ego 

vehicle (figure 16) in a location the driver cannot see with their side mirrors. A perception 

architecture designed to support Level 2 autonomy in a vehicle should support all four of these 

critical features. 

 

3.3.2 SENSOR PLACEMENT AND ORIENTATION 

For capturing the most relevant data pertaining to each feature, sensors need to be placed 

strategically on the ego vehicle, such that their chosen position and orientations maximize 

coverage (of the vehicle environment) needed for a feature. Figure 16 shows an example of field 

of view coverage (in blue) corresponding to three unique placements of camera sensors on the 

body of the ego vehicle (in yellow, lower images) to meet coverage goals. For the ACC and FCW 

features, the ego vehicle is responsible for slowing down to maintain a minimum separation 

between the ego and lead vehicle. The camera must be positioned somewhere on the front bumper 

to measure minimum longitudinal separation accurately while keeping the lead vehicle in the 

desired field of view. For LKA, there is a need to maintain a safe minimum lateral distance between 

non-ego vehicles in neighboring lanes. Here a front camera is needed to extract lane line 

information, while side cameras are required for tracking this minimum lateral separation. As BW 

requires information about a specific area near the rear of the vehicle, it is a challenge to find an 

optimal sensor placement that maximizes the view of the blind spot. If the sensor is too far forward 

or too far back, it will miss key portions of the blind spots. Beyond placement, the orientation of 

sensors can also significantly impact coverage for all features [84]. Thus sensor placement and 

orientation remains a challenging problem.  
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Figure 17: Example of vehicle (object) detection with YOLOv3  

 

3.3.3 OBJECT DETECTION FOR VEHICLE ENVIRONMENT PERCEPTION 

There are two broad goals associated with deep learning based object detectors: 

determining spatial information (relative position of an object in the image) via localization 

followed by identifying which category that object instance belongs to via classification [87]. As 

an example, Figure 17 shows object detection of multiple car instances (using the YOLOv3 deep 

learning based object detector [88]) by creating a bounding box around the ‘car’ object instances 

and predicting the object class as ‘car’. The pipeline of traditional object detection models can be 

divided into informative region selection, feature extraction, and classification [89]. Depending on 

which subset of these steps are used to process an input image frame, object detectors are classified 

as single-stage or two-stage.  

Modern single-stage detectors are typically composed of a feed-forward fully 

convolutional network that outputs object classification probabilities and box offsets (w.r.t. pre-

defined anchor/bounding boxes) at each spatial position. The YOLO family of object detectors is 

a popular example of single-stage detectors [88]. SSD (single shot detection) is another example, 

based on the VGG-16 backbone [89]. An advantageous property of single-stage detectors is their 

very high detection throughput (e.g., ~40 frames per second with YOLO) that makes them suitable 

for real time scenarios [90]. Two-stage detectors divide the detection process into separate region 
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proposal and classification stages. In the first stage, several regions in an image that have a high 

probability to contain an object are identified with a region proposal network (RPN). In the second 

stage, proposals of identified regions are fed into convolutional networks for classification. 

Region-based CNN (R-CNN) is an example of a two-stage detector [91]. R-CNN divides an input 

image into 2000 regions generated through a selective search algorithm, after which the selected 

regions are fed to a CNN for feature extraction followed by a Support Vector Machine (SVM) for 

classification. Fast R-CNN [92] and subsequently Faster R-CNN [93] improved the speed of 

training as well as detection accuracy compared to R-CNN by streamlining the stages.  

Two-stage detectors have high localization and object recognition accuracy, whereas one-

stage detectors achieve higher inference speed [94]. In this chapter, we considered both types of 

object detectors to exploit the latency/accuracy tradeoffs during perception architecture synthesis. 

 
3.3.4 SENSOR FUSION  

Perception architectures that use multiple sensors often must deal with errors due to 

imprecise measurements from one or more of the sensors. Conversely, errors can also arise when 

only a single sensor is used due to measurement uncertainties from insufficient spatial (occlusion) 

or temporal (delayed sensor response time) coverage of the environment. The Kalman filter is one 

of the most widely used sensor fusion state estimation algorithms that enables error-resilient 

tracking of targets [95]. The Kalman filter family is a set of recursive mathematical equations that 

provides an efficient computational solution of the least-squares method for estimation. The filters 

in this family have the ability to obtain optimal statistical estimations when the system state is 

described as a linear model and the error can be modeled as Gaussian noise. If the system state is 

represented as a nonlinear dynamic model as opposed to a linear model, a modified version of the 

Kalman filter known as the Extended Kalman Filter (EKF) can be used, which provides an optimal 
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approach for implementing nonlinear recursive filters [96]. However, the computation of the 

Jacobian (matrix describing the system state) in EKF can be computationally expensive. Further, 

any attempts to reduce the cost through techniques like linearization makes the performance 

unstable [97]. The unscented Kalman filter (UKF) is another alternative that has the desirable 

property of being more amenable to parallel implementation [98]. In our perception architecture 

exploration, we explore the family of Kalman filters as candidates for sensor fusion. 

 

3.4 PASTA ARCHITECTURE 

The following section describes the proposed PASTA framework in detail.  

 

3.4.1 OVERVIEW 

Figure 18 presents a high-level overview of our proposed PASTA framework. The 

heterogeneous sensors, object detection model library, sensor fusion algorithm library, and 

physical dimensions of the vehicle model are inputs to the framework. An algorithmic design space 

exploration is used to generate a perception architecture solution which is subsequently evaluated 

based on a cumulative score from performance metrics relevant to the ADAS autonomy level being 

targeted. We evaluate three design space search exploration algorithms as part of the framework: 

genetic algorithm (GA), differential evolution (DE), and the firefly algorthm (FA). The process of 

perception architecture generation and evaluation iterates until an algorithm-specific stopping 

criteria is met, at which point the best design points are output. The following subsections describe 

each component of our framework in detail. 
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Figure 18:  An overview of the proposed PASTA framework 
 

3.4.2 PROBLEM FORMULATION AND METRICS 

In our framework, for a given vehicle, we define a design point as a perception architecture 

that is a combination of three components: a sensor configuration which involves the fixed 

deployment position and orientation of each sensor selected for the vehicle, an object detector 

algorithm, and a sensor fusion algorithm. The goal is to find an optimal design point for the given 

vehicle that minimizes the cumulative error across eight metrics that are characteristic of the ability 

to track and detect non-ego vehicles across road geometries and traffic scenarios.  

The eight selected metrics are related to our goal of supporting level 2 autonomy with the 

perception architecture. In the descriptions of the metrics below, the ground truth refers to the 

actual position of the non-ego vehicles (traffic in the environment of the ego vehicle). The metrics 

can be summarized as: 1) longitudinal position error and 2) lateral position error: deviation of 

the detected positional data from the ground truth of non-ego vehicle positions along the y and x 

axes, respectively; 3) object occlusion rate: the fraction of passing non-ego vehicles that go 
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undetected in the vicinity of the ego vehicle; 4) velocity uncertainty: the fraction of times that the 

velocity of a non-ego vehicle is measured incorrectly; 5) rate of late detection: the fraction of the 

number of ‘late’ non-ego vehicle detections made over the total number of non-ego vehicles. Late 

detection is one that occurs after a non-ego vehicle crosses the minimum safe longitudinal or lateral 

distance, as defined by Intel RSS safety models for pre-crash scenarios [99]. This metric directly 

factors in the trade-off between latency and accuracy for object detector and fusion algorithms; 6) 

false positive lane detection rate: the fraction of  instances when a lane marker is detected but 

there exists no ground truth lane; 7) false negative lane detection rate: the fraction of instances 

when a ground truth lane exists but is not detected; and 8) false positive object detection rate: the 

fraction of total vehicle detections which were classified as non-ego vehicle detections but did not 

actually exist. 

 
3.4.3 DESIGN SPACE ENCODER/DECODER 

The design space encoder receives a set of random initial design points which are encoded 

into a vector format, best suited for various kinds of rearrangement and splitting operations during 

design space exploration. The encoder adapts the initial selection of inputs for our design space 

such that a design point is defined by the location and orientation of each sensor’s configuration 

(consisting of six parameters: x, y, z, roll, pitch, and yaw), together with the object detector and 

fusion algorithm. The design space decoder converts the solutions into the same format as the input 

so that the output perception architecture solution(s) found can be visualized with respect to the 

real world co-ordinate system. 

3.4.4 DESIGN SPACE EXPLORATION 

The goal of a design space exploration algorithm in our framework is to generate 

perception architectures (design points) which are aware of feature to field of view (FOV) zone 
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correlations around an ego vehicle. Figure 19(a) shows the 10 primary FOV zones around the ego-

vehicle. These zones of interest are defined as the most important perception areas in the 

environment for a particular ADAS feature. Figure 19(b) shows the regions on the vehicle on 

which sensors can be mounted (in blue). Regions F and G (in yellow) are exempt from sensor 

placement due to the mechanical instability of placing sensors on the door of a vehicle. The 

correlation between ADAS features, zones, and regions, is shown in Figure 19(c). For exploration 

of possible locations within a region, a fixed step size of 2cm in two dimensions across the surface 

of the vehicle is considered, which generates a 2D grid of possible positions in each zone shown 

in Figure 19(b). The orientation exploration of each sensor involves rotation at a fixed step size of 

1 degree between an upper and lower bounding limit for roll, pitch, and yaw respectively, at each 

of these possible positions within the 2D grid. The orientation exploration limits were chosen with 

caution with the caveat that some sensors, such as long range radars, have an elevated number of 

recorded false positives with extreme orientations. 

 

           
 

                (a)                             (b)                                   (c) 

 

Figure 19: (a) Field of view (FOV) zones; (b) sensor placement regions; (c) feature, region, 

and zone relationship 

 
To get a sense of the design space, consider four sensors (e.g., two cameras and two 

radars). Just the determination of the optimal placement and orientation of these sensors involves 

exploring 1.24e+26C4 and 7.34e+25C4 configurations for the Audi-TT and BMW-Minicooper vehicles, 

Feature Region Zone 

BW B, H, I 1, 2, 3,10 

LKA E, I 3,4,5 

D, H 8, 9, 10 

ACC, 

FCW 

A, B,C 6, 7 
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respectively. Coupled with the choice of different object detectors and sensor fusion algorithms, 

the resulting massive design space cannot be exhaustively traversed in a practical amount of time, 

necessitating the use of intelligent design space search algorithms that support hill climbing to 

escape local minima. In our framework, we explored three evolutionary algorithms: 1) Genetic 

Algorithm (GA), 2) Differential Evolution (DE), and the 3) Firefly Algorithm (FA). As shown in 

Figure 18, each algorithm generates a solution set of size ‘P’ at every iteration until the termination 

criteria is met. The algorithms simultaneously co-optimize sensor configuration, object detection, 

and sensor fusion, and proceed to explore new regions of the design space when the termination 

(perception) criteria is not met. We briefly describe the three algorithms below. 

 
3.4.4.1 GENETIC ALGORITHM (GA) 

GA is a popular evolutionary algorithm that can solve optimization problems by 

mimicking the process of natural selection [100]. GA repeatedly selects a population of candidate 

solutions and then improves the solutions by modifying them. GA has the ability to optimize 

problems where the design space is discontinuous and also if the cost function is non differentiable. 

In our GA implementation, in the selection stage, the cost function values are computed for 50 

design points at a time, and a roulette wheel selection method is used to select which set of 

chromosomes will be involved in the crossover step based on their cost function probability value 

(fraction of the cumulative cost function sum of all chromosomes considered in the selection). In 

the crossover stage, the crossover parameter is set to 0.5, allowing half of the 50 chromosomes to 

produce offspring. The mutation parameter is set to 0.2 which determines the new genes allowed 

for mutation in each iteration.  
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3.4.4.2 DIFFERENTIAL EVOLUTION (DE) 

Differential Evolution (DE) [101] is another stochastic population-based evolutionary 

algorithm that takes a unique approach to mutation and recombination. An initial solution 

population of fixed size is selected randomly, and each solution undergoes mutation and then 

recombination operations. DE generates new parameter vectors by adding the weighted difference 

between two population vectors to a third vector to achieve difference vector-based mutation. 

Next, crossover is performed, where the mutated vector’s parameters are mixed with the 

parameters of another predetermined vector, the target vector, to yield a trial vector. If the trial 

vector yields a lower cost function value than the target vector, the trial vector replaces the target 

vector in the next generation. Greedy selection is performed between the target vector and trial 

vector at every iteration to ensure better solutions are selected only after generation of all trial 

vectors. Unlike GA where parents are selected based on fitness, every solution in DE takes turns 

to be one of the parents [102]. In our DE implementation, we set initial population size to 50 and 

use a crossover probability of 0.8 to select candidates participating in crossover.  

 

3.4.4.3 FIREFLY ALGORITHM (FA) 

FA is a swarm-based metaheuristic [103] that has shown superior performance compared 

to GA for certain problems [104]. In FA, a solution is referred to as a firefly. The algorithm mimics 

how fireflies interact using flashing lights (bioluminescence). The algorithm assumes that all 

fireflies can be attracted by any other firefly. Further, the attractiveness of a firefly is directly 

proportional to its brightness which depends on the fitness function value.	Initially, a random 

solution set is generated and the fitness (brightness) of each candidate solution is measured. In the 

design space, a firefly is attracted to another with higher brightness (more fit solution), with 



62 
 

brightness decreasing exponentially over distance. FA is significantly different from DE and GA, 

as both exploration of new solutions and exploitation of existing solutions to find better solutions 

is achieved using a single position update step. 

 

3.4.5 PERFORMANCE EVALUATION 

Each design point in the solution set generated per iteration of the design space exploration 

undergoes performance evaluation across drive cycles. A drive cycle here refers to a virtual 

simulation involving an ego-vehicle (with a perception architecture under evaluation) following a 

fixed set of waypoint co-ordinates, while performing object detection and sensor fusion on the 

environment and other non-ego vehicles. A total of 20 different drive cycles were considered, with 

5 drive cycles customized for each ADAS feature. As an example, drive cycles for ACC and FCW 

involve an ego vehicle following different lead vehicles at different distances, velocities, weather 

conditions, and traffic profiles. The fitness of the perception architectures generated by the 

framework are computed using the cumulative metric scores (Section 3.4.2) across the drive 

cycles.  

 

3.5 EXPERIMENTS 

The following section presents the experimental setup and results involving the PASTA 

framework. 

 
3.5.1 EXPERIMENTAL SETUP 

To evaluate the efficacy of the PASTA framework we performed experiments in the open-

source simulator CARLA (Car Learning to Act) implemented as a layer on Unreal Engine 4 (UE4) 

[105]. The UE4 engine provides state-of-the-art physics rendering for highly realistic driving 
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scenarios. We leveraged this tool to design a variety of drive cycles that are roughly 5 minutes 

long and contain scenarios that commonly arise in real driving environments, including adverse 

weather conditions (rain, fog) and a few overtly aggressive/conservative driving styles observed 

with vehicles. To ensure generalizability, we consider a separate set of test drive cycles to evaluate 

solution quality, which are different from the optimization drive cycles used iteratively by the 

framework to generate optimized perception architecture solutions.  

 

 
 

Figure 20: BMW Minicooper (left) and Audi TT (right) 

 

We target generating perception architectures to meet level 2 autonomy goals for two 

vehicle models: Audi-TT and BMW-Minicooper (figure 20). The design space considered for 

evaluation uses a maximum of 4 radars and 4 cameras that can be placed in any zone (figure 19(a)-

(b)). Using a greater number of these sensors led to negligible improvements for the level 2 

autonomy goal. The RGB cameras possess 90o field of view, 200 fps shutter speed, and image 

resolution of 800x600 pixels. The mid-range radars selected generate a maximum of 1500 

measurements per second with a horizontal and vertical field of view of 30o and a maximum 

detection distance of 100 meters. We considered 5 different object detectors (YOLOv3, SSD, R-

CNN, Fast R-CNN, and Faster R-CNN) and 3 sensor fusion algorithms (Kalman filter, Extended 

Kalman filter, and Unscented Kalman filter). For the design space exploration algorithms, the cost 

function was a weighted sum across the eight metrics discussed in section 3.4.2, with the weight 

factor for each metric chosen on the basis of their total feature-wise cardinality across all zones 

shown in figure 19(c). During design space exploration, if the change in average cost function 
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value was < 5% over 250 iterations, the search was terminated. All algorithmic exploration was 

performed on an AMD Ryzen 7 3800X 8-Core CPU desktop with an NVIDIA GeForce RTX 2080 

Ti GPU. 

 
3.5.2 EXPERIMENTAL RESULTS 

In the first experiment, we explored the inference latency and accuracy in terms of mean 

average precision (mAP) for the five different object detectors considered in this chapter. Table 7 

summarizes the inference latency on a CPU and GPU, as well as the accuracy in mAP for the 

object detectors on images from our analyzed drive cycles, with all detectors trained on the MS-

COCO dataset. It can be observed that the two-stage detectors (R-CNN, Fast R-CNN, and Faster 

R-CNN have a higher accuracy than the single stage detectors (SSD, YOLOv3). However, the 

inference time for the two-stage detector is significantly higher than for the single stage detectors. 

For real-time object detection in vehicles, it is crucial to be able to detect objects with low latency, 

typically less than 100ms [106]. As a result, single stage detectors are preferable, with YOLOv3 

achieving slightly better accuracy and lower inference time than SSD. However, in some scenarios, 

delayed detection can still be better than not detecting or wrongly detecting an object (e.g., slightly 

late blindspot warning is still better than receiving no warning) in which case the slower but more 

accurate two-stage detectors may still be preferable.  

 
Table 7: Object detector latency and accuracy comparison 

 
Object detector Latency GPU (ms) Latency CPU (ms) mAP (%) 

R-CNN 48956.18 66090.83 73.86 
Fast R-CNN 1834.71 2365.86 76.81 

Faster R-CNN 176.99 286.72 79.63 
SSD 53.25 70.32 70.58 

YOLOv3 24.03 32.92 71.86 
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In PASTA, we therefore explore both single-stage and two-stage detectors, and factor in 

the accuracy and rate of late detection in our metrics (Section 3.4.2). Also, detectors with a higher 

mAP value sometimes did not detect objects that other detectors with a lower mAP were able to; 

thus we consider all five detectors in our exploration. Next, we explored the importance of global 

co-optimization for our problem. We select the genetic algorithm (GA) variant of our framework 

to explore the entire design space (GA-PASTA) and compared it against five other frameworks. 

Frameworks GA-PO and GA-OP use the GA but perform a local (sequential) search for sensor 

design. In GA-PO, sensor position is explored before orientation, while in GA-OP the orientation 

for fixed sensor locations (based on industry best practices) is explored before adjusting sensor 

positions. For both frameworks, the object detector used was fixed to YOLOv3 due to its sub-

100ms inference latency and reasonable accuracy, while the extended Kalman filter (EKF) was 

used for sensor fusion due to its ability to efficiently track targets following linear or non-linear 

trajectories. 

  

 

(a) (b) 

 

Figure 21: (a) Comparison of perception architecture exploration frameworks; (b) Cost of 

best solution from each framework 

 

The framework GA-VESPA is from prior work [55] and uses GA for exploration across 

sensor positions and orientations simultaneously, with the YOLOv3 object detector and EKF 
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fusion algorithm. Frameworks GA-POD and GA-POF use GA for a more comprehensive 

exploration of the design space. GA-POD simultaneously explores the sensor positioning, 

orientation, and object detectors, with a fixed EKF fusion algorithm. GA-POF simultaneously 

explores the sensor positioning, orientation, and sensor fusion algorithm, with a fixed YOLOv3 

fusion algorithm. Figure 21(a) depicts the average cost of solution populations (lower is better) for 

the BMW-Minicooper across the different frameworks plotted against the number of iterations, 

with each exploration lasting between 80-100 hours. It can be observed that GA-PO outperforms 

GA-OP, which confirms the intuitive importance of exploring sensor positioning before adjusting 

sensor orientations. GA-VESPA outperforms both GA-PO and GA-OP, highlighting the benefit 

of co-exploration of sensor position and orientation over a local sequential search approach used 

in GA-PO and GA-OP. GA-POD and GA-POF in turn outperform these frameworks, indicating 

that decisions related to object detection and sensor fusion can have a notable impact on perception 

quality. GA-POD terminates with its solution set having a lower average cost than GA-POF, which 

indicates that co-exploration of object detection and sensor placement/orientation is slightly more 

effective than co-exploration of sensor fusion and sensor placement/orientation. Our proposed GA-

PASTA framework achieves the lowest average cost solution, highlighting the tremendous benefit 

that can be achieved from co-exploring sensor position/orientation, object detection, and sensor 

fusion algorithms. Figure 21(b) summarizes the objective function cost of the best solution found 

by each framework, which aligns with the population-level observations from figure 21(a).  

The comparative analysis for the BMW-Minicooper was repeated three times with 

different initializations for all six frameworks, and the results for the other two runs show a 

consistent trend with the one shown in figure 21. Note also that the relative trend across 
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frameworks observed for the Audi-TT is similar to that observed for the BMW-Minicooper, and 

thus the results for the Audi TT are omitted for brevity.  

 

 
 

Figure 22: Comparison of three variants of PASTA framework with genetic algorithm 

(GA), differential evolution (DE), and Firefly algorithm (FA) 
 

In the next experiment, we explored the efficacy of different design space exploration 

algorithms (GA, DE, and FA; see Section 3.4.4) to determine which algorithm can provide optimal 

perception architecture solutions across varying vehicle models. Figure 22 shows the results for 

the three variants of the PASTA framework, for the Audi-TT and BMW-Minicooper vehicles. The 

best solution was selected across three runs of each algorithmic variant (variations for the best 

solution across runs are highlighted with confidence intervals, with bars indicating the median). It 

can be seen that the FA algorithm outperforms the DE and GA algorithms for both vehicles. For 

Audi-TT, the best solution found by FA improves upon the best solution found with DE and GA 

by 18.34% and 14.84%, respectively. For the BMW-Minicooper the best solution found by FA 

outperforms the best solution found by DE and GA by 3.16% and 13.08%, respectively. Figure 

23(a) depicts the specific sensor placement locations for each vehicle type, with a visualization of 

sensor coverage for the best solutions found by each algorithm shown in figure 23(b). 
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(a) (b) 

 

Figure 23: (a) Sensor placement for best solution found with FA algorithm (top yellow 

vehicle: BMW-Minicooper, bottom red vehicle: Audi-TT); (b) Sensor coverage for best 

solutions found by GA, DE, and FA search algorithms 

 
Lastly, in our quest to further improve perception architecture synthesis in PASTA, we 

focused on a more nuanced exploration of the object detector design space. We selected the FA 

search algorithm due to its superior performance over GA and DE, and modified FA-PASTA to 

integrate a neural architecture search (NAS) for the YOLOv3 object detector, with the aim of 

further improving YOLOv3 accuracy across drive cycles while maintaining its low detection 

latency. Our NAS for YOLOv3 involved transfer learning to retrain network layers with a dataset 

consisting of 6000 images obtained from the KITTI dataset, using the open source tool CADET 

[107]. The NAS hyperparameters that were explored involved the number of layers to unfreeze 

and retrain (from a total of 53 layers in the Darknet-53 backbone used in YOLOv3; Figure 24(a)), 

along with the optimizer learning rate, momentum, and decay. The updated variant of our 

framework, FA-NAS-PASTA, considered these YOLOv3 hyperparameters along with the sensor 
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positions and orientations, and sensor fusion algorithms, during iterative evolution of the 

population of candidate solutions in the FA algorithm.  

 

 

(a) (b) 

 

Figure 24: (a) YOLOv3 object detector architecture with Darknet-53 backbone network that 

was fine-tuned using neural architecture search (NAS); (b) results of integrating object 

detector NAS with PASTA 

 

Figure 24(b) shows the results of this analysis for the two vehicles considered. FA-PASTA 

is the best performing variant of our framework (from figure 22), while FA-NAS-PASTA is the 

modified variant that integrates NAS for YOLOv3. It can be observed that fine tuning the YOLOv3 

object detector during search space exploration in FA-NAS-PASTA leads to notable 

improvements in the best perception architecture solution, with up to 14.43% and 21.13% 

improvement in performance for the Audi-TT and BMW-Minicooper, compared to PASTA-FA. 

 
3.6 CONCLUSION 

In this chapter, we propose an automated framework called PASTA that is capable of 

generating perception architecture designs for modern semi-autonomous vehicles. PASTA has the 

ability to simultaneously co-optimize locations and orientations for sensors, optimize object 

detectors, and select sensor fusion algorithms for a given target vehicle. Our experimental analysis 

showed how PASTA can synthesize optimized perception architecture solutions for the Audi TT 
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and BMW Minicooper vehicles, while outperforming multiple semi-global exploration techniques. 

Integrating neural architecture search for the object detector in PASTA shows further promising 

improvements in solution quality.  
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4. CONCLUSION AND FUTURE WORK SUGGESTIONS 

 
4.1 RESEARCH CONCLUSION 

In this dissertation we identify the perception architecture design space for ADAS and 

address the various challenges involved. Currently, there are no formal methods or widely accepted 

guidelines for a top down approach to perception architecture synthesis for ADAS in academia or 

the automotive industry. Through our research we demonstrate that through intelligent algorithmic 

exploration, perception architecture solutions can be evolved as a function of the selected vehicle 

model.  

As part of our first major contribution, we have proposed an automated framework called 

VESPA (Chapter 2) that is capable of generating sensor placement and orientation in modern semi-

autonomous vehicles. VESPA has the ability to optimize locations and orientations for a set of 

heterogeneous sensors on a given target vehicle. The framework can be tuned to improve 

perception on a desired collection of test cases. VESPA is also scalable across different vehicle 

models as shown in our analysis on the Chevrolet Camaro and Blazer vehicles.  Further, in our 

real time drive cycle testing it was observed that the VESPA generated solution reduced false 

positive object detection rate from 19.64% to 7.14% compared to the baseline solution.  

Our second major contribution is an automated framework called PASTA (Chapter 3) that 

is capable of generating perception architecture designs for modern semi-autonomous vehicles. 

PASTA has the ability to simultaneously co-optimize locations and orientations for sensors, 

optimize object detectors and select sensor fusion algorithms for a given target vehicle. Our 

experimental analysis showed how PASTA can synthesize optimized perception architecture 

solutions for the Audi TT and BMW Minicooper vehicles, while outperforming multiple semi-

global exploration techniques. Integrating neural architecture search for the object detector in 



72 
 

PASTA showed further promising improvements in solution quality. The solutions showed 

significant improvements with up to 14.43% and 21.13% improvement in performance for the 

Audi-TT and BMW-Minicooper respectively compared to the initial approach in PASTA.  

 
4.2 SUGGESTIONS FOR FUTURE WORK  

With the rapid advancement in ADAS perception architecture design methodology, the 

design space for sensor modality selection and placement combined with future options for object 

detection and sensor fusion is predicted to evolve exponentially with time. The synthesis of optimal 

perception architecture solutions will continue to be a more complex problem due to this growing 

design space and warrant constraint-aware designs with focus on reliability, safety and driver 

comfort. Hence, we envision the following research directions for future work:  

• Reliable hardware software co-optimization aware design of perception architecture: 

Perception architecture synthesis is constrained by real time latency requirements which 

can be measured at the signal level. The problem can be formulated such that performance 

of a synthesized perception architecture is aware of which automotive grade embedded 

platform (like NVIDIA Drive Hyperion, Drive Orin, Arm Cortex- A65AE, Arm Cortex-

A76E and Intel AIoT Tank) is selected and latency analysis can be performed at an 

architecture level giving important insights into optimal hardware requirements such as 

RAM, cache size, throughput and memory consumption that work best with object 

detectors and fusion algorithms.  

• Perception architecture synthesis with focus on increased driver comfort: With integration 

of driver in loop (DIL) and hardware in loop (HIL) in exploration, the driver experience 

and safety level of the synthesized perception architecture can be evaluated. A co-

optimization framework capable of quantifying driver’s trust and comfort level during 
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navigation can help to design perception architectures which exhibit safe driving behavior 

and minimized traffic violations or accidents. HIL testing of the synthesized perception 

architecture solutions, can help to identify which embedded processes in the perception 

workflow are contributing to increased latency and improve reaction time of the system 

during difficult maneuvers enforcing driver safety.  

• A co-optimization approach for perception, control and path planning design in ADAS: A 

joint co-optimization exploration of perception architecture components, trajectory 

planning and control system design can encompass an end to end exploration of all 

components critical to autonomous system design for automotive cyber physical platforms. 

This co-optimization framework can capture the effect of environment modeling for 

perception architecture synthesis on trajectory planning and control algorithm response. 

The performance of control algorithms and various artificial intelligence based path 

planning algorithms can be benchmarked against types of perception architectures to 

quantify the effect of error propagation in the ADAS pipeline.  

• Vehicle to Everything (V2X) fusion aware design of perception architecture for failsafe 

reactions in real time scenarios: Perception architecture design is limited by single point 

of failure due to the high influence of individual perception architecture components. A 

well designed distributed computing platform with integration of V2X fusion data can 

ensure a failsafe reaction mechanism when perception is compromised due to limited 

compute resource or adverse weather conditions. V2X sensor data benefits information 

fusion for safe navigation since it includes critical information transferred between a given 

vehicle and all other moving parts of traffic and infrastructure. V2V (vehicle to vehicle) 

sensor data fusion can enable co-operative autonomous driving and uniform velocity 
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control, eliminating traffic congestions and enabling fuel efficiency. Further, V2I (vehicle 

to infrastructure) data fusion can be used for enhanced route planning by utilizing prior 

information of weather conditions and traffic density.  

• A distributed path association algorithm between ego vehicles for fuel efficiency and 

safety: Path planning algorithm performance for a given ADAS design depends on the 

fidelity of environment and traffic modeling determined by the quality of perception. State-

of-the-art path planning algorithms generate trajectories for only the ego vehicle and 

respond to encountered non-ego vehicles relying solely on real time sensing. An efficient 

path association algorithm running on all ego vehicle made available through V2X 

infrastructure, could improve the efficiency with which trajectories are planned and remove 

road congestion at low speeds or traffic accidents at high speeds guaranteeing long term 

fuel efficiency and safety.  
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