A Hand-Based Biometric Verification System Using Ant Colony Optimization

Abstract

This paper presents a novel personal authentication system using hand-based biometrics, which utilizes internal (beneath the skin) structure of veins on the dorsal part of the hand and the outer shape of the hand. The hand-vein and the hand-shape images can be simultaneously acquired by using infrared thermal and digital camera respectively. A claimed identity is authenticated by integrating these two traits based on the score-level fusion in which four fusion rules are used for the integration. Before their fusion, each modality is evaluated individually in terms of error rates and weights are assigned according to their performance. In order to achieve an adaptive security in the proposed bimodal system, an optimal selection of fusion parameters is required. Hence, Ant Colony Optimization (ACO) is employed in the bimodal system to select the weights and also one out of the four fusion rules optimally for the adaptive fusion of the two modalities to meet the user defined security levels. The databases of hand-veins and the hand-shapes consisting of 150 users are acquired using the peg-free imaging setup. The experimental results show genuine acceptance rate (GAR) of 98% at false acceptance rate (FAR) of 0.001% and the system has the potential for any online personal authentication based application.

    Similar works